From 07398428f3c51708d72ac1a6c8e65db3dc60012d Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Mon, 9 Dec 2024 05:29:48 +0000 Subject: [PATCH] Add changes --- _data/containers.yaml | 24 +- _data/repos.yml | 502 +- _recipes/CNCLgithub/pytower/Singularity | 56 + .../containers/reprostim-timesync/Singularity | 189 + _recipes/asgeissler/RNA-Schlange/Singularity | 141 + assets/js/repos.js | 41076 ++++++++-------- 6 files changed, 21376 insertions(+), 20612 deletions(-) create mode 100644 _recipes/CNCLgithub/pytower/Singularity create mode 100644 _recipes/ReproNim/reprostim/containers/reprostim-timesync/Singularity create mode 100644 _recipes/asgeissler/RNA-Schlange/Singularity diff --git a/_data/containers.yaml b/_data/containers.yaml index 54bd0db2..1c4c1b1e 100644 --- a/_data/containers.yaml +++ b/_data/containers.yaml @@ -1,5 +1,5 @@ bases: -- count: 2132 +- count: 2133 name: ubuntu - count: 451 name: nvidia/cuda @@ -25,7 +25,7 @@ bases: name: Characterisation-Virtual-Laboratory/CharacterisationVL-Software - count: 88 name: nfcore/base -- count: 71 +- count: 72 name: neurodebian - count: 53 name: fedora @@ -215,6 +215,8 @@ bases: name: bids/example - count: 8 name: nickjer/singularity-r +- count: 8 + name: condaforge/mambaforge - count: 8 name: broadinstitute/gatk - count: 7 @@ -231,8 +233,6 @@ bases: name: nickjer/singularity-rstudio - count: 7 name: archlinux/base -- count: 7 - name: condaforge/mambaforge - count: 7 name: khanlab/neuroglia-core - count: 7 @@ -2144,7 +2144,7 @@ bases: - count: 1 name: ubuntu16.04 bootstraps: -- count: 7028 +- count: 7031 name: docker - count: 511 name: shub @@ -2917,8 +2917,6 @@ orgs: name: asciinema - count: 1 name: quay.io/ohpc -- count: 1 - name: condaforge - count: 1 name: mercury - count: 1 @@ -3113,6 +3111,8 @@ orgs: name: cloudpg - count: 1 name: wangyinz +- count: 1 + name: condaforge - count: 1 name: dezordi - count: 1 @@ -3154,8 +3154,8 @@ orgs: - count: 1 name: thomasrobinson tags: - latest: 747 - other: 6634 + latest: 748 + other: 6636 versions: /nrs/funke/singularity/linajea/pylp_base: v1.5.img: 1 @@ -3695,7 +3695,7 @@ versions: latest: 1 condaforge/mambaforge: 4.10.3-1: 1 - latest: 1 + latest: 2 conradbailey/defaults/hpcc: sha256.38d0deec523f0557882ed1bea1e2b9b747285ff5d7a875f1375f11f085945b04: 1 containers.las.iastate.edu/ml-gpu-base: @@ -4645,7 +4645,7 @@ versions: latest: 1 neurodebian: artful-non-free: 3 - bookworm: 2 + bookworm: 3 bullseye: 3 bullseye-non-free: 2 buster: 6 @@ -6013,7 +6013,7 @@ versions: '16.10': 4 '17.04': 8 '17.10': 5 - '18.04': 411 + '18.04': 412 '18.04 ': 9 18.04': 1 '18.10': 10 diff --git a/_data/repos.yml b/_data/repos.yml index 137acfa3..ba3ebe3f 100644 --- a/_data/repos.yml +++ b/_data/repos.yml @@ -2270,8 +2270,8 @@ ACEnglish/truvari: >\n
All documentation about Truvari is on the WIKI. Additional information about using Truvari can be found in Discussions
\n" - stargazers_count: 321 - subscribers_count: 14 + stargazers_count: 324 + subscribers_count: 13 topics: - structural-variation - vcf @@ -2283,7 +2283,7 @@ ACEnglish/truvari: - sv-merging - benchmarking - sequencing - updated_at: 1729911196.0 + updated_at: 1732813185.0 AI-Planning/autoscale: data_format: 2 description: null @@ -3165,7 +3165,7 @@ AJResearchGroup/plinkr: \ id=\"user-content-faq\" class=\"anchor\" aria-label=\"Permalink: FAQ\" href=\"\ #faq\">\n\See doc/faq.md
\n" - stargazers_count: 7 + stargazers_count: 8 subscribers_count: 1 topics: - gwas @@ -3173,7 +3173,7 @@ AJResearchGroup/plinkr: - plink2 - r - r-package - updated_at: 1708238471.0 + updated_at: 1733295988.0 AMarinhoSN/tutorial-cCC: data_format: 2 description: null @@ -10249,8 +10249,8 @@ BioDynaMo/biodynamo: >License\nBioDynaMo is Apache 2.0 licensed.
\n" - stargazers_count: 98 - subscribers_count: 13 + stargazers_count: 104 + subscribers_count: 14 topics: - simulation - high-performance @@ -10264,7 +10264,7 @@ BioDynaMo/biodynamo: - cancer - large-scale - parallel - updated_at: 1729181995.0 + updated_at: 1733548383.0 Bioconductor/bioconductor_docker: data_format: 2 description: Docker Containers for Bioconductor @@ -14327,6 +14327,108 @@ CNCLgithub/psiturk-sing: subscribers_count: 3 topics: [] updated_at: 1601405204.0 +CNCLgithub/pytower: + data_format: 2 + description: Random block tower generator with analysis of physical characteristics + filenames: + - Singularity + full_name: CNCLgithub/pytower + latest_release: null + readme: "\n\nAll team members must
\nSimple setups on local hosts should run fine with the default.conf
.\n\
+ However, if there are any issues with singularity
the create a user.conf
\n\
+ with correct attributes.
default.conf
reads as:
[ENV]\n\
+ exec:singularity # the path to\
+ \ singularity binary\npath:julia-cont # the path to the singularity container\npython:pyenv \
+ \ # the name of the conda environment\n\
+ julia_depot:.julia # the relative\
+ \ path to set JULIA_DEPOT_PATH\nmounts:
As of now there\
+ \ are some extraneous sections in default.conf
which\ncould be of\
+ \ use later.
[PATHS]\ndatabases:output/databases\ntraces:output/traces\nrenders:output/renders
Simply run setup.sh
\
+ \ in the root of this repo as follows
chmod +x setup.sh\n./setup.sh
You will be prompted for sudo\ + \ when building the container.
\nsetup.sh
will then create\
+ \ the container at the path specified in the config (julia-cont
by\
+ \ default).
\n\n\n\nNOTE: Like many commands in this setup, variables\ + \ will be bound to those specified in
\n\ +user.conf
if present ordefault.conf
After running setup.sh
, you can now use run.sh
\
+ \ to use the environment.
The synatx of run.sh
is simply:
./run.sh <command>
Where command
\
+ \ can be any arbitrary bash expression.
For example, you can probe the\ + \ python version in the conda environment using:
\n>: ./run.sh\
+ \ python3 --version\nNo user config found, using default\nINFO for ENV\n \
+ \ path => julia-cont\n mounts => \n exec => singularity\n\
+ \ julia_depot => .julia\n python => pyenv\nPython 3.6.8 ::\
+ \ Anaconda, Inc.\n\n
\nAs you can see ./run.sh
first
Getting into the julia
repl is simply
>: ./run.sh\
+ \ julia\n
\nNo user config found, using default\nINFO for\
+ \ ENV\n path => julia-cont\n mounts => \n exec =>\
+ \ singularity\n julia_depot => .julia\n python => pyenv\n\
+ \ _\n _ _ _(_)_ | Documentation: https://docs.julialang.org\n\
+ \ (_) | (_) (_) |\n _ _ _| |_ __ _ | Type \"?\" for help, \"]?\"\
+ \ for Pkg help.\n | | | | | | |/ _` | |\n | | |_| | | | (_| | | Version 1.1.0\
+ \ (2019-01-21)\n _/ |\\__'_|_|_|\\__'_| | Official https://julialang.org/ release\n\
+ |__/ |\n\njulia> \n
\nTo make sure that JULIA_DEPOT_PATH
\
+ \ is set to that in the config:
julia> DEPOT_PATH\n\
+ 1-element Array{String,1}:\n \".julia\"\n\
+ \njulia> \n
To activate the package (ie rely on Project.toml
and Manifest.toml
)\
+ \ run
(v1.1) pkg> activate .\n\n(kinezoo)\
+ \ pkg> instantiate\n Updating registry at `.julia/registries/General`\n Updating git-repo\
+ \ `https://github.com/JuliaRegistries/General.git`\n
You can then reference code\ + \ within the repo or import dependencies:
\njulia> using\
+ \ LightGraphs
You can additionally pre-compile dependencies using:
\n\ +(kinezoo) pkg> precompile\nPrecompiling project...
This\ \ project follows the all-contributors specification. Contributions of any kind welcome!
\n" - stargazers_count: 1964 + stargazers_count: 1965 subscribers_count: 37 topics: - computer-vision @@ -73030,7 +73132,7 @@ UniversalDataTool/universal-data-tool: - labeling - labeling-tool - hacktoberfest - updated_at: 1732900462.0 + updated_at: 1733335701.0 VALENCE-software/VALENCE: data_format: 2 description: quantum chemistry software @@ -80568,8 +80670,8 @@ alexlancaster/pypop: filenames: - src/obsolete/Singularity full_name: alexlancaster/pypop - latest_release: v1.1.0 - stargazers_count: 21 + latest_release: v1.1.2 + stargazers_count: 22 subscribers_count: 8 topics: - population-genomics @@ -80577,7 +80679,7 @@ alexlancaster/pypop: - bioinformatics - open-source - free-software - updated_at: 1721685890.0 + updated_at: 1732580917.0 alexpacheco/lurc-ood-apps: data_format: 2 description: Repository for Open OnDemand Applications on Lehigh's HPC clusters @@ -85112,6 +85214,256 @@ asgeissler/OCyRS-pipeline: subscribers_count: 2 topics: [] updated_at: 1727253743.0 +asgeissler/RNA-Schlange: + data_format: 2 + description: The straightforward RNA-seq Snakemake pipeline + filenames: + - Singularity + full_name: asgeissler/RNA-Schlange + latest_release: null + readme: "\nThe RNA-Schlange (German word for snake)\n\ + pipeline assesses the quality of RNA-seq data in a\nplug and play approach. Thus,\ + \ a user should not need to provide any additional\nconfigurations aside from\ + \ providing the read files, the genome, and\na rudimentary sample sheet file.\n\ + This pipeline supports both microbial and eukaryotic\ + \ experimental data,\nas well ass both single-end and paired-end\ + \ sequencing data.\nAlternatively, a user can specify a set of SRA runs that should\ + \ be downloaded.\nIf you use the RNA-Schlange, please consider citing:
\n\ +\"Exploring the regulatory potential of RNA structures in 202 cyanobacterial\
+ \ genomes\"
\nAS Geissler, EC Alvarez, C Anthon, NU Frigaard, J Gorodkin,\
+ \ and SE Seemann
\nsubmitted
RNA-Schlange\ + \ uses the following tools:
\nInstall conda
\ninstall Snakemake and mamba
\n\ + $ conda install -n base -c conda-forge mamba\n $ mamba install -c\
+ \ bioconda snakemake\n
\nDownload this pipeline
\n\ + $ git clone asgeissler/RNA-Schlange\n
\nWhen using the run.sh
helper script,\nSnakemake will automatically\
+ \ install\nthe remaining dependencies (e.g. fastp)\nby creating new conda\
+ \ environments within the workflow directory.
All\ + \ computations and data will be stored within the directory in which\nyou downloaded\ + \ this pipeline. There are two scenarios on how to use\nRNA-Schlange:
\n\n\ +In case you have RNA-seq data of your own, please create a folder data
\n\
+ and place your files there.\nAlso provide the genomic sequence and annotation\
+ \ for your organism of\ninterest; please name the files\ngenome.fna.gz
\
+ \ and genome.gff.gz
.\nYou might want to download them from\neither\
+ \ RefSeq,\n\
+ ENA, or\n\
+ a species specific
Finally, write a file samples.csv
that\
+ \ describes each\nread file that you have provided in data
.\nThe\
+ \ file should be comma separated (that is a ',' between each value)\nand contain\
+ \ the columns 'file', 'batch', 'sample', and 'condition'.\nIf your experiment\
+ \ is a pair-end RNA-seq dataset, also add the optional\n'pair' column.
In\
+ \ case that your sequencing facility provides md5 checksums, consider\nwriting\
+ \ a checksum.txt
file of the form
abc032358XXX\
+ \ file1_1.fast.gz\n XYZ987654321 file1_2.fast.gz\n ....\n
\n\
+ RNA-Schlange will then initiate a comparison of hash to verify that there\n\ + were not issues during the download.
\nFor example, the input data could\ + \ look like:
\n \u251C\u2500\u2500 data\n \u2502\_\_ \u251C\
+ \u2500\u2500 file1_1.fastq.gz\n \u2502\_\_ \u251C\u2500\u2500 file1_2.fastq.gz\n\
+ \ \u2502\_\_ \u251C\u2500\u2500 file2_1.fastq.gz\n \u2502\_\_ \u251C\u2500\
+ \u2500 file2_2.fastq.gz\n \u2502\_\_ \u2514\u2500\u2500 ...\n \u251C\u2500\
+ \u2500 genome.fna.gz\n \u251C\u2500\u2500 (checksum.txt) # optional\n \u251C\
+ \u2500\u2500 genome.gff.gz\n \u251C\u2500\u2500 samples.csv\n
\n\
+ With the file samples.csv
describing the reads
\
+ \ batch,sample,condition,pair,file\n batch1,A,control,R1,file1_1.fastq.gz\n\
+ \ batch1,A,control,R2,file1_2.fastq.gz\n batch1,B,control,R1,file2_1.fastq.gz\n\
+ \ batch1,B,control,R2,file2_2.fastq.gz\n ...\n
\nThe pipline\
+ \ will compute an analysis folder (see below) in which\nall files corresponding\
+ \ to the samples are names\nbatch_sample_condition
. Therefore the\
+ \ pipeline only accepts\nsample/condition/batch with\nalpha-numeric names (incl.\
+ \ dash, -0-9a-zA-Z
).\nFor paired-end reads, the values for the pairs\
+ \ are either R1 or R2.
RNA-Schlange supports you to specify\nrun accession numbers to download from\
+ \ the\nSRA database.\n\
+ All you needed to specify is a comma separated file\nspecifying the 'run' and\
+ \ 'condition'.\nIf the data that will be downloaded is single-end, please\nname\
+ \ the file sra-SE.csv
.\nFor paired-end data name the file `sra-PE.csv.
A hypothetical sra\\*.csv
should look like, example from the airway dataset:
run,condition\n \
+ \ SRR1039508,N61311-control\n SRR1039509,N61311-case\n SRR1039512,N052611-control\n\
+ \ SRR1039513,N052611-case\n
\n\n\
+ All that is needed to start the pipeline is to execute the helper script with:
\n\ + bash run.sh\n
\nIf you specified the data via SRA\ + \ entries, you would need to run the script\ntwice (once for the download and\ + \ once for the quality assessment).\nIn the helper script, Snakemake is set to\ + \ automatically install the software\ndependencies with conda.
\n\n\ +Alternatively, if you prefer the computations to run in a cluster,\nRNA-Schlange\
+ \ comes with support for slurm.\nSimply use bash run_slurm.sh
\
+ \ after adapting the configurations to you\nsystem in clusterprofile_slurm/config.yaml
.
If you prefer to use singularity to handle the dependencies,\nthen please use\n\
+ bash run_slurm_singularity.sh
and the configuration\nclusterprofile_slurm_singularity/config.yaml
.\n\
+ For this use case, the pipeline will download a pre-build\ncontainerized\ncontainerized\nimage that includes all dependencies. Thanks\
+ \ to the ORAS standard,\nyou can use this image also for a docker environment.
Recommendation: Set the conda-prefix
and singularity-prefix
\n\
+ to paths on your server for centralized storage of the dependencies and\ncontainer\
+ \ images.\nThen dependencies won't be re-installed for each new workflow instance\n\
+ (saving time and storage).
Note on SRA downloading: Due\
+ \ this pipelines internal coding to conditionally\nhandle user provided or SRA\
+ \ deposited RNA-seq data, it is not possible to\nsplit the downloading part into\
+ \ multiple jobs. Uset the\nrun.sh
or run_singularity.sh
\
+ \ helpers for the downloading part\n(can be submitted to a queue as a single job).
All computatioal results of the pipeline are stored in the analysis
\n\
+ directory.
If you provided a checksum.txt
file that specified\
+ \ the\nper fastq file the expected checksums (see above), then\nthe pipeline creates\
+ \ states the observed checksums in\nchecksum.txt
with potential difference\
+ \ to the expected\nchecksums listed in differing-checksum.txt
.
The intermediary results of the pipeline are stored\nin computaitonal-chronological\ + \ order as indicated by numeric\nprefixes per folder:
\n10_raw
:
\n\
+ Contains symbolic links to the files in data
but\nwith renaming to\
+ \ batch\\_sample\\_condition(\\_pair)
11_discarded
,\
+ \ 11_unpaired
, 12_clean
:
\nThese folders contain\
+ \ the discarded, unpaired, and quality filtered\nclean reads, as processed by\
+ \ fastp.
13_report/\\*.html
:
\n\
+ Per file, fastp procudes html accessible reports that showcase\n\
+ the before/after filtering statistics. Additionally, the report\nshows detailed\
+ \ statistics onj\npotential adapter contamination or distribution of insert sizes\
+ \ of\npaired-end reads.
15_fastqc/10_raw
, 15_fastqc/12_clean
,\
+ \ 50_fastqc_before
,\nand 51_fastqc_after
:
\nFastQC\
+ \ is a popular tools for reporting sequenceing reads quality.\nThe 15_fastqc
\
+ \ folder contains the indibidual reports, while\nthe comprehensive MultiQC\
+ \ report that aggregates the information\nfrom all files are in the 50_fastqc_before
\
+ \ and 51_fastqc_after
\nfolder.
20_db
,\
+ \ 21_ribosomal_RNA
, 22_non-ribosomal_RNA
:
\nThese\
+ \ directories correspond to the ribosomal RNA filtering\nof SortMeRNA.
30_genes.fna.gz
, 31_salmon_index
, 32_salmon
:
\n\
+ For a quality control assessment of expression levels,\nRNA-Schlange quantifies\
+ \ expression for all genes (coding and non-coding)\nannotated in the user-provided\
+ \ genome.gff.gz
with Salmon.\nThere files and folders\
+ \ contain the index for the gene sequences\nand the output files of Salmon.
40_survey
:
\nBased on the expresison levels, this\
+ \ folder contains the\ninformation on
counts.tsv
.biotype-content.png
.scatter-plots.png
.pca.png
.putative-diff-expression-summary.tsv
and\nputative-diff-expression.tsv
.53_main_multiqc
:RNA-Schlange attempts to provide a near configuration-free\nexperience of assessing\
+ \ the overall RNA-seq data quality.\nHowever, a user could still adapt pipeline\
+ \ in the\nconfig.yaml
file, which is format in\nthe\nYAML format.
Instead of having the pipeline extract\
+ \ the sequences for the genes annotatated\nin the genome.gff.gz
,\
+ \ you can provide already given gene/transcript sequences\nFor example, you can\
+ \ use the transcript sequences for mouse or human\nfrom the GENCODE project:
wget $URL -O analysis/30_genes.fna.gz\n\
+
\nIn case of GENCODE provided sequences, please adapt the config.yaml
:
salmon_index_args: [\n '--gencode'\n ]\n
\n\
+ \nThe default paramters\ + \ are set to
\nEnsure a an overall average\nPhred score\nquality above $20$ (probabity of incorrect\ + \ base call $< 0.01$).
\nLess then $10%$ of positions are\ + \ read are under a score of $20$.
\nReads have a minimal length\ + \ of $40$ nucleotides.
\nThe adapter contamination and clipping\ + \ is done for the\nIllumina universal adapter sequences
\n fastp_args:\
+ \ [\n '--average_qual=20',\n '--qualified_quality_phred=20',\n '--unqualified_percent_limit=10',\n\
+ \ '--length_required=40',\n '--adapter_sequence=AGATCGGAAGAGCACACGTCTGAACTCCAGTCA',\n\
+ \ '--adapter_sequence_r2=AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT'\n ]\n
\n\
+ Alternative parameters are shown in the\nfastp handbook, which allow for:
\nAlthough fastp allows for an automatic adapter sequence\
+ \ detection,\nthe pipeline states the Illumina universal adapter sequences\nfor\
+ \ explicitly checking for potential contamination by these sequences.\nAlterantive\
+ \ adapter sequences are listed adapter_list.fa
.
Per default, the 16S, 18S, and 23S ribosomal RNAs are\nchoosen for the removal\ + \ steps.\nThe removal is relative to represantative squences collected\nby SortMeRNA.\ + \ Additional\nfilter sets are listed in the\nhandbook.
\n sortmerna: [\n 'silva-bac-16s-id90',\n\
+ \ 'silva-arc-16s-id95',\n 'silva-euk-18s-id95',\n 'silva-bac-23s-id98',\n\
+ \ 'silva-arc-23s-id98',\n 'silva-euk-28s-id98'\n ]\n
\n\
+ \nThe assessment of putative\ndifferential\ + \ gene expression is per default relative to the\nFDR $\\alpha = 0.05$. An alternative\ + \ significance level can be specified\nin the configuraiton.\nFurther, if any\ + \ of the generated plots might in their dimension not\nbe suitable for a dataset,\ + \ other sizes can be specified.\nThe dimensions of the plots is given as a string\ + \ of the format\n'x' in inches.
\n dge: {\n alpha: 0.05,\n\
+ \ dim_pca: '12x8',\n dim_scatter: '20x20',\n dim_biotype: '8x6'\n\
+ \ }\n
\n\nWhen using this pipeline\
+ \ in it's containerized form (e.g.\nrun_singularity.sh
),\
+ \ then an image that was build with the following commands\nwill be downloaded.
# The rule for fasterq-dump download from SRA is only contitionally\n\
+ \ # loaded, therefore there is a separate Dockerfile just for this part.\n\
+ \ snakemake --containerize > Dockerfile.fasterq\n # After a complete\
+ \ run of the pipeline (to make sure all works), snapshot the conda envs\n snakemake\
+ \ --containerize > Dockerfile\n # MANUALLY copy paste and adapt step1/2\
+ \ part from Dockerfile.fasterq over\n # Convert to a singularity file\n \
+ \ # mambaforge does not have curl installed -> use wget\n # `curl URL -o\
+ \ PATH` becomes `wget URL -O PATH`\n # spython incorrectly doubles the '/environment.yaml/environment.yaml'\n\
+ \ spython recipe Dockerfile | \\\n sed\
+ \ 's,curl \\([^ ]*\\) -o \\([^ ]*\\),wget \\1 -O \\2,' | \\\n sed 's,/environment.yaml/environment.yaml,/environment.yaml,'\
+ \ > Singularity\n singularity build --fakeroot rnaschlange-0.1.sif Singularity\n\
+ \ # setup repositry credential\n singularity remote login --username <USER>\
+ \ oras://ghcr.io\n # + enter secret access token\n # upload image\n singularity\
+ \ push rnaschlange-0.1.sif oras://ghcr.io/asgeissler/rnaschlange:0.1\n
\n"
+ stargazers_count: 0
+ subscribers_count: 2
+ topics: []
+ updated_at: 1727253808.0
ashokdahal/FrameFieldLearning_Anaconda_Windows:
data_format: 2
description: null
@@ -86152,7 +86504,7 @@ ay-lab/selfish:
\ class=\"pl-k\">import numpy as np\nmatrix\
\ = np.load(\"/path/to/output/selfish.npy\")\n\
+ pl-c1\">load(\"/path/to/output/selfish.npy\")\n\
\n"
- stargazers_count: 8
+ stargazers_count: 9
subscribers_count: 2
topics:
- certificate-authority
@@ -170511,7 +170863,7 @@ netreconlab/ca-server:
- certificate-signing-request
- csr
- hacktoberfest
- updated_at: 1729619973.0
+ updated_at: 1733198947.0
netreconlab/clamav:
data_format: 2
description: ' This repo provides a Singularity image version for ClamAV, an anti-virus
@@ -172259,14 +172611,14 @@ nextgenusfs/funannotate:
'
- stargazers_count: 322
+ stargazers_count: 323
subscribers_count: 16
topics:
- genome-annotation
- gene-models
- comparative-genomics
- ncbi-submission
- updated_at: 1729779443.0
+ updated_at: 1733345263.0
nf-core/ddamsproteomics:
data_format: 2
description: Quantitative shotgun MS proteomics
@@ -174751,10 +175103,10 @@ nservant/HiC-Pro:
Logs: logs/dixon_2M/ice_1000000.log\nLogs: logs/dixon_2M_2/ice_500000.log\nLogs:\
\ logs/dixon_2M_2/ice_1000000.log\n\nreal\t2m15,736s\nuser\t4m3,277s\nsys\t0m24,423s\n\
\n\n"
- stargazers_count: 387
+ stargazers_count: 388
subscribers_count: 18
topics: []
- updated_at: 1733028684.0
+ updated_at: 1733361034.0
nterhoeven/reper:
data_format: 2
description: reper - Genome-wide identification, classification and quantification
@@ -176749,33 +177101,33 @@ openPMD/openPMD-api:
>import openpmd_api\ \ as io\n\n# ...\n\nseries = io.Series(= io.Series(\"samples/git-sample/data%T.h5\", io.Access.read_only)\n\ + >io.Access.read_only)\n\ \nfor k_i, i in series.iterations.items():\n \ + \ class=\"pl-c1\">iterations.items():\n \ \ print(\"Iteration: {0}\"\ - .format(k_i))\n\ + .format(k_i))\n\ \n for k_m, m in i.meshes.items():\n\ + >i.meshes.items():\n\ \ print(\" Mesh '{0}'\ - \ attributes:\".format(.format(k_m))\n for a\ \ in m.attributes:\n print(\" {0}\".format(attributes:\n print(\" {0}\".format(a))\n\n for k_p, p in\ - \ i.particles.items():\n print(i.particles.items():\n print(\" Particle species '{0}' attributes:\".format(k_p))\n format(k_p))\n for a in\ - \ p.attributes:\n \ + \ p.attributes:\n \ \ print(\" {0}\"\ - .format(a))\n\ + .format(a))\n\ \n\ @@ -177003,33 +177355,31 @@ openPMD/openPMD-api: \ CMAKE_PREFIX_PATH=$HOME/somepath:$CMAKE_PREFIX_PATH\n
Use the following lines in\
\ your project's CMakeLists.txt
:
# supports: \
- \ COMPONENTS MPI NOMPI HDF5 ADIOS2\nfind_package(openPMD\
- \ 0.16.0 CONFIG)\n\nif(openPMD_FOUND)\n\
- \ target_link_libraries(YourTarget PRIVATE openPMD::openPMD)\nendif()
Alternatively, add the openPMD-api repository source directly to your\ - \ project and use it via:
\nadd_subdirectory(\"path/to/source/of/openPMD-api\"\
- )\n\ntarget_link_libraries(YourTarget PRIVATE openPMD::openPMD)
For development\
- \ workflows, you can even automatically download and build openPMD-api from within\
- \ a depending CMake project.\nJust replace the add_subdirectory
call\
- \ with:
include(FetchContent)\nset(CMAKE_POLICY_DEFAULT_CMP0077\
- \ NEW)\nset(openPMD_BUILD_CLI_TOOLS\
- \ OFF)\nset(openPMD_BUILD_EXAMPLES\
- \ OFF)\nset(openPMD_BUILD_TESTING\
- \ OFF)\nset(openPMD_BUILD_SHARED_LIBS\
- \ OFF) # precedence over BUILD_SHARED_LIBS if needed\nset(openPMD_INSTALL OFF) # or instead use:\n# set(openPMD_INSTALL ${BUILD_SHARED_LIBS})\
- \ # only install if used as a shared library\nset(openPMD_USE_PYTHON\
+ ># supports: COMPONENTS MPI NOMPI\
+ \ HDF5 ADIOS2\nfind_package(openPMD 0.17.0\
+ \ CONFIG)\n\nif(openPMD_FOUND)\n target_link_libraries(YourTarget PRIVATE\
+ \ openPMD::openPMD)\nendif()
Alternatively,\ + \ add the openPMD-api repository source directly to your project and use it via:
\n\ +add_subdirectory(\"path/to/source/of/openPMD-api\")\n\ntarget_link_libraries(YourTarget PRIVATE openPMD::openPMD)
For development workflows, you can even automatically download and build openPMD-api\
+ \ from within a depending CMake project.\nJust replace the add_subdirectory
\
+ \ call with:
include(FetchContent)\nset(CMAKE_POLICY_DEFAULT_CMP0077 NEW)\nset(openPMD_BUILD_CLI_TOOLS\
+ \ OFF)\nset(openPMD_BUILD_EXAMPLES\
+ \ OFF)\nset(openPMD_BUILD_TESTING\
+ \ OFF)\nset(openPMD_BUILD_SHARED_LIBS\
+ \ OFF) # precedence over BUILD_SHARED_LIBS\
+ \ if needed\nset(openPMD_INSTALL OFF) # or instead use:\n\
+ # set(openPMD_INSTALL ${BUILD_SHARED_LIBS}) # only install\
+ \ if used as a shared library\nset(openPMD_USE_PYTHON\
\ OFF)\nFetchContent_Declare(openPMD\n GIT_REPOSITORY\
\ \"https://github.com/openPMD/openPMD-api.git\"\n\
- \ GIT_TAG \"0.16.0\")\nFetchContent_MakeAvailable(openPMD)
So generally
\nconsensus.py -c clusters.tsv -a alt.mtx -r ref.mtx\
\ --soup_out soup.txt -v <freebayes vcf> --vcf_out cluster_genotypes.vcf\
\ --output_dir .\n
\n"
- stargazers_count: 168
+ stargazers_count: 169
subscribers_count: 11
topics:
- scrna-seq
@@ -234313,7 +234663,7 @@ wheaton5/souporcell:
- bioinformatics
- computational-biology
- genomics
- updated_at: 1730915536.0
+ updated_at: 1733285106.0
willgpaik/centos7_aci:
data_format: 2
description: Centos 7 base image for ACI
@@ -235169,10 +235519,10 @@ wsjeon/maddpg-rllib:
'
- stargazers_count: 51
+ stargazers_count: 50
subscribers_count: 2
topics: []
- updated_at: 1731152852.0
+ updated_at: 1731949950.0
wtsi-hgi/nf_cellbender:
data_format: 2
description: Single cell Nextflow cellbender pipeline.
diff --git a/_recipes/CNCLgithub/pytower/Singularity b/_recipes/CNCLgithub/pytower/Singularity
new file mode 100644
index 00000000..f4ffb0f4
--- /dev/null
+++ b/_recipes/CNCLgithub/pytower/Singularity
@@ -0,0 +1,56 @@
+Bootstrap: docker
+From: ubuntu:18.04
+
+
+%environment
+# setup PATH to point to julia, conda, and blender
+export PATH=$PATH:/julia/bin
+export PATH=$PATH:/miniconda/bin
+export PATH=$PATH:/blender
+export LANG=en_US.UTF-8
+
+%runscript
+ exec bash "$@"
+
+%post
+
+# System level packages
+apt-get update
+apt-get install -y build-essential \
+ graphviz \
+ git \
+ wget \
+ ffmpeg \
+ libglu1 \
+ libxi6
+apt-get clean
+
+# Build context
+mkdir /build-ctx && cd /build-ctx
+
+# Setup blender
+wget "https://yale.box.com/shared/static/nn6n5iyo5m4tzl5u9yoy2dvv1ohk22xj.xz" \
+ -O blender.tar.gz
+tar -xf blender.tar.gz
+mv blender-2.* /blender
+chmod +x /blender/blender
+
+
+# Setup conda
+wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O conda.sh
+bash conda.sh -b -p /miniconda
+
+# Add an sbatch workaround
+echo '#!/bin/bash\nssh -y "$HOSTNAME" sbatch "$@"' > /usr/bin/sbatch
+chmod +x /usr/bin/sbatch
+
+# Add an scancel workaround
+echo '#!/bin/bash\nssh -y "$HOSTNAME" scancel "$@"' > /usr/bin/scancel
+chmod +x /usr/bin/scancel
+
+# Add an srun workaround
+echo '#!/bin/bash\nssh -y "$HOSTNAME" srun "$@"' > /usr/bin/srun
+chmod +x /usr/bin/srun
+
+# clean up
+rm -rf /build-ctx
diff --git a/_recipes/ReproNim/reprostim/containers/reprostim-timesync/Singularity b/_recipes/ReproNim/reprostim/containers/reprostim-timesync/Singularity
new file mode 100644
index 00000000..05ac70df
--- /dev/null
+++ b/_recipes/ReproNim/reprostim/containers/reprostim-timesync/Singularity
@@ -0,0 +1,189 @@
+# Generated by Neurodocker and Reproenv.
+
+Bootstrap: docker
+From: neurodebian:bookworm
+
+%environment
+export LANG="en_US.UTF-8"
+export LC_ALL="en_US.UTF-8"
+export ND_ENTRYPOINT="/neurodocker/startup.sh"
+
+%post
+export ND_ENTRYPOINT="/neurodocker/startup.sh"
+apt-get update -qq
+apt-get install -y -q --no-install-recommends \
+ apt-utils \
+ bzip2 \
+ ca-certificates \
+ curl \
+ locales \
+ unzip
+rm -rf /var/lib/apt/lists/*
+sed -i -e 's/# en_US.UTF-8 UTF-8/en_US.UTF-8 UTF-8/' /etc/locale.gen
+dpkg-reconfigure --frontend=noninteractive locales
+update-locale LANG="en_US.UTF-8"
+chmod 777 /opt && chmod a+s /opt
+mkdir -p /neurodocker
+if [ ! -f "$ND_ENTRYPOINT" ]; then
+ echo '#!/usr/bin/env bash' >> "$ND_ENTRYPOINT"
+ echo 'set -e' >> "$ND_ENTRYPOINT"
+ echo 'export USER="${USER:=`whoami`}"' >> "$ND_ENTRYPOINT"
+ echo 'if [ -n "$1" ]; then "$@"; else /usr/bin/env bash; fi' >> "$ND_ENTRYPOINT";
+fi
+chmod -R 777 /neurodocker && chmod a+s /neurodocker
+
+apt-get update -qq
+apt-get install -y -q --no-install-recommends \
+ build-essential \
+ curl \
+ git \
+ gnupg \
+ less \
+ libasound2-dev \
+ libcanberra-gtk3-module \
+ libgtk-3-dev \
+ libusb-1.0-0-dev \
+ libwxgtk-media3.2-dev \
+ libwxgtk-webview3.2-dev \
+ libwxgtk3.2-dev \
+ ncdu \
+ pavucontrol \
+ pigz \
+ pkg-config \
+ portaudio19-dev \
+ procps \
+ pulseaudio \
+ pulseaudio-utils \
+ python3 \
+ python3-pip \
+ strace \
+ sudo \
+ time \
+ tree \
+ vim \
+ wget
+rm -rf /var/lib/apt/lists/*
+
+git clone https://github.com/wieluk/psychopy_linux_installer/ /opt/psychopy-installer; cd /opt/psychopy-installer; git checkout 21b1ac36ee648e00cc3b68fd402c1e826270dad6
+
+/opt/psychopy-installer/psychopy_linux_installer.sh --install_dir=/opt/psychopy --psychopy_version=2024.1.4 --bids_version=2023.2.0 --python_version=3.10.14 --wxpython_version=4.2.1 -v -f
+
+/opt/psychopy/psychopy_*/bin/pip install qrcode pyzbar opencv-python numpy click pydantic sounddevice scipy pydub pyaudio reedsolo psychopy-sounddevice
+
+bash -c 'ln -s /opt/psychopy/psychopy_*/bin/psychopy /usr/local/bin/'
+
+bash -c 'b=$(ls /opt/psychopy/psychopy_*/bin/python3); echo -e "#!/bin/sh\n$b \"\$@\"" >| /usr/local/bin/python3; chmod a+x /usr/local/bin/python3'
+
+# Save specification to JSON.
+printf '{ \
+ "pkg_manager": "apt", \
+ "existing_users": [ \
+ "root" \
+ ], \
+ "instructions": [ \
+ { \
+ "name": "from_", \
+ "kwds": { \
+ "base_image": "neurodebian:bookworm" \
+ } \
+ }, \
+ { \
+ "name": "env", \
+ "kwds": { \
+ "LANG": "en_US.UTF-8", \
+ "LC_ALL": "en_US.UTF-8", \
+ "ND_ENTRYPOINT": "/neurodocker/startup.sh" \
+ } \
+ }, \
+ { \
+ "name": "run", \
+ "kwds": { \
+ "command": "export ND_ENTRYPOINT=\\"/neurodocker/startup.sh\\"\\napt-get update -qq\\napt-get install -y -q --no-install-recommends \\\\\\n apt-utils \\\\\\n bzip2 \\\\\\n ca-certificates \\\\\\n curl \\\\\\n locales \\\\\\n unzip\\nrm -rf /var/lib/apt/lists/*\\nsed -i -e '"'"'s/# en_US.UTF-8 UTF-8/en_US.UTF-8 UTF-8/'"'"' /etc/locale.gen\\ndpkg-reconfigure --frontend=noninteractive locales\\nupdate-locale LANG=\\"en_US.UTF-8\\"\\nchmod 777 /opt && chmod a+s /opt\\nmkdir -p /neurodocker\\nif [ ! -f \\"$ND_ENTRYPOINT\\" ]; then\\n echo '"'"'#!/usr/bin/env bash'"'"' >> \\"$ND_ENTRYPOINT\\"\\n echo '"'"'set -e'"'"' >> \\"$ND_ENTRYPOINT\\"\\n echo '"'"'export USER=\\"${USER:=`whoami`}\\"'"'"' >> \\"$ND_ENTRYPOINT\\"\\n echo '"'"'if [ -n \\"$1\\" ]; then \\"$@\\"; else /usr/bin/env bash; fi'"'"' >> \\"$ND_ENTRYPOINT\\";\\nfi\\nchmod -R 777 /neurodocker && chmod a+s /neurodocker" \
+ } \
+ }, \
+ { \
+ "name": "install", \
+ "kwds": { \
+ "pkgs": [ \
+ "build-essential", \
+ "pkg-config", \
+ "git", \
+ "sudo", \
+ "libgtk-3-dev", \
+ "libwxgtk3.2-dev", \
+ "libwxgtk-media3.2-dev", \
+ "libwxgtk-webview3.2-dev", \
+ "libcanberra-gtk3-module", \
+ "libusb-1.0-0-dev", \
+ "portaudio19-dev", \
+ "libasound2-dev", \
+ "pulseaudio", \
+ "pavucontrol", \
+ "pulseaudio-utils", \
+ "vim", \
+ "wget", \
+ "strace", \
+ "time", \
+ "ncdu", \
+ "gnupg", \
+ "curl", \
+ "procps", \
+ "pigz", \
+ "less", \
+ "tree", \
+ "python3", \
+ "python3-pip" \
+ ], \
+ "opts": null \
+ } \
+ }, \
+ { \
+ "name": "run", \
+ "kwds": { \
+ "command": "apt-get update -qq\\napt-get install -y -q --no-install-recommends \\\\\\n build-essential \\\\\\n curl \\\\\\n git \\\\\\n gnupg \\\\\\n less \\\\\\n libasound2-dev \\\\\\n libcanberra-gtk3-module \\\\\\n libgtk-3-dev \\\\\\n libusb-1.0-0-dev \\\\\\n libwxgtk-media3.2-dev \\\\\\n libwxgtk-webview3.2-dev \\\\\\n libwxgtk3.2-dev \\\\\\n ncdu \\\\\\n pavucontrol \\\\\\n pigz \\\\\\n pkg-config \\\\\\n portaudio19-dev \\\\\\n procps \\\\\\n pulseaudio \\\\\\n pulseaudio-utils \\\\\\n python3 \\\\\\n python3-pip \\\\\\n strace \\\\\\n sudo \\\\\\n time \\\\\\n tree \\\\\\n vim \\\\\\n wget\\nrm -rf /var/lib/apt/lists/*" \
+ } \
+ }, \
+ { \
+ "name": "run", \
+ "kwds": { \
+ "command": "git clone https://github.com/wieluk/psychopy_linux_installer/ /opt/psychopy-installer; cd /opt/psychopy-installer; git checkout 21b1ac36ee648e00cc3b68fd402c1e826270dad6" \
+ } \
+ }, \
+ { \
+ "name": "run", \
+ "kwds": { \
+ "command": "/opt/psychopy-installer/psychopy_linux_installer.sh --install_dir=/opt/psychopy --psychopy_version=2024.1.4 --bids_version=2023.2.0 --python_version=3.10.14 --wxpython_version=4.2.1 -v -f" \
+ } \
+ }, \
+ { \
+ "name": "run", \
+ "kwds": { \
+ "command": "/opt/psychopy/psychopy_*/bin/pip install qrcode pyzbar opencv-python numpy click pydantic sounddevice scipy pydub pyaudio reedsolo psychopy-sounddevice" \
+ } \
+ }, \
+ { \
+ "name": "run", \
+ "kwds": { \
+ "command": "bash -c '"'"'ln -s /opt/psychopy/psychopy_*/bin/psychopy /usr/local/bin/'"'"'" \
+ } \
+ }, \
+ { \
+ "name": "run", \
+ "kwds": { \
+ "command": "bash -c '"'"'b=$\(ls /opt/psychopy/psychopy_*/bin/python3\); echo -e \\"#!/bin/sh\\\\n$b \\\\\\"\\\\$@\\\\\\"\\" >| /usr/local/bin/python3; chmod a+x /usr/local/bin/python3'"'"'" \
+ } \
+ }, \
+ { \
+ "name": "entrypoint", \
+ "kwds": { \
+ "args": [ \
+ "python3" \
+ ] \
+ } \
+ } \
+ ] \
+}' > /.reproenv.json
+# End saving to specification to JSON.
+
+%runscript
+python3
diff --git a/_recipes/asgeissler/RNA-Schlange/Singularity b/_recipes/asgeissler/RNA-Schlange/Singularity
new file mode 100644
index 00000000..abe9b556
--- /dev/null
+++ b/_recipes/asgeissler/RNA-Schlange/Singularity
@@ -0,0 +1,141 @@
+Bootstrap: docker
+From: condaforge/mambaforge:latest
+Stage: spython-base
+
+%files
+envs/r.yaml /conda-envs/81349e987b92efdd9c42d5622123e303/environment.yaml
+envs/sortmerna.yaml /conda-envs/b3a58c9dd8d8c7ef4943a32053eca134/environment.yaml
+%labels
+io.github.snakemake.containerized="true"
+io.github.snakemake.conda_env_hash="6361a69b2f86b2a5d26ea0bfeea7b71b4228009ab7e104c5587d090032e5dd4a"
+%post
+
+# Step 1: Retrieve conda environments
+
+# Conda environment:
+# source: https://github.com/snakemake/snakemake-wrappers/raw/v1.10.0/bio/sra-tools/fasterq-dump/environment.yaml
+# prefix: /conda-envs/85633ff8bea713d372cb9152f291c3a8
+# channels:
+# - conda-forge
+# - bioconda
+# - nodefaults
+# dependencies:
+# - sra-tools >2.9.1
+# - pigz >=2.6
+# - pbzip2 >=1.1
+# - snakemake-wrapper-utils =0.3
+mkdir -p /conda-envs/85633ff8bea713d372cb9152f291c3a8
+wget https://github.com/snakemake/snakemake-wrappers/raw/v1.10.0/bio/sra-tools/fasterq-dump/environment.yaml -O /conda-envs/85633ff8bea713d372cb9152f291c3a8/environment.yaml
+
+# Conda environment:
+# source: envs/r.yaml
+# prefix: /conda-envs/81349e987b92efdd9c42d5622123e303
+# channels:
+# - conda-forge
+# - bioconda
+# - defaults
+# dependencies:
+# - r-base
+# - r-cowplot
+# - r-essentials >= 4.0
+# - r-ggrepel
+# - r-ggsci
+# - r-magick
+# - r-pheatmap
+# - r-rcolorbrewer
+# - r-tidyverse
+# - bioconductor-biostrings
+# - bioconductor-bsgenome
+# - bioconductor-deseq2
+# - bioconductor-plyranges
+# - bioconductor-rtracklayer
+mkdir -p /conda-envs/81349e987b92efdd9c42d5622123e303
+
+# Conda environment:
+# source: envs/sortmerna.yaml
+# prefix: /conda-envs/b3a58c9dd8d8c7ef4943a32053eca134
+# channels:
+# - bioconda
+# - defaults
+# dependencies:
+# - sortmerna =4.3.4
+mkdir -p /conda-envs/b3a58c9dd8d8c7ef4943a32053eca134
+
+# Conda environment:
+# source: https://github.com/snakemake/snakemake-wrappers/raw/v1.10.0/bio/fastp/environment.yaml
+# prefix: /conda-envs/ead20a3f8bbfa36fbb2e0c3f905c1787
+# channels:
+# - conda-forge
+# - bioconda
+# - nodefaults
+# dependencies:
+# - fastp =0.20
+mkdir -p /conda-envs/ead20a3f8bbfa36fbb2e0c3f905c1787
+wget https://github.com/snakemake/snakemake-wrappers/raw/v1.10.0/bio/fastp/environment.yaml -O /conda-envs/ead20a3f8bbfa36fbb2e0c3f905c1787/environment.yaml
+
+# Conda environment:
+# source: https://github.com/snakemake/snakemake-wrappers/raw/v1.12.0/bio/fastqc/environment.yaml
+# prefix: /conda-envs/573927d1a2f1de4bfdd03a5385f50ed8
+# channels:
+# - conda-forge
+# - bioconda
+# - nodefaults
+# dependencies:
+# - fastqc ==0.11.9
+mkdir -p /conda-envs/573927d1a2f1de4bfdd03a5385f50ed8
+wget https://github.com/snakemake/snakemake-wrappers/raw/v1.12.0/bio/fastqc/environment.yaml -O /conda-envs/573927d1a2f1de4bfdd03a5385f50ed8/environment.yaml
+
+# Conda environment:
+# source: https://github.com/snakemake/snakemake-wrappers/raw/v3.2.0/bio/multiqc/environment.yaml
+# prefix: /conda-envs/a74c0ac65c84ed438731c3397703af31
+# channels:
+# - conda-forge
+# - bioconda
+# - nodefaults
+# dependencies:
+# - multiqc =1.18
+mkdir -p /conda-envs/a74c0ac65c84ed438731c3397703af31
+wget https://github.com/snakemake/snakemake-wrappers/raw/v3.2.0/bio/multiqc/environment.yaml -O /conda-envs/a74c0ac65c84ed438731c3397703af31/environment.yaml
+
+# Conda environment:
+# source: https://github.com/snakemake/snakemake-wrappers/raw/v3.2.0/bio/salmon/index/environment.yaml
+# prefix: /conda-envs/58a327d476856b9082ebbfd2ce43537c
+# channels:
+# - conda-forge
+# - bioconda
+# - nodefaults
+# dependencies:
+# - salmon =1.10.2
+mkdir -p /conda-envs/58a327d476856b9082ebbfd2ce43537c
+wget https://github.com/snakemake/snakemake-wrappers/raw/v3.2.0/bio/salmon/index/environment.yaml -O /conda-envs/58a327d476856b9082ebbfd2ce43537c/environment.yaml
+
+# Conda environment:
+# source: https://github.com/snakemake/snakemake-wrappers/raw/v3.2.0/bio/salmon/quant/environment.yaml
+# prefix: /conda-envs/c9b8e6e6cf962163ad419bc658b71b79
+# channels:
+# - bioconda
+# - conda-forge
+# - nodefaults
+# dependencies:
+# - salmon =1.10.2
+# - gzip =1.13
+# - bzip2 =1.0.8
+mkdir -p /conda-envs/c9b8e6e6cf962163ad419bc658b71b79
+wget https://github.com/snakemake/snakemake-wrappers/raw/v3.2.0/bio/salmon/quant/environment.yaml -O /conda-envs/c9b8e6e6cf962163ad419bc658b71b79/environment.yaml
+
+# Step 2: Generate conda environments
+
+mamba env create --prefix /conda-envs/81349e987b92efdd9c42d5622123e303 --file /conda-envs/81349e987b92efdd9c42d5622123e303/environment.yaml && \
+mamba env create --prefix /conda-envs/b3a58c9dd8d8c7ef4943a32053eca134 --file /conda-envs/b3a58c9dd8d8c7ef4943a32053eca134/environment.yaml && \
+mamba env create --prefix /conda-envs/ead20a3f8bbfa36fbb2e0c3f905c1787 --file /conda-envs/ead20a3f8bbfa36fbb2e0c3f905c1787/environment.yaml && \
+mamba env create --prefix /conda-envs/573927d1a2f1de4bfdd03a5385f50ed8 --file /conda-envs/573927d1a2f1de4bfdd03a5385f50ed8/environment.yaml && \
+mamba env create --prefix /conda-envs/a74c0ac65c84ed438731c3397703af31 --file /conda-envs/a74c0ac65c84ed438731c3397703af31/environment.yaml && \
+mamba env create --prefix /conda-envs/58a327d476856b9082ebbfd2ce43537c --file /conda-envs/58a327d476856b9082ebbfd2ce43537c/environment.yaml && \
+mamba env create --prefix /conda-envs/c9b8e6e6cf962163ad419bc658b71b79 --file /conda-envs/c9b8e6e6cf962163ad419bc658b71b79/environment.yaml && \
+mamba env create --prefix /conda-envs/85633ff8bea713d372cb9152f291c3a8 --file /conda-envs/85633ff8bea713d372cb9152f291c3a8/environment.yaml && \
+mamba clean --all -y
+
+%runscript
+exec /bin/bash "$@"
+%startscript
+exec /bin/bash "$@"
diff --git a/assets/js/repos.js b/assets/js/repos.js
index 3ef97360..0c0d974c 100644
--- a/assets/js/repos.js
+++ b/assets/js/repos.js
@@ -2,2088 +2,1719 @@ var data =
[
{
"data_format": 2,
- "description": "Snakemake pipeline for QC of low-coverage skim-sequencing of G\u0026T seq data",
+ "description": "get rstudio on PSU ACI",
"filenames": [
- "Singularity.def"
+ "Singularity.ml",
+ "Singularity"
],
- "full_name": "EI-CoreBioinformatics/SkimSeqQC",
+ "full_name": "d-bohn/rstudio_aci",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSkimSeqQC Pipeline\u003c/h2\u003e\u003ca id=\"user-content-skimseqqc-pipeline\" class=\"anchor\" aria-label=\"Permalink: SkimSeqQC Pipeline\" href=\"#skimseqqc-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSnakemake pipeline for QC of low-coverage skim-sequencing of G\u0026amp;T seq data\u003c/p\u003e\n\u003cp\u003eExpects reads to be in a directory called \u003ccode\u003eREADS\u003c/code\u003e with filenames in the format: \u003ccode\u003e{sample}_cDNA_R[12].fastq.gz\u003c/code\u003e and \u003ccode\u003e{sample}_gDNA_R[12].fastq.gz\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eModify the config file \u003ccode\u003econfig.yaml\u003c/code\u003e to set run_name and choose min number of gDNA and cDNA reads (see example below).\u003c/p\u003e\n\u003cp\u003eFirst run the \u003ccode\u003eGenerateSamplesheet.smk\u003c/code\u003e pipeline which just runs fastp on the raw reads to count reads and generate a \"samplesheet\":\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -j 100 -p --snakefile GenerateSamplesheet.smk --cluster-config cluter.json --latency-wait 60 --cluster \"sbatch -p {cluster.partition} -c {cluster.c} --mem={cluster.memory} --job-name={cluster.J} --time={cluster.time}\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen run the full pipeline:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -j 100 -p --snakefile SkimSeqQC.smk --cluster-config cluster.json --latency-wait 60 --cluster \"sbatch -p {cluster.partition} -c {cluster.c} --mem={cluster.memory} --job-name={cluster.J} --time={cluster.time}\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExample \u003ccode\u003econfig.yaml\u003c/code\u003e file:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erun_name: PLATE_NAME\nsamplesheet: samplesheet.tsv\nfastq_dir: \"READS\"\n\n# Minimum gDNA read count to be passed to SPAdes\nmin_gDNA_read_count: 70000\n\n# Minimum cDNA read count to be passed to Trinity\nmin_cDNA_read_count: 50000\n\n# Minimum rRNA length to report in top blast hits vs pr2 DB\n# This is the length of the blast alignment not the annotated gene\nmin_rRNA_blast_length: 500\n\n# Interval to use for calculating random kmer uniquess (not currently reported in summary)\nrku_gDNA_interval: 25000\nrku_cDNA_interval: 25000\n\n# Map gDNA reads against the corresponding genome assembly\nmap_gDNA: True\n\n# Map cDNA reads against the corresponding genome assembly\nmap_cDNA: True\n\n# Identity threshold for clustering transcriptome assembly\ncdhit_identity_threshold: 0.98\n\n# How many reads to classify using centrifuge [-u/--upto \u0026lt;int\u0026gt; stop after first \u0026lt;int\u0026gt; reads/pairs (no limit)]\ncentrifuge_upto: 1000000\n\n# Paths to databases\nbbduk_adapters: /ei/projects/e/e5f1ee13-d3bf-4fec-8be8-38c6ad26aac3/data/results/CB-GENANNO-476_DToL_Protists/Reference/bbmap/resources/adapters.fa\npr2_database: /ei/projects/e/e5f1ee13-d3bf-4fec-8be8-38c6ad26aac3/data/results/CB-GENANNO-476_DToL_Protists/Reference/databases/pr2/5.0.0/pr2_version_5.0.0_SSU_taxo_long.fasta\ndiamond_database: /ei/projects/e/e5f1ee13-d3bf-4fec-8be8-38c6ad26aac3/data/results/CB-GENANNO-476_DToL_Protists/Reference/databases/diamond/reference_proteomes.dmnd\ntaxonomy_database: /ei/projects/e/e5f1ee13-d3bf-4fec-8be8-38c6ad26aac3/data/results/CB-GENANNO-476_DToL_Protists/Reference/databases/taxdump/fullnamelineage.dmp\nkraken2_database: /ei/projects/e/e5f1ee13-d3bf-4fec-8be8-38c6ad26aac3/data/results/CB-GENANNO-476_DToL_Protists/Reference/databases/kraken2/\ncentrifuge_database: /ei/projects/e/e5f1ee13-d3bf-4fec-8be8-38c6ad26aac3/data/results/CB-GENANNO-476_DToL_Protists/Reference/databases/centrifuge/centrifugedb\ncentrifuge_NT_database: /ei/public/databases/centrifuge/ncbi/nt_20200707/nt\n\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003erstudio_aci\u003c/h1\u003e\u003ca id=\"user-content-rstudio_aci\" class=\"anchor\" aria-label=\"Permalink: rstudio_aci\" href=\"#rstudio_aci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCode and workflow for building \u003ca href=\"https://www.rocker-project.org/\" rel=\"nofollow\"\u003erocker/verse\u003c/a\u003e\nin Docker Hub and modifying it with Singularity Hub for use with PSU\nACI HPC clusters.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQuick Start\u003c/h2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-label=\"Permalink: Quick Start\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003essh\u003c/code\u003e into the PSU ACI HPC with X11 flags.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003essh USERID@aci-b.aci.ics.psu.edu -X -Y\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eStart an interactive session using \u003ccode\u003eqsub\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eqsub -A open -I -X -l walltime=24:00:00 -l nodes=2:ppn=20 -l pmem=10gb\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFrom ACI, start \u003ccode\u003escreen\u003c/code\u003e and then execute the following code to\ncreate an \u003ccode\u003eRStudio\u003c/code\u003e image running at address \u003ccode\u003e127.0.0.1:8787\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003escreen\n\nsingularity pull -n rstudio_aci.simg shub://d-bohn/rstudio_aci\n\nsingularity exec rstudio_aci.simg rserver --www-address=127.0.0.1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNext, press \u003ccode\u003eCTRL+A+D\u003c/code\u003e to detach the screen while allowing the process to continue running in the background.\u003c/p\u003e\n\u003cp\u003eFinally, start your preferred browser and navigate to \u003ccode\u003e127.0.0.1\u003c/code\u003e. For\nexample, firefox:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://jpetucci-firefox_icsaci\n\nsingularity exec jpetucci-firefox_icsaci-master-latest.simg /opt/firefox/./firefox\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eNotes\u003c/h2\u003e\u003ca id=\"user-content-notes\" class=\"anchor\" aria-label=\"Permalink: Notes\" href=\"#notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e1). A \u003ccode\u003eshiny\u003c/code\u003e server should also start when executing this image,\nthe server should be running on port \u003ccode\u003e3838\u003c/code\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1678468349.0
+ "updated_at": 1562649674.0
},
{
"data_format": 2,
- "description": "A package that sets up everything you need to run the simulator.",
+ "description": "Build a Singularity container for Photoscan",
"filenames": [
"Singularity"
],
- "full_name": "abersailbot/simulator",
+ "full_name": "ucb-rit/singularity-photoscan",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSimulator Instructions\u003c/h1\u003e\u003ca id=\"user-content-simulator-instructions\" class=\"anchor\" aria-label=\"Permalink: Simulator Instructions\" href=\"#simulator-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis package uses the sails simulator and boatd to simulate a robot sailing.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation\u003c/h2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePre-requisites\u003c/h3\u003e\u003ca id=\"user-content-pre-requisites\" class=\"anchor\" aria-label=\"Permalink: Pre-requisites\" href=\"#pre-requisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003elibjansson-dev\u003c/p\u003e\n\u003cp\u003ePython 2.7 or 3.x\u003c/p\u003e\n\u003cp\u003eFor sails-ui\u003c/p\u003e\n\u003cp\u003elibgirepository1.0-dev\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCheckout Code\u003c/h3\u003e\u003ca id=\"user-content-checkout-code\" class=\"anchor\" aria-label=\"Permalink: Checkout Code\" href=\"#checkout-code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCheckout this repository and its submodules\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003egit clone --recursive https://github.com/abersailbot/simulator\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCompile sails\u003c/h3\u003e\u003ca id=\"user-content-compile-sails\" class=\"anchor\" aria-label=\"Permalink: Compile sails\" href=\"#compile-sails\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003ecd sailsd\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003emake\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eInstall python dependencies\u003c/h3\u003e\u003ca id=\"user-content-install-python-dependencies\" class=\"anchor\" aria-label=\"Permalink: Install python dependencies\" href=\"#install-python-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eUsing Anaconda (optional)\u003c/h4\u003e\u003ca id=\"user-content-using-anaconda-optional\" class=\"anchor\" aria-label=\"Permalink: Using Anaconda (optional)\" href=\"#using-anaconda-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstall Anaconda from \u003ca href=\"http://www.anaconda.org\" rel=\"nofollow\"\u003ewww.anaconda.org\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAnaconda has its own copy of Python (and many other packages), its huge but probably has more up to date packages than your OS.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003econda create -n boatd python=3.7 anaconda\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003econda activate boatd\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003econda install -c conda-forge jansson\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003econda install -c conda-forge pygobject\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eUsing Virtualenv (optional)\u003c/h4\u003e\u003ca id=\"user-content-using-virtualenv-optional\" class=\"anchor\" aria-label=\"Permalink: Using Virtualenv (optional)\" href=\"#using-virtualenv-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e*** Don\u0027t do this if you are using Anaconda. ***\u003c/p\u003e\n\u003cp\u003eUsing a virtual env is a lighter weight method of isolating your Python configuration.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003epython3 -m venv simulator-env\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esource simulator-env/bin/activate\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eor for python2\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003epython -m virtualenv simulator-env\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esource simulator-env/bin/activate\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eInstalling Packages\u003c/h4\u003e\u003ca id=\"user-content-installing-packages\" class=\"anchor\" aria-label=\"Permalink: Installing Packages\" href=\"#installing-packages\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003epip install python-boatdclient python-sailsd gobject PyGObject\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eInstall boatd as a python package\u003c/h3\u003e\u003ca id=\"user-content-install-boatd-as-a-python-package\" class=\"anchor\" aria-label=\"Permalink: Install boatd as a python package\" href=\"#install-boatd-as-a-python-package\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003ecd boatd\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003epython setup.py install\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eConfigure boatd port\u003c/h3\u003e\u003ca id=\"user-content-configure-boatd-port\" class=\"anchor\" aria-label=\"Permalink: Configure boatd port\" href=\"#configure-boatd-port\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBoatd\u0027s default port is 2222, but this config uses 2223 (because i\u0027ve got an SSH tunnel using 2222).\nChange this by editing boatd.yml and boatd_client.py in the boatdclient Python package.\nThe script set_port.sh will read the config file and automatically set\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning\u003c/h2\u003e\u003ca id=\"user-content-running\" class=\"anchor\" aria-label=\"Permalink: Running\" href=\"#running\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThree components must be launched:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eThe sails simulator\u003c/li\u003e\n\u003cli\u003eBoatd\u003c/li\u003e\n\u003cli\u003eThe behaviour to control the simulated boat via boatd\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eOptionally you can launch the sails-ui graphical interface.\u003c/p\u003e\n\u003cp\u003eThe script run.sh will launch all four of these.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning with Singularity\u003c/h3\u003e\u003ca id=\"user-content-running-with-singularity\" class=\"anchor\" aria-label=\"Permalink: Running with Singularity\" href=\"#running-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstall Singularity, see \u003ca href=\"https://sylabs.io/guides/3.0/user-guide/installation.html\" rel=\"nofollow\"\u003ehttps://sylabs.io/guides/3.0/user-guide/installation.html\u003c/a\u003e for instructions.\u003c/p\u003e\n\u003cp\u003eDownload the container:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity pull shub://abersailbot/simulator:latest\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eRunning the container:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity run abersailbot-simulator-master-latest.simg\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eYou can either run the behaviour inside another container:\u003c/p\u003e\n\u003cp\u003esingularity exec abersailbot-simulator-master-latest.simg /opt/simulator/simulator-behaviour/waypoint-behaviour\u003c/p\u003e\n\u003cp\u003eOr execute your own behaviour outside the container. Note you\u0027ll have to change boatd-client to use port 2223 by editing\u003c/p\u003e\n\u003cp\u003eEdit boatd_client.py in your Python library directory and change:\u003c/p\u003e\n\u003cp\u003eclass Boatd(object):\u003cbr\u003e\ndef \u003cstrong\u003einit\u003c/strong\u003e(self, host=\u0027localhost\u0027, port= 2222):\u003c/p\u003e\n\u003cp\u003eto\u003c/p\u003e\n\u003cp\u003eclass Boatd(object):\u003cbr\u003e\ndef \u003cstrong\u003einit\u003c/strong\u003e(self, host=\u0027localhost\u0027, port= 2223):\u003c/p\u003e\n\u003cp\u003eOr run the fix_port.sh script in the root directory of this repository.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning with Docker\u003c/h3\u003e\u003ca id=\"user-content-running-with-docker\" class=\"anchor\" aria-label=\"Permalink: Running with Docker\" href=\"#running-with-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTODO\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStopping everything\u003c/h2\u003e\u003ca id=\"user-content-stopping-everything\" class=\"anchor\" aria-label=\"Permalink: Stopping everything\" href=\"#stopping-everything\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script stop.sh\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eBuild a Singularity container that includes Photoscan, using a Singularity recipe file\u003c/h1\u003e\u003ca id=\"user-content-build-a-singularity-container-that-includes-photoscan-using-a-singularity-recipe-file\" class=\"anchor\" aria-label=\"Permalink: Build a Singularity container that includes Photoscan, using a Singularity recipe file\" href=\"#build-a-singularity-container-that-includes-photoscan-using-a-singularity-recipe-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBuild a Photoscan container using Singularity to run on Jetstream, Savio, or anyehwere else the Singularity container runtime is installed.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eThese instructions are current as of 08 August 2018, for Photoscan v1.4.3; as of this date, the \u003ccode\u003eSingularity\u003c/code\u003e file in this repo folder builds this version of Photoscan. It\u0027s a good idea to include the Photoscan version used in the name the Singularity container, as in \u003ccode\u003ephotoscan_1_4_3.simg\u003c/code\u003e, below.\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git clone https://github.com/ucberkeley/brc-cyberinfrastructure\n$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e brc-cyberinfrastructure/photoscancontainer\n$ sudo singularity build photoscan_1_4_3.simg Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFor a simple test that Photoscan runs in the container, it is not necessary to have a license:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e -B /home/masover/:/opt photoscan_1_4_3.simg /usr/local/photoscan-pro/photoscan.sh --version -platform offscreen\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe smoke-test passes if you get something like this:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eAgisoft PhotoScan Professional Version: 1.4.3 build 6185 (64 bit)\nCopyright (C) 2017 Agisoft LLC.\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eA simple functional test (which requires access to a license server that serves a valid Photoscan license) is included in the subdirectory \"container-test\" (a Python script and a set of images that the script references). Invocation of the script would look something like this (replacing, as appropriate: the /global/scratch... paths; as well as the reference to a license server on UC Berkeley\u0027s shared HPC cluster, Savio, with another license server):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eSINGULARITYENV_RLM_LICENSE=5053@lmgr0@brc.berkeley.edu singularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e -B /global/scratch/username/photoscan/:/opt /global/scratch/username/containers/photoscan_1_4_3.simg /usr/local/photoscan-pro/photoscan.sh -r /opt/photoscan-test.py -platform offscreen\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eA successful response will look something like this:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eAddPhotos: filenames = /opt/images/coffeecup-1.jpg\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e/opt/images/coffeecup-2.jpg\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e/opt/images/coffeecup-3.jpg\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e/opt/images/coffeecup-4.jpg\nSaveProject: chunks = 0, path = /opt/photoscan-test.psz\nsaved project \u003cspan class=\"pl-k\"\u003ein\u003c/span\u003e 0.014898 sec\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eDeeper exercise of Photoscan functionality should probably not use the sample images of a coffee cup. Instead, use images provided by the Photoscan vendor (Agisoft) at \u003ca href=\"http://www.agisoft.com/downloads/sample-data/\" rel=\"nofollow\"\u003ehttp://www.agisoft.com/downloads/sample-data/\u003c/a\u003e with appropriate changes to the/a test script.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e: \u003cem\u003eThese instructions supercede a previous set that involved building a Docker container and pulling it into Singularity. As of Singularity v2.6.0 and Photoscan 1.4.3, the method given here is the one that works (and is faster besides). This repository was replicated from \u003ca href=\"https://github.com/ucberkeley/brc-cyberinfrastructure/tree/master/photoscancontainer\"\u003ehttps://github.com/ucberkeley/brc-cyberinfrastructure/tree/master/photoscancontainer\u003c/a\u003e on 2019-02-15.\u003c/em\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 11,
+ "subscribers_count": 17,
"topics": [],
- "updated_at": 1588465186.0
+ "updated_at": 1550266906.0
+ },
+ {
+ "data_format": 2,
+ "description": "Pipeline for Microbial Analysis (Quality control, Assembly, Annotation, Resistome, Virulome, Plasmid, Serotype, Prophages, Capsule, O-Locus, Closest genome and Genome Browser",
+ "filenames": [
+ "modules/phigaro/Singularity"
+ ],
+ "full_name": "lcerdeira/Pipa",
+ "latest_release": null,
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"/assets/PipaLogo.jpeg\"\u003e\u003cimg src=\"/assets/PipaLogo.jpeg\" alt=\"PIPA_Logo\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePIPA\u003c/h1\u003e\u003ca id=\"user-content-pipa\" class=\"anchor\" aria-label=\"Permalink: PIPA\" href=\"#pipa\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a7fe5fb2b697cc730b88bb0a32f4f63a028ab93b2bd841f2ff490ed7c3911c1d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c616e6775616765732f636f756e742f6c63657264656972612f70697061\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a7fe5fb2b697cc730b88bb0a32f4f63a028ab93b2bd841f2ff490ed7c3911c1d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c616e6775616765732f636f756e742f6c63657264656972612f70697061\" alt=\"Code Count\" data-canonical-src=\"https://img.shields.io/github/languages/count/lcerdeira/pipa\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/08b864adbd2221c4390737cee649add68be8487d237da9e0bd1f122911ccc351/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c616e6775616765732f746f702f6c63657264656972612f70697061\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/08b864adbd2221c4390737cee649add68be8487d237da9e0bd1f122911ccc351/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c616e6775616765732f746f702f6c63657264656972612f70697061\" alt=\"Main Code Base\" data-canonical-src=\"https://img.shields.io/github/languages/top/lcerdeira/pipa\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e)\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/c5776335a454c60a3b541aea37c439a6c79384844ae65c20ef44294a0bd8eba4/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f76657273696f6e2d312e302d726564\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c5776335a454c60a3b541aea37c439a6c79384844ae65c20ef44294a0bd8eba4/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f76657273696f6e2d312e302d726564\" alt=\"Version\" data-canonical-src=\"https://img.shields.io/badge/version-1.0-red\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/91d49e5df623c07567903b3f59b0a194b4c5b128b17a3b7208eae32ecb336903/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d47504c76332d626c7565\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/91d49e5df623c07567903b3f59b0a194b4c5b128b17a3b7208eae32ecb336903/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d47504c76332d626c7565\" alt=\"License\" data-canonical-src=\"https://img.shields.io/badge/license-GPLv3-blue\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a7330a27eb4f3b4a817c818e46a1b38712bb6d8f0e6fa0e378cc5b486dc6f2fe/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6173742d636f6d6d69742f6c63657264656972612f70697061\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a7330a27eb4f3b4a817c818e46a1b38712bb6d8f0e6fa0e378cc5b486dc6f2fe/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6173742d636f6d6d69742f6c63657264656972612f70697061\" alt=\"Last Commit\" data-canonical-src=\"https://img.shields.io/github/last-commit/lcerdeira/pipa\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e)\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/e8a24a7914809ae13c3bffdc4637f367d0f74caf4e47d1c4f4739215a604b95f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732d7261772f6c63657264656972612f70697061\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e8a24a7914809ae13c3bffdc4637f367d0f74caf4e47d1c4f4739215a604b95f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732d7261772f6c63657264656972612f70697061\" alt=\"Open Issues\" data-canonical-src=\"https://img.shields.io/github/issues-raw/lcerdeira/pipa\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e)\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/56c3438d581ac116cb5340ac5ca4a36699988658dc616e2483847715b88e90bc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f7265706f2d73697a652f6c63657264656972612f70697061\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/56c3438d581ac116cb5340ac5ca4a36699988658dc616e2483847715b88e90bc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f7265706f2d73697a652f6c63657264656972612f70697061\" alt=\"Repo Size\" data-canonical-src=\"https://img.shields.io/github/repo-size/lcerdeira/pipa\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e)\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTable of Contents\u003c/h2\u003e\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" aria-label=\"Permalink: Table of Contents\" href=\"#table-of-contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#Description\"\u003eDescription\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Installation\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Contact\"\u003eContact\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDescription\u003c/h2\u003e\u003ca id=\"user-content-description\" class=\"anchor\" aria-label=\"Permalink: Description\" href=\"#description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePipeline for Microbial Genomic Analysis\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation\u003c/h2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRequirements\u003c/h3\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eNeed to be root of system to be installed.\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003e./setup.sh\u003c/code\u003e to install all necessary libraries.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContact\u003c/h2\u003e\u003ca id=\"user-content-contact\" class=\"anchor\" aria-label=\"Permalink: Contact\" href=\"#contact\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDr Louise Cerdeira - \u003ca href=\"mailto:Louise.Cerdeira@gmail.com\"\u003eLouise.Cerdeira@gmail.com\u003c/a\u003e\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1722552774.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.mathematica"
+ "Singularity.def"
],
- "full_name": "uit-no/apptainer-mathematica",
- "latest_release": "0.0.3",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eLocal Mathematica via Apptainer/Singularity\u003c/h1\u003e\u003ca id=\"user-content-local-mathematica-via-apptainersingularity\" class=\"anchor\" aria-label=\"Permalink: Local Mathematica via Apptainer/Singularity\" href=\"#local-mathematica-via-apptainersingularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePrerequisites\u003c/h2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-label=\"Permalink: Prerequisites\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eApptainer or Singularity\u003c/li\u003e\n\u003cli\u003eA valid Mathematica license file\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation\u003c/h2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eStep 1: Download the container image\u003c/h3\u003e\u003ca id=\"user-content-step-1-download-the-container-image\" class=\"anchor\" aria-label=\"Permalink: Step 1: Download the container image\" href=\"#step-1-download-the-container-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFirst, pull the image from the release page:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity pull https://github.com/uit-no/apptainer-mathematica/releases/download/0.0.1/mathematica.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ apptainer pull https://github.com/uit-no/apptainer-mathematica/releases/download/0.0.1/mathematica.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eStep 2: Locate your Mathematica license file\u003c/h3\u003e\u003ca id=\"user-content-step-2-locate-your-mathematica-license-file\" class=\"anchor\" aria-label=\"Permalink: Step 2: Locate your Mathematica license file\" href=\"#step-2-locate-your-mathematica-license-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eEnsure you have a valid Mathematica license file accessible on your local machine. This is required to run the container.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning a Mathematica Script (.wl)\u003c/h3\u003e\u003ca id=\"user-content-running-a-mathematica-script-wl\" class=\"anchor\" aria-label=\"Permalink: Running a Mathematica Script (.wl)\" href=\"#running-a-mathematica-script-wl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run your Mathematica script, use the following command with singularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run --bind path_to_license_file:/root/.WolframEngine/Licensing/mathpass mathematica.sif your_script.wl\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor with Apptainer\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ apptainer run --bind path_to_license_file:/root/.WolframEngine/Licensing/mathpass mathematica.sif your_script.wl\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "FrancescoEgidioFaggion/SwEng",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSE4HPCproject\u003c/h1\u003e\u003ca id=\"user-content-se4hpcproject\" class=\"anchor\" aria-label=\"Permalink: SE4HPCproject\" href=\"#se4hpcproject\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStep 2 -- From build to release and manual job execution\u003c/h2\u003e\u003ca id=\"user-content-step-2----from-build-to-release-and-manual-job-execution\" class=\"anchor\" aria-label=\"Permalink: Step 2 -- From build to release and manual job execution\" href=\"#step-2----from-build-to-release-and-manual-job-execution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFocus now on the correct implementation of the matrix multiplication you\nfind in \u003ca href=\"https://github.com/SimoneReale/SE4HPC_project_part2\"\u003ehttps://github.com/SimoneReale/SE4HPC_project_part2\u003c/a\u003e. This is a\nparallel implementation that uses MPI and reads the matrices to be\nmultiplied from two files, matrixA.txt and matrixB.txt. In these files\nthe first row contains the matrix dimensions (number of rows and\ncolumns), while the other rows contain the matrix itself.\u003c/p\u003e\n\u003cp\u003eYour task is to perform the following steps:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ePreparation\u003c/strong\u003e: Use the template available here\n\u003ca href=\"https://github.com/SimoneReale/SE4HPC_project_part2\"\u003ehttps://github.com/SimoneReale/SE4HPC_project_part2\u003c/a\u003e to create your own\ngithub repository. Add to this repository the tests you have created in\nStep1.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eAutomating the build, test and release processes\u003c/strong\u003e: Create a CI/CD\npipeline that, when someone pushes files in the repo, executes the\nbuilding and testing process.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eContainerizing the application\u003c/strong\u003e: Go through the following steps:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eDefine a Singularity container descriptor for the matrix\nmultiplication program and push it in your repo.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eExtend the created action to create a container image from your\ndescription.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eExecuting on the cluster\u003c/strong\u003e: Go through the following steps:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eCreate a job.sh file to run your containerized application. Make\nsure that the standard output and error are mapped to txt files.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eTransfer on Galileo100 your job script and the container.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSubmit your job to the cluster and check whether it works correctly.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ePush on your github repository your job.sh file and the files\nobtained from the execution of the matrix multiplication.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStep 3 -- Automating a job submission with containerization\u003c/h2\u003e\u003ca id=\"user-content-step-3----automating-a-job-submission-with-containerization\" class=\"anchor\" aria-label=\"Permalink: Step 3 -- Automating a job submission with containerization\" href=\"#step-3----automating-a-job-submission-with-containerization\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eExtend the action you have created at step 3 to automate completely the\nprocess from a push on the repository to the execution of the\ncontainerized software on SLURM. To do so, you will have to move your\ncontainer from the runner to the cluster. You can either use the scp\ncommand or you can publish your image on the Singularity registry and\nthen pull it from the cluster. Don\u0027t forget to handle your secrets\nproperly! You do not want to leave passwords and authentication tokens\nvisible to everybody, so you will use the \u003ca href=\"https://docs.github.com/en/actions/security-guides/using-secrets-in-github-actions?tool=cli\"\u003esecrets\nmechanism\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1692957745.0
+ "updated_at": 1717597291.0
},
{
"data_format": 2,
- "description": "Singularity image for VirtualBox",
+ "description": "A singularity image for the MGEfinder software",
"filenames": [
"Singularity"
],
- "full_name": "bihealth/singularity-virtualbox",
+ "full_name": "bhattlab/MGEfinder-singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eMaxQuant in Singularity\u003c/h1\u003e\u003ca id=\"user-content-maxquant-in-singularity\" class=\"anchor\" aria-label=\"Permalink: MaxQuant in Singularity\" href=\"#maxquant-in-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 6,
"topics": [],
- "updated_at": 1593810130.0
+ "updated_at": 1586559532.0
},
{
"data_format": 2,
- "description": "Scripts to run Numerical Weather Prediction procedures, integrating with nwpconf and ecFlow",
+ "description": null,
"filenames": [
- "Singularity.nwprun_f36",
- "Singularity.nwprun_r8",
- "Singularity.bufr2netcdf_r8",
- "Singularity.simc_tools_r8",
- "Singularity.simc_tools_debug_r8"
+ "Singularity.v2",
+ "Singularity.v3",
+ "Singularity.v1",
+ "Singularity.v5",
+ "Singularity.v6",
+ "Singularity.v4"
],
- "full_name": "ARPA-SIMC/nwprun",
+ "full_name": "BensonYang1999/hpl-cuda-singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eNwprun\u003c/h1\u003e\u003ca id=\"user-content-nwprun\" class=\"anchor\" aria-label=\"Permalink: Nwprun\" href=\"#nwprun\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eNwprun combines the configuration and scripting framework\n\u003ca href=\"https://github.com/ARPA-SIMC/nwpconf\"\u003enwpconf\u003c/a\u003e with the ECMWF\n\u003ca href=\"https://software.ecmwf.int/wiki/display/ECFLOW/\" rel=\"nofollow\"\u003eecFlow\u003c/a\u003e workflow\nmanager to create complete suites running Numerical Weather Prediction\nmodels on HPC systems.\u003c/p\u003e\n\u003cp\u003eIt is targeted at the generation and management of operational model\nsuites contaning the typical tasks involved in continuous and\nintermittent atmospheric data assimilation (using various techniques\nincluding ensemble data assimilation), and forecasting (both in\ndeterministic and in ensemble modes). The main target is real time\nsuites, but there are options for applying the system to long-period\nresearch and reanalysis suites.\u003c/p\u003e\n\u003cp\u003eNwprun includes:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ea set of job templates for performing the different parts of the\necFlow workflow using the nwpconf framework\u003c/li\u003e\n\u003cli\u003ea set of ecFlow include files to be used by the jobs, targeted at\nslurm and pbs schedulers\u003c/li\u003e\n\u003cli\u003ea generic python module for generating ecFlow suites\u003c/li\u003e\n\u003cli\u003esome python suite generators, using the indicated module for\ngenerating specifical suite definitions\u003c/li\u003e\n\u003cli\u003ea set of configuration trees for a number of NWP suites using the\nnwpconf framework\u003c/li\u003e\n\u003cli\u003ea set of shell script to be run as cron jobs for performing\nancillary operations related to operational NWP, mainly access to\ninput data.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe practical configuration files and python suite generators included\nin the package are used in the Italian LAMI modelling suites both on\n\u003ca href=\"https://www.cineca.it/\" rel=\"nofollow\"\u003eCineca\u003c/a\u003e and on\n\u003ca href=\"https://www.arpae.it/sim\" rel=\"nofollow\"\u003eArpae-SIMC\u003c/a\u003e HPC systems.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 12,
- "topics": [
- "ecflow",
- "nwp",
- "workflow"
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1557155075.0
+ },
+ {
+ "data_format": 2,
+ "description": "Nemo Utility for Testing SETTE",
+ "filenames": [
+ "Singularity.nemo",
+ "base_def/Singularity.nemo_baseOS"
],
- "updated_at": 1732203799.0
+ "full_name": "jdha/NUTS",
+ "latest_release": "0.0.1",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eNUTS\u003c/h1\u003e\u003ca id=\"user-content-nuts\" class=\"anchor\" aria-label=\"Permalink: NUTS\" href=\"#nuts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eNemo Utility for Testing SETTE\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1724894895.0
},
{
"data_format": 2,
- "description": "a collection of lmod modules",
+ "description": "Arkiweb docker image",
"filenames": [
- "singularity/macs2/2.1.2.1r0/Singularity",
- "singularity/pindel/cgpPindel_2.0.1/Singularity",
- "singularity/picard/2.18.17r0/Singularity",
- "singularity/trimgalore/0.5.0r0/Singularity",
- "singularity/repenrich2/20190521r0/Singularity",
- "singularity/bedops/2.4.35r0/Singularity",
- "singularity/mfold/3.6r0/Singularity",
- "singularity/gatsby.js/Singularity",
- "singularity/iclipro/0.1.1r0/Singularity",
- "singularity/rmats/4.0.2r0/Singularity",
- "singularity/rseqc/3.0.0r0/Singularity",
- "singularity/cutadapt/1.18r0/Singularity",
- "singularity/bedtools/2.28.0r0/Singularity",
- "singularity/bedtools/2.27.1r0/Singularity",
- "singularity/meme/5.0.2r0/Singularity",
- "singularity/fastqc/0.11.8r0/Singularity",
- "singularity/bowtie2/2.3.5.1r0/Singularity",
- "singularity/bowtie2/2.3.4.3r0/Singularity",
- "singularity/subread/1.6.3r0/Singularity",
- "singularity/samtools/1.9r0/Singularity",
- "singularity/samtools/1.9r1/Singularity",
- "singularity/star/2.6.1dr0/Singularity",
- "singularity/star/2.7.0fr0/Singularity",
- "singularity/fastp/0.19.5r0/Singularity",
- "singularity/fastp/0.20.0r0/Singularity",
- "singularity/R/Bioconductor_3.11/Singularity",
- "singularity/R/3.6.0r0/Singularity",
- "singularity/openjdk/7u211r0/Singularity",
- "singularity/openjdk/8u181r0/Singularity",
- "singularity/openjdk/7u181r0/Singularity",
- "singularity/openjdk/8u212r0/Singularity",
- "singularity/hisat2/2.1.0r0/Singularity",
- "singularity/flexbar/3.5.0r0/Singularity",
- "singularity/flexbar/3.4.0r0/Singularity",
- "singularity/crossmap/0.3.1r0/Singularity",
- "singularity/crossmap/0.3.2r0/Singularity",
- "singularity/deeptools/3.1.2r0/Singularity"
+ "Singularity"
],
- "full_name": "imbforge/sysops",
+ "full_name": "ARPA-SIMC/arkiweb-docker-image",
"latest_release": null,
- "readme": "\u003cp\u003eA collection of stuff to keep the systems up and running\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003earkiweb-docker-image\u003c/h1\u003e\u003ca id=\"user-content-arkiweb-docker-image\" class=\"anchor\" aria-label=\"Permalink: arkiweb-docker-image\" href=\"#arkiweb-docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/ARPA-SIMC/arkiweb/\"\u003eArkiweb\u003c/a\u003e recently became\nincompatible with the \u003ca href=\"https://github.com/ARPA-SIMC/arkimet/\"\u003earkimet\u003c/a\u003e\nC++ API\u0027s. This package allows to create a docker container including\na web server, arkiweb and an arkiweb-compatible version of arkimet, to\nbe run within a host having a newer arkimet version, replacing arkiweb\non the host. This allows to keep arkiweb running while keeping arkimet\nupdated to the latest version.\u003c/p\u003e\n\u003cp\u003eThe web server in the host talks with the web server in the container\nthrough apache \u003ccode\u003emod_proxy\u003c/code\u003e module, while the arkiweb in the container\ninteracts with the arkimet datasets in the host through the host\narkimet server http interface.\u003c/p\u003e\n\u003cp\u003eFor more detailed instruction on how to build and start the docker\nimage and configure the system, see the \u003ca href=\"HOWTO_it.md\"\u003eHOWTO\u003c/a\u003e in\nItalian.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1599664216.0
+ "updated_at": 1636458123.0
},
{
"data_format": 2,
- "description": "Mycobacterial pre-processing pipeline",
+ "description": "Counter RNA seq Window (CRAW) compute and visualize the coverage of RNA seq experiment.",
"filenames": [
- "singularity/Singularity.ppBedtools",
- "singularity/Singularity.ppKraken2",
- "singularity/Singularity.ppBowtie2",
- "singularity/Singularity.ppFastp",
- "singularity/Singularity.ppMykrobe",
- "singularity/Singularity.ppFastqc",
- "singularity/Singularity.ppPerljson",
- "singularity/Singularity.ppBwa",
- "singularity/Singularity.ppFqtools"
+ "Singularity.1.0",
+ "Singularity"
],
- "full_name": "oxfordmmm/preprocessing",
+ "full_name": "C3BI-pasteur-fr/craw",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eMycobacterial Pre-processing Pipeline\u003c/h1\u003e\u003ca id=\"user-content-mycobacterial-pre-processing-pipeline\" class=\"anchor\" aria-label=\"Permalink: Mycobacterial Pre-processing Pipeline\" href=\"#mycobacterial-pre-processing-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCleans and QCs reads with fastp and FastQC, classifies with Kraken2 \u0026amp; Mykrobe, removes non-bacterial content, and - by alignment to any minority genomes - disambiguates mixtures of bacterial reads.\u003c/p\u003e\n\u003cp\u003eTakes as input one directory containing pairs of fastq(.gz) or bam files.\nProduces as output one directory per sample, containing the relevant reports \u0026amp; a pair of cleaned fastqs.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQuick Start\u003c/h2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-label=\"Permalink: Quick Start\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe workflow is designed to run with either docker \u003ccode\u003e-profile docker\u003c/code\u003e or singularity \u003ccode\u003e-profile singularity\u003c/code\u003e. Before running the workflow using singularity, the singularity images for the workflow will need to be built by running \u003ccode\u003esingularity/singularity_pull.sh\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eE.g. to run the workflow:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile singularity --filetype fastq --input_dir fq_dir --pattern \"*_R{1,2}.fastq.gz\" --unmix_myco yes \\\n--output_dir . --kraken_db /path/to/database --bowtie2_index /path/to/index --bowtie_index_name hg19_1kgmaj\n\nnextflow run main.nf -profile docker --filetype bam --input_dir bam_dir --unmix_myco no \\\n--output_dir . --kraken_db /path/to/database --bowtie2_index /path/to/index --bowtie_index_name hg19_1kgmaj\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eParams\u003c/h2\u003e\u003ca id=\"user-content-params\" class=\"anchor\" aria-label=\"Permalink: Params\" href=\"#params\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following parameters should be set in \u003ccode\u003enextflow.config\u003c/code\u003e or specified on the command line:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003einput_dir\u003c/strong\u003e\u003cbr\u003e\nDirectory containing fastq OR bam files\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003efiletype\u003c/strong\u003e\u003cbr\u003e\nFile type in input_dir. Either \"fastq\" or \"bam\"\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003epattern\u003c/strong\u003e\u003cbr\u003e\nRegex to match fastq files in input_dir, e.g. \"*_R{1,2}.fq.gz\"\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eoutput_dir\u003c/strong\u003e\u003cbr\u003e\nOutput directory\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eunmix_myco\u003c/strong\u003e\u003cbr\u003e\nDo you want to disambiguate mixed-mycobacterial samples by read alignment? Either \"yes\" or \"no\"\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003especies\u003c/strong\u003e\u003cbr\u003e\nPrincipal species in each sample, assuming genus Mycobacterium. Default \u0027null\u0027. If parameter used, takes 1 of 10 values: abscessus, africanum, avium, bovis, chelonae, chimaera, fortuitum, intracellulare, kansasii, tuberculosis\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003ekraken_db\u003c/strong\u003e\u003cbr\u003e\nDirectory containing \u003ccode\u003e*.k2d\u003c/code\u003e Kraken2 database files (obtain from \u003ca href=\"https://benlangmead.github.io/aws-indexes/k2\" rel=\"nofollow\"\u003ehttps://benlangmead.github.io/aws-indexes/k2\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003ebowtie2_index\u003c/strong\u003e\u003cbr\u003e\nDirectory containing Bowtie2 index (obtain from ftp://ftp.ccb.jhu.edu/pub/data/bowtie2_indexes/hg19_1kgmaj_bt2.zip). The specified path should NOT include the index name\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003ebowtie_index_name\u003c/strong\u003e\u003cbr\u003e\nName of the bowtie index, e.g. hg19_1kgmaj\u003cbr\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cbr\u003e\n\u003cp\u003eFor more information on the parameters run \u003ccode\u003enextflow run main.nf --help\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCheckpoints\u003c/h2\u003e\u003ca id=\"user-content-checkpoints\" class=\"anchor\" aria-label=\"Permalink: Checkpoints\" href=\"#checkpoints\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCheckpoints used throughout this workflow to fail a sample/issue warnings:\u003c/p\u003e\n\u003cp\u003eprocesses preprocessing_checkFqValidity or preprocessing_checkBamValidity\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e(Fail) If sample does not pass fqtools \u0027validate\u0027 or samtools \u0027quickcheck\u0027, as appropriate.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eprocess preprocessing_countReads\u003cbr\u003e\n2. (Fail) If sample contains \u0026lt; 100k pairs of raw reads.\u003c/p\u003e\n\u003cp\u003eprocess preprocessing_fastp\u003cbr\u003e\n3. (Fail) If sample contains \u0026lt; 100k pairs of cleaned reads, required to all be \u0026gt; 50bp (cleaning using fastp with --length_required 50 --average_qual 10 --low_complexity_filter --correction --cut_right --cut_tail --cut_tail_window_size 1 --cut_tail_mean_quality 20).\u003c/p\u003e\n\u003cp\u003eprocess preprocessing_kraken2\u003cbr\u003e\n4. (Fail) If the top family hit is not Mycobacteriaceae\u003cbr\u003e\n5. (Fail) If there are fewer than 100k reads classified as Mycobacteriaceae \u003cbr\u003e\n6. (Warn) If the top family classification is mycobacterial, but this is not consistent with top genus and species classifications\u003cbr\u003e\n7. (Warn) If the top family is Mycobacteriaceae but no G1 (species complex) classifications meet minimum thresholds of \u0026gt; 5000 reads or \u0026gt; 0.5% of the total reads (this is not necessarily a concern as not all mycobacteria have a taxonomic classification at this rank) \u003cbr\u003e\n8. (Warn) If sample is mixed or contaminated - defined as containing reads \u0026gt; the 5000/0.5% thresholds from multiple non-human species\u003cbr\u003e\n9. (Warn) If sample contains multiple classifications to mycobacterial species complexes, each meeting the \u0026gt; 5000/0.5% thresholds\u003cbr\u003e\n10. (Warn) If no species classification meets the 5000/0.5% thresholds\u003cbr\u003e\n11. (Warn) If no genus classification meets the 5000/0.5% thresholds\u003cbr\u003e\n12. (Fail) If no family classification meets the 5000/0.5% thresholds (redundant given point 5)\u003c/p\u003e\n\u003cp\u003eprocess preprocessing_identifyBacterialContaminants\u003cbr\u003e\n13. (Fail) If the sample is not contaminated and the top species hit is not one of the 10 supported Mycobacteria:\\ abscessus|africanum|avium|bovis|chelonae|chimaera|fortuitum|intracellulare|kansasii|tuberculosis\u003cbr\u003e\n14. (Fail) If the sample is not contaminated and the top species hit is contrary to the species expected (e.g. \"avium\" rather than \"tuberculosis\" - only tested if you provide that expectation)\u003cbr\u003e\n15. (Warn) If the top species hit is supported by \u0026lt; 75% coverage\u003cbr\u003e\n16. (Warn) If the top species hit has a median coverage depth \u0026lt; 10-fold\u003cbr\u003e\n17. (Warn) If we are unable to associate an NCBI taxon ID to any given contaminant species, which means we will not be able to locate its genome, and thereby remove it as a contaminant\u003cbr\u003e\n18. (Warn) If we are unable to determine a URL for the latest RefSeq genome associated with a contaminant species\u0027 taxon ID\u003cbr\u003e\n19. (Warn) If no complete genome could be found for a contaminant species. The workflow will proceed with alignment-based contaminant removal, but you\u0027re warned that there\u0027s reduced confidence in detecting reads from this species\u003c/p\u003e\n\u003cp\u003eprocess preprocessing_downloadContamGenomes\u003cbr\u003e\n20. (Fail) If a contaminant is detected but we are unable to download a representative genome, and thereby remove it\u003c/p\u003e\n\u003cp\u003eprocess preprocessing_summarise\u003cbr\u003e\n21. (Fail) If after having taken an alignment-based approach to decontamination, Kraken still detects a contaminant species\u003cbr\u003e\n22. (Fail) If after having taken an alignment-based approach to decontamination, the top species hit is not one of the 10 supported Mycobacteria\u003cbr\u003e\n23. (Fail) If, after successfully removing contaminants, the top species hit is contrary to the species expected (e.g. \"avium\" rather than \"tuberculosis\" - only tested if you provide that expectation)\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCRAW_singularity\u003c/h1\u003e\u003ca id=\"user-content-craw_singularity\" class=\"anchor\" aria-label=\"Permalink: CRAW_singularity\" href=\"#craw_singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003esingularity definition files for Counter RnAseq Window\u003c/p\u003e\n\u003cp\u003eCRAW compute and visualize the coverage of RNA seq experiment.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eHomepage project: \u003ca href=\"https://gitlab.pasteur.fr/bneron/craw\" rel=\"nofollow\"\u003ehttps://gitlab.pasteur.fr/bneron/craw\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFull documentation: \u003ca href=\"http://bneron.pages.pasteur.fr/craw\" rel=\"nofollow\"\u003ehttp://bneron.pages.pasteur.fr/craw\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 12,
"topics": [],
- "updated_at": 1665133955.0
+ "updated_at": 1554456657.0
},
{
"data_format": 2,
- "description": "Singularity image for AFLGo (https://github.com/aflgo/aflgo)",
+ "description": "BSMAP is a short reads mapping software for bisulfite sequencing reads.",
"filenames": [
- "Singularity.1604"
+ "2.90/Singularity"
],
- "full_name": "shub-fuzz/aflgo",
- "latest_release": "0.0.2",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAFLGo\u003c/h1\u003e\u003ca id=\"user-content-aflgo\" class=\"anchor\" aria-label=\"Permalink: AFLGo\" href=\"#aflgo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/shub-fuzz/aflgo/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/shub-fuzz/aflgo/actions/workflows/builder.yml/badge.svg?branch=main\" alt=\"singularity-deploy\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/5085\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image for AFLGo (\u003ca href=\"https://github.com/aflgo/aflgo\"\u003ehttps://github.com/aflgo/aflgo\u003c/a\u003e)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhat\u003c/strong\u003e is \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e?\u003cbr\u003e\nA containerization system primarily used by the scientific community on high-performance computing (HPC).\nOn many University HPC systems, docker is not allowed, but singularity is availble because it runs with\nuser level permisions.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhy\u003c/strong\u003e?\u003cbr\u003e\nFuzzing on HPC!\u003cbr\u003e\nUniversities have trememdous resources available in HPC clusters that can be used to support\nlarge-scale fuzzing evaluations.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eusage:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name aflgo.sif https://github.com/shub-fuzz/aflgo/releases/download/0.0.2/shub-fuzz-aflgo.1604.sif\n\nsingularity shell aflgo.sif\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "pscedu/singularity-bsmap",
+ "latest_release": null,
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-bsmap/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bsmap/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-bsmap/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bsmap/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/bd2eaf083681486a10c0520e03a0a148590eea13bd6758c649b236ab6a147168/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62736d6170\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bd2eaf083681486a10c0520e03a0a148590eea13bd6758c649b236ab6a147168/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62736d6170\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bsmap\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/90dbaf60a7819cb50da6c9d684ae66e45fe1126b4a405a06963a4a1b5af27525/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62736d6170\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/90dbaf60a7819cb50da6c9d684ae66e45fe1126b4a405a06963a4a1b5af27525/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62736d6170\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bsmap\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/2545c029ce8c2db8d5c4130530ee4ef326e5f362b25c0ad91e3a1e3e83593bd4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62736d6170\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2545c029ce8c2db8d5c4130530ee4ef326e5f362b25c0ad91e3a1e3e83593bd4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62736d6170\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bsmap\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/05de20bfc1f89c9a27c99af6439257ab0e37e91536e272e93bc4d0995c9f88c3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62736d6170\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/05de20bfc1f89c9a27c99af6439257ab0e37e91536e272e93bc4d0995c9f88c3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62736d6170\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bsmap\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-bsmap\u003c/h1\u003e\u003ca id=\"user-content-singularity-bsmap\" class=\"anchor\" aria-label=\"Permalink: singularity-bsmap\" href=\"#singularity-bsmap\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for bsmap.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebsmap\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bsmap/2.90\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bsmap\u003c/code\u003e as \u003ccode\u003e2.90.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1623682654.0
+ "subscribers_count": 4,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1636519626.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "tests/Singularity.py3.6.8_biopython1.73_mod",
- "tests/Singularity.py3.6.3_biopython1.73",
- "tests/Singularity.py3.7.1_biopython1.73_mod",
- "tests/Singularity.py3.7.3_biopython1.73_mod",
- "tests/Singularity.py3.7.1_biopython1.73",
- "tools/Singularity.deepvariant_0.8.0",
- "tools/Singularity.salmon_0.14.1",
- "tools/Singularity.vcftools_0.1.16",
- "tools/Singularity.krakenuniq_0.5.8",
- "tools/Singularity.vcflib_1.0.0-rc2",
- "tools/Singularity.plink_1.90beta5",
- "tools/Singularity.meraculous_2.2.6",
- "tools/Singularity.sambamba_0.6.9",
- "tools/Singularity.stacks_2.3e",
- "tools/Singularity.biopython_1.73",
- "tools/Singularity.deepbinner_0.2.0",
- "tools/Singularity.star_2.7.0c",
- "tools/Singularity.mummer_4.0.0beta2",
- "tools/Singularity.shinotate_1.5.8.918",
- "tools/Singularity.scrmshaw_20180523",
- "tools/Singularity.cutadapt_2.6",
- "tools/Singularity.bbmap_38.50b",
- "tools/Singularity.blobtools_1.0.1",
- "tools/Singularity.gatk_4.1.0.0",
- "tools/Singularity.trinity_2.8.4",
- "tools/Singularity.flye_2.5",
- "tools/Singularity.stacks_2.0Beta9",
- "tools/Singularity.ensemble-vep_96.1",
- "tools/Singularity.hmmer_3.2.1",
- "tools/Singularity.spades_3.13.0",
- "tools/Singularity.bracken_2.2",
- "tools/Singularity.R_3.6.0",
- "tools/Singularity.swarm_2.2.2",
- "tools/Singularity.bioconductor_3.9",
- "tools/Singularity.freebayes_1.2.0",
- "tools/Singularity.vt_0.57721",
- "tools/Singularity.pychopper_0.6.1",
- "tools/Singularity.apollo_2.2.0",
- "tools/Singularity.mothur_1.40.5",
- "tools/Singularity.racon_1.4.7",
- "tools/Singularity.minimap2_2.17r941",
- "tools/Singularity.sra_2.9.2",
- "tools/Singularity.BUSCO_3.0.2",
- "tools/Singularity.kraken_2.0.8beta",
- "tools/Singularity.transdecoder_5.3.0",
- "tools/Singularity.bwa_0.7.17",
- "tools/Singularity.last_973",
- "tools/Singularity.kollector_1.0.1",
- "tools/Singularity.quast_5.0.2",
- "tools/Singularity.clustalo_1.2.4",
- "tools/Singularity.R-Mfuzz_2.38.0",
- "tools/Singularity.borgbackup_1.1.6",
- "tools/Singularity.purge_haplotigs_20181203",
- "pipelines/Singularity.five-accessions",
- "pipelines/Singularity.racon-chunks_0.0.4",
- "pipelines/Singularity.basecall_wrapper_0.0.32_albacore_2.3.3",
- "pipelines/Singularity.racon-chunks_py36",
- "pipelines/Singularity.pinfish",
- "utils/Singularity.pigz_2.4.0",
- "utils/Singularity.optaweb-employee-rostering",
- "utils/Singularity.samtools_1.9",
- "utils/Singularity.optaplanner_7.23.0",
- "utils/Singularity.openshift"
+ "Singularity"
],
- "full_name": "TomHarrop/singularity-containers",
+ "full_name": "challenge-engine/test-starting-kit",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity containers\u003c/h1\u003e\u003ca id=\"user-content-singularity-containers\" class=\"anchor\" aria-label=\"Permalink: Singularity containers\" href=\"#singularity-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/996\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePipelines\u003c/h2\u003e\u003ca id=\"user-content-pipelines\" class=\"anchor\" aria-label=\"Permalink: Pipelines\" href=\"#pipelines\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/tomharrop/5acc/\"\u003efive-accessions\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTools\u003c/h2\u003e\u003ca id=\"user-content-tools\" class=\"anchor\" aria-label=\"Permalink: Tools\" href=\"#tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://jgi.doe.gov/data-and-tools/bbtools/\" rel=\"nofollow\"\u003eBBMap 38.00\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://bioconductor.org/help/docker/\" rel=\"nofollow\"\u003eBioconductor 3.7\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://biopython.org/\" rel=\"nofollow\"\u003eBiopython 1.72\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/borgbackup/borg\"\u003eborgbackup 1.1.6\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://busco.ezlab.org/\" rel=\"nofollow\"\u003eBUSCO 3.0.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://www.clustal.org/omega/\" rel=\"nofollow\"\u003eClustal Omega 1.2.4\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/ekg/freebayes\"\u003efreebayes 1.2.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/DerrickWood/kraken2\"\u003ekraken2 2.0.7-beta\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://www.hmmer.org/\" rel=\"nofollow\"\u003eHMMER 3.2.1\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://jgi.doe.gov/data-and-tools/meraculous/\" rel=\"nofollow\"\u003emeraculous 2.2.6\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/lh3/minimap2\"\u003eminimap2 2.11 r797\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.mothur.org/wiki/Main_Page\" rel=\"nofollow\"\u003eMothur 1.40.5\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://mummer4.github.io/\" rel=\"nofollow\"\u003emummer 4.0.0beta2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://www.cog-genomics.org/plink/1.9/\" rel=\"nofollow\"\u003eplink 1.09 beta 5\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/rrwick/Porechop\"\u003ePorechop 0.2.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://r-project.org/\" rel=\"nofollow\"\u003eR 3.5.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://halfonlab.ccr.buffalo.edu/scrmshaw.html\" rel=\"nofollow\"\u003eSCRMshaw 05142018\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/COMBINE-lab/salmon/releases\"\u003eSalmon 0.11.1\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://catchenlab.life.illinois.edu/stacks/\" rel=\"nofollow\"\u003eStacks 2.0b\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://cab.spbu.ru/software/spades/\" rel=\"nofollow\"\u003eSpades 3.12.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/torognes/swarm\"\u003eSwarm 2.2.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/TransDecoder/TransDecoder/wiki\"\u003eTransDecoder 5.3.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/trinityrnaseq/trinityrnaseq\"\u003eTrinity 2.6.6\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003etest-starting-kit\u003c/h1\u003e\u003ca id=\"user-content-test-starting-kit\" class=\"anchor\" aria-label=\"Permalink: test-starting-kit\" href=\"#test-starting-kit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\ud83e\udd13\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1574294473.0
+ "updated_at": 1620137534.0
},
{
"data_format": 2,
- "description": "Singularity definitions for agalma",
+ "description": "Simple example container with Nix and Python",
"filenames": [
- "Singularity.latest",
- "versions/Singularity.1.0.1",
- "versions/Singularity.1.0.0"
+ "Singularity"
],
- "full_name": "brevans/agalma",
+ "full_name": "XSEDE/nix-container-python-mandle",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity \u0026amp; agalma\u003c/h1\u003e\u003ca id=\"user-content-singularity--agalma\" class=\"anchor\" aria-label=\"Permalink: Singularity \u0026amp; agalma\" href=\"#singularity--agalma\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis \u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003esingularity\u003c/a\u003e definition file is meant to closely mirror the dockerfile for agalma. Singularity containers are well suited for running docker-like workflows in multi-user contexts, such as HPC clusters. Please see the \u003ca href=\"http://singularity.lbl.gov/install-linux\" rel=\"nofollow\"\u003elinux\u003c/a\u003e or \u003ca href=\"http://singularity.lbl.gov/install-mac\" rel=\"nofollow\"\u003eMacOS\u003c/a\u003e install instructions to get singularity.\u003c/p\u003e\n\u003cp\u003eTo build this Singularity image:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo $(which singularity) build agalma.simg Singularity.latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo pull this Singularity image from singularity-hub and run the agalma tests in current directory:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run shub://brevans/agalma:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003enix-container-python-mandle\u003c/h1\u003e\u003ca id=\"user-content-nix-container-python-mandle\" class=\"anchor\" aria-label=\"Permalink: nix-container-python-mandle\" href=\"#nix-container-python-mandle\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis directory is a full example of using the docker-centos-nix-python template to\ncontainerize a very simple Python3 app.\u003c/p\u003e\n\u003cp\u003eThis app allows you to create a GIF file with a straight-line zoom-in of the Mandlebrot set.\nRunning the bare container will show the various commandline options available, which\nmay be confusing, as this was written immediately following in-depth perusal of\n\u003ca href=\"https://en.wikipedia.org/wiki/Mandelbrot_set\" rel=\"nofollow\"\u003eThe Wikipedia article on the Mandlebrot Set\u003c/a\u003e.\nIf you have some time available and are interested in this sort of thing, please go down\nthe rabbithole, but otherwise view this as a somewhat helpful example.\u003c/p\u003e\n\u003cp\u003eThe following steps should allow you to test this out on a system with docker and singularity installed:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003edocker build -t $USER/python-mandle .\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003edocker run -v $PWD:$PWD -it $USER/python-mandle $PWD/mandle_ex.gif\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003esudo singularity build mandle.sif mandle.def\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003esingularity run mandle.sif -n 2 sing_mandle_ex.gif\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eFor submission on an HPC system using SLURM, you could use the following:\n(Assuming you\u0027ve uploaded this .sif file locally to APPDIR)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#/bin/bash\n#SBATCH -N 1\n#SBATCH -n 24\n#SBATCH -o mandle_%A.out\n\nmodule load singularity/3.5 #Versions above 3.6 are incompatible with lower versions!\n\nWORKDIR=/scratch/myuser\nAPPDIR=/home/myuser/images/\n\nsingularity run $APPDIR/mandle.sif -n 24 $WORKDIR/my_mandle.gif\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
+ "subscribers_count": 16,
"topics": [],
- "updated_at": 1512665600.0
+ "updated_at": 1628539859.0
},
{
"data_format": 2,
- "description": null,
+ "description": "The straightforward RNA-seq Snakemake pipeline",
"filenames": [
"Singularity"
],
- "full_name": "baxpr/mniconn",
- "latest_release": "v3.3.0-beta2",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003emniconn\u003c/h1\u003e\u003ca id=\"user-content-mniconn\" class=\"anchor\" aria-label=\"Permalink: mniconn\" href=\"#mniconn\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eComputes functional connectivity maps and matrices for a specified set of ROIs.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInputs\u003c/h2\u003e\u003ca id=\"user-content-inputs\" class=\"anchor\" aria-label=\"Permalink: Inputs\" href=\"#inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ewremovegm_niigz\u003c/code\u003e, \u003ccode\u003ewkeepgm_niigz\u003c/code\u003e, \u003ccode\u003ewmeanfmri_niigz\u003c/code\u003e. Preprocessed fMRI data from \u003ca href=\"https://github.com/baxpr/connprep\"\u003econnprep\u003c/a\u003e. This may be supplied in atlas space or subject native space, as long as the ROI image is in the same space.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ewroi_niigz\u003c/code\u003e. ROI image. This may be an image existing within the container (e.g. the MNI space \u0027AABHHIP_LR.nii.gz\u0027). Or, it may be any supplied image. In the latter case, \u003ccode\u003ewroilabel_csv\u003c/code\u003e must also be supplied; this file must contain Label and Region columns, or may be the STATS output of a slant assessor.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ewt1_niigz\u003c/code\u003e. T1 image for the PDF report.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePipeline\u003c/h2\u003e\u003ca id=\"user-content-pipeline\" class=\"anchor\" aria-label=\"Permalink: Pipeline\" href=\"#pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eResample the ROI image to match the fMRI. It\u0027s assumed both are already aligned and in the same space as the ROI image.\u003c/li\u003e\n\u003cli\u003eExtract mean time series from the supplied fMRI for each ROI in the ROI image.\u003c/li\u003e\n\u003cli\u003eCompute functional connectivity: \u003ccode\u003eR\u003c/code\u003e, the correlation coefficient; and \u003ccode\u003eZ\u003c/code\u003e, the Fisher transformed correlation, \u003ccode\u003eatanh(R) * sqrt(N-3)\u003c/code\u003e where \u003ccode\u003eN\u003c/code\u003e is number of time points. The ROI-to_ROI matrix is computed, and also voxelwise connectivity maps.\u003c/li\u003e\n\u003cli\u003eGenerate a PDF report and organize outputs for XNAT.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "asgeissler/RNA-Schlange",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eRNA-Schlange\u003c/h1\u003e\u003ca id=\"user-content-rna-schlange\" class=\"anchor\" aria-label=\"Permalink: RNA-Schlange\" href=\"#rna-schlange\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003cem\u003eRNA-Schlange\u003c/em\u003e (German word for \u003cem\u003esnake\u003c/em\u003e)\npipeline assesses the quality of RNA-seq data in a\nplug and play approach. Thus, a user should not need to provide any additional\nconfigurations aside from providing the read files, the genome, and\na rudimentary sample sheet file.\nThis pipeline supports both \u003cstrong\u003emicrobial\u003c/strong\u003e and \u003cstrong\u003eeukaryotic\u003c/strong\u003e experimental data,\nas well ass both \u003cstrong\u003esingle-end\u003c/strong\u003e and \u003cstrong\u003epaired-end\u003c/strong\u003e sequencing data.\nAlternatively, a user can specify a set of SRA runs that should be downloaded.\nIf you use the \u003cem\u003eRNA-Schlange\u003c/em\u003e, please consider citing:\u003c/p\u003e\n\u003cp\u003e\"Exploring the regulatory potential of RNA structures in 202 cyanobacterial genomes\"\u003cbr\u003e\nAS Geissler, EC Alvarez, C Anthon, NU Frigaard, J Gorodkin, and SE Seemann\u003cbr\u003e\n\u003cem\u003esubmitted\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"RNA-Schlange.jpg\"\u003e\u003cimg src=\"RNA-Schlange.jpg\" alt=\"Figure of the pipeline workflow\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eRNA-Schlange uses the following tools:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003esra-toolkit\u003c/strong\u003e for downloading data from SRA\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003efastp\u003c/strong\u003e for trimming, filtering, and adapter removal\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eSortMeRNA\u003c/strong\u003e for removal of ribosomal RNA\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eSalmon\u003c/strong\u003e + \u003cstrong\u003eDESeq2\u003c/strong\u003e to quickly assess expression levels and\nover library content\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eFastQC\u003c/strong\u003e + \u003cstrong\u003eMultiQC\u003c/strong\u003e for reporting and summarizing quality reports\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSetup\u003c/h2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-label=\"Permalink: Setup\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstall \u003ca href=\"https://docs.conda.io/en/latest/miniconda.html#\" rel=\"nofollow\"\u003econda\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003einstall Snakemake and mamba\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e $ conda install -n base -c conda-forge mamba\n $ mamba install -c bioconda snakemake\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDownload this pipeline\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e $ git clone asgeissler/RNA-Schlange\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eWhen using the \u003ccode\u003erun.sh\u003c/code\u003e helper script,\nSnakemake will automatically install\nthe remaining dependencies (\u003cem\u003ee.g.\u003c/em\u003e fastp)\nby creating new conda environments within the workflow directory.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUser guide\u003c/h2\u003e\u003ca id=\"user-content-user-guide\" class=\"anchor\" aria-label=\"Permalink: User guide\" href=\"#user-guide\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAll computations and data will be stored within the directory in which\nyou downloaded this pipeline. There are two scenarios on how to use\nRNA-Schlange:\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eScenario 1: User provided reads\u003c/h3\u003e\u003ca id=\"user-content-scenario-1-user-provided-reads\" class=\"anchor\" aria-label=\"Permalink: Scenario 1: User provided reads\" href=\"#scenario-1-user-provided-reads\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn case you have RNA-seq data of your own, please create a folder \u003ccode\u003edata\u003c/code\u003e\nand place your files there.\nAlso provide the genomic sequence and annotation for your organism of\ninterest; please name the files\n\u003ccode\u003egenome.fna.gz\u003c/code\u003e and \u003ccode\u003egenome.gff.gz\u003c/code\u003e.\nYou might want to download them from\neither \u003ca href=\"https://www.ncbi.nlm.nih.gov/refseq/\" rel=\"nofollow\"\u003eRefSeq\u003c/a\u003e,\n\u003ca href=\"https://www.ebi.ac.uk/ena/browser/home\" rel=\"nofollow\"\u003eENA\u003c/a\u003e, or\na species specific\u003c/p\u003e\n\u003cp\u003eFinally, write a file \u003ccode\u003esamples.csv\u003c/code\u003e that describes each\nread file that you have provided in \u003ccode\u003edata\u003c/code\u003e.\nThe file should be comma separated (that is a \u0027,\u0027 between each value)\nand contain the columns \u0027file\u0027, \u0027batch\u0027, \u0027sample\u0027, and \u0027condition\u0027.\nIf your experiment is a pair-end RNA-seq dataset, also add the optional\n\u0027pair\u0027 column.\u003c/p\u003e\n\u003cp\u003eIn case that your sequencing facility provides md5 checksums, consider\nwriting a \u003ccode\u003echecksum.txt\u003c/code\u003e file of the form\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e abc032358XXX file1_1.fast.gz\n XYZ987654321 file1_2.fast.gz\n ....\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRNA-Schlange will then initiate a comparison of hash to verify that there\nwere not issues during the download.\u003c/p\u003e\n\u003cp\u003eFor example, the input data could look like:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e \u251c\u2500\u2500 data\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 file1_1.fastq.gz\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 file1_2.fastq.gz\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 file2_1.fastq.gz\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 file2_2.fastq.gz\n \u2502\u00a0\u00a0 \u2514\u2500\u2500 ...\n \u251c\u2500\u2500 genome.fna.gz\n \u251c\u2500\u2500 (checksum.txt) # optional\n \u251c\u2500\u2500 genome.gff.gz\n \u251c\u2500\u2500 samples.csv\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWith the file \u003ccode\u003esamples.csv\u003c/code\u003e describing the reads\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e batch,sample,condition,pair,file\n batch1,A,control,R1,file1_1.fastq.gz\n batch1,A,control,R2,file1_2.fastq.gz\n batch1,B,control,R1,file2_1.fastq.gz\n batch1,B,control,R2,file2_2.fastq.gz\n ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe pipline will compute an analysis folder (see below) in which\nall files corresponding to the samples are names\n\u003ccode\u003ebatch_sample_condition\u003c/code\u003e. Therefore the pipeline only accepts\nsample/condition/batch with\nalpha-numeric names (incl. dash, \u003ccode\u003e-0-9a-zA-Z\u003c/code\u003e).\nFor paired-end reads, the values for the pairs are either R1 or R2.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eScenario 2: Public data\u003c/h3\u003e\u003ca id=\"user-content-scenario-2-public-data\" class=\"anchor\" aria-label=\"Permalink: Scenario 2: Public data\" href=\"#scenario-2-public-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRNA-Schlange supports you to specify\nrun accession numbers to download from the\n\u003ca href=\"https://www.ncbi.nlm.nih.gov/sra\" rel=\"nofollow\"\u003eSRA\u003c/a\u003e database.\nAll you needed to specify is a comma separated file\nspecifying the \u0027run\u0027 and \u0027condition\u0027.\nIf the data that will be downloaded is single-end, please\nname the file \u003ccode\u003esra-SE.csv\u003c/code\u003e.\nFor paired-end data name the file `sra-PE.csv.\u003c/p\u003e\n\u003cp\u003eA hypothetical \u003ccode\u003esra\\*.csv\u003c/code\u003e should look like, example from the \u003ca href=\"https://bioconductor.org/packages/release/data/experiment/vignettes/airway/inst/doc/airway.html\" rel=\"nofollow\"\u003eairway\u003c/a\u003e dataset:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e run,condition\n SRR1039508,N61311-control\n SRR1039509,N61311-case\n SRR1039512,N052611-control\n SRR1039513,N052611-case\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePipeline execution\u003c/h2\u003e\u003ca id=\"user-content-pipeline-execution\" class=\"anchor\" aria-label=\"Permalink: Pipeline execution\" href=\"#pipeline-execution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAll that is needed to start the pipeline is to execute the helper script with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e bash run.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you specified the data via SRA entries, you would need to run the script\ntwice (once for the download and once for the quality assessment).\nIn the helper script, Snakemake is set to automatically install the software\ndependencies with conda.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCluster execution and singularity\u003c/h3\u003e\u003ca id=\"user-content-cluster-execution-and-singularity\" class=\"anchor\" aria-label=\"Permalink: Cluster execution and singularity\" href=\"#cluster-execution-and-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAlternatively, if you prefer the computations to run in a cluster,\nRNA-Schlange comes with support for \u003cem\u003eslurm\u003c/em\u003e.\nSimply use \u003ccode\u003ebash run_slurm.sh\u003c/code\u003e after adapting the configurations to you\nsystem in \u003ccode\u003eclusterprofile_slurm/config.yaml\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eIf you prefer to use singularity to handle the dependencies,\nthen please use\n\u003ccode\u003ebash run_slurm_singularity.sh\u003c/code\u003e and the configuration\n\u003ccode\u003eclusterprofile_slurm_singularity/config.yaml\u003c/code\u003e.\nFor this use case, the pipeline will download a pre-build\ncontainerized\n\u003ca href=\"https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html#containerization-of-conda-based-workflows\" rel=\"nofollow\"\u003econtainerized\u003c/a\u003e\nimage that includes all dependencies. Thanks to the ORAS standard,\nyou can use this image also for a docker environment.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eRecommendation:\u003c/strong\u003e Set the \u003ccode\u003econda-prefix\u003c/code\u003e and \u003ccode\u003esingularity-prefix\u003c/code\u003e\nto paths on your server for centralized storage of the dependencies and\ncontainer images.\nThen dependencies won\u0027t be re-installed for each new workflow instance\n(saving time and storage).\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote on SRA downloading:\u003c/strong\u003e Due this pipelines internal coding to conditionally\nhandle user provided or SRA deposited RNA-seq data, it is not possible to\nsplit the downloading part into multiple jobs. Uset the\n\u003ccode\u003erun.sh\u003c/code\u003e or \u003ccode\u003erun_singularity.sh\u003c/code\u003e helpers for the downloading part\n(can be submitted to a queue as a single job).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePipeline analysis output\u003c/h2\u003e\u003ca id=\"user-content-pipeline-analysis-output\" class=\"anchor\" aria-label=\"Permalink: Pipeline analysis output\" href=\"#pipeline-analysis-output\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAll computatioal results of the pipeline are stored in the \u003ccode\u003eanalysis\u003c/code\u003e\ndirectory.\u003c/p\u003e\n\u003cp\u003eIf you provided a \u003ccode\u003echecksum.txt\u003c/code\u003e file that specified the\nper fastq file the expected checksums (see above), then\nthe pipeline creates states the observed checksums in\n\u003ccode\u003echecksum.txt\u003c/code\u003e with potential difference to the expected\nchecksums listed in \u003ccode\u003ediffering-checksum.txt\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eThe intermediary results of the pipeline are stored\nin computaitonal-chronological order as indicated by numeric\nprefixes per folder:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e10_raw\u003c/code\u003e:\u003cbr\u003e\nContains symbolic links to the files in \u003ccode\u003edata\u003c/code\u003e but\nwith renaming to \u003ccode\u003ebatch\\_sample\\_condition(\\_pair)\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e11_discarded\u003c/code\u003e, \u003ccode\u003e11_unpaired\u003c/code\u003e, \u003ccode\u003e12_clean\u003c/code\u003e:\u003cbr\u003e\nThese folders contain the discarded, unpaired, and quality filtered\nclean reads, as processed by \u003cstrong\u003efastp\u003c/strong\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e13_report/\\*.html\u003c/code\u003e:\u003cbr\u003e\nPer file, \u003cstrong\u003efastp\u003c/strong\u003e procudes html accessible reports that showcase\nthe before/after filtering statistics. Additionally, the report\nshows detailed statistics onj\npotential adapter contamination or distribution of insert sizes of\npaired-end reads.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e15_fastqc/10_raw\u003c/code\u003e, \u003ccode\u003e15_fastqc/12_clean\u003c/code\u003e, \u003ccode\u003e50_fastqc_before\u003c/code\u003e,\nand \u003ccode\u003e51_fastqc_after\u003c/code\u003e:\u003cbr\u003e\n\u003cstrong\u003eFastQC\u003c/strong\u003e is a popular tools for reporting sequenceing reads quality.\nThe \u003ccode\u003e15_fastqc\u003c/code\u003e folder contains the indibidual reports, while\nthe comprehensive \u003cstrong\u003eMultiQC\u003c/strong\u003e report that aggregates the information\nfrom all files are in the \u003ccode\u003e50_fastqc_before\u003c/code\u003e and \u003ccode\u003e51_fastqc_after\u003c/code\u003e\nfolder.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e20_db\u003c/code\u003e, \u003ccode\u003e21_ribosomal_RNA\u003c/code\u003e, \u003ccode\u003e22_non-ribosomal_RNA\u003c/code\u003e:\u003cbr\u003e\nThese directories correspond to the ribosomal RNA filtering\nof \u003cstrong\u003eSortMeRNA\u003c/strong\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e30_genes.fna.gz\u003c/code\u003e, \u003ccode\u003e31_salmon_index\u003c/code\u003e, \u003ccode\u003e32_salmon\u003c/code\u003e:\u003cbr\u003e\nFor a quality control assessment of expression levels,\nRNA-Schlange quantifies expression for all genes (coding and non-coding)\nannotated in the user-provided \u003ccode\u003egenome.gff.gz\u003c/code\u003e with \u003cstrong\u003eSalmon\u003c/strong\u003e.\nThere files and folders contain the index for the gene sequences\nand the output files of \u003cstrong\u003eSalmon\u003c/strong\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e40_survey\u003c/code\u003e:\u003cbr\u003e\nBased on the expresison levels, this folder contains the\ninformation on\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003col\u003e\n\u003cli\u003eThe combined expression count matrix collected from\nthe individual Salmon runs in \u003ccode\u003ecounts.tsv\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eRelative biotype of expressed genes shown in the barplot\n\u003ccode\u003ebiotype-content.png\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eScatter plots between the samples in a condition\n\u003ccode\u003escatter-plots.png\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eA printicpal component analysis (PCA) plot with\ncondition and batch indication of the top $100$ genes with\nmost variance in expression \u003ccode\u003epca.png\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eA tentative analysis of differentially expressed genes\nas detected by \u003cstrong\u003eDESeq2\u003c/strong\u003e at a false-discovery rate (FDR) of\n$0.05$ (see optional parameters below) are in\n\u003ccode\u003eputative-diff-expression-summary.tsv\u003c/code\u003e and\n\u003ccode\u003eputative-diff-expression.tsv\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eFinally, a heatmap showing expression levels of the putative\ndifferentially expresses genes is shown in 1heatmap.png`.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e53_main_multiqc\u003c/code\u003e:\u003cbr\u003e\nA summarizing \u003cstrong\u003eMultiQC\u003c/strong\u003e report of the filtering, ribosomal removal,\nand expression levels quantification.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOptional configurations\u003c/h2\u003e\u003ca id=\"user-content-optional-configurations\" class=\"anchor\" aria-label=\"Permalink: Optional configurations\" href=\"#optional-configurations\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRNA-Schlange attempts to provide a near configuration-free\nexperience of assessing the overall RNA-seq data quality.\nHowever, a user could still adapt pipeline in the\n\u003ccode\u003econfig.yaml\u003c/code\u003e file, which is format in\nthe\n\u003ca href=\"https://en.wikipedia.org/wiki/YAML#Basic_components\" rel=\"nofollow\"\u003eYAML format\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eProvided transcript/gene sequences and Gencode\u003c/h3\u003e\u003ca id=\"user-content-provided-transcriptgene-sequences-and-gencode\" class=\"anchor\" aria-label=\"Permalink: Provided transcript/gene sequences and Gencode\" href=\"#provided-transcriptgene-sequences-and-gencode\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstead of having the pipeline extract the sequences for the genes annotatated\nin the \u003ccode\u003egenome.gff.gz\u003c/code\u003e, you can provide already given gene/transcript sequences\nFor example, you can use the transcript sequences for mouse or human\nfrom the \u003ca href=\"https://www.gencodegenes.org/\" rel=\"nofollow\"\u003eGENCODE project\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e wget $URL -O analysis/30_genes.fna.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIn case of GENCODE provided sequences, please adapt the \u003ccode\u003econfig.yaml\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e salmon_index_args: [\n \u0027--gencode\u0027\n ]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003efastp quality filtering\u003c/h3\u003e\u003ca id=\"user-content-fastp-quality-filtering\" class=\"anchor\" aria-label=\"Permalink: fastp quality filtering\" href=\"#fastp-quality-filtering\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe default paramters are set to\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eEnsure a an overall average\n\u003ca href=\"https://en.wikipedia.org/wiki/Phred_quality_score\" rel=\"nofollow\"\u003ePhred score\u003c/a\u003e\nquality above $20$ (probabity of incorrect base call $\u0026lt; 0.01$).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eLess then $10%$ of positions are read are under a score of $20$.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eReads have a minimal length of $40$ nucleotides.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThe adapter contamination and clipping is done for the\nIllumina universal adapter sequences\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e fastp_args: [\n \u0027--average_qual=20\u0027,\n \u0027--qualified_quality_phred=20\u0027,\n \u0027--unqualified_percent_limit=10\u0027,\n \u0027--length_required=40\u0027,\n \u0027--adapter_sequence=AGATCGGAAGAGCACACGTCTGAACTCCAGTCA\u0027,\n \u0027--adapter_sequence_r2=AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT\u0027\n ]\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAlternative parameters are shown in the\n\u003ca href=\"https://github.com/OpenGene/fastp\"\u003efastp handbook\u003c/a\u003e, which allow for:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDe-duplication\u003c/li\u003e\n\u003cli\u003eUnque molecular identifier (UMI) processing\u003c/li\u003e\n\u003cli\u003epolyX tail trimmign\u003c/li\u003e\n\u003cli\u003eglobal trimming\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAlthough fastp allows for an automatic adapter sequence detection,\nthe pipeline states the Illumina universal adapter sequences\nfor explicitly checking for potential contamination by these sequences.\nAlterantive adapter sequences are listed \u003ccode\u003eadapter_list.fa\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSortMeRNA ribosomal RNA removal\u003c/h3\u003e\u003ca id=\"user-content-sortmerna-ribosomal-rna-removal\" class=\"anchor\" aria-label=\"Permalink: SortMeRNA ribosomal RNA removal\" href=\"#sortmerna-ribosomal-rna-removal\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePer default, the 16S, 18S, and 23S ribosomal RNAs are\nchoosen for the removal steps.\nThe removal is relative to represantative squences collected\nby \u003cstrong\u003eSortMeRNA\u003c/strong\u003e. Additional\nfilter sets are listed in the\n\u003ca href=\"https://github.com/biocore/sortmerna/wiki/User-manual-v4.0\"\u003ehandbook\u003c/a\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e sortmerna: [\n \u0027silva-bac-16s-id90\u0027,\n \u0027silva-arc-16s-id95\u0027,\n \u0027silva-euk-18s-id95\u0027,\n \u0027silva-bac-23s-id98\u0027,\n \u0027silva-arc-23s-id98\u0027,\n \u0027silva-euk-28s-id98\u0027\n ]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDESeq2 analysis\u003c/h3\u003e\u003ca id=\"user-content-deseq2-analysis\" class=\"anchor\" aria-label=\"Permalink: DESeq2 analysis\" href=\"#deseq2-analysis\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe assessment of putative\ndifferential gene expression is per default relative to the\nFDR $\\alpha = 0.05$. An alternative significance level can be specified\nin the configuraiton.\nFurther, if any of the generated plots might in their dimension not\nbe suitable for a dataset, other sizes can be specified.\nThe dimensions of the plots is given as a string of the format\n\u0027x\u0027 in inches.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e dge: {\n alpha: 0.05,\n dim_pca: \u002712x8\u0027,\n dim_scatter: \u002720x20\u0027,\n dim_biotype: \u00278x6\u0027\n }\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDeveloper note\u003c/h2\u003e\u003ca id=\"user-content-developer-note\" class=\"anchor\" aria-label=\"Permalink: Developer note\" href=\"#developer-note\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWhen using this pipeline in it\u0027s containerized form (\u003cem\u003ee.g.\u003c/em\u003e\n\u003ccode\u003erun_singularity.sh\u003c/code\u003e), then an image that was build with the following commands\nwill be downloaded.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e # The rule for fasterq-dump download from SRA is only contitionally\n # loaded, therefore there is a separate Dockerfile just for this part.\n snakemake --containerize \u0026gt; Dockerfile.fasterq\n # After a complete run of the pipeline (to make sure all works), snapshot the conda envs\n snakemake --containerize \u0026gt; Dockerfile\n # MANUALLY copy paste and adapt step1/2 part from Dockerfile.fasterq over\n # Convert to a singularity file\n # mambaforge does not have curl installed -\u0026gt; use wget\n # `curl URL -o PATH` becomes `wget URL -O PATH`\n # spython incorrectly doubles the \u0027/environment.yaml/environment.yaml\u0027\n spython recipe Dockerfile | \\\n sed \u0027s,curl \\([^ ]*\\) -o \\([^ ]*\\),wget \\1 -O \\2,\u0027 | \\\n sed \u0027s,/environment.yaml/environment.yaml,/environment.yaml,\u0027 \u0026gt; Singularity\n singularity build --fakeroot rnaschlange-0.1.sif Singularity\n # setup repositry credential\n singularity remote login --username \u0026lt;USER\u0026gt; oras://ghcr.io\n # + enter secret access token\n # upload image\n singularity push rnaschlange-0.1.sif oras://ghcr.io/asgeissler/rnaschlange:0.1\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1625437966.0
+ "updated_at": 1727253808.0
},
{
"data_format": 2,
- "description": "dot and other graphviz executable in a simple singularity container",
+ "description": "Methylation and mqtl analysis of the developing knee",
"filenames": [
- "singularity/Singularity.v1"
+ "Singularity"
],
- "full_name": "cokelaer/graphviz4all",
+ "full_name": "CBFLivUni/Epigenetics-OA-Risk-Human-Skeletal-Dev",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003egraphviz4all\u003c/h1\u003e\u003ca id=\"user-content-graphviz4all\" class=\"anchor\" aria-label=\"Permalink: graphviz4all\" href=\"#graphviz4all\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eDEPRECATED, Aug 2020\u003c/strong\u003e: This is now part of \u003ca href=\"https://damona.readthedocs.io\" rel=\"nofollow\"\u003ehttps://damona.readthedocs.io\u003c/a\u003e project.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edamona install graphviz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA container with graphviz (\u003ca href=\"http://www.graphviz.org/\" rel=\"nofollow\"\u003ehttp://www.graphviz.org/\u003c/a\u003e) executables (dot, circo, etc).\u003c/p\u003e\n\u003cp\u003eThis is for Singularity 2.4 at least and is available on singularity-hub\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name graphviz.img shub://cokelaer/graphviz4all:v1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eConversion of the dot file into SVG conterpart:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./graphviz.img dot -Tsvg test.dot -o test.svg\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDifferential methylation and mQTL analysis of cartilage tissue in the developing knee joint\u003c/h1\u003e\u003ca id=\"user-content-differential-methylation-and-mqtl-analysis-of-cartilage-tissue-in-the-developing-knee-joint\" class=\"anchor\" aria-label=\"Permalink: Differential methylation and mQTL analysis of cartilage tissue in the developing knee joint\" href=\"#differential-methylation-and-mqtl-analysis-of-cartilage-tissue-in-the-developing-knee-joint\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp align=\"center\"\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/CBFLivUni/SarahRice_mQTL/assets/8311721/7200daa9-99a6-4db5-8f9a-6c48971f405b\"\u003e\u003cimg src=\"https://github.com/CBFLivUni/SarahRice_mQTL/assets/8311721/7200daa9-99a6-4db5-8f9a-6c48971f405b\" width=\"70%\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eWorkflow\u003c/h2\u003e\u003ca id=\"user-content-workflow\" class=\"anchor\" aria-label=\"Permalink: Workflow\" href=\"#workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository contains the code required to reproduce the bioinformatics analysis of the methylation and genotyping arrays.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e01_Methyl_Preprocess.Rmd\u003c/strong\u003e\u003cbr\u003e\nQuality control and normalisation of the EPIC methylation arrays\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e02_Methyl_EDA.Rmd\u003c/strong\u003e\u003cbr\u003e\nPrincipal component analysis of the methylation data\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e03_Methyl_Differential.Rmd\u003c/strong\u003e\u003cbr\u003e\nDifferential methylated site and region analysis\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e04_DMR_mFuzzClustering.Rmd\u003c/strong\u003e\u003cbr\u003e\nMfuzz clustering of CpGs and enrichment analysis\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e05_processROADMAP.Rmd\u003c/strong\u003e\u003cbr\u003e\nOverlap of DMRs with ROADMAP chondrocyte chromatin states and ATAC-seq data\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e06_DMR_TFMotifs.qmd\u003c/strong\u003e\u003cbr\u003e\nEnrichment anaylsis of transcription factor motifs in DMRs\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e07_genotype_arrays.Rmd\u003c/strong\u003e\u003cbr\u003e\nGenotyping array processing (using bash scripts), quality control and identification of GWAS OA SNP LD proxies\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e08_matrixQTL_prep.Rmd\u003c/strong\u003e\u003cbr\u003e\nPreparation of methylation and genotyping data for mQTL analysis\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e09_matrixQTL_analysis.Rmd\u003c/strong\u003e\u003cbr\u003e\nIdentification and plotting of mQTLs\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e10_mQTLComparisons.qmd\u003c/strong\u003e\u003cbr\u003e\nComparison of the mQTLs against existing mQTLs from foetal brain and comparison of CpGs in the developmental DMRs vs the mQTLs.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e11_Colocalisation.qmd\u003c/strong\u003e\u003cbr\u003e\nColocalisation of the mQTL SNPs with osteoarthritis GWAS data\u003c/p\u003e\n\u003cp\u003eAll \u003ccode\u003eRmd\u003c/code\u003e and \u003ccode\u003eqmd\u003c/code\u003e files can be rendered within RStudio.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation\u003c/h2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstall the needed R packages\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRScript install/installRLibs.R\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [
- "dot",
- "circo",
- "graphviz",
- "singularity"
+ "colocalization",
+ "genotyping",
+ "methylation",
+ "mqtl",
+ "osteoarthritis"
],
- "updated_at": 1597173467.0
+ "updated_at": 1723046147.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Random block tower generator with analysis of physical characteristics",
"filenames": [
- "singularity/Singularity",
- "singularity/docker-to-singularity/Singularity"
+ "Singularity"
],
- "full_name": "snic-nsc/nscjekyllsetup",
+ "full_name": "CNCLgithub/pytower",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eWhat is included\u003c/h1\u003e\u003ca id=\"user-content-what-is-included\" class=\"anchor\" aria-label=\"Permalink: What is included\" href=\"#what-is-included\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eThe Dockerfile in this repo is used to build a docker container with Jekyll 2.1.1, under rbenv (v2.4.1), with all the required gem files, to run the NSC webpages.\u003c/li\u003e\n\u003cli\u003eA second rbenv (v2.4.0) is also installed and setup with Jekyll 3.4.2, and can be used to test code requiring a more current Jekyll.\u003c/li\u003e\n\u003cli\u003eThere is a script (compile.sh) which can be used if you want to generate html code for the webpage, without actually logging onto the container.\u003c/li\u003e\n\u003cli\u003eThere\u0027s also a Singularity recipe, to build a singularity container.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDocker Installation\u003c/h2\u003e\u003ca id=\"user-content-docker-installation\" class=\"anchor\" aria-label=\"Permalink: Docker Installation\" href=\"#docker-installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eThe prebuilt container is also available on the Docker hub, and can be pulled down.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e docker pull pchengi/nscjekyll\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild locally from Dockerfile\u003c/h2\u003e\u003ca id=\"user-content-build-locally-from-dockerfile\" class=\"anchor\" aria-label=\"Permalink: Build locally from Dockerfile\" href=\"#build-locally-from-dockerfile\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eYou can also build the docker container yourself.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e git clone https://github.com/snic-nsc/nscjekyllsetup.git\n cd nscjekyllsetup\n sudo docker build -t nscjekyll .\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStarting the docker container\u003c/h2\u003e\u003ca id=\"user-content-starting-the-docker-container\" class=\"anchor\" aria-label=\"Permalink: Starting the docker container\" href=\"#starting-the-docker-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e sudo docker run --rm -i -d -v \u0026lt;path to checked out nscweb repo\u0026gt;:/mnt -p 4000:4000 --name nscjekyll nscjekyll bash\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eThe above command starts the container, and mounts your checked out nscweb directory onto /mnt directory on the container; it also proxies port 4000 on the container onto your host machine.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eScripted html code generation\u003c/h2\u003e\u003ca id=\"user-content-scripted-html-code-generation\" class=\"anchor\" aria-label=\"Permalink: Scripted html code generation\" href=\"#scripted-html-code-generation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eYou can generate the html code for the files in the nscweb repo, without having to login into the container, using the compile.sh script on the container. It\u0027ll write the generated files to the _site directory, within your repo. It will output the compilation message(s) onto the terminal, and also return the exit code returned by jekyll, which can be used to test if the compilation was successful. Note that the \u003ccode\u003ecompile.sh\u003c/code\u003e script takes an argument; if \u003ccode\u003ensc\u003c/code\u003e is specified, it uses \u003ccode\u003ejekyll 2.1.1\u003c/code\u003e, else it will use a more current version of Jekyll, \u003ccode\u003ejekyll 3.5.2\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esudo docker exec -it nscjekyll bash /home/nscuser/compile.sh nsc\nConfiguration file: /home/nscuser/mnt/_config.yml\n Source: /home/nscuser/mnt\n Destination: /home/nscuser/mnt/_site\n Generating... \n done.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eServing the contents using Jekyll\u003c/h2\u003e\u003ca id=\"user-content-serving-the-contents-using-jekyll\" class=\"anchor\" aria-label=\"Permalink: Serving the contents using Jekyll\" href=\"#serving-the-contents-using-jekyll\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eIn order to serve the file contents using Jekyll, simply do the following:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esudo docker exec -it nscjekyll bash\nsource rubyenv nsc\ncd mnt\njekyll serve --watch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eAt this point, if you don\u0027t see errors on the console, you should be able to point the browser on your host machine to localhost:4000 and view the pages.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSingularity installation\u003c/h2\u003e\u003ca id=\"user-content-singularity-installation\" class=\"anchor\" aria-label=\"Permalink: Singularity installation\" href=\"#singularity-installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eThe singularity build recipe is found in the singularity directory, in this repo.\u003c/li\u003e\n\u003cli\u003eTo build:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003ecd singularity\nsudo singularity build nscjekyll.simg Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eTo simply compile pages (such as via a script)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --bind \u0026lt;checked-out nscweb directory\u0026gt;:/mnt nscjekyll.simg bash /usr/local/src/nscjekyllsetup/compile.sh nsc\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eRun the jekyll web server, to serve pages, you could do one of the following:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --bind \u0026lt;checked-out nscweb directory\u0026gt;:/mnt nscjekyll.simg bash\nsource /usr/local/src/nscjekyllsetup/rubyenv nsc\ncd /mnt\njekyll serve --watch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell nscjekyll.simg\nsource /usr/local/src/nscjekyllsetup/rubyenv nsc\ncd \u0026lt;checked-out nscweb directory\u0026gt;\njekyll serve --watch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eConverting Docker to Singularity\u003c/h2\u003e\u003ca id=\"user-content-converting-docker-to-singularity\" class=\"anchor\" aria-label=\"Permalink: Converting Docker to Singularity\" href=\"#converting-docker-to-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eIf you don\u0027t wish to build a singularity container from scratch, using the recipe, you can convert it from a prebuilt docker image.\u003c/li\u003e\n\u003cli\u003eTo do this, execute the build.sh script in docker-to-singularity folder, under `singularity\u0027.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003epytower\u003c/h1\u003e\u003ca id=\"user-content-pytower\" class=\"anchor\" aria-label=\"Permalink: pytower\" href=\"#pytower\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributing\u003c/h2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-label=\"Permalink: Contributing\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAll team members must\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eCreate a branch based off the current master\u003c/li\u003e\n\u003cli\u003eAdd commits to that new branch\u003c/li\u003e\n\u003cli\u003epush the new branch and submit a pull request to master\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSetup\u003c/h2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-label=\"Permalink: Setup\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eConfig\u003c/h3\u003e\u003ca id=\"user-content-config\" class=\"anchor\" aria-label=\"Permalink: Config\" href=\"#config\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSimple setups on local hosts should run fine with the \u003ccode\u003edefault.conf\u003c/code\u003e.\nHowever, if there are any issues with \u003ccode\u003esingularity\u003c/code\u003e the create a \u003ccode\u003euser.conf\u003c/code\u003e\nwith correct attributes.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003edefault.conf\u003c/code\u003e reads as:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-ini\"\u003e\u003cpre\u003e\u003cspan class=\"pl-en\"\u003e[ENV]\u003c/span\u003e\nexec:singularity \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e the path to singularity binary\u003c/span\u003e\npath:julia-cont \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e the path to the singularity container\u003c/span\u003e\npython:pyenv \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e the name of the conda environment\u003c/span\u003e\njulia_depot:.julia \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e the relative path to set JULIA_DEPOT_PATH\u003c/span\u003e\nmounts:\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAs of now there are some extraneous sections in \u003ccode\u003edefault.conf\u003c/code\u003e which\ncould be of use later.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-ini\"\u003e\u003cpre\u003e\u003cspan class=\"pl-en\"\u003e[PATHS]\u003c/span\u003e\ndatabases:output/databases\ntraces:output/traces\nrenders:output/renders\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eEnvironment building\u003c/h3\u003e\u003ca id=\"user-content-environment-building\" class=\"anchor\" aria-label=\"Permalink: Environment building\" href=\"#environment-building\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSimply run \u003ccode\u003esetup.sh\u003c/code\u003e in the root of this repo as follows\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003echmod +x setup.sh\n./setup.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou will be prompted for sudo when building the container.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esetup.sh\u003c/code\u003e will then create the container at the path specified in the config (\u003ccode\u003ejulia-cont\u003c/code\u003e by default).\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eNOTE: Like many commands in this setup, variables will be bound to those specified in \u003ccode\u003euser.conf\u003c/code\u003e if present or \u003ccode\u003edefault.conf\u003c/code\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRuntime\u003c/h2\u003e\u003ca id=\"user-content-runtime\" class=\"anchor\" aria-label=\"Permalink: Runtime\" href=\"#runtime\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eInteracting with the container\u003c/h3\u003e\u003ca id=\"user-content-interacting-with-the-container\" class=\"anchor\" aria-label=\"Permalink: Interacting with the container\" href=\"#interacting-with-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAfter running \u003ccode\u003esetup.sh\u003c/code\u003e, you can now use \u003ccode\u003erun.sh\u003c/code\u003e to use the environment.\u003c/p\u003e\n\u003cp\u003eThe synatx of \u003ccode\u003erun.sh\u003c/code\u003e is simply:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./run.sh \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003ecommand\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eWhere \u003ccode\u003ecommand\u003c/code\u003e can be any arbitrary bash expression.\u003c/p\u003e\n\u003cp\u003eFor example, you can probe the python version in the conda environment using:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt;: ./run.sh python3 --version\nNo user config found, using default\nINFO for ENV\n path =\u0026gt; julia-cont\n mounts =\u0026gt; \n exec =\u0026gt; singularity\n julia_depot =\u0026gt; .julia\n python =\u0026gt; pyenv\nPython 3.6.8 :: Anaconda, Inc.\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAs you can see \u003ccode\u003e./run.sh\u003c/code\u003e first\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eLoads the available config\u003c/li\u003e\n\u003cli\u003eReads out the config\u003c/li\u003e\n\u003cli\u003eExecutes the command\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInteracting with Julia\u003c/h2\u003e\u003ca id=\"user-content-interacting-with-julia\" class=\"anchor\" aria-label=\"Permalink: Interacting with Julia\" href=\"#interacting-with-julia\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eGetting into the \u003ccode\u003ejulia\u003c/code\u003e repl is simply\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt;: ./run.sh julia\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eNo user config found, using default\nINFO for ENV\n path =\u0026gt; julia-cont\n mounts =\u0026gt; \n exec =\u0026gt; singularity\n julia_depot =\u0026gt; .julia\n python =\u0026gt; pyenv\n _\n _ _ _(_)_ | Documentation: https://docs.julialang.org\n (_) | (_) (_) |\n _ _ _| |_ __ _ | Type \"?\" for help, \"]?\" for Pkg help.\n | | | | | | |/ _` | |\n | | |_| | | | (_| | | Version 1.1.0 (2019-01-21)\n _/ |\\__\u0027_|_|_|\\__\u0027_| | Official https://julialang.org/ release\n|__/ |\n\njulia\u0026gt; \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo make sure that \u003ccode\u003eJULIA_DEPOT_PATH\u003c/code\u003e is set to that in the config:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-julia\"\u003e\u003cpre\u003ejulia\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003eDEPOT_PATH\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e-\u003c/span\u003eelement Array{String,\u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e}\u003cspan class=\"pl-k\"\u003e:\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e.julia\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\njulia\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \n\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning package\u003c/h3\u003e\u003ca id=\"user-content-running-package\" class=\"anchor\" aria-label=\"Permalink: Running package\" href=\"#running-package\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo activate the package (ie rely on \u003ccode\u003eProject.toml\u003c/code\u003e and \u003ccode\u003eManifest.toml\u003c/code\u003e) run\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-julia\"\u003e\u003cpre\u003e(v1.\u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e) pkg\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e activate .\n\n(kinezoo) pkg\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e instantiate\n Updating registry at \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e`\u003c/span\u003e.julia/registries/General\u003cspan class=\"pl-pds\"\u003e`\u003c/span\u003e\u003c/span\u003e\n Updating git\u003cspan class=\"pl-k\"\u003e-\u003c/span\u003erepo \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e`\u003c/span\u003ehttps://github.com/JuliaRegistries/General.git\u003cspan class=\"pl-pds\"\u003e`\u003c/span\u003e\u003c/span\u003e\n\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can then reference code within the repo or import dependencies:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-julia\"\u003e\u003cpre\u003ejulia\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eusing\u003c/span\u003e LightGraphs\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can additionally pre-compile dependencies using:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-julia\"\u003e\u003cpre\u003e(kinezoo) pkg\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e precompile\nPrecompiling project\u003cspan class=\"pl-k\"\u003e...\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1618965313.0
+ },
+ {
+ "data_format": 2,
+ "description": "Molecular electrostatics singularity image",
+ "filenames": [
+ "Singularity"
+ ],
+ "full_name": "nbcrrolls/electrostatics-singularity",
+ "latest_release": "v2.1",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity container for molecular electrostatic calculations using PDB2PQR/APBS and Brownian dynamics with BrownDye.\u003c/h1\u003e\u003ca id=\"user-content-singularity-container-for-molecular-electrostatic-calculations-using-pdb2pqrapbs-and-brownian-dynamics-with-browndye\" class=\"anchor\" aria-label=\"Permalink: Singularity container for molecular electrostatic calculations using PDB2PQR/APBS and Brownian dynamics with BrownDye.\" href=\"#singularity-container-for-molecular-electrostatic-calculations-using-pdb2pqrapbs-and-brownian-dynamics-with-browndye\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis singularity image contains a complete software environment for running \u003ca href=\"http://browndye.ucsd.edu/\" rel=\"nofollow\"\u003eBrownDye (version 1 and 2)\u003c/a\u003e simulations. It also includes \u003ca href=\"http://www.poissonboltzmann.org/\" rel=\"nofollow\"\u003ePDB2PQR\u003c/a\u003e and \u003ca href=\"http://www.poissonboltzmann.org/\" rel=\"nofollow\"\u003eAPBS\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003ePlease \u003ca href=\"http://eepurl.com/by4eQr\" rel=\"nofollow\"\u003eregister\u003c/a\u003e your use of APBS and PDB2PQR.\u003c/p\u003e\n\u003cp\u003eThe image has been verified to work on XSEDE \u003ca href=\"https://portal.xsede.org/sdsc-comet\" rel=\"nofollow\"\u003ecomet\u003c/a\u003e and \u003ca href=\"https://www.sdsc.edu/support/user_guides/tscc-quick-start.html\" rel=\"nofollow\"\u003eTSCC\u003c/a\u003e shared cluster at SDSC. It will automatically bind \u003ccode\u003e/cvmfs\u003c/code\u003e \u003ccode\u003e/oasis\u003c/code\u003e \u003ccode\u003e/projects\u003c/code\u003e \u003ccode\u003e/scratch\u003c/code\u003e directories, if available on the host.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsing the container\u003c/h2\u003e\u003ca id=\"user-content-using-the-container\" class=\"anchor\" aria-label=\"Permalink: Using the container\" href=\"#using-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePull the singularity image:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://nbcrrolls/electrostatics-singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eStart bash shell in the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell nbcrrolls-electrostatics-singularity-master-latest.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNow the container is running and we can start a BrownDye2 job (using the Thrombin example):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emodule load browndye2\ncp -ai $BD2_PATH/examples/thrombin .\ncd thrombin\nsed -i \u0027s/-PE0//g\u0027 *\nsed -i \u0027s/\u0026lt;n_trajectories\u0026gt; 10000 /\u0026lt;n_trajectories\u0026gt; 1000 /\u0027 t_m_simulation.xml.bak\nmake all # takes about min to run\nmodule unload browndye2\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAnd if you want to use BrownDye version 1:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emodule load browndye1\ncp -ai $BD1_PATH/thrombin-example .\ncd thrombin-example\nsed -i \u0027s/-PE0//g\u0027 *\nsed -i \u0027s/\u0026lt;n-trajectories\u0026gt; 10000 /\u0026lt;n-trajectories\u0026gt; 1000 /\u0027 input.xml.bak # limit the number of calculated trajectories\nmake all\nbd_top input.xml\nnam_simulation t-m-simulation.xml # this takes about 3 min to run\ncat results.xml\nmodule unload browndye1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAfter we are finished we can quit the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexit\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can also access individual applications from the electrostatics container.\u003c/p\u003e\n\u003cp\u003eTo list available applications:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity apps nbcrrolls-electrostatics-singularity-master-latest.simg \napbs\npdb2pqr\nnam_simulation\nwe_simulation\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run, for example, apbs calculation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec nbcrrolls-electrostatics-singularity-master-latest.simg apbs input.in\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run --app apbs nbcrrolls-electrostatics-singularity-master-latest.simg input.in\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis Singularity image is hosted on Singularity Hub: \u003ca href=\"https://singularity-hub.org/collections/2497\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch6 class=\"heading-element\"\u003eThis project is supported by \u003ca href=\"http://nbcr.ucsd.edu\" rel=\"nofollow\"\u003eNBCR\u003c/a\u003e.\u003c/h6\u003e\u003ca id=\"user-content-this-project-is-supported-by-nbcr\" class=\"anchor\" aria-label=\"Permalink: This project is supported by NBCR.\" href=\"#this-project-is-supported-by-nbcr\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 4,
"topics": [],
- "updated_at": 1534270572.0
+ "updated_at": 1556048171.0
},
{
"data_format": 2,
- "description": null,
+ "description": "A public Docker container for WRF 3.8.1 with Fitch patch",
"filenames": [
- "containers/2024/methylKitDMRs/Singularity",
- "containers/2024/dmrseq/Singularity",
- "containers/2024/methylKitAvgMethylOverRegions/Singularity"
+ "Singularity"
],
- "full_name": "BenGSt/repo_for_reizel_lab",
+ "full_name": "federatedcloud/Docker-WRF-3.8.1-Fitch",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eBen Steinberg\u0027s Repository for Dr. Reizel\u0027s lab (The Epigenetic Editing Research Lab, Technion, Israel)\u003c/h1\u003e\u003ca id=\"user-content-ben-steinbergs-repository-for-dr-reizels-lab-the-epigenetic-editing-research-lab-technion-israel\" class=\"anchor\" aria-label=\"Permalink: Ben Steinberg\u0027s Repository for Dr. Reizel\u0027s lab (The Epigenetic Editing Research Lab, Technion, Israel)\" href=\"#ben-steinbergs-repository-for-dr-reizels-lab-the-epigenetic-editing-research-lab-technion-israel\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repo contains varius scripts for running the following genomic data analysis pipelines:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eWGBS\u003c/li\u003e\n\u003cli\u003eRRBS (nugen ovation kit)\u003c/li\u003e\n\u003cli\u003eDMR finding + heatmaps\u003c/li\u003e\n\u003cli\u003eRNA-SEQ DEG\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDocker-WRF-3.8.1-Fitch\u003c/h1\u003e\u003ca id=\"user-content-docker-wrf-381-fitch\" class=\"anchor\" aria-label=\"Permalink: Docker-WRF-3.8.1-Fitch\" href=\"#docker-wrf-381-fitch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA public Docker container for WRF 3.8.1 with Fitch patches.\u003c/p\u003e\n\u003cp\u003eDocker image: \u003ca href=\"https://hub.docker.com/repository/docker/cornellcac/wrf\" rel=\"nofollow\"\u003eDocker Hub\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image: \u003ca href=\"https://singularity-hub.org/collections/5227\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eBuild\u003c/h1\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-label=\"Permalink: Build\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe Docker container can be built using the script \u003ca href=\"https://github.com/federatedcloud/Docker-WRF-3.8.1-Fitch/blob/main/docker-build.sh\"\u003e\u003ccode\u003edocker-build.sh\u003c/code\u003e\u003c/a\u003e,\nwhich will produce an output file named \u003ccode\u003ebuild_output.txt\u003c/code\u003e (included in the\n\u003ca href=\"https://github.com/federatedcloud/Docker-WRF-3.8.1-Fitch/blob/main/.gitignore\"\u003e\u003ccode\u003e.gitignore\u003c/code\u003e\u003c/a\u003e).\nThe build will take some time, so it is recommended to use a terminal multiplexer, such as tmux.\nOne can view the full output at any time using a text editor to open \u003ccode\u003ebuild_output.txt\u003c/code\u003e.\nTo determine what step the build it is at, one can do:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecat build_output.txt | grep Step | tail -n 1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will print the current command Docker is executing to build the container.\nTo view Docker build errors, try:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecat build_output.txt | grep ERROR\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis is actually the last command in the \u003ccode\u003edocker-build.sh\u003c/code\u003e script, so Docker build\nerrors will be listed upon completion. If there are no errors listed the container\nwas built successfully. Code and dependencies should be checked independently of\na Docker build error list.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePatches\u003c/h2\u003e\u003ca id=\"user-content-patches\" class=\"anchor\" aria-label=\"Permalink: Patches\" href=\"#patches\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSince there are some \u003ca href=\"https://www2.mmm.ucar.edu/wrf/users/wrfv3.8/known-prob-3.8.1.html\" rel=\"nofollow\"\u003eknown problems with WRF 3.8.1\u003c/a\u003e,\nwe have implemented the following patches provided by the WRF Users page:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www2.mmm.ucar.edu/wrf/src/fix/module_radiation_driver.F.fix-for-v3.8.1.tar.gz\" rel=\"nofollow\"\u003e\u003ccode\u003emodule_radiation_driver.F\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www2.mmm.ucar.edu/wrf/src/fix/module_cu_g3_random_seed_fix.F.gz\" rel=\"nofollow\"\u003e\u003ccode\u003emodule_cu_g3.F\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www2.mmm.ucar.edu/wrf/src/fix/Registry.EM_COMMON.v381.tar.gz\" rel=\"nofollow\"\u003e\u003ccode\u003eRegistry.EM_COMMON\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAll of these patches, as well as our custom patches, are included in the repository.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCompiling\u003c/h2\u003e\u003ca id=\"user-content-compiling\" class=\"anchor\" aria-label=\"Permalink: Compiling\" href=\"#compiling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWRF and WPS compilation is performed in bash. Please see the \u003ca href=\"https://github.com/federatedcloud/Docker-WRF-3.8.1-Fitch/blob/main/Dockerfile\"\u003eDockerfile\u003c/a\u003e\nfor full commands.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 8,
"topics": [],
- "updated_at": 1733087762.0
+ "updated_at": 1620413771.0
},
{
"data_format": 2,
- "description": "Singularity recipes for base-images containing mrtrix3.",
+ "description": null,
"filenames": [
- "Singularity.3.0_RC3",
- "Singularity.3.0_RC2"
+ "Singularity"
],
- "full_name": "MPIB/singularity-mrtrix3",
+ "full_name": "CINECA-HPC/container_openmpi420_gnu930__spack160_ubuntu2004_x86_64",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-mrtrix3\u003c/h1\u003e\u003ca id=\"user-content-singularity-mrtrix3\" class=\"anchor\" aria-label=\"Permalink: singularity-mrtrix3\" href=\"#singularity-mrtrix3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/729\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipes for base-images containing mrtrix3.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003emrtrix3 is pulled from its \u003ca href=\"https://github.com/MRtrix3/mrtrix3\"\u003egithub repository\u003c/a\u003e and build using cmake.\u003c/li\u003e\n\u003cli\u003ecmake and the build dependencies are installed through the debian repositories via \u003ccode\u003eapt-get install\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eAt the end of the build process the image is cleaned up by:\n\u003cul\u003e\n\u003cli\u003eremoving cmake and build dependencies through \u003ccode\u003eapt-get purge\u003c/code\u003e,\u003c/li\u003e\n\u003cli\u003edeleting the package cache.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003econtainer_openmpi420_gnu930__spack160_ubuntu2004_x86_64\u003c/h1\u003e\u003ca id=\"user-content-container_openmpi420_gnu930__spack160_ubuntu2004_x86_64\" class=\"anchor\" aria-label=\"Permalink: container_openmpi420_gnu930__spack160_ubuntu2004_x86_64\" href=\"#container_openmpi420_gnu930__spack160_ubuntu2004_x86_64\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1528782437.0
+ "updated_at": 1614275862.0
},
{
"data_format": 2,
- "description": "Simple high quality GIF encoding",
+ "description": "VisiData is an interactive multitool for tabular data. ",
"filenames": [
- "1.2.0/Singularity"
+ "2.7.1/Singularity",
+ "2.11.1/Singularity",
+ "2.8/Singularity",
+ "3.0.2/Singularity",
+ "2.10.2/Singularity",
+ "2.11/Singularity",
+ "2.6.1/Singularity",
+ "2.4/Singularity",
+ "3.1/Singularity"
],
- "full_name": "icaoberg/singularity-gifgen",
- "latest_release": "v1.2.0",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-gifgen\u003c/h1\u003e\u003ca id=\"user-content-singularity-gifgen\" class=\"anchor\" aria-label=\"Permalink: singularity-gifgen\" href=\"#singularity-gifgen\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/icaoberg/singularity-gifgen/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-gifgen/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/icaoberg/singularity-gifgen/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-gifgen/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/ddcb279561c5f18a20a4ba52ac610c17ff1211eb392eb5e0018b36cec8351abb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d67696667656e\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ddcb279561c5f18a20a4ba52ac610c17ff1211eb392eb5e0018b36cec8351abb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d67696667656e\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-gifgen\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/da84737ceaa96074c0f93f7e597a610cf976277838f95500a1b152e68829e579/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d67696667656e\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/da84737ceaa96074c0f93f7e597a610cf976277838f95500a1b152e68829e579/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d67696667656e\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-gifgen\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/11fa14457c5a8dcd4494066d37ab61b76bc998132ef9e8ce5bd91cb952c692ed/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d67696667656e\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/11fa14457c5a8dcd4494066d37ab61b76bc998132ef9e8ce5bd91cb952c692ed/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d67696667656e\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-gifgen\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a1cb8f35430cad386966f91019470b5e6b32c19e02067af5a14f31274ac16c69/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d67696667656e\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a1cb8f35430cad386966f91019470b5e6b32c19e02067af5a14f31274ac16c69/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d67696667656e\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-gifgen\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"./images/joaquin_sabina-19dias_y_500noches.gif\"\u003e\u003cimg src=\"./images/joaquin_sabina-19dias_y_500noches.gif\" width=\"50%\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cbr\u003e\u003ca href=\"https://www.youtube.com/watch?v=NY_EOhHRTdo\" rel=\"nofollow\"\u003eJoaqu\u00edn Sabina - 19 d\u00edas y 500 noches\u003c/a\u003e\n\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2023 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-visidata",
+ "latest_release": "v3.0.2",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-visidata/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-visidata/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-visidata/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-visidata/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/8ccda96e18c4e06a66abeac2ca4c6742ebe7cb601c19b51b52b4f3681991576b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7669736964617461\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8ccda96e18c4e06a66abeac2ca4c6742ebe7cb601c19b51b52b4f3681991576b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7669736964617461\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-visidata\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/9d1212476e5d75a4cb9a460f9b7b86da67f385469f99ad3ffaa66f99d3ccdaeb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7669736964617461\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9d1212476e5d75a4cb9a460f9b7b86da67f385469f99ad3ffaa66f99d3ccdaeb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7669736964617461\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-visidata\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/521097008ddb94c7331ce0e2b89298737f5dde3737ac8917329163c9e3e0cbab/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7669736964617461\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/521097008ddb94c7331ce0e2b89298737f5dde3737ac8917329163c9e3e0cbab/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7669736964617461\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-visidata\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/b3b5cfe9b1897a6ba2ea5a4092977dc9e63453ef0404dd0b196e8f7a71fe946f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7669736964617461\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b3b5cfe9b1897a6ba2ea5a4092977dc9e63453ef0404dd0b196e8f7a71fe946f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7669736964617461\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-visidata\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-visidata\u003c/h1\u003e\u003ca id=\"user-content-singularity-visidata\" class=\"anchor\" aria-label=\"Permalink: singularity-visidata\" href=\"#singularity-visidata\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://www.visidata.org/\" rel=\"nofollow\"\u003evisidata\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003evd\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/visidata/2.7.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/visidata\u003c/code\u003e as \u003ccode\u003e2.7.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2024 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 4,
"topics": [
"singularity",
"utilities"
],
- "updated_at": 1697611081.0
+ "updated_at": 1729457707.0
},
{
"data_format": 2,
- "description": "Container (SIMG,Docker) recipes for a number of projects",
+ "description": "Multimodal Barlow Twins architecture trained via self-supervision using feature based augmentation.",
"filenames": [
- "adni_simg/Singularity.adni_lashis_simg",
- "grad_unwarp/Singularity.gradient_unwarp_singularity",
- "NeuroImaging/Singularity.ants_fsl_robex",
- "NeuroImaging/Singularity.ashs",
- "NeuroImaging/Singularity.spm_fsl_mrtrix",
- "NeuroImaging/Singularity.cpac",
- "NeuroImaging/Singularity.freesurfer-6.0",
- "NeuroImaging/Singularity.mrtrix",
- "NeuroImaging/Singularity.adni_lashis_simg",
- "NeuroImaging/Singularity.fsl_robex",
- "DEEPSEACAT/Singularity.deepseacat_singularity"
+ "slp/Singularity"
],
- "full_name": "thomshaw92/container_recipes",
+ "full_name": "Poulinakis-Konstantinos/Multimodal-Barlow-Twins",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eContainer Recipes\u003c/h1\u003e\u003ca id=\"user-content-container-recipes\" class=\"anchor\" aria-label=\"Permalink: Container Recipes\" href=\"#container-recipes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eContainer (SIMG,Docker) recipes for a number of projects\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eMaster Thesis for M.Sc. in Data Science and Machine Learning @ NTUA\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://dspace.lib.ntua.gr/xmlui/bitstream/handle/123456789/58314/Poulinakis_Konstantinos-Master_Thesis-2023-ML.pdf?sequence=1\u0026amp;isAllowed=y\" rel=\"nofollow\"\u003e\"Self Supervised Multimodal Learning for Emotion recognition\"\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/Poulinakis-Konstantinos/Multimodal-Barlow-Twins/assets/75034778/7b0da713-da02-4dee-a05e-f65583632448\"\u003e\u003cimg src=\"https://github.com/Poulinakis-Konstantinos/Multimodal-Barlow-Twins/assets/75034778/7b0da713-da02-4dee-a05e-f65583632448\" alt=\"proposed architecture\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1585190745.0
+ "updated_at": 1702207569.0
},
{
"data_format": 2,
- "description": null,
+ "description": "conda test",
"filenames": [
- "singularity/Singularity.PyTorch",
- "singularity/Singularity.PyTensorflow"
+ "Singularity"
],
- "full_name": "huynhngoc/orion-slurm-gpu",
+ "full_name": "FelixKrueger/Singularity_Test2",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity_Test2\u003c/h1\u003e\u003ca id=\"user-content-singularity_test2\" class=\"anchor\" aria-label=\"Permalink: Singularity_Test2\" href=\"#singularity_test2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003econda test\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1667480068.0
+ "updated_at": 1537794737.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.latest"
+ "Singularity"
],
- "full_name": "EPI-APE/simu_IV",
+ "full_name": "ddbj/singularity_apache_jekyll",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity image\u306e\u30d3\u30eb\u30c9\u003c/h1\u003e\u003ca id=\"user-content-singularity-image\u306e\u30d3\u30eb\u30c9\" class=\"anchor\" aria-label=\"Permalink: singularity image\u306e\u30d3\u30eb\u30c9\" href=\"#singularity-image\u306e\u30d3\u30eb\u30c9\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity build ubuntu-18.04-apache2-jekyll.simg Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ejekyll\u3067\u9759\u7684\u30d5\u30a1\u30a4\u30eb\u3092\u751f\u6210\u3059\u308b\u30bd\u30fc\u30b9\u306e\u6e96\u5099\u003c/h1\u003e\u003ca id=\"user-content-jekyll\u3067\u9759\u7684\u30d5\u30a1\u30a4\u30eb\u3092\u751f\u6210\u3059\u308b\u30bd\u30fc\u30b9\u306e\u6e96\u5099\" class=\"anchor\" aria-label=\"Permalink: jekyll\u3067\u9759\u7684\u30d5\u30a1\u30a4\u30eb\u3092\u751f\u6210\u3059\u308b\u30bd\u30fc\u30b9\u306e\u6e96\u5099\" href=\"#jekyll\u3067\u9759\u7684\u30d5\u30a1\u30a4\u30eb\u3092\u751f\u6210\u3059\u308b\u30bd\u30fc\u30b9\u306e\u6e96\u5099\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u9069\u5f53\u306a\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u3092\u4f5c\u6210\u3057\u3001jekyll\u306e\u30c7\u30fc\u30bf\u3092\u305d\u306e\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u5185\u306b\u7f6e\u304f\u3002\u003c/p\u003e\n\u003cp\u003estart_container-build.sh \u307e\u305f\u306f start_container-serve.sh \u306e SOURCE_DIR\u5909\u6570\u306e\u5024\u3092\u30c7\u30fc\u30bf\u3092\u5165\u308c\u305f\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306e\u30d1\u30b9\u306b\u4fee\u6b63\u3059\u308b\u3002\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity instance \u306e\u8d77\u52d5\u003c/h1\u003e\u003ca id=\"user-content-singularity-instance-\u306e\u8d77\u52d5\" class=\"anchor\" aria-label=\"Permalink: singularity instance \u306e\u8d77\u52d5\" href=\"#singularity-instance-\u306e\u8d77\u52d5\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ejekyll\u3092build\u3067\u5b9f\u884c\u3057\u3066apache2\u306eDocumentRoot\u306b\u9759\u7684\u30d5\u30a1\u30a4\u30eb\u3092\u51fa\u529b\u3055\u305b\u3001\u751f\u6210\u3057\u305f\u30b5\u30a4\u30c8\u3092apache2\u3067\u516c\u958b\u3059\u308b\u5834\u5408\u306fstart_container-build.sh\u3092\u5b9f\u884c\u3059\u308b\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash start_container-build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ejekyll\u3092serve\u3067\u5b9f\u884c\u3057\u3001jekyll\u306ehttp\u30b5\u30fc\u30d0\u3092apache2\u306e\u30ea\u30d0\u30fc\u30b9\u30d7\u30ed\u30ad\u30b7\u3067\u53d7\u3051\u308b\u5834\u5408\u306fstart_container-serve.sh\u3092\u5b9f\u884c\u3059\u308b\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash start_container-serve.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u3044\u305a\u308c\u306e\u5834\u5408\u3082httpd.conf.build\u307e\u305f\u306fhttpd.conf.serve\u306eListen\u30c7\u30a3\u30ec\u30af\u30c6\u30a3\u30d6\u306bsingularity instance\u3067\u4f7f\u7528\u3059\u308b\u30dd\u30fc\u30c8\u756a\u53f7\u3092\u8a2d\u5b9a\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1566030551.0
+ "updated_at": 1593769075.0
},
{
"data_format": 2,
- "description": "selective regression testing on method level for node.js apps",
+ "description": "Build scripts to create singularity containers for kaldi + pop-up-archive",
"filenames": [
- "docker/Singularity.snowflake"
+ "Singularity.in"
],
- "full_name": "charlie-cyf/nodeSRT",
+ "full_name": "AudiovisualMetadataPlatform/kaldi-pua-singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSelective Regression Testing for Node.js\u003c/h1\u003e\u003ca id=\"user-content-selective-regression-testing-for-nodejs\" class=\"anchor\" aria-label=\"Permalink: Selective Regression Testing for Node.js\" href=\"#selective-regression-testing-for-nodejs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003einstall:\u003c/h2\u003e\u003ca id=\"user-content-install\" class=\"anchor\" aria-label=\"Permalink: install:\" href=\"#install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e# install dependencies\nnpm i\n\n# install NodeSRT package\ncd nodeSRT\nsudo npm i .\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eusage:\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: usage:\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003euse \u003ccode\u003enodeSRT --help\u003c/code\u003e to get help \u003cbr\u003e\nuse this command to run nodeSRT\n\u003ccode\u003enodeSRT -b \u0026lt;codebase dir\u0026gt; -d \u0026lt;diff patch dir\u0026gt; \u0026lt;options\u0026gt;\u003c/code\u003e \u003cbr\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eoptions\u003c/h3\u003e\u003ca id=\"user-content-options\" class=\"anchor\" aria-label=\"Permalink: options\" href=\"#options\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003e-b, --basefolder \u0026lt;path\u0026gt;\u003c/code\u003e the path to codebase to be analyzed \u003cbr\u003e\n\u003ccode\u003e-d --diffFile \u0026lt;path\u0026gt;\u003c/code\u003e path to diff file \u003cbr\u003e\n\u003ccode\u003e--config \u0026lt;path\u0026gt;\u003c/code\u003e path to JSON config file \u003cbr\u003e\n\u003ccode\u003e--e2e \u0026lt;boolean\u0026gt;\u003c/code\u003e run analyze on e2e tests \u003cbr\u003e\n\u003ccode\u003e--skipGetDependency \u0026lt;boolean\u0026gt;\u003c/code\u003e skip get denpendency graph step, has to set \u003ccode\u003e--callGraph\u003c/code\u003e \u003ccode\u003e--fileDependencyGraph\u003c/code\u003e \u003ccode\u003e--E2EdenpendencyGraph\u003c/code\u003e as well \u003cbr\u003e\n\u003ccode\u003e--callGraph \u0026lt;path\u0026gt;\u003c/code\u003e path to callgraph \u003cbr\u003e\n\u003ccode\u003e--fileDependencyGraph \u0026lt;path\u0026gt;\u003c/code\u003e path to file denpendency graph \u003cbr\u003e\n\u003ccode\u003e--E2EdenpendencyGraph \u0026lt;path\u0026gt;\u003c/code\u003e dir to E2e dependencyGraph \u003cbr\u003e\n\u003ccode\u003e--excepts \u0026lt;array\u0026gt;\u003c/code\u003e array of files to be excluded when injection \u003cbr\u003e\n\u003ccode\u003e--docker \u0026lt;boolean\u0026gt;\u003c/code\u003e whether running in docker or ci environment, if it is then skip user inputs\u003cbr\u003e\u003c/p\u003e\n\u003cp\u003eoptions only in configuration files only: \u003cbr\u003e\n\u003ccode\u003eexcepts: \u0026lt;array of file paths\u0026gt;\u003c/code\u003e files to be excepted in injection step \u003cbr\u003e\n\u003ccode\u003ee2eTestSuite: \u0026lt;object\u0026gt;\u003c/code\u003e e2e configuration object, includes \u003ccode\u003especs\u003c/code\u003e and \u003ccode\u003eexclude\u003c/code\u003e to specify e2e test suite \u003cbr\u003e\n\u003ccode\u003eincludesE2E: \u0026lt;boolean\u0026gt;\u003c/code\u003e run analyze on e2e tests \u003cbr\u003e\n\u003ccode\u003eonlyE2E: \u0026lt;boolean\u0026gt;\u003c/code\u003e only run e2e analysis, skip unit tests \u003cbr\u003e\n\u003ccode\u003erunUnitTestsInstr: \u0026lt;string\u0026gt;\u003c/code\u003e instructions to run unit test. e.g. \u003ccode\u003enpm run test:unit\u003c/code\u003e \u003cbr\u003e\n\u003ccode\u003eE2EprerunInstr: \u0026lt;string\u0026gt;\u003c/code\u003e instructions to setup e2e tests \u003cbr\u003e\n\u003ccode\u003eE2EpostrunInstr: \u0026lt;string\u0026gt;\u003c/code\u003e instructions to run after e2e tests finished \u003cbr\u003e\n\u003ccode\u003ebuildE2EInstr: \u0026lt;string\u0026gt;\u003c/code\u003e instructions to build code for e2e tests \u003cbr\u003e\n\u003ccode\u003erunE2EInstr: \u0026lt;string\u0026gt;\u003c/code\u003e instructions to run e2e tests \u003cbr\u003e\n\u003ccode\u003eE2Edir: \u0026lt;string\u0026gt;\u003c/code\u003e path E2E test folder \u003cbr\u003e\n\u003ccode\u003eE2Etemp: \u0026lt;string\u0026gt;\u003c/code\u003e test folder to be copied to E2E test folder if you want to use your own E2E test folder \u003cbr\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esince each End-to-end test suite set up differently, you might want to customize \u003ca href=\"https://github.com/charlie-cyf/nodeSRT/tree/master/e2eTestsHandler\"\u003ee2e test handler\u003c/a\u003e for your e2e test suite\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eexamples\u003c/h3\u003e\u003ca id=\"user-content-examples\" class=\"anchor\" aria-label=\"Permalink: examples\" href=\"#examples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003esample nodeSRT command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enodeSRT -b ./simorgh -d ./diff.patch --config ./nodeSRT/example/dockerConfig.json\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eyou can find some sample configuration files in \u003ca href=\"https://github.com/charlie-cyf/nodeSRT/tree/master/example\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow it works\u003c/h2\u003e\u003ca id=\"user-content-how-it-works\" class=\"anchor\" aria-label=\"Permalink: How it works\" href=\"#how-it-works\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSteps: \u003cbr\u003e\n\u003c/h3\u003e\u003ca id=\"user-content-steps-\" class=\"anchor\" aria-label=\"Permalink: Steps: \" href=\"#steps-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003estatic analysis on each js file, generate dependency graph on functions and fields\u003c/li\u003e\n\u003cli\u003einject dynamic analysis code to each function\u003c/li\u003e\n\u003cli\u003erun tests one by one, get entities influenced by each tests. Store as json file.\u003c/li\u003e\n\u003cli\u003eparse diff file, identify changes.\u003c/li\u003e\n\u003cli\u003egenerate a list of tests on test-entities relationship.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003edesign decisions\u003c/h3\u003e\u003ca id=\"user-content-design-decisions\" class=\"anchor\" aria-label=\"Permalink: design decisions\" href=\"#design-decisions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003esince the selection is at method level, if a modification is outsid of the method, we will run all tests have dependencies on this file.\u003c/li\u003e\n\u003cli\u003eAlthough astring can handle comments, some special comments are misplaced after injection. e.g. @ts-ignore Therefore, they need to be ignore when doing code injection. Otherwise we will have a build error.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003edocker comamnd\u003c/h2\u003e\u003ca id=\"user-content-docker-comamnd\" class=\"anchor\" aria-label=\"Permalink: docker comamnd\" href=\"#docker-comamnd\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003edocker build -t srtdock:latest .\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003edocker run --rm -ti srtdock\u003c/code\u003e \u003cbr\u003e\u003c/p\u003e\n\u003cp\u003epush to docker hub: \u003ca href=\"https://ropenscilabs.github.io/r-docker-tutorial/04-Dockerhub.html\" rel=\"nofollow\"\u003ehttps://ropenscilabs.github.io/r-docker-tutorial/04-Dockerhub.html\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker login\ndocker tag f645182d6e68 charlie9731/srtdock:v2\ndocker push charlie9731/srtdock\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003esingularity command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build -s srtSingular.sif docker://charlie9731/srtdock:v2\nsingularity run -w -e srtSingular.sif \u0026lt;commit id\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRHEL install docker script\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo dnf config-manager --add-repo=https://download.docker.com/linux/centos/docker-ce.repo\nsudo dnf install -y vim git curl\nsudo dnf install --nobest docker-ce\nsudo groupadd docker\nsudo usermod -aG docker ec2-user\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eexperiment data\u003c/h2\u003e\u003ca id=\"user-content-experiment-data\" class=\"anchor\" aria-label=\"Permalink: experiment data\" href=\"#experiment-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eyou can find experiment data in \u003ca href=\"https://github.com/charlie-cyf/nodeSRT/tree/master/experiment\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Kaldi + PUA\u003c/h1\u003e\u003ca id=\"user-content-singularity-kaldi--pua\" class=\"anchor\" aria-label=\"Permalink: Singularity Kaldi + PUA\" href=\"#singularity-kaldi--pua\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBuild (working) Singularity containers with Kaldi and the Pop-Up-Archive\ntraining with both CPU and GPU support.\u003c/p\u003e\n\u003cp\u003eDisclaimer: With the exception of the scripts in the top directory, all\nof the content was either pulled directly or inspired by other sources,\nincluding (but not limited to):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://hub.docker.com/r/hipstas/kaldi-pop-up-archive/tags\" rel=\"nofollow\"\u003ehttps://hub.docker.com/r/hipstas/kaldi-pop-up-archive/tags\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/kaldi-asr/kaldi/blob/master/misc/docker/ubuntu-cuda/Dockerfile\"\u003ehttps://github.com/kaldi-asr/kaldi/blob/master/misc/docker/ubuntu-cuda/Dockerfile\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/brandeis-llc/aapb-pua-kaldi-docker\"\u003ehttps://github.com/brandeis-llc/aapb-pua-kaldi-docker\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://xtra.arloproject.com/datasets/kaldi-pop-up-archive/repo_backups/\" rel=\"nofollow\"\u003ehttp://xtra.arloproject.com/datasets/kaldi-pop-up-archive/repo_backups/\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAlso, there are some really...unpleasant...scripts in this mix. They\u0027re not mine and I have no idea how they work, but they seem to, so hooray!\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the containers\u003c/h2\u003e\u003ca id=\"user-content-building-the-containers\" class=\"anchor\" aria-label=\"Permalink: Building the containers\" href=\"#building-the-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe build_singularity.sh script will build the container. It takes one\nargument: either \u0027gpu\u0027 or \u0027cpu\u0027. The build process is nearly identical,\nbut if you select the \u0027gpu\u0027 option, it will require SUDO access to build\nthe container. It will ask you when it\u0027s time.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning the container\u003c/h2\u003e\u003ca id=\"user-content-running-the-container\" class=\"anchor\" aria-label=\"Permalink: Running the container\" href=\"#running-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe containers are designed to be standalone, but due to the scripts inside,\nthe do require a writable overlay filesystem. The script run_kaldi.sh\ntakes care of it -- it will create a sparce overlay filesystem which will\nbe discarded when the processing has finished.\u003c/p\u003e\n\u003cp\u003eWhen deploying, only the .sif files and run_kaldi.sh need to be copied to\nthe run-time server.\u003c/p\u003e\n\u003cp\u003eThe syntax to run it is:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e run_kaldi.sh \u0026lt;mode\u0026gt; \u0026lt;media_directory\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe mode is either \u0027cpu\u0027 or \u0027gpu\u0027, which is used to select which image to\nuse.\u003c/p\u003e\n\u003cp\u003eThe media_directory should hold files and the transcripts will be placed\nin this directory in a transcripts directory\u003c/p\u003e\n\u003cp\u003eTo test it, try:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./run_kaldi.sh cpu test_files\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1621883262.0
+ "updated_at": 1659367162.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity example 14: installing R packages",
"filenames": [
- "Singularity.whatshap_491ec8e",
- "Singularity.shapeit_v2.r904",
- "Singularity.vcftools_0.1.16",
- "Singularity.stacks_2.53",
- "Singularity.easysfs_c2b26c5",
- "Singularity.vcflib_1.0.1",
- "Singularity.transindel_7098bd6",
- "Singularity.sniffles_f958698",
- "Singularity.bayescan_2.1",
- "Singularity.deepvariant_0.9.0",
- "Singularity.freebayes_1.3.1",
- "Singularity.deepvariant_0.9.0-gpu"
+ "Singularity_1",
+ "Singularity_3",
+ "Singularity_5",
+ "Singularity_2"
],
- "full_name": "TomHarrop/variant-utils",
- "latest_release": null,
+ "full_name": "richelbilderbeek/singularity_example_14",
+ "latest_release": "v1.0",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity_example_14\u003c/h1\u003e\u003ca id=\"user-content-singularity_example_14\" class=\"anchor\" aria-label=\"Permalink: singularity_example_14\" href=\"#singularity_example_14\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity example 14: installing R packages.\u003c/p\u003e\n\u003cp\u003eThe goal of this example is to create a Singularity image with\nan R package installed and using it on an R script.\u003c/p\u003e\n\u003cp\u003eThe R package we\u0027ll use is \u003ca href=\"https://CRAN.R-project.org/package=glue\" rel=\"nofollow\"\u003eglue\u003c/a\u003e,\nas it is a simple R package without dependencies.\u003c/p\u003e\n\u003cp\u003eThis is the R script, called \u003ca href=\"script.R\"\u003escript.R\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eglue::glue(\"Hello {target}\", target = \"world\")\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ccode\u003eAttempt 3: clean up\u003c/code\u003e is the best way:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ebuild with sudo (i.e. no \u003ccode\u003e--fakeroot\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003esend the script text to the container, not the script filename\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAttempt 1: Singularity does not run scripts\u003c/h1\u003e\u003ca id=\"user-content-attempt-1-singularity-does-not-run-scripts\" class=\"anchor\" aria-label=\"Permalink: Attempt 1: Singularity does not run scripts\" href=\"#attempt-1-singularity-does-not-run-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"Singularity_1\"\u003eSingularity_1\u003c/a\u003e is a minimal Singularity container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap: docker\nFrom: r-base\n\n%post\n Rscript -e \u0027install.packages(\"glue\")\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"build_singularity_1.sh\"\u003ebuild_singularity_1.sh\u003c/a\u003e is a simple shell script\nto build a container from \u003ca href=\"Singularity_1\"\u003eSingularity_1\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\nsudo -E singularity build singularity_1.sif Singularity_1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"run_singularity_1.sh\"\u003erun_singularity_1.sh\u003c/a\u003e is a simple shell script\nto run the container built from \u003ca href=\"Singularity_1\"\u003eSingularity_1\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\nsudo -E singularity build singularity_1.sif Singularity_1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning this locally goes fine.\u003c/p\u003e\n\u003cp\u003eThe error GHA gives, however, is:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRun ./run_singularity_1.sh\nFatal error: cannot open file \u0027script.R\u0027: No such file or directory\nError: Process completed with exit code 2.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis is a common theme: Singularity cannot run scripts.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAttempt 2: Singularity can run script text\u003c/h1\u003e\u003ca id=\"user-content-attempt-2-singularity-can-run-script-text\" class=\"anchor\" aria-label=\"Permalink: Attempt 2: Singularity can run script text\" href=\"#attempt-2-singularity-can-run-script-text\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"Singularity_2\"\u003eSingularity_2\u003c/a\u003e is a minimal Singularity container,\nwith a \u003ccode\u003erunscript\u003c/code\u003e section added:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap: docker\nFrom: r-base\n\n%apprun R\nexec R \"$@\"\n\n%apprun Rscript\nexec Rscript \"$@\"\n\n%runscript\nexec Rscript \"$@\"\n# exec R \"$@\"\n\n%post\n Rscript -e \u0027install.packages(\"glue\")\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"build_singularity_2.sh\"\u003ebuild_singularity_2.sh\u003c/a\u003e is a simple shell script\nto build a container from \u003ca href=\"Singularity_2\"\u003eSingularity_2\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\nsudo -E singularity build singularity_2.sif Singularity_2\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"run_singularity_2.sh\"\u003erun_singularity_2.sh\u003c/a\u003e is a simple shell script\nto run the container built from \u003ca href=\"Singularity_2\"\u003eSingularity_2\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\ncat script.R | singularity exec singularity_2.sif R --vanilla --silent --no-echo\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning this locally goes fine, also on GitHub Actions!\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAttempt 3: clean up\u003c/h1\u003e\u003ca id=\"user-content-attempt-3-clean-up\" class=\"anchor\" aria-label=\"Permalink: Attempt 3: clean up\" href=\"#attempt-3-clean-up\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003eTHIS IS THE BEST WAY\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"Singularity_3\"\u003eSingularity_3\u003c/a\u003e is a minimal Singularity container,\nwith a \u003ccode\u003erunscript\u003c/code\u003e section added:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap: docker\nFrom: r-base\n\n%runscript\nexec R --vanilla --silent --no-echo \"$@\"\n\n%post\n Rscript -e \u0027install.packages(\"glue\")\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"build_singularity_3.sh\"\u003ebuild_singularity_3.sh\u003c/a\u003e is a simple shell script\nto build a container from \u003ca href=\"Singularity_3\"\u003eSingularity_3\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\nsudo -E singularity build singularity_3.sif Singularity_3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"run_singularity_3.sh\"\u003erun_singularity_3.sh\u003c/a\u003e is a simple shell script\nto run the container built from \u003ca href=\"Singularity_3\"\u003eSingularity_3\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\ncat script.R | ./singularity_3.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning this locally goes fine, also on GitHub Actions!\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAttempt 4: fakeroot experiment\u003c/h1\u003e\u003ca id=\"user-content-attempt-4-fakeroot-experiment\" class=\"anchor\" aria-label=\"Permalink: Attempt 4: fakeroot experiment\" href=\"#attempt-4-fakeroot-experiment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn this case, we\u0027ll re-use \u003ca href=\"Singularity_3\"\u003eSingularity_3\u003c/a\u003e,\nyet build it differently, using the\n\u003ca href=\"https://sylabs.io/guides/3.8/user-guide/fakeroot.html?highlight=fakeroot\" rel=\"nofollow\"\u003efakeroot\u003c/a\u003e\nfeature.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"build_singularity_4.sh\"\u003ebuild_singularity_4.sh\u003c/a\u003e is a simple shell script\nto build a container from \u003ca href=\"Singularity_3\"\u003eSingularity_3\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\nsingularity build --fakeroot singularity_4.sif Singularity_3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"run_singularity_4.sh\"\u003erun_singularity_4.sh\u003c/a\u003e is a simple shell script\nto run the container built from \u003ca href=\"Singularity_4\"\u003eSingularity_4\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\ncat script.R | ./singularity_4.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning this locally goes fine, but fails on GitHub Actions:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRun ./build_singularity_4.sh\nFATAL: could not use fakeroot: no mapping entry found in /etc/subuid for root\nError: Process completed with exit code 255.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eApparently, GHA does not support that mapping.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAttempt 5: run script directly revised\u003c/h1\u003e\u003ca id=\"user-content-attempt-5-run-script-directly-revised\" class=\"anchor\" aria-label=\"Permalink: Attempt 5: run script directly revised\" href=\"#attempt-5-run-script-directly-revised\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"Singularity_5\"\u003eSingularity_5\u003c/a\u003e is a minimal Singularity container,\nwith a \u003ccode\u003erunscript\u003c/code\u003e section added:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap: docker\nFrom: r-base\n\n%runscript\nexec Rscript \"$@\"\n\n%post\n Rscript -e \u0027install.packages(\"glue\")\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"build_singularity_5.sh\"\u003ebuild_singularity_5.sh\u003c/a\u003e is a simple shell script\nto build a container from \u003ca href=\"Singularity_5\"\u003eSingularity_5\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\nsingularity build --fakeroot singularity_5.sif Singularity_5\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"run_singularity_5.sh\"\u003erun_singularity_5.sh\u003c/a\u003e is a simple shell script\nto run the container built from \u003ca href=\"Singularity_5\"\u003eSingularity_5\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\n./singularity_5.sif script.R\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning this locally goes fine, but fails on GitHub Actions:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRun ./build_singularity_5.sh\nFATAL: could not use fakeroot: no mapping entry found in /etc/subuid for root\nError: Process completed with exit code 255.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAttempt 6: run script, container built with sudo\u003c/h1\u003e\u003ca id=\"user-content-attempt-6-run-script-container-built-with-sudo\" class=\"anchor\" aria-label=\"Permalink: Attempt 6: run script, container built with sudo\" href=\"#attempt-6-run-script-container-built-with-sudo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHere we will re-use \u003ca href=\"Singularity_5\"\u003eSingularity_5\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"build_singularity_6.sh\"\u003ebuild_singularity_6.sh\u003c/a\u003e is a simple shell script\nto build a container from \u003ca href=\"Singularity_5\"\u003eSingularity_5\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\nsudo -E singularity build singularity_6.sif Singularity_5\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"run_singularity_6.sh\"\u003erun_singularity_6.sh\u003c/a\u003e is a simple shell script\nto run the container built from \u003ca href=\"Singularity_5\"\u003eSingularity_5\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\n./singularity_6.sif script.R\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning this locally goes fine, however, on GHA this goes the classic sideways again:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRun ./run_singularity_6.sh\nFatal error: cannot open file \u0027script.R\u0027: No such file or directory\nError: Process completed with exit code 2.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1606169142.0
+ "updated_at": 1627629507.0
},
{
"data_format": 2,
- "description": "Singularity containers to run Pointwise 18.0",
+ "description": "testing building containers with singularity hub webhook ",
"filenames": [
- "Singularity.template",
- "Singularity.local",
"Singularity"
],
- "full_name": "stephansmit/pointwise_containers",
+ "full_name": "eharkins/singularityhub-test",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity containers for Pointwise\u003c/h1\u003e\u003ca id=\"user-content-singularity-containers-for-pointwise\" class=\"anchor\" aria-label=\"Permalink: Singularity containers for Pointwise\" href=\"#singularity-containers-for-pointwise\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eContainers to run \u003ca href=\"https://www.pointwise.com/\" rel=\"nofollow\"\u003ePointwise\u003c/a\u003e version 18.0.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild the container\u003c/h2\u003e\u003ca id=\"user-content-build-the-container\" class=\"anchor\" aria-label=\"Permalink: Build the container\" href=\"#build-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eLocal build\u003c/h3\u003e\u003ca id=\"user-content-local-build\" class=\"anchor\" aria-label=\"Permalink: Local build\" href=\"#local-build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build pointwise_containers.sif Singularity.local\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSingularity Hub build\u003c/h3\u003e\u003ca id=\"user-content-singularity-hub-build\" class=\"anchor\" aria-label=\"Permalink: Singularity Hub build\" href=\"#singularity-hub-build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eUpload the installer to a temporary location via \u003ca href=\"https://www.file.io/\" rel=\"nofollow\"\u003efile.io\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./upload_files.sh \u0026lt;Installer_Dir\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFill in the links in the recipe\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./make_recipe.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePush the image to github\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit add Singularity; git commit -m \"latest image\"; git push;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTrigger the build on \u003ca href=\"https://singularity-hub.org/collections/3396\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePull a container\u003c/h2\u003e\u003ca id=\"user-content-pull-a-container\" class=\"anchor\" aria-label=\"Permalink: Pull a container\" href=\"#pull-a-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://stephansmit/pointwise_containers\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eExecute Pointwise script\u003c/h2\u003e\u003ca id=\"user-content-execute-pointwise-script\" class=\"anchor\" aria-label=\"Permalink: Execute Pointwise script\" href=\"#execute-pointwise-script\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo execute a pointwise script:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSINGULARITYENV_pwid_LICENSE=\u0026lt;port\u0026gt;@\u0026lt;host\u0026gt; singularity exec pointwise_containers.sif /opt/pointwise/pointwise -b \u0026lt;script-name\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere \u003ccode\u003e\u0026lt;port\u0026gt;\u003c/code\u003e and \u003ccode\u003e\u0026lt;host\u0026gt;\u003c/code\u003e point to the license server\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3396\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1596800030.0
+ "updated_at": 1548377344.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity image for VirtualBox",
"filenames": [
- "Singularity.PhaGCN",
- "Singularity.smurf.v0.1",
- "Singularity.mtags.v1.1_cs",
- "Singularity.mongodb.v0.1",
- "Singularity.qiime2-smurf.v0.1",
- "Singularity.samestr",
- "Singularity.fish_probes.v0.1",
- "Singularity.mapseq.v.2.0.1alpha",
- "Singularity.vknight.v0.12",
- "Singularity.carveme",
- "Singularity.reCOGnise.v0.1",
- "Singularity.gffread",
- "Singularity.prokka",
- "Singularity.humann3",
- "Singularity.vknight.v0.14_with_idtaxa",
- "Singularity.reCOGnise.0.4.5",
- "Singularity.bbmap",
- "Singularity.vknight.v0.6.5",
- "Singularity.vknight.v0.13_collate"
+ "Singularity"
],
- "full_name": "cschu/container-forge",
+ "full_name": "bihealth/singularity-virtualbox",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eMaxQuant in Singularity\u003c/h1\u003e\u003ca id=\"user-content-maxquant-in-singularity\" class=\"anchor\" aria-label=\"Permalink: MaxQuant in Singularity\" href=\"#maxquant-in-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1658328247.0
+ "updated_at": 1593810130.0
},
{
"data_format": 2,
- "description": "Container for the BraTS 2023 challenge using the TCuPGAN model",
+ "description": null,
"filenames": [
- "project/Singularity.recipe"
+ "src/llama/Singularity.def",
+ "src/translation/Singularity.def"
],
- "full_name": "ramanakumars/brats2023-tcupgan",
+ "full_name": "timopetric/LLaMA-T5-Slovene-Paraphrasing",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ebrats2023-tcupgan\u003c/h1\u003e\u003ca id=\"user-content-brats2023-tcupgan\" class=\"anchor\" aria-label=\"Permalink: brats2023-tcupgan\" href=\"#brats2023-tcupgan\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eContainer for the BraTS 2023 challenge using the TCuPGAN model\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eLLaMA-T5-Slovene-Paraphrasing\u003c/h1\u003e\u003ca id=\"user-content-llama-t5-slovene-paraphrasing\" class=\"anchor\" aria-label=\"Permalink: LLaMA-T5-Slovene-Paraphrasing\" href=\"#llama-t5-slovene-paraphrasing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eNatural Language Processing course 2022-23 at Faculty of Computer and Information Science at University of Ljubljana\u003c/h3\u003e\u003ca id=\"user-content-natural-language-processing-course-2022-23-at-faculty-of-computer-and-information-science-at-university-of-ljubljana\" class=\"anchor\" aria-label=\"Permalink: Natural Language Processing course 2022-23 at Faculty of Computer and Information Science at University of Ljubljana\" href=\"#natural-language-processing-course-2022-23-at-faculty-of-computer-and-information-science-at-university-of-ljubljana\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is a NLP course project in which we explored ways of Slovene language sentence paraphrisation.\nThe best approach turned out to be traslating original Slovene sentence into English, use Vicuna/LLaMA (1st gen) to paraphrase the sentence and then translate the results back into Slovene.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eThe \u003ca href=\"report/NLP_project_Paraphrasing_Sentences.pdf\"\u003ePDF report describing the methodology is located here\u003c/a\u003e.\u003c/h3\u003e\u003ca id=\"user-content-the-pdf-report-describing-the-methodology-is-located-here\" class=\"anchor\" aria-label=\"Permalink: The PDF report describing the methodology is located here.\" href=\"#the-pdf-report-describing-the-methodology-is-located-here\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTeam members:\u003c/h3\u003e\u003ca id=\"user-content-team-members\" class=\"anchor\" aria-label=\"Permalink: Team members:\" href=\"#team-members\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003eMatej Kranjec\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eTimotej Petri\u010d\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eDomen Vilar\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\u003c/h4\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eEvaluation\u003c/h2\u003e\u003ca id=\"user-content-evaluation\" class=\"anchor\" aria-label=\"Permalink: Evaluation\" href=\"#evaluation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eplot_distribution_scores.py\u003c/h4\u003e\u003ca id=\"user-content-plot_distribution_scorespy\" class=\"anchor\" aria-label=\"Permalink: plot_distribution_scores.py\" href=\"#plot_distribution_scorespy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis script plots the distribution of scores and writes the best paraphrases to a file based on the provided scores and paraphrases directories.\u003c/p\u003e\n\u003cp\u003eArguments:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--scores_path\u003c/code\u003e: Path to the directory containing the scores files.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--paraphrases_path\u003c/code\u003e: Path to the directory containing the paraphrases files.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--output_directory\u003c/code\u003e: Output directory for the best paraphrases.\u003c/li\u003e\n\u003c/ul\u003e\n\n\u003cp\u003eOutput:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe best paraphrases will be written to a file named \"best_paraphrases_euparl_t5.txt\" in the specified output directory.\u003c/li\u003e\n\u003cli\u003eTwo distribution plots will be generated: \"maximum_values.png\" and \"first_values.png\" in the current directory where script will run.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003emanual_evaluation.py\u003c/h4\u003e\u003ca id=\"user-content-manual_evaluationpy\" class=\"anchor\" aria-label=\"Permalink: manual_evaluation.py\" href=\"#manual_evaluationpy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis script is used for manual evaluation of the best paraphrases.\u003c/p\u003e\n\u003cp\u003eArguments:\u003c/p\u003e\n\u003cp\u003eThe script accepts the following arguments:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--file1_path\u003c/code\u003e: Path to the first file containing paraphrases.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--file2_path\u003c/code\u003e: Path to the second file containing paraphrases.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--file_original_path\u003c/code\u003e: Path to the file containing original sentences.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--scores_folder_path\u003c/code\u003e: Path to the folder where the evaluation scores will be stored.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eNote: If the specified \u003ccode\u003escores_folder_path\u003c/code\u003e does not exist, the script will create it.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eevaluation/run.sh\u003c/h4\u003e\u003ca id=\"user-content-evaluationrunsh\" class=\"anchor\" aria-label=\"Permalink: evaluation/run.sh\" href=\"#evaluationrunsh\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eEach dataset block in the run.sh file contains the necessary variables for the evaluation. Make sure to modify these variables according to your dataset paths and filenames.\u003c/p\u003e\n\u003cp\u003eFor example, if you want to evaluate the \u003ccode\u003eeuroparl-llama\u003c/code\u003e dataset, uncomment the block of code for that dataset and update the following variables:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eDATASET_PATH\u003c/code\u003e variable represents the path to the dataset you want to evaluate.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eDATASET_ORIG_SENTS_FILE\u003c/code\u003e variable represents the file containing the original sentences of the dataset.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eDATASET_TRAN_SENTS_FILE\u003c/code\u003e variable represents the file containing the paraphrased sentences of the dataset.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOnce you have made the necessary modifications, you can run the run.sh script. It will execute the evaluate.py script with the provided dataset variables.\u003c/p\u003e\n\u003cp\u003eIf you prefer to run the evaluation separately without using the run.sh script, you can directly execute the evaluate.py script and pass the dataset variables as command-line arguments.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun the T5 model\u003c/h2\u003e\u003ca id=\"user-content-run-the-t5-model\" class=\"anchor\" aria-label=\"Permalink: Run the T5 model\" href=\"#run-the-t5-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e*You have to have \u003ccode\u003etransformers\u003c/code\u003e python library installed. Preferrably the one with GPU/CUDA support.\n*The Singularity (Docker) image with the prepared env is already set up in the shared location \u003ccode\u003e/d/hpc/projects/FRI/tp1859/nlp_project8/lma/containers/hf.sif\u003c/code\u003e on \u003cem\u003eArnes HPC\u003c/em\u003e.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eMove to \u003ccode\u003esrc/paraphrasing\u003c/code\u003e directory.\u003c/li\u003e\n\u003cli\u003eDownload the \u003ccode\u003efinetune_t5-sl-small_v0.0.4-Euparl600k_ensl_b4_lr3E-05_g16_j38753698\u003c/code\u003e model from:\n\u003ca href=\"https://unilj-my.sharepoint.com/:f:/g/personal/tp1859_student_uni-lj_si/Eie-WJrrsIVAiJCFNQ8r28UBhKVq6vxhvNcud7RgXTr0tw?e=Xot15v\" rel=\"nofollow\"\u003ehttps://unilj-my.sharepoint.com/:f:/g/personal/tp1859_student_uni-lj_si/Eie-WJrrsIVAiJCFNQ8r28UBhKVq6vxhvNcud7RgXTr0tw?e=Xot15v\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eRename the downloaded folder to \u003ccode\u003emodels/t5model\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003echange \u003ccode\u003eOUT_MODEL_CHECKPOINTS_DIR\u003c/code\u003e in \u003ccode\u003econfig.py\u003c/code\u003e to \u003ccode\u003emodels\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003echange \u003ccode\u003eMODEL_CHECKPOINT_FIN_GLOB\u003c/code\u003e in \u003ccode\u003econfig.py\u003c/code\u003e to \u003ccode\u003et5*\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003erun \u003ccode\u003epython3 inference.py\u003c/code\u003e or \u003ccode\u003esbatch run.sbatch\u003c/code\u003e if running on \u003cem\u003eArnes HPC\u003c/em\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun the LLaMA/Vicuna based model\u003c/h2\u003e\u003ca id=\"user-content-run-the-llamavicuna-based-model\" class=\"anchor\" aria-label=\"Permalink: Run the LLaMA/Vicuna based model\" href=\"#run-the-llamavicuna-based-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e*You have to have \u003ccode\u003etransformers\u003c/code\u003e python library installed. Preferrably the one with GPU/CUDA support.\n*The Singularity (Docker) image with the prepared env is already set up in the shared location \u003ccode\u003e/d/hpc/projects/FRI/tp1859/nlp_project8/lma/containers/hf.sif\u003c/code\u003e on \u003cem\u003eArnes HPC\u003c/em\u003e.\u003c/p\u003e\n\u003cp\u003eSince the model weights setup is quite difficult to do and the weights transformations consume large amounts of disk (at least 60 GB with intermediate cleanups) and RAM (60GB) we have prepared the already converted weights and uploaded them to the shared \u003cem\u003eArnes HPC\u003c/em\u003e space at path: \u003ccode\u003e/d/hpc/projects/FRI/tp1859/nlp_project8/lma/model_hf_vicuna\u003c/code\u003e. The Vicuna/LLaMA 13B model is in half precision and takes about 25 GB of VRAM on the GPU.\u003c/p\u003e\n\u003cp\u003eYou can then run the paraphrase generation by modifying the \u003ccode\u003erun_llama.sbatch\u003c/code\u003e script in \u003ccode\u003esrc/llama\u003c/code\u003e directory. You should set \u003ccode\u003e--model-path\u003c/code\u003e to the above LLaMA model wights directory.\nThen change the \u003ccode\u003e--corpus-name\u003c/code\u003e to some string and set \u003ccode\u003e--file-in\u003c/code\u003e to a file containing 1 english sentence per line. Then you can run the inference by running \u003ccode\u003esbatch run_llama.sbatch\u003c/code\u003e. Output files will be in \u003ccode\u003eprocessed\u003c/code\u003e directory, logs in \u003ccode\u003elogs\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTranslation\u003c/h3\u003e\u003ca id=\"user-content-translation\" class=\"anchor\" aria-label=\"Permalink: Translation\" href=\"#translation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can run translation with NEmO model simillarly as described in T5 / Vicuna section. Needed files like \u003ccode\u003erun_translation.sbatch\u003c/code\u003e are in \u003ccode\u003esrc/translation\u003c/code\u003e dir.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eReport\u003c/h3\u003e\u003ca id=\"user-content-report\" class=\"anchor\" aria-label=\"Permalink: Report\" href=\"#report\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eReport is located in folder \u003ccode\u003ereport\u003c/code\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1689367513.0
+ "updated_at": 1709121666.0
},
{
"data_format": 2,
- "description": "Singularity support for Wire-Cell toolkit",
+ "description": null,
"filenames": [
- "Singularity.sl7big",
- "Singularity.sl7kc",
- "Singularity.wclsdev",
- "Singularity.sl7wclsdev",
- "Singularity.sl7",
- "Singularity.sl7mvp",
- "Singularity.wct0.8.0-ub1804",
- "Singularity.artdaq",
- "Singularity.externals",
- "Singularity.wctdev"
+ "Singularity.latest"
],
- "full_name": "WireCell/wire-cell-singularity",
+ "full_name": "bioexcel/pmx_container",
"latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b26407ffc70e9b6a282c6c8fb352ee6ffc8d0c07ce393e6a4ae150283c0951c4/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d6875622d626c7565\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/docker-hub-blue\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/Apache-2.0\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/859a1a0bc85ce8bbd7a730a274fec5c9e77c4726ffdf6aa762a78685e26033a4/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d417061636865253230322e302d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/License-Apache%202.0-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePMX container\u003c/h1\u003e\u003ca id=\"user-content-pmx-container\" class=\"anchor\" aria-label=\"Permalink: PMX container\" href=\"#pmx-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eIntroduction\u003c/h3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePMX (python 3 version) docker and singularity containers used for \u003ca href=\"https://github.com/bioexcel/biobb_pmx\"\u003ebiobb_pmx\u003c/a\u003e BioExcel Building Blocks modules.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDocker Use\u003c/h3\u003e\u003ca id=\"user-content-docker-use\" class=\"anchor\" aria-label=\"Permalink: Docker Use\" href=\"#docker-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker pull mmbirb/pmx_biobb:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker run mmbirb/pmx_biobb:latest \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSingularity Use\u003c/h3\u003e\u003ca id=\"user-content-singularity-use\" class=\"anchor\" aria-label=\"Permalink: Singularity Use\" href=\"#singularity-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity pull --name pmx_biobb.sif shub://bioexcel/pmx_biobb_container\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity exec pmx_biobb.sif \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCopyright \u0026amp; Licensing\u003c/h3\u003e\u003ca id=\"user-content-copyright--licensing\" class=\"anchor\" aria-label=\"Permalink: Copyright \u0026amp; Licensing\" href=\"#copyright--licensing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis software has been developed in the \u003ca href=\"http://mmb.irbbarcelona.org\" rel=\"nofollow\"\u003eMMB group\u003c/a\u003e at the \u003ca href=\"http://www.bsc.es/\" rel=\"nofollow\"\u003eBSC\u003c/a\u003e \u0026amp; \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eIRB\u003c/a\u003e for the \u003ca href=\"http://bioexcel.eu/\" rel=\"nofollow\"\u003eEuropean BioExcel\u003c/a\u003e, funded by the European Commission (EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/823830\" rel=\"nofollow\"\u003e823830\u003c/a\u003e, EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/675728\" rel=\"nofollow\"\u003e675728\u003c/a\u003e).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e(c) 2015-2020 \u003ca href=\"https://www.bsc.es/\" rel=\"nofollow\"\u003eBarcelona Supercomputing Center\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e(c) 2015-2020 \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eInstitute for Research in Biomedicine\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eLicensed under the\n\u003ca href=\"https://www.apache.org/licenses/LICENSE-2.0\" rel=\"nofollow\"\u003eApache License 2.0\u003c/a\u003e, see the file LICENSE for details.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAcknolegements\u003c/h3\u003e\u003ca id=\"user-content-acknolegements\" class=\"anchor\" aria-label=\"Permalink: Acknolegements\" href=\"#acknolegements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe singularity container has been built through \u003ca href=\"https://singularity-hub.org/\" rel=\"nofollow\"\u003esingularity hub\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5aaf032aade8af7cf9f6e16cb3c7ba70c927ecd783c1cfff82dc0ed8062560df/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5aaf032aade8af7cf9f6e16cb3c7ba70c927ecd783c1cfff82dc0ed8062560df/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\" alt=\"\" title=\"Bioexcel\" data-canonical-src=\"https://bioexcel.eu/wp-content/uploads/2019/04/Bioexcell_logo_1080px_transp.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 8,
"topics": [],
- "updated_at": 1585692767.0
+ "updated_at": 1601384286.0
},
{
"data_format": 2,
- "description": "PaCBAM is a C command line tool for the complete characterization of genomic regions and single nucleotide positions from next-generation sequencing data.",
+ "description": "A complete, cross-platform solution to record, convert and stream audio and video.",
"filenames": [
- "containers/Singularity"
+ "4.4.1-r4/Singularity",
+ "6.0-r26/Singularity",
+ "4.4.1-r3/Singularity",
+ "4.3.1/Singularity",
+ "6.1.1/Singularity",
+ "5.0.1/Singularity",
+ "5.0-r1/Singularity"
],
- "full_name": "gerbenvoshol/pacbam",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eNON OFFICIAL REPOSITORY!! See \u003ca href=\"https://bitbucket.org/CibioBCG/pacbam/src/master/\" rel=\"nofollow\"\u003ehttps://bitbucket.org/CibioBCG/pacbam/src/master/\u003c/a\u003e for the official repository\u003c/h1\u003e\u003ca id=\"user-content-non-official-repository-see-httpsbitbucketorgcibiobcgpacbamsrcmaster-for-the-official-repository\" class=\"anchor\" aria-label=\"Permalink: NON OFFICIAL REPOSITORY!! See https://bitbucket.org/CibioBCG/pacbam/src/master/ for the official repository\" href=\"#non-official-repository-see-httpsbitbucketorgcibiobcgpacbamsrcmaster-for-the-official-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePaCBAM\u003c/h1\u003e\u003ca id=\"user-content-pacbam\" class=\"anchor\" aria-label=\"Permalink: PaCBAM\" href=\"#pacbam\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePaCBAM is a C command line tool for the complete characterization of genomic regions and single nucleotide positions from next-generation sequencing data.\u003cbr\u003e\nPaCBAM implements a fast and scalable multi-core computational engine, generates exhaustive output files for downstream analysis, introduces an innovative on-the-fly read duplicates filtering strategy and provides comprehensive visual reports.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCompilation from source code\u003c/h2\u003e\u003ca id=\"user-content-compilation-from-source-code\" class=\"anchor\" aria-label=\"Permalink: Compilation from source code\" href=\"#compilation-from-source-code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo install PaCBAM clone the repository and compile the C source code.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/gerbenvoshol/pacbam.git \n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e pacbam\nmake -f Makefile.linux\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUse instead Makefile.macos and Makefile.mingw to compile PaCBAM on, respectively, macOS and Windows systems.\u003cbr\u003e\nSamtools library \u003ccode\u003elibbam.a\u003c/code\u003e has been generated for GNU/Linux, Windows and macOS systems.\u003cbr\u003e\nFor compilation on Windows we have added also \u003ccode\u003elibz.a\u003c/code\u003e library, while compilation on Linux/macOS requires the installation of the development \u003ccode\u003ezlib\u003c/code\u003e package.\u003cbr\u003e\nLibraries can be found in \u003ccode\u003e./lib\u003c/code\u003e directory.\u003cbr\u003e\nWindows libraries have been generated using MinGW.\u003cbr\u003e\nIf libraries are not working we suggest to download/recompile them again.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePaCBAM expects as input a sorted and indexed BAM file, a BED file with the coordinates of the genomic regions of interest (namely the target, e.g. captured regions of a WES experiment), a VCF file specifying a list of SNPs within the target and a reference genome FASTA file.\u003cbr\u003e\nDifferent running modes and filtering/computation options are available.\u003cbr\u003e\nRunning PaCBAM executable will list all usage options.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eUsage: \n ./pacbam bam=string bed=string vcf=string fasta=string [mode=int] [threads=int] [mbq=int] [mrq=int] [mdc=int] [out=string]\n [dedup] [dedupwin=int] [regionperc=float] [strandbias]\n\nbam=string \n NGS data file in BAM format \nbed=string \n List of target captured regions in BED format \nvcf=string \n List of SNP positions in VCF format (no compressed files are admitted)\nfasta=string \n Reference genome FASTA format file \nmode=string \n Execution mode [0=RC+SNPs+SNVs|1=RC+SNPs+SNVs+PILEUP(not including SNPs)|2=SNPs|3=RC|4=PILEUP|6=BAMCOUNT]\n (default 6)\ndedup \n On-the-fly duplicates filtering\ndedupwin=int \n Flanking region around captured regions to consider in duplicates filtering [default 1000]\nthreads=int \n Number of threads used (if available) for the pileup computation\n (default 1)\nregionperc=float \n Fraction of the captured region to consider for maximum peak signal characterization\n (default 0.5)\nmbq=int \n Min base quality\n (default 20)\nmrq=int \n Min read quality\n (default 1)\nmdc=int \n Min depth of coverage that a position should have to be considered in the output\n (default 0)\nstrandbias \n Print strand bias count information\ngenotype \n Print genotype calls for input SNPs using a strategy based on an allelic fraction cutoff threshold at 20%\ngenotypeBT \n Print genotype calls for input SNPs using a strategy based on a binomial test with significance at 1%)\nout=string \n Path of output directory (default is the current directory)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eExamples\u003c/h2\u003e\u003ca id=\"user-content-examples\" class=\"anchor\" aria-label=\"Permalink: Examples\" href=\"#examples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFolder \u003ccode\u003eexamples\u003c/code\u003e contains a small example of a BAM file and correspoding target regions in BED format and a SNPs in target regions in VCF format.\u003cbr\u003e\nThe following command executes PaCBAM with mode 1, generating 4 output files.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e../pacbam bam=NGSData.bam bed=TargetRegions.bed vcf=SNPsInTargetRegions.vcf fasta=/path-to-reference-genome/human_g1k_v37.fasta mode=1 out=./\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe reference genome to use in this example can be downloaded at\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/technical/reference/human_g1k_v37.fasta.gz\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eDuplicates filtering\u003c/h4\u003e\u003ca id=\"user-content-duplicates-filtering\" class=\"anchor\" aria-label=\"Permalink: Duplicates filtering\" href=\"#duplicates-filtering\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo activate the \u003cem\u003eon-the-fly read duplicates filtering\u003c/em\u003e add to the command \u003ccode\u003ededup\u003c/code\u003e. To enlarge the genomic window (default 1000) used at captured regions to find duplicated reads use \u003ccode\u003ededupwin=N\u003c/code\u003e with \u003ccode\u003eN\u003c/code\u003e integer number.\nWhen single end reads are used you can set \u003ccode\u003eW=0\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOutput files\u003c/h2\u003e\u003ca id=\"user-content-output-files\" class=\"anchor\" aria-label=\"Permalink: Output files\" href=\"#output-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eEach execution mode computes and generates a combination of the following files.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eDepth of coverage characterization of all genomic regions\u003c/h4\u003e\u003ca id=\"user-content-depth-of-coverage-characterization-of-all-genomic-regions\" class=\"anchor\" aria-label=\"Permalink: Depth of coverage characterization of all genomic regions\" href=\"#depth-of-coverage-characterization-of-all-genomic-regions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor each region provides the mean depth of coverage, the GC content and the mean depth of coverage of the subregion (user specified, default 0.5 fraction) that maximizes the coverage peak signal (\u003ccode\u003ercS\u003c/code\u003e and corresponding genomic coordinates \u003ccode\u003efromS\u003c/code\u003e and \u003ccode\u003etoS\u003c/code\u003e), to account for the reduced coverage depth due to incomplete match of reads to the captured regions.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003echr\tfrom\tto\tfromS\ttoS\trc\trcS\tgc\n20\t68348\t68410\t68348\t68378\t130.40\t129.68\t0.48\n20\t76643\t77060\t76845\t77052\t81.18\t111.99\t0.41\n20\t123267\t123329\t123293\t123323\t93.00\t99.81\t0.50\n20\t126053\t126335\t126100\t126240\t32.55\t54.73\t0.44\n20\t138183\t138236\t138210\t138235\t78.08\t99.92\t0.51\n20\t139412\t139667\t139510\t139636\t117.86\t125.38\t0.39\n20\t168524\t168761\t168524\t168641\t69.79\t91.03\t0.39\n20\t170213\t170266\t170213\t170238\t13.91\t18.69\t0.40\n20\t207927\t207989\t207958\t207988\t96.40\t106.65\t0.48\n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eSingle-base resolution pileup\u003c/h4\u003e\u003ca id=\"user-content-single-base-resolution-pileup\" class=\"anchor\" aria-label=\"Permalink: Single-base resolution pileup\" href=\"#single-base-resolution-pileup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor each genomic position in the target provides the read depth of the 4 possible bases A, C, G and T, the total depth of coverage, the variants allelic fraction (VAF), the strand bias information for each base, the unique identifier (e.g. dbsnp id) if available.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003echr\tpos\tref\tA\tC\tG\tT\taf\tcov\n20\t68348\tG\t0\t0\t129\t0\t0.000000\t129\n20\t68349\tC\t0\t130\t0\t0\t0.000000\t130\n20\t68350\tC\t0\t130\t0\t0\t0.000000\t130\n20\t68352\tT\t0\t0\t0\t130\t0.000000\t130\n20\t68353\tG\t0\t0\t130\t0\t0.000000\t130\n20\t68354\tA\t130\t0\t0\t0\t0.000000\t130\n20\t68355\tA\t130\t0\t0\t0\t0.000000\t130\n20\t68356\tT\t0\t0\t0\t130\t0.000000\t130\n20\t68357\tA\t130\t0\t0\t0\t0.000000\t130\n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eSingle-base resolution pileup (mode 6: BAMCOUNT)\u003c/h4\u003e\u003ca id=\"user-content-single-base-resolution-pileup-mode-6-bamcount\" class=\"anchor\" aria-label=\"Permalink: Single-base resolution pileup (mode 6: BAMCOUNT)\" href=\"#single-base-resolution-pileup-mode-6-bamcount\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor each genomic position in the target provides the read depth of the 4 possible bases A, C, G and T, the total depth of coverage, the allelic fraction (e.g. FracA), and the strand bias information for each base (e.g. StrandA).\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003echr pos ref cov CountA FracA StrandA CountC FracC StrandC CountG FracG StrandG CountT FracT StrandT\n20 68348 G 129 0 0.0000 0.00 0 0.0000 0.00 129 0.0000 1.00 0 0.0000 0.00\n20 76643 C 19 0 0.0000 0.00 19 1.0000 0.79 0 0.0000 0.00 0 0.0000 0.00\n20 76644 A 19 19 1.0000 0.79 0 0.0000 0.00 0 1.0000 0.00 0 0.0000 0.00\n20 76645 G 19 0 0.0000 0.00 0 0.0000 0.00 19 0.0000 0.79 0 0.0000 0.00\n20 76646 G 19 0 0.0000 0.00 0 0.0000 0.00 19 0.0000 0.79 0 0.0000 0.00\n20 76647 T 15 0 0.0000 0.00 0 0.0000 0.00 0 0.0000 0.00 15 1.0000 1.00\n20 76648 A 15 15 1.0000 1.00 0 0.0000 0.00 0 1.0000 0.00 0 0.0000 0.00\n20 76649 G 15 0 0.0000 0.00 0 0.0000 0.00 15 0.0000 1.00 0 0.0000 0.00\n20 76650 C 15 0 0.0000 0.00 15 1.0000 1.00 0 0.0000 0.00 0 0.0000 0.00\n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003ePositions with reads support for alternative base\u003c/h4\u003e\u003ca id=\"user-content-positions-with-reads-support-for-alternative-base\" class=\"anchor\" aria-label=\"Permalink: Positions with reads support for alternative base\" href=\"#positions-with-reads-support-for-alternative-base\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eProvides pileup information only for position with positive VAF, computed using the alternative base with highest read depth (if any).\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003echr\tpos\tref\talt\tA\tC\tG\tT\taf\tcov\n20\t76953\tG\tA\t1\t0\t99\t0\t0.010000\t100\n20\t126263\tC\tT\t0\t26\t0\t1\t0.037037\t27\n20\t139484\tA\tG\t156\t0\t1\t0\t0.006369\t157\n20\t139557\tA\tG\t99\t0\t1\t0\t0.010000\t100\n20\t139570\tC\tA\t1\t171\t0\t0\t0.005814\t172\n20\t139622\tC\tA\t1\t135\t0\t0\t0.007353\t136\n20\t168728\tT\tA\t56\t0\t0\t0\t1.000000\t56\n20\t209986\tA\tT\t227\t0\t0\t2\t0.008734\t229\n20\t210097\tC\tT\t0\t82\t0\t1\t0.012048\t83\n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhen \u003ccode\u003estrandbias\u003c/code\u003e option is used, the output format is the following:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003echr\tpos\tref\talt\tA\tC\tG\tT\taf\tcov\tArs\tCrs\tGrs\tTrs\n20\t76953\tG\tA\t1\t0\t99\t0\t0.010000\t100\t1\t0\t80\t0\n20\t126263\tC\tT\t0\t26\t0\t1\t0.037037\t27\t0\t0\t0\t0\n20\t139484\tA\tG\t156\t0\t1\t0\t0.006369\t157\t111\t0\t1\t0\n20\t139557\tA\tG\t99\t0\t1\t0\t0.010000\t100\t39\t0\t0\t0\n20\t139570\tC\tA\t1\t171\t0\t0\t0.005814\t172\t0\t91\t0\t0\n20\t139622\tC\tA\t1\t135\t0\t0\t0.007353\t136\t0\t67\t0\t0\n20\t168728\tT\tA\t56\t0\t0\t0\t1.000000\t56\t19\t0\t0\t0\n20\t209986\tA\tT\t227\t0\t0\t2\t0.008734\t229\t106\t0\t0\t1\n20\t210097\tC\tT\t0\t82\t0\t1\t0.012048\t83\t0\t37\t0\t0\n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLast four columns represent the number of reads, for each base, that are on the reverse strand. This information can be used to compute strand bias at base-specific resolution.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eSNPs pileup\u003c/h4\u003e\u003ca id=\"user-content-snps-pileup\" class=\"anchor\" aria-label=\"Permalink: SNPs pileup\" href=\"#snps-pileup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eProvides pileup information for all positions specified in the input VCF and uses the alternative alleles specified in the VCF file for the VAFs calculations.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003echr\tpos\trsid\tref\talt\tA\tC\tG\tT\taf\tcov\n20\t68351\trs757428359\tA\tG\t130\t0\t0\t0\t0.000000\t130\n20\t68363\trs200192457\tA\tT\t129\t0\t0\t0\t0.000000\t129\n20\t68373\trs745889706\tT\tC\t0\t0\t0\t130\t0.000000\t130\n20\t68375\trs754912258\tA\tG\t54\t0\t50\t0\t0.480769\t104\n20\t68396\trs138777928\tC\tT\t0\t141\t0\t0\t0.000000\t141\n20\t68397\trs748102612\tG\tA\t0\t0\t141\t0\t0.000000\t141\n20\t68406\trs771803424\tA\tG\t140\t0\t0\t0\t0.000000\t140\n20\t76654\trs564320474\tG\tT\t0\t0\t31\t0\t0.000000\t31\n20\t76658\trs745496891\tC\tA\t0\t49\t0\t0\t0.000000\t49\n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhen \u003ccode\u003egenotype\u003c/code\u003e or \u003ccode\u003egenotypeBT\u003c/code\u003e option is used, the output format is the following:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003echr\tpos\trsid\tref\talt\tA\tC\tG\tT\taf\tcov\tgenotype\n20\t68351\trs757428359\tA\tG\t130\t0\t0\t0\t0.000000\t130\t0/0\n20\t68363\trs200192457\tA\tT\t129\t0\t0\t0\t0.000000\t129\t0/0\n20\t68373\trs745889706\tT\tC\t0\t0\t0\t130\t0.000000\t130\t0/0\n20\t68375\trs754912258\tA\tG\t54\t0\t50\t0\t0.480769\t104\t0/1\n20\t68396\trs138777928\tC\tT\t0\t141\t0\t0\t0.000000\t141\t0/0\n20\t68397\trs748102612\tG\tA\t0\t0\t141\t0\t0.000000\t141\t0/0\n20\t68406\trs771803424\tA\tG\t140\t0\t0\t0\t0.000000\t140\t0/0\n20\t76654\trs564320474\tG\tT\t0\t0\t31\t0\t0.000000\t31\t0/0\n20\t76658\trs745496891\tC\tA\t0\t49\t0\t0\t0.000000\t49\t0/0\n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere \u003ccode\u003e0/0\u003c/code\u003e, \u003ccode\u003e0/1\u003c/code\u003e and \u003ccode\u003e1/1\u003c/code\u003e represent, respectively, the reference base homozygous genotype, the heterozygous genotype and the alternative base homozygous genotype.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003egenotype\u003c/code\u003e option implements an allelic fraction cutoff method where heterozygous genotype is assigned when the position allelic fraction is in the range (0.2,0.8). The \u003ccode\u003egenotypeBT\u003c/code\u003e option, instead, implements a Binomial Test statistics at significance of 1% and with probabilities p=0.55 (reference) and q=45 (alternative) to account for the reference mapping bias.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eVisual reports\u003c/h2\u003e\u003ca id=\"user-content-visual-reports\" class=\"anchor\" aria-label=\"Permalink: Visual reports\" href=\"#visual-reports\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePaCBAM includes a script to generate visual data reports written in python.\u003cbr\u003e\nIt provides different graphs for every output file:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erc: gc content and region coverage distributions \nsnps: total SNPs count, total distribution and quantile distributions of alternative heterozygous and alternative homozygous SNPs \npabs: base modification count and strand bias distribution \npileup: cumulative coverage and allelic fraction distributions \n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eRequirements\u003c/h4\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePython 3.6.8\u003cbr\u003e\nNumpy 1.17.3\u003cbr\u003e\nmatplotlib 3.1.1\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eUsage\u003c/h4\u003e\u003ca id=\"user-content-usage-1\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe report scripts expect as input the prefix of the output files from PaCBAM and the mode in which it was runned.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eUsage:\n ./pacbam_report.py -i/--input string -m/--mode int [-o/--output string] [-s/--strandBias]\n\n-i INPUT, --input INPUT\n\tSpecify the input file prefix\n-m MODE, --mode MODE\n\tSpecify the mode used\n-o OUTPUT, --output OUTPUT\n\tSpecify the output file name (Default input.pdf)\n-s, --strandBias\n\tPlots the strand bias distribution \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eMode option:\u003cbr\u003e\n0 Files: .rc, .snps and .pabs\n1 Files: .rc, .snps, .pabs and .pileup\u003cbr\u003e\n2 Files: .snps\u003cbr\u003e\n3 Files: .rc\u003cbr\u003e\n4 Files: .pileup\u003c/p\u003e\n\u003cp\u003eStrandBias reporting is available only in modes 0 and 1.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eExample\u003c/h4\u003e\u003ca id=\"user-content-example\" class=\"anchor\" aria-label=\"Permalink: Example\" href=\"#example\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following command computes the visual reports for the example data.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./pacbam_report.py -i example/NGSData -m 1 -o reports/reports.pdf\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you are using a container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run cibiobcg/pacbam:latest pacbam_report.py -i example/NGSData -m 1 -o reports/reports.pdf\n\nsingularity run pacbam.simg pacbam_report.py -i example/NGSData -m 1 -o reports/reports.pdf\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eOutput file\u003c/h4\u003e\u003ca id=\"user-content-output-file\" class=\"anchor\" aria-label=\"Permalink: Output file\" href=\"#output-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe report script produces a single pdf file with all the graphs of the choosen mode.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/987756c702d790521a0a71c2de2cd65a8b3885de017ec1cd6c377299f52d3bf2/68747470733a2f2f6269746275636b65742e6f72672f436962696f4243472f70616362616d2f7261772f6d61737465722f7265706f7274732f63756d756c6174697665436f7665726167652e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/987756c702d790521a0a71c2de2cd65a8b3885de017ec1cd6c377299f52d3bf2/68747470733a2f2f6269746275636b65742e6f72672f436962696f4243472f70616362616d2f7261772f6d61737465722f7265706f7274732f63756d756c6174697665436f7665726167652e706e67\" alt=\"cumulativeCoverage\" data-canonical-src=\"https://bitbucket.org/CibioBCG/pacbam/raw/master/reports/cumulativeCoverage.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003cbr\u003e\n\u003cem\u003eExample of PaCBAM reporting the cumulative coverage distribution for all positions reported in the PaCBAM pileup output file.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/09d7d883d14f5aa9d81994decdb7ac3f2e800f9d9042008ff983726fa5f27847/68747470733a2f2f6269746275636b65742e6f72672f436962696f4243472f70616362616d2f7261772f6d61737465722f7265706f7274732f534e507354797065732e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/09d7d883d14f5aa9d81994decdb7ac3f2e800f9d9042008ff983726fa5f27847/68747470733a2f2f6269746275636b65742e6f72672f436962696f4243472f70616362616d2f7261772f6d61737465722f7265706f7274732f534e507354797065732e706e67\" alt=\"SNPsTypes\" data-canonical-src=\"https://bitbucket.org/CibioBCG/pacbam/raw/master/reports/SNPsTypes.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003cbr\u003e\n\u003cem\u003eExample of PaCBAM reporting on allelic fraction (AF) distribution of all positions contained in the PaCBAM SNPs output file. SNPs are classified as heterozygous or alternative homozygous based on standard AF thresholds. Classification is also reported stratified by coverage quartiles.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/8a805b120be3aa27b58d3caa76b7aa80be5445c36cca7f4eaea709f473ceeccd/68747470733a2f2f6269746275636b65742e6f72672f436962696f4243472f70616362616d2f7261772f6d61737465722f7265706f7274732f626173654d6f64696669636174696f6e2e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8a805b120be3aa27b58d3caa76b7aa80be5445c36cca7f4eaea709f473ceeccd/68747470733a2f2f6269746275636b65742e6f72672f436962696f4243472f70616362616d2f7261772f6d61737465722f7265706f7274732f626173654d6f64696669636174696f6e2e706e67\" alt=\"baseModification\" data-canonical-src=\"https://bitbucket.org/CibioBCG/pacbam/raw/master/reports/baseModification.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003cbr\u003e\n\u003cem\u003eExample of PaCBAM reporting on distribution of alternative bases found for each reference base across all positions reported in the PABS PaCBAM output file (i.e. all positions with non-zero variant allelic fraction).\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/2ec17742ed0fe43ceb795540d19cdd3f5c0238263a77b1b6f4f6278ce5c40ba9/68747470733a2f2f6269746275636b65742e6f72672f436962696f4243472f70616362616d2f7261772f6d61737465722f7265706f7274732f726567696f6e436f7665726167652e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2ec17742ed0fe43ceb795540d19cdd3f5c0238263a77b1b6f4f6278ce5c40ba9/68747470733a2f2f6269746275636b65742e6f72672f436962696f4243472f70616362616d2f7261772f6d61737465722f7265706f7274732f726567696f6e436f7665726167652e706e67\" alt=\"regionCoverage\" data-canonical-src=\"https://bitbucket.org/CibioBCG/pacbam/raw/master/reports/regionCoverage.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003cbr\u003e\n\u003cem\u003eExample of PaCBAM reporting on mean depth of coverage distribution computed across all regions reported in the genomic regions of the PaCBAM output file. Distribution is reported both for regions overall mean coverage and for regions fractions maximizing mean coverage.\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicence\u003c/h2\u003e\u003ca id=\"user-content-licence\" class=\"anchor\" aria-label=\"Permalink: Licence\" href=\"#licence\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePaCBAM is released under \u003ca href=\"https://bitbucket.org/CibioBCG/pacbam/src/master/COPYING\" rel=\"nofollow\"\u003eMIT\u003c/a\u003e licence.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCite\u003c/h2\u003e\u003ca id=\"user-content-cite\" class=\"anchor\" aria-label=\"Permalink: Cite\" href=\"#cite\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSamuel Valentini, Tarcisio Fedrizzi, Francesca Demichelis, Alessandro Romanel. \u003cstrong\u003ePaCBAM: fast and scalable processing of whole exome and targeted sequencing data\u003c/strong\u003e. \u003cem\u003eBMC Genomics\u003c/em\u003e, 20:1018, 2019.\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-ffmpeg",
+ "latest_release": "v6.1.1",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-ffmpeg/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-ffmpeg/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-ffmpeg/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-ffmpeg/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/dab232334f74c7ae2794e7c211bd1ea6b661fc8702ecd7f97bfcfe0c4604c2af/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d66666d706567\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/dab232334f74c7ae2794e7c211bd1ea6b661fc8702ecd7f97bfcfe0c4604c2af/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d66666d706567\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-ffmpeg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/007f76ba939ab1d9a9b8ef43f7fde47e28c7eca5f8e998621a845ba1ab7da75e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d66666d706567\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/007f76ba939ab1d9a9b8ef43f7fde47e28c7eca5f8e998621a845ba1ab7da75e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d66666d706567\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-ffmpeg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/ad31dc0aac0e49620585afad5cf6d6ddbcd3bdff0f47163132dfc776b36c48bb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d66666d706567\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ad31dc0aac0e49620585afad5cf6d6ddbcd3bdff0f47163132dfc776b36c48bb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d66666d706567\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-ffmpeg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/7cf0d28924b6b4cd8a1ec7b8d3b53549bee40a1fe61baa24cf5d1d7a436ef1cc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d66666d706567\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7cf0d28924b6b4cd8a1ec7b8d3b53549bee40a1fe61baa24cf5d1d7a436ef1cc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d66666d706567\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-ffmpeg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2023 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1643639323.0
+ "subscribers_count": 4,
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1649191357.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.def"
+ "r01/Singularity.def"
],
- "full_name": "NatoNathan/setapDocker",
+ "full_name": "7yl4r/thiago_spoccupancy",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esetapDocker\u003c/h1\u003e\u003ca id=\"user-content-setapdocker\" class=\"anchor\" aria-label=\"Permalink: setapDocker\" href=\"#setapdocker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003esetup\u003c/h2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-label=\"Permalink: setup\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003estarting from ubuntu 24 with r-base installed\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003esudo apt install -y cmake libssl-dev libudunits2-dev libgdal-dev\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003emight also need \u003ccode\u003egdal-bin\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eRscript -e \"install.packages(\"spOccupancy\")\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eRscript -e \"install.packages(\"stars\")\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eRscript -e \"install.packages(\"ggplot2\")\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003erun\u003c/h2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-label=\"Permalink: run\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eRscript 5...\u003c/code\u003e5.Analysis_spOccupancy_MultiSp_SpatInteg_Summer.R\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSingularity\u003c/h3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: Singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity is used to package the application for a SLURM supercomputer.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Build `run.sif` from `Singularity.def` on local machine with sudo:\u003c/span\u003e\nsudo singularity build run.sif Singularity.def\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e transfer .sif to supercomputer\u003c/span\u003e\nrsync -hazv run.sif tylarmurray@circe.rc.usf.edu:.\n\n\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSLURM\u003c/h3\u003e\u003ca id=\"user-content-slurm\" class=\"anchor\" aria-label=\"Permalink: SLURM\" href=\"#slurm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eset up new run\u003c/h4\u003e\u003ca id=\"user-content-set-up-new-run\" class=\"anchor\" aria-label=\"Permalink: set up new run\" href=\"#set-up-new-run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003emkdir\u003c/code\u003e run##, \u003ccode\u003ecd\u003c/code\u003e into it, then:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eTEMPLATE=run03\nmkdir old-slurm\ncat \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003enew run from template \u003cspan class=\"pl-smi\"\u003e$TEMPLATE\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e README.md\n\nln -s ../data/Shapes Shapes\nln -s ../data/spOccupancy_MultiSpp_FullArea spOccupancy_MultiSpp_FullArea\nln -s ../data/Grid_OccEnv_Seasonal.txt Grid_OccEnv_Seasonal.txt\n\ncp ../\u003cspan class=\"pl-smi\"\u003e$TEMPLATE\u003c/span\u003e/5.Analysis_spOccupancy_MultiSp_SpatInteg_Summer.R \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\ncp ../\u003cspan class=\"pl-smi\"\u003e$TEMPLATE\u003c/span\u003e/submit.sh \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\n\ngit add README.md 5.Analysis_spOccupancy_MultiSp_SpatInteg_Summer.R submit.sh\ngit add -f Grid_OccEnv_Seasonal.txt Shapes spOccupancy_MultiSpp_FullArea\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNOTE: for *winter runs, the file is still named \u003ccode\u003e*_Summer.R\u003c/code\u003e, just use a different \u003ccode\u003eTEMPLATE\u003c/code\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1696674218.0
+ "updated_at": 1732456909.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity containers for running COVISE, OpenCOVER, and Vistle",
"filenames": [
- "cme-lab/Singularity.hoomd",
- "cme-lab/Singularity.cuda91",
- "cme-lab/Singularity.cuda80",
- "cme-lab/Singularity.base",
- "cme-lab/Singularity.mbuild",
- "cme-lab/Singularity.cuda92"
+ "Singularity.centos7",
+ "Singularity.vistle-client",
+ "Singularity.vistle-server",
+ "Singularity.covise-deps",
+ "Singularity.covise"
],
- "full_name": "mikemhenry/cme-lab-images",
+ "full_name": "vistle/singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ecme-lab-images\u003c/h1\u003e\u003ca id=\"user-content-cme-lab-images\" class=\"anchor\" aria-label=\"Permalink: cme-lab-images\" href=\"#cme-lab-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/1188\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWork in progress\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity containers for COVISE, OpenCOVER and Vistle\u003c/h1\u003e\u003ca id=\"user-content-singularity-containers-for-covise-opencover-and-vistle\" class=\"anchor\" aria-label=\"Permalink: Singularity containers for COVISE, OpenCOVER and Vistle\" href=\"#singularity-containers-for-covise-opencover-and-vistle\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository contains definition files for building \u003ca href=\"https://www.sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e containers\nfor \u003ca href=\"https://www.hlrs.de/covise\" rel=\"nofollow\"\u003eCOVISE\u003c/a\u003e, \u003ca href=\"https://www.hlrs.de/opencover\" rel=\"nofollow\"\u003eOpenCOVER\u003c/a\u003e, and \u003ca href=\"https://vistle.io\" rel=\"nofollow\"\u003eVistle\u003c/a\u003e.\nThey are based on \u003ca href=\"https://www.centos.org\" rel=\"nofollow\"\u003eCentos 7\u003c/a\u003e.\nCOVISE and OpenCOVER are built within the same container, and Vistle builds on\ntop of this.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding\u003c/h2\u003e\u003ca id=\"user-content-building\" class=\"anchor\" aria-label=\"Permalink: Building\" href=\"#building\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003einstall singularity\u003c/li\u003e\n\u003cli\u003erun \u003ccode\u003esudo make\u003c/code\u003e inside this directory (super user access is required for building Singularity containers)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsing\u003c/h2\u003e\u003ca id=\"user-content-using\" class=\"anchor\" aria-label=\"Permalink: Using\" href=\"#using\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003erunning COVISE\n\u003ccode\u003esingularity run --nv covise.sif\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003erunning OpenCOVER\n\u003ccode\u003esingularity exec --nv covise.sif /usr/bin/opencover\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003erunning Vistle\n\u003ccode\u003esingularity run --nv vistle-client.sif\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIf you do not use the proprietary NVidia driver, you should omit \u003ccode\u003e--nv\u003c/code\u003e from the command lines.\nIn all three cases, you can append files to be opened, to the command line.\nAlternatively, you can just execute the containers directly, e.g. \u003ccode\u003e./vistle-client.sif\u003c/code\u003e.\nEditing your \u003ccode\u003erun-singularity\u003c/code\u003e script will allow to change default parameters.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [],
- "updated_at": 1530915345.0
+ "subscribers_count": 6,
+ "topics": [
+ "singularity-containers",
+ "visualization",
+ "hpc",
+ "hlrs",
+ "vistle",
+ "covise"
+ ],
+ "updated_at": 1600420965.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity definition files for projects.",
"filenames": [
- ".OLD/Singularity.Seurat_monocle2",
- ".OLD/Singularity.Seurat_monocle",
- ".OLD/Singularity.ChIPseq"
+ "Singularity.gvfn",
+ "Singularity.explorer"
],
- "full_name": "dfernandezperez/Docker",
+ "full_name": "qlan3/singularity-deffile",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDocker\u003c/h1\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-label=\"Permalink: Docker\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity (old) and docker recipies for bioinformatic pipelines\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-deffile\u003c/h1\u003e\u003ca id=\"user-content-singularity-deffile\" class=\"anchor\" aria-label=\"Permalink: singularity-deffile\" href=\"#singularity-deffile\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3126\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity definition files for projects.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [],
- "updated_at": 1661190588.0
+ "topics": [
+ "singularity",
+ "singularity-hub",
+ "singularity-container"
+ ],
+ "updated_at": 1564610770.0
},
{
"data_format": 2,
- "description": "Scibian packaging for: singularity-container",
+ "description": "Nextflow workflow for automated IGV snapshots",
"filenames": [
- "e2e/testdata/Singularity",
- "examples/busybox/Singularity",
- "examples/ubuntu/Singularity",
- "examples/asciinema/Singularity",
- "examples/almalinux/Singularity",
- "examples/centos-arm64/Singularity",
- "examples/fedora-arm64/Singularity",
- "examples/apps/Singularity.cowsay",
- "examples/apps/Singularity",
- "examples/fedora/Singularity",
- "examples/centos/Singularity",
- "examples/shub/Singularity",
- "examples/almalinux-arm64/Singularity",
- "examples/raspbian/Singularity",
- "examples/arch/Singularity",
- "examples/opensuse-arm64/Singularity",
- "examples/opensuse/Singularity",
- "examples/docker/Singularity",
- "examples/sle/Singularity",
- "examples/instances/Singularity",
- "examples/multistage/Singularity",
- "examples/scratch/Singularity.busybox",
- "examples/scratch/Singularity.alpine",
- "examples/library/Singularity",
- "examples/scientific/Singularity",
- "examples/self/Singularity"
+ "containers/IGV/Singularity.IGV"
],
- "full_name": "scibian/singularity-container",
+ "full_name": "stevekm/IGV-snapshot-nf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularityCE\u003c/h1\u003e\u003ca id=\"user-content-singularityce\" class=\"anchor\" aria-label=\"Permalink: SingularityCE\" href=\"#singularityce\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://circleci.com/gh/sylabs/singularity/tree/main\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cb144ed26ca93a9146b0669951f71e8538e59a23370f81a5f44a3a39f59cbecc/68747470733a2f2f636972636c6563692e636f6d2f67682f73796c6162732f73696e67756c61726974792f747265652f6d61696e2e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/sylabs/singularity/tree/main.svg?style=svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQuick Links\u003c/h2\u003e\u003ca id=\"user-content-quick-links\" class=\"anchor\" aria-label=\"Permalink: Quick Links\" href=\"#quick-links\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.sylabs.io/docs/\" rel=\"nofollow\"\u003eDocumentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#support\"\u003eGetting Support\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/sylabs/singularity/discussions/categories/community-call\"\u003eMonthly Community Call\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/sylabs/singularity/discussions/categories/roadmap\"\u003eRoadmap\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"LICENSE.md\"\u003eProject License\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"CONTRIBUTING.md\"\u003eGuidelines for Contributing\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"CODE_OF_CONDUCT.md\"\u003eCode of Conduct\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eWhat is SingularityCE?\u003c/h2\u003e\u003ca id=\"user-content-what-is-singularityce\" class=\"anchor\" aria-label=\"Permalink: What is SingularityCE?\" href=\"#what-is-singularityce\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularityCE is the Community Edition of Singularity, an open source container\nplatform designed to be simple, fast, and secure. Many container platforms are\navailable, but SingularityCE is designed for ease-of-use on shared systems and in\nhigh performance computing (HPC) environments. It features:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAn immutable single-file container image format, supporting cryptographic\nsignatures and encryption.\u003c/li\u003e\n\u003cli\u003eIntegration over isolation by default. Easily make use of GPUs, high speed\nnetworks, parallel filesystems on a cluster or server.\u003c/li\u003e\n\u003cli\u003eMobility of compute. The single file SIF container format is easy to transport\nand share.\u003c/li\u003e\n\u003cli\u003eA simple, effective security model. You are the same user inside a container\nas outside, and cannot gain additional privilege on the host system by\ndefault.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSingularityCE is open source software, distributed under the \u003ca href=\"LICENSE.md\"\u003eBSD License\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGetting Started with SingularityCE\u003c/h2\u003e\u003ca id=\"user-content-getting-started-with-singularityce\" class=\"anchor\" aria-label=\"Permalink: Getting Started with SingularityCE\" href=\"#getting-started-with-singularityce\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo install SingularityCE from source, see the\n\u003ca href=\"INSTALL.md\"\u003einstallation instructions\u003c/a\u003e. For other installation options, see\n\u003ca href=\"https://www.sylabs.io/guides/latest/admin-guide/\" rel=\"nofollow\"\u003eour guide\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eSystem administrators can learn how to configure SingularityCE, and get an\noverview of its architecture and security features in the\n\u003ca href=\"https://www.sylabs.io/guides/latest/admin-guide/\" rel=\"nofollow\"\u003eadministrator guide\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor users, see the \u003ca href=\"https://www.sylabs.io/guides/latest/user-guide/\" rel=\"nofollow\"\u003euser guide\u003c/a\u003e\nfor details on how to run and build containers with SingularityCE.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributing to SingularityCE\u003c/h2\u003e\u003ca id=\"user-content-contributing-to-singularityce\" class=\"anchor\" aria-label=\"Permalink: Contributing to SingularityCE\" href=\"#contributing-to-singularityce\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCommunity contributions are always greatly appreciated. To start developing\nSingularityCE, check out the \u003ca href=\"CONTRIBUTING.md\"\u003eguidelines for contributing\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003ePlease note we have a \u003ca href=\"CODE_OF_CONDUCT.md\"\u003ecode of conduct\u003c/a\u003e. Please follow it in\nall your interactions with the project members and users.\u003c/p\u003e\n\u003cp\u003eOur roadmap, other documents, and user/developer meeting information can be\nfound in \u003ca href=\"https://github.com/sylabs/singularity/discussions/\"\u003eGitHub Discussions\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eWe also welcome contributions to our\n\u003ca href=\"https://github.com/sylabs/singularity-userdocs\"\u003euser guide\u003c/a\u003e and\n\u003ca href=\"https://github.com/sylabs/singularity-admindocs\"\u003eadmin guide\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSupport\u003c/h2\u003e\u003ca id=\"user-content-support\" class=\"anchor\" aria-label=\"Permalink: Support\" href=\"#support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo get help with SingularityCE, check out the community spaces detailed at our\n\u003ca href=\"https://sylabs.io/singularity#community\" rel=\"nofollow\"\u003eCommunity Portal\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eSee also our \u003ca href=\"SUPPORT.md\"\u003eSupport Guidelines\u003c/a\u003e for further information about the\nbest place, and how, to raise different kinds of issues and questions.\u003c/p\u003e\n\u003cp\u003eFor additional support, \u003ca href=\"https://sylabs.io/contact-us\" rel=\"nofollow\"\u003econtact Sylabs\u003c/a\u003e to receive\nmore information.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCommunity Calls \u0026amp; Roadmap\u003c/h2\u003e\u003ca id=\"user-content-community-calls--roadmap\" class=\"anchor\" aria-label=\"Permalink: Community Calls \u0026amp; Roadmap\" href=\"#community-calls--roadmap\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe maintain our roadmap on \u003ca href=\"https://github.com/sylabs/singularity/discussions/categories/roadmap\"\u003eGitHub\nDiscussions\u003c/a\u003e,\nso that it\u0027s easy to collect ideas for new features, and discuss which should be\nprioritized for the next release.\u003c/p\u003e\n\u003cp\u003eRegular community calls are held for the project, on the first Thursday of each\nmonth, via Zoom. The agenda for each call includes a demonstration of new\nfeatures, or a project / workflow related to SingularityCE. This is followed by\ndevelopment updates \u0026amp; discussion, before open questions. Meeting details are\nposted in \u003ca href=\"https://github.com/sylabs/singularity/discussions/categories/community-call\"\u003eGithub\nDiscussions\u003c/a\u003e,\nand recordings made available at the \u003ca href=\"https://www.youtube.com/c/SylabsInc/videos\" rel=\"nofollow\"\u003eSylabs YouTube\nChannel\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eIf you work on a project related to Singularity, or use Singularity in an\ninteresting workflow, \u003ca href=\"mailto:community@sylabs.io\"\u003elet us know\u003c/a\u003e if you\u0027d like to\npresent to the community!\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGo Version Compatibility\u003c/h2\u003e\u003ca id=\"user-content-go-version-compatibility\" class=\"anchor\" aria-label=\"Permalink: Go Version Compatibility\" href=\"#go-version-compatibility\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularityCE aims to maintain support for the two most recent stable versions\nof Go. This corresponds to the Go\n\u003ca href=\"https://github.com/golang/go/wiki/Go-Release-Cycle#release-maintenance\"\u003eRelease Maintenance Policy\u003c/a\u003e\nand \u003ca href=\"https://golang.org/security\" rel=\"nofollow\"\u003eSecurity Policy\u003c/a\u003e, ensuring critical bug\nfixes and security patches are available for all supported language versions.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCiting Singularity\u003c/h2\u003e\u003ca id=\"user-content-citing-singularity\" class=\"anchor\" aria-label=\"Permalink: Citing Singularity\" href=\"#citing-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe SingularityCE software may be cited using our Zenodo DOI \u003ccode\u003e10.5281/zenodo.5564905\u003c/code\u003e:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eSingularityCE Developers (2021) SingularityCE. 10.5281/zenodo.5564905\n\u003ca href=\"https://doi.org/10.5281/zenodo.5564905\" rel=\"nofollow\"\u003ehttps://doi.org/10.5281/zenodo.5564905\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eThis is an \u0027all versions\u0027 DOI for referencing SingularityCE in a manner that is\nnot version-specific. You may wish to reference the particular version of\nSingularityCE used in your work. Zenodo creates a unique DOI for each release,\nand these can be found in the \u0027Versions\u0027 sidebar on the \u003ca href=\"https://doi.org/10.5281/zenodo.5564905\" rel=\"nofollow\"\u003eZenodo record page\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003ePlease also consider citing the original publication describing Singularity:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eKurtzer GM, Sochat V, Bauer MW (2017) Singularity: Scientific containers for\nmobility of compute. PLoS ONE 12(5): e0177459.\n\u003ca href=\"https://doi.org/10.1371/journal.pone.0177459\" rel=\"nofollow\"\u003ehttps://doi.org/10.1371/journal.pone.0177459\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cem\u003eUnless otherwise noted, this project is licensed under a 3-clause BSD license\nfound in the \u003ca href=\"LICENSE.md\"\u003elicense file\u003c/a\u003e.\u003c/em\u003e\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eIGV-snapshot-nf\u003c/h1\u003e\u003ca id=\"user-content-igv-snapshot-nf\" class=\"anchor\" aria-label=\"Permalink: IGV-snapshot-nf\" href=\"#igv-snapshot-nf\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAn example Nextflow workflow for creating automated IGV snapshots of .bam files based on a list of target regions.\u003c/p\u003e\n\u003cp\u003eThis workflow is designed to show how to integrate \u003ca href=\"https://github.com/stevekm/IGV-snapshot-automator\"\u003eautomated IGV snapshotting\u003c/a\u003e into a Nextflow workflow.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation\u003c/h2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFirst, clone this repository:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/stevekm/IGV-snapshot-automator.git\ncd IGV-snapshot-automator\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eContainers\u003c/h3\u003e\u003ca id=\"user-content-containers\" class=\"anchor\" aria-label=\"Permalink: Containers\" href=\"#containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDocker and/or Singularity containers are used to package IGV, X11, and \u003ccode\u003exvfb\u003c/code\u003e required for functionality. Docker is required to build Singularity containers\u003c/p\u003e\n\u003cp\u003eTo build the Docker container for IGV:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd containers\nmake docker-build VAR=IGV\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo test out the IGV Docker container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emake docker-test VAR=IGV\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(optional) To build a Singuarity container for IGV, first build the Singularity Docker container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emake docker-build VAR=Singularity-2.4\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eThis container is used to build Singularity containers\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo build the Singularity container for IGV:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emake singularity-build VAR=IGV\n\n# test the container:\nmake singularity-test VAR=IGV\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eThe Singularity container will be saved to \u003ccode\u003econtainers/IGV/IGV.simg\u003c/code\u003e, which you can upload to your remote server for usage\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eUsage\u003c/h1\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the included demo workflow (from the parent repo directory):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emake run\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eShould look something like this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eIGV-snapshot-nf$ make run\n./nextflow run main.nf -profile \"docker\"\nN E X T F L O W ~ version 19.04.1\nLaunching `main.nf` [kickass_cray] - revision: 1823b32e4f\n~~~~~~~ IGV Pipeline ~~~~~~~\n* Project dir: /Users/steve/projects/IGV-snapshot-nf\n* Launch dir: /Users/steve/projects/IGV-snapshot-nf\n* Work dir: /Users/steve/projects/IGV-snapshot-nf/work\n* Profile: docker\n* Script name: main.nf\n* Script ID: 1823b32e4f4fbc1caa63b0c12b2d4340\n* Container engine: docker\n* Workflow session: 843f9541-9cc2-46c8-9005-89659c67ed80\n* Nextflow run name: kickass_cray\n* Nextflow version: 19.04.1, build 5072 (03-05-2019 12:29 UTC)\n* Launch command:\nnextflow run main.nf -profile docker\n[warm up] executor \u0026gt; local\nexecutor \u0026gt; local (1)\n[91/852794] process \u0026gt; run_IGV [100%] 1 of 1 \u2714\nCompleted at: 22-May-2019 15:27:46\nDuration : 1m 20s\nCPU hours : (a few seconds)\nSucceeded : 1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExample snapshot output:\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://raw.githubusercontent.com/stevekm/IGV-snapshot-nf/output/output/snapshots/chr13_113976596_113976736.png\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/stevekm/IGV-snapshot-nf/output/output/snapshots/chr13_113976596_113976736.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSoftware\u003c/h1\u003e\u003ca id=\"user-content-software\" class=\"anchor\" aria-label=\"Permalink: Software\" href=\"#software\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eTested with macOS 10.12.6 and RHEL 7\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eNextflow (requires Java 8+ and \u003ccode\u003ebash\u003c/code\u003e)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eIGV 2.4.10\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ePython\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 3,
+ "topics": [
+ "igv",
+ "nextflow"
+ ],
+ "updated_at": 1558554996.0
+ },
+ {
+ "data_format": 2,
+ "description": null,
+ "filenames": [
+ "Singularity.v1.0",
+ "Singularity.latest"
+ ],
+ "full_name": "wkpalan/singularity-snpeff-snpsift",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-snpeff-snpsft\u003c/h1\u003e\u003ca id=\"user-content-singularity-snpeff-snpsft\" class=\"anchor\" aria-label=\"Permalink: singularity-snpeff-snpsft\" href=\"#singularity-snpeff-snpsft\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is a duplicate project with access to snpeff and snpsift as apps within a singularity container.\u003c/p\u003e\n\u003cp\u003eThis project is an updated format code available from qbicsoftware \u003ca href=\"https://github.com/qbicsoftware/qbic-singularity-snpeff\"\u003esnpEff\u003c/a\u003e container\u003c/p\u003e\n\u003cp\u003eThis is a containerized version of the genetic variant annotation tool \u003ca href=\"http://snpeff.sourceforge.net/\" rel=\"nofollow\"\u003eSnpEff\u003c/a\u003e. We use \u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e as container technology.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBootstrap files with tags\u003c/h2\u003e\u003ca id=\"user-content-bootstrap-files-with-tags\" class=\"anchor\" aria-label=\"Permalink: Bootstrap files with tags\" href=\"#bootstrap-files-with-tags\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe provide always a bootstrap file (\u003ccode\u003eSingularity\u003c/code\u003e) tagged \u003ccode\u003e.latest\u003c/code\u003e which represents the most resent development status of the container. If you see version tags like \u003ccode\u003e.v1.0\u003c/code\u003e, this means that this is the recipe of a container with a stable version tag.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow to build the container\u003c/h2\u003e\u003ca id=\"user-content-how-to-build-the-container\" class=\"anchor\" aria-label=\"Permalink: How to build the container\" href=\"#how-to-build-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eClone the repository:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/qbicsoftware/qbic-singularity-snpeff.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e qbic-singularity-snpeff\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eSince Singularity 2.4, the build command from file looks like this:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build myContainer.simg \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eSingularity file\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can also download the build and ready-to-use container from Singularity Hub:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull shub://qbicsoftware/qbic-singularity-snpeff:latest\nsingularity pull shub://qbicsoftware/qbic-singularity-snpeff:v1.0\n...\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow to run the container and calling SnpEff\u003c/h2\u003e\u003ca id=\"user-content-how-to-run-the-container-and-calling-snpeff\" class=\"anchor\" aria-label=\"Permalink: How to run the container and calling SnpEff\" href=\"#how-to-run-the-container-and-calling-snpeff\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the container and calling SnpEff you just need to\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e myContainer.simg snpEff [arguments]\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e myContainer.simg snpEff -h\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDefining the reference genome\u003c/h2\u003e\u003ca id=\"user-content-defining-the-reference-genome\" class=\"anchor\" aria-label=\"Permalink: Defining the reference genome\" href=\"#defining-the-reference-genome\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eProviding them inside of the container would make the container big, so we think it is a better idea to mount the reference genome into the right folder inside the container, where snpEff automatically searches for reference genome databases.\u003c/p\u003e\n\u003cp\u003eYou can simple download the databases, unzip them on your filesystem, and bind its \u003ccode\u003edata\u003c/code\u003e directory into the container. If you use snpEff\u0027s \u003ccode\u003e-v\u003c/code\u003e verbose output option, you will see that it will find the pre-installed databases and will not try to download it.\u003c/p\u003e\n\u003cp\u003eHere is an example, where we downloaded the \u003cstrong\u003ehg19\u003c/strong\u003e reference genome with\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ewget http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_hg19.zip\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eon the host filesystem, unzipped it and bound it during the container execution.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e -B ./data/:/usr/local/lib/snpEff/data snpEff.simg snpEff -v hg19 myVCF.vcf\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAuthor\u003c/h2\u003e\u003ca id=\"user-content-author\" class=\"anchor\" aria-label=\"Permalink: Author\" href=\"#author\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/wkpalan\"\u003eKokulapala (Gokul) Wimalanathan\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1696519487.0
+ "updated_at": 1523929389.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "vowpal_wabbit-master/singularity/Singularity.debian-unstable-i386",
- "vowpal_wabbit-master/singularity/Singularity.debian-unstable-amd64"
+ "Dockerfile/Singularity"
],
- "full_name": "maaz-kang-92/vowpal_wabbit-master",
+ "full_name": "namzoo99/ecNAPP",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eLet\u0027s look for neoantigens!\u003c/h1\u003e\u003ca id=\"user-content-lets-look-for-neoantigens\" class=\"anchor\" aria-label=\"Permalink: Let\u0027s look for neoantigens!\" href=\"#lets-look-for-neoantigens\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ecreated by Harold and Mary of CBM LAB\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eWorkflow of ecNAPP\u003c/h2\u003e\u003ca id=\"user-content-workflow-of-ecnapp\" class=\"anchor\" aria-label=\"Permalink: Workflow of ecNAPP\" href=\"#workflow-of-ecnapp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://user-images.githubusercontent.com/86759935/198952280-ea38ed73-16d7-484f-af9a-475aa0b6af09.png\"\u003e\u003cimg src=\"https://user-images.githubusercontent.com/86759935/198952280-ea38ed73-16d7-484f-af9a-475aa0b6af09.png\" alt=\"ing\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eFor the use of this script, please prepare\u003c/h2\u003e\u003ca id=\"user-content-for-the-use-of-this-script-please-prepare\" class=\"anchor\" aria-label=\"Permalink: For the use of this script, please prepare\" href=\"#for-the-use-of-this-script-please-prepare\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eDocker\u003c/li\u003e\n\u003cli\u003emosek license and reference data for AA-suite, svaba\u003c/li\u003e\n\u003cli\u003ecsv file consisted of:\u003c/li\u003e\n\u003c/ol\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003ecolnames\u003c/th\u003e\n\u003cth\u003edefinition\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eproject\u003c/td\u003e\n\u003ctd\u003eproject name\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ebarcode\u003c/td\u003e\n\u003ctd\u003esample barcode\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003edocker_bind_path\u003c/td\u003e\n\u003ctd\u003epath where docker will bind to (docker -v)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003einput\u003c/td\u003e\n\u003ctd\u003einput file directory\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eref\u003c/td\u003e\n\u003ctd\u003ereference genome build\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eworkdir\u003c/td\u003e\n\u003ctd\u003eworking directory where the pipeline will be at\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eoutdir\u003c/td\u003e\n\u003ctd\u003eoutput directory\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esvaba_ref\u003c/td\u003e\n\u003ctd\u003edirectory of reference for svaba (genome)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDBSNP\u003c/td\u003e\n\u003ctd\u003edirectory of reference for svaba (dbsnp)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emoseklic\u003c/td\u003e\n\u003ctd\u003edirectory of MOSEK license\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAArepo\u003c/td\u003e\n\u003ctd\u003edirectory of AA repo\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003ethe \u003ccode\u003edocker_bind_path\u003c/code\u003e must be the parent folder of \u003ccode\u003einput\u003c/code\u003e, \u003ccode\u003eworkdir\u003c/code\u003e, \u003ccode\u003eoutdir\u003c/code\u003e, \u003ccode\u003esvaba_ref\u003c/code\u003e, and \u003ccode\u003eDBSNP\u003c/code\u003e. Check our \u003ca href=\"https://github.com/skadbswn/ecNAPP/blob/main/example.csv\"\u003eexample.csv\u003c/a\u003e for more info.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e1. \u003ca href=\"https://github.com/jluebeck/AmpliconSuite-pipeline\"\u003eAmpliconSuite-pipeline\u003c/a\u003e\n\u003c/h2\u003e\u003ca id=\"user-content-1-ampliconsuite-pipeline\" class=\"anchor\" aria-label=\"Permalink: 1. AmpliconSuite-pipeline\" href=\"#1-ampliconsuite-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe arguments are absed on the \u003ccode\u003eHL-NF:AmpliconArchitect\u003c/code\u003e, which are \u003ccode\u003e--AA_extendmode EXPLORE --AA_runmode FULL\u003c/code\u003e.\nTo download MOSEK liscence(mosek.lic), visit \u003ca href=\"https://www.mosek.com/products/academic-licenses/\" rel=\"nofollow\"\u003eHERE\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor AA_DATA_REPO, visit \u003ca href=\"https://datasets.genepattern.org/?prefix=data/module_support_files/AmpliconArchitect/\" rel=\"nofollow\"\u003eHERE\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eGenome build should be downloaded with \u003ccode\u003e_indexed\u003c/code\u003e files.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e2. \u003ca href=\"https://github.com/walaj/svaba\"\u003eSVABA\u003c/a\u003e\n\u003c/h2\u003e\u003ca id=\"user-content-2-svaba\" class=\"anchor\" aria-label=\"Permalink: 2. SVABA\" href=\"#2-svaba\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe used docker image for our pipeline. Since \u003ccode\u003eSVABA\u003c/code\u003e does not have output argument, the \u003ccode\u003eBAM\u003c/code\u003e files need to be placed where the output should be placed using symlink.\u003c/p\u003e\n\u003cp\u003eAfter the run, script automatically removes the symlink.\u003c/p\u003e\n\u003cp\u003eFor the additional info of reference(\u003ccode\u003eDBSNP\u003c/code\u003e), please visit the official svaba github(\u003ca href=\"https://github.com/walaj/svaba\"\u003eHERE\u003c/a\u003e).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e3. \u003ca href=\"https://hub.docker.com/r/sachet/polysolver\" rel=\"nofollow\"\u003ePOLYSOLVER\u003c/a\u003e\n\u003c/h2\u003e\u003ca id=\"user-content-3-polysolver\" class=\"anchor\" aria-label=\"Permalink: 3. POLYSOLVER\" href=\"#3-polysolver\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe used docker image for polysolver. Since it has its own reference inside the image, we can choose genome build by argument, \u003ccode\u003ehg19\u003c/code\u003e or \u003ccode\u003ehg38\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003ePolysolver gives output with fixed name \u003ccode\u003ewinners.hla.txt\u003c/code\u003e, so the output is created under barcode folder.\u003c/p\u003e\n\u003cp\u003eDon\u0027t worry, the input hla will have it\u0027s own name while going through the next process.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e4. \u003ca href=\"https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.1\" rel=\"nofollow\"\u003enetMHCpan\u003c/a\u003e\n\u003c/h2\u003e\u003ca id=\"user-content-4-netmhcpan\" class=\"anchor\" aria-label=\"Permalink: 4. netMHCpan\" href=\"#4-netmhcpan\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003efor the final output of neoantigens, we are using \u003ccode\u003enetMHCpan4.1b\u003c/code\u003e to find peptides binding with MHC class I.\u003c/p\u003e\n\u003cp\u003ethe final output will be under this header:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003ePos\u003c/th\u003e\n\u003cth align=\"center\"\u003eMHC\u003c/th\u003e\n\u003cth align=\"center\"\u003ePeptide\u003c/th\u003e\n\u003cth align=\"center\"\u003eCore\u003c/th\u003e\n\u003cth align=\"center\"\u003eOf\u003c/th\u003e\n\u003cth align=\"center\"\u003eGp\u003c/th\u003e\n\u003cth align=\"center\"\u003eGl\u003c/th\u003e\n\u003cth align=\"center\"\u003eIp\u003c/th\u003e\n\u003cth align=\"center\"\u003eIl\u003c/th\u003e\n\u003cth align=\"center\"\u003eIcore\u003c/th\u003e\n\u003cth align=\"center\"\u003eidentity\u003c/th\u003e\n\u003cth align=\"center\"\u003eScore_EL\u003c/th\u003e\n\u003cth align=\"center\"\u003e%Rank_EL\u003c/th\u003e\n\u003cth align=\"center\"\u003eBindLevel\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e1\u003c/td\u003e\n\u003ctd align=\"center\"\u003eHLA-B*40:01\u003c/td\u003e\n\u003ctd align=\"center\"\u003eNETQRLLLL\u003c/td\u003e\n\u003ctd align=\"center\"\u003eNETQRLLLL\u003c/td\u003e\n\u003ctd align=\"center\"\u003e0\u003c/td\u003e\n\u003ctd align=\"center\"\u003e0\u003c/td\u003e\n\u003ctd align=\"center\"\u003e0\u003c/td\u003e\n\u003ctd align=\"center\"\u003e0\u003c/td\u003e\n\u003ctd align=\"center\"\u003e0\u003c/td\u003e\n\u003ctd align=\"center\"\u003eNETQRLLLL\u003c/td\u003e\n\u003ctd align=\"center\"\u003ePEPLIST\u003c/td\u003e\n\u003ctd align=\"center\"\u003e0.7000450\u003c/td\u003e\n\u003ctd align=\"center\"\u003e0.237\u003c/td\u003e\n\u003ctd align=\"center\"\u003e\u0026lt;= SB\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003ewhere:\n\u003cul\u003e\n\u003cli\u003ePos: Residue number (starting from 0) of the peptide in the protein sequence.\u003c/li\u003e\n\u003cli\u003eHLA: Specified MHC molecule / Allele name.\u003c/li\u003e\n\u003cli\u003ePeptide: Amino acid sequence of the potential ligand.\u003c/li\u003e\n\u003cli\u003eCore: The minimal 9 amino acid binding core directly in contact with the MHC.\u003c/li\u003e\n\u003cli\u003eOf: The starting position of the Core within the Peptide (if \u0026gt; 0, the method predicts a N-terminal protrusion).\u003c/li\u003e\n\u003cli\u003eGp: Position of the deletion, if any.\u003c/li\u003e\n\u003cli\u003eGl: Length of the deletion, if any.\u003c/li\u003e\n\u003cli\u003eIp: Position of the insertion, if any.\u003c/li\u003e\n\u003cli\u003eIl: Length of the insertion, if any.\u003c/li\u003e\n\u003cli\u003eIcore: Interaction core. This is the sequence of the binding core including eventual insertions of deletions.\u003c/li\u003e\n\u003cli\u003eIdentity: Protein identifier, i.e. the name of the FASTA entry.\u003c/li\u003e\n\u003cli\u003eScore: The raw prediction score.\u003c/li\u003e\n\u003cli\u003e%Rank: Rank of the predicted binding score compared to a set of random natural peptides. This measure is not affected by inherent bias of certain molecules towards higher or lower mean predicted affinities. Strong binders are defined as having %rank\u0026lt;0.5, and weak binders with %rank\u0026lt;2. We advise to select candidate binders based on %Rank rather than Score\u003c/li\u003e\n\u003cli\u003eBindLevel: (SB: Strong Binder, WB: Weak Binder). The peptide will be identified as a strong binder if the %Rank is below the specified threshold for the strong binders (by default, 0.5%). The peptide will be identified as a weak binder if the %Rank is above the threshold of the strong binders but below the specified threshold for the weak binders (by default, 2%).\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1722259857.0
+ "updated_at": 1666414969.0
},
{
"data_format": 2,
- "description": "Samtools is a suite of programs for interacting with high-throughput sequencing data.",
+ "description": ":whale: Script to build a Singularity image for CellOrganizer",
"filenames": [
- "1.11.0/Singularity",
- "1.13.0/Singularity",
- "1.15.1/Singularity",
- "1.10.0/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-samtools",
- "latest_release": "v1.15.1",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-samtools/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-samtools/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-samtools/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-samtools/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a0eadf22f405a09437137ff0c6ec856f6babc4249d9dddd5da94a5eb3629156e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d73616d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a0eadf22f405a09437137ff0c6ec856f6babc4249d9dddd5da94a5eb3629156e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d73616d746f6f6c73\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-samtools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/e475e80b6537836f51d6ad5734082aa59be755d4c096eda82ed4d7c0e41a8c87/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d73616d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e475e80b6537836f51d6ad5734082aa59be755d4c096eda82ed4d7c0e41a8c87/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d73616d746f6f6c73\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-samtools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/eb062fd4efe27dbb4a365c73d20fb06bea9c69c114703f5d14171090c87bc35e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d73616d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/eb062fd4efe27dbb4a365c73d20fb06bea9c69c114703f5d14171090c87bc35e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d73616d746f6f6c73\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-samtools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/bb47bf9c1b1dbe0f0e158a4721b1cdb1dba3dd2b2e9596626f2610b4d0058515/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d73616d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bb47bf9c1b1dbe0f0e158a4721b1cdb1dba3dd2b2e9596626f2610b4d0058515/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d73616d746f6f6c73\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-samtools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-samtools\u003c/h1\u003e\u003ca id=\"user-content-singularity-samtools\" class=\"anchor\" aria-label=\"Permalink: singularity-samtools\" href=\"#singularity-samtools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://www.htslib.org/\" rel=\"nofollow\"\u003esamtools\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eace2sam\u003c/code\u003e, \u003ccode\u003eblast2sam.pl\u003c/code\u003e \u003ccode\u003ebowtie2sam.pl\u003c/code\u003e, \u003ccode\u003eexport2sam.pl\u003c/code\u003e, \u003ccode\u003efasta-sanitize.pl\u003c/code\u003e, \u003ccode\u003egenerate_binaries.sh\u003c/code\u003e, \u003ccode\u003einterpolate_sam.pl\u003c/code\u003e, \u003ccode\u003emaq2sam-long\u003c/code\u003e, \u003ccode\u003emaq2sam-short\u003c/code\u003e, \u003ccode\u003emd5fa\u003c/code\u003e, \u003ccode\u003emd5sum-lite\u003c/code\u003e, \u003ccode\u003enovo2sam.pl\u003c/code\u003e, \u003ccode\u003eplot-ampliconstats\u003c/code\u003e, \u003ccode\u003eplot-bamstats\u003c/code\u003e, \u003ccode\u003epsl2sam.pl\u003c/code\u003e, \u003ccode\u003esam2vcf.pl\u003c/code\u003e, \u003ccode\u003esamtools\u003c/code\u003e, \u003ccode\u003esamtools.pl\u003c/code\u003e, \u003ccode\u003eseq_cache_populate.pl\u003c/code\u003e, \u003ccode\u003esoap2sam.pl\u003c/code\u003e, \u003ccode\u003ewgsim\u003c/code\u003e, \u003ccode\u003ewgsim_eval.pl\u003c/code\u003e and \u003ccode\u003ezoom2sam.pl\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/samtools/1.13.0\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/samtools\u003c/code\u003e as \u003ccode\u003e1.13.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "murphygroup/singularity-cellorganizer",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-cellorganizer\u003c/h1\u003e\u003ca id=\"user-content-singularity-cellorganizer\" class=\"anchor\" aria-label=\"Permalink: singularity-cellorganizer\" href=\"#singularity-cellorganizer\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://cloud.sylabs.io/library/icaoberg/default/cellorganizer\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/804b7bdd4c5bf1cd2bf36b4c08742c95c2876b82d7734f4643ea80b9b415d1c1/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f686f737465642d73796c6162732e696f2d677265656e2e737667\" alt=\"Hosted\" data-canonical-src=\"https://img.shields.io/badge/hosted-sylabs.io-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"http://www.cellorganizer.org/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5a654b31b83404ad847088d2645b299c92b54f8ca8be41fc57f262a6e3854ac7/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f72656c656173652d76322e382e312d7265642e737667\" alt=\"Release\" data-canonical-src=\"https://img.shields.io/badge/release-v2.8.1-red.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/icaoberg/singularity-cellorganizer/issues\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8d054afb0990477a5bfd0e7e3deb8d3decc96b775aec8459a41885f03d351d52/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d63656c6c6f7267616e697a65722e737667\" alt=\"GitHub issues\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-cellorganizer.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/icaoberg/singularity-cellorganizer/network\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f5f8af960220ab57f10b2ea754be5ca79f5b9552135d71eb05aec0f8818a01e4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d63656c6c6f7267616e697a65722e737667\" alt=\"GitHub forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-cellorganizer.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/icaoberg/singularity-cellorganizer/stargazers\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/de0d7005345076385e9b0ec0b0c3bc063f5fd124de03c74337b296565715c87f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d63656c6c6f7267616e697a65722e737667\" alt=\"GitHub stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-cellorganizer.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.gnu.org/licenses/quick-guide-gplv3.en.html\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fcf50c1f3a4879682b94be5dd325b2dec1661a159904a2a45493e553c8ccf175/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d47504c76332d626c75652e737667\" alt=\"GitHub license\" data-canonical-src=\"https://img.shields.io/badge/license-GPLv3-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAbout CellOrganizer\u003c/h2\u003e\u003ca id=\"user-content-about-cellorganizer\" class=\"anchor\" aria-label=\"Permalink: About CellOrganizer\" href=\"#about-cellorganizer\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/19100b052bbc72a5acb1f431bae9b7f7b1bf42f54f89c0c78d767e674b98bd8f/687474703a2f2f7777772e63656c6c6f7267616e697a65722e6f72672f77702d636f6e74656e742f75706c6f6164732f323031372f30382f43656c6c4f7267616e697a65724c6f676f322d3235302e6a7067\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/19100b052bbc72a5acb1f431bae9b7f7b1bf42f54f89c0c78d767e674b98bd8f/687474703a2f2f7777772e63656c6c6f7267616e697a65722e6f72672f77702d636f6e74656e742f75706c6f6164732f323031372f30382f43656c6c4f7267616e697a65724c6f676f322d3235302e6a7067\" alt=\"CellOrganizer Logo\" data-canonical-src=\"http://www.cellorganizer.org/wp-content/uploads/2017/08/CellOrganizerLogo2-250.jpg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"http://cellorganizer.org/\" rel=\"nofollow\"\u003eCellOrganizer\u003c/a\u003e project provides tools for\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003elearning generative models of cell organization directly from images\u003c/li\u003e\n\u003cli\u003estoring and retrieving those models\u003c/li\u003e\n\u003cli\u003esynthesizing cell images (or other representations) from one or more models\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eModel learning captures variation among cells in a collection of images. Images used for model learning and instances synthesized from models can be two- or three-dimensional static images or movies.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://cellorganizer.org/\" rel=\"nofollow\"\u003eCellOrganizer\u003c/a\u003e can learn models of\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ecell shape\u003c/li\u003e\n\u003cli\u003enuclear shape\u003c/li\u003e\n\u003cli\u003echromatin texture\u003c/li\u003e\n\u003cli\u003evesicular organelle size, shape and position\u003c/li\u003e\n\u003cli\u003emicrotubule distribution.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThese models can be conditional upon each other. For example, for a given synthesized cell instance, organelle position is dependent upon the cell and nuclear shape of that instance.\u003c/p\u003e\n\u003cp\u003eCell types for which generative models for at least some organelles have been built include human HeLa cells, mouse NIH 3T3 cells, and Arabidopsis protoplasts. Planned projects include mouse T lymphocytes and rat PC12 cells.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePre-requisites\u003c/h2\u003e\u003ca id=\"user-content-pre-requisites\" class=\"anchor\" aria-label=\"Permalink: Pre-requisites\" href=\"#pre-requisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003eSingularity v3.5.+\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCellOrganizer v2.8.1\u003c/h3\u003e\u003ca id=\"user-content-cellorganizer-v281\" class=\"anchor\" aria-label=\"Permalink: CellOrganizer v2.8.1\" href=\"#cellorganizer-v281\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eFixes\u003c/h4\u003e\u003ca id=\"user-content-fixes\" class=\"anchor\" aria-label=\"Permalink: Fixes\" href=\"#fixes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eDisplay shape space when dataset field is not present or empty.\u003c/li\u003e\n\u003cli\u003eGeneration of watertight SBML Spatial output has been corrected for translation errors.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eOther\u003c/h4\u003e\u003ca id=\"user-content-other\" class=\"anchor\" aria-label=\"Permalink: Other\" href=\"#other\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eThe following models have been rebuilt using this version of CellOrganizer. Updated models can be found in the model repository.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2D HeLa diffeomorphic framework\u003c/li\u003e\n\u003cli\u003e2D HeLa PCA framework\u003c/li\u003e\n\u003cli\u003e2D HeLa classic framework\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCellOrganizer for Galaxy now supports Galaxy server v19.05.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCellOrganizer v2.8.0\u003c/h3\u003e\u003ca id=\"user-content-cellorganizer-v280\" class=\"anchor\" aria-label=\"Permalink: CellOrganizer v2.8.0\" href=\"#cellorganizer-v280\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eFeatures\u003c/h4\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-label=\"Permalink: Features\" href=\"#features\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eAdded improved model for generating protein distributions during T cell synapse formation that only requires annotation of cell couples at a single time point model and improves synapse alignment. Includes training, synthesis and info demos.\u003c/li\u003e\n\u003cli\u003eAdded outline PCA model for 2D cell and nuclear shapes. Includes training, synthesis and info demos.\u003c/li\u003e\n\u003cli\u003eAdded SPHARM-RPDM model for 3D cell and nuclear shapes (see \u003ca href=\"https://doi.org/10.1093/bioinformatics/bty983\" rel=\"nofollow\"\u003ehttps://doi.org/10.1093/bioinformatics/bty983\u003c/a\u003e). Includes training, synthesis and info demos.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eFixes\u003c/h4\u003e\u003ca id=\"user-content-fixes-1\" class=\"anchor\" aria-label=\"Permalink: Fixes\" href=\"#fixes-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eFixed issues with options.train.flag. Valid options should be nuclear, cell, framework, and protein.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eEnhancements\u003c/h4\u003e\u003ca id=\"user-content-enhancements\" class=\"anchor\" aria-label=\"Permalink: Enhancements\" href=\"#enhancements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eModularized and cleaned up img2slml.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning on Singularity\u003c/h2\u003e\u003ca id=\"user-content-running-on-singularity\" class=\"anchor\" aria-label=\"Permalink: Running on Singularity\" href=\"#running-on-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCellOrganizer v2.8.*\u003c/h2\u003e\u003ca id=\"user-content-cellorganizer-v28\" class=\"anchor\" aria-label=\"Permalink: CellOrganizer v2.8.*\" href=\"#cellorganizer-v28\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCreating the container\u003c/h3\u003e\u003ca id=\"user-content-creating-the-container\" class=\"anchor\" aria-label=\"Permalink: Creating the container\" href=\"#creating-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo create the container, run this command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; bash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAccessing the container\u003c/h3\u003e\u003ca id=\"user-content-accessing-the-container\" class=\"anchor\" aria-label=\"Permalink: Accessing the container\" href=\"#accessing-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo access the container, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; singularity shell cellorganizer.sif\n\nSingularity: Invoking an interactive shell within container...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo list the possible apps, run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity cellorganizer.img:~/singularity-cellorganizer\u0026gt; ls -lt /opt/cellorganizer-binaries/\n\ntotal 111821\n-rwxr-xr-x 1 14246 users 12699470 Mar 29 14:25 slml2report\n-rwxr-xr-x 1 14246 users 12471747 Mar 29 14:25 slml2info\n-rwxr-xr-x 1 14246 users 40728639 Mar 29 14:25 slml2img\n-rwxr-xr-x 1 14246 users 48604048 Mar 29 14:25 img2slml\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning Demos\u003c/h3\u003e\u003ca id=\"user-content-running-demos\" class=\"anchor\" aria-label=\"Permalink: Running Demos\" href=\"#running-demos\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run a specific demo\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; cd demos/2D/demo2D**/\n\u0026gt; singularity run ~/path/to/cellorganizer.simg demo2D**.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributing\u003c/h2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-label=\"Permalink: Contributing\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWhen contributing to this repository, please first discuss the change you wish to make via issue, \u003ca href=\"mailto:cellorganizer-dev@compbio.cmu.edu\"\u003eemail\u003c/a\u003e, or any other method with the owners of this repository before making a change.\u003c/p\u003e\n\u003chr\u003e\n\u003cp\u003eSupport for \u003ca href=\"http://cellorganizer.org/\" rel=\"nofollow\"\u003eCellOrganizer\u003c/a\u003e has been provided by grants GM075205, GM090033 and GM103712 from the \u003ca href=\"http://www.nigms.nih.gov/\" rel=\"nofollow\"\u003eNational Institute of General Medical Sciences\u003c/a\u003e, grants MCB1121919 and MCB1121793 from the \u003ca href=\"http://nsf.gov/\" rel=\"nofollow\"\u003eU.S. National Science Foundation\u003c/a\u003e, by a Forschungspreis from the \u003ca href=\"http://www.humboldt-foundation.de/\" rel=\"nofollow\"\u003eAlexander von Humboldt Foundation\u003c/a\u003e, and by the \u003ca href=\"http://www.frias.uni-freiburg.de/lifenet?set_language=en\" rel=\"nofollow\"\u003eFreiburg Institute for Advanced Studies\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.mmbios.org\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/da21af862d75eb41d1c50d7556125597f1e9c95b7551e77d66d998b7eaf87ce5/68747470733a2f2f69312e77702e636f6d2f7777772e63656c6c6f7267616e697a65722e6f72672f77702d636f6e74656e742f75706c6f6164732f323031372f30382f4d4d42696f536c6f676f2d65313530333531373835373331332e6769663f683d3630\" alt=\"MMBioS\" data-canonical-src=\"https://i1.wp.com/www.cellorganizer.org/wp-content/uploads/2017/08/MMBioSlogo-e1503517857313.gif?h=60\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eCopyright (c) 2007-2020 by the \u003ca href=\"http://murphylab.web.cmu.edu\" rel=\"nofollow\"\u003eMurphy Lab\u003c/a\u003e at the \u003ca href=\"http://www.cbd.cmu.edu\" rel=\"nofollow\"\u003eComputational Biology Department\u003c/a\u003e in \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 5,
"topics": [
- "singularity",
- "bioinformatics"
+ "cellorganizer",
+ "container",
+ "virtualization",
+ "bioimage-informatics",
+ "modeling-tools"
],
- "updated_at": 1649388765.0
+ "updated_at": 1587470789.0
},
{
"data_format": 2,
- "description": "Zork",
+ "description": "Singularity container recipe for Quantum Espresso and Yambo for cpu, architecture x86_64 based on CentOS 7. ",
"filenames": [
"Singularity"
],
- "full_name": "richelbilderbeek/singularity_example_8",
+ "full_name": "CINECA-HPC/container_quantum_espresso_yambo_cpu_openmpi_centos7_x86_64",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity_example_8\u003c/h1\u003e\u003ca id=\"user-content-singularity_example_8\" class=\"anchor\" aria-label=\"Permalink: singularity_example_8\" href=\"#singularity_example_8\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eBranch\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://travis-ci.org\" rel=\"nofollow\"\u003e\u003cimg src=\"pics/TravisCI.png\" alt=\"Travis CI logo\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emaster\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://travis-ci.org/richelbilderbeek/singularity_example_8\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/75bd9e451bb113ffdd02e04479079eb460b56ab2170c3c1742e4c9ec399b83f1/68747470733a2f2f7472617669732d63692e6f72672f72696368656c62696c6465726265656b2f73696e67756c61726974795f6578616d706c655f382e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/richelbilderbeek/singularity_example_8.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eSingularity example 8: \u003ca href=\"https://github.com/richelbilderbeek/Zork\"\u003eZork\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003econtainer_quantum_espresso_yambo_cpu_openmpi_centos7_x86_64\u003c/h1\u003e\u003ca id=\"user-content-container_quantum_espresso_yambo_cpu_openmpi_centos7_x86_64\" class=\"anchor\" aria-label=\"Permalink: container_quantum_espresso_yambo_cpu_openmpi_centos7_x86_64\" href=\"#container_quantum_espresso_yambo_cpu_openmpi_centos7_x86_64\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eContainer recipes for Quantum Espresso and Yambo for cpu, architecture x86_64 based on CentOS 7. In the specific:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ecentOS 7\u003c/li\u003e\n\u003cli\u003eGNU compiler 7.3.1\u003c/li\u003e\n\u003cli\u003ePython 2.7\u003c/li\u003e\n\u003cli\u003ePython 3.6\u003c/li\u003e\n\u003cli\u003eOpenmpi 2.1.1\u003c/li\u003e\n\u003cli\u003eQuantum Espresso 6.5 ( with --enable-openmp=yes --enable-parallel=yes)\u003c/li\u003e\n\u003cli\u003eYambo 4.5.3\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis recipe works in the Cineca cluster (arch x86_64):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMarconi Skylake\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1565352003.0
+ "updated_at": 1604598436.0
},
{
"data_format": 2,
- "description": "ncview is a visual browser for netCDF format files.",
+ "description": null,
"filenames": [
- "2.1.8/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-ncview",
- "latest_release": "v2.1.8",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-ncview/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-ncview/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-ncview/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-ncview/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f299218f6bd16993a0a59184094020eaab425fa4df557e96c4204187ad7fb9f9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6e6376696577\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f299218f6bd16993a0a59184094020eaab425fa4df557e96c4204187ad7fb9f9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6e6376696577\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-ncview\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/8cab69331f2a79e6d4684003fe63745d10180043acfac10977a8b1718cd54409/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6e6376696577\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8cab69331f2a79e6d4684003fe63745d10180043acfac10977a8b1718cd54409/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6e6376696577\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-ncview\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/82b02b9759f899d2ef35be705c342dafe5ef14ba5aff88e176f1993ec2a87b8b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6e6376696577\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/82b02b9759f899d2ef35be705c342dafe5ef14ba5aff88e176f1993ec2a87b8b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6e6376696577\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-ncview\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/e3ad3ddea45d0e7f1bacbb407e530eeaa1e847488bf9e5f1d5acdcfb7bfa147c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6e6376696577\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e3ad3ddea45d0e7f1bacbb407e530eeaa1e847488bf9e5f1d5acdcfb7bfa147c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6e6376696577\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-ncview\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-ncview\u003c/h1\u003e\u003ca id=\"user-content-singularity-ncview\" class=\"anchor\" aria-label=\"Permalink: singularity-ncview\" href=\"#singularity-ncview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/63f21827549552a28b8a2897d85328e059db374c4f4d631be32eea2f935d8c67/687474703a2f2f6369727275732e756373642e6564752f7e7069657263652f736f6674776172652f6e63766965772f636f6e74726f6c5f322e676966\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/63f21827549552a28b8a2897d85328e059db374c4f4d631be32eea2f935d8c67/687474703a2f2f6369727275732e756373642e6564752f7e7069657263652f736f6674776172652f6e63766965772f636f6e74726f6c5f322e676966\" data-canonical-src=\"http://cirrus.ucsd.edu/~pierce/software/ncview/control_2.gif\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://www.hpc.cineca.it/software/ncview#:~:text=Ncview%20is%20a%20visual%20browser,%2C%20invert%20the%20data%2C%20etc\" rel=\"nofollow\"\u003encview\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003encview\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/ncview/0.17.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/ncview\u003c/code\u003e as \u003ccode\u003e0.17.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "bstriner/tensorflow-xla-cuda-10.1-cudnn7-devel-ubuntu16.04",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003etensorflow-xla-cuda-10.1-cudnn7-devel-ubuntu16.04\u003c/h1\u003e\u003ca id=\"user-content-tensorflow-xla-cuda-101-cudnn7-devel-ubuntu1604\" class=\"anchor\" aria-label=\"Permalink: tensorflow-xla-cuda-10.1-cudnn7-devel-ubuntu16.04\" href=\"#tensorflow-xla-cuda-101-cudnn7-devel-ubuntu1604\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
- "topics": [
- "singularity",
- "oceanography"
- ],
- "updated_at": 1649398866.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1560510385.0
},
{
"data_format": 2,
- "description": "BUSCO is a tool to assess completeness of genome assembly, gene set, and transcriptome.",
+ "description": null,
"filenames": [
- "5.0.0_cv1/Singularity",
- "5.2.2/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-busco",
- "latest_release": "v5.2.2",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-busco/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-busco/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-busco/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-busco/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/425d93185f3da1c8104cf1995eea245773a65051714696e18a8c4fa9f8f6f510/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d627573636f\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/425d93185f3da1c8104cf1995eea245773a65051714696e18a8c4fa9f8f6f510/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d627573636f\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-busco\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f66f1a3e9208a90e17fbcef3dda2d1d93c5a50781dc9b2ff48fb557c3a87e75e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d627573636f\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f66f1a3e9208a90e17fbcef3dda2d1d93c5a50781dc9b2ff48fb557c3a87e75e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d627573636f\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-busco\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/69480c6012aa57c6cc42f91e786ec416d33c47877919882b87cf603674fbb454/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d627573636f\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/69480c6012aa57c6cc42f91e786ec416d33c47877919882b87cf603674fbb454/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d627573636f\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-busco\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/22741fcd23b2c0a3194bce34abf262f6d082a68307f196a7c37c94cf155c56c1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d627573636f\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/22741fcd23b2c0a3194bce34abf262f6d082a68307f196a7c37c94cf155c56c1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d627573636f\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-busco\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-busco\u003c/h1\u003e\u003ca id=\"user-content-singularity-busco\" class=\"anchor\" aria-label=\"Permalink: singularity-busco\" href=\"#singularity-busco\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/aa7bee9ba2fc3541e26ef39aa126247cb4bd0e759d745d742d78f1c538a92813/68747470733a2f2f627573636f2e657a6c61622e6f72672f686f6d652f627573636f2e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aa7bee9ba2fc3541e26ef39aa126247cb4bd0e759d745d742d78f1c538a92813/68747470733a2f2f627573636f2e657a6c61622e6f72672f686f6d652f627573636f2e706e67\" width=\"40%\" data-canonical-src=\"https://busco.ezlab.org/home/busco.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://busco.ezlab.org\" rel=\"nofollow\"\u003ebusco\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebusco\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/busco/5.0.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/busco\u003c/code\u003e as \u003ccode\u003e5.0.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "ddbj/singularity_centos7_nginx",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003enginx\u3092\u30e6\u30fc\u30b6\u30fc\u6a29\u9650\u3067\u5b9f\u884c\u3059\u308bsingularity image\u003c/h1\u003e\u003ca id=\"user-content-nginx\u3092\u30e6\u30fc\u30b6\u30fc\u6a29\u9650\u3067\u5b9f\u884c\u3059\u308bsingularity-image\" class=\"anchor\" aria-label=\"Permalink: nginx\u3092\u30e6\u30fc\u30b6\u30fc\u6a29\u9650\u3067\u5b9f\u884c\u3059\u308bsingularity image\" href=\"#nginx\u3092\u30e6\u30fc\u30b6\u30fc\u6a29\u9650\u3067\u5b9f\u884c\u3059\u308bsingularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eimage\u306e\u30d3\u30eb\u30c9\u003c/h2\u003e\u003ca id=\"user-content-image\u306e\u30d3\u30eb\u30c9\" class=\"anchor\" aria-label=\"Permalink: image\u306e\u30d3\u30eb\u30c9\" href=\"#image\u306e\u30d3\u30eb\u30c9\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity build centos7_nginx.simg Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003enginx\u306e\u8a2d\u5b9a\u003c/h2\u003e\u003ca id=\"user-content-nginx\u306e\u8a2d\u5b9a\" class=\"anchor\" aria-label=\"Permalink: nginx\u306e\u8a2d\u5b9a\" href=\"#nginx\u306e\u8a2d\u5b9a\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u7f6e\u3044\u3066\u3042\u308bnginx.conf\u306fDDBJ nginx\u3092\u30ea\u30d0\u30fc\u30b9\u30d7\u30ed\u30ad\u30b7\u3068\u3057\u3066\u4f7f\u3046\u8a2d\u5b9a\u306b\u306a\u3063\u3066\u3044\u308b\u3002\u9069\u5b9c\u4fee\u6b63\u3059\u308b\u3053\u3068\u3002\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003einstance\u306e\u8d77\u52d5\u003c/h2\u003e\u003ca id=\"user-content-instance\u306e\u8d77\u52d5\" class=\"anchor\" aria-label=\"Permalink: instance\u306e\u8d77\u52d5\" href=\"#instance\u306e\u8d77\u52d5\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash start_container.sh\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1639864357.0
+ "subscribers_count": 7,
+ "topics": [],
+ "updated_at": 1581482569.0
},
{
"data_format": 2,
- "description": null,
+ "description": " Molecular graphics systems in a Singularity container",
"filenames": [
+ "Singularity.1.0",
"Singularity"
],
- "full_name": "alejandrox1/singularity-test",
+ "full_name": "OSC/sa_singularity_molgfx",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/1090\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTesting Singularity\u003c/h1\u003e\u003ca id=\"user-content-testing-singularity\" class=\"anchor\" aria-label=\"Permalink: Testing Singularity\" href=\"#testing-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repo is designed to have a small test case for the usage of an OpenMPI\nexecutable on the Stampede2 supercomputer.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"src/\"\u003esrc\u003c/a\u003e contains the code necessary to build an executable.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"module/\"\u003emodule\u003c/a\u003e Stampede2 currently has version 2.3.1 installed as the\nmodule \u003ccode\u003etacc-singularity\u003c/code\u003e. This is an atempt to install Singularity v2.5.1\non the stampede2 supercomputer, along with its dependencies (there were\nsignificant changes to the API and Singularity itself between versions 2.3.X\nand 2.4.X). This still needs work...\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eTODO\u003c/strong\u003e:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eFinish installation of \u003ccode\u003esquash-tools\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eMake modules for \u003ccode\u003elibarchive-dev\u003c/code\u003e and \u003ccode\u003esquash-tools\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eNotes:\u003c/h2\u003e\u003ca id=\"user-content-notes\" class=\"anchor\" aria-label=\"Permalink: Notes:\" href=\"#notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e./src/mpi_hello_world\u003c/code\u003e hangs when executed on a container based off \u003ccode\u003eubuntu 16.04\u003c/code\u003e. When checking the system resources, \u003ccode\u003empirun singularity exec ubuntu mpi_hello_world\u003c/code\u003e is indeed creating MPI tasks, however processes hang\nindefinetely alternating between \u003ccode\u003eS\u003c/code\u003e and \u003ccode\u003eR\u003c/code\u003e states.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eMPICH\u003c/code\u003e doesn\u0027t seem to work - hence the use of \u003ccode\u003eOpenMPI\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eWork around for mounting PWD on stampede: \u003ccode\u003emkdir /work /scratch\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Molgfx\u003c/h1\u003e\u003ca id=\"user-content-singularity-molgfx\" class=\"anchor\" aria-label=\"Permalink: Singularity Molgfx\" href=\"#singularity-molgfx\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4301\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/44e7845c81a431dc740c9a7f76d0ea33e030e05d7a41d6164167ee435b17168f/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image for \u003ca href=\"https://github.com/OpenChemistry\"\u003eOpen Chemistry\u003c/a\u003e, Gabedit and Jmol. It was built on top of the base Docker image \u003ca href=\"https://hub.docker.com/_/ubuntu\" rel=\"nofollow\"\u003eubuntu\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild\u003c/h2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-label=\"Permalink: Build\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can build a local Singularity image named \u003ccode\u003emolgfx.sif\u003c/code\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build molgfx.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDeploy\u003c/h2\u003e\u003ca id=\"user-content-deploy\" class=\"anchor\" aria-label=\"Permalink: Deploy\" href=\"#deploy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstead of building it yourself you can download the pre-built image from \u003ca href=\"https://www.singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull molgfx.sif shub://OSC/sa_singularity_molgfx\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun\u003c/h2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-label=\"Permalink: Run\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eFind versions of molecular graphics systems\u003c/h3\u003e\u003ca id=\"user-content-find-versions-of-molecular-graphics-systems\" class=\"anchor\" aria-label=\"Permalink: Find versions of molecular graphics systems\" href=\"#find-versions-of-molecular-graphics-systems\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity inspect -H molgfx.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eStart Avogadro2\u003c/h3\u003e\u003ca id=\"user-content-start-avogadro2\" class=\"anchor\" aria-label=\"Permalink: Start Avogadro2\" href=\"#start-avogadro2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAvogadro2 is started using the default exec command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e molgfx.sif avogadro2\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe code is available as open source under the terms of the \u003ca href=\"http://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003eMIT License\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1528214682.0
+ "updated_at": 1588619360.0
},
{
"data_format": 2,
- "description": "BSMAP is a short reads mapping software for bisulfite sequencing reads.",
+ "description": "Containers for arch x86_64 based on Centos 7 and 8 with GNU 7 and 8 compiler and different versions of Spack 0.15.4 and 0.16.0",
"filenames": [
- "2.90/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-bsmap",
+ "full_name": "CINECA-HPC/container_spack_centos_x86_64",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-bsmap/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bsmap/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-bsmap/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bsmap/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/bd2eaf083681486a10c0520e03a0a148590eea13bd6758c649b236ab6a147168/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62736d6170\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bd2eaf083681486a10c0520e03a0a148590eea13bd6758c649b236ab6a147168/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62736d6170\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bsmap\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/90dbaf60a7819cb50da6c9d684ae66e45fe1126b4a405a06963a4a1b5af27525/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62736d6170\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/90dbaf60a7819cb50da6c9d684ae66e45fe1126b4a405a06963a4a1b5af27525/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62736d6170\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bsmap\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/2545c029ce8c2db8d5c4130530ee4ef326e5f362b25c0ad91e3a1e3e83593bd4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62736d6170\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2545c029ce8c2db8d5c4130530ee4ef326e5f362b25c0ad91e3a1e3e83593bd4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62736d6170\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bsmap\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/05de20bfc1f89c9a27c99af6439257ab0e37e91536e272e93bc4d0995c9f88c3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62736d6170\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/05de20bfc1f89c9a27c99af6439257ab0e37e91536e272e93bc4d0995c9f88c3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62736d6170\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bsmap\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-bsmap\u003c/h1\u003e\u003ca id=\"user-content-singularity-bsmap\" class=\"anchor\" aria-label=\"Permalink: singularity-bsmap\" href=\"#singularity-bsmap\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for bsmap.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebsmap\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bsmap/2.90\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bsmap\u003c/code\u003e as \u003ccode\u003e2.90.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003econtainer_spack_centos_x86_64\u003c/h1\u003e\u003ca id=\"user-content-container_spack_centos_x86_64\" class=\"anchor\" aria-label=\"Permalink: container_spack_centos_x86_64\" href=\"#container_spack_centos_x86_64\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eContainers for arch x86_64 based on Centos 7 with GNU 7 compiler and different versions of Spack\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e15.4\u003c/li\u003e\n\u003cli\u003e16.0\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIMPORTANT (NOT NECESSARY IF YOU START FROM A DOCKER IMAGE): When you are going to work inside the container remember to source these 2 file in order to set the proper module environment with spack and Lmod\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esource /opt/spack/share/spack/setup-env.sh\u003c/li\u003e\n\u003cli\u003esource /usr/share/lmod/8.2.7/init/sh\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 2,
"topics": [
- "singularity",
- "bioinformatics"
+ "spack"
],
- "updated_at": 1636519626.0
+ "updated_at": 1614178565.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity container for restrained-ensemble simulations using gmxapi",
"filenames": [
- "Palma-II/Singularity.1.0.0"
+ "Singularity"
],
- "full_name": "PointCloudSegementationOnALSandMLS/DataProcessingAndEvaluation",
+ "full_name": "jmhays/singularity-restrained-ensemble",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDataProcessingAndEvaluation\u003c/h1\u003e\u003ca id=\"user-content-dataprocessingandevaluation\" class=\"anchor\" aria-label=\"Permalink: DataProcessingAndEvaluation\" href=\"#dataprocessingandevaluation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository contains a collection of scripts that wer used for the thesis: Point Cloud Segmentation of Urban Architectural Structures from Aerial and Mobile LiDAR Scans using Neural Networks. For further information, please refer to the organisation \u003ca href=\"https://github.com/PointCloudSegementationOnALSandMLS\"\u003ePointCloudSegementationOnALSandMLS\u003c/a\u003e. In this repository we provide differnt data preperation, visualiztion and scripts. Using, this data still needs adjusting data paths and configurations for the differnt models. Further, it currently misses some documentation, which will be added soon.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eThis repository consits of the following folders and scripts:\u003c/h3\u003e\u003ca id=\"user-content-this-repository-consits-of-the-following-folders-and-scripts\" class=\"anchor\" aria-label=\"Permalink: This repository consits of the following folders and scripts:\" href=\"#this-repository-consits-of-the-following-folders-and-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003ePALMA-II: Since the most computation were conducted on th PALMA-II HPC cluster of the University of M\u00fcnster. These scipts mainly bash scripts, which allow to start the calculations on the cluster. Further, it consists off the Apptainer/Singularity image used on the Cluster.\u003c/li\u003e\n\u003cli\u003echange_class_divisions: As we tested differen class divisions inside our training data, we here provide the scipts, which restructured the class labeling in the point clouds\u003c/li\u003e\n\u003cli\u003eclusters: In this folder we provide a method to cluster vertical objects in the point clouds. Further we provide the results in this folder. For further information, please read the Readme inside this folder.\u003c/li\u003e\n\u003cli\u003eevaluation: The scripts in this folder are used to evaluate the model performances. Please read the Readme inside the folder for further information.\u003c/li\u003e\n\u003cli\u003ehelperFunctions: In this folder we just provide one script with different helper and test functions we used.\u003c/li\u003e\n\u003cli\u003epreprocessing: In order to be able to start the training data, we had to perform several pre processing steps. Please read the Readme in this folder for further information.\u003c/li\u003e\n\u003cli\u003evisualization: This folder contains different visualization scripts. For more information please stick to te Readme in this folder\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-restrained-ensemble\u003c/h1\u003e\u003ca id=\"user-content-singularity-restrained-ensemble\" class=\"anchor\" aria-label=\"Permalink: singularity-restrained-ensemble\" href=\"#singularity-restrained-ensemble\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity container for restrained-ensemble simulations using gmxapi\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1708817415.0
+ "updated_at": 1540327715.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Metabobank tools",
"filenames": [
- "Singularity.bioconductor_3.20.def",
- "Singularity.bioconductor_3.14.def",
- "Singularity.bioconductor_3.19.def old",
- "Singularity.Muscle_5.1.0.def",
- "Singularity.gemma_0.98.5.def",
- "Singularity.BBMap_39.01.def",
- "Singularity.plink_2.0.def",
- "Singularity.redDog.def",
- "Singularity.bioconductor_3.19.def",
- "Singularity.bioconductor_3.12.def",
- "Singularity.viralFlye_0.2.def",
- "Singularity.bioconductor_3.18.def",
- "Singularity.diamond_2.1.6.def",
- "Singularity.circos-0.69-9.def",
- "Singularity.masurca_4.0.9.def"
+ "Singularity"
],
- "full_name": "sarahinwood/singularity-containers",
+ "full_name": "ddbj/metabobank_tools",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eMetabobank tools\u003c/h1\u003e\u003ca id=\"user-content-metabobank-tools\" class=\"anchor\" aria-label=\"Permalink: Metabobank tools\" href=\"#metabobank-tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003embexcel2idfsdrf.rb\u003c/h2\u003e\u003ca id=\"user-content-mbexcel2idfsdrfrb\" class=\"anchor\" aria-label=\"Permalink: mbexcel2idfsdrf.rb\" href=\"#mbexcel2idfsdrfrb\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eMetaboBank metadata excel \u304b\u3089 IDF/SDRF tsv \u30d5\u30a1\u30a4\u30eb\u3092\u751f\u6210\u003c/p\u003e\n\u003cp\u003eOptions\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e-i: MetaboBank metadata excel\u003c/li\u003e\n\u003cli\u003e-f: base filename (\u6307\u5b9a\u3057\u306a\u3044\u5834\u5408 .xlsx \u3092\u9664\u3044\u305f\u30a8\u30af\u30bb\u30eb\u30d5\u30a1\u30a4\u30eb\u540d\u3092\u4f7f\u7528)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003eruby mbexcel2idfsdrf.rb -i MBS-22_1_LC-MS_metadata.xlsx -f test\n\ntest.idf.txt\ntest.sdrf.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eruby mbexcel2idfsdrf.rb -i MBS-22_1_LC-MS_metadata.xlsx\n\nMBS-22_1_LC-MS_metadata.idf.txt\nMBS-22_1_LC-MS_metadata.sdrf.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ebase filename \u3092\u30d5\u30a1\u30a4\u30eb\u540d\u3068\u3057\u3066 IDF/SDRF \u30d5\u30a1\u30a4\u30eb\u304c\u751f\u6210\u3055\u308c\u308b\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[base filename].idf.txt\u003c/li\u003e\n\u003cli\u003e[base filename].sdrf.txt\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIDF \u306f MAGE-TAB 1.1 \u4ee5\u964d\u3092\u3001SDRF \u306f Source Name \u4ee5\u964d\u3092\u51fa\u529b\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 9,
"topics": [],
- "updated_at": 1732498193.0
+ "updated_at": 1720571144.0
},
{
"data_format": 2,
- "description": "robot learning repository for IRIS robots. ",
+ "description": "IQmol in a Singularity container",
"filenames": [
- "docker/Singularity",
- "docker/railrl_v9_cuda10-1_mj1-50-1-59_torch0-4-1_gym0-10-5_py3-5-2/Singularity",
- "docker/railrl_hand_tf_v1/Singularity",
- "docker/railrl_hand_tf_v1/Singularity_cpu",
- "docker/railrl_hand_v2/Singularity",
- "docker/railrl_hand_v2/Singularity_cpu",
- "docker/railrl_hand_v3/Singularity",
- "docker/railrl_hand_v3/Singularity_cpu",
- "docker/railrl_gpu_mujoco1-5-v4/singularity/Singularity",
- "docker/railrl_v8_cuda10-1/Singularity",
- "docker/railrl_v6_cuda9/Singularity",
- "docker/railrl_v11_cuda10-1_mj2-0-2-2_torch0-3-1_gym0-10-5_py3-5-2/Singularity",
- "docker/railrl_v7/Singularity",
- "docker/railrl_v5/singularity/Singularity",
- "docker/railrl_hand_v1/Singularity",
- "docker/railrl_hand_v1/Singularity_cpu",
- "docker/railrl_v10_cuda10-1_mj2-0-2-2_torch0-4-1_gym0-10-5_py3-5-2/Singularity",
- "docker/railrl_v6_cuda8/Singularity",
- "docker/railrl_v12_cuda10-1_mj2-0-2-2_torch1-1-0_gym0-12-5_py3-6-5/Singularity",
- "docker/railrl_v12_cuda10-1_mj2-0-2-2_torch1-1-0_gym0-12-5_py3-6-5/Singularity_cpu",
- "docker/railrl_ray/Singularity",
- "docker/railrl_v9-5_cuda10-1_mj1-50-1-59_torch1-1-0_gym0-10-5_py3-5-2/Singularity",
- "docker/railrl_v7_cuda8/Singularity",
- "docker/railrl_ray_gym-0-12-0/Singularity_from_scratch_cuda8",
- "docker/railrl_ray_gym-0-12-0/Singularity_from_scratch",
- "docker/vitchyr/railrl_v15_cuda10-1_mj2-0-2-2_torch1-1-0_gym0-12-5_py3-6-5/Singularity",
- "docker/vitchyr/railrl_v15_cuda10-1_mj2-0-2-2_torch1-1-0_gym0-12-5_py3-6-5/Singularity_cpu",
- "experiments/ashvin/icml2020/singularity/Singularity"
+ "Singularity.2.13b",
+ "Singularity",
+ "Singularity.2.14",
+ "Singularity.2.11.2"
],
- "full_name": "JonathanYang0127/iris_robot_learning",
+ "full_name": "OSC/sa_singularity_iqmol",
"latest_release": null,
- "readme": "\u003cp\u003eREADME last updated on: 01/24/2018\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003erailrl\u003c/h1\u003e\u003ca id=\"user-content-railrl\" class=\"anchor\" aria-label=\"Permalink: railrl\" href=\"#railrl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eReinforcement learning framework.\nSome implemented algorithms:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"examples/ddpg.py\"\u003eDeep Deterministic Policy Gradient (DDPG)\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"examples/sac.py\"\u003eSoft Actor Critic\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"examples/dqn_and_double_dqn.py\"\u003e(Double) Deep Q-Network (DQN)\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"examples/her.py\"\u003eHindsight Experience Replay (HER)\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"examples/model_based_dagger.py\"\u003eMPC with Neural Network Model\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"examples/naf.py\"\u003eNormalized Advantage Function (NAF)\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eWARNING: I haven\u0027t tested this NAF implementation much, so it may not match the paper\u0027s performance. I\u0027m pretty confident about the other two implementations though.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo get started, checkout the example scripts, linked above.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation\u003c/h2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSome dependancies\u003c/h3\u003e\u003ca id=\"user-content-some-dependancies\" class=\"anchor\" aria-label=\"Permalink: Some dependancies\" href=\"#some-dependancies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003esudo apt-get install swig\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCreate Conda Env\u003c/h3\u003e\u003ca id=\"user-content-create-conda-env\" class=\"anchor\" aria-label=\"Permalink: Create Conda Env\" href=\"#create-conda-env\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstall and use the included ananconda environment\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ conda env create -f docker/railrl/railrl-env.yml\n$ source activate railrl-env\n(railrl-env) $ # Ready to run examples/ddpg_cheetah_no_doodad.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOr if you want you can use the docker image included.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDownload Simulation Env Code\u003c/h3\u003e\u003ca id=\"user-content-download-simulation-env-code\" class=\"anchor\" aria-label=\"Permalink: Download Simulation Env Code\" href=\"#download-simulation-env-code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/vitchyr/multiworld\"\u003emultiworld\u003c/a\u003e (contains environments):\u003ccode\u003egit clone https://github.com/vitchyr/multiworld\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTesting\u003c/h3\u003e\u003ca id=\"user-content-testing\" class=\"anchor\" aria-label=\"Permalink: Testing\" href=\"#testing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWriting more tests in progress. Run with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enose2 -v -B -s tests/regression\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e(Optional) Install doodad\u003c/h3\u003e\u003ca id=\"user-content-optional-install-doodad\" class=\"anchor\" aria-label=\"Permalink: (Optional) Install doodad\" href=\"#optional-install-doodad\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eI recommend installing \u003ca href=\"https://github.com/justinjfu/doodad\"\u003edoodad\u003c/a\u003e to\nlaunch jobs. Some of its nice features include:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eEasily switch between running code locally, on a remote compute with\nDocker, on EC2 with Docker\u003c/li\u003e\n\u003cli\u003eEasily add your dependencies that can\u0027t be installed via pip (e.g. you\nborrowed someone\u0027s code)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIf you install doodad, also modify \u003ccode\u003eCODE_DIRS_TO_MOUNT\u003c/code\u003e in \u003ccode\u003econfig.py\u003c/code\u003e to\ninclude:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePath to rllab directory\u003c/li\u003e\n\u003cli\u003ePath to railrl directory\u003c/li\u003e\n\u003cli\u003ePath to other code you want to juse\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou\u0027ll probably also need to update the other variables besides the docker\nimages/instance stuff.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSetup Config File\u003c/h3\u003e\u003ca id=\"user-content-setup-config-file\" class=\"anchor\" aria-label=\"Permalink: Setup Config File\" href=\"#setup-config-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou must setup the config file for launching experiments, providing paths to your code and data directories. Inside \u003ccode\u003erailrl/config/launcher_config.py\u003c/code\u003e, fill in the appropriate paths. You can use \u003ccode\u003erailrl/config/launcher_config_template.py\u003c/code\u003e as an example reference.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ecp railrl/launchers/config-template.py railrl/launchers/config.py\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eVisualizing a policy and seeing results\u003c/h2\u003e\u003ca id=\"user-content-visualizing-a-policy-and-seeing-results\" class=\"anchor\" aria-label=\"Permalink: Visualizing a policy and seeing results\" href=\"#visualizing-a-policy-and-seeing-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDuring training, the results will be saved to a file called under\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eLOCAL_LOG_DIR/\u0026lt;exp_prefix\u0026gt;/\u0026lt;foldername\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eLOCAL_LOG_DIR\u003c/code\u003e is the directory set by \u003ccode\u003erailrl.launchers.config.LOCAL_LOG_DIR\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e\u0026lt;exp_prefix\u0026gt;\u003c/code\u003e is given either to \u003ccode\u003esetup_logger\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e\u0026lt;foldername\u0026gt;\u003c/code\u003e is auto-generated and based off of \u003ccode\u003eexp_prefix\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003einside this folder, you should see a file called \u003ccode\u003eparams.pkl\u003c/code\u003e. To visualize a policy, run\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e(railrl) $ python scripts/sim_policy LOCAL_LOG_DIR/\u0026lt;exp_prefix\u0026gt;/\u0026lt;foldername\u0026gt;/params.pkl\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you have rllab installed, you can also visualize the results\nusing \u003ccode\u003erllab\u003c/code\u003e\u0027s viskit, described at\nthe bottom of \u003ca href=\"http://rllab.readthedocs.io/en/latest/user/cluster.html\" rel=\"nofollow\"\u003ethis page\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003etl;dr run\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython rllab/viskit/frontend.py LOCAL_LOG_DIR/\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eexp_prefix\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAdd paths\u003c/h3\u003e\u003ca id=\"user-content-add-paths\" class=\"anchor\" aria-label=\"Permalink: Add paths\" href=\"#add-paths\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003eexport PYTHONPATH=$PYTHONPATH:/path/to/multiworld/repo\nexport PYTHONPATH=$PYTHONPATH:/path/to/doodad/repo\nexport PYTHONPATH=$PYTHONPATH:/path/to/viskit/repo\nexport PYTHONPATH=$PYTHONPATH:/path/to/railrl-private/repo\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCredit\u003c/h2\u003e\u003ca id=\"user-content-credit\" class=\"anchor\" aria-label=\"Permalink: Credit\" href=\"#credit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository was initially developed primarily by \u003ca href=\"https://github.com/vitchyr\"\u003eVitchyr\nPong\u003c/a\u003e, until July 2021, at which point it was\ntransferred to the RAIL Berkeley organization and is primarily maintained\nby \u003ca href=\"https://github.com/anair13\"\u003eAshvin Nair\u003c/a\u003e.\nOther major collaborators and contributions:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/mdalal2020\"\u003eMurtaza Dalal\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/stevenlin1111\"\u003eSteven Lin\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eA lot of the coding infrastructure is based on\n\u003ca href=\"https://github.com/rll/rllab\"\u003erllab\u003c/a\u003e.\nThe serialization and logger code are basically a carbon copy of the rllab\nversions.\u003c/p\u003e\n\u003cp\u003eThe Dockerfile is based on the \u003ca href=\"https://github.com/openai/mujoco-py/blob/master/Dockerfile\"\u003eOpenAI mujoco-py\nDockerfile\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe SMAC code builds off of the \u003ca href=\"https://github.com/katerakelly/oyster\"\u003ePEARL\ncode\u003c/a\u003e, which built off of an older\nRLKit version.\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity IQmol\u003c/h1\u003e\u003ca id=\"user-content-singularity-iqmol\" class=\"anchor\" aria-label=\"Permalink: Singularity IQmol\" href=\"#singularity-iqmol\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3599\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/44e7845c81a431dc740c9a7f76d0ea33e030e05d7a41d6164167ee435b17168f/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image for \u003ca href=\"http://iqmol.org/index.html\" rel=\"nofollow\"\u003eIQmol\u003c/a\u003e. It was built on top of the base Docker image \u003ca href=\"https://hub.docker.com/_/ubuntu\" rel=\"nofollow\"\u003eubuntu\u003c/a\u003e or CentOS image \u003ca href=\"https://hub.docker.com/_/centos\" rel=\"nofollow\"\u003ecentos\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild\u003c/h2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-label=\"Permalink: Build\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can build a local Singularity image named \u003ccode\u003eiqmol.sif\u003c/code\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build iqmol.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDeploy\u003c/h2\u003e\u003ca id=\"user-content-deploy\" class=\"anchor\" aria-label=\"Permalink: Deploy\" href=\"#deploy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstead of building it yourself you can download the pre-built image from \u003ca href=\"https://www.singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull iqmol.sif shub://OSC/sa_singularity_iqmol\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun\u003c/h2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-label=\"Permalink: Run\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eStart IQmol\u003c/h3\u003e\u003ca id=\"user-content-start-iqmol\" class=\"anchor\" aria-label=\"Permalink: Start IQmol\" href=\"#start-iqmol\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIQmol is started using the default run command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run iqmol.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor as a native command\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./iqmol.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe code is available as open source under the terms of the \u003ca href=\"http://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003eMIT License\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 8,
"topics": [],
- "updated_at": 1697423014.0
+ "updated_at": 1599018735.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Testing the use of Github Actions to deploy singularity images",
"filenames": [
- "docker/Singularity",
- "docker/railrl_v9_cuda10-1_mj1-50-1-59_torch0-4-1_gym0-10-5_py3-5-2/Singularity",
- "docker/railrl_hand_v2/Singularity",
- "docker/railrl_hand_v2/Singularity_cpu",
- "docker/railrl_gpu_mujoco1-5-v4/singularity/Singularity",
- "docker/railrl_v8_cuda10-1/Singularity",
- "docker/railrl_v6_cuda9/Singularity",
- "docker/railrl_v11_cuda10-1_mj2-0-2-2_torch0-3-1_gym0-10-5_py3-5-2/Singularity",
- "docker/railrl_v7/Singularity",
- "docker/railrl_v5/singularity/Singularity",
- "docker/railrl_hand_v1/Singularity",
- "docker/railrl_hand_v1/Singularity_cpu",
- "docker/railrl_v10_cuda10-1_mj2-0-2-2_torch0-4-1_gym0-10-5_py3-5-2/Singularity",
- "docker/railrl_v6_cuda8/Singularity",
- "docker/railrl_v12_cuda10-1_mj2-0-2-2_torch1-1-0_gym0-12-5_py3-6-5/Singularity",
- "docker/railrl_v12_cuda10-1_mj2-0-2-2_torch1-1-0_gym0-12-5_py3-6-5/Singularity_cpu",
- "docker/railrl_ray/Singularity",
- "docker/railrl_v9-5_cuda10-1_mj1-50-1-59_torch1-1-0_gym0-10-5_py3-5-2/Singularity",
- "docker/railrl_v7_cuda8/Singularity",
- "docker/railrl_ray_gym-0-12-0/Singularity_from_scratch_cuda8",
- "docker/railrl_ray_gym-0-12-0/Singularity_from_scratch",
- "experiments/ashvin/icml2020/singularity/Singularity"
+ "Singularity"
],
- "full_name": "Asap7772/rail-rl-franka-eval",
- "latest_release": null,
- "readme": "\u003cp\u003eREADME last updated on: 01/24/2018\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003erailrl\u003c/h1\u003e\u003ca id=\"user-content-railrl\" class=\"anchor\" aria-label=\"Permalink: railrl\" href=\"#railrl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eReinforcement learning framework.\nSome implemented algorithms:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"examples/ddpg.py\"\u003eDeep Deterministic Policy Gradient (DDPG)\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"examples/sac.py\"\u003eSoft Actor Critic\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"examples/dqn_and_double_dqn.py\"\u003e(Double) Deep Q-Network (DQN)\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"examples/her.py\"\u003eHindsight Experience Replay (HER)\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"examples/model_based_dagger.py\"\u003eMPC with Neural Network Model\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"examples/naf.py\"\u003eNormalized Advantage Function (NAF)\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eWARNING: I haven\u0027t tested this NAF implementation much, so it may not match the paper\u0027s performance. I\u0027m pretty confident about the other two implementations though.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo get started, checkout the example scripts, linked above.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation\u003c/h2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSome dependancies\u003c/h3\u003e\u003ca id=\"user-content-some-dependancies\" class=\"anchor\" aria-label=\"Permalink: Some dependancies\" href=\"#some-dependancies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003esudo apt-get install swig\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCreate Conda Env\u003c/h3\u003e\u003ca id=\"user-content-create-conda-env\" class=\"anchor\" aria-label=\"Permalink: Create Conda Env\" href=\"#create-conda-env\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstall and use the included ananconda environment\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ conda env create -f docker/railrl/railrl-env.yml\n$ source activate railrl-env\n(railrl-env) $ # Ready to run examples/ddpg_cheetah_no_doodad.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOr if you want you can use the docker image included.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDownload Simulation Env Code\u003c/h3\u003e\u003ca id=\"user-content-download-simulation-env-code\" class=\"anchor\" aria-label=\"Permalink: Download Simulation Env Code\" href=\"#download-simulation-env-code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/vitchyr/multiworld\"\u003emultiworld\u003c/a\u003e (contains environments):\u003ccode\u003egit clone https://github.com/vitchyr/multiworld\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e(Optional) Install doodad\u003c/h3\u003e\u003ca id=\"user-content-optional-install-doodad\" class=\"anchor\" aria-label=\"Permalink: (Optional) Install doodad\" href=\"#optional-install-doodad\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eI recommend installing \u003ca href=\"https://github.com/justinjfu/doodad\"\u003edoodad\u003c/a\u003e to\nlaunch jobs. Some of its nice features include:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eEasily switch between running code locally, on a remote compute with\nDocker, on EC2 with Docker\u003c/li\u003e\n\u003cli\u003eEasily add your dependencies that can\u0027t be installed via pip (e.g. you\nborrowed someone\u0027s code)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIf you install doodad, also modify \u003ccode\u003eCODE_DIRS_TO_MOUNT\u003c/code\u003e in \u003ccode\u003econfig.py\u003c/code\u003e to\ninclude:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePath to rllab directory\u003c/li\u003e\n\u003cli\u003ePath to railrl directory\u003c/li\u003e\n\u003cli\u003ePath to other code you want to juse\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou\u0027ll probably also need to update the other variables besides the docker\nimages/instance stuff.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSetup Config File\u003c/h3\u003e\u003ca id=\"user-content-setup-config-file\" class=\"anchor\" aria-label=\"Permalink: Setup Config File\" href=\"#setup-config-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou must setup the config file for launching experiments, providing paths to your code and data directories. Inside \u003ccode\u003erailrl/config/launcher_config.py\u003c/code\u003e, fill in the appropriate paths. You can use \u003ccode\u003erailrl/config/launcher_config_template.py\u003c/code\u003e as an example reference.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ecp railrl/launchers/config-template.py railrl/launchers/config.py\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eVisualizing a policy and seeing results\u003c/h2\u003e\u003ca id=\"user-content-visualizing-a-policy-and-seeing-results\" class=\"anchor\" aria-label=\"Permalink: Visualizing a policy and seeing results\" href=\"#visualizing-a-policy-and-seeing-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDuring training, the results will be saved to a file called under\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eLOCAL_LOG_DIR/\u0026lt;exp_prefix\u0026gt;/\u0026lt;foldername\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eLOCAL_LOG_DIR\u003c/code\u003e is the directory set by \u003ccode\u003erailrl.launchers.config.LOCAL_LOG_DIR\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e\u0026lt;exp_prefix\u0026gt;\u003c/code\u003e is given either to \u003ccode\u003esetup_logger\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e\u0026lt;foldername\u0026gt;\u003c/code\u003e is auto-generated and based off of \u003ccode\u003eexp_prefix\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003einside this folder, you should see a file called \u003ccode\u003eparams.pkl\u003c/code\u003e. To visualize a policy, run\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e(railrl) $ python scripts/sim_policy LOCAL_LOG_DIR/\u0026lt;exp_prefix\u0026gt;/\u0026lt;foldername\u0026gt;/params.pkl\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you have rllab installed, you can also visualize the results\nusing \u003ccode\u003erllab\u003c/code\u003e\u0027s viskit, described at\nthe bottom of \u003ca href=\"http://rllab.readthedocs.io/en/latest/user/cluster.html\" rel=\"nofollow\"\u003ethis page\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003etl;dr run\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython rllab/viskit/frontend.py LOCAL_LOG_DIR/\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eexp_prefix\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAdd paths\u003c/h3\u003e\u003ca id=\"user-content-add-paths\" class=\"anchor\" aria-label=\"Permalink: Add paths\" href=\"#add-paths\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003eexport PYTHONPATH=$PYTHONPATH:/path/to/multiworld/repo\nexport PYTHONPATH=$PYTHONPATH:/path/to/doodad/repo\nexport PYTHONPATH=$PYTHONPATH:/path/to/viskit/repo\nexport PYTHONPATH=$PYTHONPATH:/path/to/railrl-private/repo\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCredit\u003c/h2\u003e\u003ca id=\"user-content-credit\" class=\"anchor\" aria-label=\"Permalink: Credit\" href=\"#credit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA lot of the coding infrastructure is based on \u003ca href=\"https://github.com/rll/rllab\"\u003erllab\u003c/a\u003e.\nAlso, the serialization and logger code are basically a carbon copy.\u003c/p\u003e\n",
+ "full_name": "bailey-lab/deploy-singularity-testing",
+ "latest_release": "v0.1.1",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003edeploy-singularity-testing\u003c/h1\u003e\u003ca id=\"user-content-deploy-singularity-testing\" class=\"anchor\" aria-label=\"Permalink: deploy-singularity-testing\" href=\"#deploy-singularity-testing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTesting the use of Github Actions to deploy singularity images\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1605834321.0
+ "updated_at": 1635190346.0
},
{
"data_format": 2,
- "description": "My software stack of singularity images.",
+ "description": "Container for AnnotSV software. ",
"filenames": [
- "Singularity.cuda8-comet",
- "Singularity.cuda8-openmpi3.0",
- "Singularity.cuda8-ml",
- "Singularity.comet",
- "Singularity.cuda8",
- "Singularity.cuda8-bridges",
- "Singularity.bridges",
- "Singularity.cuda8-flux",
- "Singularity.flux"
+ "Singularity_2.2",
+ "Singularity"
],
- "full_name": "csadorf/singularity-recipes",
+ "full_name": "Clinical-Genomics-Lund/annotsv_container",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity\u003c/h1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eMy software stack of singularity images.\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAnnotSV container for WGS pipeline\u003c/h2\u003e\u003ca id=\"user-content-annotsv-container-for-wgs-pipeline\" class=\"anchor\" aria-label=\"Permalink: AnnotSV container for WGS pipeline\" href=\"#annotsv-container-for-wgs-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is a singularity recipe for AnnotSV 2.3 and 2.2.\u003c/p\u003e\n\u003cp\u003esudo singularity build annotsv2.3.sif Singularity\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [],
- "updated_at": 1546983060.0
+ "updated_at": 1618833570.0
},
{
"data_format": 2,
- "description": "Review how to write a singularity image",
+ "description": null,
"filenames": [
+ "Singularity_custom",
"Singularity"
],
- "full_name": "j23414/singularity_event",
+ "full_name": "h1-the-swan/shortest_path_wos_disciplines",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity_event\u003c/h1\u003e\u003ca id=\"user-content-singularity_event\" class=\"anchor\" aria-label=\"Permalink: singularity_event\" href=\"#singularity_event\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4858\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eReview how to write a singularity image\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCalculate shortest path citation distance between pairs of disciplines in Web of Science (WoS)\u003c/h1\u003e\u003ca id=\"user-content-calculate-shortest-path-citation-distance-between-pairs-of-disciplines-in-web-of-science-wos\" class=\"anchor\" aria-label=\"Permalink: Calculate shortest path citation distance between pairs of disciplines in Web of Science (WoS)\" href=\"#calculate-shortest-path-citation-distance-between-pairs-of-disciplines-in-web-of-science-wos\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eJason Portenoy 2019\u003c/p\u003e\n\u003cp\u003eFor a set of disciplines in WoS, calculate the pairwise shortest path citation distance between them by calculating the average distance between a sample of papers from each discipline.\u003c/p\u003e\n\u003cp\u003eUse \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e for containerization of python graph-tool and to run on HPC.\u003c/p\u003e\n\u003cp\u003eFirst, clean the input data using \u003ca href=\"src/data/clean_samples.py\"\u003esrc/data/clean_samples.py\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eNext, convert to JSON using \u003ca href=\"src/data/make_json.py\"\u003esrc/data/make_json.py\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe analysis can be run on HPC with Singularity using the command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# example command\n\nsingularity exec graph_tool.sif python3 -m src.process.calc_shortest_path_distances \u0026lt;PATH_TO_CITATIONS_TSV\u0026gt; \u0026lt;PATH_TO_SAMPLES_JSON\u0026gt; ./data/processed/discipline000 --discipline-index 0 --undirected --debug\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will calculate shortest path distances for one discipline. It will, for each separate paper ID, calculate shortest path distances between that paper and all of the others in the JSON file. It will output this to a separate file in the output directory (\u003ccode\u003e./data/processed/discipline000\u003c/code\u003e in the example above). In the example command above, it will run this analysis for the first discipline (discipline 0) in the JSON file.\u003c/p\u003e\n\u003cp\u003eOn HPC, these jobs can run in the backfill queue on nodes with 200GB RAM. These jobs have a maximum of 4 hours. The command above will ignore everything that has already been calculated (in the output directory), and process as many IDs as it can before the time runs out. So, it may be necessary to run each discipline multiple times, until all the IDs have been processed.\u003c/p\u003e\n\u003cp\u003eThe script \u003ca href=\"src/modify_slurm_script.py\"\u003esrc/modify_slurm_script.py\u003c/a\u003e can generate multiple scripts to run on the Slurm scheduler on HPC. For example:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython -m src.modify_slurm_script scripts/201910040930/calc_shortest_path_slurm.sh --start=0 --end=35 --log-dir logs\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(In this example, there are 36 disciplines. The file \u003ccode\u003ecalc_shortest_path_slurm.sh\u003c/code\u003e is a template Slurm script.)\u003c/p\u003e\n\u003cp\u003eThen, the jobs can all be submitted at once with (for example):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003efor file in scripts/201910040930/calc_shortest_paths_discipline*.sh; do sbatch -p ckpt -A stf-ckpt --mail-user $EMAIL $file; done\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(\u003ccode\u003e$EMAIL\u003c/code\u003e is an environment variable storing your email address. You will be notified when the job starts and ends.)\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSingularity\u003c/h2\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: Singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity is a containerization tool. It is good for shared supercomputers because, unlike Docker, it does not require admin/root privileges and does not give access to others\u0027 files.\u003c/p\u003e\n\u003cp\u003eIt does, however, require root privileges to build the images. Therefore, you should build on a system for which you have root privileges. This will output a (large) Singularity image file (\u003ccode\u003e.sif\u003c/code\u003e), which can be uploaded to a different system and used without root privileges.\u003c/p\u003e\n\u003cp\u003eImages are built from a Singularity definition file (e.g., \u003ca href=\"./Singularity\"\u003e./Singularity\u003c/a\u003e). These can be built off of Docker containers. This is the case for the \u003ccode\u003e./Singularity\u003c/code\u003e definition file in this repo. There is an existing Docker image for \u003ccode\u003epython-graph-tool\u003c/code\u003e, which is used as the base for the image.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build graph_tool.sif ./Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThere is another alternative definition file: \u003ca href=\"./Singularity_custom\"\u003e./Singularity_custom\u003c/a\u003e. This is basically copying the Dockerfile from the \u003ccode\u003epython-graph-tool\u003c/code\u003e Docker image, into Singularity format. (This takes a while to build.)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build graph_tool_custom.sif ./Singularity_custom\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eTODO\u003c/h5\u003e\u003ca id=\"user-content-todo\" class=\"anchor\" aria-label=\"Permalink: TODO\" href=\"#todo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eParallelize the distance calculations, after the graph data is loaded (using multiprocessing)\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1602528896.0
+ "updated_at": 1571469085.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Scripts to build a docker and singularity with uboonecode",
"filenames": [
- "Singularity",
- "SingularityFedora"
+ "Singularity"
],
- "full_name": "jolars/HessianScreening",
+ "full_name": "NuTufts/uboonecode-container",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCode for the Hessian Screening Rule\u003c/h1\u003e\u003ca id=\"user-content-code-for-the-hessian-screening-rule\" class=\"anchor\" aria-label=\"Permalink: Code for the Hessian Screening Rule\" href=\"#code-for-the-hessian-screening-rule\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://arxiv.org/abs/2104.13026\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6388ff4fabd00a51d4bfac35fb9ed96aa426dd928c7525234fe887624a148bab/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f61725869762d313233342e35363738392d6233316231622e737667\" alt=\"arXiv\" data-canonical-src=\"https://img.shields.io/badge/arXiv-1234.56789-b31b1b.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eResults\u003c/h2\u003e\u003ca id=\"user-content-results\" class=\"anchor\" aria-label=\"Permalink: Results\" href=\"#results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe results from the simulations, which were run on a dedicated HPC\ncluster, are stored in the \u003ca href=\"results/\"\u003eresults folder\u003c/a\u003e. The figures and\ntables in the paper, generated from these results, are stored in\n\u003ca href=\"figures/\"\u003e\u003ccode\u003efigures/\u003c/code\u003e\u003c/a\u003e and \u003ca href=\"tables/\"\u003e\u003ccode\u003etables/\u003c/code\u003e\u003c/a\u003e respectively.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eReproducing the Results\u003c/h2\u003e\u003ca id=\"user-content-reproducing-the-results\" class=\"anchor\" aria-label=\"Permalink: Reproducing the Results\" href=\"#reproducing-the-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe results from our paper were run through a singularity container.\nCheck the releases for pre-built singularity containers that you can\ndownload and use.\u003c/p\u003e\n\u003cp\u003eTo reproduce the results, \u003cstrong\u003ealways\u003c/strong\u003e use the singularity container. To\nrun an experiment from the singularity container, call\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --bind results:/project/results container.sif \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003escript\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ewhere \u003ccode\u003e\u0026lt;script\u0026gt;\u003c/code\u003e should be a name of a script in the \u003ca href=\"experiments/\"\u003eexperiments\nfolder\u003c/a\u003e, such as \u003ccode\u003esimulateddata.R\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRe-building the Singularity Container\u003c/h3\u003e\u003ca id=\"user-content-re-building-the-singularity-container\" class=\"anchor\" aria-label=\"Permalink: Re-building the Singularity Container\" href=\"#re-building-the-singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you want to re-build the singularity container from scratch (or\nsimply want to clone the repo to your local drive), you can do so via\nthe following steps.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eClone the repository to your local hard drive. On linux, using SSH\nauthentication, run\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone git@github.com:jolars/HessianScreening.git\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eNavigate to the root of the repo and download\nthe data sets by running the following commands.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e HessianScreening\nRscript data-raw/arcene.R\nRscript data-raw/breheny-data.R\nRscript data-raw/libsvm-data.R\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBuild the singularity container by calling\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build container.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThen proceed as in \u003ca href=\"#reproducing-the-results\"\u003eReproducing the Results\u003c/a\u003e\nto run the experiments.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning Experiments without Singularity (Not Recommended!)\u003c/h3\u003e\u003ca id=\"user-content-running-experiments-without-singularity-not-recommended\" class=\"anchor\" aria-label=\"Permalink: Running Experiments without Singularity (Not Recommended!)\" href=\"#running-experiments-without-singularity-not-recommended\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAlternatively, you may also reproduce the results by cloning this\nrepository, then either opening the \u003ccode\u003eHessianScreening.Rproj\u003c/code\u003e file in R\nStudio or starting R in the root directory of this folder (which will\nactivate the renv repository) and then run\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003e\u003cspan class=\"pl-e\"\u003erenv\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e::\u003c/span\u003erestore()\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eto restore the project library. Then build the R package (see below) and\nrun the simulations directly by running the scripts in the experiments\nfolder. This is \u003cstrong\u003enot recommended\u003c/strong\u003e, however, since it, unlike the\nSingularity container approach, does not exactly reproduce the software\nenvironment used when these simulations where originally run and may\nresult in discrepancies due to differences in for instance operating\nsystems, compilers, BLAS/LAPACK implementations, and most\ncritically, the version of R.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eR Package\u003c/h2\u003e\u003ca id=\"user-content-r-package\" class=\"anchor\" aria-label=\"Permalink: R Package\" href=\"#r-package\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you want to build and experiment with the package, you can do so by\ncalling\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e R CMD INSTALL \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eprovided you have \u003ccode\u003ecd\u003c/code\u003eed to the root folder of this repository. First\nensure, however, that you have enabled the renv project library by\ncalling \u003ccode\u003erenv::restore()\u003c/code\u003e (see the section above).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eData\u003c/h2\u003e\u003ca id=\"user-content-data\" class=\"anchor\" aria-label=\"Permalink: Data\" href=\"#data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe datasets used in these simulations are stored in the \u003ca href=\"data/\"\u003edata\nfolder\u003c/a\u003e. Scripts to retrieve these datasets from their original\nsources can be found in \u003ca href=\"data-raw/\"\u003e\u003ccode\u003edata-raw/\u003c/code\u003e\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003euboonecode-container\u003c/h1\u003e\u003ca id=\"user-content-uboonecode-container\" class=\"anchor\" aria-label=\"Permalink: uboonecode-container\" href=\"#uboonecode-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDocker and singularity file to build uboonecode containers.\u003c/p\u003e\n\u003cp\u003eThis takes advantage of scisoft and an utility script, \u003ccode\u003epullProducts\u003c/code\u003e. The code is built on top of Scientific Linux 6.\u003c/p\u003e\n\u003cp\u003eGiven a tagged-release version of uboonecode, pullProducts, untars all dependencies into the \u003ccode\u003e/products\u003c/code\u003e folder.\u003c/p\u003e\n\u003cp\u003eOnce built, one can go into the container and setup UPS, which is the utilty to setup different software products, by sourcing\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esource /products/setup\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor example, one can then list the version of uboonecode stored in the container\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eups list -aK+ uboonecode\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild Docker image\u003c/h2\u003e\u003ca id=\"user-content-build-docker-image\" class=\"anchor\" aria-label=\"Permalink: Build Docker image\" href=\"#build-docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOf course, you need to install docker.\u003c/p\u003e\n\u003cp\u003eTo build the image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo docker build -t [container_name:tag] .\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote that the last step of the Dockerfile installs LArCV2.\nThis is used by our group to make truth-labeled training data.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun the Docker image\u003c/h2\u003e\u003ca id=\"user-content-run-the-docker-image\" class=\"anchor\" aria-label=\"Permalink: Run the Docker image\" href=\"#run-the-docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -it [container_name:tag] bash\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSetup uboonecode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esetup uboonecode [version] [qualifier]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun larsoft\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003elar -c [fcl file] -s [input file]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild a singularity image, based on the docker image\u003c/h2\u003e\u003ca id=\"user-content-build-a-singularity-image-based-on-the-docker-image\" class=\"anchor\" aria-label=\"Permalink: Build a singularity image, based on the docker image\" href=\"#build-a-singularity-image-based-on-the-docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe use singularity\u0027s feature of importing a docker image.\nTo do that, we have to push the docker image to dockerhub.\nYou\u0027ll need a dockerhub account.\u003c/p\u003e\n\u003cp\u003eOnce you get an account, push to dockerhub\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker login\ndocker push [container_name:tag]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen build the singularity image. Note that the build file has extra folders created to allow\nnetwork folders to be mounted on the Tufts Cluster.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build [output_image_name] Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun the singularity image\u003c/h2\u003e\u003ca id=\"user-content-run-the-singularity-image\" class=\"anchor\" aria-label=\"Permalink: Run the singularity image\" href=\"#run-the-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eStart the singularity container by\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell [container image]\nprompt\u0026gt; bash\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen follow the instructions for the docker image to run \u003ccode\u003elar\u003c/code\u003e or build a development copy.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSetup and build a development copy\u003c/h2\u003e\u003ca id=\"user-content-setup-and-build-a-development-copy\" class=\"anchor\" aria-label=\"Permalink: Setup and build a development copy\" href=\"#setup-and-build-a-development-copy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHave confirmed that one can also setup and build a development version as well.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esource /products/setup\nsetup mrb\nmkdir workdir\ncd workdir\nsetup uboonecode [version] [qualifier]\nexport MRB_PROJECT=larsoft\nmrb newDev\nsource localProducts-XXXX/setup\ncd srcs\nmrb g uboonecode\nmrbsetenv\nmrb i\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eHelper scripts\u003c/h3\u003e\u003ca id=\"user-content-helper-scripts\" class=\"anchor\" aria-label=\"Permalink: Helper scripts\" href=\"#helper-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe repo also contains scripts to launch a job to build a development setup on the Tufts cluster.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1718911019.0
+ "updated_at": 1532097120.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "container/Singularity",
- "container/single_container/Singularity"
+ "Singularity"
],
- "full_name": "Clinical-Genomics-Lund/SomaticPanelPipeline",
+ "full_name": "aces/simulation_toolkit_singularity",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSimulation Toolkit for Coticometry Pipeline\u003c/h1\u003e\u003ca id=\"user-content-simulation-toolkit-for-coticometry-pipeline\" class=\"anchor\" aria-label=\"Permalink: Simulation Toolkit for Coticometry Pipeline\" href=\"#simulation-toolkit-for-coticometry-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTools in this repository can be used to simulate artificial lesions in the brain in order to estimate the sensitivity and specificity of lesion\ndetection, using different automated corticometry pipelines.\u003c/p\u003e\n\u003cp\u003eTo set up software you need the following:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eInstall the software packages needed to run the deformation-2.pl script. Please follow steps in: \u003ca href=\"https://github.com/aces/simulation_toolkit_singularity/blob/main/Singularity\"\u003ehttps://github.com/aces/simulation_toolkit_singularity/blob/main/Singularity\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eObtain data from\n\u003ca href=\"https://ida.loni.usc.edu/collaboration/access/appLicense.jsp;jsessionid=B0278AF5FD413E9AC14512DF841FFCA4/\" rel=\"nofollow\"\u003ehttps://ida.loni.usc.edu/collaboration/access/appLicense.jsp;jsessionid=B0278AF5FD413E9AC14512DF841FFCA4/\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun deformation pipeline\"\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eUsage\nUsage: deformation.pl -input \u0026lt;.mnc\u0026gt; -output [options]\u003c/p\u003e\n\u003cp\u003eMandatory options:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e-deformation_ratio provide the ratio of deformation, values must be between 0.1 [shrinkage] to 1.50 [expansion] [e.g. 0.1,1.2,0.6,\u2026]\n\n-mask Specify a tolerance map file (.mnc) indicating voxels that have a different amount of error allowed e.g., CSF, background [e.g. your-mask.mnc]\n\n-coordinate Specify a hyperslab starting at \u0026lt;x\u0026gt; \u0026lt;y\u0026gt; \u0026lt;z\u0026gt; and extending in respective directions by \u0026lt;sizex\u0026gt; \u0026lt;sizey\u0026gt; \u0026lt;sizez\u0026gt; [e.g. 70 100 80 5 5 5]\n\n-tolerance_space Define the buffer area around the deformation region [default = 4]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOther options:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e-blur_determinant Blurring kernel size for blurring deformation determinant blurring kernel 0-1\n\n-error Specify the amount of error that is allowed between the specified determinant and the final determinant (per voxel) [default =0.00001]\n\n-iteration Specify the maximum number of iterations to update the deformations field (-1 means until convergence) [default 1000]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003cp\u003e./deformation.pl -input ICBM_00100_t1_final.mnc -output Debugging_Folder -deformation_ratio 0.6 -coordinate 70 100 70 10 10 10 -tolerance_space 4 -blur_determinant 0.25 -error 0.00001 -iteration 100\u003c/p\u003e\n\u003cp\u003eThe locally-deformed output file name includes input parameters to simplify creating GLM matrices for statistical analysis.\u003c/p\u003e\n\u003cp\u003eICBM_00100_t1_final_deformed_by_0.4atROIx70-y100-z70dimx10.dimy10.dimz10.mnc.\u003c/p\u003e\n\u003cp\u003eThere following intermediate files are generated to help you do quality control and can be deleted:\u003c/p\u003e\n\u003cp\u003e/Debugging_Folder/TMP/block.mnc\u003c/p\u003e\n\u003cp\u003e/Debugging_Folder/TMP/blurred0.25determinant_r_0.4x70-y100-z70dimx10.dimy10.dimz10.mnc\u003c/p\u003e\n\u003cp\u003e/Debugging_Folder/TMP/DDDDdilated.mnc \u0026lt;\u0026lt;number of D\u0027s corresponds to the number of times the tolerance space (defined to be 4 in the commandline) is dilated\u003c/p\u003e\n\u003cp\u003e/Debugging_Folder/TMP/DDDDring.mnc\u003c/p\u003e\n\u003cp\u003e/Debugging_Folder/TMP/determinant_r_0.4_grid.mnc\u003c/p\u003e\n\u003cp\u003e/Debugging_Folder/TMP/determinant_r_0.4x70-y100-z70dimx10.dimy10.dimz10.mnc\u003c/p\u003e\n\u003cp\u003e/Debugging_Folder/TMP/determinant_r_0.4.xfm\u003c/p\u003e\n\u003cp\u003e/Debugging_Folder/TMPmask.mnc\u003c/p\u003e\n\u003cp\u003eALTERNATIVELY: If you don\u0027t want to use this Perl wrapper, then follow the instructions for creating your own deformations:\n\u003ca href=\"https://wiki.mouseimaging.ca/display/MICePub/Generating+deformation+fields\" rel=\"nofollow\"\u003ehttps://wiki.mouseimaging.ca/display/MICePub/Generating+deformation+fields\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSource code for deformation pipeline and dependencies (MINC):\n\u003ca href=\"https://github.com/Mouse-Imaging-Centre/generate_deformation_fields\"\u003ehttps://github.com/Mouse-Imaging-Centre/generate_deformation_fields\u003c/a\u003e\u003c/p\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003e\n\u003cp\u003eExample Data, Scripts and Statistical analysis used in our Frontier\u0027s Paper can be found here: \u003ca href=\"https://github.com/aces/simulation_toolkit_statistics\"\u003ehttps://github.com/aces/simulation_toolkit_statistics\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eAll these tools and data needed will be made available via CBRAIN. To learn more, please contact us at \u003ca href=\"mailto:cbrain-support.mni@mcgill.ca\"\u003ecbrain-support.mni@mcgill.ca\u003c/a\u003e. In the subject line, pleasee be sure to write SIMULATION TOOLKIT.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1732607811.0
+ "updated_at": 1626116668.0
},
{
"data_format": 2,
- "description": "Comp-550 Fall 2023 term group project",
+ "description": "A BIDSapp for automated mixed model analyses of mindboggle outputs.",
"filenames": [
"Singularity"
],
- "full_name": "mathematiguy/enron-nlp-analysis",
+ "full_name": "C0C0AN/Mindboggle-MixedModels",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eenron-nlp-analysis\u003c/h1\u003e\u003ca id=\"user-content-enron-nlp-analysis\" class=\"anchor\" aria-label=\"Permalink: enron-nlp-analysis\" href=\"#enron-nlp-analysis\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eComp-550 Fall 2023 term group project\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eProject Setup and Execution Guide\u003c/h1\u003e\u003ca id=\"user-content-project-setup-and-execution-guide\" class=\"anchor\" aria-label=\"Permalink: Project Setup and Execution Guide\" href=\"#project-setup-and-execution-guide\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIntroduction\u003c/h2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis README provides instructions for setting up and running a project that uses Data Version Control (DVC). DVC is an open-source tool for data science and machine learning projects. It allows for tracking and versioning of datasets and machine learning models, making it easier to share and reproduce experiments and analyses.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePrerequisites\u003c/h2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-label=\"Permalink: Prerequisites\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBefore you start, ensure you have the following installed:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePython (version as per project requirements)\u003c/li\u003e\n\u003cli\u003epip (Python package manager)\u003c/li\u003e\n\u003cli\u003evirtualenv (Python environment management tool)\u003c/li\u003e\n\u003cli\u003eDVC (Data Version Control)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSetup Instructions\u003c/h2\u003e\u003ca id=\"user-content-setup-instructions\" class=\"anchor\" aria-label=\"Permalink: Setup Instructions\" href=\"#setup-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e1. Clone the Project Repository\u003c/h3\u003e\u003ca id=\"user-content-1-clone-the-project-repository\" class=\"anchor\" aria-label=\"Permalink: 1. Clone the Project Repository\" href=\"#1-clone-the-project-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eClone the project from the provided source and navigate to the project directory.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e2. Create and Activate a Python Virtual Environment\u003c/h3\u003e\u003ca id=\"user-content-2-create-and-activate-a-python-virtual-environment\" class=\"anchor\" aria-label=\"Permalink: 2. Create and Activate a Python Virtual Environment\" href=\"#2-create-and-activate-a-python-virtual-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003epython -m venv venv\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOn Windows: \u003ccode\u003evenv\\Scripts\\activate\u003c/code\u003e\nmacOS and Linux: \u003ccode\u003esource venv/bin/activate\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e3. Install Project Dependencies\u003c/h3\u003e\u003ca id=\"user-content-3-install-project-dependencies\" class=\"anchor\" aria-label=\"Permalink: 3. Install Project Dependencies\" href=\"#3-install-project-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003epip install -r requirements.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e4. Download NLTK Dependencies\u003c/h3\u003e\u003ca id=\"user-content-4-download-nltk-dependencies\" class=\"anchor\" aria-label=\"Permalink: 4. Download NLTK Dependencies\" href=\"#4-download-nltk-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the following in the terminal:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython -m nltk.downloader -d data/nltk_data all\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e5. Install spaCy Language Model\u003c/h3\u003e\u003ca id=\"user-content-5-install-spacy-language-model\" class=\"anchor\" aria-label=\"Permalink: 5. Install spaCy Language Model\" href=\"#5-install-spacy-language-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython -m spacy download en_core_web_sm\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning the Project\u003c/h2\u003e\u003ca id=\"user-content-running-the-project\" class=\"anchor\" aria-label=\"Permalink: Running the Project\" href=\"#running-the-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eData Version Control (DVC)\u003c/h3\u003e\u003ca id=\"user-content-data-version-control-dvc\" class=\"anchor\" aria-label=\"Permalink: Data Version Control (DVC)\" href=\"#data-version-control-dvc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun dvc repro to execute the DVC pipeline. DVC manages the data processing stages as per the dvc.yaml file.\u003c/p\u003e\n\u003cp\u003eTo run the project, run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edvc repro\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will run the entire pipeline from start to finish. If you wanna see the dag for the project, run \u003ccode\u003edvc dag\u003c/code\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1702773276.0
+ "updated_at": 1580230589.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Nextflow pipeline for microarray and RNA-seq",
"filenames": [
"Singularity"
],
- "full_name": "soulj/OAModelmicroRNA",
+ "full_name": "CBFLivUni/SkeletalVis-Transcriptomics",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eACL model of osteoarthritis mRNA and miRNA analysis\u003c/h1\u003e\u003ca id=\"user-content-acl-model-of-osteoarthritis-mrna-and-mirna-analysis\" class=\"anchor\" aria-label=\"Permalink: ACL model of osteoarthritis mRNA and miRNA analysis\" href=\"#acl-model-of-osteoarthritis-mrna-and-mirna-analysis\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp align=\"center\"\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/soulj/OAModelmicroRNA/blob/main/figures/Fig2C_MAPlot.png\"\u003e\u003cimg src=\"https://github.com/soulj/OAModelmicroRNA/raw/main/figures/Fig2C_MAPlot.png\" width=\"40%\" height=\"40%\" align=\"center\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOverview\u003c/h2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-label=\"Permalink: Overview\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following R notebooks can be used to generate the bioinformatics figures and tables shown in the paper:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e01_ACLmRNA.qmd - DESeq2 analysis of the ACL rupture model mRNA-seq\u003c/li\u003e\n\u003cli\u003e02_ACLmiRNA.qmd - DESeq2 analysis of the ACL rupture model smallRNA-seq\u003c/li\u003e\n\u003cli\u003e03_mir199DiffExp.qmd - RNA-seq Differential expression, gene ontology and target analysis of mir199 inhibited HACs\u003c/li\u003e\n\u003cli\u003e04_DMMDiffExp.qmd - DESeq2 analysis of the DMM OA model mRNA-seq\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning the analysis\u003c/h2\u003e\u003ca id=\"user-content-running-the-analysis\" class=\"anchor\" aria-label=\"Permalink: Running the analysis\" href=\"#running-the-analysis\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eReproducibly with singularity\u003c/h3\u003e\u003ca id=\"user-content-reproducibly-with-singularity\" class=\"anchor\" aria-label=\"Permalink: Reproducibly with singularity\" href=\"#reproducibly-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAfter cloning/downloading this repository.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eInstall \u003ca href=\"https://docs.sylabs.io/guides/3.8/user-guide/\" rel=\"nofollow\"\u003e\u003ccode\u003eSingularity\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDownload and run the singularity container\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e singularity run https://pgb.liv.ac.uk/~jsoul/OAModelmicroRNA/analysis.img\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eor\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eBuild the singularity container:\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e sudo singularity build runAnalysis.img Singularity\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eRun the analysis and render tables and figures with a single command:\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e ./runAnalysis.img\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAlternatively using RScript\u003c/h3\u003e\u003ca id=\"user-content-alternatively-using-rscript\" class=\"anchor\" aria-label=\"Permalink: Alternatively using RScript\" href=\"#alternatively-using-rscript\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eInstall the needed R packages\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e RScript install/install.R\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eRun the analysis and render the html notebooks\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e RScript runAnalysis.R\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRaw data processing\u003c/h2\u003e\u003ca id=\"user-content-raw-data-processing\" class=\"anchor\" aria-label=\"Permalink: Raw data processing\" href=\"#raw-data-processing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor the smallRNA-seq data the nextflow core smrnaseq v1.1.0\nwas run using:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run nf-core/smrnaseq -r 1.1.0 --input \"fastqFiles/*.fastq.gz\" --genome GRCm38 --protocol \u0027custom\u0027 --three_prime_adapter AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC --mirtrace_protocol illumina --max_cpus 6 -profile singularity \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSkeletalvis pipeline was used to process the RNA-seq data (github.com/soulj/SkeletalVis-Pipeline)\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSkeletalVis-Transcriptomics\u003c/h1\u003e\u003ca id=\"user-content-skeletalvis-transcriptomics\" class=\"anchor\" aria-label=\"Permalink: SkeletalVis-Transcriptomics\" href=\"#skeletalvis-transcriptomics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIntroduction\u003c/h2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eSkeletalVis-Transcriptomics\u003c/strong\u003e is a bioinformatics pipeline for reproducible analyses of microarray and RNA-seq data.\u003c/p\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a portable workflow tool to run tasks across multiple compute infrastructures. This pipeline uses a singularity container containing all the software needed to run the analysis, making installation simple and the results reproducible.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePipeline summary\u003c/h2\u003e\u003ca id=\"user-content-pipeline-summary\" class=\"anchor\" aria-label=\"Permalink: Pipeline summary\" href=\"#pipeline-summary\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003cstrong\u003eSkeletalVis-Transcriptomics\u003c/strong\u003e pipeline takes a sample table and a parameter file defining the experiment as input. If not provided microarray data and fastq files are automatically downloaded using the provided accession numbers/sample identifiers.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eFeatures:\u003c/h3\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-label=\"Permalink: Features:\" href=\"#features\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e(\u003cstrong\u003ea\u003c/strong\u003e) Download of raw microarray data from GEO, fastq files either directly from ENA, via conversion of sra files from SRA\u003cbr\u003e\n(\u003cstrong\u003eb\u003c/strong\u003e) Microarray with affyQCReport and RNA-seq read quality trimming with trimmomatic, QC reports with fastqc and multiQC\u003cbr\u003e\n(\u003cstrong\u003ec\u003c/strong\u003e)\tRNA-seq Quantification using \u003ca href=\"https://pachterlab.github.io/kallisto/\" rel=\"nofollow\"\u003e\u003ccode\u003ekallisto\u003c/code\u003e\u003c/a\u003e and processing with tximport to produce a sample x gene expression table\u003cbr\u003e\n(\u003cstrong\u003ed\u003c/strong\u003e) Differential expression analysis with limma, DESeq2 and Characteristic Direction\u003cbr\u003e\n(\u003cstrong\u003ee\u003c/strong\u003e) Pathway and gene ontology enrichment analysis with goseq\u003ca href=\"https://bioconductor.org/packages/release/bioc/html/goseq.html\" rel=\"nofollow\"\u003e\u003ccode\u003egoseq\u003c/code\u003e\u003c/a\u003e\u003cbr\u003e\n(\u003cstrong\u003ef\u003c/strong\u003e) Active subnetwork identification with \u003ca href=\"https://pubmed.ncbi.nlm.nih.gov/15272936/\" rel=\"nofollow\"\u003e\u003ccode\u003eGIGA\u003c/code\u003e\u003c/a\u003e\u003cbr\u003e\n(\u003cstrong\u003ei\u003c/strong\u003e) Identify transcription factors potenitally driving differential expression with \u003ca href=\"https://pubmed.ncbi.nlm.nih.gov/31114921/\" rel=\"nofollow\"\u003e\u003ccode\u003eCHEA3\u003c/code\u003e\u003c/a\u003e\u003cbr\u003e\u003c/p\u003e\n\u003cp\u003eAnalyses are run in parallel and in result of error you can resume with the \u003ccode\u003e-resume\u003c/code\u003e parameter to re-run the pipeline starting from the previous fault.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQuick Start\u003c/h2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-label=\"Permalink: Quick Start\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAnalyse an example dataset\u003c/h3\u003e\u003ca id=\"user-content-analyse-an-example-dataset\" class=\"anchor\" aria-label=\"Permalink: Analyse an example dataset\" href=\"#analyse-an-example-dataset\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTry the pipeline on an example dataset (all inputs will be automatically downloaded): -\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eInstall \u003ca href=\"https://www.nextflow.io/docs/latest/getstarted.html#installation\" rel=\"nofollow\"\u003e\u003ccode\u003eNextflow\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInstall \u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/\" rel=\"nofollow\"\u003e\u003ccode\u003eSingularity\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDownload the pipeline\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e nextflow clone CBFLivUni/SkeletalVis-Transcriptomics\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://www.nextflow.io/docs/latest/config.html\" rel=\"nofollow\"\u003e\u003ccode\u003eConfigure\u003c/code\u003e\u003c/a\u003e the resource profile for your HPC or local computer. A template for slurm schedulers is provided as an example in \u003ccode\u003enextflow.config\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThere is a utility function provided to help replace paths within the config text files:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e```console\n bash scripts/install/replacePath.sh nextflow.config /mnt/hc-storage/groups/cbf/Nextflow/SkeletalVis-Transcriptomics `pwd -P`\n```\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003e\n\u003cp\u003eTest on the example dataset:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e nextflow run main.nf -profile slurm -params-file params/GSE152805.yaml -with-singularity library://jsoul/default/skeletalvis-transcriptomics:latest\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAnalyse your own data\u003c/h3\u003e\u003ca id=\"user-content-analyse-your-own-data\" class=\"anchor\" aria-label=\"Permalink: Analyse your own data\" href=\"#analyse-your-own-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eDefine the sampleTable for RNA-seq data\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eCreate a tab seperated table with unique Sample names, SRR accession numbers (if download is needed) and any additional metadata e.g\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eSample\u003c/th\u003e\n\u003cth\u003eFile\u003c/th\u003e\n\u003cth\u003eCondition\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eControl_1\u003c/td\u003e\n\u003ctd\u003eSRRXXX\u003c/td\u003e\n\u003ctd\u003eControl\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eControl_2\u003c/td\u003e\n\u003ctd\u003eSRRXXX\u003c/td\u003e\n\u003ctd\u003eControl\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTreated_1\u003c/td\u003e\n\u003ctd\u003eSRRXXX\u003c/td\u003e\n\u003ctd\u003eTreated\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTreated_2\u003c/td\u003e\n\u003ctd\u003eSRRXXX\u003c/td\u003e\n\u003ctd\u003eTreated\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eNote for microarray data the metadata is retrived directly from GEO and we instead just need to specify the columns of interest that define variables to compare.\u003c/p\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eDefine the configuration\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eMost parameters are set to sensible defaults within the main nextflow script, with only a few parameters required to be altered with typical use. Note the use of Groovy, python and R booleans.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eParameter\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003cth\u003eOptions\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eaccession\u003c/td\u003e\n\u003ctd\u003eA unique identifier for the experiment to be analysed e.g the GEO accession of the data - used to name output data and download fastq files\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003especies\u003c/td\u003e\n\u003ctd\u003eThe species the reads originate from - used to create the kallisto index\u003c/td\u003e\n\u003ctd\u003eHuman, Mouse, Rat, Cow, Pig\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esingle\u003c/td\u003e\n\u003ctd\u003eIs the data single ended RNA-seq?\u003c/td\u003e\n\u003ctd\u003etrue, false\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ebatchCorrect\u003c/td\u003e\n\u003ctd\u003eShould batch effect correction (sva) be used?\u003c/td\u003e\n\u003ctd\u003eTRUE, FALSE\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eskipTrimming\u003c/td\u003e\n\u003ctd\u003eShould read trimming be skipped?\u003c/td\u003e\n\u003ctd\u003efalse (default), true\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eParameters should be defined within a yaml file. See \u003ccode\u003eparams/GSE152805.yaml\u003c/code\u003e for an example.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003eaccession\u003c/code\u003e parameter defines the default search path for fastq.gz files (data/\u003ccode\u003eaccession\u003c/code\u003e/fastqFiles/). Trimmed unpaired reads e.g \"*_R0.fastq.gz\" are skipped by default. If fastq files are not found locally the data will be downloaded using the provided \u003ccode\u003eaccession\u003c/code\u003e number.\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\n\u003cp\u003eRun the pipeline with your own parameters\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e nextflow run soulj/SkeletalVis-Transcriptomics -profile slurm -params-file ownData.yaml -with-singularity library://jsoul/default/skeletalvis-transcriptomics\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTesting modules\u003c/h3\u003e\u003ca id=\"user-content-testing-modules\" class=\"anchor\" aria-label=\"Permalink: Testing modules\" href=\"#testing-modules\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eModules can be tested using the \u003ca href=\"https://pypi.org/project/pytest-workflow/\" rel=\"nofollow\"\u003e\u003ccode\u003epytest-workflow\u003c/code\u003e\u003c/a\u003e framework. Module test directories within the \u003ccode\u003etests\u003c/code\u003e folder contain a nextflow script and a configuration yaml file defining the test for each module.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eInstall pytest-workflow\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003econda install pytest-workflow\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun the tests - e.g to test the pathway enrichment module\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003epytest --symlink --kwdof --tag pathwayEnrichment\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1683907187.0
+ "subscribers_count": 2,
+ "topics": [
+ "microarray",
+ "nextflow",
+ "pathway-analysis",
+ "rna-seq",
+ "transcriptomics"
+ ],
+ "updated_at": 1700837110.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "vrep/Singularity+",
- "vrep/Singularity-without-conda+",
- "vrep/Singularity-without-conda",
- "vrep/Singularity",
- "vrep/Singularity-cupy"
+ "Singularity"
],
- "full_name": "takuma-yoneda/singularity-envs",
+ "full_name": "raffenet/singularity-images",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1597803674.0
+ "updated_at": 1598301904.0
},
{
"data_format": 2,
- "description": "du + rust = dust. Like du but more intuitive.",
+ "description": "Small utilities for working with fastq sequence files.",
"filenames": [
- "0.8.3/Singularity",
- "0.7.0/Singularity",
- "0.6.0/Singularity",
- "0.8.6/Singularity",
- "0.6.1/Singularity",
- "0.8.0/Singularity",
- "0.5.4/Singularity",
- "0.8.4/Singularity"
+ "0.8/Singularity"
],
- "full_name": "pscedu/singularity-dust",
- "latest_release": "v0.8.4",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/icaoberg/singularity-dust/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-dust/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/icaoberg/singularity-dust/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-dust/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/61adf552b3234b2843e4c95d2a40467bcf6ed674755f53c0298c3fef098cefcf/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d64757374\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/61adf552b3234b2843e4c95d2a40467bcf6ed674755f53c0298c3fef098cefcf/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d64757374\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-dust\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/8423ec0eae69f2f03ad7b0b727465c03df5d0a7f33fb5249b5190e6297681242/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d64757374\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8423ec0eae69f2f03ad7b0b727465c03df5d0a7f33fb5249b5190e6297681242/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d64757374\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-dust\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/7b19576388c609249f90940002caee3d06bfc3a99c7d4613e3f12d95d8d755cc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d64757374\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7b19576388c609249f90940002caee3d06bfc3a99c7d4613e3f12d95d8d755cc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d64757374\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-dust\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/d9c4b5e46fea27c4a179d1ae397e785209ca6251d122ffd936a03692f6c1c471/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d64757374\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d9c4b5e46fea27c4a179d1ae397e785209ca6251d122ffd936a03692f6c1c471/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d64757374\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-dust\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-dust\u003c/h1\u003e\u003ca id=\"user-content-singularity-dust\" class=\"anchor\" aria-label=\"Permalink: singularity-dust\" href=\"#singularity-dust\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/bootandy/dust/raw/master/media/snap.png\"\u003e\u003cimg src=\"https://github.com/bootandy/dust/raw/master/media/snap.png\" alt=\"Example\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/bootandy/dust\"\u003edust\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003edust\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/dust/0.8.6\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/dust\u003c/code\u003e as \u003ccode\u003e0.8.6.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2024 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-fastq-tools",
+ "latest_release": "v0.8",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-fastq-tools/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-fastq-tools/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-fastq-tools/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-fastq-tools/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/c7b7a1fdf0e2c8b7598b24e1f68857d5983b78a67a4972bc8a40bfa100030283/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d66617374712d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c7b7a1fdf0e2c8b7598b24e1f68857d5983b78a67a4972bc8a40bfa100030283/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d66617374712d746f6f6c73\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-fastq-tools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a37739f85a6b18346dfaecdc54fee862893d98cb9580108c32e41972a5d908b4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d66617374712d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a37739f85a6b18346dfaecdc54fee862893d98cb9580108c32e41972a5d908b4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d66617374712d746f6f6c73\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-fastq-tools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/bcbd2e3a37265324da540a52ea3c2beb2303fe9fd469e9866de39cc7eb2506da/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d66617374712d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bcbd2e3a37265324da540a52ea3c2beb2303fe9fd469e9866de39cc7eb2506da/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d66617374712d746f6f6c73\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-fastq-tools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/34aaa5fff834d641182221cb6e6f46fdbe6285629013261f7298219aca1ce234/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d66617374712d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/34aaa5fff834d641182221cb6e6f46fdbe6285629013261f7298219aca1ce234/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d66617374712d746f6f6c73\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-fastq-tools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-fastq-tools\u003c/h1\u003e\u003ca id=\"user-content-singularity-fastq-tools\" class=\"anchor\" aria-label=\"Permalink: singularity-fastq-tools\" href=\"#singularity-fastq-tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/dcjones/fastq-tools\"\u003efastq-tools\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003efastq\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/fastq-tools/0.8\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/fastq-tools\u003c/code\u003e as \u003ccode\u003e0.8.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [
- "singularity",
- "utilities"
+ "bioinformatics",
+ "singularity"
],
- "updated_at": 1729743820.0
+ "updated_at": 1650574199.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Docker file for building MiCall execution environment to run under Kive",
"filenames": [
- "Singularity.PGDSpider_2.1.1.5",
- "Singularity.longshot",
- "Singularity.FastQC_0.11.5",
- "Singularity.plink_1.9",
- "Singularity.minimap2_2.17",
- "Singularity.BCFtools_1.9",
- "Singularity.R_3.5.0",
- "Singularity.AdapterRemoval",
- "Singularity.plink_2.0",
- "Singularity.STAR_2.7.1a",
- "Singularity.BayeScan_2.1",
- "Singularity.R_3.6.0",
- "Singularity.BBMap_37.92",
- "Singularity.vcflib",
- "Singularity.samtools_1.9",
- "Singularity.fastsimcoal_2.6",
- "Singularity.VCFtools_0.1.17",
- "Singularity.gatk_3.8.0"
+ "Singularity"
],
- "full_name": "MarissaLL/singularity-containers",
- "latest_release": null,
- "readme": "\u003cp\u003eRecipes for Singularity containers, which are hosted on SingularityHub at\n\u003ca href=\"https://www.singularity-hub.org/collections/1290\" rel=\"nofollow\"\u003ehttps://www.singularity-hub.org/collections/1290\u003c/a\u003e\u003c/p\u003e\n",
+ "full_name": "cfe-lab/kive-default-docker",
+ "latest_release": "v1.1",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ekive-default-docker\u003c/h1\u003e\u003ca id=\"user-content-kive-default-docker\" class=\"anchor\" aria-label=\"Permalink: kive-default-docker\" href=\"#kive-default-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDocker file for building default execution environment to run Kive pipelines\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 11,
"topics": [],
- "updated_at": 1629949124.0
+ "updated_at": 1538429377.0
},
{
"data_format": 2,
- "description": "get openpose on PSU ACI",
+ "description": null,
"filenames": [
- "Singularity.gpu"
+ "Singularity"
],
- "full_name": "d-bohn/openpose_aci",
+ "full_name": "Cloud-PG/CachingOnDemand_singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eopenpose_aci\u003c/h1\u003e\u003ca id=\"user-content-openpose_aci\" class=\"anchor\" aria-label=\"Permalink: openpose_aci\" href=\"#openpose_aci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCode and workflow for building \u003ca href=\"https://github.com/CMU-Perceptual-Computing-Lab/openpose\"\u003eOpenPose\u003c/a\u003e\nin Docker Hub and modifying it with Singularity Hub for use with PSU\nACI HPC clusters.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNOTE\u003c/strong\u003e: This is the GPU version of OpenPose, for the CPU-only version please\nrefer to the appropriately labelled branch.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQuick Start\u003c/h2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-label=\"Permalink: Quick Start\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003essh\u003c/code\u003e into the PSU ACI HPC with X11 flags.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003essh USERID@aci-b.aci.ics.psu.edu -X -Y\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eStart an interactive session using \u003ccode\u003eqsub\u003c/code\u003e. We need a lot of memory for\nthe CPU version of OpenPose\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eqsub -A open -I -X -l walltime=24:00:00 -l nodes=5:ppn=10 -l pmem=20gb\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFrom ACI pull the OpenPose image and shell into it.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull -n openpose_aci.simg shub://d-bohn/openpose_aci\n\nsingularity exec -n openpose_aci.simg /bin/bash\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFinally, once inside the image you can run the example utilizing the following\ncode:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd /opt/openpose\nmkdir data \u0026amp;\u0026amp; mkdir data/poses\n\n./build/examples/openpose/openpose.bin --video examples/media/video.avi --write_video ./data/result.avi --write_json ./data/poses --display 0\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eImage Builds\u003c/h2\u003e\u003ca id=\"user-content-image-builds\" class=\"anchor\" aria-label=\"Permalink: Image Builds\" href=\"#image-builds\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe OpenPose docker image was built on docker hub.\u003c/p\u003e\n\u003cp\u003eThe OpenPose singularity image was built using the docker image base and\nconverting it to a singularity image via singularity hub.\u003c/p\u003e\n\u003cp\u003eSetup for linking Github with Docker Hub and Singularity Hub can be found here:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://docs.docker.com/docker-hub/\" rel=\"nofollow\"\u003edocker Hub\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/singularityhub/singularityhub.github.io/wiki\"\u003eSingularity Hub\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe \u003ccode\u003eSingularity\u003c/code\u003e file specifies creating a Singularity-compatible image\nfrom the docker image, as well as adding access to folders within ACI, specifically:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# ACI mappings so you can access your files.\nmkdir -p /storage/home\nmkdir -p /storage/work\nmkdir -p /gpfs/group\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eNotes\u003c/h2\u003e\u003ca id=\"user-content-notes\" class=\"anchor\" aria-label=\"Permalink: Notes\" href=\"#notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eThe OpenFace docker image is large (\u0026gt; 3.7GB). It is built on Ubuntu 16.04.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThe current image is built with only CPU support, but can easily be adapted to\ninclude GPU support when that is available (see first two \u003ccode\u003emake\u003c/code\u003e flags in \u003ccode\u003eDockerfile\u003c/code\u003e)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThe CPU version is SLOW. The example above takes several minutes to\nexecute. Runs at between 0.3 and 0.1 frames/second.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity container for XRootD proxy server\u003c/h1\u003e\u003ca id=\"user-content-singularity-container-for-xrootd-proxy-server\" class=\"anchor\" aria-label=\"Permalink: Singularity container for XRootD proxy server\" href=\"#singularity-container-for-xrootd-proxy-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSet up log directory\u003c/h2\u003e\u003ca id=\"user-content-set-up-log-directory\" class=\"anchor\" aria-label=\"Permalink: Set up log directory\" href=\"#set-up-log-directory\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe log directory should have the correct permisions:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo chown -R 998:996 /var/log/xrootd\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStart the service from local image\u003c/h2\u003e\u003ca id=\"user-content-start-the-service-from-local-image\" class=\"anchor\" aria-label=\"Permalink: Start the service from local image\" href=\"#start-the-service-from-local-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBuild the image from github repo:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/Cloud-PG/CachingOnDemand_singularity.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e CachingOnDemand_singularity\n\nsudo singularity build xrd_proxy.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen start the service:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo REMOTE_HOST=XXX.XXX.XXX.XX PROXY_PORT=1124 REMOTE_PORT=31094 singularity instance start -B /var/log/xrootd/:/var/log/xrootd/ xrd_proxy.sif myproxy\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStart the service with SingularityHub image\u003c/h2\u003e\u003ca id=\"user-content-start-the-service-with-singularityhub-image\" class=\"anchor\" aria-label=\"Permalink: Start the service with SingularityHub image\" href=\"#start-the-service-with-singularityhub-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eStart the service with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo REMOTE_HOST=XXX.XXX.XXX.XX PROXY_PORT=1124 REMOTE_PORT=31094 singularity instance start -B /var/log/xrootd/:/var/log/xrootd/ shub://Cloud-PG/CachingOnDemand_singularity:latest myproxy\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1578090055.0
+ "updated_at": 1574258154.0
},
{
"data_format": 2,
- "description": "Singularity recipe for installing NEMO prerequisites, and scripts for configuring and running AMM7 model",
+ "description": "Work with reticulate on Singularity",
"filenames": [
"Singularity"
],
- "full_name": "swarder/NEMO-AMM7-recipe",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eNEMO-AMM7-recipe\u003c/h1\u003e\u003ca id=\"user-content-nemo-amm7-recipe\" class=\"anchor\" aria-label=\"Permalink: NEMO-AMM7-recipe\" href=\"#nemo-amm7-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for installing NEMO prerequisites, and scripts for configuring and running AMM7 model\u003c/p\u003e\n\u003cp\u003eScripts installing prerequisites and downloading NEMO source code are modified from \u003ca href=\"https://github.com/rcaneill/NEMO-installs\"\u003ehttps://github.com/rcaneill/NEMO-installs\u003c/a\u003e (Copyright (c) 2019 Romain Caneill)\nModified here under MIT licence \u003ca href=\"https://github.com/rcaneill/NEMO-installs/blob/master/LICENSE\"\u003ehttps://github.com/rcaneill/NEMO-installs/blob/master/LICENSE\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAMM7 configuration based on \u003ca href=\"https://zenodo.org/record/4022310\" rel=\"nofollow\"\u003ehttps://zenodo.org/record/4022310\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe pre-built image can be pulled from Singularity Hub:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://swarder/NEMO-AMM7-recipe:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAlternatively, the recipe can be built locally:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build NEMO_AMM7.simg Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce pulled or built, launch the shell (replace file name as appropriate):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell NEMO-AMM7-recipe_latest.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDefine working directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport WORKDIR=/home/$USER/nemo_workdir\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen configure AMM7 within container\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd $WORKDIR\ncp /nemo/installations/configure_amm7.sh .\n./configure_amm7.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFinally, run NEMO\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd $WORKDIR/NEMOGCM/CONFIG/AMM7_SURGE/EXP_tideonly\nmpirun -np 6 ./opa : -np 1 ./xios_server.exe\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "richelbilderbeek/reticulate_on_singularity",
+ "latest_release": "v0.1",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ereticulate_on_singularity\u003c/h1\u003e\u003ca id=\"user-content-reticulate_on_singularity\" class=\"anchor\" aria-label=\"Permalink: reticulate_on_singularity\" href=\"#reticulate_on_singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repo shows how to work with the R package \u003ccode\u003ereticulate\u003c/code\u003e\nto run a Python script on Singularity.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSteps\u003c/h2\u003e\u003ca id=\"user-content-steps\" class=\"anchor\" aria-label=\"Permalink: Steps\" href=\"#steps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eThe \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e \u003ccode\u003e%post\u003c/code\u003e section contains the build\u003c/li\u003e\n\u003cli\u003eThe \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e \u003ccode\u003e%test\u003c/code\u003e section contains the test\u003c/li\u003e\n\u003cli\u003eThe \u003ca href=\".github/workflows/build_sandbox.yaml\"\u003e.github/workflows/build_sandbox.yaml\u003c/a\u003e\nand \u003ca href=\".github/workflows/build_singularity.yaml\"\u003e.github/workflows/build_singularity.yaml\u003c/a\u003e\nshow the final usage\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1610120713.0
+ "updated_at": 1638270295.0
},
{
"data_format": 2,
- "description": "Singularity images for Jupyter (based on minconda3 Docker image)",
+ "description": "work with RAR archives with tools in a Singularity container",
"filenames": [
"Singularity"
],
- "full_name": "bihealth/singularity-jupyter",
+ "full_name": "singularityhub/rar",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Image with Jupyter\u003c/h1\u003e\u003ca id=\"user-content-singularity-image-with-jupyter\" class=\"anchor\" aria-label=\"Permalink: Singularity Image with Jupyter\" href=\"#singularity-image-with-jupyter\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eRar\u003c/h1\u003e\u003ca id=\"user-content-rar\" class=\"anchor\" aria-label=\"Permalink: Rar\" href=\"#rar\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/1080\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis is a tutorial brought to you by the \u003ca href=\"https://www.github.com/vsoch\"\u003edebugger dinosaur\u003c/a\u003e of \u003ca href=\"https://srcc.stanford.edu\" rel=\"nofollow\"\u003eStanford Research Computing\u003c/a\u003e and is part of the \u003ca href=\"https://vsoch.github.io/lessons/\" rel=\"nofollow\"\u003eResearch Computing Lessons\u003c/a\u003e series.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/98dfd6c0463046b3bbd40debb29f3dfb8850ed286459aaff417080c5787a4b56/68747470733a2f2f76736f63682e6769746875622e696f2f6c6573736f6e732f6173736574732f696d672f6c6f676f2d626f6f6b2e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/98dfd6c0463046b3bbd40debb29f3dfb8850ed286459aaff417080c5787a4b56/68747470733a2f2f76736f63682e6769746875622e696f2f6c6573736f6e732f6173736574732f696d672f6c6f676f2d626f6f6b2e706e67\" alt=\"\" width=\"200\" data-canonical-src=\"https://vsoch.github.io/lessons/assets/img/logo-book.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFor complete instructions and documentation for using the container, please \u003ca href=\"https://vsoch.github.io/lessons/unrar-python/#rar-ing-with-a-container\" rel=\"nofollow\"\u003eread the lesson\u003c/a\u003e. If you need help, post an issue on this repository, or to the \u003ca href=\"https://github.com/vsoch/lessons\"\u003elessons repository\u003c/a\u003e directly! You can also request a tutorial or lesson to be added. The debugger dinosaur and Research Computing are here for you!\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 6,
- "topics": [],
- "updated_at": 1591308299.0
+ "subscribers_count": 3,
+ "topics": [
+ "rar",
+ "archive",
+ "singularity",
+ "singularity-container",
+ "cluster",
+ "hpc",
+ "srcc",
+ "srcc-lessons"
+ ],
+ "updated_at": 1527981066.0
},
{
"data_format": 2,
- "description": "Singularity image recipe",
+ "description": "Singularity container for the Dartmouth 2017 MIND Summer School",
"filenames": [
- "tensorflow/Singularity.tf-1.14.0-gpu-py3",
- "tensorflow/Singularity.tf-2.3.0-gpu",
- "tensorflow/Singularity.tf-2.5.1-gpu",
- "tensorflow/Singularity.tf-1.15.5-gpu",
- "tensorflow/Singularity.tf-2.1.0-gpu-py3",
- "tensorflow/Singularity.tf-2.0.0-gpu-py3",
- "tensorflow/Singularity.tf-1.12.0-gpu-mlflow-py3",
- "tensorflow/Singularity.tf-2.3.1-gpu",
- "tensorflow/Singularity.tf-1.15.2-gpu-py3",
- "tensorflow/Singularity.tf-1.12.0-gpu-py3",
- "tensorflow/Singularity.tf-1.13.1-gpu-py3",
- "tensorflow/Singularity.tf-2.4.3-gpu",
- "tensorflow/Singularity.tf-2.2.0-gpu"
+ "Singularity"
],
- "full_name": "myzkyuki/singularity_recipe",
+ "full_name": "mvdoc/mind-tools-singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity_recipe\u003c/h1\u003e\u003ca id=\"user-content-singularity_recipe\" class=\"anchor\" aria-label=\"Permalink: singularity_recipe\" href=\"#singularity_recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity definition file for mind-tools\u003c/h1\u003e\u003ca id=\"user-content-singularity-definition-file-for-mind-tools\" class=\"anchor\" aria-label=\"Permalink: Singularity definition file for mind-tools\" href=\"#singularity-definition-file-for-mind-tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can pull directly this image from singularity hub with\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e singularity pull shub://mvdoc/mind-tools-singularity\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1644473010.0
+ "updated_at": 1502763490.0
},
{
"data_format": 2,
- "description": "Practicas de la asignatura",
+ "description": "Knime build in Singularity Hub",
"filenames": [
- "Practica1/compiladores/singularity-ce-3.9.5/e2e/testdata/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/busybox/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/ubuntu/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/asciinema/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/centos-arm64/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/apps/Singularity.cowsay",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/apps/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/centos/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/shub/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/raspbian/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/arch/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/opensuse-arm64/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/opensuse/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/debian/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/docker/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/sle/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/instances/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/multistage/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/scratch/Singularity.busybox",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/scratch/Singularity.alpine",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/library/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/scientific/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/examples/self/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/e2e/testdata/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/busybox/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/ubuntu/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/asciinema/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/centos-arm64/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/apps/Singularity.cowsay",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/apps/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/centos/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/shub/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/raspbian/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/arch/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/opensuse-arm64/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/opensuse/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/debian/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/docker/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/sle/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/instances/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/multistage/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/scratch/Singularity.busybox",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/scratch/Singularity.alpine",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/library/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/scientific/Singularity",
- "Practica1/compiladores/singularity-ce-3.9.5/singularity-ce-3.9.5/examples/self/Singularity"
+ "Singularity"
],
- "full_name": "EstebanGomez1/Planificacion-Automatica",
+ "full_name": "tin6150/knime",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1716230355.0
+ "updated_at": 1504507455.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Pipeline used to detect ORFs from Mouse Ribo-Seq during time at EBI/Gencode",
"filenames": [
- "singularity/e2e/testdata/Singularity",
- "singularity/examples/busybox/Singularity",
- "singularity/examples/ubuntu/Singularity",
- "singularity/examples/asciinema/Singularity",
- "singularity/examples/apps/Singularity.cowsay",
- "singularity/examples/apps/Singularity",
- "singularity/examples/centos/Singularity",
- "singularity/examples/shub/Singularity",
- "singularity/examples/raspbian/Singularity",
- "singularity/examples/arch/Singularity",
- "singularity/examples/opensuse/Singularity",
- "singularity/examples/debian/Singularity",
- "singularity/examples/docker/Singularity",
- "singularity/examples/sle/Singularity",
- "singularity/examples/instances/Singularity",
- "singularity/examples/multistage/Singularity",
- "singularity/examples/scratch/Singularity.busybox",
- "singularity/examples/scratch/Singularity.alpine",
- "singularity/examples/library/Singularity",
- "singularity/examples/scientific/Singularity",
- "singularity/examples/self/Singularity"
+ "Singularity"
],
- "full_name": "DeepLearningItalia/NLP-HandsOn-2",
+ "full_name": "JackCurragh/gencode-mouse-orfs",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eGencode Mouse ORF prediciton Pipeline\u003c/h1\u003e\u003ca id=\"user-content-gencode-mouse-orf-prediciton-pipeline\" class=\"anchor\" aria-label=\"Permalink: Gencode Mouse ORF prediciton Pipeline\" href=\"#gencode-mouse-orf-prediciton-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIntroduction\u003c/h2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePipeline predicts Mouse ORFs from Ribo-Seq data using RiboSeq.Org Data Portal\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequirements\u003c/h2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis pipeline can be run using each of the following container methods\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eMethod\u003c/th\u003e\n\u003cth\u003eInstructions\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eSingularity\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.sylabs.io/guides/3.0/user-guide/installation.html\" rel=\"nofollow\"\u003edocs.syslabs.io\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDocker\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.docker.com/engine/install/\" rel=\"nofollow\"\u003edocs.docker.com\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eConda\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html\" rel=\"nofollow\"\u003edocs.conda.io\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSetup\u003c/h2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-label=\"Permalink: Setup\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eSingularity\u003c/h5\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: Singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build singularity/pipeline Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen as the profile \u003ccode\u003esingularity\u003c/code\u003e specifies \u003ccode\u003econtainer = \u0027singularity/pipeline\u0027\u003c/code\u003e use the following to execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile singularity\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1628067602.0
+ "updated_at": 1700502150.0
},
{
"data_format": 2,
- "description": "Core repository for neuroglia singularity image",
+ "description": "testing container for pushing to singularity-hub",
"filenames": [
- "Singularity.v1.4",
- "Singularity.v1.5",
"Singularity"
],
- "full_name": "khanlab/neuroglia-core",
- "latest_release": "v1.5",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eneuroglia-core\u003c/h1\u003e\u003ca id=\"user-content-neuroglia-core\" class=\"anchor\" aria-label=\"Permalink: neuroglia-core\" href=\"#neuroglia-core\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity image for neuroimaging dependencies. Base image for khanlab apps and containers. Includes:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNeurodebian\u003c/li\u003e\n\u003cli\u003eOctave\u003c/li\u003e\n\u003cli\u003eNipype\u003c/li\u003e\n\u003cli\u003eFSL\u003c/li\u003e\n\u003cli\u003eAFNI\u003c/li\u003e\n\u003cli\u003eC3D\u003c/li\u003e\n\u003cli\u003eFreesurfer\u0027s mri_convert and mris_convert\u003c/li\u003e\n\u003cli\u003eANTS\u003c/li\u003e\n\u003cli\u003edcm2niix\u003c/li\u003e\n\u003cli\u003eheudiconv\u003c/li\u003e\n\u003cli\u003ebids-validator\u003c/li\u003e\n\u003cli\u003eNiftyReg\u003c/li\u003e\n\u003cli\u003egradunwarp\u003c/li\u003e\n\u003cli\u003edcmstack\u003c/li\u003e\n\u003cli\u003eConnectome Workbench\u003c/li\u003e\n\u003cli\u003eDatalad-osf\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eCommits and pull-requests to this repository rebuild the \u003ccode\u003elatest\u003c/code\u003e version on Docker Hub, which is updated nightly to Singularity Hub. Releases on Docker Hub and Singularity Hub are built whenever a tag named \u003ccode\u003ev.*\u003c/code\u003e is committed. To avoid re-building on minor commits (e.g. changes to documentation), use \u003ccode\u003e[skip ci]\u003c/code\u003e in the commit message.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://circleci.com/gh/khanlab/neuroglia-core\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/835cd5c934ef218fbd0ef5bdc983afeca64e7f868c316e16de506c0216eada12/68747470733a2f2f636972636c6563692e636f6d2f67682f6b68616e6c61622f6e6575726f676c69612d636f72652e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/khanlab/neuroglia-core.svg?style=svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/393\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eDocker:\n\u003ccode\u003edocker pull khanlab/neuroglia-core\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eSingularity:\n\u003ccode\u003esingularity pull khanlab/neuroglia-core\u003c/code\u003e\u003c/p\u003e\n",
+ "full_name": "vsoch/hello-world",
+ "latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 8,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1591844429.0
+ "updated_at": 1545323609.0
},
{
"data_format": 2,
- "description": "Singularity container for Gate ",
+ "description": "recipe for containers",
"filenames": [
- "geant4/Singularity"
+ "NucleoATAC/Singularity",
+ "RGT/Singularity",
+ "FitHiChIP/Singularity.FitHiChIP",
+ "Homer/Singularity"
],
- "full_name": "tfunck/gate",
+ "full_name": "Tuteja-Lab/containers",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003econtainers\u003c/h1\u003e\u003ca id=\"user-content-containers\" class=\"anchor\" aria-label=\"Permalink: containers\" href=\"#containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003erecipe for containers\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1557681223.0
+ "updated_at": 1706042876.0
},
{
"data_format": 2,
- "description": "Singularity images and recipes",
+ "description": "Guppy is a data processing toolkit that contains the Oxford Nanopore Technologies\u2019 basecalling algorithms.",
"filenames": [
- "lammps/Singularity.lammps_ase_kim",
- "lammps/Singularity.lammps_prophet",
- "lammps/Singularity.lammps_ase",
- "lammps/Singularity.lammps",
- "deal.II/Singularity.deal",
- "acroread/Singularity.acroread",
- "ubuntu/Singularity.1804",
- "ubuntu/Singularity.2004",
- "tesseract/Singularity.tesseract",
- "nut/Singularity.nut",
- "SLURM/Singularity.slurm",
- "ase-twistd/Singularity.ase-twistd",
- "mariadb/Singularity.mariadb",
- "jmol/Singularity.jmol",
- "kmos/Singularity.kmos3_9",
- "kmos/Singularity.kmos",
- "Atom/Singularity.atom",
- "fuse-overlayfs/Singularity.fuse-overlayfs",
- "mongodb/Singularity.mongodb",
- "gdis-git/Singularity-slim.gdis",
- "gdis-git/Singularity.gdis",
- "AMPE/Singularity.ampe",
- "pp/Singularity.pp2",
- "tools/Singularity.mc",
- "tools/Singularity.gnuplot",
- "tools/Singularity.vim",
- "tools/Singularity.ncdu",
- "tools/Singularity.gawk",
- "tools/Singularity.meld",
- "jupyter/Singularity.jupyter",
- "graphics/Singularity.graphics",
- "graphics/Singularity.gnuplot_5.4a",
- "graphics/Singularity.gnuplot_5.4",
- "graphics/Singularity.gnuplot_4.6",
- "graphics/Singularity.gnuplot_alpine",
- "graphics/Singularity.gnuplot_4.6a",
- "texlive/Singularity.texlive",
- "VESTA/Singularity.vesta",
- "obabel/Singularity.obabel",
- "cuda/Singularity.u18.04_cuda9.2",
- "qemu/Singularity.qemu-utils",
- "MD2-lab/Singularity.md2-lab",
- "emacs/Singularity.emacs",
- "gdis/Singularity.gdis",
- "aria2/Singularity.aria2c",
- "mkdocs-serve/Singularity.mkdocs-serve",
- "clease/Singularity.clease",
- "rstudio-server/Singularity.rstudio-server",
- "rstudio-server/Singularity.rstudio-desktop",
- "rstudio-server/Singularity-22.04.rstudio-server",
- "gromacs/Singularity.gromacs",
- "xcrysden/Singularity.xcrysden",
- "xcrysden/Singularity.xcrysden_1.5.60"
+ "6.0.0/Singularity"
],
- "full_name": "pmitev/Teoroo-singularity",
+ "full_name": "pscedu/singularity-guppy",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2338\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTeoroo-singularity\u003c/h1\u003e\u003ca id=\"user-content-teoroo-singularity\" class=\"anchor\" aria-label=\"Permalink: Teoroo-singularity\" href=\"#teoroo-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-guppy/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-guppy/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-guppy/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-guppy/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/acd271ee64be7e03cce0aa20980a61a37f2a803c6c21475e4f5e2e750f91b847/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6775707079\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/acd271ee64be7e03cce0aa20980a61a37f2a803c6c21475e4f5e2e750f91b847/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6775707079\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-guppy\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/ce3bd0aacdb7b3b72cb6bf39ce61e5bb1cc29a5784ded8bb4f63d60ba37d4e96/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6775707079\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ce3bd0aacdb7b3b72cb6bf39ce61e5bb1cc29a5784ded8bb4f63d60ba37d4e96/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6775707079\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-guppy\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/b6e3ded696588df6d0e3326ff98a3915f0822c93b919f7af672f1bbb878a4fac/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6775707079\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b6e3ded696588df6d0e3326ff98a3915f0822c93b919f7af672f1bbb878a4fac/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6775707079\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-guppy\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/3fe9defc0e02f64e7c2aa7b7bb20b84f9a2e6f0239ee4e213edd1a550157e8c0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6775707079\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3fe9defc0e02f64e7c2aa7b7bb20b84f9a2e6f0239ee4e213edd1a550157e8c0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6775707079\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-guppy\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-guppy\u003c/h1\u003e\u003ca id=\"user-content-singularity-guppy\" class=\"anchor\" aria-label=\"Permalink: singularity-guppy\" href=\"#singularity-guppy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://community.nanoporetech.com/protocols/Guppy-protocol/v/gpb_2003_v1_revac_14dec2018/linux-guppy\" rel=\"nofollow\"\u003eguppy\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/guppy/6.0.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/guppy\u003c/code\u003e as \u003ccode\u003e6.0.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2024 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 4,
"topics": [
"singularity",
- "singularity-containers"
+ "bioinformatics"
],
- "updated_at": 1730474659.0
+ "updated_at": 1644268950.0
},
{
"data_format": 2,
- "description": "dockerize bidskit for TACC usage",
+ "description": null,
"filenames": [
- "Singularity.TACC",
- "Singularity"
+ "Singularity.itermae",
+ "Singularity.test",
+ "Singularity.test_base",
+ "Singularity.itermae-plus",
+ "Singularity.latest"
],
- "full_name": "jungheejung/docker-bidskit",
+ "full_name": "darachm/itermae",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003edocker-bidskit\u003c/h1\u003e\u003ca id=\"user-content-docker-bidskit\" class=\"anchor\" aria-label=\"Permalink: docker-bidskit\" href=\"#docker-bidskit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003edockerize bidskit for TACC usage\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eitermae\u003c/h1\u003e\u003ca id=\"user-content-itermae\" class=\"anchor\" aria-label=\"Permalink: itermae\" href=\"#itermae\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSee the \u003ca href=\"https://darachm.gitlab.io/itermae/concept.html\" rel=\"nofollow\"\u003econcept here\u003c/a\u003e and\n\u003ca href=\"https://darachm.gitlab.io/itermae/usage/tutorial.html\" rel=\"nofollow\"\u003etutorial here\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eitermae\u003c/code\u003e is a command-line utility to recognize patterns in input sequences\nand generate outputs from groups recognized. Basically, it uses fuzzy regular\nexpression operations to (primarily) DNA sequence for purposes of DNA\nbarcode/tag/UMI parsing, sequence and quality -based filtering,\nand general output re-arrangment.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a09342327230d778e1e997dbd43b10e60ec7ce50b0b15deebe5a3a219d1d44b1/68747470733a2f2f6461726163686d2e6769746c61622e696f2f697465726d61652f5f696d616765732f70617273655f6469616772616d5f312e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a09342327230d778e1e997dbd43b10e60ec7ce50b0b15deebe5a3a219d1d44b1/68747470733a2f2f6461726163686d2e6769746c61622e696f2f697465726d61652f5f696d616765732f70617273655f6469616772616d5f312e737667\" alt=\"itermae diagram\" data-canonical-src=\"https://darachm.gitlab.io/itermae/_images/parse_diagram_1.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eitermae\u003c/code\u003e reads and makes FASTQ, FASTA, text-file, and SAM (tab-delimited)\nfiles using \u003ca href=\"https://pypi.org/project/biopython/\" rel=\"nofollow\"\u003e\u003ccode\u003eBiopython\u003c/code\u003e\u003c/a\u003e sequence records\nto represent slice, and read/output formats.\nPattern matching uses the \u003ca href=\"https://pypi.org/project/regex/\" rel=\"nofollow\"\u003e\u003ccode\u003eregex\u003c/code\u003e\u003c/a\u003e library,\nand the tool is designed to function in command-line pipes from tools like\n\u003ca href=\"https://www.gnu.org/software/parallel/\" rel=\"nofollow\"\u003eGNU \u003ccode\u003eparallel\u003c/code\u003e\u003c/a\u003e\nto permit light-weight parallelization.\u003c/p\u003e\n\u003cp\u003eIt\u0027s usage might look something like this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ezcat seq_data.fastqz | itermae --config my_config.yml -v \u0026gt; output.sam\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ezcat seq_data.fastqz \\\n | parallel --quote --pipe -l 4 --keep-order -N 10000 \\\n itermae --config my_config.yml -v \u0026gt; output.sam\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewith a \u003ccode\u003emy_config.yml\u003c/code\u003e file that may look something like this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ematches:\n - use: input\n pattern: NNNNNGTCCTCGAGGTCTCTNNNNNNNNNNNNNNNNNNNNCGTACGCTGCAGGTC\n marking: aaaaaBBBBBBBBBBBBBBBccccccccccccccccccccDDDDDDDDDDDDDDD\n marked_groups:\n a:\n name: sampleIndex\n repeat: 5\n B:\n allowed_errors: 2\n c:\n name: barcode\n repeat_min: 18\n repeat_max: 22\n D:\n allowed_insertions: 1\n allowed_deletions: 2\n allowed_substititions: 2\noutput_list:\n - name: \u0027barcode\u0027\n description: \u0027description+\" sample=\"+sampleIndex\u0027\n seq: \u0027barcode\u0027\n filter: \u0027statistics.median(barcode.quality) \u0026gt;= 35\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAvailability, installation, \u0027installation\u0027\u003c/h1\u003e\u003ca id=\"user-content-availability-installation-installation\" class=\"anchor\" aria-label=\"Permalink: Availability, installation, \u0027installation\u0027\" href=\"#availability-installation-installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOptions:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eUse pip to install \u003ccode\u003eitermae\u003c/code\u003e, so\u003c/p\u003e\n\u003cp\u003epython3 -m pip install itermae\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eYou can clone this repo, and install it locally. Dependencies are in\n\u003ccode\u003erequirements.txt\u003c/code\u003e, so\n\u003ccode\u003epython3 -m pip install -r requirements.txt\u003c/code\u003e will install those.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eYou can use \u003ca href=\"https://syslab.org\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e to pull and run a\n\u003ca href=\"https://singularity-hub.org/collections/4537\" rel=\"nofollow\"\u003eSingularity image of itermae.py\u003c/a\u003e,\nwhere everything is already installed.\nThis is the recommended usage.\u003c/p\u003e\n\u003cp\u003eThis image is built with a few other tools,\nlike g/mawk, perl, and parallel, to make command line munging easier.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eUsage\u003c/h1\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003eitermae\u003c/code\u003e is envisioned to be used in a pipe-line where you just got your\nDNA sequencing FASTQ reads back, and you want to parse them.\nThe recommended interface is the YAML config file, as demonstrated\nin \u003ca href=\"https://darachm.gitlab.io/itermae/usage/tutorial.html\" rel=\"nofollow\"\u003ethe tutorial\u003c/a\u003e\nand detailed again in the\n\u003ca href=\"https://darachm.gitlab.io/itermae/usage/config.html\" rel=\"nofollow\"\u003econfiguration details\u003c/a\u003e.\nYou can also use a command-line argument interface as detailed more\n\u003ca href=\"https://darachm.gitlab.io/itermae/usage/examples.html\" rel=\"nofollow\"\u003ein the examples\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eI recommend you test this on small batches of data,\nthen stick it behind GNU \u003ccode\u003eparallel\u003c/code\u003e and feed the whole FASTQ file via\n\u003ccode\u003ezcat\u003c/code\u003e in on standard input.\nThis parallelizes with a small memory footprint, then\nyou write it out to disk (or stream into another tool).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eThanks\u003c/h1\u003e\u003ca id=\"user-content-thanks\" class=\"anchor\" aria-label=\"Permalink: Thanks\" href=\"#thanks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAgain, the tool is built upon on the excellent work of\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://pypi.org/project/regex/\" rel=\"nofollow\"\u003e\u003ccode\u003eregex\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://pypi.org/project/biopython/\" rel=\"nofollow\"\u003e\u003ccode\u003eBiopython\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.gnu.org/software/parallel/\" rel=\"nofollow\"\u003e\u003ccode\u003eparallel\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDevelopment, helping\u003c/h1\u003e\u003ca id=\"user-content-development-helping\" class=\"anchor\" aria-label=\"Permalink: Development, helping\" href=\"#development-helping\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAny issues or advice are welcome as an\n\u003ca href=\"https://gitlab.com/darachm/itermae/-/issues\" rel=\"nofollow\"\u003eissue on the gitlab repo\u003c/a\u003e.\nComplaints are especially welcome.\u003c/p\u003e\n\u003cp\u003eFor development, see the\n\u003ca href=\"https://darachm.gitlab.io/itermae/package.html\" rel=\"nofollow\"\u003edocumentation as rendered from docstrings\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eA set of tests is written up with \u003ccode\u003epytest\u003c/code\u003e module, and can be run from inside\nthe cloned repo with \u003ccode\u003emake test\u003c/code\u003e.\nSee \u003ccode\u003emake help\u003c/code\u003e for more options, such as building, installing, and uploading.\u003c/p\u003e\n\u003cp\u003eThere\u0027s also a bash script with some longer runs in\n\u003ccode\u003eprofiling_tests\u003c/code\u003e, these generate longer runs for profiling purposes\nwith \u003ccode\u003ecProfile\u003c/code\u003e and \u003ccode\u003esnakeviz\u003c/code\u003e.\nBut is out of date. Todo is to re-configure and retest that for speed.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1594676027.0
+ "updated_at": 1619137884.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Test Singularity-Hub.org",
"filenames": [
"Singularity"
],
- "full_name": "ISU-HPC/orthomcl",
+ "full_name": "mandelkow/SgTest",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eorthomcl\u003c/h1\u003e\u003ca id=\"user-content-orthomcl\" class=\"anchor\" aria-label=\"Permalink: orthomcl\" href=\"#orthomcl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSgTest\u003c/h1\u003e\u003ca id=\"user-content-sgtest\" class=\"anchor\" aria-label=\"Permalink: SgTest\" href=\"#sgtest\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTest Singularity-Hub.org\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1524255245.0
+ "updated_at": 1530825852.0
},
{
"data_format": 2,
- "description": "try adding press to DipNet",
+ "description": "HMMER is used for searching sequence databases for sequence homologs, and for making sequence alignments. It implements methods using probabilistic models called profile hidden Markov models (profile HMMs).",
"filenames": [
- "diplomacy_research/containers/tensorflow-serving/Singularity",
- "diplomacy_research/containers/research/Singularity",
- "diplomacy_research/containers/ubuntu-cuda10/Singularity",
- "diplomacy_research/containers/redis/Singularity",
- "diplomacy_research/containers/albert-ai/Singularity"
+ "3.3.1/Singularity",
+ "3.3.2/Singularity"
],
- "full_name": "wwongkamjan/dipnet_press",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSupervised and RL Models for No Press Diplomacy + press\u003c/h1\u003e\u003ca id=\"user-content-supervised-and-rl-models-for-no-press-diplomacy--press\" class=\"anchor\" aria-label=\"Permalink: Supervised and RL Models for No Press Diplomacy + press\" href=\"#supervised-and-rl-models-for-no-press-diplomacy--press\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository contains the source code used to develop a supervised and RL agent that can play the No Press version of Diplomacy.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/images/map_overview.png\"\u003e\u003cimg width=\"500\" src=\"docs/images/map_overview.png\" alt=\"Diplomacy Map Overview\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis project is licensed under the MIT License - see the \u003ca href=\"LICENSE\"\u003eLICENSE\u003c/a\u003e file for details.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eRestrictions: The trained weights provided with this repository are for research purposes only and cannot be used to power any bots on any website without my prior written consent, which may be withheld without reasons.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThe data provider also prevents using its data to train any bots accessible on any website.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eYou can play against the trained model by playing against \"KestasBot\" on webdiplomacy.net\u003c/strong\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDataset\u003c/h2\u003e\u003ca id=\"user-content-dataset\" class=\"anchor\" aria-label=\"Permalink: Dataset\" href=\"#dataset\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe model was trained by using a dataset of 156,468 games (diplomacy-v1-27k-msgs.zip), which consists of:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e16,633 games on non-standard maps (e.g. modern and ancmed) (other_maps.jsonl)\u003c/li\u003e\n\u003cli\u003e33,279 no-press games on the standard map (standard_no_press.jsonl)\u003c/li\u003e\n\u003cli\u003e50 press games on the standard map with messages (standard_press_with_msgs.jsonl)\u003c/li\u003e\n\u003cli\u003e106,456 press games on the standard map without messages (standard_press_without_msgs.jsonl)\u003c/li\u003e\n\u003cli\u003e50 public press games on the standard map with messages (standard_public_press.jsonl)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eA dataset of 156,458 games with 13,469,536 messages is also being prepared, but it is not yet available.\u003c/p\u003e\n\u003cp\u003eAccess to the dataset used to train the model can be requested by sending an email to \u003ca href=\"mailto:webdipmod@gmail.com\"\u003ewebdipmod@gmail.com\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGetting Started\u003c/h2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-label=\"Permalink: Getting Started\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eInstallation\u003c/h3\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe repository can be installed in a conda environment with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s1\"\u003econda\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ecreate\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e-\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003en\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ediplomacy\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003econda\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eactivate\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ediplomacy\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003epip\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003einstall\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e-\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003er\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003erequirements\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003etxt\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003epip\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003einstall\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e-\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003er\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003erequirements_dev\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003etxt\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis package depends on Redis and singularity 3+. Singularity can be installed with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Installing Singularity v3.2.0\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e VERSION=v3.2.0\nsudo apt-get update -y\nsudo apt-get install -y build-essential libssl-dev uuid-dev libgpgme11-dev libseccomp-dev pkg-config squashfs-tools\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Installing GO 1.12.5\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e GO_VERSION=1.12.5 OS=linux ARCH=amd64\nwget -nv https://dl.google.com/go/go\u003cspan class=\"pl-smi\"\u003e$GO_VERSION\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e$OS\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e$ARCH\u003c/span\u003e.tar.gz\nsudo tar -C /usr/local -xzf go\u003cspan class=\"pl-smi\"\u003e$GO_VERSION\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e$OS\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e$ARCH\u003c/span\u003e.tar.gz\nrm -f go\u003cspan class=\"pl-smi\"\u003e$GO_VERSION\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e$OS\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e$ARCH\u003c/span\u003e.tar.gz\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e GOPATH=\u003cspan class=\"pl-smi\"\u003e$HOME\u003c/span\u003e/.go\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e PATH=/usr/local/go/bin:\u003cspan class=\"pl-smi\"\u003e${PATH}\u003c/span\u003e:\u003cspan class=\"pl-smi\"\u003e${GOPATH}\u003c/span\u003e/bin\nmkdir -p \u003cspan class=\"pl-smi\"\u003e$GOPATH\u003c/span\u003e\ngo get github.com/golang/dep/cmd/dep\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Building from source\u003c/span\u003e\nmkdir -p \u003cspan class=\"pl-smi\"\u003e$GOPATH\u003c/span\u003e/src/github.com/sylabs\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$GOPATH\u003c/span\u003e/src/github.com/sylabs\ngit clone https://github.com/sylabs/singularity.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e singularity\ngit checkout \u003cspan class=\"pl-smi\"\u003e$VERSION\u003c/span\u003e\n./mconfig -p /usr/local\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e ./builddir\nmake\nsudo make install\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe package is compatible with Python 3.5, 3.6, and 3.7.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTraining models\u003c/h3\u003e\u003ca id=\"user-content-training-models\" class=\"anchor\" aria-label=\"Permalink: Training models\" href=\"#training-models\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo train a model:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e WORKING_DIR=/path/to/some/directory\n$ cp diplomacy-v1-27k-msgs.zip \u003cspan class=\"pl-smi\"\u003e$WORKING_DIR\u003c/span\u003e\n$ conda activate diplomacy\n$ python diplomacy_research/scripts/build_dataset.py\n$ python diplomacy_research/models/policy/order_based/train.py --model_id 12\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePlaying against the SL and RL agents\u003c/h3\u003e\u003ca id=\"user-content-playing-against-the-sl-and-rl-agents\" class=\"anchor\" aria-label=\"Permalink: Playing against the SL and RL agents\" href=\"#playing-against-the-sl-and-rl-agents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIt is possible to play against the published results by using the \u003ccode\u003eDipNetSLPlayer\u003c/code\u003e and \u003ccode\u003eDipNetRLPlayer\u003c/code\u003e players in \u003ccode\u003ediplomacy_research.players.benchmark_player\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eThese players will automatically download a singularity container with the trained weights, and then launch a TF serving server to handle the requests.\u003c/p\u003e\n\u003cp\u003eA simple example on how to play a 7 bots game is:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003etornado\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003egen\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eujson\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eas\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ejson\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ediplomacy\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eGame\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ediplomacy\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eutils\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eexport\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eto_saved_game_format\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ediplomacy_research\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eplayers\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003ebenchmark_player\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eDipNetSLPlayer\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ediplomacy_research\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eutils\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003ecluster\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003estart_io_loop\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003estop_io_loop\u003c/span\u003e\n\n\u003cspan class=\"pl-en\"\u003e@\u003cspan class=\"pl-s1\"\u003egen\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003ecoroutine\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003edef\u003c/span\u003e \u003cspan class=\"pl-en\"\u003emain\u003c/span\u003e():\n \u003cspan class=\"pl-s\"\u003e\"\"\" Plays a local game with 7 bots \"\"\"\u003c/span\u003e\n \u003cspan class=\"pl-s1\"\u003eplayer\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eDipNetSLPlayer\u003c/span\u003e()\n \u003cspan class=\"pl-s1\"\u003egame\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eGame\u003c/span\u003e()\n\n \u003cspan class=\"pl-c\"\u003e# Playing game\u003c/span\u003e\n \u003cspan class=\"pl-k\"\u003ewhile\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003enot\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003egame\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eis_game_done\u003c/span\u003e:\n \u003cspan class=\"pl-s1\"\u003eorders\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eyield\u003c/span\u003e {\u003cspan class=\"pl-s1\"\u003epower_name\u003c/span\u003e: \u003cspan class=\"pl-s1\"\u003eplayer\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eget_orders\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003egame\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003epower_name\u003c/span\u003e) \u003cspan class=\"pl-k\"\u003efor\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003epower_name\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ein\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003egame\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003epowers\u003c/span\u003e}\n \u003cspan class=\"pl-k\"\u003efor\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003epower_name\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003epower_orders\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ein\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eorders\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eitems\u003c/span\u003e():\n \u003cspan class=\"pl-s1\"\u003egame\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eset_orders\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003epower_name\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003epower_orders\u003c/span\u003e)\n \u003cspan class=\"pl-s1\"\u003egame\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eprocess\u003c/span\u003e()\n\n \u003cspan class=\"pl-c\"\u003e# Saving to disk\u003c/span\u003e\n \u003cspan class=\"pl-k\"\u003ewith\u003c/span\u003e \u003cspan class=\"pl-en\"\u003eopen\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\u0027game.json\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027w\u0027\u003c/span\u003e) \u003cspan class=\"pl-k\"\u003eas\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003efile\u003c/span\u003e:\n \u003cspan class=\"pl-s1\"\u003efile\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003ewrite\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ejson\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003edumps\u003c/span\u003e(\u003cspan class=\"pl-en\"\u003eto_saved_game_format\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003egame\u003c/span\u003e)))\n \u003cspan class=\"pl-en\"\u003estop_io_loop\u003c/span\u003e()\n\n\u003cspan class=\"pl-k\"\u003eif\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003e__name__\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e==\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u0027__main__\u0027\u003c/span\u003e:\n \u003cspan class=\"pl-en\"\u003estart_io_loop\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003emain\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePlaying against a model\u003c/h3\u003e\u003ca id=\"user-content-playing-against-a-model\" class=\"anchor\" aria-label=\"Permalink: Playing against a model\" href=\"#playing-against-a-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIt is also possible for humans to play against bots using the web interface. The player can be changed in \u003ccode\u003ediplomacy_research.scripts.launch_bot\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e In a terminal window or tab - Launch React server (from diplomacy/diplomacy)\u003c/span\u003e\nnpm start\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e In another terminal window or tab - Launch diplomacy server\u003c/span\u003e\npython -m diplomacy.server.run\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e In a third terminal window or tab - Launch the bot script\u003c/span\u003e\npython diplomacy_research/scripts/launch_bot.py\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTrained weights and experiment logs\u003c/h3\u003e\u003ca id=\"user-content-trained-weights-and-experiment-logs\" class=\"anchor\" aria-label=\"Permalink: Trained weights and experiment logs\" href=\"#trained-weights-and-experiment-logs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo facilitate reproducibility, the experiments can be downloaded using the following links. These include hyperparameters, tensorboard graphs, output logs, and weights for each epoch.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOrder based LSTM model (order-based v12 - Accuracy of 61.3% - \u003cstrong\u003eDipNet SL\u003c/strong\u003e) \u003ca href=\"https://f002.backblazeb2.com/file/ppaquette-public/benchmarks/experiments/order-based-lstm.zip\" rel=\"nofollow\"\u003eDownload - 5.4GB\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eOrder based Transformer model (order-based v15 - Accuracy of 60.7%) \u003ca href=\"https://f002.backblazeb2.com/file/ppaquette-public/benchmarks/experiments/order-based-trsf.zip\" rel=\"nofollow\"\u003eDownload - 8.2GB\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eToken based LSTM model (token-based v10 - Accuracy of 60.3%) \u003ca href=\"https://f002.backblazeb2.com/file/ppaquette-public/benchmarks/experiments/token-based-lstm.zip\" rel=\"nofollow\"\u003eDownload - 6.0GB\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eToken based Transformer model (token-based v11 - Accuracy of 58.9%) \u003ca href=\"https://f002.backblazeb2.com/file/ppaquette-public/benchmarks/experiments/token-based-trsf.zip\" rel=\"nofollow\"\u003eDownload - 3.5GB\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eRL Model (Bootstrapped from order-based v12 and value v1 - \u003cstrong\u003eDipNet RL\u003c/strong\u003e) \u003ca href=\"https://f002.backblazeb2.com/file/ppaquette-public/benchmarks/experiments/rl-model.zip\" rel=\"nofollow\"\u003eDownload - 11.1GB\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eGames against Albert (DAIDE)\u003c/h3\u003e\u003ca id=\"user-content-games-against-albert-daide\" class=\"anchor\" aria-label=\"Permalink: Games against Albert (DAIDE)\" href=\"#games-against-albert-daide\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe 1v6 and 6v1 games played between DipNet SL and Albert (DAIDE) can be downloaded below:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eList of games with power assignments \u003ca href=\"https://f002.backblazeb2.com/file/ppaquette-public/benchmarks/experiments/daide_albert_results.xlsx\" rel=\"nofollow\"\u003eDownload - 53KB\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eVisualisation of each game (svg and json) \u003ca href=\"https://f002.backblazeb2.com/file/ppaquette-public/benchmarks/experiments/daide_albert_games.zip\" rel=\"nofollow\"\u003eDownload - 2.3GB\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "pscedu/singularity-hmmer",
+ "latest_release": "v3.3.1",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-hmmer/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-hmmer/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-hmmer/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-hmmer/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/799816fd70c8377213a151f0eaae10e558bb65c45e9abb0d00faf2b3cfb6250a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d686d6d6572\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/799816fd70c8377213a151f0eaae10e558bb65c45e9abb0d00faf2b3cfb6250a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d686d6d6572\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-hmmer\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/99a5788907342c6b3f1efdb2bd7b133bc109d02d875ead69c068fca8e20f1044/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d686d6d6572\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/99a5788907342c6b3f1efdb2bd7b133bc109d02d875ead69c068fca8e20f1044/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d686d6d6572\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-hmmer\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/fa9dcf57e459cf613f3f62f13cda857ba73eaf63a5c8e324654c90b8aad6e344/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d686d6d6572\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fa9dcf57e459cf613f3f62f13cda857ba73eaf63a5c8e324654c90b8aad6e344/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d686d6d6572\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-hmmer\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/6edb3fb4ea40a9e47df0faa9e813a800869971e1d990e660a609031ad4d81a18/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d686d6d6572\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6edb3fb4ea40a9e47df0faa9e813a800869971e1d990e660a609031ad4d81a18/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d686d6d6572\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-hmmer\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-hmmer\u003c/h1\u003e\u003ca id=\"user-content-singularity-hmmer\" class=\"anchor\" aria-label=\"Permalink: singularity-hmmer\" href=\"#singularity-hmmer\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/EddyRivasLab/hmmer\"\u003ehmmer\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ealimask\u003c/code\u003e, \u003ccode\u003ehmmbuild\u003c/code\u003e, \u003ccode\u003ehmmemit\u003c/code\u003e, \u003ccode\u003ehmmpgmd\u003c/code\u003e, \u003ccode\u003ehmmscan\u003c/code\u003e, \u003ccode\u003ehmmstat\u003c/code\u003e, \u003ccode\u003ephmmer\u003c/code\u003e, \u003ccode\u003ehmmc2\u003c/code\u003e, \u003ccode\u003ehmmfetch\u003c/code\u003e, \u003ccode\u003ehmmpgmd_shard\u003c/code\u003e, \u003ccode\u003ehmmsearch\u003c/code\u003e, \u003ccode\u003ejackhmmer\u003c/code\u003e, \u003ccode\u003enhmmer\u003c/code\u003e, \u003ccode\u003ehmmalign\u003c/code\u003e, \u003ccode\u003ehmmconvert\u003c/code\u003e, \u003ccode\u003ehmmlogo\u003c/code\u003e, \u003ccode\u003ehmmpress\u003c/code\u003e, \u003ccode\u003ehmmsim\u003c/code\u003e, \u003ccode\u003emakehmmerdb\u003c/code\u003e, \u003ccode\u003enhmmscan\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hmmer/3.3.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hmmer\u003c/code\u003e as \u003ccode\u003e3.3.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1645489677.0
+ "subscribers_count": 3,
+ "topics": [
+ "bioinformatics",
+ "singularity"
+ ],
+ "updated_at": 1653937435.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "diplomacy_research/containers/tensorflow-serving/Singularity",
- "diplomacy_research/containers/research/Singularity",
- "diplomacy_research/containers/ubuntu-cuda10/Singularity",
- "diplomacy_research/containers/redis/Singularity",
- "diplomacy_research/containers/albert-ai/Singularity"
+ "Singularity"
],
- "full_name": "tanushreebanerjee/paquette_2019",
+ "full_name": "rkalyanapurdue/geoedf-connector",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSupervised and RL Models for No Press Diplomacy\u003c/h1\u003e\u003ca id=\"user-content-supervised-and-rl-models-for-no-press-diplomacy\" class=\"anchor\" aria-label=\"Permalink: Supervised and RL Models for No Press Diplomacy\" href=\"#supervised-and-rl-models-for-no-press-diplomacy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository contains the source code used to develop a supervised and RL agent that can play the No Press version of Diplomacy.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/images/map_overview.png\"\u003e\u003cimg width=\"500\" src=\"docs/images/map_overview.png\" alt=\"Diplomacy Map Overview\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis project is licensed under the MIT License - see the \u003ca href=\"LICENSE\"\u003eLICENSE\u003c/a\u003e file for details.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eRestrictions: The trained weights provided with this repository are for research purposes only and cannot be used to power any bots on any website without my prior written consent, which may be withheld without reasons.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThe data provider also prevents using its data to train any bots accessible on any website.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eYou can play against the trained model by playing against \"KestasBot\" on webdiplomacy.net\u003c/strong\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDataset\u003c/h2\u003e\u003ca id=\"user-content-dataset\" class=\"anchor\" aria-label=\"Permalink: Dataset\" href=\"#dataset\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe model was trained by using a dataset of 156,468 games (diplomacy-v1-27k-msgs.zip), which consists of:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e16,633 games on non-standard maps (e.g. modern and ancmed) (other_maps.jsonl)\u003c/li\u003e\n\u003cli\u003e33,279 no-press games on the standard map (standard_no_press.jsonl)\u003c/li\u003e\n\u003cli\u003e50 press games on the standard map with messages (standard_press_with_msgs.jsonl)\u003c/li\u003e\n\u003cli\u003e106,456 press games on the standard map without messages (standard_press_without_msgs.jsonl)\u003c/li\u003e\n\u003cli\u003e50 public press games on the standard map with messages (standard_public_press.jsonl)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eA dataset of 156,458 games with 13,469,536 messages is also being prepared, but it is not yet available.\u003c/p\u003e\n\u003cp\u003eAccess to the dataset used to train the model can be requested by sending an email to \u003ca href=\"mailto:webdipmod@gmail.com\"\u003ewebdipmod@gmail.com\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGetting Started\u003c/h2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-label=\"Permalink: Getting Started\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eInstallation\u003c/h3\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe repository can be installed in a conda environment with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s1\"\u003econda\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ecreate\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e-\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003en\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ediplomacy\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003econda\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eactivate\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ediplomacy\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003epip\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003einstall\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e-\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003er\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003erequirements\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003etxt\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003epip\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003einstall\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e-\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003er\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003erequirements_dev\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003etxt\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis package depends on Redis and singularity 3+. Singularity can be installed with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Installing Singularity v3.2.0\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e VERSION=v3.2.0\nsudo apt-get update -y\nsudo apt-get install -y build-essential libssl-dev uuid-dev libgpgme11-dev libseccomp-dev pkg-config squashfs-tools\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Installing GO 1.12.5\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e GO_VERSION=1.12.5 OS=linux ARCH=amd64\nwget -nv https://dl.google.com/go/go\u003cspan class=\"pl-smi\"\u003e$GO_VERSION\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e$OS\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e$ARCH\u003c/span\u003e.tar.gz\nsudo tar -C /usr/local -xzf go\u003cspan class=\"pl-smi\"\u003e$GO_VERSION\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e$OS\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e$ARCH\u003c/span\u003e.tar.gz\nrm -f go\u003cspan class=\"pl-smi\"\u003e$GO_VERSION\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e$OS\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e$ARCH\u003c/span\u003e.tar.gz\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e GOPATH=\u003cspan class=\"pl-smi\"\u003e$HOME\u003c/span\u003e/.go\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e PATH=/usr/local/go/bin:\u003cspan class=\"pl-smi\"\u003e${PATH}\u003c/span\u003e:\u003cspan class=\"pl-smi\"\u003e${GOPATH}\u003c/span\u003e/bin\nmkdir -p \u003cspan class=\"pl-smi\"\u003e$GOPATH\u003c/span\u003e\ngo get github.com/golang/dep/cmd/dep\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Building from source\u003c/span\u003e\nmkdir -p \u003cspan class=\"pl-smi\"\u003e$GOPATH\u003c/span\u003e/src/github.com/sylabs\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$GOPATH\u003c/span\u003e/src/github.com/sylabs\ngit clone https://github.com/sylabs/singularity.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e singularity\ngit checkout \u003cspan class=\"pl-smi\"\u003e$VERSION\u003c/span\u003e\n./mconfig -p /usr/local\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e ./builddir\nmake\nsudo make install\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe package is compatible with Python 3.5, 3.6, and 3.7.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTraining models\u003c/h3\u003e\u003ca id=\"user-content-training-models\" class=\"anchor\" aria-label=\"Permalink: Training models\" href=\"#training-models\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo train a model:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e WORKING_DIR=/path/to/some/directory\n$ cp diplomacy-v1-27k-msgs.zip \u003cspan class=\"pl-smi\"\u003e$WORKING_DIR\u003c/span\u003e\n$ conda activate diplomacy\n$ python diplomacy_research/scripts/build_dataset.py\n$ python diplomacy_research/models/policy/order_based/train.py --model_id 12\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePlaying against the SL and RL agents\u003c/h3\u003e\u003ca id=\"user-content-playing-against-the-sl-and-rl-agents\" class=\"anchor\" aria-label=\"Permalink: Playing against the SL and RL agents\" href=\"#playing-against-the-sl-and-rl-agents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIt is possible to play against the published results by using the \u003ccode\u003eDipNetSLPlayer\u003c/code\u003e and \u003ccode\u003eDipNetRLPlayer\u003c/code\u003e players in \u003ccode\u003ediplomacy_research.players.benchmark_player\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eThese players will automatically download a singularity container with the trained weights, and then launch a TF serving server to handle the requests.\u003c/p\u003e\n\u003cp\u003eA simple example on how to play a 7 bots game is:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003etornado\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003egen\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eujson\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eas\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ejson\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ediplomacy\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eGame\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ediplomacy\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eutils\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eexport\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eto_saved_game_format\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ediplomacy_research\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eplayers\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003ebenchmark_player\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eDipNetSLPlayer\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ediplomacy_research\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eutils\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003ecluster\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003estart_io_loop\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003estop_io_loop\u003c/span\u003e\n\n\u003cspan class=\"pl-en\"\u003e@\u003cspan class=\"pl-s1\"\u003egen\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003ecoroutine\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003edef\u003c/span\u003e \u003cspan class=\"pl-en\"\u003emain\u003c/span\u003e():\n \u003cspan class=\"pl-s\"\u003e\"\"\" Plays a local game with 7 bots \"\"\"\u003c/span\u003e\n \u003cspan class=\"pl-s1\"\u003eplayer\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eDipNetSLPlayer\u003c/span\u003e()\n \u003cspan class=\"pl-s1\"\u003egame\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eGame\u003c/span\u003e()\n\n \u003cspan class=\"pl-c\"\u003e# Playing game\u003c/span\u003e\n \u003cspan class=\"pl-k\"\u003ewhile\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003enot\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003egame\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eis_game_done\u003c/span\u003e:\n \u003cspan class=\"pl-s1\"\u003eorders\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eyield\u003c/span\u003e {\u003cspan class=\"pl-s1\"\u003epower_name\u003c/span\u003e: \u003cspan class=\"pl-s1\"\u003eplayer\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eget_orders\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003egame\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003epower_name\u003c/span\u003e) \u003cspan class=\"pl-k\"\u003efor\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003epower_name\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ein\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003egame\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003epowers\u003c/span\u003e}\n \u003cspan class=\"pl-k\"\u003efor\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003epower_name\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003epower_orders\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ein\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eorders\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eitems\u003c/span\u003e():\n \u003cspan class=\"pl-s1\"\u003egame\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eset_orders\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003epower_name\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003epower_orders\u003c/span\u003e)\n \u003cspan class=\"pl-s1\"\u003egame\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eprocess\u003c/span\u003e()\n\n \u003cspan class=\"pl-c\"\u003e# Saving to disk\u003c/span\u003e\n \u003cspan class=\"pl-k\"\u003ewith\u003c/span\u003e \u003cspan class=\"pl-en\"\u003eopen\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\u0027game.json\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027w\u0027\u003c/span\u003e) \u003cspan class=\"pl-k\"\u003eas\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003efile\u003c/span\u003e:\n \u003cspan class=\"pl-s1\"\u003efile\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003ewrite\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ejson\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003edumps\u003c/span\u003e(\u003cspan class=\"pl-en\"\u003eto_saved_game_format\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003egame\u003c/span\u003e)))\n \u003cspan class=\"pl-en\"\u003estop_io_loop\u003c/span\u003e()\n\n\u003cspan class=\"pl-k\"\u003eif\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003e__name__\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e==\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u0027__main__\u0027\u003c/span\u003e:\n \u003cspan class=\"pl-en\"\u003estart_io_loop\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003emain\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePlaying against a model\u003c/h3\u003e\u003ca id=\"user-content-playing-against-a-model\" class=\"anchor\" aria-label=\"Permalink: Playing against a model\" href=\"#playing-against-a-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIt is also possible for humans to play against bots using the web interface. The player can be changed in \u003ccode\u003ediplomacy_research.scripts.launch_bot\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e In a terminal window or tab - Launch React server (from diplomacy/diplomacy)\u003c/span\u003e\nnpm start\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e In another terminal window or tab - Launch diplomacy server\u003c/span\u003e\npython -m diplomacy.server.run\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e In a third terminal window or tab - Launch the bot script\u003c/span\u003e\npython diplomacy_research/scripts/launch_bot.py\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTrained weights and experiment logs\u003c/h3\u003e\u003ca id=\"user-content-trained-weights-and-experiment-logs\" class=\"anchor\" aria-label=\"Permalink: Trained weights and experiment logs\" href=\"#trained-weights-and-experiment-logs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo facilitate reproducibility, the experiments can be downloaded using the following links. These include hyperparameters, tensorboard graphs, output logs, and weights for each epoch.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOrder based LSTM model (order-based v12 - Accuracy of 61.3% - \u003cstrong\u003eDipNet SL\u003c/strong\u003e) \u003ca href=\"https://f002.backblazeb2.com/file/ppaquette-public/benchmarks/experiments/order-based-lstm.zip\" rel=\"nofollow\"\u003eDownload - 5.4GB\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eOrder based Transformer model (order-based v15 - Accuracy of 60.7%) \u003ca href=\"https://f002.backblazeb2.com/file/ppaquette-public/benchmarks/experiments/order-based-trsf.zip\" rel=\"nofollow\"\u003eDownload - 8.2GB\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eToken based LSTM model (token-based v10 - Accuracy of 60.3%) \u003ca href=\"https://f002.backblazeb2.com/file/ppaquette-public/benchmarks/experiments/token-based-lstm.zip\" rel=\"nofollow\"\u003eDownload - 6.0GB\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eToken based Transformer model (token-based v11 - Accuracy of 58.9%) \u003ca href=\"https://f002.backblazeb2.com/file/ppaquette-public/benchmarks/experiments/token-based-trsf.zip\" rel=\"nofollow\"\u003eDownload - 3.5GB\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eRL Model (Bootstrapped from order-based v12 and value v1 - \u003cstrong\u003eDipNet RL\u003c/strong\u003e) \u003ca href=\"https://f002.backblazeb2.com/file/ppaquette-public/benchmarks/experiments/rl-model.zip\" rel=\"nofollow\"\u003eDownload - 11.1GB\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eGames against Albert (DAIDE)\u003c/h3\u003e\u003ca id=\"user-content-games-against-albert-daide\" class=\"anchor\" aria-label=\"Permalink: Games against Albert (DAIDE)\" href=\"#games-against-albert-daide\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe 1v6 and 6v1 games played between DipNet SL and Albert (DAIDE) can be downloaded below:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eList of games with power assignments \u003ca href=\"https://f002.backblazeb2.com/file/ppaquette-public/benchmarks/experiments/daide_albert_results.xlsx\" rel=\"nofollow\"\u003eDownload - 53KB\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eVisualisation of each game (svg and json) \u003ca href=\"https://f002.backblazeb2.com/file/ppaquette-public/benchmarks/experiments/daide_albert_games.zip\" rel=\"nofollow\"\u003eDownload - 2.3GB\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003egeoedf-connector\u003c/h1\u003e\u003ca id=\"user-content-geoedf-connector\" class=\"anchor\" aria-label=\"Permalink: geoedf-connector\" href=\"#geoedf-connector\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1671746273.0
+ "updated_at": 1592580440.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "1.58.1/Singularity",
- "1.75.0/Singularity"
+ "Singularity.R_3.6.0",
+ "Singularity.bioconductor_3.9",
+ "Singularity.R-Mfuzz_2.38.0"
],
- "full_name": "pscedu/singularity-rust",
+ "full_name": "TomHarrop/r-singularity",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-rust/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-rust/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-rust/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-rust/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/cf560daa2034e21d03639b214b57dc77409c3c04cd700171ffeea3d55a611e92/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d72757374\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cf560daa2034e21d03639b214b57dc77409c3c04cd700171ffeea3d55a611e92/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d72757374\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-rust\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f0ea5dbc8c9b56166336155973c2fd53939aaf5f39266ba877193c1459583fed/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d72757374\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f0ea5dbc8c9b56166336155973c2fd53939aaf5f39266ba877193c1459583fed/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d72757374\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-rust\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/eee6f13f6796e4d3e45b0f400ba03ea0c7775f9021705157877a4007fa1fbeb3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d72757374\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/eee6f13f6796e4d3e45b0f400ba03ea0c7775f9021705157877a4007fa1fbeb3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d72757374\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-rust\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/c719c29ce3719447d26c7ef3c2f8a4fbda921774edb12d766d211af0720ba9e0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d72757374\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c719c29ce3719447d26c7ef3c2f8a4fbda921774edb12d766d211af0720ba9e0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d72757374\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-rust\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-rust\u003c/h1\u003e\u003ca id=\"user-content-singularity-rust\" class=\"anchor\" aria-label=\"Permalink: singularity-rust\" href=\"#singularity-rust\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/7174f54056f65968a2515417952a46695bb1eb3d588756dd31d57cdb9fe2b0b0/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f7468756d622f642f64352f527573745f70726f6772616d6d696e675f6c616e67756167655f626c61636b5f6c6f676f2e7376672f3132303070782d527573745f70726f6772616d6d696e675f6c616e67756167655f626c61636b5f6c6f676f2e7376672e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7174f54056f65968a2515417952a46695bb1eb3d588756dd31d57cdb9fe2b0b0/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f7468756d622f642f64352f527573745f70726f6772616d6d696e675f6c616e67756167655f626c61636b5f6c6f676f2e7376672f3132303070782d527573745f70726f6772616d6d696e675f6c616e67756167655f626c61636b5f6c6f676f2e7376672e706e67\" width=\"25%\" data-canonical-src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Rust_programming_language_black_logo.svg/1200px-Rust_programming_language_black_logo.svg.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://www.rust-lang.org/\" rel=\"nofollow\"\u003erust\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003erust\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/rust/1.58.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/rust\u003c/code\u003e as \u003ccode\u003e1.58.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1645584492.0
+ "updated_at": 1568680401.0
},
{
"data_format": 2,
- "description": "My software stack.",
+ "description": "Singularity ML Box with PyTorch, Keras, Tensorflow",
"filenames": [
- "Singularity.cuda8-comet",
- "Singularity.comet",
- "Singularity.cuda8",
- "Singularity.cuda8-bridges",
- "Singularity",
- "Singularity.bridges",
- "Singularity.latest",
- "Singularity.cuda8-flux",
- "Singularity.flux"
+ "Singularity.ubuntu-bionic-cuda10",
+ "Singularity.ubuntu-xenial-cuda10",
+ "Singularity.ubuntu-bionic-cuda92",
+ "Singularity.ubuntu-xenial-cuda92"
],
- "full_name": "csadorf/software",
+ "full_name": "jeffacce/singularity-ml-box",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-ml-box\u003c/h1\u003e\u003ca id=\"user-content-singularity-ml-box\" class=\"anchor\" aria-label=\"Permalink: singularity-ml-box\" href=\"#singularity-ml-box\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity ML Box with PyTorch 1.0, Keras, Tensorflow, CUDA 10, Ubuntu 18.04 LTS\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1546998866.0
+ "updated_at": 1551987453.0
},
{
"data_format": 2,
- "description": null,
+ "description": "CachingOnDemand provides recipes and PaaS description templates for an end to end deployment of an XCache cluster",
"filenames": [
- "Singularity"
+ "singularity/Singularity"
],
- "full_name": "ISU-HPC/big-scape",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ebig-scape\u003c/h1\u003e\u003ca id=\"user-content-big-scape\" class=\"anchor\" aria-label=\"Permalink: big-scape\" href=\"#big-scape\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for big-scape\u003c/p\u003e\n\u003cp\u003eAdapted from \u003ca href=\"https://git.wageningenur.nl/medema-group/BiG-SCAPE/blob/master/Dockerfile\" rel=\"nofollow\"\u003ehttps://git.wageningenur.nl/medema-group/BiG-SCAPE/blob/master/Dockerfile\u003c/a\u003e\u003c/p\u003e\n",
+ "full_name": "Cloud-PG/CachingOnDemand",
+ "latest_release": "v2.0.0",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eOn-Demand XCache cluster\u003c/h1\u003e\u003ca id=\"user-content-on-demand-xcache-cluster\" class=\"anchor\" aria-label=\"Permalink: On-Demand XCache cluster\" href=\"#on-demand-xcache-cluster\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/1e34aacbd16043130fdc18f969404611342511683f9225d581c4d58856802f51/68747470733a2f2f7472617669732d63692e6f72672f436c6f75642d50472f43616368696e674f6e44656d616e642e7376673f6272616e63683d6d6173746572\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1e34aacbd16043130fdc18f969404611342511683f9225d581c4d58856802f51/68747470733a2f2f7472617669732d63692e6f72672f436c6f75642d50472f43616368696e674f6e44656d616e642e7376673f6272616e63683d6d6173746572\" alt=\"travis build of ansible\" data-canonical-src=\"https://travis-ci.org/Cloud-PG/CachingOnDemand.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://cloud-pg.github.io/CachingOnDemand/\" rel=\"nofollow\"\u003eDocumentation\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1547836893.0
+ "updated_at": 1574268938.0
},
{
"data_format": 2,
- "description": null,
+ "description": "containers-ftw version of https://www.kaggle.com/c/flavours-of-physics",
"filenames": [
- "Singularity.v2",
- "Singularity.v3",
- "Singularity.v1",
- "Singularity.v5",
- "Singularity.v6",
- "Singularity.v4"
+ "Singularity"
],
- "full_name": "BensonYang1999/hpl-cuda-singularity",
+ "full_name": "sci-f/flavours-of-physics.scif",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eMu Tau Tau Tau ContainersFTW\u003c/h1\u003e\u003ca id=\"user-content-mu-tau-tau-tau-containersftw\" class=\"anchor\" aria-label=\"Permalink: Mu Tau Tau Tau ContainersFTW\" href=\"#mu-tau-tau-tau-containersftw\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/containers-ftw.png\"\u003e\u003cimg src=\"img/containers-ftw.png\" alt=\"img/containers-ftw.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://travis-ci.org/containers-ftw/flavours-of-physics-ftw\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ed5f9af035d26113e1a9dff5169a0af2fb904250e307d127a4a8497c23d0b714/68747470733a2f2f7472617669732d63692e6f72672f636f6e7461696e6572732d6674772f666c61766f7572732d6f662d706879736963732d6674772e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/containers-ftw/flavours-of-physics-ftw.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis is a competition orginally \u003ca href=\"https://www.kaggle.com/c/flavours-of-physics/data\" rel=\"nofollow\"\u003ehosted on Kaggle\u003c/a\u003e, reproduced here to encourage containerization of submissions by way of \u003ca href=\"https://singularity.lbl.gov\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e. If you aren\u0027t familiar with Singularity, it\u0027s a container (like Docker) that can be run securely on HPC architectures.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eClone\u003c/h2\u003e\u003ca id=\"user-content-clone\" class=\"anchor\" aria-label=\"Permalink: Clone\" href=\"#clone\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFirst fork the repo to your own username. For example, if my user name is \u003ccode\u003evsoch\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://www.github.com/vsoch/flavours-of-physics-ftw\ncd flavours-of-physics-ftw\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild\u003c/h2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-label=\"Permalink: Build\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity create --size 8000 container.ftw \nsudo singularity bootstrap container.ftw Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun\u003c/h2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-label=\"Permalink: Run\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B data/input:/data/input -B analysis:/code --pwd /code container.ftw\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNow edit \u003ccode\u003emain.py\u003c/code\u003e, do better, and submit a PR to the contest repo for your entry. Want more details? keep reading!\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCompetition Overview\u003c/h2\u003e\u003ca id=\"user-content-competition-overview\" class=\"anchor\" aria-label=\"Permalink: Competition Overview\" href=\"#competition-overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cstrong\u003eGoals\u003c/strong\u003e: Read about the \u003ca href=\"https://www.kaggle.com/c/flavours-of-physics/data\" rel=\"nofollow\"\u003edata\u003c/a\u003e to get a breakdown of the data provided, and the \u003ca href=\"https://www.kaggle.com/c/flavours-of-physics\" rel=\"nofollow\"\u003ebackground and goals\u003c/a\u003e of the competition is beautifully described and shown on Kaggle.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eBuild\u003c/strong\u003e: Build your container (see build section below), which will install dependencies and prepare data for you. If you find that you need any more, or any additional software or libraries, you can add them to the \u003ccode\u003e%post\u003c/code\u003e section of the \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e file.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eCode\u003c/strong\u003e: Once you have your container built, you can use it to develop and test your submission.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eSubmit\u003c/strong\u003e: A submission to the competition means submitting a PR (pull request)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eGoals\u003c/h3\u003e\u003ca id=\"user-content-goals\" class=\"anchor\" aria-label=\"Permalink: Goals\" href=\"#goals\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eEvaluation for this competition is based on AUC (area under the curve), defined as area under the curve, which broadly gets at the ratio of false positives to false negatives for your model. In addition to this criteria, the \u003ca href=\"metrics.py\"\u003emetrics\u003c/a\u003e file includes multiple checks that physicists do to make sure that results are unbiased.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eBuild\u003c/h3\u003e\u003ca id=\"user-content-build-1\" class=\"anchor\" aria-label=\"Permalink: Build\" href=\"#build-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWhen you are ready to start your submission, you should fork the repo to your branch, and then clone the fork. For example, if my username on Github was \u003ccode\u003evsoch\u003c/code\u003e, I would fork and then do:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://www.github.com/vsoch/flavours-of-physics-ftw\ncd flavours-of-physics-ftw\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen you can build your image. You will need one dependency, that \u003ca href=\"https://singularityware.github.io\" rel=\"nofollow\"\u003eSingularity is installed\u003c/a\u003e. Building comes down to creating an image and then using \u003ccode\u003ebootstrap\u003c/code\u003e to build from the container recipe, \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity create --size 8000 container.ftw \nsudo singularity bootstrap container.ftw Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eWork in your Container\u003c/h2\u003e\u003ca id=\"user-content-work-in-your-container\" class=\"anchor\" aria-label=\"Permalink: Work in your Container\" href=\"#work-in-your-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo shell into your container, you will want to mount the analysis folder, and the external data. You can do that like this. Note that we are making the present working directory (\u003ccode\u003epwd\u003c/code\u003e) our folder with analysis scripts:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell -B data/input:/data/input -B analysis:/code --pwd /code container.ftw\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhen you shell into your container, it probably will look the same, but if you do \u003ccode\u003els /\u003c/code\u003e you will see a file called \u003ccode\u003esingularity\u003c/code\u003e and root folders \u003ccode\u003e/data\u003c/code\u003e and \u003ccode\u003e/code\u003c/code\u003e that aren\u0027t on your host. If you look inside, you will see the data and\nanalysis scripts mounted!\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003els /code\nREADME.md helpers main.py metrics.py results tests\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTry creating a file on the host, and you will see it change in the container, or vice versa. Thus, your general workflow will be the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003erun things from within the container, using the python or ipython located at \u003ccode\u003e/opt/conda/bin\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eedit code in your editor of choice on your host machine\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eEnvironment\u003c/h3\u003e\u003ca id=\"user-content-environment\" class=\"anchor\" aria-label=\"Permalink: Environment\" href=\"#environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you want to ever find data or results locations, these have been provided for you via environment variables:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eCONTAINERSFTW_DATA\u003c/code\u003e: The base folder with data\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eCONTAINERSFTW_RESULT\u003c/code\u003e: The folder where results are written to\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eCONTAINERSFTW_WORK\u003c/code\u003e: The folder where your scripts live.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIt\u0027s definitely a good idea if you are interested to shell around the container to understand where things are located, and test the variables to confirm they are the same:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eecho $CONT\n$CONTAINERSFTW_RESULT $CONTAINERSFTW_DATA $CONTAINERSFTW_WORK \necho $CONTAINERSFTW_DATA\n/data/input\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCode\u003c/h3\u003e\u003ca id=\"user-content-code\" class=\"anchor\" aria-label=\"Permalink: Code\" href=\"#code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can work from inside the container, or comfortable from the host in the \u003ccode\u003eanalysis\u003c/code\u003e folder (mapped to \u003ccode\u003e/code\u003c/code\u003e in the container). Your main work is going to be located at \u003ccode\u003e/code/main.py\u003c/code\u003e in the container, which is \u003ccode\u003eanalysis/main.py\u003c/code\u003e on the host. If you open up this file, you can start interactively working in an ipython terminal in the container to test commands. For example, from \u003ccode\u003e/code\u003c/code\u003e let\u0027s try loading the data in \u003ccode\u003eipython\u003c/code\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003efrom sklearn.ensemble import GradientBoostingClassifier\nfrom helpers.data import load_data\nfrom helpers.logger import bot\n\ntrain = load_data(name=\"training\")\nDEBUG Loading training : /data/input/training.csv\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand if you proceed through the rest of the script, you will produce an example result. You can also run the entire example without shelling into the container at all:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B data/input:/data/input -B analysis:/code --pwd /code container.ftw\nDEBUG Loading training : /data/input/training.csv\n\nChecking Agreement:\nDEBUG Loading check_agreement : /data/input/check_agreement.csv\nKS metric 0.0681705596239 True\n\nChecking Correlation:\nDEBUG Loading check_correlation : /data/input/check_correlation.csv\nCvM metric 0.000981509354914 True\n\nChecking AUC:\nAUC 0.834346382383\nDEBUG Loading test : /data/input/test.csv\nDEBUG submission : /code/results/submission.csv\nLOG Result saved to /code/results/submission.csv\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe result file is what gets tested in the continuous integration.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAdding Dependencies\u003c/h3\u003e\u003ca id=\"user-content-adding-dependencies\" class=\"anchor\" aria-label=\"Permalink: Adding Dependencies\" href=\"#adding-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you add dependencies (another python module, additional data that conforms to competition rules, etc) you should update the Singularity recipe, for example, we have marked in \u003ccode\u003e%post\u003c/code\u003e where you can add installation steps:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e #########################################################\n # Install additional software / libraries here\n #########################################################\n\n pip install -y pokemon\n\n #########################################################\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eFAQ\u003c/h2\u003e\u003ca id=\"user-content-faq\" class=\"anchor\" aria-label=\"Permalink: FAQ\" href=\"#faq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cstrong\u003eDo I have to use Python?\u003c/strong\u003e: Of course not! The base template image given to use is based on a choice by the creator (for example, lots of people use \u003ccode\u003escikit-learn\u003c/code\u003e in python for machine learning). At the end of the day, the evaluation is done over the text file in \u003ccode\u003e/analysis/results/submission\u003c/code\u003e and is ambivalent to how it is generated. Your submission (the container image) must simply run to generate it, and you are good.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eFor now, for additional FAQ please see our \u003ca href=\"https://containers-ftw.github.io\" rel=\"nofollow\"\u003edocumentation\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1557155075.0
+ "subscribers_count": 3,
+ "topics": [
+ "containers-ftw",
+ "mu",
+ "tau",
+ "physics",
+ "competition",
+ "containers",
+ "singularity-containers"
+ ],
+ "updated_at": 1516487103.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Container recipe for NECAT available here: https://github.com/xiaochuanle/NECAT",
"filenames": [
- "deps/DPMC/lg/Singularity",
- "deps/DPMC/DMC/Singularity",
- "deps/DPMC/tensor/Singularity",
- "deps/DPMC/HTB/Singularity"
+ "Singularity"
],
- "full_name": "dilkas/wmc-without-parameters",
+ "full_name": "HuffordLab-Containers/necat",
"latest_release": null,
- "readme": "\u003cp\u003eThis repository holds all source code (that I am legally allowed to distribute) related to the following publications:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDilkas P., Belle V. \u003cstrong\u003eWeighted Model Counting with Conditional Weights for Bayesian Networks\u003c/strong\u003e. UAI 2021.\u003c/li\u003e\n\u003cli\u003eDilkas P., Belle V. \u003cstrong\u003eWeighted Model Counting Without Parameter Variables\u003c/strong\u003e. SAT 2021.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003enecat\u003c/h1\u003e\u003ca id=\"user-content-necat\" class=\"anchor\" aria-label=\"Permalink: necat\" href=\"#necat\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1656402559.0
+ "updated_at": 1614611989.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Container image with signalp and targetp programs for functional analysis pipelines",
"filenames": [
- "chroma/Singularity.chroma.tog4",
- "chroma/Singularity.chroma.base",
- "chroma/Singularity.chroma.all-but-chroma",
- "chroma/Singularity.chroma.chroma-docker",
- "chroma/Singularity.chroma.chroma-only",
- "chroma/Singularity.chroma.chroma"
+ "Singularity"
],
- "full_name": "wkcwells/singularity",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity\u003c/h1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "full_name": "biocorecrg/sigtarp_docker",
+ "latest_release": "5.0b",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esigtarp_docker\u003c/h1\u003e\u003ca id=\"user-content-sigtarp_docker\" class=\"anchor\" aria-label=\"Permalink: sigtarp_docker\" href=\"#sigtarp_docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://zenodo.org/badge/latestdoi/152766566\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9fb76abe902d36be7979eb4e057c173eb23157d522a904a478f52585e65ca0da/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3135323736363536362e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/152766566.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eContainer image with \u003ca href=\"http://www.cbs.dtu.dk/services/SignalP/\" rel=\"nofollow\"\u003esignalP\u003c/a\u003e, \u003ca href=\"http://www.cbs.dtu.dk/services/TargetP/\" rel=\"nofollow\"\u003etargetP\u003c/a\u003e programs for functional analysis pipelines.\u003c/p\u003e\n\u003cp\u003eCreate a directory named \u003ccode\u003eexternal\u003c/code\u003e and place 2 directories with its associated files and binaries as downloaded from the links above. You need to be granted an academic license permission first.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esignalp (5.0b)\u003c/li\u003e\n\u003cli\u003etargetp (2.0)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eContainer recipes will grab the necessary files from these directories.\u003c/p\u003e\n\u003cp\u003eBuilding with \u003ca href=\"https://singularity.hpcng.org/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build sigtarp.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can avoid using sudo with \u003ccode\u003e--fakeroot\u003c/code\u003e Singularity build option.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1556152675.0
+ "updated_at": 1638960392.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "singularity/Singularity.anaconda3-dask-numba"
+ "Singularity"
],
- "full_name": "zonca/Python_HPC_2022",
+ "full_name": "thiago-rissi/time_encoding_experiment",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003etime_encoder\u003c/h1\u003e\u003ca id=\"user-content-time_encoder\" class=\"anchor\" aria-label=\"Permalink: time_encoder\" href=\"#time_encoder\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1657276145.0
+ "updated_at": 1724562717.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.dropbox"
+ "Singularity"
],
- "full_name": "ternaustralia/coesra-singularity-dropbox",
+ "full_name": "aswinnarayanan/ci-dev",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ecoesra-singularity-dropbox\u003c/h1\u003e\u003ca id=\"user-content-coesra-singularity-dropbox\" class=\"anchor\" aria-label=\"Permalink: coesra-singularity-dropbox\" href=\"#coesra-singularity-dropbox\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eci-dev\u003c/h1\u003e\u003ca id=\"user-content-ci-dev\" class=\"anchor\" aria-label=\"Permalink: ci-dev\" href=\"#ci-dev\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1670904307.0
+ "updated_at": 1598406354.0
},
{
"data_format": 2,
- "description": "Seeing scenes with multi-granularity",
+ "description": null,
"filenames": [
- "env.d/Singularity.blender",
- "env.d/Singularity.base"
+ "Singularity"
],
- "full_name": "CNCLgithub/GranularScenes",
+ "full_name": "J-Andy/eQTL-analysis",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eGranularScenes\u003c/h1\u003e\u003ca id=\"user-content-granularscenes\" class=\"anchor\" aria-label=\"Permalink: GranularScenes\" href=\"#granularscenes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003eSeeing scenes with multi-granularity!\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSetup and running\u003c/h2\u003e\u003ca id=\"user-content-setup-and-running\" class=\"anchor\" aria-label=\"Permalink: Setup and running\" href=\"#setup-and-running\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eClone.\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003e./setup.sh cont_build python julia\u003c/code\u003e to build the container and setup enviroment\u003c/li\u003e\n\u003cli\u003eEnter \u003ccode\u003e./run.sh julia\u003c/code\u003e to get into Julia REPL\u003c/li\u003e\n\u003c/ol\u003e\n\u003cblockquote\u003e\n\u003cp\u003eNOTE: when setting up Julia, if \u003ccode\u003ePkg\u003c/code\u003e complains about some packages not being registered, you can install them manually via \u003ccode\u003ePkg.add(git url)\u003c/code\u003e.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eThis project has automatic configuration!! This configuration is defined in \u003ccode\u003edefault.conf\u003c/code\u003e.\nYou should always prepend \u003ccode\u003e./run.sh\u003c/code\u003e before any command (including running programs like \u003ccode\u003ejulia\u003c/code\u003e) to ensure consistency.\nIf you wish to have different values than \u003ccode\u003edefault.conf\u003c/code\u003e, simply:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ecp default.conf user.conf\nvi user.conf \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e edit to your liking without adding new elements\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eMac and Window users\u003c/h2\u003e\u003ca id=\"user-content-mac-and-window-users\" class=\"anchor\" aria-label=\"Permalink: Mac and Window users\" href=\"#mac-and-window-users\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn order to use singularity you must have a virtual machine running.\nAssuming you have vagrant (and something like virtualbox) setup on your host, you can follow these steps\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eUsing \u003ccode\u003esetup.sh\u003c/code\u003e\n\u003c/h3\u003e\u003ca id=\"user-content-using-setupsh\" class=\"anchor\" aria-label=\"Permalink: Using setup.sh\" href=\"#using-setupsh\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eUsing \u003ccode\u003erun.sh\u003c/code\u003e\n\u003c/h3\u003e\u003ca id=\"user-content-using-runsh\" class=\"anchor\" aria-label=\"Permalink: Using run.sh\" href=\"#using-runsh\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eProvision the virtual machine defined in \u003ccode\u003eVagrantfile\u003c/code\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003evagrant up\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eCreate a \u003ccode\u003euser.conf\u003c/code\u003e as described above\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eNote: git will not track \u003ccode\u003euser.conf\u003c/code\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eModify \u003ccode\u003euser.conf\u003c/code\u003e such that \u003ccode\u003epath\u003c/code\u003e is set to route through vagrant\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s\"\u003e[ENV]\u003c/span\u003e\n\u003cspan class=\"pl-s\"\u003epath:vagrant ssh -c singularity\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributing\u003c/h2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-label=\"Permalink: Contributing\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eContributing rules\u003c/h3\u003e\u003ca id=\"user-content-contributing-rules\" class=\"anchor\" aria-label=\"Permalink: Contributing rules\" href=\"#contributing-rules\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eplace all re-used code in packages (\u003ccode\u003esrc\u003c/code\u003e or \u003ccode\u003epydeps\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eplace all interactive code in \u003ccode\u003escripts\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003enot use \"hard\" paths. Instead update \u003ccode\u003ePATHS\u003c/code\u003e in the config.\u003c/li\u003e\n\u003cli\u003eadd contributions to branches derived from \u003ccode\u003emaster\u003c/code\u003e or \u003ccode\u003edev\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003enot use \u003ccode\u003egit add *\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003enot commit large files (checkpoints, datasets, etc). Update \u003ccode\u003esetup.sh\u003c/code\u003e accordingly.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eProject layout\u003c/h3\u003e\u003ca id=\"user-content-project-layout\" class=\"anchor\" aria-label=\"Permalink: Project layout\" href=\"#project-layout\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe python package environment is located under \u003ccode\u003epydeps\u003c/code\u003e and can be imported using \u003ccode\u003eimport pydepts\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eLikewise, the Julia package is described under \u003ccode\u003esrc\u003c/code\u003e and \u003ccode\u003etest\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eAll scripts are located under \u003ccode\u003escripts\u003c/code\u003e and data/output is under \u003ccode\u003eoutput\u003c/code\u003e as specific in the project config (\u003ccode\u003edefault.conf\u003c/code\u003e or \u003ccode\u003euser.conf\u003c/code\u003e)\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eChanging the enviroment\u003c/h3\u003e\u003ca id=\"user-content-changing-the-enviroment\" class=\"anchor\" aria-label=\"Permalink: Changing the enviroment\" href=\"#changing-the-enviroment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo add new python or julia packages use the provided package managers. The Python dependencies are listed under \u003ccode\u003eenv.d/requirements.txt\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eFor julia you can also use \u003ccode\u003e] add \u003c/code\u003e in the REPL\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRelated works\u003c/h2\u003e\u003ca id=\"user-content-related-works\" class=\"anchor\" aria-label=\"Permalink: Related works\" href=\"#related-works\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003eManuscript pending!\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eConference submissions\u003c/h3\u003e\u003ca id=\"user-content-conference-submissions\" class=\"anchor\" aria-label=\"Permalink: Conference submissions\" href=\"#conference-submissions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBelledonne, M., Bao, Y., \u0026amp; Yildirim, I. (2022). Navigational affordances are automatically computed during scene perception: Evidence from behavioral change blindness and a computational model of active attention. \u003cem\u003eJournal of Vision, 22\u003c/em\u003e(14), 4128-4128.\u003c/p\u003e\n\u003cp\u003eBelledonne, M., \u0026amp; Yildirim, I. (2021). Automatic computation of navigational affordances explains selective processing of geometry in scene perception: Behavioral and computational evidence. In \u003cem\u003eProceedings of the Annual Meeting of the Cognitive Science Society\u003c/em\u003e (Vol. 43, No. 43).\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eGene Knockout and Mutation Analysis\u003c/h1\u003e\u003ca id=\"user-content-gene-knockout-and-mutation-analysis\" class=\"anchor\" aria-label=\"Permalink: Gene Knockout and Mutation Analysis\" href=\"#gene-knockout-and-mutation-analysis\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOverview\u003c/h2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-label=\"Permalink: Overview\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis project analyzes the association between specific cancer mutations and gene knockout experiments using Welch\u0027s t-test in R. The analysis is encapsulated in a Singularity container, which includes all necessary dependencies and R scripts.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eComment: Extending the Analysis with Advanced Models\u003c/h2\u003e\u003ca id=\"user-content-comment-extending-the-analysis-with-advanced-models\" class=\"anchor\" aria-label=\"Permalink: Comment: Extending the Analysis with Advanced Models\" href=\"#comment-extending-the-analysis-with-advanced-models\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWhile Welch\u2019s t-test is suitable for this toy example, more advanced methods would be necessary for larger datasets or when controlling for additional covariates. If we had more data or multiple covariates, I would be using linear regression or ANOVA. Linear regression would help model the relationship between mutation status and knockout outcomes while accounting for factors such as tissue type or growth conditions.\nFor efficiently handling large-scale data with many gene-mutation pairs, I would use the MatrixEQTL package in R (\u003ca href=\"https://github.com/andreyshabalin/MatrixEQTL\"\u003ehttps://github.com/andreyshabalin/MatrixEQTL\u003c/a\u003e). MatrixEQTL allows the use of linear models and is optimized for large-scale genomic data, automatically performs False Discovery Rate (FDR) correction and has some model customization options.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSingularity Container\u003c/h2\u003e\u003ca id=\"user-content-singularity-container\" class=\"anchor\" aria-label=\"Permalink: Singularity Container\" href=\"#singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe container runs the R script \u003ccode\u003emain.R\u003c/code\u003e which:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eLoads mutation data (\u003ccode\u003eMutations.tsv\u003c/code\u003e) and gene knockout data (\u003ccode\u003eGene_KOs.tsv\u003c/code\u003e).\u003c/li\u003e\n\u003cli\u003ePerforms Welch\u2019s t-tests for each mutation-gene pair.\u003c/li\u003e\n\u003cli\u003eOutputs results with False Discovery Rate (FDR) correction.\u003c/li\u003e\n\u003cli\u003eGenerates Q-Q plots, histograms, and volcano plots.\u003c/li\u003e\n\u003cli\u003eSaves significant results and all plots in the output directory.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation Instructions\u003c/h2\u003e\u003ca id=\"user-content-installation-instructions\" class=\"anchor\" aria-label=\"Permalink: Installation Instructions\" href=\"#installation-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e1. Clone the repository\u003c/h3\u003e\u003ca id=\"user-content-1-clone-the-repository\" class=\"anchor\" aria-label=\"Permalink: 1. Clone the repository\" href=\"#1-clone-the-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eClone the repository containing the \u003ccode\u003eSingularity\u003c/code\u003e definition file, R scripts, and data files:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/J-Andy/eQTL-analysis.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e eQTL-analysis\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e2. Build the Singularity image\u003c/h3\u003e\u003ca id=\"user-content-2-build-the-singularity-image\" class=\"anchor\" aria-label=\"Permalink: 2. Build the Singularity image\" href=\"#2-build-the-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can build the Singularity image locally using the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity build r-analysis.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf you don\u0027t have root access on the system, like me, you can use the remote build service:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity build --remote r-analysis.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e3. Running the Analysis\u003c/h3\u003e\u003ca id=\"user-content-3-running-the-analysis\" class=\"anchor\" aria-label=\"Permalink: 3. Running the Analysis\" href=\"#3-running-the-analysis\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAfter building the container, run the analysis using this script:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003e./run_analysis.sh\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eMake sure the \u003ccode\u003erun_analysis.sh\u003c/code\u003e script is executable\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e chmod +x run_analysis.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe shell script will:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCreate an output directory in your current directory.\u003c/li\u003e\n\u003cli\u003eRun the Singularity container and bind the local output directory to the container\u2019s /usr/src/app/output.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e4. Running Unit Tests\u003c/h3\u003e\u003ca id=\"user-content-4-running-unit-tests\" class=\"anchor\" aria-label=\"Permalink: 4. Running Unit Tests\" href=\"#4-running-unit-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the unit tests, use \u003ccode\u003erun_tests.sh \u003c/code\u003e script.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eUnit Test Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eData Alignment Test:\nEnsures that the mutation data (Mutations.tsv) and gene knockout data (Gene_KOs.tsv) are properly aligned by common models (cell lines).\nThe test verifies that the aligned datasets share the same number of common cell lines.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eT-test Validation:\nChecks that Welch\u2019s t-tests return valid p-values when comparing mutation presence with gene knockout outcomes.\nThe test simulates mutation and fold change data and ensures the p-value is numeric and less than 1.\nTest Output:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eIf all tests pass, the script will print a success message: \"All tests passed successfully!\"\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e5. Outputs\u003c/h3\u003e\u003ca id=\"user-content-5-outputs\" class=\"anchor\" aria-label=\"Permalink: 5. Outputs\" href=\"#5-outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe results and plots generated by the analysis are saved in the output directory. These include:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esignificant_mutation_gene_associations.tsv: A table of significant mutation-gene associations after FDR correction.\u003c/li\u003e\n\u003cli\u003eqqplot_pvalues.png: A Q-Q plot for visualizing the distribution of p-values.\u003c/li\u003e\n\u003cli\u003ehistogram_pvalues.png: A histogram displaying the p-value distribution.\u003c/li\u003e\n\u003cli\u003evolcano_plot.png: A volcano plot of mutation-gene associations.\u003c/li\u003e\n\u003cli\u003eBoxplots: Individual PNG files for each significant mutation-gene association.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDownload the Prebuilt Singularity Image\u003c/h3\u003e\u003ca id=\"user-content-download-the-prebuilt-singularity-image\" class=\"anchor\" aria-label=\"Permalink: Download the Prebuilt Singularity Image\" href=\"#download-the-prebuilt-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you prefer not to build the container yourself, you can download the prebuilt Singularity image (\u003ccode\u003er-analysis.sif\u003c/code\u003e) from the following link:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://drive.google.com/file/d/17zTK5rTlSquPqw5A8xGvv1kwUP1szQDB/view?usp=sharing\" rel=\"nofollow\"\u003ehttps://drive.google.com/file/d/17zTK5rTlSquPqw5A8xGvv1kwUP1szQDB/view?usp=sharing\u003c/a\u003e\u003c/p\u003e\n\u003chr\u003e\n\u003ch3\u003e\u003c/h3\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eMachine Learning Models for Predicting CRISPR Knockout Effects\u003c/h1\u003e\u003ca id=\"user-content-machine-learning-models-for-predicting-crispr-knockout-effects\" class=\"anchor\" aria-label=\"Permalink: Machine Learning Models for Predicting CRISPR Knockout Effects\" href=\"#machine-learning-models-for-predicting-crispr-knockout-effects\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eClassical ML Approach\u003c/h3\u003e\u003ca id=\"user-content-classical-ml-approach\" class=\"anchor\" aria-label=\"Permalink: Classical ML Approach\" href=\"#classical-ml-approach\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor each gene:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDefine the features as the binary mutations in the cell lines.\u003c/li\u003e\n\u003cli\u003eDefine the target: the target is a continuous variable \"knock-out effect\".\u003c/li\u003e\n\u003cli\u003eTrain a separate Random Forest regression model for each gene: each model is trained on the same mutation data (features), but the target variable changes based on the gene whose knock-out effect we are trying to predict.\u003c/li\u003e\n\u003cli\u003eI would then test several other models that people previously used in the literature, like Elastic Net Regression and Gradient Boosting Machines.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eMulti-Output Models\u003c/h3\u003e\u003ca id=\"user-content-multi-output-models\" class=\"anchor\" aria-label=\"Permalink: Multi-Output Models\" href=\"#multi-output-models\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn the current approach, I train separate models for each gene. However, there is an opportunity to take advantage of the correlation between gene knockouts by predicting multiple gene knockout effects simultaneously using a Multi-Output Random Forest or indeed multi-task learning with Convolutional Neural Networks (becasue neural network can be set up to have multiple output neurons, one for each target variable).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eMulti-Task Linear Regression\u003c/h3\u003e\u003ca id=\"user-content-multi-task-linear-regression\" class=\"anchor\" aria-label=\"Permalink: Multi-Task Linear Regression\" href=\"#multi-task-linear-regression\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAn even more advanced approach would be to apply a Bayesian multi-task linear regression model or multi-task learning with CNNs to solve this problem. For example, see here: \u003ca href=\"https://www.sciencedirect.com/science/article/abs/pii/S1046202323002128?via%3Dihub\" rel=\"nofollow\"\u003ehttps://www.sciencedirect.com/science/article/abs/pii/S1046202323002128?via%3Dihub\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eImplementation\u003c/h3\u003e\u003ca id=\"user-content-implementation\" class=\"anchor\" aria-label=\"Permalink: Implementation\" href=\"#implementation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eI implemented a simple RF model, for a single gene, in the script \u003ccode\u003erandom_forest_model_for_gene_knockout_prediction_using_mutation_data.py\u003c/code\u003e\nYou can also run it on Colab: \u003ca href=\"https://colab.research.google.com/drive/1aIjK0wWs3UwiVI_bn-OcuUrHaQCpnZZo?usp=sharing\" rel=\"nofollow\"\u003ehttps://colab.research.google.com/drive/1aIjK0wWs3UwiVI_bn-OcuUrHaQCpnZZo?usp=sharing\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eGeneralization to Unseen Data\u003c/h1\u003e\u003ca id=\"user-content-generalization-to-unseen-data\" class=\"anchor\" aria-label=\"Permalink: Generalization to Unseen Data\" href=\"#generalization-to-unseen-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInitial Model Build\u003c/h2\u003e\u003ca id=\"user-content-initial-model-build\" class=\"anchor\" aria-label=\"Permalink: Initial Model Build\" href=\"#initial-model-build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe generalization of the model will primarily depend the diversity and size of training data and regularization techniques (i.e. feature selection) we used. We can assess the initial generalizability with k-fold cross-validation and bootstrapping.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003ePan-Cancer vs. Tissue-Specific Models\u003c/strong\u003e\u003c/em\u003e\nIn a broader context, models could be trained in two ways:\u003c/p\u003e\n\u003cp\u003e\u2022\tPan-cancer models pool data from multiple cancer types, treating the knockouts as a universal phenomenon across all cell lines. This assumes mutation-response relationships are similar across different tissue types.\u003c/p\u003e\n\u003cp\u003e\u2022\tTissue-specific models account for lineage-specific effects by training separate models for individual cancer types.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eModel in Production\u003c/h2\u003e\u003ca id=\"user-content-model-in-production\" class=\"anchor\" aria-label=\"Permalink: Model in Production\" href=\"#model-in-production\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOnce the models are deployed to production two issues are likely to occur \u003cstrong\u003edata drift\u003c/strong\u003e (changing mutation patterns) and \u003cstrong\u003econcept drift\u003c/strong\u003e (shifting biological relationships/interpretation).\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e1. Data Drift:\u003c/strong\u003e\nThis will occur when the distribution of mutations in the new cell lines is significantly different from the training data. For instance, if the model was trained on cell lines that mostly contained mutations in specific genes, but new cell lines have mutations in entirely different genes or exhibit new mutation patterns, the model\u0027s performance will degrade.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eSuggested Solution:\u003c/strong\u003e\u003c/em\u003e To detect data drift, we could monitor the distribution of mutations (input features) in new cell lines and compare them with the original training data. We can use statistical tests like Kolmogorov-Smirnov test or domain classifiers (which distinguish between old and new data) to detect these changes. A significant drift will require model retraining.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e2. Concept Drift:\u003c/strong\u003e\nThis I believe will be less of a concern. Concept drift refers to a change in the underlying relationship between the input features and the target variable over time. In our context this could happen when we introduce new experimental conditions, such as different cell environments or evolve resistant cell lines.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eSuggested Solution:\u003c/strong\u003e\u003c/em\u003e I think detecting this type of drift in our context would be difficult and would have to be informed by wet-lab scientists (are they doing anything different?). We could monitor the model\u2019s predictions and their accuracy on new cell lines. If the KO effect predictions are consistently inaccurate for new data even after retraining that to me would indicate concept drift.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1727729194.0
+ "updated_at": 1726235293.0
},
{
"data_format": 2,
- "description": "Achab In Singularity, a Singularity Container for Captain Achab (annotation workflow)",
+ "description": "Tidyverse singularity container",
"filenames": [
"Singularity"
],
- "full_name": "mobidic/Achabilarity",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eACHABILARITY\u003c/h1\u003e\u003ca id=\"user-content-achabilarity\" class=\"anchor\" aria-label=\"Permalink: ACHABILARITY\" href=\"#achabilarity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAchabInsinguLARITY, a container to use captainAchab workflow easier !\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/achab_logo.png\"\u003e\u003cimg src=\"img/achab_logo.png\" width=\"350\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGoals\u003c/h2\u003e\u003ca id=\"user-content-goals\" class=\"anchor\" aria-label=\"Permalink: Goals\" href=\"#goals\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eUse a Singularity container which already has all tools to run captainAchab workflow.\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"/img/captainAchab.svg\"\u003e\u003cimg src=\"/img/captainAchab.svg\" alt=\"captain achab workflow description\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun\u003c/h2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-label=\"Permalink: Run\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eFirst, build\u003c/strong\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity build \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003efilename.simg\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e Singularity \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eThen run\u003c/strong\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run -B \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003e/PATH/TO/ANNOVAR\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003efilename.simg\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e -i workflow_inputs.json\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eSingularity help\u003c/strong\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003ehelp\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003efilename.simg\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOptions\u003c/h2\u003e\u003ca id=\"user-content-options\" class=\"anchor\" aria-label=\"Permalink: Options\" href=\"#options\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003e-c | --conf \u0026lt;file.conf\u0026gt;\u003c/strong\u003e : To add a conf file\u003cbr\u003e\n\u003cstrong\u003e-o | --option \u0026lt;option.json\u0026gt;\u003c/strong\u003e : To add an option file\u003cbr\u003e\n\u003cstrong\u003e-v | --verbosity \u0026lt;1, 2, 3 or 4\u0026gt;\u003c/strong\u003e : To set verbosity level (ERROR : 1 | WARNING : 2 | INFO [default] : 3 | DEBUG : 4)\u003cbr\u003e\n\u003cstrong\u003e-h | --help\u003c/strong\u003e : Print help message in terminal and close the script (Help provided by -h concerns wrapper using)\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eMore informations\u003c/h2\u003e\u003ca id=\"user-content-more-informations\" class=\"anchor\" aria-label=\"Permalink: More informations\" href=\"#more-informations\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAchabilarity is currently using a part of \u003ca href=\"https://github.com/mobidic/MobiDL\"\u003eMobiDL\u003c/a\u003e which is \u003ca href=\"https://github.com/mobidic/Captain-ACHAB\"\u003eCaptainAchab\u003c/a\u003e workflow.\u003cbr\u003e\nThis Singularity contains CentOS environnement and all requirements to run Captain Achab workflow (MPA, Phenolyzer, Achab) and few others (BCFTools, GATK4 ...).\u003cbr\u003e\n\u003cstrong\u003eMake sure you already have Annovar (and its database) to bind it. It is not include in this container.\u003c/strong\u003e\nBinding of ANNOVAR and data folder (inputs) will look like:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run -B /path/to/annovar/:/media -B /path/to/data/:/mnt achabilarity.simg -c /path/to/conf -i /path/to/json\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe container will execute specific wrapper of cromwell (\u003ca href=\"https://github.com/mobidic/Crom-wellWrapped\"\u003eCrom-wellWrapped\u003c/a\u003e) which will generate the right cromwell command depending on options and arguments.\u003c/p\u003e\n\u003chr\u003e\n\u003cp\u003e\u003cstrong\u003eMontpellier Bioinformatique pour le Diagnostique Clinique (MoBiDiC)\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eCHU de Montpellier\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eFrance\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/logo-mobidic.png\"\u003e\u003cimg src=\"img/logo-mobidic.png\" alt=\"MoBiDiC\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://neuro-2.iurc.montp.inserm.fr/mobidic/\" rel=\"nofollow\"\u003eVisit our website\u003c/a\u003e\u003c/p\u003e\n\u003chr\u003e\n",
+ "full_name": "richelbilderbeek/tidyverse_singularity",
+ "latest_release": "v1.0",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003etidyverse_singularity\u003c/h1\u003e\u003ca id=\"user-content-tidyverse_singularity\" class=\"anchor\" aria-label=\"Permalink: tidyverse_singularity\" href=\"#tidyverse_singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/richelbilderbeek/tidyverse_singularity/actions/workflows/build_singularity.yaml\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/tidyverse_singularity/actions/workflows/build_singularity.yaml/badge.svg\" alt=\"build_singularity\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity container with a working version of the \u003ccode\u003esingularity\u003c/code\u003e R package.\u003c/p\u003e\n\u003cp\u003eIt does run remotely (i.e. on GitHub Actions),\nbut not on my Ubuntu 20.04 LTS laptop).\u003c/p\u003e\n\u003cp\u003eThis is a follow-up of a question I \u003ca href=\"https://stackoverflow.com/questions/71252123/singularity-container-with-singularity-fails-only-locally-with-libicui18n-so-66-ca\" rel=\"nofollow\"\u003eposted a question on StackOverflow\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1617369638.0
+ "updated_at": 1645771472.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.latest"
+ "Singularity"
],
- "full_name": "brentritzema/senior-project",
+ "full_name": "oogasawa/singularity_ubuntu18",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eRoy and Brent\u0027s Senior Project\u003c/h1\u003e\u003ca id=\"user-content-roy-and-brents-senior-project\" class=\"anchor\" aria-label=\"Permalink: Roy and Brent\u0027s Senior Project\" href=\"#roy-and-brents-senior-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eUbuntu18 Singularity\u003c/h1\u003e\u003ca id=\"user-content-ubuntu18-singularity\" class=\"anchor\" aria-label=\"Permalink: Ubuntu18 Singularity\" href=\"#ubuntu18-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eUbuntu Linux 18.04 (Bionic) + \u89e3\u6790\u7528\u30c4\u30fc\u30eb\u5168\u90e8\u5165\u308a\u306e Singularity\u30b3\u30f3\u30c6\u30ca\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e\u524d\u63d0\u003c/h2\u003e\u003ca id=\"user-content-\u524d\u63d0\" class=\"anchor\" aria-label=\"Permalink: \u524d\u63d0\" href=\"#\u524d\u63d0\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eUbuntu Linux\u306bdebootstrap\u4ed6\u306e\u5fc5\u8981\u306a\u30bd\u30d5\u30c8\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3059\u308b\u5834\u5408\u306f\u4ee5\u4e0b\u306e\u901a\u308a\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo apt update\nsudo apt upgrade\nsudo apt install build-essential libtool automake libarchive-dev debootstrap git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSingularity\u306fversion 2.x\u7cfb\u3067\u30823.x\u7cfb\u3067\u3082\u3088\u3044\u3002\uff08\u4eca\u306f\u3082\u30463.x\u7cfb\u63a8\u5968\uff09\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://sylabs.io/guides/3.5/admin-guide/installation.html\" rel=\"nofollow\"\u003eSingularity\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u65b9\u6cd5\uff08Official Document)\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e\u4f7f\u3044\u65b9\u003c/h2\u003e\u003ca id=\"user-content-\u4f7f\u3044\u65b9\" class=\"anchor\" aria-label=\"Permalink: \u4f7f\u3044\u65b9\" href=\"#\u4f7f\u3044\u65b9\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e# \u30b3\u30f3\u30c6\u30ca\u306e\u30d3\u30eb\u30c9\ngit clone http://gitlab.ddbj.nig.ac.jp/oogasawa/singularity-ubuntu18\ncd singularity-ubuntu18\nmkdir $HOME/singularity-images\nsudo singularity build --sandbox $HOME/singularity-images/ubuntu18 Singularity\n\n# \u30b3\u30f3\u30c6\u30ca\u5185\u3067\u306e\u4f5c\u696d\nsudo singularity shell --write $HOME/singularity-images/ubuntu18\n\n# *.sif\u30d5\u30a1\u30a4\u30eb\u306b\u56fa\u3081\u3066\u30b9\u30d1\u30b3\u30f3\u306a\u3069\u5171\u7528\u8a08\u7b97\u6a5f\u306b\u30b3\u30d4\u30fc\nsudo singularity build ubuntu18.sif $HOME/singularity-images/ubuntu18\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1549999922.0
+ "updated_at": 1622297627.0
},
{
"data_format": 2,
- "description": null,
+ "description": "A Singularity recipe for sistr --- a tool for Salmonella typing",
"filenames": [
- "Singularity"
+ "Singularity",
+ "v1.0.2/Singularity.v1.0.2"
],
- "full_name": "mathematiguy/star-stuff",
+ "full_name": "phgenomics-singularity/sistr",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eminimal-project\u003c/h1\u003e\u003ca id=\"user-content-minimal-project\" class=\"anchor\" aria-label=\"Permalink: minimal-project\" href=\"#minimal-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA simple template for future projects\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esistr --- A Singularity Container\u003c/h1\u003e\u003ca id=\"user-content-sistr-----a-singularity-container\" class=\"anchor\" aria-label=\"Permalink: sistr --- A Singularity Container\" href=\"#sistr-----a-singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/1206\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity container for \u003ca href=\"https://github.com/peterk87/sistr_cmd\"\u003esistr\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePre-requisite\u003c/h2\u003e\u003ca id=\"user-content-pre-requisite\" class=\"anchor\" aria-label=\"Permalink: Pre-requisite\" href=\"#pre-requisite\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstall \u003ca href=\"http://singularity.lbl.gov/docs-installation\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eLatest version\u003c/h3\u003e\u003ca id=\"user-content-latest-version\" class=\"anchor\" aria-label=\"Permalink: Latest version\" href=\"#latest-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following steps are needed to use the image:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003ePull the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name TMP_DIRECTORY shub://phgenomics-singularity/sistr@latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will command will create a file \u003ccode\u003esistr.simg\u003c/code\u003e, which is executable.\u003c/p\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eUse the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003e./sistr.simg --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eA particular version\u003c/h3\u003e\u003ca id=\"user-content-a-particular-version\" class=\"anchor\" aria-label=\"Permalink: A particular version\" href=\"#a-particular-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name mlst shub://phgenomics-singularitysistr@VERSION.NUMBER\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSuggested pattern\u003c/h2\u003e\u003ca id=\"user-content-suggested-pattern\" class=\"anchor\" aria-label=\"Permalink: Suggested pattern\" href=\"#suggested-pattern\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eCreate a \u003ccode\u003esingularity\u003c/code\u003e folder:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003emkdir HOME/singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003ePull the image to the \u003ccode\u003esingularity\u003c/code\u003e folder.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name sistr shub://phgenomics-singularity/sistr@latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eLink the image to a folder in your \u003ccode\u003ePATH\u003c/code\u003e (e.g., \u003ccode\u003eHOME/bin\u003c/code\u003e)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eln -s HOME/singularity/sistr.simg HOME/bin/sistr\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNow, when you login again, you should be able to just type:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esistr --help\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1723292845.0
+ "updated_at": 1530577180.0
},
{
"data_format": 2,
- "description": "A simple template for future projects",
+ "description": "Ticket 297240",
"filenames": [
- "Singularity"
+ "Singularity_approach_5",
+ "Singularity_approach_4",
+ "Singularity",
+ "Singularity_approach_3"
],
- "full_name": "mathematiguy/minimal-project",
+ "full_name": "UPPMAX/ticket_297240",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eminimal-project\u003c/h1\u003e\u003ca id=\"user-content-minimal-project\" class=\"anchor\" aria-label=\"Permalink: minimal-project\" href=\"#minimal-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA simple template for future projects\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eticket_297240\u003c/h1\u003e\u003ca id=\"user-content-ticket_297240\" class=\"anchor\" aria-label=\"Permalink: ticket_297240\" href=\"#ticket_297240\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTicket 297240\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eApproach 5: Use Singularity from BZL file\u003c/h2\u003e\u003ca id=\"user-content-approach-5-use-singularity-from-bzl-file\" class=\"anchor\" aria-label=\"Permalink: Approach 5: Use Singularity from BZL file\" href=\"#approach-5-use-singularity-from-bzl-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDue to file that 10x uses \u003ca href=\"https://github.com/10XGenomics/cellranger/blob/main/conda_spec.bzl\"\u003ehttps://github.com/10XGenomics/cellranger/blob/main/conda_spec.bzl\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eHere is a Docker file: \u003ca href=\"https://hub.docker.com/r/chainguard/bazel\" rel=\"nofollow\"\u003ehttps://hub.docker.com/r/chainguard/bazel\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eDocker pull command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull chainguard/bazel:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003ebazel build conda_spec.bzl\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBuild Singularity file:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap: docker\nFrom: chainguard/bazel:latest\n\n%post\n # From https://github.com/brucemoran/Singularity/blob/8eb44591284ffb29056d234c47bf8b1473637805/shub/bases/recipe.CentOs7-R_3.5.2#L21\n echo \u0027export LANG=en_US.UTF-8 LANGUAGE=C LC_ALL=C LC_CTYPE=C LC_COLLATE=C LC_TIME=C LC_MONETARY=C LC_PAPER=C LC_MEASUREMENT=C\u0027 \u0026gt;\u0026gt; $SINGULARITY_ENVIRONMENT\n\n cd /opt\n git clone https://github.com/10XGenomics/cellranger\n cd cellranger\n\n bazel build conda_spec.bzl\n\n%runscript\npython \"$@\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBuild:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./build_container.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eError:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eERROR: The \u0027build\u0027 command is only supported from within a workspace (below a directory having a WORKSPACE file).\nSee documentation at https://bazel.build/concepts/build-ref#workspace\nFATAL: While performing build: while running engine: exit status 2\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUse tip from \u003ca href=\"https://stackoverflow.com/q/61869719\" rel=\"nofollow\"\u003ehttps://stackoverflow.com/q/61869719\u003c/a\u003e .\u003c/p\u003e\n\u003cp\u003eThen:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./build_container.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eGives error:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e+ touch WORKSPACE\n+ bazel build conda_spec.bzl\nExtracting Bazel installation...\nStarting local Bazel server and connecting to it...\nWARNING: --enable_bzlmod is set, but no MODULE.bazel file was found at the workspace root. Bazel will create an empty MODULE.bazel file. Please consider migrating your external dependencies from WORKSPACE to MODULE.bazel. For more details, please refer to https://github.com/bazelbuild/bazel/issues/18958.\nWARNING: Target pattern parsing failed.\nERROR: Skipping \u0027conda_spec.bzl\u0027: couldn\u0027t determine target from filename \u0027conda_spec.bzl\u0027\nERROR: couldn\u0027t determine target from filename \u0027conda_spec.bzl\u0027\nINFO: Elapsed time: 7.913s\nINFO: 0 processes.\nERROR: Build did NOT complete successfully\nFATAL: While performing build: while running engine: exit status 1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAdded tip from \u003ca href=\"https://raw.githubusercontent.com/10XGenomics/cellranger/main/conda_spec.bzl\" rel=\"nofollow\"\u003ehttps://raw.githubusercontent.com/10XGenomics/cellranger/main/conda_spec.bzl\u003c/a\u003e to add content to WORKSPACE.\u003c/p\u003e\n\u003cp\u003eBuild again:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e+ echo \u0027load(\":conda_spec.bzl\", \"anaconda_workspace\")\u0027\n+ echo \u0027anaconda_workspace()\u0027\n+ bazel build conda_spec.bzl\nExtracting Bazel installation...\nStarting local Bazel server and connecting to it...\nWARNING: --enable_bzlmod is set, but no MODULE.bazel file was found at the workspace root. Bazel will create an empty MODULE.bazel file. Please consider migrating your external dependencies from WORKSPACE to MODULE.bazel. For more details, please refer to https://github.com/bazelbuild/bazel/issues/18958.\nERROR: Error computing the main repository mapping: Every .bzl file must have a corresponding package, but \u0027//:conda_spec.bzl\u0027 does not have one. Please create a BUILD file in the same or any parent directory. Note that this BUILD file does not need to do anything except exist.\nComputing main repo mapping: \nFATAL: While performing build: while running engine: exit status 1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOK, create an empty BUILD file ...\u003c/p\u003e\n\u003cp\u003eWith content in the BUILD file:\nRun again, new error:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e+ touch BUILD\n+ bazel build conda_spec.bzl\nExtracting Bazel installation...\nStarting local Bazel server and connecting to it...\nWARNING: --enable_bzlmod is set, but no MODULE.bazel file was found at the workspace root. Bazel will create an empty MODULE.bazel file. Please consider migrating your external dependencies from WORKSPACE to MODULE.bazel. For more details, please refer to https://github.com/bazelbuild/bazel/issues/18958.\nERROR: Failed to load Starlark extension \u0027@@tenx_bazel_rules//rules:conda_package_repository.bzl\u0027.\nCycle in the workspace file detected. This indicates that a repository is used prior to being defined.\nThe following chain of repository dependencies lead to the missing definition.\n - @@tenx_bazel_rules\nThis could either mean you have to add the \u0027@@tenx_bazel_rules\u0027 repository with a statement like `http_archive` in your WORKSPACE file (note that transitive dependencies are not added automatically), or move an existing definition earlier in your WORKSPACE file.\nERROR: Error computing the main repository mapping: cycles detected during computation of main repo mapping\nComputing main repo mapping: \nFATAL: While performing build: while running engine: exit status 37\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eApproach 4: Use Singularity from conda\u003c/h2\u003e\u003ca id=\"user-content-approach-4-use-singularity-from-conda\" class=\"anchor\" aria-label=\"Permalink: Approach 4: Use Singularity from conda\" href=\"#approach-4-use-singularity-from-conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA simple Singularity file:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap: docker\nFrom: mcr.microsoft.com/devcontainers/anaconda\n# From: pnnlmiscscripts/anaconda:latest\n\n\n%post\n # From https://github.com/brucemoran/Singularity/blob/8eb44591284ffb29056d234c47bf8b1473637805/shub/bases/recipe.CentOs7-R_3.5.2#L21\n echo \u0027export LANG=en_US.UTF-8 LANGUAGE=C LC_ALL=C LC_CTYPE=C LC_COLLATE=C LC_TIME=C LC_MONETARY=C LC_PAPER=C LC_MEASUREMENT=C\u0027 \u0026gt;\u0026gt; $SINGULARITY_ENVIRONMENT\n\n conda install hcc::cellranger\n\n%runscript\npython \"$@\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBuild:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e+ conda install hcc::cellranger\nChannels:\n - defaults\n - hcc\nPlatform: linux-64\nCollecting package metadata (repodata.json): done\nSolving environment: failed\n\nLibMambaUnsatisfiableError: Encountered problems while solving:\n - nothing provides bcftools 1.9.* needed by cellranger-3.0.2-py27_1\n\nCould not solve for environment specs\nThe following package could not be installed\n\u2514\u2500 cellranger is not installable because it requires\n \u2514\u2500 bcftools 1.9.* , which does not exist (perhaps a missing channel).\n\nFATAL: While performing build: while running engine: exit status 1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eApproach 5 seems easier.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eApproach 3: Use conda from module\u003c/h2\u003e\u003ca id=\"user-content-approach-3-use-conda-from-module\" class=\"anchor\" aria-label=\"Permalink: Approach 3: Use conda from module\" href=\"#approach-3-use-conda-from-module\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eLoading the conda module:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emodule load conda\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWorks:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e[richel@rackham1 ~]$ module load conda\nThe variable CONDA_ENVS_PATH contains the location of your environments. Set it to your project\u0027s environments folder if you have one.\nOtherwise, the default is ~/.conda/envs. Remember to export the variable with export CONDA_ENVS_PATH=/proj/...\n\nYou may run \"source conda_init.sh\" to initialise your shell to be able\nto run \"conda activate\" and \"conda deactivate\" etc.\nJust remember that this command adds stuff to your shell outside the scope of the module system.\n\nREMEMBER TO USE \u0027conda clean -a\u0027 once in a while\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNaive install fails:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install cellranger\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWith error:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e[richel@rackham1 ~]$ conda install cellranger\nRetrieving notices: ...working... done\nChannels:\n - file:///sw/apps/conda/latest/rackham/local_repo/conda-forge\n - file:///sw/apps/conda/latest/rackham/local_repo/scilifelab-lts\n - file:///sw/apps/conda/latest/rackham/local_repo/r\n - file:///sw/apps/conda/latest/rackham/local_repo/main\n - file:///sw/apps/conda/latest/rackham/local_repo/bioconda\n - file:///sw/apps/conda/latest/rackham/local_repo/free\n - file:///sw/apps/conda/latest/rackham/local_repo/pro\n - file:///sw/apps/conda/latest/rackham/local_repo/qiime2\n - file:///sw/apps/conda/latest/rackham/local_repo/biocore\n - file:///sw/apps/conda/latest/rackham/local_repo/dranew\n - file:///sw/apps/conda/latest/rackham/local_repo/r2018.11\n - file:///sw/apps/conda/latest/rackham/local_repo/nvidia\n - file:///sw/apps/conda/latest/rackham/local_repo/pytorch\n - file:///sw/apps/conda/latest/rackham/local_repo/anaconda\n - defaults\n - conda-forge\nPlatform: linux-64\nCollecting package metadata (repodata.json): - subdir mismatch\n\\ subdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\n- subdir mismatch\n\\ subdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\ndone\nSolving environment: failed\n\nPackagesNotFoundError: The following packages are not available from current channels:\n\n - cellranger\n\nCurrent channels:\n\n - file:///sw/apps/conda/latest/rackham/local_repo/conda-forge\n - file:///sw/apps/conda/latest/rackham/local_repo/scilifelab-lts\n - file:///sw/apps/conda/latest/rackham/local_repo/r\n - file:///sw/apps/conda/latest/rackham/local_repo/main\n - file:///sw/apps/conda/latest/rackham/local_repo/bioconda\n - file:///sw/apps/conda/latest/rackham/local_repo/free\n - file:///sw/apps/conda/latest/rackham/local_repo/pro\n - file:///sw/apps/conda/latest/rackham/local_repo/qiime2\n - file:///sw/apps/conda/latest/rackham/local_repo/biocore\n - file:///sw/apps/conda/latest/rackham/local_repo/dranew\n - file:///sw/apps/conda/latest/rackham/local_repo/r2018.11\n - file:///sw/apps/conda/latest/rackham/local_repo/nvidia\n - file:///sw/apps/conda/latest/rackham/local_repo/pytorch\n - file:///sw/apps/conda/latest/rackham/local_repo/anaconda\n - defaults\n - https://conda.anaconda.org/conda-forge/linux-64\n - https://conda.anaconda.org/conda-forge/noarch\n\nTo search for alternate channels that may provide the conda package you\u0027re\nlooking for, navigate to\n\n https://anaconda.org\n\nand use the search bar at the top of the page.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDo conda install from the doc at \u003ca href=\"https://anaconda.org/hcc/cellranger\" rel=\"nofollow\"\u003ehttps://anaconda.org/hcc/cellranger\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install hcc::cellranger\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFails too:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e[richel@rackham1 ~]$ conda install hcc::cellranger\nChannels:\n - file:///sw/apps/conda/latest/rackham/local_repo/conda-forge\n - file:///sw/apps/conda/latest/rackham/local_repo/scilifelab-lts\n - file:///sw/apps/conda/latest/rackham/local_repo/r\n - file:///sw/apps/conda/latest/rackham/local_repo/main\n - file:///sw/apps/conda/latest/rackham/local_repo/bioconda\n - file:///sw/apps/conda/latest/rackham/local_repo/free\n - file:///sw/apps/conda/latest/rackham/local_repo/pro\n - file:///sw/apps/conda/latest/rackham/local_repo/qiime2\n - file:///sw/apps/conda/latest/rackham/local_repo/biocore\n - file:///sw/apps/conda/latest/rackham/local_repo/dranew\n - file:///sw/apps/conda/latest/rackham/local_repo/r2018.11\n - file:///sw/apps/conda/latest/rackham/local_repo/nvidia\n - file:///sw/apps/conda/latest/rackham/local_repo/pytorch\n - file:///sw/apps/conda/latest/rackham/local_repo/anaconda\n - defaults\n - hcc\n - conda-forge\nPlatform: linux-64\nCollecting package metadata (repodata.json): / subdir mismatch\n- subdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\n/ subdir mismatch\n- subdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\ndone\nSolving environment: / warning libmamba Added empty dependency for problem type SOLVER_RULE_UPDATE\nfailed\n\nPackagesNotFoundError: The following packages are not available from current channels:\n\n - hcc::cellranger\n\nCurrent channels:\n\n - file:///sw/apps/conda/latest/rackham/local_repo/conda-forge\n - file:///sw/apps/conda/latest/rackham/local_repo/scilifelab-lts\n - file:///sw/apps/conda/latest/rackham/local_repo/r\n - file:///sw/apps/conda/latest/rackham/local_repo/main\n - file:///sw/apps/conda/latest/rackham/local_repo/bioconda\n - file:///sw/apps/conda/latest/rackham/local_repo/free\n - file:///sw/apps/conda/latest/rackham/local_repo/pro\n - file:///sw/apps/conda/latest/rackham/local_repo/qiime2\n - file:///sw/apps/conda/latest/rackham/local_repo/biocore\n - file:///sw/apps/conda/latest/rackham/local_repo/dranew\n - file:///sw/apps/conda/latest/rackham/local_repo/r2018.11\n - file:///sw/apps/conda/latest/rackham/local_repo/nvidia\n - file:///sw/apps/conda/latest/rackham/local_repo/pytorch\n - file:///sw/apps/conda/latest/rackham/local_repo/anaconda\n - defaults\n - https://conda.anaconda.org/hcc\n - https://conda.anaconda.org/conda-forge/linux-64\n - https://conda.anaconda.org/conda-forge/noarch\n\nTo search for alternate channels that may provide the conda package you\u0027re\nlooking for, navigate to\n\n https://anaconda.org\n\nand use the search bar at the top of the page.\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUsing -c:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e[richel@rackham1 ~]$ conda install -c hcc cellranger\nChannels:\n - hcc\n - file:///sw/apps/conda/latest/rackham/local_repo/conda-forge\n - file:///sw/apps/conda/latest/rackham/local_repo/scilifelab-lts\n - file:///sw/apps/conda/latest/rackham/local_repo/r\n - file:///sw/apps/conda/latest/rackham/local_repo/main\n - file:///sw/apps/conda/latest/rackham/local_repo/bioconda\n - file:///sw/apps/conda/latest/rackham/local_repo/free\n - file:///sw/apps/conda/latest/rackham/local_repo/pro\n - file:///sw/apps/conda/latest/rackham/local_repo/qiime2\n - file:///sw/apps/conda/latest/rackham/local_repo/biocore\n - file:///sw/apps/conda/latest/rackham/local_repo/dranew\n - file:///sw/apps/conda/latest/rackham/local_repo/r2018.11\n - file:///sw/apps/conda/latest/rackham/local_repo/nvidia\n - file:///sw/apps/conda/latest/rackham/local_repo/pytorch\n - file:///sw/apps/conda/latest/rackham/local_repo/anaconda\n - defaults\n - conda-forge\nPlatform: linux-64\nCollecting package metadata (repodata.json): | subdir mismatch\n/ subdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\n- subdir mismatch\n\\ subdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\nsubdir mismatch\ndone\nSolving environment: / warning libmamba Added empty dependency for problem type SOLVER_RULE_UPDATE\nfailed\n\nLibMambaUnsatisfiableError: Encountered problems while solving:\n - nothing provides openssl \u0026gt;=1.1.1,\u0026lt;1.1.2.0a0 needed by python-2.7.15-h9bab390_2\n\nCould not solve for environment specs\nThe following packages are incompatible\n\u251c\u2500 cellranger is installable with the potential options\n\u2502 \u251c\u2500 cellranger 3.0.2 would require\n\u2502 \u2502 \u2514\u2500 python \u0026gt;=2.7,\u0026lt;2.8.0a0 with the potential options\n\u2502 \u2502 \u251c\u2500 python [2.7.10|2.7.11|...|2.7.9], which can be installed;\n\u2502 \u2502 \u2514\u2500 python 2.7.15 would require\n\u2502 \u2502 \u2514\u2500 openssl \u0026gt;=1.1.1,\u0026lt;1.1.2.0a0 , which does not exist (perhaps a missing channel);\n\u2502 \u2514\u2500 cellranger 3.0.2 would require\n\u2502 \u2514\u2500 python \u0026lt;3 with the potential options\n\u2502 \u251c\u2500 python [2.7.10|2.7.11|...|2.7.9], which can be installed;\n\u2502 \u251c\u2500 python 2.7.15, which cannot be installed (as previously explained);\n\u2502 \u2514\u2500 python [1.0.1|1.2|...|2.6.9], which can be installed;\n\u2514\u2500 pin-1 is not installable because it requires\n \u2514\u2500 python 3.12.* , which conflicts with any installable versions previously reported.\n\nPins seem to be involved in the conflict. Currently pinned specs:\n - python 3.12.* (labeled as \u0027pin-1\u0027)\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSeems unsolvable on Rackham\u003c/p\u003e\n\u003cp\u003eFrom \u003ca href=\"https://anaconda.org/hcc/repo/installers\" rel=\"nofollow\"\u003ehttps://anaconda.org/hcc/repo/installers\u003c/a\u003e:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eTo install a conda package from this channel, run:\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cpre\u003e\u003ccode\u003econda install --channel \"HCC\" package\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTakes us back to the earlier tried:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./conda install --channel \"HCC\" cellranger\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewith error:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erichel@richel-N141CU:~/anaconda3/bin$ ./conda install --channel \"HCC\" cellranger\nChannels:\n - HCC\n - defaults\nPlatform: linux-64\nCollecting package metadata (repodata.json): done\nSolving environment: failed\n\nLibMambaUnsatisfiableError: Encountered problems while solving:\n - nothing provides bcftools 1.9.* needed by cellranger-3.0.2-py27_1\n\nCould not solve for environment specs\nThe following package could not be installed\n\u2514\u2500 cellranger is not installable because it requires\n \u2514\u2500 bcftools 1.9.* , which does not exist (perhaps a missing channel).\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e[ABANDON] Approach 2: Use conda from local install\u003c/h2\u003e\u003ca id=\"user-content-abandon-approach-2-use-conda-from-local-install\" class=\"anchor\" aria-label=\"Permalink: [ABANDON] Approach 2: Use conda from local install\" href=\"#abandon-approach-2-use-conda-from-local-install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://anaconda.org/hcc/cellranger\" rel=\"nofollow\"\u003ehttps://anaconda.org/hcc/cellranger\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e[FAILS] Approach 1: use Python files on clusters\u003c/h2\u003e\u003ca id=\"user-content-fails-approach-1-use-python-files-on-clusters\" class=\"anchor\" aria-label=\"Permalink: [FAILS] Approach 1: use Python files on clusters\" href=\"#fails-approach-1-use-python-files-on-clusters\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e module load bioinfo-tools lz4/1.9.2 cellranger/8.0.1\npython\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eimport sys\nsys.path.append(\u0027/sw/bioinfo/Chromium-cellranger/8.0.1/bianca/lib/python/\u0027)\nfrom cellranger import *\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eWith \u003ccode\u003emodule load lz4/1.9.2\u003c/code\u003e\n\u003c/h3\u003e\u003ca id=\"user-content-with-module-load-lz4192\" class=\"anchor\" aria-label=\"Permalink: With module load lz4/1.9.2\" href=\"#with-module-load-lz4192\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e module load bioinfo-tools lz4/1.9.2 cellranger/8.0.1\npython\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eimport sys\nsys.path.append(\u0027/sw/bioinfo/Chromium-cellranger/8.0.1/bianca/lib/python/\u0027)\nfrom cellranger import *\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt;\u0026gt;\u0026gt; import cellranger.matrix as cr_matrix\nTraceback (most recent call last):\n File \"\u0026lt;stdin\u0026gt;\", line 1, in \u0026lt;module\u0026gt;\n File \"/sw/bioinfo/Chromium-cellranger/8.0.1/bianca/lib/python/cellranger/matrix.py\", line 19, in \u0026lt;module\u0026gt;\n import cellranger.cr_io as cr_io\n File \"/sw/bioinfo/Chromium-cellranger/8.0.1/bianca/lib/python/cellranger/cr_io.py\", line 17, in \u0026lt;module\u0026gt;\n import lz4.frame as lz4\nModuleNotFoundError: No module named \u0027lz4\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHowever, there is no Python code for \u003ccode\u003elz4\u003c/code\u003e on the cluster:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e[richel@rackham2 1.9.2]$ pwd\n/sw/libs/lz4/1.9.2\n\n[richel@rackham2 1.9.2]$ find . | grep py\n./rackham/src/contrib/debian/copyright\n./rackham/src/contrib/meson/GetLz4LibraryVersion.py\n./rackham/src/contrib/meson/InstallSymlink.py\n./rackham/src/tests/test-lz4-list.py\n./rackham/src/tests/test-lz4-speed.py\n./rackham/src/tests/test-lz4-versions.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eNo module load lz4\u003c/h3\u003e\u003ca id=\"user-content-no-module-load-lz4\" class=\"anchor\" aria-label=\"Permalink: No module load lz4\" href=\"#no-module-load-lz4\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e module load bioinfo-tools cellranger/8.0.1\npython\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eimport sys\nsys.path.append(\u0027/sw/bioinfo/Chromium-cellranger/8.0.1/bianca/lib/python/\u0027)\nfrom cellranger import *\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt;\u0026gt;\u0026gt; import cellranger.matrix as cr_matrix\nTraceback (most recent call last):\n File \"\u0026lt;stdin\u0026gt;\", line 1, in \u0026lt;module\u0026gt;\n File \"/sw/bioinfo/Chromium-cellranger/8.0.1/bianca/lib/python/cellranger/matrix.py\", line 19, in \u0026lt;module\u0026gt;\n import cellranger.cr_io as cr_io\n File \"/sw/bioinfo/Chromium-cellranger/8.0.1/bianca/lib/python/cellranger/cr_io.py\", line 17, in \u0026lt;module\u0026gt;\n import lz4.frame as lz4\nModuleNotFoundError: No module named \u0027lz4\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eThanks for the help 10x!\u003c/h2\u003e\u003ca id=\"user-content-thanks-for-the-help-10x\" class=\"anchor\" aria-label=\"Permalink: Thanks for the help 10x!\" href=\"#thanks-for-the-help-10x\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFrom \u003ca href=\"https://github.com/10XGenomics/cellranger/tree/main\"\u003ehttps://github.com/10XGenomics/cellranger/tree/main\u003c/a\u003e:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003ePlease note that this source code is made available only for informational\npurposes. 10x does not provide support for interpreting,\nmodifying, building, or running this code.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eThanks 10x!\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCommunication\u003c/h2\u003e\u003ca id=\"user-content-communication\" class=\"anchor\" aria-label=\"Permalink: Communication\" href=\"#communication\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e2024-08-26\u003c/h3\u003e\u003ca id=\"user-content-2024-08-26\" class=\"anchor\" aria-label=\"Permalink: 2024-08-26\" href=\"#2024-08-26\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo me to 10X:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eI do support like you, and a user wants to use the Python code of Cell Ranger.\u003c/p\u003e\n\u003cp\u003eI\u0027ve had multiple approaches to get these Python modules to work (notes at \u003ca href=\"https://github.com/UPPMAX/ticket_297240\"\u003ehttps://github.com/UPPMAX/ticket_297240\u003c/a\u003e ), such as using the Bazel file nicely provided at \u003ca href=\"https://github.com/10XGenomics/cellranger/blob/main/conda_spec.bzl\"\u003ehttps://github.com/10XGenomics/cellranger/blob/main/conda_spec.bzl\u003c/a\u003e , yet always I got stranded at a dead end/\u003c/p\u003e\n\u003cp\u003eHow do I use the Cell Ranger Python modules? Could there be a guide published to? Or a GitHub Actions build script on the GitHub repo?\u003c/p\u003e\n\u003c/blockquote\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1723292824.0
+ "updated_at": 1724654624.0
},
{
"data_format": 2,
- "description": null,
+ "description": "OSGVO image for blaylockbk",
"filenames": [
- "singularity/Singularity"
+ "Singularity"
],
- "full_name": "nilsec/mtrack",
+ "full_name": "opensciencegrid/osgvo-blaylockbk",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eMTrack\u003c/h1\u003e\u003ca id=\"user-content-mtrack\" class=\"anchor\" aria-label=\"Permalink: MTrack\" href=\"#mtrack\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAutomatic extraction of microtubules in electron microscopy volumes of neural tissue.\u003c/p\u003e\n",
+ "readme": "",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 16,
"topics": [],
- "updated_at": 1565039518.0
+ "updated_at": 1498768856.0
},
{
"data_format": 2,
- "description": "Demuxlet workflows for snRNA and snATAC",
+ "description": "Singularity container for MaxQuant in CentOS 7.",
"filenames": [
- "containers/general/Singularity",
- "containers/demuxlet/Singularity"
+ "Singularity"
],
- "full_name": "arushiv/sn_demuxlet",
+ "full_name": "bihealth/singularity-maxquant",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eNextFlow pipeline for RNA Demuxlet in demuxlet_rna; ATAC demuxlet in demuxlet_atac\u003c/h2\u003e\u003ca id=\"user-content-nextflow-pipeline-for-rna-demuxlet-in-demuxlet_rna-atac-demuxlet-in-demuxlet_atac\" class=\"anchor\" aria-label=\"Permalink: NextFlow pipeline for RNA Demuxlet in demuxlet_rna; ATAC demuxlet in demuxlet_atac\" href=\"#nextflow-pipeline-for-rna-demuxlet-in-demuxlet_rna-atac-demuxlet-in-demuxlet_atac\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe Demuxlet workflows take as input pruned bam files along with the QC metrics generated from the snRNA or snATAC workflows. Bam files are split into chunks of 1000 nuclei to expedite the Demuxlet run (can change this in the main.nf). Vcf files are prepped by selecting SNPs to be tested and samples to be kept. For RNA I\u0027ve used gencode v19 gene introns+exons - ENCODE blacklist regions (this bed file is in the data folder). For ATAC I\u0027ve used gencode introns+exons - ENCODE blacklist regions + ATAC-seq peaks in the bulk/previously available snATAC cell types from the tissue of interest. This might need to be updated according to your needs.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eContainers general and demuxlet carry the software to run different processes.\u003c/li\u003e\n\u003cli\u003eRNA Demuxlet requires pruned bam files and qc files from the \u003ca href=\"https://github.com/porchard/snRNAseq-NextFlow\"\u003eRNA workflow\u003c/a\u003e as input. One way to do this is to provide the directory paths of the snRNA pruned bam directory and the list of library names so the workflow fetches bam files of the form \u003ccode\u003e${pruned_bam_dir_path}/${library}-hg19.before-dedup.bam\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eATAC Demuxlet requires pruned bam files and qc files from the \u003ca href=\"https://github.com/porchard/snATACseq-NextFlow\"\u003eATAC workflow\u003c/a\u003e as input. One way to do this is to provide the directory paths of the snATAC pruned bam directory and the list of library names so the workflow fetches bam files of the form \u003ccode\u003e${params.pruned_bam_dir}/${library}-hg19.pruned.bam\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eEdit the \u003ccode\u003enextflow.config\u003c/code\u003e that has the config parameters such as executor, container paths etc. to suit your system.\u003c/li\u003e\n\u003cli\u003eUpdate the \u003ccode\u003elibrary-config.json\u003c/code\u003e file with information about the individual libraries.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003erun.sh\u003c/code\u003e includes an example run command.\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eMaxQuant in Singularity\u003c/h1\u003e\u003ca id=\"user-content-maxquant-in-singularity\" class=\"anchor\" aria-label=\"Permalink: MaxQuant in Singularity\" href=\"#maxquant-in-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eDownload MaxQuant ZIP into this directory.\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003esudo singularity build maxquant-2.0.3.0.sif Singularity\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1586194289.0
+ "updated_at": 1640476469.0
},
{
"data_format": 2,
- "description": null,
+ "description": "MXE",
"filenames": [
- "containers/Singularity.0.3.5",
- "containers/Singularity.0.3.3",
- "containers/Singularity.0.4.1",
- "containers/Singularity.0.3.6",
- "containers/Singularity.0.4.0"
+ "Singularity"
],
- "full_name": "tdalford/bilby_relative_binning",
+ "full_name": "richelbilderbeek/singularity_example_9",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity_example_5\u003c/h1\u003e\u003ca id=\"user-content-singularity_example_5\" class=\"anchor\" aria-label=\"Permalink: singularity_example_5\" href=\"#singularity_example_5\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eBranch\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://travis-ci.org\" rel=\"nofollow\"\u003e\u003cimg src=\"pics/TravisCI.png\" alt=\"Travis CI logo\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emaster\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://travis-ci.org/richelbilderbeek/singularity_example_5\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/81763108d8ea59e0425cb30af7c68be2e5b88c0872592f0cab297d542fb2d83a/68747470733a2f2f7472617669732d63692e6f72672f72696368656c62696c6465726265656b2f73696e67756c61726974795f6578616d706c655f352e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/richelbilderbeek/singularity_example_5.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eSingularity example 5: Ubuntu 19.04 (disco)\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3310\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1601504336.0
+ "updated_at": 1564746746.0
},
{
"data_format": 2,
- "description": "Singularity recipe to build https://github.com/brentp/smoove",
+ "description": "Singularity Container for PyTorch",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.0.5.0"
],
- "full_name": "lorenzgerber/smoove-singularity",
+ "full_name": "vansky/pytorch",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esmoove-singularity\u003c/h1\u003e\u003ca id=\"user-content-smoove-singularity\" class=\"anchor\" aria-label=\"Permalink: smoove-singularity\" href=\"#smoove-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePyTorch\u003c/h1\u003e\u003ca id=\"user-content-pytorch\" class=\"anchor\" aria-label=\"Permalink: PyTorch\" href=\"#pytorch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/312\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003ePyTorch Version: 0.5.0\u003c/p\u003e\n\u003cp\u003eMARCC NVidia GPU and installed drivers at testing time were: K80 \u0026amp; 396.26.\u003c/p\u003e\n\u003cp\u003eHere is a display of the job submission script: \u003ccode\u003epytorch_job.sh\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\n#SBATCH -N 1\n#SBATCH -n 6\n#SBATCH -p gpu\n#SBATCH --gres=gpu:1\n#SBATCH -t 1:0:0\n\nmodule load cuda/9.0\nmodule load singularity\n\ncd mnist\n\n# redefine SINGULARITY_HOME to mount current working directory to base $HOME\nexport SINGULARITY_HOME=$PWD:/home/$USER\n\nsingularity pull --name pytorch.simg shub://marcc-hpc/pytorch\nsingularity exec --nv ./pytorch.simg python main.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eClone this repository and submit a job, for example on MARCC Blue Crab:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd /scratch/users/$USER\ngit clone https://github.com/marcc-hpc/pytorch.git\ncd pytorch\nsbatch pytorch_job.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePlease open Github issues if you interested in correcting typos, adding\nexamples, or just providing feedback!\u003c/p\u003e\n\u003cp\u003eExample taken from \u003ca href=\"https://github.com/pytorch/examples\"\u003ehttps://github.com/pytorch/examples\u003c/a\u003e (examples/mnist) LICENSE\nis reflected to show attribution; the only modifications are to point to an\nempty data folder inside the mnist folder.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1544424250.0
+ "updated_at": 1590676888.0
},
{
"data_format": 2,
- "description": "Build Singularity containers to run SpaDES simulations on HPC clusters.",
+ "description": "Getting YOLO up and running on ACI",
"filenames": [
- "Singularity.spades_base",
- "Singularity.spades_github-development",
- "Singularity.spades_github-master"
+ "Singularity"
],
- "full_name": "UBC-FRESH/spades-singularity",
+ "full_name": "d-bohn/yolo_aci",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003espades-singularity\u003c/h1\u003e\u003ca id=\"user-content-spades-singularity\" class=\"anchor\" aria-label=\"Permalink: spades-singularity\" href=\"#spades-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAbout this project\u003c/h2\u003e\u003ca id=\"user-content-about-this-project\" class=\"anchor\" aria-label=\"Permalink: About this project\" href=\"#about-this-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis project implements a scripted framework for automating the process of building Singularity containers for running SpaDES simulations on HPC clusters.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eI am super impatient, and refuse to take the time to understand what I am doing before running any commands. Just tell me how to do the thing right now!\u003c/h2\u003e\u003ca id=\"user-content-i-am-super-impatient-and-refuse-to-take-the-time-to-understand-what-i-am-doing-before-running-any-commands-just-tell-me-how-to-do-the-thing-right-now\" class=\"anchor\" aria-label=\"Permalink: I am super impatient, and refuse to take the time to understand what I am doing before running any commands. Just tell me how to do the thing right now!\" href=\"#i-am-super-impatient-and-refuse-to-take-the-time-to-understand-what-i-am-doing-before-running-any-commands-just-tell-me-how-to-do-the-thing-right-now\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo build, sign, and push the base container flavour to the cloud image repository, simply run \u003ccode\u003emake all flavour=FLAVOUR\u003c/code\u003e, where \u003ccode\u003eFLAVOUR\u003c/code\u003e is one of \u003ccode\u003ebase\u003c/code\u003e, \u003ccode\u003egithub-master\u003c/code\u003e, or \u003ccode\u003egithub-development\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eNot sure which flavour to use? Read on!\u003c/p\u003e\n\u003cp\u003eNote that, if you do not have Singularity installed yet, you will need to run \u003ccode\u003emake install-singularity\u003c/code\u003e first.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSingularity container definition files\u003c/h2\u003e\u003ca id=\"user-content-singularity-container-definition-files\" class=\"anchor\" aria-label=\"Permalink: Singularity container definition files\" href=\"#singularity-container-definition-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis Singularity container definition files follow standard Singularity definition file naming conventions (i.e., they are prefixed with \u003ccode\u003eSingularity.\u003c/code\u003e followed by a \u003cem\u003etag\u003c/em\u003e string). There are three flavours (tags) defined in this project: \u003ccode\u003ebase\u003c/code\u003e, \u003ccode\u003egithub-master\u003c/code\u003e, and \u003ccode\u003egithub-development\u003c/code\u003e. Note that the R code that installs SpaDES packages for each flavour is contained in a script named \u003ccode\u003espades-setup_flavour.R\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eYou can also create new custom flavours by copying and modifying some files from an existing flavour. New flavours should be compatible with automated make targets (as long as you did not break the filename patterns).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eBase flavour\u003c/h3\u003e\u003ca id=\"user-content-base-flavour\" class=\"anchor\" aria-label=\"Permalink: Base flavour\" href=\"#base-flavour\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe base container flavour includes the latest stable CRAN versions of core SpaDES R packages. This base can be used to run SpaDES models directly (for simpler projects, where the CRAN packages are all you need). The base image also serves as a \u003cem\u003ebootstrap\u003c/em\u003e image for other flavours. The base container flavour is implemented in \u003ccode\u003eSingularity.spades_base\u003c/code\u003e and \u003ccode\u003espades-setup_base.R\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eGitHub flavours\u003c/h3\u003e\u003ca id=\"user-content-github-flavours\" class=\"anchor\" aria-label=\"Permalink: GitHub flavours\" href=\"#github-flavours\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThere are two GitHub container flavours (\u003ccode\u003egithub-master\u003c/code\u003e, \u003ccode\u003egithub-development\u003c/code\u003e). These install core SpaDES R packages from the latest code pushed to GitHub repositories for \u003ccode\u003emaster\u003c/code\u003e and \u003ccode\u003edevelopment\u003c/code\u003e branches, respectively. The GitHub container flavours are implemented in the \u003ccode\u003eSingularity.spades-github_BRANCH\u003c/code\u003e and \u003ccode\u003espades-setup_github-BRANCH\u003c/code\u003e (where \u003ccode\u003eBRANCH\u003c/code\u003e is one of \u003ccode\u003emaster\u003c/code\u003e or \u003ccode\u003edevelopment\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eThe GitHub container flavours are \u003cem\u003ebootstrapped\u003c/em\u003e from the base container flavour. Defintion file implementation assumes that a local base container image is available in path \u003ccode\u003ebuild/spades.sif\u003c/code\u003e, so the base container must be built first (the base container will automatically get built if not present if you run \u003ccode\u003emake build flavour=FLAVOUR\u003c/code\u003e, where \u003ccode\u003eFLAVOUR\u003c/code\u003e is any value except for \u003ccode\u003ebase\u003c/code\u003e).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCustom flavours\u003c/h3\u003e\u003ca id=\"user-content-custom-flavours\" class=\"anchor\" aria-label=\"Permalink: Custom flavours\" href=\"#custom-flavours\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can create a custom container flavour but copying \u003ccode\u003eSingularity.spades_github-master\u003c/code\u003e and \u003ccode\u003espades-setup_github-master.R\u003c/code\u003e---rename these to \u003ccode\u003eSingularity.spades_foo\u003c/code\u003e and \u003ccode\u003espades-setup_foo.R\u003c/code\u003e (where \u003ccode\u003efoo\u003c/code\u003e is whatever unique flavour name you want) and modify as required. Minimally, you just need to edit one line of code in the Singularity definition file to point to \u003ccode\u003espades-setup_foo.R\u003c/code\u003e, and edit the code in \u003ccode\u003espades-setup_foo.R\u003c/code\u003e to install whatever versions of SpaDES R packages you need.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eMakefile details\u003c/h2\u003e\u003ca id=\"user-content-makefile-details\" class=\"anchor\" aria-label=\"Permalink: Makefile details\" href=\"#makefile-details\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003eMakefile\u003c/code\u003e implements a number of make targets.\u003c/p\u003e\n\u003cp\u003eRun \u003ccode\u003emake build flavour=FLAVOUR sandbox=true\u003c/code\u003e to build a sandbox container (in \u003ccode\u003ebuild/spades_FLAVOUR_sandbox\u003c/code\u003e). See Singularity documentation for details on sandbox containers.\u003c/p\u003e\n\u003cp\u003eRun \u003ccode\u003emake build flavour=FLAVOUR\u003c/code\u003e to build a container as a single \u003cem\u003esingularity image file\u003c/em\u003e (in \u003ccode\u003ebuild/spades_FLAVOUR.sif\u003c/code\u003e). See Singularity documentation for details on SIF containers.\u003c/p\u003e\n\u003cp\u003eRun \u003ccode\u003emake push flavour=FLAVOUR\u003c/code\u003e to sign your SIF image and push it to your Sylabs cloud image library account. See the \u003ca href=\"https:%5Ccloud.sylabs.io\"\u003eSylabs Container Library\u003c/a\u003e to create and configure your account.\u003c/p\u003e\n\u003cp\u003eRun \u003ccode\u003emake all flavour=FLAVOUR\u003c/code\u003e to build and push your image in one step.\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eYOLO_aci\u003c/h1\u003e\u003ca id=\"user-content-yolo_aci\" class=\"anchor\" aria-label=\"Permalink: YOLO_aci\" href=\"#yolo_aci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCode and workflow for building \u003ca href=\"https://pjreddie.com/darknet/yolo/\" rel=\"nofollow\"\u003eYOLO\u003c/a\u003e\nin Docker Hub and modifying it with Singularity Hub for use with PSU\nACI HPC clusters.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQuick Start\u003c/h2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-label=\"Permalink: Quick Start\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCommand line\u003c/h3\u003e\u003ca id=\"user-content-command-line\" class=\"anchor\" aria-label=\"Permalink: Command line\" href=\"#command-line\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eImages\u003c/h4\u003e\u003ca id=\"user-content-images\" class=\"anchor\" aria-label=\"Permalink: Images\" href=\"#images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eVideos\u003c/h4\u003e\u003ca id=\"user-content-videos\" class=\"anchor\" aria-label=\"Permalink: Videos\" href=\"#videos\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights \u0026lt;video file\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePython3\u003c/h3\u003e\u003ca id=\"user-content-python3\" class=\"anchor\" aria-label=\"Permalink: Python3\" href=\"#python3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eImages\u003c/h4\u003e\u003ca id=\"user-content-images-1\" class=\"anchor\" aria-label=\"Permalink: Images\" href=\"#images-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003epython yolo.py --image /path/to/image.jpg --yolo yolo-coco\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eVideo\u003c/h4\u003e\u003ca id=\"user-content-video\" class=\"anchor\" aria-label=\"Permalink: Video\" href=\"#video\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003epython3 yolo_video.py --input /path/to/vid.mp4 \\\n\t--output /path/to/output/save.avi \\\n\t--write_res /path/to/write/results.txt \\\n\t--yolo yolo-coco\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1716933506.0
+ "updated_at": 1561693683.0
},
{
"data_format": 2,
- "description": "metarepo for tidying up container recipes, currently Singularity",
+ "description": "Testing conversion",
"filenames": [
- "ubuntu/Singularity.ubuntu2004",
- "pacbio/Singularity.pacbio",
- "base/Singularity.base",
- "r/Singularity.r",
- "r/Singularity.r-plus",
- "starcode/Singularity.starcode-v0.1.1",
- "jupyter/Singularity.jupyter-plus-alignparse",
- "jupyter/Singularity.jupyter-plus-bioconda",
- "jupyter/Singularity.jupyter-plus",
- "jupyter/Singularity.jupyter-plus-tensorflow-v2.5.0-compiled",
- "jupyter/Singularity.jupyter",
- "jupyter/Singularity.jupyter-plus-tensorflow-v2.2.0-compiled",
- "jupyter/Singularity.jupyter-plus-tensorflow-v2.4.0-rc4-compiled",
- "shell/Singularity.shell-plus",
- "tensorflow/Singularity.tensorflow-v2.5.0-compiled",
- "tensorflow/Singularity.tensorflow-v2.0.3-compiled",
- "tensorflow/Singularity.tensorflow-v1.15.4-compiled-partial",
- "tensorflow/Singularity.tensorflow-v2.4.0-rc4-compiled",
- "tensorflow/Singularity.tensorflow-v2.2.0-compiled",
- "bioinfmunger/Singularity.bioinfmunger",
- "lh3-aligners/Singularity.lh3-aligners",
- "bioconda/Singularity.bioconda"
+ "Singularity"
],
- "full_name": "darachm/containers2",
+ "full_name": "lalet/Singularity-hcp-prefreesurfer",
"latest_release": null,
- "readme": "\u003cp\u003eThis is for tracking, hosting recipes for Singularity containers, such that\nit can get mirrored on Github and singularity-hub can get it.\u003c/p\u003e\n\u003cp\u003eOrganzation copied from \u003ca href=\"https://github.com/jlboat/BioinfoContainers\"\u003ejlboat\u003c/a\u003e.\n(Of course, makes total sense to just use tags to organize things!)\u003c/p\u003e\n\u003cp\u003eSome recipes are for individual tools, some are for workflows and so are\ncombos.\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity-hcp-prefreesurfer\u003c/h1\u003e\u003ca id=\"user-content-singularity-hcp-prefreesurfer\" class=\"anchor\" aria-label=\"Permalink: Singularity-hcp-prefreesurfer\" href=\"#singularity-hcp-prefreesurfer\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTesting conversion\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1641869104.0
+ "subscribers_count": 2,
+ "topics": [
+ "containers",
+ "singularity",
+ "docker"
+ ],
+ "updated_at": 1521423231.0
},
{
"data_format": 2,
- "description": null,
+ "description": "T1 mapping BIDS app",
"filenames": [
"Singularity"
],
- "full_name": "cfe-lab/proviral",
- "latest_release": "v2.3.4",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eReadme\u003c/h2\u003e\u003ca id=\"user-content-readme\" class=\"anchor\" aria-label=\"Permalink: Readme\" href=\"#readme\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDependencies\u003c/h3\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-label=\"Permalink: Dependencies\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eminimap2 (\u003ca href=\"https://github.com/lh3/minimap2\"\u003ehttps://github.com/lh3/minimap2\u003c/a\u003e) (must be available via commandline)\u003c/li\u003e\n\u003cli\u003eblast tools (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/)\u003c/li\u003e\n\u003cli\u003eR and RSCRIPT (\u003ca href=\"https://www.r-project.org/\" rel=\"nofollow\"\u003ehttps://www.r-project.org/\u003c/a\u003e)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSingularity builds\u003c/h3\u003e\u003ca id=\"user-content-singularity-builds\" class=\"anchor\" aria-label=\"Permalink: Singularity builds\" href=\"#singularity-builds\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eBuild all singularity images inside of the \u003ccode\u003esimages\u003c/code\u003e folder\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eFiltering\u003c/h3\u003e\u003ca id=\"user-content-filtering\" class=\"anchor\" aria-label=\"Permalink: Filtering\" href=\"#filtering\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eAt the core of the proviral pipeline, data is read from \u003ccode\u003econtigs.csv\u003c/code\u003e and \u003ccode\u003econseqs.csv\u003c/code\u003e files produced by MiCall\u003c/li\u003e\n\u003cli\u003eFirst the pipeline reads through all of the contigs, then the contigs\u003c/li\u003e\n\u003cli\u003eWhen it does this (see the \u003ccode\u003efind_primers()\u003c/code\u003e function) it applies the following logic in this order for filtering/tagging:\n\u003col\u003e\n\u003cli\u003eIf a sample is not proviral, skip it. Do not attempt to find primers or anything, just log a message saying \u003ccode\u003esample X was skipped because it was non-proviral\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eIf a sample has 0 in the remap column of the \u003ccode\u003ecascade.csv\u003c/code\u003e file, tag that sequence with an error: \u003ccode\u003eNo contig/conseq constructed\u003c/code\u003e, do not analyze it or try to find primers, and write it to the \u003ccode\u003e*primer_analysis.csv\u003c/code\u003e file (which records all failures)\u003c/li\u003e\n\u003cli\u003eIf the \u003ccode\u003econsensus-percent-cutoff\u003c/code\u003e is NOT \u003ccode\u003eMAX\u003c/code\u003e, tag it with an error: \u003ccode\u003econtig not MAX\u003c/code\u003e and skip the sequence (do not try to find primers)\u003c/li\u003e\n\u003cli\u003eIf the reference of the sample is \u003ccode\u003eHIV1-CON-XX-Consensus-seed\u003c/code\u003e tag that sequence with an error: \u003ccode\u003eis V3 sequence\u003c/code\u003e, skip the sequence (do not try to find primers), and write it to the \u003ccode\u003e*primer_analysis.csv\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eIf there is an \u003ccode\u003eX\u003c/code\u003e in the middle of the sequence, tag that sequence with an error: \u003ccode\u003elow internal read coverage\u003c/code\u003e, skip the sequence (do not try to find primers), and write it to the \u003ccode\u003e*primer_analysis.csv\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eIf there are ANY non-TCGA characters in the sequence, tag that sequence with an error: \u003ccode\u003econtig sequence contained non-TCGA/gap\u003c/code\u003e, skip the sequence (do not try to find primers), and write it to the \u003ccode\u003e*primer_analysis.csv\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eFor each end (5\u0027 (fwd), 3\u0027 (rev)) of the sequence:\n\u003col\u003e\n\u003cli\u003eIf there are \u003ccode\u003eX\u003c/code\u003e characters found, try to remove them (if they are clustered) and if not possible to remove tag the fwd/rev end with a fwd/rev primer error: \u003ccode\u003elow read coverage in primer region\u003c/code\u003e, skip the fwd/rev end (do not try to find primers)\u003c/li\u003e\n\u003cli\u003eIf fwd/rev end has zero nucleotides found for primer, tag the fwd/rev end with a fwd/rev primer error: \u003ccode\u003eprimer was not found\u003c/code\u003e, skip to the next end if any\u003c/li\u003e\n\u003cli\u003eIf the fwd/rev primer is deemed not valid, tag the fwd/rev end with a fwd/rev primer error: \u003ccode\u003eprimer failed secondary validation\u003c/code\u003e, skip to the next end if any\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003eWrite the sequence to the \u003ccode\u003e*primer_analysis.csv\u003c/code\u003e file regardless of tagged errors in any error column\u003c/li\u003e\n\u003cli\u003eLoad the \u003ccode\u003e*primer_analysis.csv\u003c/code\u003e files for both contigs and conseqs and for both of them apply the following filters in order:\n\u003col\u003e\n\u003cli\u003eRemove all rows where either the \u003ccode\u003eerror\u003c/code\u003e, \u003ccode\u003efwd_error\u003c/code\u003e, or \u003ccode\u003erev_error\u003c/code\u003e is tagged\u003c/li\u003e\n\u003cli\u003eRemove the primers from the sequences (for hivseqinr)\u003c/li\u003e\n\u003cli\u003eRemove rows where sample name appears twice (duplicates)\u003c/li\u003e\n\u003cli\u003eRemove rows where the reference contains \u003ccode\u003eunknown\u003c/code\u003e or \u003ccode\u003ereverse\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003eFinally merge the filtered contigs and conseqs and write the final \u003ccode\u003e*filtered.csv\u003c/code\u003e file with conseqs taking precedence over contigs\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "khanlab/despot1",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003edespot1: DESPOT1-HIFI T1 mapping BIDS app\u003c/h1\u003e\u003ca id=\"user-content-despot1--despot1-hifi-t1-mapping-bids-app\" class=\"anchor\" aria-label=\"Permalink: despot1: DESPOT1-HIFI T1 mapping BIDS app\" href=\"#despot1--despot1-hifi-t1-mapping-bids-app\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInputs:\u003c/h2\u003e\u003ca id=\"user-content-inputs\" class=\"anchor\" aria-label=\"Permalink: Inputs:\" href=\"#inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eExample BIDS-like naming (acq- flag and DESPOT suffix are \u003cem\u003erequired\u003c/em\u003e):\nsub-01/anat/sub-01_acq-SPGR_flip-1_DESPOT.nii.gz\nsub-01/anat/sub-01_acq-SPGR_flip-2_DESPOT.nii.gz\nsub-01/anat/sub-01_acq-IRSPGR_DESPOT.nii.gz\u003c/p\u003e\n\u003cp\u003eThe SPGR json files must include:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eRepetitionTime\u003c/li\u003e\n\u003cli\u003eFlipAngle\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe IRSPGR json files must include:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eRepetitionTime\u003c/li\u003e\n\u003cli\u003eInversionTime\u003c/li\u003e\n\u003cli\u003eFlipAngle\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe following variables are hardcoded in run.sh (need to be modified if they are different for your sequence):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enpulse=78 #readout pulses following inversion\nfield=3 #field strength\ninvmode=2 #number of inversions per slice\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOverall pipeline:\u003c/h2\u003e\u003ca id=\"user-content-overall-pipeline\" class=\"anchor\" aria-label=\"Permalink: Overall pipeline:\" href=\"#overall-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eParse and extract parameters from JSON files\u003c/li\u003e\n\u003cli\u003eRigidly register images to the first SPGR (flirt)\u003c/li\u003e\n\u003cli\u003ePre-process images prior to C code (nifti -\u0026gt; analyze)\u003c/li\u003e\n\u003cli\u003eRun DESPOT1-HIFI fitting using pre-compiled C code (src from Sean Deoni)\u003c/li\u003e\n\u003cli\u003ePost-process T1map, B1map, M0map images after C code (analyze -\u0026gt; nifti)\u003c/li\u003e\n\u003cli\u003eGenerate synthetic T1w map (simple octave script)\u003c/li\u003e\n\u003cli\u003eGenerate hard and soft brain masks from M0map\n\u003cul\u003e\n\u003cli\u003eHard mask from bet\u003c/li\u003e\n\u003cli\u003eSoft mask generated by N4 on bet M0map, then 10th percentile cutoff (hard above, 0-1 below)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eApply soft mask to T1map, T1w, and B1map (to downweight high-intensity boundary voxels), and hard mask to M0map\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOutput:\u003c/h2\u003e\u003ca id=\"user-content-output\" class=\"anchor\" aria-label=\"Permalink: Output:\" href=\"#output\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e\u2500\u2500 OUT_FOLDER\n \u2514\u2500\u2500 sub-P004\n \u2514\u2500\u2500 anat\n \u251c\u2500\u2500 sub-P004_acq-DESPOT_B1map.nii.gz\n \u251c\u2500\u2500 sub-P004_acq-DESPOT_M0map.nii.gz\n \u251c\u2500\u2500 sub-P004_acq-DESPOT_proc-masked_B1map.nii.gz\n \u251c\u2500\u2500 sub-P004_acq-DESPOT_proc-masked_M0map.nii.gz\n \u251c\u2500\u2500 sub-P004_acq-DESPOT_proc-masked_T1map.nii.gz\n \u251c\u2500\u2500 sub-P004_acq-DESPOT_proc-masked_T1w.nii.gz\n \u251c\u2500\u2500 sub-P004_acq-DESPOT_T1map.nii.gz\n \u2514\u2500\u2500 sub-P004_acq-DESPOT_T1w.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAn \u003ccode\u003ework\u003c/code\u003e folder with intermediate files will also be generated\u003c/p\u003e\n\u003cp\u003eTo do:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esimilar app for DESPOT2-FM mapping..\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 8,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1655928986.0
+ "updated_at": 1591844418.0
},
{
"data_format": 2,
- "description": "Prokka: rapid prokaryotic genome annotation.",
+ "description": "Singularity container for MitoGraph.",
"filenames": [
- "1.14.5/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-prokka",
+ "full_name": "mcw-rcc/mitograph",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003emitograph\u003c/h1\u003e\u003ca id=\"user-content-mitograph\" class=\"anchor\" aria-label=\"Permalink: mitograph\" href=\"#mitograph\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe and modulefile for running Mitograph on a Linux system. This requires Singularity to build the container file. You can adapt the modulefile for your needs or run the analysis from the command line.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun Mitograph container\u003c/h2\u003e\u003ca id=\"user-content-run-mitograph-container\" class=\"anchor\" aria-label=\"Permalink: Run Mitograph container\" href=\"#run-mitograph-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec mitograph.sif input_file\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 2,
"topics": [
- "singularity",
- "bioinformatics"
+ "singularity-container"
],
- "updated_at": 1624982164.0
+ "updated_at": 1699631258.0
},
{
"data_format": 2,
- "description": "An example repository to deploy multiple containers to a Singularity Registry Server from CircleCI",
+ "description": "FastQC aims to provide a simple way to do some quality control checks on raw sequence data coming from high throughput sequencing pipelines. ",
"filenames": [
- "vanessa/greeting/Singularity.tag",
- "vanessa/greeting/Singularity"
+ "0.11.9/Singularity",
+ "0.12.1/Singularity"
],
- "full_name": "singularityhub/circle-ci-sregistry",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Builder Circle-CI\u003c/h1\u003e\u003ca id=\"user-content-singularity-builder-circle-ci\" class=\"anchor\" aria-label=\"Permalink: Singularity Builder Circle-CI\" href=\"#singularity-builder-circle-ci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\".circleci/sregistry-circle.png\"\u003e\u003cimg src=\".circleci/sregistry-circle.png\" alt=\".circleci/sregistry-circle.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis is a simple example of how you can achieve:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eversion control of your recipes\u003c/li\u003e\n\u003cli\u003eversioning to include image hash \u003cem\u003eand\u003c/em\u003e commit id\u003c/li\u003e\n\u003cli\u003ebuild of associated container and\u003c/li\u003e\n\u003cli\u003epush to a storage endpoint\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003efor a reproducible build workflow. Specifically, this example will use a \u003cem\u003esingle repository\u003c/em\u003e\nas a base to build \u003cem\u003emultiple containers\u003c/em\u003e and push to a shared \u003ca href=\"https://www.github.com/singularityhub/sregistry\"\u003eSingularity Registry Server\u003c/a\u003e based on the namespace organization.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eWhy should this be managed via Github?\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eGithub, by way of easy integration with continuous integration, is an easy way\nto have a workflow set up where multiple people can collaborate on a container recipe,\nthe recipe can be tested (with whatever testing you need), discussed in pull requests,\nand then finally pushed to your storage of choice or Singularity Registry.\nImportantly, you don\u0027t need to give your entire team manager permissions\nto the registry. An encrypted credential that only is accessible to\nadministrators can do the push upon merge of a discussed change.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eWhy should I use this instead of a service?\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eYou could use a remote builder, but if you do the build in a continuous integration\nservice you get complete control over it. This means everything from the version of\nSingularity to use, to the tests that you run for your container. You have a lot more\nfreedom in the rate of building, and organization of your repository, because it\u0027s you\nthat writes the configuration. Although the default would work for most, you can\nedit the build, setup, and circle configuration file in the\n\u003ca href=\".circleci\"\u003e.circleci\u003c/a\u003e folder to fit your needs.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQuick Start\u003c/h2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-label=\"Permalink: Quick Start\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ca href=\"https://github.com/singularityhub/circle-ci-sregistry\"\u003ecircle-ci-sregistry\u003c/a\u003e repository is\nan example repository that will allow you to store multiple recipes within, and then deploy\nto a \u003ca href=\"https://www.github.com/singularityhub/sregistry\"\u003eSingularity Registey Server\u003c/a\u003e.\nWe use CircleCI to build and push to your Singularity Registry. You have the freedom\nto store as many recipes in one repository as you please, with the understanding that one\nrepository maps to one builder on CircleCI (in terms of time allowed). However, you should\nalso realize that since the build and deploy happens with pull requests, you can have the bulids\ngoing in parallel (up to the time limit, of course). You are also free to have multiple repositories\nto deploy separate containers, but you would then need to ensure that the namespaces (the folders\nnamed inside that map to collection names) do not overlap.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e1. Setup\u003c/h3\u003e\u003ca id=\"user-content-1-setup\" class=\"anchor\" aria-label=\"Permalink: 1. Setup\" href=\"#1-setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo deploy this template for your registry you can:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFork or download \u003ca href=\"https://www.github.com/singularityhub/circle-ci-sregistry\"\u003esingularityhub/circle-ci-sregistry\u003c/a\u003e to your own GitHub account. Since the container namespace comes from the folders within, the name of the repository itself is not incredibly important.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://circleci.com/docs/2.0/getting-started/#setting-up-your-build-on-circleci\" rel=\"nofollow\"\u003eConnect your repository\u003c/a\u003e to CircleCI\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e2. Adding Containers\u003c/h3\u003e\u003ca id=\"user-content-2-adding-containers\" class=\"anchor\" aria-label=\"Permalink: 2. Adding Containers\" href=\"#2-adding-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHow does building work? Each folder represents a namespace. For example, the folder \u003ccode\u003evanessa/greeting\u003c/code\u003e maps to a container collection \u003ccode\u003evanessa/greeting\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eAdd a New Container\u003c/h4\u003e\u003ca id=\"user-content-add-a-new-container\" class=\"anchor\" aria-label=\"Permalink: Add a New Container\" href=\"#add-a-new-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis means that to add a new container collection namespace, just create a folder for it.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ mkdir -p vanessa/greeting\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eHow do tags work? The tags within the folder correspond to the tags for the container namespace. For example, here\nis how to create the tag \"pancakes\" for the container collection \"vanessa/greeting.\"\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ touch vanessa/greeting/Singularity.pancakes\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe Singularity file without any tags maps to the tag \"latest\"\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ touch vanessa/greeting/Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThat\u0027s it! Write your recipe there, and then open a pull request to build the container. Once the container is built, you need to approve the Hold in the continuous integration, and then the container will be pushed.\nMerging (or generally pushing to master) doesn\u0027t do any deployment. All deployments must happen\nthrough this pull request and approve process.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eFreezing a Container\u003c/h4\u003e\u003ca id=\"user-content-freezing-a-container\" class=\"anchor\" aria-label=\"Permalink: Freezing a Container\" href=\"#freezing-a-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you don\u0027t want a container collection to build, just put a .frozen file in the collection folder.\nIf you want to freeze the entire collection namespace, just put the .frozen file:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003etouch vanessa/greeting/.frozen\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf you want to freeze a particular container, add an equivalently named empty file with frozen as\nan extension.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003etouch vanessa/greeting/Singularity.pancakes.frozen\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIt\u0027s a very manual way of doing it, but importantly, the status of your building is\nreflected in the repository (version controlled!).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eCustom Build for a Container\u003c/h4\u003e\u003ca id=\"user-content-custom-build-for-a-container\" class=\"anchor\" aria-label=\"Permalink: Custom Build for a Container\" href=\"#custom-build-for-a-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you want to custom build a container, just add a build.sh file to the directory with the recipe.\nIt will be used instead of the default build.sh provided with the repository.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e3. Connect to CircleCI\u003c/h3\u003e\u003ca id=\"user-content-3-connect-to-circleci\" class=\"anchor\" aria-label=\"Permalink: 3. Connect to CircleCI\" href=\"#3-connect-to-circleci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you go to your \u003ca href=\"https://circleci.com/dashboard\" rel=\"nofollow\"\u003eCircle Dashboard\u003c/a\u003e you can usually select a Github organization (or user) and then the repository, and then click the toggle button to activate it to build on commit --\u0026gt; push.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e4. CircleCI Environment\u003c/h3\u003e\u003ca id=\"user-content-4-circleci-environment\" class=\"anchor\" aria-label=\"Permalink: 4. CircleCI Environment\" href=\"#4-circleci-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn order to communicate with your Singularity Registry Server, you should generate a\ntoken (a credential to push) in your $HOME/.sregistry file. Then you should add the entire\ncontents of this file to an encrypted CircleCI environment variable (just copy paste in the entire thing)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecat $HOME/.sregistry\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewrite this to the environment variable \u003ccode\u003eSREGISTRY_CREDENTIALS\u003c/code\u003e in CircleCI.\nIf you don\u0027t define this variable, the builds will happen, but the deploy will\nbe skipped.\u003c/p\u003e\n\u003cp\u003eThat should be it! You should then open pull requests to build containers,\nand then approve the Holds in the CircleCI interface to push to your registry. For example,\nhere is the workflow view right after a hold was approved (notice that the deploy step is\nrunning):\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\".circleci/hold.png\"\u003e\u003cimg src=\".circleci/hold.png\" alt=\".circleci/hold.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAnd here is when the deploy is done!\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\".circleci/deploy.png\"\u003e\u003cimg src=\".circleci/deploy.png\" alt=\".circleci/deploy.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eYou can check what will be deployed (and the command used) in the Build step, it will\nlook something like this:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eSREGISTRY_CLIENT=registry sregistry push --name \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003evanessa/greeting:latest\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/home/circleci/repo/vanessa/greeting/Singularity.sif\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\nSREGISTRY_CLIENT=registry sregistry push --name \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003evanessa/greeting:tag\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/home/circleci/repo/vanessa/greeting/Singularity.tag.sif\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNotice how the container namespace reflects the folder organization provided in\nthe repository here!\u003c/p\u003e\n\u003cp\u003eIf you are interested in learning more about CircleCI (extra features!) continue\nreading below.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eExtra: Get to Know CircleCi\u003c/h3\u003e\u003ca id=\"user-content-extra-get-to-know-circleci\" class=\"anchor\" aria-label=\"Permalink: Extra: Get to Know CircleCi\" href=\"#extra-get-to-know-circleci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAs we are working with \u003ca href=\"https://www.circleci.com\" rel=\"nofollow\"\u003eCircle CI\u003c/a\u003e, here are some other features\nthat might be of interest.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCircle offers \u003ca href=\"https://support.circleci.com/hc/en-us/articles/115015481128-Scheduling-jobs-cron-for-builds-\" rel=\"nofollow\"\u003escheduled builds\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eCircleCI also offers \u003ca href=\"https://circleci.com/docs/enterprise/gpu-configuration/\" rel=\"nofollow\"\u003eGPU Builders\u003c/a\u003e if you want/need that sort of thing.\u003c/li\u003e\n\u003cli\u003eIf you don\u0027t want to use the \u003ca href=\"https://singularityhub.github.io/sregistry-cli\" rel=\"nofollow\"\u003esregistry\u003c/a\u003e to push to Google Storage, Drive, Globus, Dropbox, or your personal Singularity Registry, CircleCI will upload your artifacts directly to your \u003ca href=\"https://circleci.com/docs/2.0/deployment-integrations/#section=deployment\" rel=\"nofollow\"\u003edeployment\u003c/a\u003e location of choice.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "pscedu/singularity-fastqc",
+ "latest_release": "v0.12.1",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-FastQC/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-FastQC/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-FastQC/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-FastQC/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/c8d644d0b2e64f21fb4cc1192ab1921c4633b7d5c7390c6bbeabe858d9b378fb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d666173747163\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c8d644d0b2e64f21fb4cc1192ab1921c4633b7d5c7390c6bbeabe858d9b378fb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d666173747163\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-fastqc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/9257c3dddaa94762774ea298578d7b41acec132a7c614be38c5dfddcc41bf884/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d666173747163\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9257c3dddaa94762774ea298578d7b41acec132a7c614be38c5dfddcc41bf884/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d666173747163\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-fastqc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/c64e867a78719d38b0be4bd1d4fa1fa248f47748a1f94a50a34663859db5cbc4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d666173747163\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c64e867a78719d38b0be4bd1d4fa1fa248f47748a1f94a50a34663859db5cbc4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d666173747163\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-fastqc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/bb023ccb6e3a745b5603ada1d21ff3936a69a2654e09c85b2cf69a041f4e0d1b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d666173747163\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bb023ccb6e3a745b5603ada1d21ff3936a69a2654e09c85b2cf69a041f4e0d1b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d666173747163\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-fastqc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-fastqc\u003c/h1\u003e\u003ca id=\"user-content-singularity-fastqc\" class=\"anchor\" aria-label=\"Permalink: singularity-fastqc\" href=\"#singularity-fastqc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/cad1f53832db2e5156a4bf58563606936b992127e490293214ae663ce59933f0/68747470733a2f2f65787465726e616c2d636f6e74656e742e6475636b6475636b676f2e636f6d2f69752f3f753d68747470732533412532462532467777772e62696f696e666f726d61746963732e626162726168616d2e61632e756b25324670726f6a656374732532466661737471632532466661737471632e706e6726663d31266e6f66623d31\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cad1f53832db2e5156a4bf58563606936b992127e490293214ae663ce59933f0/68747470733a2f2f65787465726e616c2d636f6e74656e742e6475636b6475636b676f2e636f6d2f69752f3f753d68747470732533412532462532467777772e62696f696e666f726d61746963732e626162726168616d2e61632e756b25324670726f6a656374732532466661737471632532466661737471632e706e6726663d31266e6f66623d31\" alt=\"Screenshot\" data-canonical-src=\"https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fwww.bioinformatics.babraham.ac.uk%2Fprojects%2Ffastqc%2Ffastqc.png\u0026amp;f=1\u0026amp;nofb=1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\nSingularity recipe for \u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003eFastQC\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003efastqc\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/FastQC/0.11.9\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/FastQC\u003c/code\u003e as \u003ccode\u003e0.11.9.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2023 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 4,
"topics": [
"singularity",
- "sregistry",
- "builder-repository"
+ "bioinformatics"
],
- "updated_at": 1550648627.0
+ "updated_at": 1649274180.0
},
{
"data_format": 2,
- "description": "pacbio tools",
+ "description": "Singularity container",
"filenames": [
- "singularity/Singularity.v2",
- "singularity/Singularity.v3",
- "singularity/Singularity.v1"
+ "Singularity.def"
],
- "full_name": "cokelaer/pacbio4all",
+ "full_name": "ParthDoshi97/bioinformatic_tools_container",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003epacbio4all\u003c/h1\u003e\u003ca id=\"user-content-pacbio4all\" class=\"anchor\" aria-label=\"Permalink: pacbio4all\" href=\"#pacbio4all\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA container with some of the pacbio tools. This is for Singularity 2.4 at least !\u003c/p\u003e\n\u003cp\u003e::\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name pacbio.img shub://cokelaer/pacbio4all:v2\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Container for Bioinformatics Tools\u003c/h1\u003e\u003ca id=\"user-content-singularity-container-for-bioinformatics-tools\" class=\"anchor\" aria-label=\"Permalink: Singularity Container for Bioinformatics Tools\" href=\"#singularity-container-for-bioinformatics-tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOverview\u003c/h2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-label=\"Permalink: Overview\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis Singularity container is designed to provide a comprehensive suite of bioinformatics tools for quality control, read trimming, alignment, and post-alignment analysis. The container is based on Ubuntu 20.04 and includes commonly used tools such as FastQC, MultiQC, Trimmomatic, STAR, Bowtie2, HISAT2, SAMtools, PICARD, HOMER, MACS2, and MEME Suite.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eFeatures\u003c/h2\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-label=\"Permalink: Features\" href=\"#features\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eQuality Control Tools\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eFastQC\u003c/strong\u003e: A quality control tool for high throughput sequence data.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eMultiQC\u003c/strong\u003e: Aggregates results from bioinformatics analyses into a single report.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eRead Trimming and Filtering Tools\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eTrimmomatic\u003c/strong\u003e: A flexible read trimming tool for Illumina NGS data.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eFastx Toolkit\u003c/strong\u003e: A collection of command line tools for Short-Reads FASTA/FASTQ files preprocessing.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eAlignment Tools\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eSTAR\u003c/strong\u003e: A fast RNA-seq read mapper.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eBowtie2\u003c/strong\u003e: A fast and sensitive gapped read aligner.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eHISAT2\u003c/strong\u003e: A fast and sensitive alignment program for mapping next-generation sequencing reads.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003ePost-Alignment Tools\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eSAMtools\u003c/strong\u003e: A suite of programs for interacting with high-throughput sequencing data.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003ePICARD\u003c/strong\u003e: A set of command line tools for manipulating high-throughput sequencing data.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eHOMER\u003c/strong\u003e: A suite of tools for Motif Discovery and next-generation sequencing analysis.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eMACS2\u003c/strong\u003e: Model-based Analysis of ChIP-Seq data.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eMEME Suite\u003c/strong\u003e: A collection of tools for the discovery and analysis of sequence motifs.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation\u003c/h2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo build the Singularity container, use the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build bioinformatics.sif Singularity.def\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the container, use:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e bioinformatics.sif \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003ecommand\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFor example, to run FastQC on a file:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e bioinformatics.sif fastqc sample.fastq\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIncluded Tools and Versions\u003c/h2\u003e\u003ca id=\"user-content-included-tools-and-versions\" class=\"anchor\" aria-label=\"Permalink: Included Tools and Versions\" href=\"#included-tools-and-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eUbuntu\u003c/strong\u003e: 20.04\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003ePerl\u003c/strong\u003e: 5.40.0\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eFastQC\u003c/strong\u003e: 0.12.1\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eMultiQC\u003c/strong\u003e: Latest via pip\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eTrimmomatic\u003c/strong\u003e: 0.39\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eFastx Toolkit\u003c/strong\u003e: 0.0.13\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eSTAR\u003c/strong\u003e: 2.7.11b\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eBowtie2\u003c/strong\u003e: 2.4.2\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eHISAT2\u003c/strong\u003e: Latest from GitHub\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eSAMtools\u003c/strong\u003e: 1.10\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003ePICARD\u003c/strong\u003e: 2.23.9\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eHOMER\u003c/strong\u003e: Latest via Perl script\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eMACS2\u003c/strong\u003e: Latest via pip\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eMEME Suite\u003c/strong\u003e: 5.5.5\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eEnvironment Variables\u003c/h2\u003e\u003ca id=\"user-content-environment-variables\" class=\"anchor\" aria-label=\"Permalink: Environment Variables\" href=\"#environment-variables\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe container sets the following environment variables:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e DEBIAN_FRONTEND=noninteractive\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e PATH=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/opt/STAR-2.7.11b/bin/Linux_x86_64_static:/opt/hisat2:/opt/bowtie2:/opt/samtools-1.10:/usr/local/bin:/opt/FastQC:\u003cspan class=\"pl-smi\"\u003e$PATH\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e PATH=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/root/homer/bin:\u003cspan class=\"pl-smi\"\u003e$PATH\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e PATH=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/opt/local/bin:/opt/local/libexec/meme-5.5.5:\u003cspan class=\"pl-smi\"\u003e$PATH\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAuthor\u003c/h2\u003e\u003ca id=\"user-content-author\" class=\"anchor\" aria-label=\"Permalink: Author\" href=\"#author\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eParth Doshi\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eVersion\u003c/h2\u003e\u003ca id=\"user-content-version\" class=\"anchor\" aria-label=\"Permalink: Version\" href=\"#version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e1.0\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHelp\u003c/h2\u003e\u003ca id=\"user-content-help\" class=\"anchor\" aria-label=\"Permalink: Help\" href=\"#help\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis container includes tools for quality control, read trimming, alignment, and post-alignment analysis in bioinformatics.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLabels\u003c/h2\u003e\u003ca id=\"user-content-labels\" class=\"anchor\" aria-label=\"Permalink: Labels\" href=\"#labels\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eAuthor\u003c/strong\u003e: Parth Doshi\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eVersion\u003c/strong\u003e: 1.0\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e\nThis README provides a clear and concise overview of the container, its features, installation instructions, usage examples, included tools and versions, environment variables, and author information. Adjust the placeholders such as `YourName` and any other details as necessary.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1508516491.0
+ "updated_at": 1721847941.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Recipes/Singularity_example",
- "Recipes/Singularity_ompi",
- "Recipes/Singularity_pytorch",
- "Recipes/Singularity_mpich",
- "Recipes/Singularity_spark_full",
- "Recipes/Singularity_spark",
- "Recipes/Singularity_tensorflow",
- "Recipes/Singularity_pytorch_full"
+ "Singularity.samtools_1.10",
+ "Singularity.syri_2aff3ba",
+ "Singularity.blast_2.2.31",
+ "Singularity.salmontools_23eac84",
+ "Singularity.star_2.7.6a",
+ "Singularity.ngmlr_8d76779",
+ "Singularity.muscle_3.8.1551",
+ "Singularity.minimap2_2.17r941",
+ "Singularity.samblaster_0.1.24"
],
- "full_name": "souzaitor/HPC-projects",
+ "full_name": "TomHarrop/align-utils",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePr\u00e9-requisitos\u003c/h1\u003e\u003ca id=\"user-content-pr\u00e9-requisitos\" class=\"anchor\" aria-label=\"Permalink: Pr\u00e9-requisitos\" href=\"#pr\u00e9-requisitos\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSele\u00e7\u00e3o do Recipe\u003c/h2\u003e\u003ca id=\"user-content-sele\u00e7\u00e3o-do-recipe\" class=\"anchor\" aria-label=\"Permalink: Sele\u00e7\u00e3o do Recipe\" href=\"#sele\u00e7\u00e3o-do-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAdicione o caminho do \u003cem\u003esingularity recipe\u003c/em\u003e desejado na vari\u00e1vel RECIPE no github (projeto \u0026gt;\u0026gt; Settings \u0026gt;\u0026gt; Secrets \u0026gt;\u0026gt; New Secret).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTemplate Integra\u00e7\u00e3o Cont\u00ednua Github\u003c/h1\u003e\u003ca id=\"user-content-template-integra\u00e7\u00e3o-cont\u00ednua-github\" class=\"anchor\" aria-label=\"Permalink: Template Integra\u00e7\u00e3o Cont\u00ednua Github\" href=\"#template-integra\u00e7\u00e3o-cont\u00ednua-github\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eEsse projeto o template para uso do cluster da UFSCar, contendo integra\u00e7\u00e3o cont\u00ednua com o Google Drive e Amazon S3.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequisitos para Google Drive\u003c/h2\u003e\u003ca id=\"user-content-requisitos-para-google-drive\" class=\"anchor\" aria-label=\"Permalink: Requisitos para Google Drive\" href=\"#requisitos-para-google-drive\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eEntre no \u003ca href=\"https://console.developers.google.com/apis/credentials\" rel=\"nofollow\"\u003econsole de credenciais de API do Google\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eSe ainda n\u00e3o houver um projeto, crie um.\u003c/li\u003e\n\u003cli\u003eEm \"Ativar API e Servi\u00e7os\", busque por \"Google Drive\" e ative a permiss\u00e3o.\u003c/li\u003e\n\u003cli\u003eClique em \"Criar credenciais\".\u003c/li\u003e\n\u003cli\u003eSelecione \"ID do cliente do OAuth\".\u003c/li\u003e\n\u003cli\u003eEm \"Tipo de aplicativo\", selecione \"App para computador\".\u003c/li\u003e\n\u003cli\u003eD\u00ea um nome de identifica\u00e7\u00e3o para as credenciais e clique em \"criar\". V\u00e3o aparecer dois dados (\"Seu ID de cliente\" e \"Sua chave secreta de cliente\"), precisaremos dos dois no passo seguinte.\u003c/li\u003e\n\u003cli\u003eAcesse o \u003cem\u003ecluster\u003c/em\u003e, execute o comando \u003ccode\u003erclone config\u003c/code\u003e e forne\u00e7a as seguintes informa\u00e7\u00f5es quando solicitado:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003en/s/q\u0026gt; n\nname\u0026gt; cloud\nStorage\u0026gt; 17 # selecione aqui o n\u00famero correspondente a op\u00e7\u00e3o \"Google Drive\"\nclient_id\u0026gt; conte\u00fado de \"Seu ID de cliente\"\nclient_secret\u0026gt; conte\u00fado de \"Sua chave secreta de cliente\"\nscope\u0026gt; 1 # Full access all files, excluding Application Data Folder\nroot_folder_id\u0026gt; deixe em branco\nservice_account_file\u0026gt; deixe em branco\ny/n\u0026gt; deixe em branco\ny/n\u0026gt; n\n\nSe j\u00e1 tiver o rclone instalado em seu computador, execute o comando exibido, caso contr\u00e1rio, o instale conforme indicado na p\u00e1gina oficial do rclone dependendo do seu sistema operacional (https://rclone.org/install/). A Seguir insira o resultado do comando exibido:\n\nconfig_token\u0026gt; c\u00f3digo fornecido pelo terminal ap\u00f3s autoriza\u00e7\u00e3o\ny/n\u0026gt; deixe em branco\ny/e/d\u0026gt; deixe em branco\ne/n/d/r/c/s/q\u0026gt; q\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA configura\u00e7\u00e3o at\u00e9 agora servir\u00e1 para transfer\u00eancia de dados do \u003cem\u003ecluster\u003c/em\u003e para a nuvem e vice-e-versa. A partir de agora vamos configurar a integra\u00e7\u00e3o cont\u00ednua no github.\u003c/p\u003e\n\u003col start=\"8\"\u003e\n\u003cli\u003eExecute o comando:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eecho $(cat ~/.config/rclone/rclone.conf | base64 --wrap=0)\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"9\"\u003e\n\u003cli\u003eCopie a sa\u00edda e adicione \u00e0 vari\u00e1vel RCLONE_CONF no github.\u003c/li\u003e\n\u003cli\u003eAdicione no github \u00e0 vari\u00e1vel COLLECTION_CONTAINER \u003ccode\u003e/path/to/project\u003c/code\u003e, esse ser\u00e1 o caminho cujo container vai ser disponibilizado no seu Google Drive no formato \u003ccode\u003erecipe_name_DateTime.simg\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequisitos para Amazon S3\u003c/h2\u003e\u003ca id=\"user-content-requisitos-para-amazon-s3\" class=\"anchor\" aria-label=\"Permalink: Requisitos para Amazon S3\" href=\"#requisitos-para-amazon-s3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eEntre na \u003ca href=\"console.aws.amazon.com\"\u003eAWS\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eClique na seta ao lado de seu nome de usu\u00e1rio e em \"My Security Credentials\".\u003c/li\u003e\n\u003cli\u003eNa se\u00e7\u00e3o \"Access Keys\", clique em \"Create New Access Key\".\u003c/li\u003e\n\u003cli\u003eNa janela que aparece, clique em \"Show Access Key\".\u003c/li\u003e\n\u003cli\u003eAcesse o \u003cem\u003ecluster\u003c/em\u003e, execute o comando \u003ccode\u003erclone config\u003c/code\u003e e forne\u00e7a as seguintes informa\u00e7\u00f5es quando solicitado:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003en/s/q\u0026gt; n\nname\u0026gt; cloud\nStorage\u0026gt; 4\nprovider\u0026gt; 1\nenv_auth\u0026gt; 1\naccess_key_id\u0026gt; conte\u00fado de \"Access Key ID\"\nsecret_access_key\u0026gt; conte\u00fado de \"Secret Access Key\"\nregion\u0026gt; 16\nendpoint\u0026gt; deixe em branco\nlocation_constraint\u0026gt; 16\nacl\u0026gt; deixe em branco\nserver_side_encryption\u0026gt; deixe em branco\nsse_kms_key_id\u0026gt; deixe em branco\nstorage_class\u0026gt; deixe em branco\ny/n\u0026gt; deixe em branco\ny/e/d\u0026gt; deixe em branco\ne/n/d/r/c/s/q\u0026gt; q\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA configura\u00e7\u00e3o at\u00e9 agora servir\u00e1 para transfer\u00eancia de dados do \u003cem\u003ecluster\u003c/em\u003e para a nuvem e vice-e-versa. A partir de agora vamos configurar a integra\u00e7\u00e3o cont\u00ednua no github.\u003c/p\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003eExecute o comando:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eecho $(cat ~/.config/rclone/rclone.conf | base64 --wrap=0)\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"7\"\u003e\n\u003cli\u003eCopie a sa\u00edda e adicione \u00e0 vari\u00e1vel RCLONE_CONF no github.\u003c/li\u003e\n\u003cli\u003eAdicione no github \u00e0 vari\u00e1vel COLLECTION_CONTAINER \u003ccode\u003e/path/to/project\u003c/code\u003e, esse ser\u00e1 o caminho cujo container vai ser disponibilizado no seu Google Drive no formato \u003ccode\u003erecipe_name_DateTime.simg\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1672685576.0
+ "updated_at": 1603929017.0
},
{
"data_format": 2,
- "description": "Singularity Image for GENIE dependencies built with ROOT5 on Ubuntu 14.04",
+ "description": null,
"filenames": [
- "Singularity"
+ "Containers/First experiments/not-used/Singularity def files/ubuntu-openmpi-master/Singularity",
+ "Containers/First experiments/not-used/Singularity def files/ubuntu-mvapich-master/Singularity",
+ "Containers/First experiments/not-used/Singularity def files/centos-mvapich-master/Singularity",
+ "Containers/First experiments/not-used/Singularity def files/centos-master/Singularity",
+ "Containers/First experiments/not-used/Singularity def files/ubuntu-master/Singularity",
+ "Containers/First experiments/not-used/Singularity def files/centos-openmpi-master/Singularity"
],
- "full_name": "twongjirad/singularity-genie-deps-root5-ubuntu14.04",
+ "full_name": "radical-group/koubbe",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-cern-root5-ubuntu14.04\u003c/h1\u003e\u003ca id=\"user-content-singularity-cern-root5-ubuntu1404\" class=\"anchor\" aria-label=\"Permalink: singularity-cern-root5-ubuntu14.04\" href=\"#singularity-cern-root5-ubuntu1404\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity Image for GENIE dependencies built with ROOT5 on Ubuntu 14.04\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ekoubbe\u003c/h1\u003e\u003ca id=\"user-content-koubbe\" class=\"anchor\" aria-label=\"Permalink: koubbe\" href=\"#koubbe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBelow you have a brief summary of the main work that I have been doing during my time in \u003ca href=\"http://radical.rutgers.edu\" title=\"Radical-Lab\" rel=\"nofollow\"\u003eRadical-Lab\u003c/a\u003e at Rutgers Universiry. For detailed information (descriptions, instructions, source code, results, etc.), please visit each section\u0027s topic.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTable of Contents\u003c/h2\u003e\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" aria-label=\"Permalink: Table of Contents\" href=\"#table-of-contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/radical-group/koubbe/blob/master/README.md#radical-cybertools-rct\"\u003eRadical-Cybertools (RCT)\u003c/a\u003e\u003cbr\u003e\n\u003ca href=\"https://github.com/radical-group/koubbe/blob/master/README.md#hyperparameter-optimization-hpo\"\u003eHyperparameter Optimization (HPO)\u003c/a\u003e\u003cbr\u003e\n\u003ca href=\"https://github.com/radical-group/koubbe/blob/master/README.md#containers\"\u003eContainers\u003c/a\u003e\u003cbr\u003e\n\u003ca href=\"https://github.com/radical-group/koubbe/blob/master/README.md#facts\"\u003eFACTS\u003c/a\u003e\u003cbr\u003e\n\u003ca href=\"https://github.com/radical-group/koubbe/blob/master/README.md#misc\"\u003eMisc\u003c/a\u003e\u003cbr\u003e\n\u003ca href=\"https://github.com/radical-group/koubbe/blob/master/README.md#installation-of-stress-ng-executable\"\u003eInstallation of stress-ng executable\u003c/a\u003e\u003cbr\u003e\n\u003ca href=\"https://github.com/radical-group/koubbe/blob/master/README.md#installation-of-mpi4py-on-xsede-bridges-using-gcc-compiler\"\u003eInstallation of mpi4py on XSEDE Bridges using GCC compiler\u003c/a\u003e\u003cbr\u003e\n\u003ca href=\"https://github.com/radical-group/koubbe/blob/master/README.md#reference\"\u003eReference\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRadical-Cybertools (RCT)\u003c/h2\u003e\u003ca id=\"user-content-radical-cybertools-rct\" class=\"anchor\" aria-label=\"Permalink: Radical-Cybertools (RCT)\" href=\"#radical-cybertools-rct\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDownload RCT stack as per instructed on \u003ca href=\"https://radicalentk.readthedocs.io/en/latest/install.html\" rel=\"nofollow\"\u003eEnTK installation website\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ virtualenv -p python3.7 \\\u0026lt;VE name\\\u0026gt; \n$ source \\\u0026lt;path-to-VE\\\u0026gt;/bin/activate \n$ pip install radical.entk \n$ pip install radical.analytics\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSimple RP exercise\u003c/h3\u003e\u003ca id=\"user-content-simple-rp-exercise\" class=\"anchor\" aria-label=\"Permalink: Simple RP exercise\" href=\"#simple-rp-exercise\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHere I ran the getting started example provided with RP and verified correct functionality:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cd \\\u0026lt;path-to-VE\\\u0026gt;/radical.pilot/examples \n$ python 00_getting_started.py xsede.bridges\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSimple EnTK exercise\u003c/h3\u003e\u003ca id=\"user-content-simple-entk-exercise\" class=\"anchor\" aria-label=\"Permalink: Simple EnTK exercise\" href=\"#simple-entk-exercise\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHere I wrote three suggested applications to get familiar with EnTK (the duration of the tasks can be arbitrary short):\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e128 tasks concurrently, where each task is 1 core\u003c/li\u003e\n\u003cli\u003e8 tasks where each task is 16 cores\u003c/li\u003e\n\u003cli\u003e16 concurrent batches of 8 tasks (each of 1 core, but where in each batch each task runs sequentially i.e., one after the other.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThe results of these applications are posted \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/RCT/First%20Example%20on%20EnTK/results/results.pdf\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHyperparameter Optimization (HPO)\u003c/h2\u003e\u003ca id=\"user-content-hyperparameter-optimization-hpo\" class=\"anchor\" aria-label=\"Permalink: Hyperparameter Optimization (HPO)\" href=\"#hyperparameter-optimization-hpo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn order to see my Initial Presentation on HPO, please visit \u003ca href=\"https://docs.google.com/presentation/d/12yYCymB0-m4qGEPdgg0XKipuziSUmEoVhI32XXhDOtc/edit?usp=sharing\" rel=\"nofollow\"\u003eHPO Initial Presentation\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eTo install HyperSpace (on Bridges login node, make sure MPICH or OpenMPI is available):\u003c/p\u003e\n\u003cp\u003eIf Anaconda (or Miniconda) not installed:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh \n$ bash Miniconda3-latest-Linux-x86_64.sh \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eElse:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ conda create --name \\\u0026lt;VE name\\\u0026gt; python=3.7 \n$ conda activate \\\u0026lt;VE name\\\u0026gt; \n$ pip install mpi4py \n$ git clone https://github.com/yngtodd/hyperspace.git \n$ cd hyperspace \n$ pip install .\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFirst thing I did was to reproduce results for the HyperSpace Styblinski-Tang benchmark (on Bridges compute node):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cd benchmarks/styblinskitang/hyperdrive \n$ mpirun -n 4 python3 benchmark.py --ndims 2 --results \\\u0026lt;/path/to/save/results\\\u0026gt; \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIn order to visualize the results, install HyperSpace on your local machine this time and follow:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ conda install mpi4py (through conda this time so MPI packages get installed as well) \n$ conda install scikit-learn seaborn \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFollow the Jupyter Notebook located in the repo \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/HPO/HyperSpace/First%20benchmark/results/vis_results.ipynb\"\u003ehere\u003c/a\u003e in order to visualize results.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePerforming HPO for the CHEERS project\u003c/h3\u003e\u003ca id=\"user-content-performing-hpo-for-the-cheers-project\" class=\"anchor\" aria-label=\"Permalink: Performing HPO for the CHEERS project\" href=\"#performing-hpo-for-the-cheers-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor a brief overview of what the CHEERS project is, as well as experiments design and results, please visit the \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/HPO/CHEERS/docs/First%20approach.pdf\"\u003eCHEERS First Approach document\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eParallel Bayesian SMBO vs Grid Search\u003c/h4\u003e\u003ca id=\"user-content-parallel-bayesian-smbo-vs-grid-search\" class=\"anchor\" aria-label=\"Permalink: Parallel Bayesian SMBO vs Grid Search\" href=\"#parallel-bayesian-smbo-vs-grid-search\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAfter playing around with HyperSpace and managing to get a working hyperparameter optimization code, the first thing that I did was a comparison of this approach (parallel Bayesian SMBO) against the already existing Grid Search one. You can find it here: \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/HPO/CHEERS/hyperparams-opt/code/NIRONE2-5/Andy_comparison_3params.ipynb\"\u003eAndy_comparison_3params.ipynb\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eOf course, you need to have HyperSpace installed beforehand:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eEasy HyperSpace install on XSEDE Comet with mvapich2:\n\n$ pip3 install virtualenv --user\n$ add virtualenv to .bashrc:\n\texport PATH=\"/home/karahbit/.local/bin:$PATH\"\n$ source .bashrc\n$ virtualenv -p python3 ve-cheers\n$ module load mpi4py\n$ source ve-cheers/bin/activate\n$ pip install seaborn scikit-optimize==0.5.2\n$ git clone https://github.com/yngtodd/hyperspace.git\n$ cd ~/hyperspace\n$ pip install .\n$ export MV2_ENABLE_AFFINITY=0\n$ srun --partition=debug --pty --nodes=2 --ntasks-per-node=24 -t 00:30:00 --wait=0 --export=ALL /bin/bash\n$ mpirun -n 4 python benchmarks/styblinskitang/hyperdrive/benchmark.py --ndims 2 --results /home/karahbit/hyperspace_results\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eWeak Scaling experiment\u003c/h4\u003e\u003ca id=\"user-content-weak-scaling-experiment\" class=\"anchor\" aria-label=\"Permalink: Weak Scaling experiment\" href=\"#weak-scaling-experiment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAs a natural next step, I went ahead and performed weak scaling experiments by running the following on local machine:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ./cheers_hyperspace_entk.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003enote: cheers_hyperspace_entk.sh is located \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/HPO/CHEERS/hyperparams-opt/code/NIRONE2-5/cheers_hyperspace_entk.sh\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003enote2: modify \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/HPO/CHEERS/hyperparams-opt/code/NIRONE2-5/cheers_hyperspace_entk.py\"\u003echeers_hyperspace_entk.py\u003c/a\u003e according to your needs (e.g. which dataset, # of hyperparams, which remote cluster, etc.).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eStrong Scaling experiment\u003c/h4\u003e\u003ca id=\"user-content-strong-scaling-experiment\" class=\"anchor\" aria-label=\"Permalink: Strong Scaling experiment\" href=\"#strong-scaling-experiment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHyperSpace as it is has a method called \u201chyperdrive\u201d which runs each subspace/optimization on its own single rank/core. There is also \u201cdualdrive\u201d which runs 2 subspaces/optimizations per rank/core.\u003c/p\u003e\n\u003cp\u003eIn order to perform strong scaling, we would need to create more of these functions, e.g. quadrive, octadrive, etc (I made those names up), so we can run 4, 8, 16, etc. optimizations per MPI rank respectively.. Eventually, we would like to name this function something like \u201cmultidrive\u201d, and specify the number of optimizations we would like per rank/core.\u003c/p\u003e\n\u003cp\u003eThis requires new development, thus more time. I already started experimenting with \u201cdualdrive\u201d, but we can\u2019t perform strong scaling until this is done.\u003c/p\u003e\n\u003cp\u003eYou can find an issue created specifically for this purpose in the HyperSpace GitHub repo:\n\u003ca href=\"https://github.com/yngtodd/hyperspace/issues/31\"\u003ehttps://github.com/yngtodd/hyperspace/issues/31\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAs said before, you can see the results for both experiments in \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/HPO/CHEERS/docs/First%20approach.pdf\"\u003eCHEERS First Approach document\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContainers\u003c/h2\u003e\u003ca id=\"user-content-containers\" class=\"anchor\" aria-label=\"Permalink: Containers\" href=\"#containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn order to see my Initial Presentation on Containers, please visit \u003ca href=\"https://docs.google.com/presentation/d/1ZA0dlyVj5jCw4b_unFurkM9Q9E7sMrNNn_DfLtdanfA/edit?usp=sharing\" rel=\"nofollow\"\u003eContainers Initial Presentation\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eTo see my final paper regarding containerization, please visit \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/Misc/Technical%20Report/GeorgeKoubbe_Report.pdf\"\u003eCase Studies of executing containerized scientific applications on High-Performance Computing Platforms using RADICAL-Cybertools\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eMoreover, to see a step-by-step walkthrough of how to create and use Singularity containers on remote clusters (e.g. Bridges) using RCT, go to the following \u003ca href=\"https://github.com/radical-cybertools/radical.pilot/wiki/Singularity-Containers\"\u003ewiki\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe experiments design is located \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/Containers/First%20experiments/docs/First%20Container%20Experiments%20Design%20Dec%2012%2C%202019.pdf\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eExperiment 1\u003c/h3\u003e\u003ca id=\"user-content-experiment-1\" class=\"anchor\" aria-label=\"Permalink: Experiment 1\" href=\"#experiment-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run experiment 1, make sure stress-ng executable is installed on Bridges and radical stack is installed on local machine. Then, execute on local machine:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e $ ./stress_rp.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003enote: stress_rp.sh is located \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/Containers/First%20experiments/src/exp1/stress_rp.sh\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003enote2: modify \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/Containers/First%20experiments/src/exp1/stress_rp.py\"\u003estress_rp.py\u003c/a\u003e accordingly to run via RP the executable or the containerized executable.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eExperiment 2\u003c/h3\u003e\u003ca id=\"user-content-experiment-2\" class=\"anchor\" aria-label=\"Permalink: Experiment 2\" href=\"#experiment-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe are going to run a Singularity containerized MPI executable on Bind mode \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/mpi.html\" rel=\"nofollow\"\u003e(what is Bind mode?)\u003c/a\u003e. Same as with experiment 1, we are going to execute on local machine:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e $ ./mpi_rp.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eOn Bridges:\u003c/h5\u003e\u003ca id=\"user-content-on-bridges\" class=\"anchor\" aria-label=\"Permalink: On Bridges:\" href=\"#on-bridges\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003enote: For further instructions on how to build the container and install/compile the executable, go \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/Containers/First%20experiments/src/exp2/Bridges/Bind-Intel19.5/instructions.txt\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003enote2: mpi_rp.sh is located \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/Containers/First%20experiments/src/exp2/Bridges/Bind-Intel19.5/mpi_rp.sh\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003enote3: modify \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/Containers/First%20experiments/src/exp2/Bridges/Bind-Intel19.5/mpi_rp.py\"\u003empi_rp.py\u003c/a\u003e accordingly to run via RP the executable or the containerized executable.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eOn Comet:\u003c/h5\u003e\u003ca id=\"user-content-on-comet\" class=\"anchor\" aria-label=\"Permalink: On Comet:\" href=\"#on-comet\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003enote: For further instructions on how to build the container and install/compile the executable, go \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/Containers/First%20experiments/src/exp2/Comet/Bind-IntelMPI/instructions.txt\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003enote2: mpi_rp.sh is located \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/Containers/First%20experiments/src/exp2/Comet/Bind-IntelMPI/mpi_rp.sh\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003enote3: modify \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/Containers/First%20experiments/src/exp2/Comet/Bind-IntelMPI/mpi_rp.py\"\u003empi_rp.py\u003c/a\u003e accordingly to run via RP the executable or the containerized executable.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eFACTS\u003c/h2\u003e\u003ca id=\"user-content-facts\" class=\"anchor\" aria-label=\"Permalink: FACTS\" href=\"#facts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eGetting started\u003c/h3\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-label=\"Permalink: Getting started\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eMy initial work consisted on helping out in running simple FACTS \"modules\" on XSEDE Bridges and verifying correct functionality.\u003c/p\u003e\n\u003cp\u003eAfter this testing was done, I proceeded to package the \u003ca href=\"https://github.com/radical-collaboration/facts\"\u003eFACTS repo\u003c/a\u003e into a python pip package and uploaded it to the pip server for easy download of general users.\u003c/p\u003e\n\u003cp\u003eLastly, I was tasked with the containerization of the FACTS framework. As it is right now, automation is achieved by creating a virtual environment and installing FACTS along with its dependencies through PIP. This framework will launch the executables for the required modules on a remote machine, being an HPC cluster, etc.\u003c/p\u003e\n\u003cp\u003eSo, why do we need containers? What is the benefit that containers are going to bring to FACTS?\u003c/p\u003e\n\u003cp\u003eWe envision this at two levels:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eWe containerize at the framework level. This will allow us to take FACTS apart into individual modules, completely independent from one another, with their own container each. The end user won\u2019t have to know about anything else, no virtual environment, no dependencies, no other steps. We would take full advantage of the portability and reproducibility benefits of containers. Therefore, the end user can simply execute the containerized module on the local machine. We can use Docker for this purpose.\u003c/li\u003e\n\u003cli\u003eWe containerize at the executable level. There is a growing number of modules inside FACTS. Each module has 4 stages: pre-processing, fit, project, post-processing. Each stage has one executable (python3 script). We can use Singularity for this purpose.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eFew notes to keep in mind:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInput data is not going to be included in the container. We can integrate (bind mount) it to the Docker container at the time of execution. Singularity already offers integration features that make this easier.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eWhere are we going to obtain the containers from?\tAs said before, each container would be representing a FACTS module. The containers can be downloaded from Docker Hub or the Singularity equivalent, for example, with every container being specific to the application and remote resource. Lastly, the end user would just need to execute the container.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eContainerization at the executable level\u003c/h3\u003e\u003ca id=\"user-content-containerization-at-the-executable-level\" class=\"anchor\" aria-label=\"Permalink: Containerization at the executable level\" href=\"#containerization-at-the-executable-level\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAs an initial approach, I started containerizing at the executable level (Singularity) on Comet with the kopp14 module and data that Greg sent me. Once done, I characterized performance and looked for any overheads. You can read how to run the container from the following file: \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/FACTS/Containerizing%20FACTS/Executable%20level/src/Comet/facts/facts_re.sh\"\u003efacts_re.sh\u003c/a\u003e. You can find the results in the last slide of the presentation \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/Containers/First%20experiments/docs/Containers%20Initial%20Presentation.pdf\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003enote: keep in mind that you would have to build the Singularity container from the definition file I provided by running the following command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity build ./modules/kopp14/landwaterstorage/kopp14_landwaterstorage.sif kopp14_landwaterstorage.def\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eContainerization at the framework level\u003c/h3\u003e\u003ca id=\"user-content-containerization-at-the-framework-level\" class=\"anchor\" aria-label=\"Permalink: Containerization at the framework level\" href=\"#containerization-at-the-framework-level\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis was not a requirement at the moment, but for fun I proceeded to create a Dockerfile containerizing FACTS at the framework level. You can find the file \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/FACTS/Containerizing%20FACTS/Framework%20level/Dockerfile\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eMisc\u003c/h2\u003e\u003ca id=\"user-content-misc\" class=\"anchor\" aria-label=\"Permalink: Misc\" href=\"#misc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHere you have general information about my work, readings, meetings, weekly summaries, etc.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation of stress-ng executable\u003c/h2\u003e\u003ca id=\"user-content-installation-of-stress-ng-executable\" class=\"anchor\" aria-label=\"Permalink: Installation of stress-ng executable\" href=\"#installation-of-stress-ng-executable\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo install stress-ng on Bridges login node:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ wget http://kernel.ubuntu.com/~cking/tarballs/stress-ng/stress-ng-0.09.34.tar.xz \n$ tar xvf stress-ng-0.09.34.tar.xz \n$ cd stress-ng-0.09.34 \n$ make \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRequest 1 node, 4 cores on RM partition for 8 hours:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ interact -p RM -N 1 -n 4 -t 8:00:00 \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eMeasure Total Time of Execution of stress-ng python script through MPI:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e/usr/bin/time -v mpirun -n 2 python3 helloworld.py \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo see core usage on each node:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ssh r001 \n$ htop\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003enote: helloworld.py is located in the repo \u003ca href=\"https://github.com/radical-group/koubbe/blob/master/HPO/HyperSpace/First%20benchmark/docs/Guides/stress-ng/helloworld.py\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation of mpi4py on XSEDE Bridges using GCC compiler\u003c/h2\u003e\u003ca id=\"user-content-installation-of-mpi4py-on-xsede-bridges-using-gcc-compiler\" class=\"anchor\" aria-label=\"Permalink: Installation of mpi4py on XSEDE Bridges using GCC compiler\" href=\"#installation-of-mpi4py-on-xsede-bridges-using-gcc-compiler\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf Anaconda (or Miniconda) not installed:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh \n$ bash Miniconda3-latest-Linux-x86_64.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eElse:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ conda create --name \\\u0026lt;VE name\\\u0026gt; python=3.7 \n$ conda activate \\\u0026lt;VE name\\\u0026gt; \n$ wget https://bitbucket.org/mpi4py/mpi4py/downloads/mpi4py-3.0.3.tar.gz \n$ tar -zxf mpi4py-3.0.3.tar.gz \u0026amp;\u0026amp; rm mpi4py-3.0.3.tar.gz\n$ cd mpi4py-3.0.3 \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003emodify mpi.cfg as instructed in \u003ca href=\"https://mpi4py.readthedocs.io/en/stable/install.html#using-pip-or-easy-install\" rel=\"nofollow\"\u003empi4py installation\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Open MPI example \n# ---------------- \n[openmpi] \nmpi_dir = /usr/mpi/gcc/openmpi-2.1.2-hfi \nmpicc = %(mpi_dir)s/bin/mpicc \nmpicxx = %(mpi_dir)s/bin/mpicxx \n#include_dirs = %(mpi_dir)s/include \n#libraries = mpi \nlibrary_dirs = %(mpi_dir)s/lib64:/opt/packages/gcc/9.2.0/bin/gcc \nruntime_library_dirs = %(library_dirs)s \n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003e$ python setup.py build --mpi=openmpi \n$ python setup.py install \n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eReference\u003c/h2\u003e\u003ca id=\"user-content-reference\" class=\"anchor\" aria-label=\"Permalink: Reference\" href=\"#reference\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe local machine used throughout the proyects is a virtual machine with Ubuntu 16.04.6 LTS.\u003c/p\u003e\n\u003cp\u003eThe radical-stack used is:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e python : 3.7.6\n pythonpath : \n virtualenv : /home/karahbit/ve-rct3\n\n radical.analytics : 0.90.7\n radical.entk : 1.0.2\n radical.pilot : 1.3.0\n radical.saga : 1.3.0\n radical.utils : 1.3.0\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor specific references, please visit each section\u0027s topic.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"http://radical.rutgers.edu\" rel=\"nofollow\"\u003ehttp://radical.rutgers.edu\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://radical-cybertools.github.io\" rel=\"nofollow\"\u003ehttp://radical-cybertools.github.io\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.psc.edu/bridges/user-guide\" rel=\"nofollow\"\u003ehttps://www.psc.edu/bridges/user-guide\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.sdsc.edu/support/user_guides/comet.html\" rel=\"nofollow\"\u003ehttps://www.sdsc.edu/support/user_guides/comet.html\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://radicalpilot.readthedocs.io/en/stable\" rel=\"nofollow\"\u003ehttps://radicalpilot.readthedocs.io/en/stable\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://radicalentk.readthedocs.io/en/latest\" rel=\"nofollow\"\u003ehttps://radicalentk.readthedocs.io/en/latest\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://hyperspace.readthedocs.io/en/latest\" rel=\"nofollow\"\u003ehttps://hyperspace.readthedocs.io/en/latest\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://sylabs.io/guides/3.5/user-guide/\" rel=\"nofollow\"\u003ehttps://sylabs.io/guides/3.5/user-guide/\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://containers-at-tacc.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003ehttps://containers-at-tacc.readthedocs.io/en/latest/\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.open-mpi.org\" rel=\"nofollow\"\u003ehttps://www.open-mpi.org\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://wiki.ubuntu.com/Kernel/Reference/stress-ng\" rel=\"nofollow\"\u003ehttps://wiki.ubuntu.com/Kernel/Reference/stress-ng\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eAuthor: \u003ca href=\"https://github.com/karahbit\"\u003eGeorge Koubbe\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1496352524.0
+ "updated_at": 1595518122.0
},
{
"data_format": 2,
- "description": "Testing container for playing with singularity",
+ "description": "The Common Workflow Language (CWL) is an open standard for describing analysis workflows and tools in a way that makes them portable and scalable across a variety of software and hardware environments, from workstations to cluster, cloud, and high performance computing (HPC) environments. ",
"filenames": [
- "Hello-World/Singularity",
- "01-Building/Singularity.build"
+ "3.1.20211020155521/Singularity",
+ "3.1.20220210171524/Singularity"
],
- "full_name": "Deadlyelder/Singularity-hello-world",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity-hello-world\u003c/h1\u003e\u003ca id=\"user-content-singularity-hello-world\" class=\"anchor\" aria-label=\"Permalink: Singularity-hello-world\" href=\"#singularity-hello-world\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTesting container for playing with singularity.\u003c/p\u003e\n\u003cp\u003eUsed for testing on HPC and pushing on the \u003ca href=\"https://www.singularity-hub.org/\" rel=\"nofollow\"\u003eSingularity hub\u003c/a\u003e\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-cwltool",
+ "latest_release": "v3.1.20211020155521",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-cwltool/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-cwltool/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-cwltool/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-cwltool/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/0713bada75749349dcdd345d4398a0394c60a68411e755ae4cc4de586633d366/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d63776c746f6f6c\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0713bada75749349dcdd345d4398a0394c60a68411e755ae4cc4de586633d366/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d63776c746f6f6c\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-cwltool\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/06c1ad52de3c2984a480093626061fe1e2abf5399e3cf525379c8a0731f7b66b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d63776c746f6f6c\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/06c1ad52de3c2984a480093626061fe1e2abf5399e3cf525379c8a0731f7b66b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d63776c746f6f6c\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-cwltool\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/c19f9097b3a5bd623b4adaea7d7bf114d414cbe08983fb427ec9b51c1199cf8d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d63776c746f6f6c\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c19f9097b3a5bd623b4adaea7d7bf114d414cbe08983fb427ec9b51c1199cf8d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d63776c746f6f6c\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-cwltool\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/6f169d24efbee5cd194f8ecf9395464851313f0c36e4c8041d21e801a50b53b0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d63776c746f6f6c\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6f169d24efbee5cd194f8ecf9395464851313f0c36e4c8041d21e801a50b53b0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d63776c746f6f6c\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-cwltool\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-cwltool\u003c/h1\u003e\u003ca id=\"user-content-singularity-cwltool\" class=\"anchor\" aria-label=\"Permalink: singularity-cwltool\" href=\"#singularity-cwltool\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/72df1b7e3dc95fb0111902a35b64a124d254b58a0058c67416ae0a95d09f10bc/68747470733a2f2f7777772e636f6d6d6f6e776c2e6f72672f43574c2d4c6f676f2d4865616465722e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/72df1b7e3dc95fb0111902a35b64a124d254b58a0058c67416ae0a95d09f10bc/68747470733a2f2f7777772e636f6d6d6f6e776c2e6f72672f43574c2d4c6f676f2d4865616465722e706e67\" data-canonical-src=\"https://www.commonwl.org/CWL-Logo-Header.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://www.commonwl.org/\" rel=\"nofollow\"\u003ecwltool\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ecwltool\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/cwltool/3.1.20211020155521\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/cwltool\u003c/code\u003e as \u003ccode\u003e3.1.20211020155521.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
- "topics": [],
- "updated_at": 1533107262.0
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1635309195.0
},
{
"data_format": 2,
- "description": "Singularity recipe that can be used to build a container for BRER simulations.",
+ "description": null,
"filenames": [
- "Singularity.brer-cuda-10.0-ubuntu-18.04",
- "Singularity.trainA",
- "Singularity.nogpu",
- "Singularity.comet",
- "Singularity.0_0_7",
- "Singularity.0_0_6"
+ "Singularity"
],
- "full_name": "kassonlab/singularity-brer",
+ "full_name": "darachm/singularity_csvkit",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eBRER: Singularity\u003c/h1\u003e\u003ca id=\"user-content-brer-singularity\" class=\"anchor\" aria-label=\"Permalink: BRER: Singularity\" href=\"#brer-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository contains the Singularity recipe used to build containers for BRER simulations.\nA pre-built image is hosted on Sylabs Singularity \u003ca href=\"https://cloud.sylabs.io/library/kassonlab/default/brer\" rel=\"nofollow\"\u003elibrary\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe main project for running these simulations is hosted at \u003ca href=\"https://github.com/kassonlab/run_brer\"\u003ehttps://github.com/kassonlab/run_brer\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGetting the container\u003c/h2\u003e\u003ca id=\"user-content-getting-the-container\" class=\"anchor\" aria-label=\"Permalink: Getting the container\" href=\"#getting-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePull directly from singularity library (recommended):\u003c/p\u003e\n\u003cpre lang=\"angular2html\"\u003e\u003ccode\u003esingularity pull --name singularity-brer.sif library://kassonlab/default/brer\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor build it yourself:\u003c/p\u003e\n\u003cpre lang=\"angular2html\"\u003e\u003ccode\u003esudo singularity build singularity-brer.sif deffile\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere \u003ccode\u003edeffile\u003c/code\u003e is one of the recipe files in this repository.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOnce you\u0027ve got the container\u003c/h2\u003e\u003ca id=\"user-content-once-youve-got-the-container\" class=\"anchor\" aria-label=\"Permalink: Once you\u0027ve got the container\" href=\"#once-youve-got-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning\u003c/h3\u003e\u003ca id=\"user-content-running\" class=\"anchor\" aria-label=\"Permalink: Running\" href=\"#running\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe GROMACS build in this container is GPU-compatible (built with CUDA). In order to take advantage of this, use\nthe Singularity \u003ccode\u003eexec\u003c/code\u003e command with the \u003ccode\u003e--nv\u003c/code\u003e option:\u003c/p\u003e\n\u003cpre lang=\"angular2html\"\u003e\u003ccode\u003esingularity exec --nv singularity-brer.sif python3 my_run_script.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ccode\u003e--nv\u003c/code\u003e will bind the host nvidia drivers to the container, so be sure that your drivers are compatible with the CUDA version in the container (default CUDA 10.1).\u003c/p\u003e\n\u003cp\u003eAn example run script is provided on the \u003ca href=\"https://github.com/kassonlab/run_brer\"\u003emain project website\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003eNote: There is no Python 2 installed in the container (\u003ccode\u003e/usr/bin/python\u003c/code\u003e is actually Python3). Any Python scripts you write that you wish to run in the container\nmust be compatible with Python 3.X\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eMiscellaneous\u003c/h4\u003e\u003ca id=\"user-content-miscellaneous\" class=\"anchor\" aria-label=\"Permalink: Miscellaneous\" href=\"#miscellaneous\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eWarning\u003c/strong\u003e: Use \u003ccode\u003esingularity exec ...\u003c/code\u003e, not \u003ccode\u003esingularity run ...\u003c/code\u003e.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eThis container is for providing \u003ccode\u003ecsvkit\u003c/code\u003e for a nextflow pipeline.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1594306038.0
+ "updated_at": 1543722869.0
},
{
"data_format": 2,
- "description": "An Apptainer/Singularity container for using MuJoCo-mjx on GPU. ",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "DMackRus/Apptainer_mujoco-mjx",
+ "full_name": "oogasawa/singularity_jupyter_typescript",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eApptainer_RL\u003c/h1\u003e\u003ca id=\"user-content-apptainer_rl\" class=\"anchor\" aria-label=\"Permalink: Apptainer_RL\" href=\"#apptainer_rl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA simple container for using MuJoCo-mjx, and Jax on the GPU of your PC. Installs Cuda and CudNN as well as other python dependancies.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow to use\u003c/h2\u003e\u003ca id=\"user-content-how-to-use\" class=\"anchor\" aria-label=\"Permalink: How to use\" href=\"#how-to-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe only requirment for using this repository is \u003ca href=\"https://apptainer.org/admin-docs/master/installation.html\" rel=\"nofollow\"\u003eSingularity/Apptainer\u003c/a\u003e Version \u0026gt;= 3.5.\u003c/p\u003e\n\u003cp\u003eOnce Singularity/Apptainer has been installed, you can simply build the container using /.build.sh (This will take a while depending on your machine and wifi connection, approximately 30 minutes) and then you can launch the container using /.run.sh.\u003c/p\u003e\n\u003cp\u003eIf you need to admin priveledges inside the container to isntall something, you can use /.write.sh.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCurrent Issues\u003c/h2\u003e\u003ca id=\"user-content-current-issues\" class=\"anchor\" aria-label=\"Permalink: Current Issues\" href=\"#current-issues\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eRepository is hard coded to download Cuda 12.4 and Cudnn 9.5. I will make this flexible once I figure that out.\u003c/li\u003e\n\u003cli\u003eSome possible issue with jax installation. It seems to be using the GPU but there is a warning about a version mismatch between cuda and XLA.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eToDo\u003c/h1\u003e\u003ca id=\"user-content-todo\" class=\"anchor\" aria-label=\"Permalink: ToDo\" href=\"#todo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eAdd paths in post script\u003c/li\u003e\n\u003cli\u003eMake CUDA and CuDDn installations dynamic.\u003c/li\u003e\n\u003cli\u003eLook into fixing XLA and Jax mismatch?\u003c/li\u003e\n\u003cli\u003eMake some nice mjx-examples and have this repo clone them automatically.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-jupyter-typescript\u003c/h1\u003e\u003ca id=\"user-content-singularity-jupyter-typescript\" class=\"anchor\" aria-label=\"Permalink: singularity-jupyter-typescript\" href=\"#singularity-jupyter-typescript\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA Singularity container of Jupyter notebook for datascience + typescript,\ncreated by converting an official Docker image\n\u003ca href=\"https://hub.docker.com/r/jupyter/datascience-notebook/\" rel=\"nofollow\"\u003ejupyter/datascience-notebook\u003c/a\u003e,\nand \u003ca href=\"https://github.com/yunabe/tslab\"\u003eyunabe/tslab Jupyter kernel\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBuild the Singularity image as follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/oogasawa/singularity-jupyter-typescript\ncd singularity-jupyter-typescript\nsudo singularity build . singularity-jupyter-typescript.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eStart the server as follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity instance start singularity-jupyter-typescript.sif sing_typescript\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eEnter (attach) the Singularity container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# List the running containers.\nsingularity instance list\n\n# Attach the container\nsingularity shell instance://sing_typescript\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eStart the Jupyter notebook (or Jupyter Lab) from within the Singularity prompt.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity shell instance://sing_typescript\nSingularity\u0026gt; jupyter lab --port=50000\n[I 01:28:50.619 LabApp] JupyterLab extension loaded from /opt/conda/lib/python3.8/site-packages/jupyterlab\n[I 01:28:50.619 LabApp] JupyterLab application directory is /opt/conda/share/jupyter/lab\n[I 01:28:50.621 LabApp] Serving notebooks from local directory: /home/oogasawa/tmp3/singularity-jupyter-typescript\n[I 01:28:50.621 LabApp] The Jupyter Notebook is running at:\n[I 01:28:50.621 LabApp] http://mayfly:50000/?token=056ea4ee0e654429927ef2a0696a10100c623fbc7b4a8ee4\n[I 01:28:50.621 LabApp] or http://127.0.0.1:50000/?token=056ea4ee0e654429927ef2a0696a10100c623fbc7b4a8ee4\n[I 01:28:50.621 LabApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).\n[C 01:28:50.624 LabApp]\n\n To access the notebook, open this file in a browser:\n\t file:///home/oogasawa/.local/share/jupyter/runtime/nbserver-25-open.html\n\tOr copy and paste one of these URLs:\n\t\thttp://mayfly:50000/?token=056ea4ee0e654429927ef2a0696a10100c623fbc7b4a8ee4\n\t or http://127.0.0.1:50000/?token=056ea4ee0e654429927ef2a0696a10100c623fbc7b4a8ee4\t\t\t\t\t \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen you can access the Jupyter software \u003ca href=\"http://localhost:50000/\" rel=\"nofollow\"\u003ehttp://localhost:50000/\u003c/a\u003e .\u003c/p\u003e\n\u003cp\u003eStop the server (and return to the bash prompt) by Ctrl-C, and stop the container as follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity instance stop sing_typescript\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [
- "apptainer",
- "mujoco",
- "mujoco-environments",
- "mujoco-mjx",
- "reinforcement-learning",
- "singularity"
- ],
- "updated_at": 1729862068.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1622297530.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Label Me Application for PTdatax",
"filenames": [
- "Singularity.latest"
+ "Singularity"
],
- "full_name": "bioexcel/zip_container",
+ "full_name": "In-For-Disaster-Analytics/labelme",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://hub.docker.com/r/mmbirb/zip\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/339e4f315da6f622b2972753d519e70d7d9bd259f370f9e8ddc90738339303d7/68747470733a2f2f717561792e696f2f7265706f7369746f72792f62696f636f6e7461696e6572732f62696f62625f696f2f737461747573\" alt=\"\" data-canonical-src=\"https://quay.io/repository/biocontainers/biobb_io/status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/4075\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/Apache-2.0\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/859a1a0bc85ce8bbd7a730a274fec5c9e77c4726ffdf6aa762a78685e26033a4/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d417061636865253230322e302d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/License-Apache%202.0-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eZIP container\u003c/h1\u003e\u003ca id=\"user-content-zip-container\" class=\"anchor\" aria-label=\"Permalink: ZIP container\" href=\"#zip-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eIntroduction\u003c/h3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eZIP docker and singularity containers used for \u003ca href=\"https://github.com/bioexcel/biobb_template\"\u003ebiobb_template\u003c/a\u003e BioExcel Building Blocks modules.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDocker Use\u003c/h3\u003e\u003ca id=\"user-content-docker-use\" class=\"anchor\" aria-label=\"Permalink: Docker Use\" href=\"#docker-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker pull mmbirb/zip:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker run mmbirb/zip:latest \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSingularity Use\u003c/h3\u003e\u003ca id=\"user-content-singularity-use\" class=\"anchor\" aria-label=\"Permalink: Singularity Use\" href=\"#singularity-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity pull --name zip.sif shub://bioexcel/zip_container\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity exec zip.sif \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCopyright \u0026amp; Licensing\u003c/h3\u003e\u003ca id=\"user-content-copyright--licensing\" class=\"anchor\" aria-label=\"Permalink: Copyright \u0026amp; Licensing\" href=\"#copyright--licensing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis software has been developed in the \u003ca href=\"http://mmb.irbbarcelona.org\" rel=\"nofollow\"\u003eMMB group\u003c/a\u003e at the \u003ca href=\"http://www.bsc.es/\" rel=\"nofollow\"\u003eBSC\u003c/a\u003e \u0026amp; \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eIRB\u003c/a\u003e for the \u003ca href=\"http://bioexcel.eu/\" rel=\"nofollow\"\u003eEuropean BioExcel\u003c/a\u003e, funded by the European Commission (EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/823830\" rel=\"nofollow\"\u003e823830\u003c/a\u003e, EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/675728\" rel=\"nofollow\"\u003e675728\u003c/a\u003e).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e(c) 2015-2020 \u003ca href=\"https://www.bsc.es/\" rel=\"nofollow\"\u003eBarcelona Supercomputing Center\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e(c) 2015-2020 \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eInstitute for Research in Biomedicine\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eLicensed under the\n\u003ca href=\"https://www.apache.org/licenses/LICENSE-2.0\" rel=\"nofollow\"\u003eApache License 2.0\u003c/a\u003e, see the file LICENSE for details.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAcknolegements\u003c/h3\u003e\u003ca id=\"user-content-acknolegements\" class=\"anchor\" aria-label=\"Permalink: Acknolegements\" href=\"#acknolegements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe singularity container has been built through \u003ca href=\"https://singularity-hub.org/\" rel=\"nofollow\"\u003esingularity hub\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5aaf032aade8af7cf9f6e16cb3c7ba70c927ecd783c1cfff82dc0ed8062560df/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5aaf032aade8af7cf9f6e16cb3c7ba70c927ecd783c1cfff82dc0ed8062560df/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\" alt=\"\" title=\"Bioexcel\" data-canonical-src=\"https://bioexcel.eu/wp-content/uploads/2019/04/Bioexcell_logo_1080px_transp.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eThis template is the first in a \u003ca href=\"#next-templates\"\u003eseries of templates\u003c/a\u003e that will guide you through the process of creating a cookbook and running it on TACC systems. From simple ones that run a command to more complex ones that run a Python script using conda or a Jupyter Notebook.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequirements\u003c/h2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eA GitHub account\u003c/li\u003e\n\u003cli\u003eTACC account. If you don\u0027t have one, you can request one \u003ca href=\"https://accounts.tacc.utexas.edu/register\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eTo access TACC systems, you should have an \u003ca href=\"https://tacc.utexas.edu/use-tacc/allocations/\" rel=\"nofollow\"\u003eallocation\u003c/a\u003e.\n\u003cul\u003e\n\u003cli\u003eYou can see your allocations \u003ca href=\"https://ptdatax.tacc.utexas.edu/workbench/allocations/approved\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eIf you don\u0027t have an allocation, you can request one \u003ca href=\"https://portal.tacc.utexas.edu/allocation-request\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTemplate Overview\u003c/h2\u003e\u003ca id=\"user-content-template-overview\" class=\"anchor\" aria-label=\"Permalink: Template Overview\" href=\"#template-overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis template creates a simple Python script that will be used to demonstrate how to run a cookbook on a TACC cluster and obtain the output using a UI. The cookbook will use a CSV file stored on TACC storage and run a Python script that reads it, calculates the average of the values in the first column, and writes the result to a file.\u003c/p\u003e\n\u003cp\u003eIn this case, the file is small for demonstration purposes. However, you can use the same process to analyze large files.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eHow does it work?\u003c/h3\u003e\u003ca id=\"user-content-how-does-it-work\" class=\"anchor\" aria-label=\"Permalink: How does it work?\" href=\"#how-does-it-work\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ca href=\"app.json\"\u003e\u003ccode\u003eapp.json\u003c/code\u003e\u003c/a\u003e file: contains the definition of the Tapis application, including the application\u0027s name, description, Docker image, input files, and advanced options.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Dockerfile\"\u003e\u003ccode\u003eDockerfile\u003c/code\u003e\u003c/a\u003e: a Docker image is built from the \u003ca href=\"./Dockerfile\"\u003e\u003ccode\u003eDockerfile\u003c/code\u003e\u003c/a\u003e. The Docker image defines the runtime environment for the application and the files that will be used by the application.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"run.sh\"\u003e\u003ccode\u003erun.sh\u003c/code\u003e\u003c/a\u003e: contains all the commands that will be executed on the TACC cluster.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eUpload files to TACC storage\u003c/h3\u003e\u003ca id=\"user-content-upload-files-to-tacc-storage\" class=\"anchor\" aria-label=\"Permalink: Upload files to TACC storage\" href=\"#upload-files-to-tacc-storage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOne of the goals of the template is to demonstrate how to use the TACC storage system to store the input and output files. So, you should upload the CSV file to the TACC storage system.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eGo to the \u003ca href=\"https://portal.tacc.utexas.edu\" rel=\"nofollow\"\u003eTACC Portal\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eClick on the \"Data Files\" tab.\u003c/li\u003e\n\u003cli\u003eClick on the \"Add +\" button.\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/image.png\"\u003e\u003cimg src=\"images/image.png\" alt=\"alt text\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eClick on the \"Upload\" button.\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/image-1.png\"\u003e\u003cimg src=\"images/image-1.png\" alt=\"alt text\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eSelect the file you want to upload and click \u003ccode\u003eUpload Selected\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eModify the Dockerfile\u003c/h3\u003e\u003ca id=\"user-content-modify-the-dockerfile\" class=\"anchor\" aria-label=\"Permalink: Modify the Dockerfile\" href=\"#modify-the-dockerfile\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003eDockerfile\u003c/code\u003e is used to create a Docker image that will be used to run the Python script. In this case, the Docker image is created using the \u003ccode\u003emicroconda\u003c/code\u003e base image, which is a minimal image that contains conda.\u003c/p\u003e\n\u003cp\u003eFor example, the Dockerfile below installs \u003ccode\u003ecurl\u003c/code\u003e using \u003ccode\u003eapt-get\u003c/code\u003e. This is useful if you need to install packages that are not available in conda.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-dockerfile\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eRUN\u003c/span\u003e apt-get update \u0026amp;\u0026amp; apt-get install -y \\\n curl \\\n \u0026amp;\u0026amp; rm -rf /var/lib/apt/lists/*\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDefine conda dependencies using \u003ccode\u003eenvironment.yaml\u003c/code\u003e\n\u003c/h3\u003e\u003ca id=\"user-content-define-conda-dependencies-using-environmentyaml\" class=\"anchor\" aria-label=\"Permalink: Define conda dependencies using environment.yaml\" href=\"#define-conda-dependencies-using-environmentyaml\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003eenvironment.yaml\u003c/code\u003e file is used to define the conda environment that will be used to run the Python script. In this case, the \u003ccode\u003eenvironment.yaml\u003c/code\u003e file contains the dependencies needed to run the Python script.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003ename\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003ebase\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003echannels\u003c/span\u003e:\n - \u003cspan class=\"pl-s\"\u003econda-forge\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003edependencies\u003c/span\u003e:\n - \u003cspan class=\"pl-s\"\u003epython=3.9.1\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003epandas=1.2.1\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eJob run script\u003c/h3\u003e\u003ca id=\"user-content-job-run-script\" class=\"anchor\" aria-label=\"Permalink: Job run script\" href=\"#job-run-script\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003erun.sh\u003c/code\u003e file is used to run the Python script. It activates the conda environment and runs the Python script.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#!\u003c/span\u003e/bin/bash\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eset\u003c/span\u003e -xe\n\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e${_tapisExecSystemInputDir}\u003c/span\u003e\npython /code/main.py billing.csv \u003cspan class=\"pl-smi\"\u003e${_tapisExecSystemOutputDir}\u003c/span\u003e/output.txt\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003erun.sh\u003c/code\u003e has two variables that are used to define the input and output directories. These variables are \u003ccode\u003e_tapisExecSystemInputDir\u003c/code\u003e and \u003ccode\u003e_tapisExecSystemOutputDir\u003c/code\u003e which are automatically set by the Tapis system.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e_tapisExecSystemInputDir: The directory where the input files are staged\u003c/li\u003e\n\u003cli\u003e_tapisExecSystemOutputDir: The directory where the application writes the output files\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCreate your cookbook\u003c/h2\u003e\u003ca id=\"user-content-create-your-cookbook\" class=\"anchor\" aria-label=\"Permalink: Create your cookbook\" href=\"#create-your-cookbook\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can use this repository as a template to create your cookbook. Follow the steps below to create your cookbook.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCreate a new repository\u003c/h3\u003e\u003ca id=\"user-content-create-a-new-repository\" class=\"anchor\" aria-label=\"Permalink: Create a new repository\" href=\"#create-a-new-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eClick on the \"Use this template\" button to create a new repository\u003c/li\u003e\n\u003cli\u003eFill in the form with the information for your new repository\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eBuild the Docker image\u003c/h3\u003e\u003ca id=\"user-content-build-the-docker-image\" class=\"anchor\" aria-label=\"Permalink: Build the Docker image\" href=\"#build-the-docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eClone the repository\u003c/li\u003e\n\u003cli\u003eBuild the Docker image using the command below\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker build -t cookbook-python \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003ePush the Docker image to a container registry\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker tag cookbook-python \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eyour-registry\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/cookbook-python\ndocker push \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eyour-registry\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/cookbook-python\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eModify the \u003ccode\u003eapp.json\u003c/code\u003e file\u003c/h3\u003e\u003ca id=\"user-content-modify-the-appjson-file\" class=\"anchor\" aria-label=\"Permalink: Modify the app.json file\" href=\"#modify-the-appjson-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eEach app has a unique \u003ccode\u003eid\u003c/code\u003e and \u003ccode\u003edescription\u003c/code\u003e. So, you should change these fields to match your app\u0027s name and description.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDownload the \u003ccode\u003eapp.json\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eChange the values \u003ccode\u003eid\u003c/code\u003e and \u003ccode\u003edescription\u003c/code\u003e fields with the name and description as you wish.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCreate a New Application on the Cookbook UI\u003c/h3\u003e\u003ca id=\"user-content-create-a-new-application-on-the-cookbook-ui\" class=\"anchor\" aria-label=\"Permalink: Create a New Application on the Cookbook UI\" href=\"#create-a-new-application-on-the-cookbook-ui\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eGo to \u003ca href=\"https://in-for-disaster-analytics.github.io/cookbooks-ui/#/apps\" rel=\"nofollow\"\u003eCookbook UI\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eClick on the \"Create Application\" button\u003c/li\u003e\n\u003cli\u003eFill in the form with the information from your \u003ccode\u003eapp.json\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eClick \"Create Application\"\u003c/li\u003e\n\u003cli\u003eA new application will be created, and you will be redirected to the application\u0027s page\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRun your Cookbook\u003c/h3\u003e\u003ca id=\"user-content-run-your-cookbook\" class=\"anchor\" aria-label=\"Permalink: Run your Cookbook\" href=\"#run-your-cookbook\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eGo to the application\u0027s page on the Cookbook UI, if you are not already there\u003c/li\u003e\n\u003cli\u003eClick on the \"Run\" button on the right side of the page. This will open the Portal UI\u003c/li\u003e\n\u003cli\u003eClick on the \"Select\" button to choose the input file\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/image-2.png\"\u003e\u003cimg src=\"images/image-2.png\" alt=\"alt text\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eClick \"Run\"\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCheck the output\u003c/h3\u003e\u003ca id=\"user-content-check-the-output\" class=\"anchor\" aria-label=\"Permalink: Check the output\" href=\"#check-the-output\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eAfter the job finishes, you can check the output by clicking on the \"Output location\" link on the job\u0027s page\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/job-finished.png\"\u003e\u003cimg src=\"images/job-finished.png\" alt=\"Show a job finished \" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eYou will be redirected to the output location, where you can see the output files generated by the job\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/image-4.png\"\u003e\u003cimg src=\"images/image-4.png\" alt=\"alt text\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eClick on a file to see its content. In this case, the file is named \u003ccode\u003eoutput.txt\u003c/code\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/image-3.png\"\u003e\u003cimg src=\"images/image-3.png\" alt=\"alt text\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eNext templates\u003c/h2\u003e\u003ca id=\"user-content-next-templates\" class=\"anchor\" aria-label=\"Permalink: Next templates\" href=\"#next-templates\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/In-For-Disaster-Analytics/Cookbook-Docker-Template\"\u003eRunning a command\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/In-For-Disaster-Analytics/Cookbook-Conda-Template\"\u003eRunning a Python script using conda\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/In-For-Disaster-Analytics/Cookbook-Jupyter-Template\"\u003eRunning a Jupyter Notebook\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAuthors\u003c/h2\u003e\u003ca id=\"user-content-authors\" class=\"anchor\" aria-label=\"Permalink: Authors\" href=\"#authors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eWilliam Mobley - \u003ca href=\"mailto:wmobley@tacc.utexas.edu\"\u003ewmobley@tacc.utexas.edu\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eMaximiliano Osorio - \u003ca href=\"mailto:maxiosorio@gmail.com\"\u003emaxiosorio@gmail.com\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 9,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1584437236.0
+ "updated_at": 1718223396.0
},
{
"data_format": 2,
- "description": "Use ImageMagick\u00ae to create, edit, compose, or convert digital images.",
+ "description": "Singularity recipe for keras",
"filenames": [
- "7.1.0-61/Singularity",
- "7.0.10-48/Singularity",
- "7.1.0-2/Singularity",
- "7.1.1-15/Singularity",
- "6.9.11-60/Singularity",
- "7.1.1-39/Singularity"
+ "Singularity1.2",
+ "Singularity1.0",
+ "Singularity1.1"
],
- "full_name": "pscedu/singularity-imagemagick",
- "latest_release": "v7.1.1-39",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-imagemagick/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-imagemagick/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-imagemagick/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-imagemagick/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5528404bef0c0f51ff4a1ccdf773e7a55f5ef21a4f7d406e5cabb7372308c736/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d696d6167656d616769636b\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5528404bef0c0f51ff4a1ccdf773e7a55f5ef21a4f7d406e5cabb7372308c736/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d696d6167656d616769636b\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-imagemagick\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/3ecad539fb45c06305ec52e667d3ef8ca3eee70fe238910c7dcb23762cb0a5c1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d696d6167656d616769636b\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3ecad539fb45c06305ec52e667d3ef8ca3eee70fe238910c7dcb23762cb0a5c1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d696d6167656d616769636b\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-imagemagick\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/1f17716ff11baefd5fc71f673ef822f24f490b32808190a8f18d27991459a89a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d696d6167656d616769636b\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1f17716ff11baefd5fc71f673ef822f24f490b32808190a8f18d27991459a89a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d696d6167656d616769636b\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-imagemagick\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/3ffdcfa0d7b9b3f63e1a8d0e85f1deef8abe74f43040c727749fadc5ea1b9558/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d696d6167656d616769636b\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3ffdcfa0d7b9b3f63e1a8d0e85f1deef8abe74f43040c727749fadc5ea1b9558/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d696d6167656d616769636b\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-imagemagick\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eImageMagick\u003c/h1\u003e\u003ca id=\"user-content-imagemagick\" class=\"anchor\" aria-label=\"Permalink: ImageMagick\" href=\"#imagemagick\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/e2097f450d2fe8919131656de2541415e0cb72d469c16b0211e5c5fbb0e129b6/68747470733a2f2f65787465726e616c2d636f6e74656e742e6475636b6475636b676f2e636f6d2f69752f3f753d6874747025334125324625324679656e7061692e696469732e636f6d2e747725324677702d636f6e74656e7425324675706c6f616473253246323031322532463131253246696d6167656d616769636b5f77697a6172645f7468756d622e6a706726663d31266e6f66623d31\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e2097f450d2fe8919131656de2541415e0cb72d469c16b0211e5c5fbb0e129b6/68747470733a2f2f65787465726e616c2d636f6e74656e742e6475636b6475636b676f2e636f6d2f69752f3f753d6874747025334125324625324679656e7061692e696469732e636f6d2e747725324677702d636f6e74656e7425324675706c6f616473253246323031322532463131253246696d6167656d616769636b5f77697a6172645f7468756d622e6a706726663d31266e6f66623d31\" alt=\"Logo\" data-canonical-src=\"https://external-content.duckduckgo.com/iu/?u=http%3A%2F%2Fyenpai.idis.com.tw%2Fwp-content%2Fuploads%2F2012%2F11%2Fimagemagick_wizard_thumb.jpg\u0026amp;f=1\u0026amp;nofb=1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://imagemagick.org/index.php\" rel=\"nofollow\"\u003eImageMagick\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eUse ImageMagick\u00ae to create, edit, compose, or convert bitmap images. It can read and write images in a variety of formats (over 200) including PNG, JPEG, GIF, HEIC, TIFF, DPX, EXR, WebP, Postscript, PDF, and SVG. Use ImageMagick to resize, flip, mirror, rotate, distort, shear and transform images, adjust image colors, apply various special effects, or draw text, lines, polygons, ellipses and B\u00e9zier curves.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2023 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "ResearchIT/singularity-keras",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingulairty Recipe for keras\u003c/h1\u003e\u003ca id=\"user-content-singulairty-recipe-for-keras\" class=\"anchor\" aria-label=\"Permalink: Singulairty Recipe for keras\" href=\"#singulairty-recipe-for-keras\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repo contains the recipe for a basic keras install with gpu support.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eVersions:\u003c/h2\u003e\u003ca id=\"user-content-versions\" class=\"anchor\" aria-label=\"Permalink: Versions:\" href=\"#versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e1.0 - Initial effort\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
- "topics": [
- "singularity",
- "utilities",
- "image-processing"
- ],
- "updated_at": 1729796703.0
+ "subscribers_count": 7,
+ "topics": [],
+ "updated_at": 1531950701.0
},
{
"data_format": 2,
- "description": null,
+ "description": "A GPU enabled Singularity image for the BarraCUDA short read aligner",
"filenames": [
- "anaconda3/Singularity.5.3.0",
- "anaconda3/Singularity",
- "rstudio/Singularity.3.5.1",
- "rstudio/Singularity.3.4.4",
- "rstudio/Singularity",
- "gephi/Singularity.0.9.1",
- "gephi/Singularity.0.9.2",
- "jupyter/Singularity.4.4.0",
- "jupyter/Singularity",
- "anaconda2/Singularity.5.3.0",
- "anaconda2/Singularity"
+ "Singularity"
],
- "full_name": "uncch-rdmc/singularity-dev-images",
+ "full_name": "KevinSayers/BarraCUDA_Singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-dev-images\u003c/h1\u003e\u003ca id=\"user-content-singularity-dev-images\" class=\"anchor\" aria-label=\"Permalink: singularity-dev-images\" href=\"#singularity-dev-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eBarraCUDA_Singularity\u003c/h1\u003e\u003ca id=\"user-content-barracuda_singularity\" class=\"anchor\" aria-label=\"Permalink: BarraCUDA_Singularity\" href=\"#barracuda_singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA GPU enabled Singularity image for the BarraCUDA short read aligner\u003c/p\u003e\n\u003cp\u003eNote: The nvidia/cuda Docker container that is used for bootstrapping must be a devel version. The others lack the nvcc compiler.\u003c/p\u003e\n\u003cp\u003eBarraCUDA paper: \u003ca href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278344/\" rel=\"nofollow\"\u003ehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278344/\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1556725305.0
+ "updated_at": 1501794254.0
},
{
"data_format": 2,
- "description": "xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed limit.",
+ "description": null,
"filenames": [
- "0.8.0/Singularity",
- "0.8.1/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-xxhash",
- "latest_release": "v0.8.1",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-xxhash/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-xxhash/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/38e6751944f979b39f22301ecf8a0769e81dc664fd9356a0b3b91ba35f7601a4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d787868617368\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/38e6751944f979b39f22301ecf8a0769e81dc664fd9356a0b3b91ba35f7601a4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d787868617368\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-xxhash\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/7b513d4b9426f73a45bd6cef405c18ba52dcbce34d97cf4359f5ed52b501ad7b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d787868617368\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7b513d4b9426f73a45bd6cef405c18ba52dcbce34d97cf4359f5ed52b501ad7b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d787868617368\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-xxhash\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/e10a48f4a1caa69da93117716e45f60bb3ed92a40e52c3e9d0398bbed6539585/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d787868617368\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e10a48f4a1caa69da93117716e45f60bb3ed92a40e52c3e9d0398bbed6539585/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d787868617368\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-xxhash\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/eb2962cd520a014471cc5af4a22bde6bc6af147099c98ef8651a90eac25190d7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d787868617368\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/eb2962cd520a014471cc5af4a22bde6bc6af147099c98ef8651a90eac25190d7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d787868617368\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-xxhash\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-xxhash\u003c/h1\u003e\u003ca id=\"user-content-singularity-xxhash\" class=\"anchor\" aria-label=\"Permalink: singularity-xxhash\" href=\"#singularity-xxhash\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://xxhash.com/\" rel=\"nofollow\"\u003exxhash\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003exxh128sum\u003c/code\u003e, \u003ccode\u003exxh32sum\u003c/code\u003e, \u003ccode\u003exxh64sum\u003c/code\u003e and \u003ccode\u003exxhsum\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/xxhash/0.8.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/xxhash\u003c/code\u003e as \u003ccode\u003e0.8.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2024 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "famishedrover/pyhipop-planner",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eHiPOP -- Hierarchical Partial-Order Planning\u003c/h1\u003e\u003ca id=\"user-content-hipop----hierarchical-partial-order-planning\" class=\"anchor\" aria-label=\"Permalink: HiPOP -- Hierarchical Partial-Order Planning\" href=\"#hipop----hierarchical-partial-order-planning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAuthors:\u003c/p\u003e\n\u003cp\u003eCharles Lesire, Alexandre Albore,\u003c/p\u003e\n\u003cp\u003eONERA/DTIS, Univ. of Toulouse, France\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1633063373.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1700254560.0
},
{
"data_format": 2,
- "description": "Singularity Container Handle",
+ "description": "Sngularity recipe for jupyter lab on R studio",
"filenames": [
- "Singularity.1_4",
- "Singularity.old",
- "Singularity.1_11"
+ "Singularity"
],
- "full_name": "jrenslo/singularity",
+ "full_name": "ISU-HPC/jupyter",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity\u003c/h1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity Container Handle\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ejupyter\u003c/h1\u003e\u003ca id=\"user-content-jupyter\" class=\"anchor\" aria-label=\"Permalink: jupyter\" href=\"#jupyter\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSngularity recipe for jupyter lab on R studio\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1542304210.0
+ "updated_at": 1527790762.0
},
{
"data_format": 2,
- "description": "Pipeline for Microbial Analysis (Quality control, Assembly, Annotation, Resistome, Virulome, Plasmid, Serotype, Prophages, Capsule, O-Locus, Closest genome and Genome Browser",
+ "description": null,
"filenames": [
- "modules/phigaro/Singularity"
+ "Singularity"
],
- "full_name": "lcerdeira/Pipa",
+ "full_name": "callaghanmt-containers/r_rgdal_tmap_sf",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"/assets/PipaLogo.jpeg\"\u003e\u003cimg src=\"/assets/PipaLogo.jpeg\" alt=\"PIPA_Logo\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePIPA\u003c/h1\u003e\u003ca id=\"user-content-pipa\" class=\"anchor\" aria-label=\"Permalink: PIPA\" href=\"#pipa\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a7fe5fb2b697cc730b88bb0a32f4f63a028ab93b2bd841f2ff490ed7c3911c1d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c616e6775616765732f636f756e742f6c63657264656972612f70697061\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a7fe5fb2b697cc730b88bb0a32f4f63a028ab93b2bd841f2ff490ed7c3911c1d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c616e6775616765732f636f756e742f6c63657264656972612f70697061\" alt=\"Code Count\" data-canonical-src=\"https://img.shields.io/github/languages/count/lcerdeira/pipa\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/08b864adbd2221c4390737cee649add68be8487d237da9e0bd1f122911ccc351/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c616e6775616765732f746f702f6c63657264656972612f70697061\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/08b864adbd2221c4390737cee649add68be8487d237da9e0bd1f122911ccc351/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c616e6775616765732f746f702f6c63657264656972612f70697061\" alt=\"Main Code Base\" data-canonical-src=\"https://img.shields.io/github/languages/top/lcerdeira/pipa\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e)\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/c5776335a454c60a3b541aea37c439a6c79384844ae65c20ef44294a0bd8eba4/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f76657273696f6e2d312e302d726564\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c5776335a454c60a3b541aea37c439a6c79384844ae65c20ef44294a0bd8eba4/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f76657273696f6e2d312e302d726564\" alt=\"Version\" data-canonical-src=\"https://img.shields.io/badge/version-1.0-red\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/91d49e5df623c07567903b3f59b0a194b4c5b128b17a3b7208eae32ecb336903/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d47504c76332d626c7565\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/91d49e5df623c07567903b3f59b0a194b4c5b128b17a3b7208eae32ecb336903/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d47504c76332d626c7565\" alt=\"License\" data-canonical-src=\"https://img.shields.io/badge/license-GPLv3-blue\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a7330a27eb4f3b4a817c818e46a1b38712bb6d8f0e6fa0e378cc5b486dc6f2fe/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6173742d636f6d6d69742f6c63657264656972612f70697061\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a7330a27eb4f3b4a817c818e46a1b38712bb6d8f0e6fa0e378cc5b486dc6f2fe/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6173742d636f6d6d69742f6c63657264656972612f70697061\" alt=\"Last Commit\" data-canonical-src=\"https://img.shields.io/github/last-commit/lcerdeira/pipa\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e)\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/e8a24a7914809ae13c3bffdc4637f367d0f74caf4e47d1c4f4739215a604b95f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732d7261772f6c63657264656972612f70697061\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e8a24a7914809ae13c3bffdc4637f367d0f74caf4e47d1c4f4739215a604b95f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732d7261772f6c63657264656972612f70697061\" alt=\"Open Issues\" data-canonical-src=\"https://img.shields.io/github/issues-raw/lcerdeira/pipa\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e)\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/56c3438d581ac116cb5340ac5ca4a36699988658dc616e2483847715b88e90bc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f7265706f2d73697a652f6c63657264656972612f70697061\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/56c3438d581ac116cb5340ac5ca4a36699988658dc616e2483847715b88e90bc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f7265706f2d73697a652f6c63657264656972612f70697061\" alt=\"Repo Size\" data-canonical-src=\"https://img.shields.io/github/repo-size/lcerdeira/pipa\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e)\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTable of Contents\u003c/h2\u003e\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" aria-label=\"Permalink: Table of Contents\" href=\"#table-of-contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#Description\"\u003eDescription\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Installation\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Contact\"\u003eContact\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDescription\u003c/h2\u003e\u003ca id=\"user-content-description\" class=\"anchor\" aria-label=\"Permalink: Description\" href=\"#description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePipeline for Microbial Genomic Analysis\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation\u003c/h2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRequirements\u003c/h3\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eNeed to be root of system to be installed.\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003e./setup.sh\u003c/code\u003e to install all necessary libraries.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContact\u003c/h2\u003e\u003ca id=\"user-content-contact\" class=\"anchor\" aria-label=\"Permalink: Contact\" href=\"#contact\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDr Louise Cerdeira - \u003ca href=\"mailto:Louise.Cerdeira@gmail.com\"\u003eLouise.Cerdeira@gmail.com\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003er_rgdal_tmap_sf\u003c/h1\u003e\u003ca id=\"user-content-r_rgdal_tmap_sf\" class=\"anchor\" aria-label=\"Permalink: r_rgdal_tmap_sf\" href=\"#r_rgdal_tmap_sf\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1722552774.0
+ "updated_at": 1556721577.0
},
{
"data_format": 2,
- "description": "Singularity container for dropSeqPipe",
+ "description": "centos7 singularity container for HPC",
"filenames": [
- "Singularity.v04",
"Singularity"
],
- "full_name": "seb-mueller/singularity_dropSeqPipe",
+ "full_name": "DoaneAS/dijon",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1569595505.0
+ "updated_at": 1493118640.0
},
{
"data_format": 2,
- "description": "get rstudio on PSU ACI",
+ "description": "They keep messing up their docker repository",
"filenames": [
- "Singularity.ml",
"Singularity"
],
- "full_name": "d-bohn/rstudio_aci",
+ "full_name": "ISU-HPC/Roary",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003erstudio_aci\u003c/h1\u003e\u003ca id=\"user-content-rstudio_aci\" class=\"anchor\" aria-label=\"Permalink: rstudio_aci\" href=\"#rstudio_aci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCode and workflow for building \u003ca href=\"https://www.rocker-project.org/\" rel=\"nofollow\"\u003erocker/verse\u003c/a\u003e\nin Docker Hub and modifying it with Singularity Hub for use with PSU\nACI HPC clusters.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQuick Start\u003c/h2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-label=\"Permalink: Quick Start\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003essh\u003c/code\u003e into the PSU ACI HPC with X11 flags.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003essh USERID@aci-b.aci.ics.psu.edu -X -Y\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eStart an interactive session using \u003ccode\u003eqsub\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eqsub -A open -I -X -l walltime=24:00:00 -l nodes=2:ppn=20 -l pmem=10gb\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFrom ACI, start \u003ccode\u003escreen\u003c/code\u003e and then execute the following code to\ncreate an \u003ccode\u003eRStudio\u003c/code\u003e image running at address \u003ccode\u003e127.0.0.1:8787\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003escreen\n\nsingularity pull -n rstudio_aci.simg shub://d-bohn/rstudio_aci\n\nsingularity exec rstudio_aci.simg rserver --www-address=127.0.0.1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNext, press \u003ccode\u003eCTRL+A+D\u003c/code\u003e to detach the screen while allowing the process to continue running in the background.\u003c/p\u003e\n\u003cp\u003eFinally, start your preferred browser and navigate to \u003ccode\u003e127.0.0.1\u003c/code\u003e. For\nexample, firefox:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://jpetucci-firefox_icsaci\n\nsingularity exec jpetucci-firefox_icsaci-master-latest.simg /opt/firefox/./firefox\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eNotes\u003c/h2\u003e\u003ca id=\"user-content-notes\" class=\"anchor\" aria-label=\"Permalink: Notes\" href=\"#notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e1). A \u003ccode\u003eshiny\u003c/code\u003e server should also start when executing this image,\nthe server should be running on port \u003ccode\u003e3838\u003c/code\u003e\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eRoary\u003c/h1\u003e\u003ca id=\"user-content-roary\" class=\"anchor\" aria-label=\"Permalink: Roary\" href=\"#roary\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThey keep messing up their docker repository\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1562649674.0
+ "updated_at": 1540592377.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "containers/Singularity.omnia.rocm"
+ "Singularity"
],
- "full_name": "PhilipVinc/uvtest2",
+ "full_name": "truatpasteurdotfr/singularity-d12-scipion-runtime-cuda123",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eOmnia\u003c/h1\u003e\u003ca id=\"user-content-omnia\" class=\"anchor\" aria-label=\"Permalink: Omnia\" href=\"#omnia\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is a single repository containing all working codes of the group.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStructure\u003c/h2\u003e\u003ca id=\"user-content-structure\" class=\"anchor\" aria-label=\"Permalink: Structure\" href=\"#structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e/packages # contains packages used by multiple users\n # This contains both internal versions of public packages\n # (netket) and private packages.\n```\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ebuilding a debian12 based singularity/apptainer container for scipion3 (using cuda 12.3 which is the oldest cuda version for debian12 as of 2024/07/08)\u003c/h1\u003e\u003ca id=\"user-content-building-a-debian12-based-singularityapptainer-container-for-scipion3-using-cuda-123-which-is-the-oldest-cuda-version-for-debian12-as-of-20240708\" class=\"anchor\" aria-label=\"Permalink: building a debian12 based singularity/apptainer container for scipion3 (using cuda 12.3 which is the oldest cuda version for debian12 as of 2024/07/08)\" href=\"#building-a-debian12-based-singularityapptainer-container-for-scipion3-using-cuda-123-which-is-the-oldest-cuda-version-for-debian12-as-of-20240708\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eWhy ?\u003c/h2\u003e\u003ca id=\"user-content-why-\" class=\"anchor\" aria-label=\"Permalink: Why ?\" href=\"#why-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eready to use runtime environment for scipion3\u003c/li\u003e\n\u003cli\u003ejust add miniconda and scipion3 (use a writable bind mount for /opt)\u003c/li\u003e\n\u003cli\u003eallow easy snapshoting/replacement for /opt and upgrade/downgrade\u003c/li\u003e\n\u003cli\u003eshare scipion with your co-worker\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow to:\u003c/h2\u003e\u003ca id=\"user-content-how-to\" class=\"anchor\" aria-label=\"Permalink: How to:\" href=\"#how-to\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003ebuild the container\u003c/li\u003e\n\u003cli\u003euse the container with a mounted /opt to\n\u003cul\u003e\n\u003cli\u003einstall miniconda and scipion-installer\u003c/li\u003e\n\u003cli\u003einstall any plugin/binary\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003euse mksquashfs \"freeze\" your scipion and share it with the debian runtime\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ehelper scripts (read and modify to your needs especially \u003ccode\u003e_S\u003c/code\u003e and \u003ccode\u003e_B\u003c/code\u003e)\u003c/h2\u003e\u003ca id=\"user-content-helper-scripts-read-and-modify-to-your-needs-especially-_s-and-_b\" class=\"anchor\" aria-label=\"Permalink: helper scripts (read and modify to your needs especially _S and _B)\" href=\"#helper-scripts-read-and-modify-to-your-needs-especially-_s-and-_b\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003esetup.sh\u003c/code\u003e build the container and install scipion3 conda environment\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003escipion3.sh\u003c/code\u003e run scipion3 from the container\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003euse the artefact produced on github instead of building your own:\u003c/h2\u003e\u003ca id=\"user-content-use-the-artefact-produced-on-github-instead-of-building-your-own\" class=\"anchor\" aria-label=\"Permalink: use the artefact produced on github instead of building your own:\" href=\"#use-the-artefact-produced-on-github-instead-of-building-your-own\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003eapptainer build ghrc-io-singularity-d12-scipion-runtime-cuda123.sif oras://ghcr.io/truatpasteurdotfr/singularity-d12-scipion-runtime-cuda123:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eReferences\u003c/h2\u003e\u003ca id=\"user-content-references\" class=\"anchor\" aria-label=\"Permalink: References\" href=\"#references\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://scipion.i2pc.es/\" rel=\"nofollow\"\u003ehttps://scipion.i2pc.es/\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCaveat\u003c/h2\u003e\u003ca id=\"user-content-caveat\" class=\"anchor\" aria-label=\"Permalink: Caveat\" href=\"#caveat\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1732149899.0
+ "updated_at": 1720732063.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "containers/Singularity.omnia.rocm"
+ "Singularity"
],
- "full_name": "PhilipVinc/uvtest3",
+ "full_name": "SciNetHPC/singularity-CRISPRCasFinder",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eOmnia\u003c/h1\u003e\u003ca id=\"user-content-omnia\" class=\"anchor\" aria-label=\"Permalink: Omnia\" href=\"#omnia\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is a single repository containing all working codes of the group.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStructure\u003c/h2\u003e\u003ca id=\"user-content-structure\" class=\"anchor\" aria-label=\"Permalink: Structure\" href=\"#structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e/packages # contains packages used by multiple users\n # This contains both internal versions of public packages\n # (netket) and private packages.\n```\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1732150434.0
+ "updated_at": 1542826836.0
},
{
"data_format": 2,
- "description": "A singularity image for the MGEfinder software",
+ "description": "Pandoc is a free and open-source document converter, widely used as a writing tool and as a basis for publishing workflows.",
"filenames": [
- "Singularity"
+ "3.1.1/Singularity",
+ "2.18/Singularity",
+ "2.2.1/Singularity"
],
- "full_name": "bhattlab/MGEfinder-singularity",
- "latest_release": null,
+ "full_name": "pscedu/singularity-pandoc",
+ "latest_release": "v2.18",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-pandoc/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-pandoc/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-pandoc/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-pandoc/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/4346713e9da7ba810ef27b2a44f8b33e47b02c264afc5c5e106fb984a26ad669/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d70616e646f63\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4346713e9da7ba810ef27b2a44f8b33e47b02c264afc5c5e106fb984a26ad669/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d70616e646f63\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-pandoc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/03f7d32b0cccc34d047656666fe6bfaff4953ac365e41e0c4349d20c2c1bcb1a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d70616e646f63\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/03f7d32b0cccc34d047656666fe6bfaff4953ac365e41e0c4349d20c2c1bcb1a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d70616e646f63\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-pandoc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/ab81f0905c8940279814f23c661f2f0dcbed9e252ec51aef7e19e226a841b9aa/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d70616e646f63\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ab81f0905c8940279814f23c661f2f0dcbed9e252ec51aef7e19e226a841b9aa/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d70616e646f63\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-pandoc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/4dca258df814adeb29b104b0a0b9d77357a405889c2b22690fbd8b7ecea496f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d70616e646f63\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4dca258df814adeb29b104b0a0b9d77357a405889c2b22690fbd8b7ecea496f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d70616e646f63\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-pandoc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-pandoc\u003c/h1\u003e\u003ca id=\"user-content-singularity-pandoc\" class=\"anchor\" aria-label=\"Permalink: singularity-pandoc\" href=\"#singularity-pandoc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://pandoc.org/\" rel=\"nofollow\"\u003epandoc\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003epandoc\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/pandoc/2.2.1\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/pandoc\u003c/code\u003e as \u003ccode\u003e2.2.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 6,
- "topics": [],
- "updated_at": 1586559532.0
+ "subscribers_count": 3,
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1715636760.0
},
{
"data_format": 2,
- "description": "Nemo Utility for Testing SETTE",
+ "description": "Singularity container with Alpine OS, and miniconda3 installed in /opt/miniconda. ",
"filenames": [
- "Singularity.nemo",
- "base_def/Singularity.nemo_baseOS"
+ "Singularity"
],
- "full_name": "jdha/NUTS",
- "latest_release": "0.0.1",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eNUTS\u003c/h1\u003e\u003ca id=\"user-content-nuts\" class=\"anchor\" aria-label=\"Permalink: NUTS\" href=\"#nuts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eNemo Utility for Testing SETTE\u003c/p\u003e\n",
+ "full_name": "carissableker/alpine-miniconda-singularity",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAlpine Miniconda Singularity\u003c/h1\u003e\u003ca id=\"user-content-alpine-miniconda-singularity\" class=\"anchor\" aria-label=\"Permalink: Alpine Miniconda Singularity\" href=\"#alpine-miniconda-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity container with Alpine OS, and miniconda3 installed in /opt/miniconda.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild\u003c/h2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-label=\"Permalink: Build\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build --fakeroot miniconda.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSylabs Container Library\u003c/h2\u003e\u003ca id=\"user-content-sylabs-container-library\" class=\"anchor\" aria-label=\"Permalink: Sylabs Container Library\" href=\"#sylabs-container-library\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull library://cbleker/dev/alpine-miniconda-singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInspired by:\u003c/h2\u003e\u003ca id=\"user-content-inspired-by\" class=\"anchor\" aria-label=\"Permalink: Inspired by:\" href=\"#inspired-by\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://hub.docker.com/layers/continuumio/miniconda3/4.8.2-alpine/images/sha256-b9c9f2c7748abdb3291ef2e9b04a8ef3e355f0d7e8030e7a07b8f26c11ed88be?context=explore\" rel=\"nofollow\"\u003econtinuumio/miniconda3:4.8.2-alpine\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Docker-Hub-frolvlad/docker-alpine-miniconda3\"\u003ehttps://github.com/Docker-Hub-frolvlad/docker-alpine-miniconda3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/show0k/alpine-jupyter-docker\"\u003ehttps://github.com/show0k/alpine-jupyter-docker\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/hpcng/singularity/issues/5075\"\u003ehttps://github.com/hpcng/singularity/issues/5075\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1724894895.0
+ "updated_at": 1601374050.0
},
{
"data_format": 2,
- "description": "Tools for monitoring HTCondor and other things",
+ "description": "Detects copy number variants in exomes and gene panels using high throughput DNA sequencing data",
"filenames": [
"Singularity"
],
- "full_name": "WIPACrepo/monitoring-scripts",
- "latest_release": "0.4.0",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003emonitoring-scripts\u003c/h1\u003e\u003ca id=\"user-content-monitoring-scripts\" class=\"anchor\" aria-label=\"Permalink: monitoring-scripts\" href=\"#monitoring-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSome scripts for sending data to ES, or plotting it, or other misc activities.\u003c/p\u003e\n",
+ "full_name": "PhilPalmer/exomedepth",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003enf-core/exomedepth\u003c/h1\u003e\u003ca id=\"user-content-nf-coreexomedepth\" class=\"anchor\" aria-label=\"Permalink: nf-core/exomedepth\" href=\"#nf-coreexomedepth\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eDetects copy number variants in exomes and gene panels using high throughput DNA sequencing data\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nf-core/exomedepth\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/015ae7651ea4b7da42335298fa163b8df51591214941b98882663f4bc8d97b3a/68747470733a2f2f7472617669732d63692e6f72672f6e662d636f72652f65786f6d6564657074682e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nf-core/exomedepth.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/780f0e426d3a9fd5f3f54407686be63867cb8093d09e36c9bcbad58b728a111d/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33302e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.30.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/00ceea296d710222922f0f50135c1c5453f5da6e106d89c3af96072c6dcc6d8a/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/exomedepth\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/36aed7cd499155ccd53712f856d14059fbb3a99b7e042f8624b3ed424e18c3d3/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f65786f6d6564657074682e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/exomedepth.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/3f0c745c9a388bc1b2b56ea29cd21a301b7736d98bcfea6cdb5a2c5ee2129f11/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3f0c745c9a388bc1b2b56ea29cd21a301b7736d98bcfea6cdb5a2c5ee2129f11/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eIntroduction\u003c/h3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDocumentation\u003c/h3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-label=\"Permalink: Documentation\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe nf-core/exomedepth pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/local.md\"\u003eLocal installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eAdding your own system\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1730332969.0
+ "updated_at": 1576776775.0
},
{
"data_format": 2,
- "description": "VisiData is an interactive multitool for tabular data. ",
+ "description": "Container for SLEAP",
"filenames": [
- "2.7.1/Singularity",
- "2.11.1/Singularity",
- "2.8/Singularity",
- "3.0.2/Singularity",
- "2.10.2/Singularity",
- "2.11/Singularity",
- "2.6.1/Singularity",
- "2.4/Singularity",
- "3.1/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-visidata",
- "latest_release": "v3.0.2",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-visidata/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-visidata/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-visidata/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-visidata/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/8ccda96e18c4e06a66abeac2ca4c6742ebe7cb601c19b51b52b4f3681991576b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7669736964617461\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8ccda96e18c4e06a66abeac2ca4c6742ebe7cb601c19b51b52b4f3681991576b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7669736964617461\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-visidata\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/9d1212476e5d75a4cb9a460f9b7b86da67f385469f99ad3ffaa66f99d3ccdaeb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7669736964617461\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9d1212476e5d75a4cb9a460f9b7b86da67f385469f99ad3ffaa66f99d3ccdaeb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7669736964617461\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-visidata\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/521097008ddb94c7331ce0e2b89298737f5dde3737ac8917329163c9e3e0cbab/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7669736964617461\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/521097008ddb94c7331ce0e2b89298737f5dde3737ac8917329163c9e3e0cbab/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7669736964617461\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-visidata\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/b3b5cfe9b1897a6ba2ea5a4092977dc9e63453ef0404dd0b196e8f7a71fe946f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7669736964617461\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b3b5cfe9b1897a6ba2ea5a4092977dc9e63453ef0404dd0b196e8f7a71fe946f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7669736964617461\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-visidata\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-visidata\u003c/h1\u003e\u003ca id=\"user-content-singularity-visidata\" class=\"anchor\" aria-label=\"Permalink: singularity-visidata\" href=\"#singularity-visidata\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://www.visidata.org/\" rel=\"nofollow\"\u003evisidata\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003evd\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/visidata/2.7.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/visidata\u003c/code\u003e as \u003ccode\u003e2.7.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2024 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "maouw/sleap-container",
+ "latest_release": "0.9.2",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esleap-container\u003c/h1\u003e\u003ca id=\"user-content-sleap-container\" class=\"anchor\" aria-label=\"Permalink: sleap-container\" href=\"#sleap-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis a \u003ca href=\"https://apptainer.org/\" rel=\"nofollow\"\u003econtainer\u003c/a\u003e to run \u003ca href=\"https://sleap.ai\" rel=\"nofollow\"\u003eSLEAP\u003c/a\u003e jobs on the University of Washington \u003ca href=\"https://hyak.uw.edu\" rel=\"nofollow\"\u003eHyak\u003c/a\u003e cluster. You can use this container to run SLEAP training and prediction jobs on Hyak in a GPU-accelerated environment.\ns, which provide reproducible environments that can run anywhere and be shared with other researchers.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePrerequisites\u003c/h2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-label=\"Permalink: Prerequisites\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBefore running this container, you\u0027ll need the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eA Linux, macOS, or Windows machine\u003c/li\u003e\n\u003cli\u003eAn SSH client (usually included with Linux and macOS, and available for Windows through the built-in SSH client on Windows 10+, \u003ca href=\"https://learn.microsoft.com/en-us/windows/wsl/install\" rel=\"nofollow\"\u003eWSL2\u003c/a\u003e or \u003ca href=\"https://www.cs.odu.edu/~zeil/cs252/latest/Public/loggingin/cygwin.mmd.html\" rel=\"nofollow\"\u003eCygwin\u003c/a\u003e).\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://hyak.uw.edu\" rel=\"nofollow\"\u003eHyak\u003c/a\u003e Klone access with compute resources\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFollow the instructions below to set up your machine correctly:\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eInstalling SSH\u003c/h3\u003e\u003ca id=\"user-content-installing-ssh\" class=\"anchor\" aria-label=\"Permalink: Installing SSH\" href=\"#installing-ssh\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eLinux\u003c/h4\u003e\u003ca id=\"user-content-linux\" class=\"anchor\" aria-label=\"Permalink: Linux\" href=\"#linux\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you are using Linux, OpenSSH is probably installed already -- if not, you can install it via \u003ccode\u003eapt-get install openssh-client\u003c/code\u003e on Debian/Ubuntu or \u003ccode\u003eyum install openssh-clients\u003c/code\u003e on RHEL/CentOS/Rocky/Fedora. To open a terminal window, search for \"Terminal\" in your desktop environment\u0027s application launcher.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003emacOS\u003c/h4\u003e\u003ca id=\"user-content-macos\" class=\"anchor\" aria-label=\"Permalink: macOS\" href=\"#macos\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you\u0027re on macOS, OpenSSH will already be installed. To open a terminal window, open \u003ccode\u003e/Applications/Utilities/Terminal.app\u003c/code\u003e or search for \"Terminal\" in Launchpad or Spotlight.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eWindows\u003c/h4\u003e\u003ca id=\"user-content-windows\" class=\"anchor\" aria-label=\"Permalink: Windows\" href=\"#windows\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOn Windows 10+, you can \u003ca href=\"https://learn.microsoft.com/en-us/windows/terminal/tutorials/ssh\" rel=\"nofollow\"\u003euse the built-in SSH client\u003c/a\u003e. You may also install a SSH client through \u003ca href=\"https://learn.microsoft.com/en-us/windows/wsl/install\" rel=\"nofollow\"\u003eWSL2\u003c/a\u003e or \u003ca href=\"https://www.cs.odu.edu/~zeil/cs252/latest/Public/loggingin/cygwin.mmd.html\" rel=\"nofollow\"\u003eCygwin\u003c/a\u003e (not recommended, needs additional setup). See the links for instructions on how to install these. You can start a terminal window by searching for \"Terminal\" in the Start menu.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSetting up SSH keys to connect to Hyak compute nodes\u003c/h3\u003e\u003ca id=\"user-content-setting-up-ssh-keys-to-connect-to-hyak-compute-nodes\" class=\"anchor\" aria-label=\"Permalink: Setting up SSH keys to connect to Hyak compute nodes\" href=\"#setting-up-ssh-keys-to-connect-to-hyak-compute-nodes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBefore you are allowed to connect to a compute node where your SLEAP job will be running, you must add your SSH public key to the authorized keys on the login node of the Hyak Klone cluster.\u003c/p\u003e\n\u003cp\u003eIf you don\u0027t, you will receive an error like this when you try to connect to the compute node:\u003c/p\u003e\n\u003cpre lang=\"text\"\u003e\u003ccode\u003ePermission denied (publickey,gssapi-keyex,gssapi-with-mic)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo set this up quickly on Linux, macOS, or Windows (WSL2/Cygwin), open a new terminal window \u003cstrong\u003eon your machine\u003c/strong\u003e and enter the following 2 commands before you try again. Replace \u003ccode\u003eyour-uw-netid\u003c/code\u003e with your UW NetID:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e[ \u003cspan class=\"pl-k\"\u003e!\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e-r\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.ssh/id_rsa ] \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e ssh-keygen -t rsa -b 4096 -N \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e -C \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eyour-uw-netid@uw.edu\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e -f \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.ssh/id_rsa\nssh-copy-id -o StrictHostKeyChecking=no -i \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.ssh/id_rsa your-uw-netid@klone.hyak.uw.edu\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eSee the \u003ca href=\"https://hyak.uw.edu/docs/setup/intracluster-keys\" rel=\"nofollow\"\u003eHyak documentation\u003c/a\u003e for more information.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSet up the Apptainer cache directory on Hyak \u003ccode\u003eklone\u003c/code\u003e\n\u003c/h3\u003e\u003ca id=\"user-content-set-up-the-apptainer-cache-directory-on-hyak-klone\" class=\"anchor\" aria-label=\"Permalink: Set up the Apptainer cache directory on Hyak klone\" href=\"#set-up-the-apptainer-cache-directory-on-hyak-klone\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eApptainer containers can take up several gigabytes of space each. By default, Apptainer will store cached containers in your home directory (\u003ccode\u003e~\u003c/code\u003e), under \u003ccode\u003e~/.cache/apptainer\u003c/code\u003e. However, because home directory space on Hyak is limited to 10 GiB per user, you may want to set up a different cache directory.\u003c/p\u003e\n\u003cp\u003eWe advise setting up a cache directory under the \u003ccode\u003e/tmp\u003c/code\u003e directory or in the \u003ca href=\"https://hyak.uw.edu/docs/storage/gscratch/\" rel=\"nofollow\"\u003escrubbed\u003c/a\u003e directory, under \u003ccode\u003e/gscratch/scrubbed/your-uw-netid\u003c/code\u003e. To set this up, first connect to \u003ccode\u003eklone.hyak.uw.edu\u003c/code\u003e via SSH:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003essh your-uw-netid@klone.hyak.uw.edu \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Replace your-uw-netid with your UW NetID\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eOnce you\u0027re logged in, create a directory for the cache and set the \u003ccode\u003eAPPTAINER_CACHEDIR\u003c/code\u003e environment variable to point to it:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emkdir -p \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/gscratch/scrubbed/\u003cspan class=\"pl-smi\"\u003e$USER\u003c/span\u003e/apptainer-cache\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e APPTAINER_CACHEDIR=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/gscratch/scrubbed/\u003cspan class=\"pl-smi\"\u003e$USER\u003c/span\u003e/apptainer-cache\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFinally, add the following line to your \u003ccode\u003e~/.bashrc\u003c/code\u003e file (or \u003ccode\u003e~/.zshrc\u003c/code\u003e if you use ZSH) to retain this setting across multiple logins:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eexport APPTAINER_CACHEDIR=\u003cspan class=\"pl-cce\"\u003e\\\"\u003c/span\u003e/gscratch/scrubbed/\u003cspan class=\"pl-smi\"\u003e$USER\u003c/span\u003e/apptainer-cache\u003cspan class=\"pl-cce\"\u003e\\\"\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis guide assumes that you are running SLEAP on your own machine, with an open SLEAP project that you are ready to start training on. If you need help creating a SLEAP project, consult the \u003ca href=\"https://sleap.ai/tutorials/tutorial.html\" rel=\"nofollow\"\u003eSLEAP documentation\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eTo start training your model on the cluster, you must first create a \u003cem\u003etraining package\u003c/em\u003e:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eA self-contained \u003cstrong\u003etraining job package\u003c/strong\u003e contains a .slp file with labeled data and images which will be used for training, as well as .json training configuration file(s). \u003ca href=\"https://sleap.ai/notebooks/Training_and_inference_using_Google_Drive.html\" rel=\"nofollow\"\u003e*\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eExporting a training package\u003c/h3\u003e\u003ca id=\"user-content-exporting-a-training-package\" class=\"anchor\" aria-label=\"Permalink: Exporting a training package\" href=\"#exporting-a-training-package\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can create a training job package in the \u003ccode\u003esleap-label\u003c/code\u003e GUI by following the \u003ccode\u003eRun Training...\u003c/code\u003e option under the \u003ccode\u003ePredict\u003c/code\u003e menu:\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"./docs/screenshots/01-main_dropdown_predict_run_training.png\"\u003e\u003cimg src=\"./docs/screenshots/01-main_dropdown_predict_run_training.png\" alt=\"SLEAP GUI: Main Window Run Training\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSet the parameters for your training job (refer to \u003ca href=\"https://sleap.ai/tutorials/initial-training.html\" rel=\"nofollow\"\u003eSLEAP documentation\u003c/a\u003e if you\u0027re not sure), and click \u003ccode\u003eExport training job package\u003c/code\u003e once you\u0027re done:\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"./docs/screenshots/02-run_training_dialog.png\"\u003e\u003cimg src=\"./docs/screenshots/02-run_training_dialog.png\" alt=\"SLEAP GUI: Run Training Dialog\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eNext, you should see a dialog that says, \u003ccode\u003eCreated training job package.\u003c/code\u003e Click \u003ccode\u003eShow Details...\u003c/code\u003e:\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"./docs/screenshots/03-created_training_job_package.png\"\u003e\u003cimg src=\"./docs/screenshots/03-created_training_job_package.png\" alt=\"SLEAP GUI: Created training job package\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe full file path to the training package will be displayed (e.g., \u003ccode\u003e/home/me/sleap/my_training_job.zip\u003c/code\u003e). Select and copy this path:\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"./docs/screenshots/04-created_training_job_package_details.png\"\u003e\u003cimg src=\"./docs/screenshots/04-created_training_job_package_details.png\" alt=\"SLEAP GUI: Run Training Dialog\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eUploading a training package to the cluster\u003c/h3\u003e\u003ca id=\"user-content-uploading-a-training-package-to-the-cluster\" class=\"anchor\" aria-label=\"Permalink: Uploading a training package to the cluster\" href=\"#uploading-a-training-package-to-the-cluster\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eNow you must use the terminal on your computer to upload the training package to the Hyak cluster. You can find instructions on how to set up your terminal to access Hyak \u003ca href=\"https://uw-psych.github.io/compute_docs/hyak/start/connect-ssh.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eOpen a terminal window \u003cstrong\u003eon your computer\u003c/strong\u003e and enter the following command to copy the training package to your home directory (\u003ccode\u003e~\u003c/code\u003e) on the cluster:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003escp /home/me/sleap/my_training_job.zip your-uw-netid@klone.hyak.uw.edu: \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Replace your-uw-netid with your UW NetID\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cem\u003eNOTE: You may need to log in with your UW NetID and two-factor authentication.\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunnning the training package on the cluster\u003c/h3\u003e\u003ca id=\"user-content-runnning-the-training-package-on-the-cluster\" class=\"anchor\" aria-label=\"Permalink: Runnning the training package on the cluster\" href=\"#runnning-the-training-package-on-the-cluster\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOnce the file has been copied, log in to the cluster via SSH:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003essh your-uw-netid@klone.hyak.uw.edu \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Replace your-uw-netid with your UW NetID\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eExtracting the training package\u003c/h4\u003e\u003ca id=\"user-content-extracting-the-training-package\" class=\"anchor\" aria-label=\"Permalink: Extracting the training package\" href=\"#extracting-the-training-package\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe training package should be located in your home directory on \u003ccode\u003eklone\u003c/code\u003e. You can check by running \u003ccode\u003els\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003els \u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e.zip \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Should display all ZIP files in directory, including `my_training_job.zip`\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUnzip the package file to a new directory. Let\u0027s call it \u003ccode\u003etraining_job\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eunzip my_training_job.zip -d training_job\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eAllocating a node on the cluster\u003c/h4\u003e\u003ca id=\"user-content-allocating-a-node-on-the-cluster\" class=\"anchor\" aria-label=\"Permalink: Allocating a node on the cluster\" href=\"#allocating-a-node-on-the-cluster\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe are almost ready to launch the container. First, though, we need to allocate a job on the cluster. We will use the \u003ccode\u003esalloc\u003c/code\u003e command to do this.\u003c/p\u003e\n\u003cp\u003eThe following command will allocate a job on one node with 4 GPUs, 64 GB of memory, and 8 CPUs for 24 hours on the \u003ccode\u003egpu-a40\u003c/code\u003e partition available to the \u003ccode\u003eescience\u003c/code\u003e account. You can adjust these parameters as needed. For more information on the \u003ccode\u003esalloc\u003c/code\u003e command, see this page and the \u003ca href=\"https://slurm.schedmd.com/salloc.html\" rel=\"nofollow\"\u003esalloc documentation\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esalloc --job-name sleap-train-test \\\n --account escience \\\n --partition gpu-a40 \\\n --gpus 4 \\\n --ntasks 1 \\\n --gpus-per-task=4 \\\n --mem 64G \\\n --cpus-per-task 4 \\\n --time 24:00:00\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eWhen the allocation is ready, you will automatically connect to the compute node. When you exit this session, the allocation will automatically be released.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eRunning SLEAP\u003c/h4\u003e\u003ca id=\"user-content-running-sleap\" class=\"anchor\" aria-label=\"Permalink: Running SLEAP\" href=\"#running-sleap\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eVerifying GPU access\u003c/h5\u003e\u003ca id=\"user-content-verifying-gpu-access\" class=\"anchor\" aria-label=\"Permalink: Verifying GPU access\" href=\"#verifying-gpu-access\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOnce you are connected to the node, you can verify that the SLEAP container has access to the GPUs by running the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eapptainer run --nv --bind /gscratch oras://ghcr.io/maouw/sleap-container:latest python -c \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eimport sleap; sleap.system_summary()\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou should get output that looks something like this:\u003c/p\u003e\n\u003cpre lang=\"text\"\u003e\u003ccode\u003eGPUs: 4/4 available\n Device: /physical_device:GPU:0\n Available: True\n Initalized: False\n Memory growth: None\n Device: /physical_device:GPU:1\n Available: True\n Initalized: False\n Memory growth: None\n Device: /physical_device:GPU:2\n Available: True\n Initalized: False\n Memory growth: None\n Device: /physical_device:GPU:3\n Available: True\n Initalized: False\n Memory growth: None\n6.40s user 6.24s system 88% cpu 14.277s total\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eTraining the model\u003c/h5\u003e\u003ca id=\"user-content-training-the-model\" class=\"anchor\" aria-label=\"Permalink: Training the model\" href=\"#training-the-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eNow, navigate to the directory where you unzipped the training package:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/training_job\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe next step is to launch the container:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eapptainer run --nv --bind /gscratch oras://ghcr.io/maouw/sleap-container:latest bash train-script.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eApptainer will download the container image from GitHub and launch it on the node. The option \u003ccode\u003e--nv\u003c/code\u003e enables Nvidia GPU support. Once the container has launched, it will instruct \u003ccode\u003ebash\u003c/code\u003e to run the script \u003ccode\u003etrain-script.sh\u003c/code\u003e. This script will start the training job.\u003c/p\u003e\n\u003cp\u003eDuring training, you will see a lot of output in the terminal. After some time, if training is successful, the last of the output should look something similar to this:\u003c/p\u003e\n\u003cpre lang=\"text\"\u003e\u003ccode\u003eINFO:sleap.nn.evals:Saved predictions: models/231009_165437.centered_instance/labels_pr.train.slp\nINFO:sleap.nn.evals:Saved metrics: models/231009_165437.centered_instance/metrics.train.npz\nINFO:sleap.nn.evals:OKS mAP: 0.205979\nPredicting... \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% ETA: 0:00:00 3.3 FPS\nINFO:sleap.nn.evals:Saved predictions: models/231009_165437.centered_instance/labels_pr.val.slp\nINFO:sleap.nn.evals:Saved metrics: models/231009_165437.centered_instance/metrics.val.npz\nINFO:sleap.nn.evals:OKS mAP: 0.064026\n229.63s user 44.64s system 77% cpu 5:53.45s total\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce training finishes, you\u0027ll see a new directory (or two new directories for top-down training pipeline) containing all the model files SLEAP needs to use for inference:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003els models/\u003c/pre\u003e\u003c/div\u003e\n\u003cpre lang=\"text\"\u003e\u003ccode\u003e231009_165437.centered_instance 231009_165437.centroid\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can use these model files to run inference on your own computer, or you can run inference on the cluster (consult the \u003ca href=\"https://sleap.ai/guides/remote.html\" rel=\"nofollow\"\u003eSLEAP documentation\u003c/a\u003e for more information).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDownloading the model\u003c/h3\u003e\u003ca id=\"user-content-downloading-the-model\" class=\"anchor\" aria-label=\"Permalink: Downloading the model\" href=\"#downloading-the-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo copy the model files back to your computer, in a terminal where you are logged into \u003ccode\u003eklone.hyak.uw.edu\u003c/code\u003e, compress the model directory with \u003ccode\u003ezip\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/training_job\nzip -r trained_models.zip models\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen, in a new terminal window \u003cem\u003eon your own computer\u003c/em\u003e, use the \u003ccode\u003escp\u003c/code\u003e command to copy the model files from \u003ccode\u003eklone\u003c/code\u003e to your computer:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003escp your-uw-netid@klone.hyak.uw.edu:\u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/training_job/trained_models.zip \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Replace your-uw-netid with your UW NetID\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis will copy the file \u003ccode\u003etrained_models.zip\u003c/code\u003e to your current directory. You can then unzip the file and use the model files for inference on your own computer. Consult the \u003ca href=\"https://sleap.ai/guides/remote.html\" rel=\"nofollow\"\u003eSLEAP documentation\u003c/a\u003e for more information on running inference with a trained model.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eEnding the cluster job\u003c/h3\u003e\u003ca id=\"user-content-ending-the-cluster-job\" class=\"anchor\" aria-label=\"Permalink: Ending the cluster job\" href=\"#ending-the-cluster-job\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eBe sure to end your cluster job when you are done!\u003c/strong\u003e This will free up resources for other users and potentially prevent you from being charged for time you are not using.\u003c/p\u003e\n\u003cp\u003eTo do this, go back to the terminal where you were running SLEAP on the cluster. (If you closed the terminal, you can log back in to the cluster with \u003ccode\u003essh klone.hyak.uw.edu\u003c/code\u003e.)\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eIf you\u0027re still logged in to the compute node\u003c/strong\u003e, exit:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003eexit\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eCancel the job allocation with the \u003ccode\u003escancel\u003c/code\u003e command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003escancel --me --jobname sleap-train-test\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFinally, exit the cluster:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003eexit\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eSLEAP well!\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1729457707.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1719879342.0
},
{
"data_format": 2,
- "description": "This is an openxdmod container for the bruno super computer @ biohub sf",
+ "description": "RNA-seq analysis for Kannan et al. 2019",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.Bioc3.8"
],
- "full_name": "romxero/czbiohub_openxdmod",
+ "full_name": "winni2k/kannan_et_al_2019",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1720476769.0
+ "updated_at": 1551895749.0
},
{
"data_format": 2,
- "description": "Jupyterlab plugin to interface with the EVN Archive",
+ "description": "The codebase for the DI-LSTM neural network framework. ",
"filenames": [
"Singularity"
],
- "full_name": "aardk/EVN-Archive",
+ "full_name": "Randers114/DI-LSTM",
"latest_release": null,
+ "readme": "\u003cp\u003eTo run the model execute \"python -m models.model_tester\".\u003c/p\u003e\n\u003cp\u003eFor more information, the project can be found at \"\u003ca href=\"https://projekter.aau.dk/projekter/da/studentthesis/estimating-travel-cost-distributions-of-paths-in-road-networks-using-dualinput-lstms(a9e50268-29d3-4123-9ef1-766bf20307b0).html\" rel=\"nofollow\"\u003ehttps://projekter.aau.dk/projekter/da/studentthesis/estimating-travel-cost-distributions-of-paths-in-road-networks-using-dualinput-lstms(a9e50268-29d3-4123-9ef1-766bf20307b0).html\u003c/a\u003e\" if you have AAU access.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1727784318.0
+ "updated_at": 1594109503.0
},
{
"data_format": 2,
- "description": "Molecular electrostatics singularity image",
+ "description": "Singularity image for biocontainers bamtools",
"filenames": [
"Singularity"
],
- "full_name": "nbcrrolls/electrostatics-singularity",
- "latest_release": "v2.1",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity container for molecular electrostatic calculations using PDB2PQR/APBS and Brownian dynamics with BrownDye.\u003c/h1\u003e\u003ca id=\"user-content-singularity-container-for-molecular-electrostatic-calculations-using-pdb2pqrapbs-and-brownian-dynamics-with-browndye\" class=\"anchor\" aria-label=\"Permalink: Singularity container for molecular electrostatic calculations using PDB2PQR/APBS and Brownian dynamics with BrownDye.\" href=\"#singularity-container-for-molecular-electrostatic-calculations-using-pdb2pqrapbs-and-brownian-dynamics-with-browndye\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis singularity image contains a complete software environment for running \u003ca href=\"http://browndye.ucsd.edu/\" rel=\"nofollow\"\u003eBrownDye (version 1 and 2)\u003c/a\u003e simulations. It also includes \u003ca href=\"http://www.poissonboltzmann.org/\" rel=\"nofollow\"\u003ePDB2PQR\u003c/a\u003e and \u003ca href=\"http://www.poissonboltzmann.org/\" rel=\"nofollow\"\u003eAPBS\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003ePlease \u003ca href=\"http://eepurl.com/by4eQr\" rel=\"nofollow\"\u003eregister\u003c/a\u003e your use of APBS and PDB2PQR.\u003c/p\u003e\n\u003cp\u003eThe image has been verified to work on XSEDE \u003ca href=\"https://portal.xsede.org/sdsc-comet\" rel=\"nofollow\"\u003ecomet\u003c/a\u003e and \u003ca href=\"https://www.sdsc.edu/support/user_guides/tscc-quick-start.html\" rel=\"nofollow\"\u003eTSCC\u003c/a\u003e shared cluster at SDSC. It will automatically bind \u003ccode\u003e/cvmfs\u003c/code\u003e \u003ccode\u003e/oasis\u003c/code\u003e \u003ccode\u003e/projects\u003c/code\u003e \u003ccode\u003e/scratch\u003c/code\u003e directories, if available on the host.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsing the container\u003c/h2\u003e\u003ca id=\"user-content-using-the-container\" class=\"anchor\" aria-label=\"Permalink: Using the container\" href=\"#using-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePull the singularity image:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://nbcrrolls/electrostatics-singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eStart bash shell in the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell nbcrrolls-electrostatics-singularity-master-latest.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNow the container is running and we can start a BrownDye2 job (using the Thrombin example):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emodule load browndye2\ncp -ai $BD2_PATH/examples/thrombin .\ncd thrombin\nsed -i \u0027s/-PE0//g\u0027 *\nsed -i \u0027s/\u0026lt;n_trajectories\u0026gt; 10000 /\u0026lt;n_trajectories\u0026gt; 1000 /\u0027 t_m_simulation.xml.bak\nmake all # takes about min to run\nmodule unload browndye2\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAnd if you want to use BrownDye version 1:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emodule load browndye1\ncp -ai $BD1_PATH/thrombin-example .\ncd thrombin-example\nsed -i \u0027s/-PE0//g\u0027 *\nsed -i \u0027s/\u0026lt;n-trajectories\u0026gt; 10000 /\u0026lt;n-trajectories\u0026gt; 1000 /\u0027 input.xml.bak # limit the number of calculated trajectories\nmake all\nbd_top input.xml\nnam_simulation t-m-simulation.xml # this takes about 3 min to run\ncat results.xml\nmodule unload browndye1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAfter we are finished we can quit the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexit\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can also access individual applications from the electrostatics container.\u003c/p\u003e\n\u003cp\u003eTo list available applications:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity apps nbcrrolls-electrostatics-singularity-master-latest.simg \napbs\npdb2pqr\nnam_simulation\nwe_simulation\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run, for example, apbs calculation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec nbcrrolls-electrostatics-singularity-master-latest.simg apbs input.in\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run --app apbs nbcrrolls-electrostatics-singularity-master-latest.simg input.in\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis Singularity image is hosted on Singularity Hub: \u003ca href=\"https://singularity-hub.org/collections/2497\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch6 class=\"heading-element\"\u003eThis project is supported by \u003ca href=\"http://nbcr.ucsd.edu\" rel=\"nofollow\"\u003eNBCR\u003c/a\u003e.\u003c/h6\u003e\u003ca id=\"user-content-this-project-is-supported-by-nbcr\" class=\"anchor\" aria-label=\"Permalink: This project is supported by NBCR.\" href=\"#this-project-is-supported-by-nbcr\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "full_name": "researchapps/bamtools",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePicard\u003c/h1\u003e\u003ca id=\"user-content-picard\" class=\"anchor\" aria-label=\"Permalink: Picard\" href=\"#picard\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is a singularity image to deploy the bamtools software.\u003c/p\u003e\n\u003cp\u003eThis will produce a Singularity image (suitable for running in a cluster environment) using \u003ca href=\"https://hub.docker.com/r/broadinstitute/picard/\" rel=\"nofollow\"\u003ehttps://hub.docker.com/r/broadinstitute/picard/\u003c/a\u003e. We do this by way of a bootstrap file for the Docker image.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e1. Install Singularity\u003c/h2\u003e\u003ca id=\"user-content-1-install-singularity\" class=\"anchor\" aria-label=\"Permalink: 1. Install Singularity\" href=\"#1-install-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstructions can be found on the \u003ca href=\"https://singularityware.github.io\" rel=\"nofollow\"\u003esingularity site\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e2. Bootstrap the image\u003c/h2\u003e\u003ca id=\"user-content-2-bootstrap-the-image\" class=\"anchor\" aria-label=\"Permalink: 2. Bootstrap the image\" href=\"#2-bootstrap-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity create --size 4000 bamtools.img\nsudo singularity bootstrap bamtools.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e3. Run commands\u003c/h2\u003e\u003ca id=\"user-content-3-run-commands\" class=\"anchor\" aria-label=\"Permalink: 3. Run commands\" href=\"#3-run-commands\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHow to access the bamtools runtime executable?\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e ./bamtools.img [args] ...\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1556048171.0
+ "updated_at": 1484507858.0
},
{
"data_format": 2,
@@ -2091,97 +1722,105 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "rynge/hub-test",
+ "full_name": "deanpettinga/bbcRNA-singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ehub-test\u003c/h1\u003e\u003ca id=\"user-content-hub-test\" class=\"anchor\" aria-label=\"Permalink: hub-test\" href=\"#hub-test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ebbcRNA-singularity\u003c/h1\u003e\u003ca id=\"user-content-bbcrna-singularity\" class=\"anchor\" aria-label=\"Permalink: bbcRNA-singularity\" href=\"#bbcrna-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3616\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1501705378.0
+ "updated_at": 1571763045.0
},
{
"data_format": 2,
- "description": "Simple Apptainer for TrajOptKP repository. Can be used to run TrajOptKP easily without needing to download packages manually. Also used for setting up GitHub actions.",
+ "description": null,
"filenames": [
- "Singularity_static",
"Singularity"
],
- "full_name": "DMackRus/Apptainer_TrajOptKP",
+ "full_name": "mike-dixon/build_container_on_shub",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eApptainer_TrajOptKP\u003c/h1\u003e\u003ca id=\"user-content-apptainer_trajoptkp\" class=\"anchor\" aria-label=\"Permalink: Apptainer_TrajOptKP\" href=\"#apptainer_trajoptkp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSimple Apptainer for TrajOptKP repository. Can be used to run TrajOptKP easily without needing to download packages manually. Also used for setting up GitHub actions.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eExamples for building containers on Singularity Hub\u003c/p\u003e\n\u003cp\u003e./tutorial_steps.txt : example steps, command-by-command\u003c/p\u003e\n\u003cp\u003e./Singularity : is a recipe file for building your container\u003c/p\u003e\n\u003cp\u003e./text_translate.py is a sample python script we can run with the container\u003c/p\u003e\n\u003cp\u003e./make_git_repo.sh is a script that uploads your Singularity repository to github\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1730815636.0
+ "updated_at": 1537307784.0
},
{
"data_format": 2,
- "description": "BIRN Quality Assurance Tools",
+ "description": "Singularity container containing an environment for Ringer users",
"filenames": [
"Singularity"
],
- "full_name": "NenckaLab/BXH-XCEDE-QA-TOOLS",
+ "full_name": "gabriel-milan/atlas-singularity",
"latest_release": null,
- "readme": "\u003cp\u003e\u003cem\u003eSingularity instance based on \u003ca href=\"https://github.com/flywheel-apps/bxh-xcede-tools-qa\"\u003eflywheel-apps/bxh-xcede-tools-qa\u003c/a\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eDESCRIPTION\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eUses the \u003ca href=\"https://www.nitrc.org/projects/bxh_xcede_tools/\" rel=\"nofollow\"\u003eNITRC BXH/XCEDE Tools\u003c/a\u003e to gather QA data, both fmriqa_phantomqa.pl and fmriqa_generate.pl show an HTML page with images, graphs, and other data.\u003c/p\u003e\n\u003cp\u003efmriqa_phantomqa.pl is used for the BIRN stability phantom and is the default use for this container\u003c/p\u003e\n\u003cp\u003efmriqa_generate.pl can be used for human fMRI data\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eINPUTS\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eA directory of DICOM images.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eOUTPUT\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eAn HTML file, an XML Summary, and graphs/images. The HTML file contains the relevant information.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eOPTIONS\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eOptions are found in manifest.json. Includes whether to use phantom or human fMRI and the various choices for outputs.\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eATLAS Singularity Environment\u003c/h1\u003e\u003ca id=\"user-content-atlas-singularity-environment\" class=\"anchor\" aria-label=\"Permalink: ATLAS Singularity Environment\" href=\"#atlas-singularity-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4521\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis repository provides \u003ccode\u003egabriel-milan/atlas-singularity\u003c/code\u003e, a singularity container containing an environment for Ringer users.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1688053174.0
+ "updated_at": 1593796964.0
},
{
"data_format": 2,
- "description": "conda test",
+ "description": "Behavioral experiments for \"Adaptive computation as a new mechanism of human attention\"",
"filenames": [
"Singularity"
],
- "full_name": "FelixKrueger/Singularity_Test2",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity_Test2\u003c/h1\u003e\u003ca id=\"user-content-singularity_test2\" class=\"anchor\" aria-label=\"Permalink: Singularity_Test2\" href=\"#singularity_test2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003econda test\u003c/p\u003e\n",
+ "full_name": "CNCLgithub/mot-psiturk",
+ "latest_release": "0.1.0",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eMOT Psiturk\u003c/h1\u003e\u003ca id=\"user-content-mot-psiturk\" class=\"anchor\" aria-label=\"Permalink: MOT Psiturk\" href=\"#mot-psiturk\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCurrent MOT psiturk for probe experiments\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSetup\u003c/h2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-label=\"Permalink: Setup\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003edependencies\u003c/h3\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-label=\"Permalink: dependencies\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003esingularity\u003c/li\u003e\n\u003cli\u003ewget\u003c/li\u003e\n\u003cli\u003etar\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003esetup\u003c/h3\u003e\u003ca id=\"user-content-setup-1\" class=\"anchor\" aria-label=\"Permalink: setup\" href=\"#setup-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003esee help\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003echmod +x setup.sh\n./setup.sh --help\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis setup file will, by default, pull a container and data files from dropbox.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning psiturk\u003c/h2\u003e\u003ca id=\"user-content-running-psiturk\" class=\"anchor\" aria-label=\"Permalink: Running psiturk\" href=\"#running-psiturk\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003echmod +x start_psiturk.sh\n./start_psiturk.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAPI\u003c/h2\u003e\u003ca id=\"user-content-api\" class=\"anchor\" aria-label=\"Permalink: API\" href=\"#api\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003etask.js\u003c/h3\u003e\u003ca id=\"user-content-taskjs\" class=\"anchor\" aria-label=\"Permalink: task.js\" href=\"#taskjs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe majority of the experiment\u0027s functionality is described in \u003ccode\u003epsiturk/static/js/task.js\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe main class used to setup pages for both the experiment and instructions is defined as \u003ccode\u003ePage\u003c/code\u003e.\n\u003ccode\u003ePage\u003c/code\u003e handles both media presentation and scale setup. See the docstrings for more info.\u003c/p\u003e\n\u003cp\u003eThere are three other main elements, \u003ccode\u003eInstructionRunner\u003c/code\u003e, \u003ccode\u003eQuiz\u003c/code\u003e, and \u003ccode\u003eExperiment\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ecss and html\u003c/h3\u003e\u003ca id=\"user-content-css-and-html\" class=\"anchor\" aria-label=\"Permalink: css and html\" href=\"#css-and-html\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe main html files are located under \u003ccode\u003epsiturk/templates/\u003c/code\u003e and css is under \u003ccode\u003epsiturk/static/css\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eNotabley, \u003ccode\u003estage.html\u003c/code\u003e describes the pages for experimental trials and \u003ccode\u003eslider.css\u003c/code\u003e describes some of the elements found in the scale.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
- "topics": [],
- "updated_at": 1537794737.0
+ "topics": [
+ "attention",
+ "behavior",
+ "psiturk"
+ ],
+ "updated_at": 1669660072.0
},
{
"data_format": 2,
- "description": "Docker / Singularity image for using the iRODS client commands on HPC systems",
+ "description": "Small tools/scripts written in python",
"filenames": [
"Singularity"
],
- "full_name": "SystemsGenetics/irods-docker",
+ "full_name": "MDU-PHL/mdu-pytools",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eirods-docker\u003c/h1\u003e\u003ca id=\"user-content-irods-docker\" class=\"anchor\" aria-label=\"Permalink: irods-docker\" href=\"#irods-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository contains the files for building a Docker or Singularity image of the iRODS client commands, as well the files to create an Environment Module (or Lmod module) for the client commands, for use on an HPC system.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity documentation: \u003ca href=\"https://www.sylabs.io/guides/2.5/user-guide/index.html\" rel=\"nofollow\"\u003ehttps://www.sylabs.io/guides/2.5/user-guide/index.html\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eiRODS documentation: \u003ca href=\"https://docs.irods.org/4.1.12/\" rel=\"nofollow\"\u003ehttps://docs.irods.org/4.1.12/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eEnvironment Modules: \u003ca href=\"http://modules.sourceforge.net/\" rel=\"nofollow\"\u003ehttp://modules.sourceforge.net/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eLmod: \u003ca href=\"https://lmod.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003ehttps://lmod.readthedocs.io/en/latest/\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDependencies\u003c/h2\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-label=\"Permalink: Dependencies\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou must have Singularity installed on a local machine and your HPC system. It is recommended that you use Singularity 2.4 or newer.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo build the Singularity image:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build irods.simg Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run an icommand:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec irods.simg \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote that you need admin privileges to build the Singularity image, so you will most likely have to build the image on a local machine and then transfer the image to your HPC system.\u003c/p\u003e\n\u003cp\u003eOnce you\u0027ve built the image, you can use the icommands \"out-of-the-box\" by creating aliases for each icommand, for example:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ealias iinit=\"singularity exec irods.simg iinit\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe scripts \u003ccode\u003einstall-irods-lmod.sh\u003c/code\u003e and \u003ccode\u003einstall-irods-tmod.sh\u003c/code\u003e respectively create an Lmod module or Environment Module which provides these aliases automatically. You may need to edit these scripts to work for your particular environment.\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eMDU Python Tools\u003c/h1\u003e\u003ca id=\"user-content-mdu-python-tools\" class=\"anchor\" aria-label=\"Permalink: MDU Python Tools\" href=\"#mdu-python-tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://circleci.com/gh/MDU-PHL/mdu-pytools\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/beff6ea1fbb945167b46572357722ddea3d563f13997f1a5c83a2f7870d3e87e/68747470733a2f2f636972636c6563692e636f6d2f67682f4d44552d50484c2f6d64752d7079746f6f6c732e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/MDU-PHL/mdu-pytools.svg?style=svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/17430b1f952dff83ad16be3bc6d7bc1b28e5256448bd1b13cf569a42088dc70d/68747470733a2f2f696d672e736869656c64732e696f2f707970692f707976657273696f6e732f6d64752d7079746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/17430b1f952dff83ad16be3bc6d7bc1b28e5256448bd1b13cf569a42088dc70d/68747470733a2f2f696d672e736869656c64732e696f2f707970692f707976657273696f6e732f6d64752d7079746f6f6c73\" alt=\"PyPI - Python Version\" data-canonical-src=\"https://img.shields.io/pypi/pyversions/mdu-pytools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/770d75608dabaa929e1fcf0af23b0afb832d96ab70b51c9e6e34cfed3c69b6dc/68747470733a2f2f696d672e736869656c64732e696f2f707970692f762f6d64752d7079746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/770d75608dabaa929e1fcf0af23b0afb832d96ab70b51c9e6e34cfed3c69b6dc/68747470733a2f2f696d672e736869656c64732e696f2f707970692f762f6d64752d7079746f6f6c73\" alt=\"PyPI\" data-canonical-src=\"https://img.shields.io/pypi/v/mdu-pytools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/47b997d6848a3598820db5da51efb22983fc9e454a83c40caca5457c3f96ab45/68747470733a2f2f696d672e736869656c64732e696f2f707970692f6c2f6d64752d7079746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/47b997d6848a3598820db5da51efb22983fc9e454a83c40caca5457c3f96ab45/68747470733a2f2f696d672e736869656c64732e696f2f707970692f6c2f6d64752d7079746f6f6c73\" alt=\"PyPI - License\" data-canonical-src=\"https://img.shields.io/pypi/l/mdu-pytools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"#mdu-python-tools\"\u003eMDU Python Tools\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#background\"\u003eBackground\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#tools\"\u003eTools\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#mdu-merge-ngs-lanes\"\u003emdu-merge-ngs-lanes\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#mdu-sra-uploads\"\u003emdu-sra-uploads\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#environmental-variables-that-can-be-used-to-set-options\"\u003eEnvironmental variables that can be used to set options\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#development\"\u003eDevelopment\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#development-environment\"\u003eDevelopment environment\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBackground\u003c/h2\u003e\u003ca id=\"user-content-background\" class=\"anchor\" aria-label=\"Permalink: Background\" href=\"#background\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSome simple tools in python for MDU\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTools\u003c/h2\u003e\u003ca id=\"user-content-tools\" class=\"anchor\" aria-label=\"Permalink: Tools\" href=\"#tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003emdu-merge-ngs-lanes\u003c/h3\u003e\u003ca id=\"user-content-mdu-merge-ngs-lanes\" class=\"anchor\" aria-label=\"Permalink: mdu-merge-ngs-lanes\" href=\"#mdu-merge-ngs-lanes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eUse it to correctly merge lanes from an Illumina run into the a single FASTQ.\u003c/p\u003e\n\u003cp\u003eGet help:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emdu-merge-ngs-lanes --help\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBasic usage:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emdu-merge-ngs-lanes -i /path/to/fastq_folder -o /path/to/output \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e cmd.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAdvanced usage:\u003c/p\u003e\n\u003cp\u003eYou can split the output to muliple subfolders of the output folder by adding \u003ccode\u003e--subfolder\u003c/code\u003e\nto the command line. The option can be used multiple times, and takes two space separated values as input:\n\u003ccode\u003epath\u003c/code\u003e \u003ccode\u003eregex\u003c/code\u003e. The \u003ccode\u003epath\u003c/code\u003e gives a name of the subfolder in the output folder, and the \u003ccode\u003eregex\u003c/code\u003e expression\ndetermines which samples go in that subfolder.\u003c/p\u003e\n\u003cp\u003eFor instance, the command below will split samples starting the NTC in to a subfolder called \u003ccode\u003entc\u003c/code\u003e,\nwhile all other samples will be added to a subfolder called \u003ccode\u003edata\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emdu-merge-ngs-lanes -i /path/to/fastq -o /path/to/output --subfolder \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003edata\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e(?!NTC).*\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --subfolder \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003entc\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e(?\u0026lt;=NTC).*\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e cmd.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003emdu-sra-uploads\u003c/h3\u003e\u003ca id=\"user-content-mdu-sra-uploads\" class=\"anchor\" aria-label=\"Permalink: mdu-sra-uploads\" href=\"#mdu-sra-uploads\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eUse to it to upload FASTQ data to NCBI SRA.\u003c/p\u003e\n\u003cp\u003eRequires a file with tab-separated values of \u003ccode\u003eMDU ID\u003c/code\u003e and \u003ccode\u003eAUSMDUID\u003c/code\u003e. For example:\u003c/p\u003e\n\u003cp\u003emdu1\\tausmdu1\u003c/p\u003e\n\u003cp\u003emdu2\\tausmdu2\u003c/p\u003e\n\u003cp\u003eGetting help:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emdu-sra-uploads --help\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eUsage: mdu-sra-upload [OPTIONS] ISOLATES\n\nOptions:\n -f, --folder TEXT Folder on NCBI to upload. Used to find the reads\n when submitting via the SRA portal. [default:\n mdu]\n -r, --reads-folder TEXT Where reads are located (uses MDU_READS env\n variable \u003cspan class=\"pl-k\"\u003eif\u003c/span\u003e available).\n -k, --ascp-key TEXT Path to ascp ssh upload key (uses ASCP_UPLOAD_KEY\n env variable \u003cspan class=\"pl-k\"\u003eif\u003c/span\u003e available). This can be obtained\n from the SRA Submission Portal.\n -s, --sra-subfolder TEXT SRA subfolder owned by you where data will copied\n to (uses SRA_SUBFOLDER env variable is available).\n --help Show this message and exit.\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBasic usage:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e /path/for/upload\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e copy paste isolates.txt\u003c/span\u003e\nmdu-sra-uploads isolates.txt\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e when completing the submission, search for pre-uploaded files in the folder called mdu\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eEnvironmental variables that can be used to set options\u003c/h4\u003e\u003ca id=\"user-content-environmental-variables-that-can-be-used-to-set-options\" class=\"anchor\" aria-label=\"Permalink: Environmental variables that can be used to set options\" href=\"#environmental-variables-that-can-be-used-to-set-options\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eMDU_READS\u003c/code\u003e: full path to where FASTQ data is stored\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eASCP_UPLOAD_KEY\u003c/code\u003e: full path to where your Aspera NCBI upload key is located (obtain one from the SRA submission portal under the Aspera command line instructions)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eSRA_FOLDER\u003c/code\u003e: path to your folder at SRA. Usually composed by your \u003ccode\u003eemail\u003c/code\u003e plus an \"_\" and some random alphanumeric characters. This can be obtained from SRA submission portal under the Aspera command line instructions (e.g., \u003ccode\u003ejohn.doe@doe.industries.com_qEWo9\u003c/code\u003e).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDevelopment\u003c/h2\u003e\u003ca id=\"user-content-development\" class=\"anchor\" aria-label=\"Permalink: Development\" href=\"#development\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDevelopment environment\u003c/h3\u003e\u003ca id=\"user-content-development-environment\" class=\"anchor\" aria-label=\"Permalink: Development environment\" href=\"#development-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo develop with the same environment use \u003ccode\u003evagrant\u003c/code\u003e and \u003ccode\u003evirtualbox\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003evagrant up\nvagrant ssh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eOnce logged in to the VM, the shared folder is in \u003ccode\u003e/vagrant\u003c/code\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 8,
- "topics": [],
- "updated_at": 1550696838.0
+ "subscribers_count": 5,
+ "topics": [
+ "bioinformatics",
+ "scripts",
+ "microbial-genomics"
+ ],
+ "updated_at": 1568675585.0
},
{
"data_format": 2,
- "description": "An agent for Azure Pipelines using a Singularity image",
+ "description": "Detect germline or somatic variants from normal or tumour/normal whole-genome or targeted sequencing",
"filenames": [
"Singularity"
],
- "full_name": "basnijholt/azure-singularity-agent",
+ "full_name": "UCL-BLIC/Sarek_v2.3.FIX1",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eWIP: azure-singularity-agent\u003c/h1\u003e\u003ca id=\"user-content-wip-azure-singularity-agent\" class=\"anchor\" aria-label=\"Permalink: WIP: azure-singularity-agent\" href=\"#wip-azure-singularity-agent\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAn agent for Azure Pipelines using a Singularity image\u003c/p\u003e\n\u003cp\u003eBuild with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build azure-singularity-agent.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eenv AZP_URL=https://dev.azure.com/\u0026lt;organization\u0026gt; AZP_TOKEN=\u0026lt;PAT token\u0026gt; AZP_AGENT_NAME=mydockeragent singularity run azure-singularity-agent.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eNotes\u003c/h2\u003e\u003ca id=\"user-content-notes\" class=\"anchor\" aria-label=\"Permalink: Notes\" href=\"#notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eSeems to not work because the resulting \u003ccode\u003esif\u003c/code\u003e is read-only.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003e\u003ca href=\"http://sarek.scilifelab.se/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/Sarek_logo.png\" alt=\"Sarek\" title=\"Sarek\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/h1\u003e\u003ca id=\"\" class=\"anchor\" aria-label=\"Permalink: \" href=\"#\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eAn open-source analysis pipeline to detect germline or somatic variants from whole genome or targeted sequencing\u003c/h4\u003e\u003ca id=\"user-content-an-open-source-analysis-pipeline-to-detect-germline-or-somatic-variants-from-whole-genome-or-targeted-sequencing\" class=\"anchor\" aria-label=\"Permalink: An open-source analysis pipeline to detect germline or somatic variants from whole genome or targeted sequencing\" href=\"#an-open-source-analysis-pipeline-to-detect-germline-or-somatic-variants-from-whole-genome-or-targeted-sequencing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a5d620fbf501842bc77646b936f0473db29f72acd364b8f0e158b2619fa910a6/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33322e302d627269676874677265656e2e7376673f6c6f676f3d646174613a696d6167652f7376672b786d6c3b6261736536342c5044393462577767646d567963326c76626a30694d5334774969426c626d4e765a476c755a7a3069565652474c54676949484e305957356b59577876626d5539496d3576496a382b50484e325a794167494868746247357a4f6d526a50534a6f644852774f6938766348567962433576636d63765a474d765a57786c6257567564484d764d5334784c7949674943423462577875637a706a597a30696148523063446f764c324e795a57463061585a6c593239746257397563793576636d6376626e4d6a49694167494868746247357a4f6e4a6b5a6a30696148523063446f764c336433647935334d793576636d63764d546b354f5338774d6938794d6931795a47597463336c75644746344c57357a497949674943423462577875637a707a646d6339496d6830644841364c79393364336375647a4d7562334a6e4c7a49774d44417663335a6e49694167494868746247357a50534a6f644852774f693876643364334c6e637a4c6d39795a7938794d4441774c334e325a7949674943423462577875637a707a623252706347396b615430696148523063446f764c334e765a476c77623252704c6e4e7664584a6a5a575a76636d646c4c6d356c64433945564551766332396b615842765a476b744d43356b644751694943416765473173626e4d366157357263324e6863475539496d6830644841364c793933643363756157357263324e686347557562334a6e4c3235686257567a6347466a5a584d766157357263324e68634755694943416764326c6b64476739496a45794c6a63354f5449794f473174496941674947686c6157646f644430694d5449754f4441304f4441356257306949434167646d6c6c64304a76654430694d434177494451314c6a4d314d5455354e4341304e53347a4e7a457a4e6a6b694943416761575139496e4e325a7a63324e54496949434167646d567963326c76626a30694d5334784969416749476c7561334e6a5958426c4f6e5a6c636e4e7062323439496a41754f544567636a457a4e7a49314969416749484e765a476c77623252704f6d52765932356862575539496d356c6548526d624739334c575a68646d6c6a62323474643268706447557563335a6e496a34674944786b5a575a7a49434167494342705a4430695a47566d637a63324e5451694943382b494341386332396b615842765a476b36626d46745a5752326157563349434167494342705a443069596d467a5a53496749434167494842685a32566a62327876636a306949325a6d5a6d5a6d5a6949674943416749474a76636d526c636d4e76624739795053496a4e6a59324e6a59324969416749434167596d39795a4756796233426859326c30655430694d53347749694167494341676157357263324e68634755366347466e5a57397759574e7064486b39496a41754d4349674943416749476c7561334e6a5958426c4f6e42685a32567a6147466b62336339496a49694943416749434270626d747a593246775a54703662323974505349334c6a6b784f5455354e546b694943416749434270626d747a593246775a54706a654430694d6a41754d54457a4d6a4d3149694167494341676157357263324e686347553659336b39496a497a4c6a45324d7a6b774f4349674943416749476c7561334e6a5958426c4f6d5276593356745a5735304c5856756158527a50534a77654349674943416749476c7561334e6a5958426c4f6d4e31636e4a6c626e5174624746355a584939496d7868655756794d5349674943416749484e6f6233646e636d6c6b50534a6d5957787a5a5349674943416749475a706443317459584a6e61573474644739775053497749694167494341675a6d6c304c573168636d6470626931735a575a305053497749694167494341675a6d6c304c573168636d6470626931796157646f644430694d4349674943416749475a706443317459584a6e61573474596d3930644739745053497749694167494341676157357263324e686347553664326c755a4739334c5864705a48526f505349784f54497749694167494341676157357263324e686347553664326c755a4739334c57686c6157646f644430694d5441784e5349674943416749476c7561334e6a5958426c4f6e6470626d5276647931345053497749694167494341676157357263324e686347553664326c755a4739334c586b39496a41694943416749434270626d747a593246775a5470336157356b623363746257463461573170656d566b5053497849694176506941675047316c6447466b5958526849434167494342705a4430696257563059575268644745334e6a5533496a34674943416750484a6b5a6a70535245592b494341674943416750474e6a4f6c6476636d73674943416749434167494342795a47593659574a76645851394969492b4943416749434167494341385a474d365a6d397962574630506d6c745957646c4c334e325a797434625777384c32526a4f6d5a76636d31686444346749434167494341674944786b597a70306558426c494341674943416749434167494342795a475936636d567a6233567959325539496d6830644841364c79397764584a734c6d39795a79396b5979396b5932317064486c775a53395464476c7362456c745957646c496941765069416749434167494341675047526a4f6e52706447786c506a77765a474d3664476c306247552b49434167494341675043396a597a705862334a7250694167494341384c334a6b5a6a70535245592b494341384c32316c6447466b5958526850694167504763674943416749476c7561334e6a5958426c4f6d7868596d567350534a4d59586c6c6369417849694167494341676157357263324e68634755365a334a76645842746232526c50534a7359586c6c636949674943416749476c6b50534a7359586c6c636a45694943416749434230636d467563325a76636d3039496e52795957357a624746305a5367784d5451754d5441304d7a63734c5451314d6934314d7a4d324e696b6950694167494341386347463061434167494341674943427a64486c735a5430695a6d6c7362446f6a5a6d5a6d5a6d5a6d49694167494341674943426b50534a74494330784d5451754d5441304d7a63734e4455314c6a51324e545979494441734f4334344e6a457a4d7941774c6a49774d7a457a4c4441754d4459774e53426a49444d754f4463794f544d734d5334784d7a6b304d7941344c6a59314d6a55784c4451754d7a677a4d6941784d6934344d4441334f4377344c6a59344e7a55674d4334354d544d324d7977774c6a6b304f444178494445754f5463794e5459304c4449754d5441324f4451674d69347a4e544d314d6a51734d6934314e7a59784f434273494441754e6a6b784e4377774c6a67314d7a5578494330774c6a67324f5445304c4441754e7a63314d7a6b67597941744e4334784f546b354d4451734d7934334e4445354d7941744f4334354e7a45354d4451734e6934334e6a597a4e7941744d5451754d5441314e4463304c4467754f5451784e4445674c5441754d7a41354e7a55734d4334784d7a45794e4341744d4334324f5463794d6977774c6a49344d54497a494330784c6a41334e4449794c4441754e4449334e7a4d67624341774c446b754d7a41304e6a6b67597941794c6a59314f546b7a4c4330774c6a67334e7a6b79494455754d7a41324d7a6b734c5445754f546331494467754d4459774e5455734c544d754d7a55784e5459674e4334794e5459794d7977744d6934784d6a637a4d6941334c6a55304d7a49314e4377744e4334794e5463324e4341784d5334774d7a63784d5451734c5463754d5455324d6a55674d4334354d6a55344d5377744d4334334e6a67774f4341784c6a67794d5441354c4330784c6a55774e7a4179494445754f546b774d6a4d734c5445754e6a51794e5467674d4334794e7a6b7a4d5377744d4334794d6a4d344e4341774c6a51354d7a4d794c4330774c6a41314d5451674d69347a4d6a51794d6977784c6a67334f446b78494459754d6a49794e6a55734e6934314e6a41304d5341784d7934334f444d7a4e7977784d4334334e4451304d7941794d5334354d7a6b304e6977784d6934794d6a49324e534273494441734c5467754f5451784e43426a494330304c6a63354e544d334c4330784c6a45354e546b674c546b754e4449774d7a45734c544d754e6a51314d5445674c54457a4c6a49314e7a67794c4330334c6a41324e445132494330784c6a59344d7a55784c4330784c6a55774d444132494330304c6a49344e6a67784c4330304c6a4d314d444135494330304c6a4d354d6a55344c4330304c6a67774f445535494330774c6a41324f4459734c5441754d6a6b334d7941314c6a51334e4467734c5455754e7a41354e7a63674e7934794f5451354d7977744e7934784d6a4d774e53417a4c6a51344d6a637a4c4330794c6a63774e444930494459754e5467344d6a55734c5451754d5449774e4449674d5441754d6a63314d7a6b734c5451754e6a67314e5451674d4334774d6a63314c4330774c6a41774e4341774c6a41314d6a63734c5441754d444134494441754d4467774d5377744d4334774d544533494777674d4377744f4334334e53426a494330334c6a6b7a4f5449334c4449754d4449784d5451674c5445304c6a67334d4441784c4455754f4463334d7a67674c5449784c6a55734d5445754f54517a4d7a5967624341744d5334324d7a41344e6977784c6a51354d6a4534494330794c6a6b354e6a45734c544d754d4441334f444567597941744d5334324e4463314e6977744d5334324e5451334943307a4c6a63304d4449314c43307a4c6a59774d545533494330304c6a59314d6a4d304c4330304c6a4d794e6a4533494330314c6a41774f4455314e4377744d7934354e7a67354f5341744d5441754d5455794f5455304c4330324c6a51354f54497a494330784e4334314e7a49794e7a51734c5463754d5455324d6a556765694967494341674943416761575139496e4268644767334e6a4977496941674943416749434270626d747a593246775a54706a623235755a574e306233497459335679646d463064584a6c5053497749694167494341674943427a623252706347396b615470756232526c64486c775a584d39496d4e6a59334e6a59324e7a59324e7a63324e7a59324e7a59334e6a59324e6a59324e7a597949674c7a3467494477765a7a34384c334e325a7a343d\" alt=\"Nextflow version\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.32.0-brightgreen.svg?logo=\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://travis-ci.org/SciLifeLab/Sarek\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d304fd5e83cd3987fc679ac8cc4b38f941c110391bbf4aa01042a516e3eac68d/68747470733a2f2f696d672e736869656c64732e696f2f7472617669732f5363694c6966654c61622f536172656b2e7376673f6c6f676f3d747261766973\" alt=\"Travis build status\" data-canonical-src=\"https://img.shields.io/travis/SciLifeLab/Sarek.svg?logo=travis\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://gitter.im/SciLifeLab/Sarek\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1bfcab243c9072ceb2cf58c2015147783c497c2680ae5bfa52173f475c6273dd/68747470733a2f2f696d672e736869656c64732e696f2f6769747465722f726f6f6d2f5363694c6966654c61622f536172656b2e7376673f6c6f676f3d676974746572266c6f676f436f6c6f723d776869746526636f6c6f72423d346662393961\" alt=\"Join the chat on https://gitter.im/SciLifeLab/Sarek\" data-canonical-src=\"https://img.shields.io/gitter/room/SciLifeLab/Sarek.svg?logo=gitter\u0026amp;logoColor=white\u0026amp;colorB=4fb99a\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/34e3a02739fea50d64339fc189488413a41ade31ef5323543cb4b2b74eb0d54a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f5363694c6966654c61622f536172656b2e737667\" alt=\"MIT License\" data-canonical-src=\"https://img.shields.io/github/license/SciLifeLab/Sarek.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/SciLifeLab/Sarek/releases/latest\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6601edf424039dadb758444948fd35a899c0e55d1d38c24e2b00d7960710d180/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f5363694c6966654c61622f536172656b2e7376673f6c6f676f3d676974687562266c6f676f436f6c6f723d7768697465\" alt=\"Sarek version\" data-canonical-src=\"https://img.shields.io/github/release/SciLifeLab/Sarek.svg?logo=github\u0026amp;logoColor=white\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://zenodo.org/badge/latestdoi/54024046\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c8306a87ffc25c6750b3f82dcba1992ba2bab5802fd9cd64cf194612ec66f9a1/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f35343032343034362e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/54024046.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/769cdea89329b8c33de4b43434de768d69fe81d5911cb7ec180a8a866182f63a/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e7376673f6c6f676f3d646174613a696d6167652f706e673b6261736536342c6956424f5277304b47676f414141414e53556845556741414144454141414179434159414141443143444f794141414142484e4353565149434167496641686b6941414141416c7753466c7a4141414e3177414144646342516969626541414141426c30525668305532396d64486468636d5541643364334c6d6c7561334e6a5958426c4c6d39795a35767550426f41414161325355524256476942785a70726a4656584663642f653261413655416f5947726b30615a594b765864775741796f44797377527168786d704e6a5146724e4f494854522b614a686f787257426f417a3461477a3830626457437357317171354947536c76445141316155477737424575523464464372565359307146595948352b5748743637347a7a4f48646d3773772f75546e376e4c50325075742f7a397072723758325351776831496e415371414a6d41794d426359446255413763415234486e674f61415a327070544f4471554f41344a617231366d54736a6e553954484c495954366a33715044574e6c50492f5632395833315433715639557836744a2f576c4249703134566c326d316c5a6238546e7177747a2b5848353469376f6c7439656f7265714d544f534f436f6d6f2f6b5674724962796f39556671653371574c565233617a757a672b2b4c5239767a636676712b2f4e524f3462414a457a366b6f4c767057614167516d415675416d3444744b61563259426c7742664249467575636e4f4f41446d414b7343616c4a50447269763678514233775065427839594c2b6850736b6f553468764568547676524350703749666363427034485a2b56346a7342655941537858613441566c584e34437775427265714666516e31536b4a74414c344e3741473241767542562f4c747363426834467269625377414e674d66427034472f7052534f677a63434d776442416d4179344274367252426a744d563669337144646c2b562b546a4c666e344e55747539395141356b4e7632473273512f2b48486e327a65676d77424a67457a41634f4175754234796d6c48566d6d4676674b384246674676425834484a67615572705766567477436a675644354f413934447a4d746a547833412f2f636f7343545074643668766c39395062506670443653323833713137504d536e5632626a656f6938797574776a5557765854686e7575464463574758797a3453722f6d7a7674564e666c3974315a376f6c38666c645278667434336e4c3133785751654d4f776c4634482f574157624d39453975667a2f635a437469664c3361647556536350686b545a63366462576e4f4b344139394454592f4b333867432f39472f56317548314e585a4c6b7231664f47676b445a7379656f54315a415a4635506730785650356f46486c6276564d2b71653951664736766f767146557641636478716e50465354786150664f30395766474b377850316e6f754c704b33574734797476736231494e445a464c7933546f437833717a504b4f7432616c4739516c3673597370474837713954765775304973365450736f4a763477666c6e66365a4c33354c50562b395831326f586d58342b324746576d4f453576316862326548692f4b464d2b7161736f484f4d354b563736676231446e445447524a776264784d656f58314f31473646797266736159477a65554352347767726e684a4a45737566692b6346304e384338695768774433413673426534473767447579574d2b6b464c71474534534f6252347149446f4c4f4374674b346a2f313477584f7879645a5152656979757173613951503145675465784b616b66423634444a67495835742b45504d3433696154476c4e4b4a4553447864734a532b734b2b704c354b524b73414c774f48674b4e456d6555557344716c644b68716d76594439535352665057475978695669703577316c683042704f5a445272713458374d365851646b53665541714f4a33485955554a2b765451534f6a5269445148384f4a6455423139443164623142564f714f416765416a56565272546a4f372b662b36335841395551685941784235674b69424e6b4966416d59704c616c6c49355855394f65594b536a2f5a466f513631546639624e7a6c347a51704370325361764841366c75304e64554d4446506c6b4866425a59525a6a4e484f42695944757744746847354d5a4e774b59523446456b3564324c756c5139616c5170477453726a5372662f575673397a674342562b4c5a58764c4f334f4a546877304d71784c4d354750716176567636767a68356c4145564e536e566d58556d705658794a4b4b45385235764d33344448674765425659436d6c3674397745456a4136674b694c3661556e752f737443617a2b6f44364458573955537a51694b5857475a48752b3671716655593236534a59573935707072472f4d4530396c775665553339684b52782b79624a386f346f4570686c7a7441676175336465706c3662622f3752727057486a63612b77597447356a65365367547138334f4b6f4c6d6e41576f796b58765630316d774c5a2b6656412b704478725a33676131666f674a6a46562f5835434139725a3247525750546d797a74506657616c5439446c683657303959594f2b6749494570526c576c4b4c62616d3874585a7874313248765649376e445039536e636e756a656c505a594b2b6f6e78386b6757737350676330616746644845795876446c58764b3848766b7a45543775497647497530454a736f48546d486d654150774d7a31422b714379705176466239704c6f4e6542423452775738563657555772726f33634d445268486257346b49436d6342757a4d5a6756385349667042344759696b666f557352467a4362472b50413630457446774778486d5479564b2b2f4f4278517973744e384d584a46534f74636e6955796b4166675145627655453373505934685563547877463745674c694a326942594244774e58443043786f7467507a456b70395a65756c71424f5648396c6549796e6a5a4a36752f705659382b695139316c654c493331576371734f744b38624936593044556a5672556b573444586d55704d507474506d3678656d6856333957586e6e305778464a4b75346d643052316c6c79634437795a732f664a3872566f7037485a67626b7070373642484d6b4c304f773054576d3945745276795031554e557a716e726a57637a4e4443434d3133716a6462436b756168356a414c7257706632304752365257666164524a64545376426773576f79777036367142486f6773396a3435714e74674971664d434c6c685136695944306b4b61633668736a446d3467717958546749714342714b4330415363706662545651756d6a72584d396a566b4a2f676645474871754f336a38445141414141424a52553545726b4a6767673d3d\" alt=\"Install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?logo=\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/maxulysse/sarek\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/331acbc5ce8eb54738019206937dfb7d73368e38ab28d073f3bb1e9e13f01e74/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6d6178756c797373652f736172656b2e7376673f6c6f676f3d646f636b6572\" alt=\"Docker Container available\" data-canonical-src=\"https://img.shields.io/docker/automated/maxulysse/sarek.svg?logo=docker\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIntroduction\u003c/h2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/CAW_logo.png\"\u003e\u003cimg align=\"right\" title=\"CAW\" src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/CAW_logo.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003ePreviously known as the Cancer Analysis Workflow (CAW),\nSarek is a workflow designed to run analyses on WGS data from regular samples or tumour / normal pairs, including relapse samples if required.\u003c/p\u003e\n\u003cp\u003eIt\u0027s built using \u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a domain specific language for workflow building.\nSoftware dependencies are handled using \u003ca href=\"https://www.docker.com\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e or \u003ca href=\"https://www.sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e - container technologies that provide excellent reproducibility and ease of use.\nSingularity has been designed specifically for high-performance computing environments.\nThis means that although Sarek has been primarily designed for use with the Swedish \u003ca href=\"https://www.uppmax.uu.se\" rel=\"nofollow\"\u003eUPPMAX HPC systems\u003c/a\u003e, it should be able to run on any system that supports these two tools.\u003c/p\u003e\n\u003cp\u003eSarek was developed at the \u003ca href=\"https://ngisweden.scilifelab.se/\" rel=\"nofollow\"\u003eNational Genomics Infastructure\u003c/a\u003e and \u003ca href=\"https://www.nbis.se/\" rel=\"nofollow\"\u003eNational Bioinformatics Infastructure Sweden\u003c/a\u003e which are both platforms at \u003ca href=\"https://www.scilifelab.se/\" rel=\"nofollow\"\u003eSciLifeLab\u003c/a\u003e.\nIt is listed on the \u003ca href=\"https://bio.tools/Sarek\" rel=\"nofollow\"\u003eElixir - Tools and Data Services Registry\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eWorkflow steps\u003c/h2\u003e\u003ca id=\"user-content-workflow-steps\" class=\"anchor\" aria-label=\"Permalink: Workflow steps\" href=\"#workflow-steps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSarek is built with several workflow scripts.\nA wrapper script contained within the repository makes it easy to run the different workflow scripts as a single job.\nTo test your installation, follow the \u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/TESTS.md\"\u003etests documentation.\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eRaw FastQ files or aligned BAM files (with or without realignment \u0026amp; recalibration) can be used as inputs.\nYou can choose which variant callers to use, plus the pipeline is capable of accommodating additional variant calling software or CNV callers if required.\u003c/p\u003e\n\u003cp\u003eThe worflow steps and tools used are as follows:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cstrong\u003ePreprocessing\u003c/strong\u003e - \u003ccode\u003emain.nf\u003c/code\u003e \u003cem\u003e(based on \u003ca href=\"https://software.broadinstitute.org/gatk/best-practices/\" rel=\"nofollow\"\u003eGATK best practices\u003c/a\u003e)\u003c/em\u003e\n\u003cul\u003e\n\u003cli\u003eMap reads to Reference\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://bio-bwa.sourceforge.net/\" rel=\"nofollow\"\u003eBWA\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eMark Duplicates\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eGATK MarkDuplicates\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eBase (Quality Score) Recalibration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eGATK BaseRecalibrator\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eGATK ApplyBQSR\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eGermline variant calling\u003c/strong\u003e - \u003ccode\u003egermlineVC.nf\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eSNVs and small indels\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eGATK HaplotyeCaller\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Illumina/strelka\"\u003eStrelka2\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eStructural variants\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Illumina/manta\"\u003eManta\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eSomatic variant calling\u003c/strong\u003e - \u003ccode\u003esomaticVC.nf\u003c/code\u003e \u003cem\u003e(optional)\u003c/em\u003e\n\u003cul\u003e\n\u003cli\u003eSNVs and small indels\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eMuTect2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/ekg/freebayes\"\u003eFreebayes\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Illumina/strelka\"\u003eStrelka2\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eStructural variants\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Illumina/manta\"\u003eManta\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSample heterogeneity, ploidy and CNVs\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Crick-CancerGenomics/ascat\"\u003eASCAT\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eAnnotation\u003c/strong\u003e - \u003ccode\u003eannotate.nf\u003c/code\u003e \u003cem\u003e(optional)\u003c/em\u003e\n\u003cul\u003e\n\u003cli\u003eVariant annotation\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://snpeff.sourceforge.net/\" rel=\"nofollow\"\u003eSnpEff\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.ensembl.org/info/docs/tools/vep/index.html\" rel=\"nofollow\"\u003eVEP (Variant Effect Predictor)\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eReporting\u003c/strong\u003e - \u003ccode\u003erunMultiQC.nf\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eReporting\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://multiqc.info\" rel=\"nofollow\"\u003eMultiQC\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDocumentation\u003c/h2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-label=\"Permalink: Documentation\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe Sarek pipeline comes with documentation in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INSTALL.md\"\u003eInstallation documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INSTALL_RACKHAM.md\"\u003eInstallation documentation specific for UPPMAX \u003ccode\u003erackham\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INSTALL_BIANCA.md\"\u003eInstallation documentation specific for UPPMAX \u003ccode\u003ebianca\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/TESTS.md\"\u003eTests documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/REFERENCES.md\"\u003eReference files documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/CONFIG.md\"\u003eConfiguration and profiles documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INTERVALS.md\"\u003eIntervals documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/USAGE.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/CONDA.md\"\u003eRunning the pipeline using Conda\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/PARAMETERS.md\"\u003eCommand line parameters\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/USE_CASES.md\"\u003eExamples\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INPUT.md\"\u003eInput files documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/PROCESS.md\"\u003eProcesses documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/CONTAINERS.md\"\u003eDocumentation about containers\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/ASCAT.md\"\u003eComplementary information about ASCAT\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/ANNOTATION.md\"\u003eComplementary information about annotations\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/OUTPUT.md\"\u003eOutput documentation structure\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributions \u0026amp; Support\u003c/h2\u003e\u003ca id=\"user-content-contributions--support\" class=\"anchor\" aria-label=\"Permalink: Contributions \u0026amp; Support\" href=\"#contributions--support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you would like to contribute to this pipeline, please see the \u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/.github/CONTRIBUTING.md\"\u003econtributing guidelines\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor further information or help, don\u0027t hesitate to get in touch on \u003ca href=\"https://gitter.im/SciLifeLab/Sarek\" rel=\"nofollow\"\u003eGitter\u003c/a\u003e or contact us: \u003ca href=\"mailto:maxime.garcia@scilifelab.se\"\u003emaxime.garcia@scilifelab.se\u003c/a\u003e, \u003ca href=\"mailto:szilveszter.juhos@scilifelab.se\"\u003eszilveszter.juhos@scilifelab.se\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCHANGELOG\u003c/h2\u003e\u003ca id=\"user-content-changelog\" class=\"anchor\" aria-label=\"Permalink: CHANGELOG\" href=\"#changelog\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/CHANGELOG.md\"\u003eCHANGELOG\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCredits\u003c/h2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-label=\"Permalink: Credits\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eMain authors:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/MaxUlysse\"\u003eMaxime Garcia\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/szilvajuhos\"\u003eSzilveszter Juhos\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eHelpful contributors:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/alneberg\"\u003eJohannes Alneberg\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Sebastian-D\"\u003eSebastian DiLorenzo\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/J35P312\"\u003eJesper Eisfeldt\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/ewels\"\u003ePhil Ewels\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/gulfshores\"\u003eMax K\u00e4ller\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/malinlarsson\"\u003eMalin Larsson\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/marcelm\"\u003eMarcel Martin\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/bjornnystedt\"\u003eBj\u00f6rn Nystedt\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/pallolason\"\u003ePall Olason\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/arontommi\"\u003eAron Skaftason\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/nilesh-tawari\"\u003eNilesh Tawari\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cp\u003e\u003ca href=\"https://www.scilifelab.se/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/SciLifeLab_logo.png\" alt=\"SciLifeLab\" title=\"SciLifeLab\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://ngisweden.scilifelab.se/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/NGI_logo.png\" alt=\"NGI\" title=\"NGI\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nbis.se/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/NBIS_logo.png\" alt=\"NBIS\" title=\"NBIS\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [],
- "updated_at": 1583410819.0
+ "updated_at": 1633704576.0
},
{
"data_format": 2,
- "description": "testing building containers with singularity hub webhook ",
+ "description": "CentOS 7 Base Singularity Image",
"filenames": [
"Singularity"
],
- "full_name": "eharkins/singularityhub-test",
+ "full_name": "scleveland/centos7-base-singularity",
"latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/1254\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Recipe for base CentOS 7 image For the University of Hawaii HPC system\u003c/h1\u003e\u003ca id=\"user-content-singularity-recipe-for-base-centos-7-image-for-the-university-of-hawaii-hpc-system\" class=\"anchor\" aria-label=\"Permalink: Singularity Recipe for base CentOS 7 image For the University of Hawaii HPC system\" href=\"#singularity-recipe-for-base-centos-7-image-for-the-university-of-hawaii-hpc-system\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repo contains recipe to create a base CentOS-7 singularity containter\n\u003ca href=\"https://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e, which can be built\nusing \u003ca href=\"https://singularity-hub.org/\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow to Use:\u003c/h2\u003e\u003ca id=\"user-content-how-to-use\" class=\"anchor\" aria-label=\"Permalink: How to Use:\" href=\"#how-to-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003esingularity run shub://scleveland/centos7-base-singularity\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1548377344.0
+ "updated_at": 1531340029.0
},
{
"data_format": 2,
@@ -2189,13 +1828,12 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "nglinhbao/EU-AI-Act-Assessment",
+ "full_name": "yiwan-rl/singularity_recipes",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eEU AI Act Assessment\u003c/h1\u003e\u003ca id=\"user-content-eu-ai-act-assessment\" class=\"anchor\" aria-label=\"Permalink: EU AI Act Assessment\" href=\"#eu-ai-act-assessment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis project is designed to classify AI systems according to the \u003cstrong\u003eEU AI Act\u003c/strong\u003e using the \u003cstrong\u003eLLaMA 2 (7B)\u003c/strong\u003e model. The AI system is evaluated through several stages, including \u003cstrong\u003eInitial Risk Assessment\u003c/strong\u003e, \u003cstrong\u003eLevel-Based Risk Assessment\u003c/strong\u003e, and \u003cstrong\u003eRisk Categorization\u003c/strong\u003e. The purpose is to ensure that AI systems comply with regulations and are categorized according to their risk levels.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTable of Contents\u003c/h2\u003e\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" aria-label=\"Permalink: Table of Contents\" href=\"#table-of-contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#project-description\"\u003eProject Description\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#features\"\u003eFeatures\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#installation\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#usage\"\u003eUsage\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#ai-risk-assessment-workflow\"\u003eAI Risk Assessment Workflow\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eProject Description\u003c/h2\u003e\u003ca id=\"user-content-project-description\" class=\"anchor\" aria-label=\"Permalink: Project Description\" href=\"#project-description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis project evaluates AI systems to assess their compliance with the \u003cstrong\u003eEU AI Act\u003c/strong\u003e. The system follows a tree-based workflow, beginning with an \u003cstrong\u003eInitial Risk Assessment\u003c/strong\u003e. Based on the outcomes, it moves to \u003cstrong\u003eLevel-Based Risk Assessment\u003c/strong\u003e or determines whether the AI system poses an \u003cstrong\u003eUnacceptable Risk\u003c/strong\u003e. The core components of the system include structured prompts designed for different phases of risk assessment and a fine-tuned \u003cstrong\u003eLLaMA 2\u003c/strong\u003e model to generate responses.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eFeatures\u003c/h2\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-label=\"Permalink: Features\" href=\"#features\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eAI Risk Categorization\u003c/strong\u003e based on \u003cstrong\u003eEU AI Act\u003c/strong\u003e principles.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eLLaMA 2 (7B)\u003c/strong\u003e model integration for automated risk assessments.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eCSV-driven prompt system\u003c/strong\u003e for systematic AI evaluation.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eMulti-step automated workflow\u003c/strong\u003e: Initial risk, level-based assessment, and ongoing monitoring.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation\u003c/h2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePrerequisites\u003c/h3\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-label=\"Permalink: Prerequisites\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eEnsure you have the following installed:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePython 3.8+.\u003c/li\u003e\n\u003cli\u003eConda environment (optional but recommended).\u003c/li\u003e\n\u003cli\u003eHugging Face API Token (required to access the LLaMA 2 model).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eClone the Repository\u003c/h3\u003e\u003ca id=\"user-content-clone-the-repository\" class=\"anchor\" aria-label=\"Permalink: Clone the Repository\" href=\"#clone-the-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/nglinhbao/AI-EU-Act-Assessment.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e AI-EU-Act-Assessment\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSet Up Virtual Environment (Optional)\u003c/h3\u003e\u003ca id=\"user-content-set-up-virtual-environment-optional\" class=\"anchor\" aria-label=\"Permalink: Set Up Virtual Environment (Optional)\" href=\"#set-up-virtual-environment-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda create --name AI-Act python=3.10\nconda activate AI-Act\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eInstall Required Packages\u003c/h3\u003e\u003ca id=\"user-content-install-required-packages\" class=\"anchor\" aria-label=\"Permalink: Install Required Packages\" href=\"#install-required-packages\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip install -r requirements.txt\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAuthenticate Hugging Face\u003c/h3\u003e\u003ca id=\"user-content-authenticate-hugging-face\" class=\"anchor\" aria-label=\"Permalink: Authenticate Hugging Face\" href=\"#authenticate-hugging-face\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eEnsure you have a Hugging Face token to access the LLaMA 2 model.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ehuggingface-cli login\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAlternatively, you can export the token directly in your environment:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e HUGGINGFACEHUB_API_TOKEN=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eyour_token_here\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSteps to Run the Assessment:\u003c/h3\u003e\u003ca id=\"user-content-steps-to-run-the-assessment\" class=\"anchor\" aria-label=\"Permalink: Steps to Run the Assessment:\" href=\"#steps-to-run-the-assessment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003ePrepare the AI System Description\u003c/strong\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCreate a \u003ccode\u003e.csv\u003c/code\u003e file containing the description of the AI systems that you wish to assess.\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"./sample.csv\"\u003eExample\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eRun the Assessment Script\u003c/strong\u003e:\u003c/p\u003e\n\u003cp\u003eTo start the AI system classification process, make sure you have the system description \u003ccode\u003e.csv\u003c/code\u003e file ready, and execute the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 main.py\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003ePrompts and AI System Evaluation\u003c/strong\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe system reads prompts from the \u003ccode\u003eCSV\u003c/code\u003e file (\u003ccode\u003eai_risk_prompts.csv\u003c/code\u003e) and evaluates the AI system based on its description.\u003c/li\u003e\n\u003cli\u003eIf the AI system poses an \u003cstrong\u003eUnacceptable Risk\u003c/strong\u003e, the process halts and returns the result. Otherwise, it proceeds through all stages to classify the system as \u003cstrong\u003eHigh Risk\u003c/strong\u003e, \u003cstrong\u003eLimited Risk\u003c/strong\u003e, or \u003cstrong\u003eMinimal Risk\u003c/strong\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eOutput\u003c/strong\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe system provides a risk categorization based on the predefined prompts in the CSV file.\u003c/li\u003e\n\u003cli\u003eExample outcomes include: \u003cstrong\u003eUnacceptable Risk\u003c/strong\u003e, \u003cstrong\u003eHigh Risk\u003c/strong\u003e, \u003cstrong\u003eLimited Risk\u003c/strong\u003e, or \u003cstrong\u003eMinimal Risk\u003c/strong\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eExample Output:\u003c/h3\u003e\u003ca id=\"user-content-example-output\" class=\"anchor\" aria-label=\"Permalink: Example Output:\" href=\"#example-output\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHere is an example of how the system would respond to various prompts:\u003c/p\u003e\n\u003cpre lang=\"plaintext\"\u003e\u003ccode\u003e(AI-Act) User:~/EU-AI-Act$ python3 main.py \nLoading checkpoint shards: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 2/2 [00:02\u0026lt;00:00, 1.50s/it]\nAccuracy: 0.30\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAI Risk Assessment Workflow with Scoring System\u003c/h2\u003e\u003ca id=\"user-content-ai-risk-assessment-workflow-with-scoring-system\" class=\"anchor\" aria-label=\"Permalink: AI Risk Assessment Workflow with Scoring System\" href=\"#ai-risk-assessment-workflow-with-scoring-system\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"./workflow.png\"\u003e\u003cimg src=\"./workflow.png\" alt=\"Workflow\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe assessment follows these key stages, evaluated sequentially from top to bottom. Each prompt at every risk level is scored on a scale of \u003cstrong\u003e1 to 5\u003c/strong\u003e, where:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003e1\u003c/strong\u003e means the system absolutely does not meet the criteria,\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e5\u003c/strong\u003e means the system absolutely meets the criteria.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor each stage, if the \u003cstrong\u003emean score\u003c/strong\u003e is greater than \u003cstrong\u003e3\u003c/strong\u003e, the system will be classified under that risk category.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e1. \u003cstrong\u003eUnacceptable Risk\u003c/strong\u003e:\u003c/h3\u003e\u003ca id=\"user-content-1-unacceptable-risk\" class=\"anchor\" aria-label=\"Permalink: 1. Unacceptable Risk:\" href=\"#1-unacceptable-risk\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eThe system is first evaluated against prompts to identify if it violates fundamental human rights, Union values, or carries unacceptable risks.\u003c/li\u003e\n\u003cli\u003eEach prompt at this stage receives a score from \u003cstrong\u003e1 to 5\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003eIf the \u003cstrong\u003emean score\u003c/strong\u003e of all prompts in this stage is greater than \u003cstrong\u003e3\u003c/strong\u003e, the system is classified as \u003cstrong\u003eUnacceptable Risk\u003c/strong\u003e, and the assessment halts. No further evaluation is carried out.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e2. \u003cstrong\u003eHigh Risk\u003c/strong\u003e:\u003c/h3\u003e\u003ca id=\"user-content-2-high-risk\" class=\"anchor\" aria-label=\"Permalink: 2. High Risk:\" href=\"#2-high-risk\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eIf the system passes the \u003cstrong\u003eUnacceptable Risk\u003c/strong\u003e stage, it is assessed for \u003cstrong\u003eHigh Risk\u003c/strong\u003e factors such as:\n\u003cul\u003e\n\u003cli\u003eImpact on human life,\u003c/li\u003e\n\u003cli\u003eHandling of sensitive personal data,\u003c/li\u003e\n\u003cli\u003eAutonomous decision-making without human oversight.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eEach prompt in this stage is scored from \u003cstrong\u003e1 to 5\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003eIf the \u003cstrong\u003emean score\u003c/strong\u003e for the prompts in this stage is greater than \u003cstrong\u003e3\u003c/strong\u003e, the system is classified as \u003cstrong\u003eHigh Risk\u003c/strong\u003e, and further evaluation stops.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e3. \u003cstrong\u003eLimited Risk\u003c/strong\u003e:\u003c/h3\u003e\u003ca id=\"user-content-3-limited-risk\" class=\"anchor\" aria-label=\"Permalink: 3. Limited Risk:\" href=\"#3-limited-risk\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eIf the system does not qualify as \u003cstrong\u003eHigh Risk\u003c/strong\u003e, it is evaluated for \u003cstrong\u003eLimited Risk\u003c/strong\u003e factors like:\n\u003cul\u003e\n\u003cli\u003eBias detection mechanisms,\u003c/li\u003e\n\u003cli\u003eSystem transparency,\u003c/li\u003e\n\u003cli\u003eFairness in decision-making processes.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eEach prompt in this stage is scored from \u003cstrong\u003e1 to 5\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003eIf the \u003cstrong\u003emean score\u003c/strong\u003e is greater than \u003cstrong\u003e3\u003c/strong\u003e, the system is classified as \u003cstrong\u003eLimited Risk\u003c/strong\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e4. \u003cstrong\u003eMinimal Risk\u003c/strong\u003e:\u003c/h3\u003e\u003ca id=\"user-content-4-minimal-risk\" class=\"anchor\" aria-label=\"Permalink: 4. Minimal Risk:\" href=\"#4-minimal-risk\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eIf none of the previous stages result in a classification, the system is evaluated for \u003cstrong\u003eMinimal Risk\u003c/strong\u003e, including:\n\u003cul\u003e\n\u003cli\u003eProper handling of non-sensitive data,\u003c/li\u003e\n\u003cli\u003eMinimal impact on users and society,\u003c/li\u003e\n\u003cli\u003eLow potential for bias or unfair treatment.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eEach prompt in this stage is scored from \u003cstrong\u003e1 to 5\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003eIf the \u003cstrong\u003emean score\u003c/strong\u003e is greater than \u003cstrong\u003e3\u003c/strong\u003e, the system is classified as \u003cstrong\u003eMinimal Risk\u003c/strong\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eExample Workflow (Scoring):\u003c/h3\u003e\u003ca id=\"user-content-example-workflow-scoring\" class=\"anchor\" aria-label=\"Permalink: Example Workflow (Scoring):\" href=\"#example-workflow-scoring\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eUnacceptable Risk Prompts\u003c/strong\u003e: Scores [5, 4, 2, 3].\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMean score = (5 + 4 + 2 + 3) / 4 = 3.5 \u2192 \u003cstrong\u003eUnacceptable Risk\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003eClassification stops.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eHigh Risk Prompts\u003c/strong\u003e: Scores [2, 3, 4, 4].\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMean score = (2 + 3 + 4 + 4) / 4 = 3.25 \u2192 \u003cstrong\u003eHigh Risk\u003c/strong\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eLimited Risk Prompts\u003c/strong\u003e: Scores [2, 2, 3].\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMean score = (2 + 2 + 3) / 3 = 2.33 \u2192 Not classified as Limited Risk.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1732090527.0
+ "updated_at": 1615835305.0
},
{
"data_format": 2,
@@ -2203,44 +1841,42 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "challenge-engine/test-starting-kit",
+ "full_name": "oogasawa/singularity_postgresql-12.0",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003etest-starting-kit\u003c/h1\u003e\u003ca id=\"user-content-test-starting-kit\" class=\"anchor\" aria-label=\"Permalink: test-starting-kit\" href=\"#test-starting-kit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\ud83e\udd13\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity_postgresql\u003c/h1\u003e\u003ca id=\"user-content-singularity_postgresql\" class=\"anchor\" aria-label=\"Permalink: singularity_postgresql\" href=\"#singularity_postgresql\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u907a\u4f1d\u7814\u30b9\u30d1\u30b3\u30f3\u3067\u30e6\u30fc\u30b6\u30fc\u6a29\u9650\u3067PostgreSQL\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u3092\u5b9f\u884c\u3059\u308b\u305f\u3081\u306esingularity image\u306e\u4f7f\u3044\u65b9\u003c/p\u003e\n\u003cp\u003e\u5bfe\u5fdc\u3059\u308bPostgreSQL\u306e\u30d0\u30fc\u30b8\u30e7\u30f3\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e9.6.15\u003c/li\u003e\n\u003cli\u003e10.10\u003c/li\u003e\n\u003cli\u003e11.5\u003c/li\u003e\n\u003cli\u003e12.0\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eimage\u306e\u751f\u6210\u003c/h2\u003e\u003ca id=\"user-content-image\u306e\u751f\u6210\" class=\"anchor\" aria-label=\"Permalink: image\u306e\u751f\u6210\" href=\"#image\u306e\u751f\u6210\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u81ea\u5206\u306e\u74b0\u5883\u3067image\u3092build\u3059\u308b\u5834\u5408\u306f\u3001\u4ee5\u4e0b\u306e\u30b3\u30de\u30f3\u30c9\u3092\u5b9f\u884c\u3057\u307e\u3059\u3002PostgreSQL\u306e\u30d0\u30fc\u30b8\u30e7\u30f3\u306b\u306f9.6.15, 10.10, 11.5, 12.0\u306e\u3044\u305a\u308c\u304b\u3092\u6307\u5b9a\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone https://github.com/ddbj/singularity_postgresql.git\n$ cd singularity_postgresql\n$ sudo singularity build ubuntu-18.04-postgresql-\u0026lt;PostgreSQL\u306e\u30d0\u30fc\u30b8\u30e7\u30f3\u0026gt;.simg Singularity.\u0026lt;PostgreSQL\u306e\u30d0\u30fc\u30b8\u30e7\u30f3\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eimage\u306e\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u003c/h2\u003e\u003ca id=\"user-content-image\u306e\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\" class=\"anchor\" aria-label=\"Permalink: image\u306e\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\" href=\"#image\u306e\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity Hub\u306b\u767b\u9332\u3055\u308c\u305f\u30a4\u30e1\u30fc\u30b8\u3092\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3059\u308b\u5834\u5408\u306f\u4ee5\u4e0b\u306e\u30b3\u30de\u30f3\u30c9\u3092\u5b9f\u884c\u3057\u307e\u3059\u3002PostgreSQL\u306e\u30d0\u30fc\u30b8\u30e7\u30f3\u306b\u306f9.6.15, 10.10, 11.5, 12.0\u306e\u3044\u305a\u308c\u304b\u3092\u6307\u5b9a\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone https://github.com/ddbj/singularity_postgresql.git\n$ cd singularity_postgresql\n$ singularity pull --name ubuntu-18.04-postgresql-\u0026lt;PostgreSQL\u306e\u30d0\u30fc\u30b8\u30e7\u30f3\u0026gt;.simg shub://ddbj/singularity_postgresql:\u0026lt;PostgreSQL\u306e\u30d0\u30fc\u30b8\u30e7\u30f3\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePostgreSQL\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u30af\u30e9\u30b9\u30bf\u30fc\u306e\u521d\u671f\u5316\u003c/h2\u003e\u003ca id=\"user-content-postgresql\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u30af\u30e9\u30b9\u30bf\u30fc\u306e\u521d\u671f\u5316\" class=\"anchor\" aria-label=\"Permalink: PostgreSQL\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u30af\u30e9\u30b9\u30bf\u30fc\u306e\u521d\u671f\u5316\" href=\"#postgresql\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u30af\u30e9\u30b9\u30bf\u30fc\u306e\u521d\u671f\u5316\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u751f\u6210\u307e\u305f\u306f\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u3060\u3051\u3067\u306fPostgreSQL\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u3092\u5b9f\u884c\u3067\u304d\u307e\u305b\u3093\u3002 start_container.sh\u3092\u5b9f\u884c\u3057\u3066singularity instance\u3092\u8d77\u52d5\u3057\u3001\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u30af\u30e9\u30b9\u30bf\u30fc\u306e\u521d\u671f\u5316\u3092\u884c\u3044\u307e\u3059\u3002\n\u30b7\u30a7\u30eb\u30b9\u30af\u30ea\u30d7\u30c8\u306e\u5b9f\u884c\u524d\u306b\u3001\u81ea\u5206\u306e\u74b0\u5883\u306b\u5408\u308f\u305b\u3066 start_container.sh \u306e CONTAINER_HOME, IMAGE, INSTANCE, PORT\u5909\u6570\u3092\u4fee\u6b63\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCONTAINER_HOME\u306b\u306fgit clone\u3067\u3067\u304d\u305f\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306e\u30d5\u30eb\u30d1\u30b9\u3092\u8a18\u8f09\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/li\u003e\n\u003cli\u003eIMAGE\u306b\u306f\u3001image\u751f\u6210\u307e\u305f\u306f\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u306e\u969b\u306b\u6307\u5b9a\u3057\u305f\u30d5\u30a1\u30a4\u30eb\u540d\u3092\u8a18\u8f09\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/li\u003e\n\u003cli\u003ePORT\u5909\u6570\u306f5000\u4ee5\u4e0a\u3067\u4efb\u610f\u306e\u6574\u6570\u3092\u6307\u5b9a\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u30b7\u30a7\u30eb\u30b9\u30af\u30ea\u30d7\u30c8\u3092\u5b9f\u884c\u3059\u308b\u3068\u3001\u521d\u56de\u5b9f\u884c\u6642\u306b\u306f\u4ee5\u4e0b\u306e\u3088\u3046\u306b\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u306e\u521d\u671f\u5316\u304c\u884c\u308f\u308c\u305f\u5f8c\u3067\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u30b5\u30fc\u30d0\u304c\u8d77\u52d5\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash start_container.sh\nThe files belonging to this database system will be owned by user \"\u0026lt;\u30b9\u30af\u30ea\u30d7\u30c8\u306e\u5b9f\u884c\u30e6\u30fc\u30b6\u30fc\u0026gt;\".\nThis user must also own the server process.\n\nThe database cluster will be initialized with locale \"C\".\nThe default text search configuration will be set to \"english\".\n\nData page checksums are disabled.\n\nfixing permissions on existing directory /usr/local/pgsql12/data ... ok\ncreating subdirectories ... ok\nselecting dynamic shared memory implementation ... posix\nselecting default max_connections ... 100\nselecting default shared_buffers ... 128MB\nselecting default time zone ... Japan\ncreating configuration files ... ok\nrunning bootstrap script ... ok\nperforming post-bootstrap initialization ... ok\nsyncing data to disk ... ok\n\ninitdb: warning: enabling \"trust\" authentication for local connections\nYou can change this by editing pg_hba.conf or using the option -A, or\n--auth-local and --auth-host, the next time you run initdb.\n\nSuccess. You can now start the database server using:\n\n pg_ctl -D /usr/local/pgsql12/data -l logfile start\n\nStopping pgsql instance of /gpfs1/lustre2/home/y-okuda/git/singularity_postgresql/ubuntu-18.04-postgresql-12.0.simg (PID=36513)\nwaiting for server to start.... done\nserver started\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePostgreSQL\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u306e\u30b9\u30fc\u30d1\u30fc\u30e6\u30fc\u30b6\u30fc\u306e\u30d1\u30b9\u30ef\u30fc\u30c9\u8a2d\u5b9a\u003c/h2\u003e\u003ca id=\"user-content-postgresql\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u306e\u30b9\u30fc\u30d1\u30fc\u30e6\u30fc\u30b6\u30fc\u306e\u30d1\u30b9\u30ef\u30fc\u30c9\u8a2d\u5b9a\" class=\"anchor\" aria-label=\"Permalink: PostgreSQL\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u306e\u30b9\u30fc\u30d1\u30fc\u30e6\u30fc\u30b6\u30fc\u306e\u30d1\u30b9\u30ef\u30fc\u30c9\u8a2d\u5b9a\" href=\"#postgresql\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u306e\u30b9\u30fc\u30d1\u30fc\u30e6\u30fc\u30b6\u30fc\u306e\u30d1\u30b9\u30ef\u30fc\u30c9\u8a2d\u5b9a\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003esingularity instance\u3092\u8d77\u52d5\u3057\u305f\u30e6\u30fc\u30b6\u30fc\uff08initdb\u3092\u5b9f\u884c\u3057\u305f\u30e6\u30fc\u30b6\u30fc\uff09\u304cPostgreSQL\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u306e\u30b9\u30fc\u30d1\u30fc\u30e6\u30fc\u30b6\u30fc\u306b\u8a2d\u5b9a\u3055\u308c\u3066\u3044\u307e\u3059\u3002\u30b9\u30fc\u30d1\u30fc\u30e6\u30fc\u30b6\u30fc\u306e\u30d1\u30b9\u30ef\u30fc\u30c9\u3092\u8a2d\u5b9a\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec instance://pgsql psql -d postgres -p 55432\npsql (12.0)\nType \"help\" for help.\n\npostgres=# alter role \"\u0026lt;\u30b9\u30af\u30ea\u30d7\u30c8\u306e\u5b9f\u884c\u30e6\u30fc\u30b6\u30fc\u0026gt;\" with password \u0027\u0026lt;\u30d1\u30b9\u30ef\u30fc\u30c9\u0026gt;\u0027;\nALTER ROLE\npostgres=# \\q\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePostgreSQL\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u306e\u4f7f\u7528\u003c/h2\u003e\u003ca id=\"user-content-postgresql\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u306e\u4f7f\u7528\" class=\"anchor\" aria-label=\"Permalink: PostgreSQL\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u306e\u4f7f\u7528\" href=\"#postgresql\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u306e\u4f7f\u7528\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u30d1\u30b9\u30ef\u30fc\u30c9\u306e\u8a2d\u5b9a\u306b\u3088\u308asingularity instance\u306e\u5916\u304b\u3089\u30c7\u30fc\u30bf\u30d9\u30fc\u30b9\u306b\u30a2\u30af\u30bb\u30b9\u3067\u304d\u308b\u3088\u3046\u306b\u306a\u308a\u307e\u3059\u3002\u30a2\u30af\u30bb\u30b9\u306e\u969b\u306f-h\u30aa\u30d7\u30b7\u30e7\u30f3\u3067singularity instance\u3092\u5b9f\u884c\u3057\u3066\u3044\u308b\u30db\u30b9\u30c8\u540d\u3092\u6307\u5b9a\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ psql -d postgres -p 55432 -h at043\n\u30d1\u30b9\u30ef\u30fc\u30c9: \npsql (9.2.24, \u30b5\u30fc\u30d0\u30fc 12.0)\n\u6ce8\u610f\uff1a psql \u30d0\u30fc\u30b8\u30e7\u30f3 9.2, \u30b5\u30fc\u30d0\u30fc\u30d0\u30fc\u30b8\u30e7\u30f3 12.0.\n psql \u306e\u6a5f\u80fd\u306e\u4e2d\u3067\u3001\u52d5\u4f5c\u3057\u306a\u3044\u3082\u306e\u304c\u3042\u308b\u304b\u3082\u3057\u308c\u307e\u305b\u3093\u3002\n\"help\" \u3067\u30d8\u30eb\u30d7\u3092\u8868\u793a\u3057\u307e\u3059.\n\npostgres=# \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u5225\u30ce\u30fc\u30c9\u304b\u3089\u306e\u30a2\u30af\u30bb\u30b9\u3082\u53ef\u80fd\u3067\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ssh at044\nLast login: Fri Nov 1 20:25:26 2019 from at043\n$ psql -d postgres -p 55432 -h at043\n\u30d1\u30b9\u30ef\u30fc\u30c9: \npsql (9.2.24, \u30b5\u30fc\u30d0\u30fc 12.0)\n\u6ce8\u610f\uff1a psql \u30d0\u30fc\u30b8\u30e7\u30f3 9.2, \u30b5\u30fc\u30d0\u30fc\u30d0\u30fc\u30b8\u30e7\u30f3 12.0.\n psql \u306e\u6a5f\u80fd\u306e\u4e2d\u3067\u3001\u52d5\u4f5c\u3057\u306a\u3044\u3082\u306e\u304c\u3042\u308b\u304b\u3082\u3057\u308c\u307e\u305b\u3093\u3002\n\"help\" \u3067\u30d8\u30eb\u30d7\u3092\u8868\u793a\u3057\u307e\u3059.\n\npostgres=# \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u3053\u3053\u3067\u63d0\u4f9b\u3057\u3066\u3044\u308bpg_hba.conf\u306e\u8a18\u8ff0\u3067\u306f\u30a2\u30af\u30bb\u30b9\u53ef\u80fd\u306aIP\u30a2\u30c9\u30ec\u30b9\u306b\u5236\u9650\u304c\u304b\u304b\u3063\u3066\u3044\u307e\u305b\u3093\u3002\u5fc5\u8981\u306b\u5fdc\u3058\u3066\u4fee\u6b63\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1620137534.0
+ "updated_at": 1618363302.0
},
{
"data_format": 2,
- "description": "Singularity example 14: installing R packages",
+ "description": "RepeatMasker singularity image recipe",
"filenames": [
- "Singularity_1",
- "Singularity_3",
- "Singularity_5",
- "Singularity_2"
+ "Singularity",
+ "Singularity.4.0.8"
],
- "full_name": "richelbilderbeek/singularity_example_14",
- "latest_release": "v1.0",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity_example_14\u003c/h1\u003e\u003ca id=\"user-content-singularity_example_14\" class=\"anchor\" aria-label=\"Permalink: singularity_example_14\" href=\"#singularity_example_14\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity example 14: installing R packages.\u003c/p\u003e\n\u003cp\u003eThe goal of this example is to create a Singularity image with\nan R package installed and using it on an R script.\u003c/p\u003e\n\u003cp\u003eThe R package we\u0027ll use is \u003ca href=\"https://CRAN.R-project.org/package=glue\" rel=\"nofollow\"\u003eglue\u003c/a\u003e,\nas it is a simple R package without dependencies.\u003c/p\u003e\n\u003cp\u003eThis is the R script, called \u003ca href=\"script.R\"\u003escript.R\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eglue::glue(\"Hello {target}\", target = \"world\")\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ccode\u003eAttempt 3: clean up\u003c/code\u003e is the best way:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ebuild with sudo (i.e. no \u003ccode\u003e--fakeroot\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003esend the script text to the container, not the script filename\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAttempt 1: Singularity does not run scripts\u003c/h1\u003e\u003ca id=\"user-content-attempt-1-singularity-does-not-run-scripts\" class=\"anchor\" aria-label=\"Permalink: Attempt 1: Singularity does not run scripts\" href=\"#attempt-1-singularity-does-not-run-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"Singularity_1\"\u003eSingularity_1\u003c/a\u003e is a minimal Singularity container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap: docker\nFrom: r-base\n\n%post\n Rscript -e \u0027install.packages(\"glue\")\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"build_singularity_1.sh\"\u003ebuild_singularity_1.sh\u003c/a\u003e is a simple shell script\nto build a container from \u003ca href=\"Singularity_1\"\u003eSingularity_1\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\nsudo -E singularity build singularity_1.sif Singularity_1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"run_singularity_1.sh\"\u003erun_singularity_1.sh\u003c/a\u003e is a simple shell script\nto run the container built from \u003ca href=\"Singularity_1\"\u003eSingularity_1\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\nsudo -E singularity build singularity_1.sif Singularity_1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning this locally goes fine.\u003c/p\u003e\n\u003cp\u003eThe error GHA gives, however, is:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRun ./run_singularity_1.sh\nFatal error: cannot open file \u0027script.R\u0027: No such file or directory\nError: Process completed with exit code 2.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis is a common theme: Singularity cannot run scripts.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAttempt 2: Singularity can run script text\u003c/h1\u003e\u003ca id=\"user-content-attempt-2-singularity-can-run-script-text\" class=\"anchor\" aria-label=\"Permalink: Attempt 2: Singularity can run script text\" href=\"#attempt-2-singularity-can-run-script-text\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"Singularity_2\"\u003eSingularity_2\u003c/a\u003e is a minimal Singularity container,\nwith a \u003ccode\u003erunscript\u003c/code\u003e section added:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap: docker\nFrom: r-base\n\n%apprun R\nexec R \"$@\"\n\n%apprun Rscript\nexec Rscript \"$@\"\n\n%runscript\nexec Rscript \"$@\"\n# exec R \"$@\"\n\n%post\n Rscript -e \u0027install.packages(\"glue\")\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"build_singularity_2.sh\"\u003ebuild_singularity_2.sh\u003c/a\u003e is a simple shell script\nto build a container from \u003ca href=\"Singularity_2\"\u003eSingularity_2\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\nsudo -E singularity build singularity_2.sif Singularity_2\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"run_singularity_2.sh\"\u003erun_singularity_2.sh\u003c/a\u003e is a simple shell script\nto run the container built from \u003ca href=\"Singularity_2\"\u003eSingularity_2\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\ncat script.R | singularity exec singularity_2.sif R --vanilla --silent --no-echo\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning this locally goes fine, also on GitHub Actions!\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAttempt 3: clean up\u003c/h1\u003e\u003ca id=\"user-content-attempt-3-clean-up\" class=\"anchor\" aria-label=\"Permalink: Attempt 3: clean up\" href=\"#attempt-3-clean-up\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003eTHIS IS THE BEST WAY\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"Singularity_3\"\u003eSingularity_3\u003c/a\u003e is a minimal Singularity container,\nwith a \u003ccode\u003erunscript\u003c/code\u003e section added:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap: docker\nFrom: r-base\n\n%runscript\nexec R --vanilla --silent --no-echo \"$@\"\n\n%post\n Rscript -e \u0027install.packages(\"glue\")\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"build_singularity_3.sh\"\u003ebuild_singularity_3.sh\u003c/a\u003e is a simple shell script\nto build a container from \u003ca href=\"Singularity_3\"\u003eSingularity_3\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\nsudo -E singularity build singularity_3.sif Singularity_3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"run_singularity_3.sh\"\u003erun_singularity_3.sh\u003c/a\u003e is a simple shell script\nto run the container built from \u003ca href=\"Singularity_3\"\u003eSingularity_3\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\ncat script.R | ./singularity_3.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning this locally goes fine, also on GitHub Actions!\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAttempt 4: fakeroot experiment\u003c/h1\u003e\u003ca id=\"user-content-attempt-4-fakeroot-experiment\" class=\"anchor\" aria-label=\"Permalink: Attempt 4: fakeroot experiment\" href=\"#attempt-4-fakeroot-experiment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn this case, we\u0027ll re-use \u003ca href=\"Singularity_3\"\u003eSingularity_3\u003c/a\u003e,\nyet build it differently, using the\n\u003ca href=\"https://sylabs.io/guides/3.8/user-guide/fakeroot.html?highlight=fakeroot\" rel=\"nofollow\"\u003efakeroot\u003c/a\u003e\nfeature.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"build_singularity_4.sh\"\u003ebuild_singularity_4.sh\u003c/a\u003e is a simple shell script\nto build a container from \u003ca href=\"Singularity_3\"\u003eSingularity_3\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\nsingularity build --fakeroot singularity_4.sif Singularity_3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"run_singularity_4.sh\"\u003erun_singularity_4.sh\u003c/a\u003e is a simple shell script\nto run the container built from \u003ca href=\"Singularity_4\"\u003eSingularity_4\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\ncat script.R | ./singularity_4.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning this locally goes fine, but fails on GitHub Actions:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRun ./build_singularity_4.sh\nFATAL: could not use fakeroot: no mapping entry found in /etc/subuid for root\nError: Process completed with exit code 255.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eApparently, GHA does not support that mapping.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAttempt 5: run script directly revised\u003c/h1\u003e\u003ca id=\"user-content-attempt-5-run-script-directly-revised\" class=\"anchor\" aria-label=\"Permalink: Attempt 5: run script directly revised\" href=\"#attempt-5-run-script-directly-revised\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"Singularity_5\"\u003eSingularity_5\u003c/a\u003e is a minimal Singularity container,\nwith a \u003ccode\u003erunscript\u003c/code\u003e section added:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap: docker\nFrom: r-base\n\n%runscript\nexec Rscript \"$@\"\n\n%post\n Rscript -e \u0027install.packages(\"glue\")\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"build_singularity_5.sh\"\u003ebuild_singularity_5.sh\u003c/a\u003e is a simple shell script\nto build a container from \u003ca href=\"Singularity_5\"\u003eSingularity_5\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\nsingularity build --fakeroot singularity_5.sif Singularity_5\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"run_singularity_5.sh\"\u003erun_singularity_5.sh\u003c/a\u003e is a simple shell script\nto run the container built from \u003ca href=\"Singularity_5\"\u003eSingularity_5\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\n./singularity_5.sif script.R\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning this locally goes fine, but fails on GitHub Actions:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRun ./build_singularity_5.sh\nFATAL: could not use fakeroot: no mapping entry found in /etc/subuid for root\nError: Process completed with exit code 255.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAttempt 6: run script, container built with sudo\u003c/h1\u003e\u003ca id=\"user-content-attempt-6-run-script-container-built-with-sudo\" class=\"anchor\" aria-label=\"Permalink: Attempt 6: run script, container built with sudo\" href=\"#attempt-6-run-script-container-built-with-sudo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHere we will re-use \u003ca href=\"Singularity_5\"\u003eSingularity_5\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"build_singularity_6.sh\"\u003ebuild_singularity_6.sh\u003c/a\u003e is a simple shell script\nto build a container from \u003ca href=\"Singularity_5\"\u003eSingularity_5\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\nsudo -E singularity build singularity_6.sif Singularity_5\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"run_singularity_6.sh\"\u003erun_singularity_6.sh\u003c/a\u003e is a simple shell script\nto run the container built from \u003ca href=\"Singularity_5\"\u003eSingularity_5\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\n./singularity_6.sif script.R\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning this locally goes fine, however, on GHA this goes the classic sideways again:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRun ./run_singularity_6.sh\nFatal error: cannot open file \u0027script.R\u0027: No such file or directory\nError: Process completed with exit code 2.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "tpall/repeatmasker-singularity",
+ "latest_release": "v0.9",
+ "readme": "\u003cp\u003e\u003ca href=\"https://doi.org/10.5281/zenodo.2671673\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/05b4f48cf033550d0ad2dce2ad5b66ea091ef2b8baff1ff6ca0ed9c41194328f/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e323637313637332e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.2671673.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://travis-ci.org/tpall/repeatmasker-singularity\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2ac9880bdf7d2fd57847145748defa6ac26f6aaf31cc4fe84e4668d2846e890a/68747470733a2f2f7472617669732d63692e6f72672f7470616c6c2f7265706561746d61736b65722d73696e67756c61726974792e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/tpall/repeatmasker-singularity.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eRepeatMasker singularity image\u003c/h1\u003e\u003ca id=\"user-content-repeatmasker-singularity-image\" class=\"anchor\" aria-label=\"Permalink: RepeatMasker singularity image\" href=\"#repeatmasker-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repo contains singularity image recipes for RepeatMasker 4.0.8 and 4.0.9(p2) together with RepBase RepeatMasker Edition database v20181026. RepBase RM database was installed from the private copy downloaded from \u003ca href=\"https://www.girinst.org/repbase\" rel=\"nofollow\"\u003egirinst.org\u003c/a\u003e before them fully switching to a \u003ca href=\"https://www.girinst.org/repbase/sub_announcement.html\" rel=\"nofollow\"\u003esubscription-based funding model\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eBuilt RM-4.0.9p2 image can be downloaded from Zenodo.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCommand line:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec /path/to/repeatmasker409.simg /usr/local/bin/RepeatMasker test/seqs/small-1.fa\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1627629507.0
+ "updated_at": 1557682456.0
},
{
"data_format": 2,
- "description": "Singularity example 1: Hello World",
+ "description": "Repository for a singularity container to run the prob_mbrl code",
"filenames": [
"Singularity"
],
- "full_name": "richelbilderbeek/singularity_example_1",
- "latest_release": "v2.0",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity_example_1\u003c/h1\u003e\u003ca id=\"user-content-singularity_example_1\" class=\"anchor\" aria-label=\"Permalink: singularity_example_1\" href=\"#singularity_example_1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eBranch\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://github.com/richelbilderbeek/singularity_example_1/actions\"\u003e\u003cimg src=\"GitHubActions.png\" alt=\"GitHub Actions logo\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emaster\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/richelbilderbeek/singularity_example_1/workflows/build_singularity/badge.svg?branch=master\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/singularity_example_1/workflows/build_singularity/badge.svg?branch=master\" alt=\"build_singularity\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003edevelop\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/richelbilderbeek/singularity_example_1/workflows/build_singularity/badge.svg?branch=develop\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/singularity_example_1/workflows/build_singularity/badge.svg?branch=develop\" alt=\"build_singularity\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eSingularity example 1: Hello World.\u003c/p\u003e\n\u003cp\u003eSee \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e (a script) to see what the container does.\u003c/p\u003e\n\u003cp\u003eThis repo builds the container, runs it and uploads it.\u003c/p\u003e\n",
+ "full_name": "juancamilog/prob_mbrl_container",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eprob_mbrl_container\u003c/h1\u003e\u003ca id=\"user-content-prob_mbrl_container\" class=\"anchor\" aria-label=\"Permalink: prob_mbrl_container\" href=\"#prob_mbrl_container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1627290514.0
+ "updated_at": 1568145713.0
},
{
"data_format": 2,
@@ -2248,1651 +1884,1645 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "researchapps/fasta-utilities",
+ "full_name": "CNCLgithub/psiturk-sing",
+ "latest_release": "v1.1.0",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePsiturk singularity container\u003c/h1\u003e\u003ca id=\"user-content-psiturk-singularity-container\" class=\"anchor\" aria-label=\"Permalink: Psiturk singularity container\" href=\"#psiturk-singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe definition file describes a lightweight, apline-based container to run psiturk\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBuild or pull the container\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePulling\u003c/h3\u003e\u003ca id=\"user-content-pulling\" class=\"anchor\" aria-label=\"Permalink: Pulling\" href=\"#pulling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis container is hosted at \u003ca href=\"https://cloud.sylabs.io/library/mebelledonne/default/psiturk-apline\" rel=\"nofollow\"\u003ehttps://cloud.sylabs.io/library/mebelledonne/default/psiturk-apline\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eCan be pulled using the following commands (see link above for up-to-date info)\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Pull with Singularity\u003c/span\u003e\n$ singularity pull --arch amd64 library://mebelledonne/default/psiturk-apline:1.0.0\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Pull by unique ID (reproducible even if tags change)\u003c/span\u003e\n$ singularity pull library://mebelledonne/default/psiturk-apline:sha256.4fd46933f838844df2dc14e09651f07d3d322a13c7a0458942028e8347f2addb\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning\u003c/h3\u003e\u003ca id=\"user-content-running\" class=\"anchor\" aria-label=\"Permalink: Running\" href=\"#running\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity shell psiturk.sif\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e now inside the container\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e /where/your/project/is/psiturk\npsiturk \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e + any addition args you might want to pass \u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 3,
+ "topics": [],
+ "updated_at": 1601405204.0
+ },
+ {
+ "data_format": 2,
+ "description": null,
+ "filenames": [
+ "Singularity",
+ "v0.8.13/DB20190619/Singularity.v0.8.13_DB20190619",
+ "v0.8/DB20180717/Singularity.v0.8_DB20180717",
+ "v0.8/DB20190618/Singularity.v0.8_DB20190618"
+ ],
+ "full_name": "phgenomics-singularity/abricate_k",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eFasta Utilities\u003c/h1\u003e\u003ca id=\"user-content-fasta-utilities\" class=\"anchor\" aria-label=\"Permalink: Fasta Utilities\" href=\"#fasta-utilities\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is a Singularity build file for the \u003ca href=\"https://github.com/jimhester/fasta_utilities\"\u003efasta-utilities\u003c/a\u003e library.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e1. Install Singularity\u003c/h2\u003e\u003ca id=\"user-content-1-install-singularity\" class=\"anchor\" aria-label=\"Permalink: 1. Install Singularity\" href=\"#1-install-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstructions can be found on the \u003ca href=\"https://singularityware.github.io\" rel=\"nofollow\"\u003esingularity site\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e2. Download this repo\u003c/h2\u003e\u003ca id=\"user-content-2-download-this-repo\" class=\"anchor\" aria-label=\"Permalink: 2. Download this repo\" href=\"#2-download-this-repo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://www.github.com/singularituhub/fasta-utilities\ncd fasta-utilities\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e3. Bootstrap the image\u003c/h2\u003e\u003ca id=\"user-content-3-bootstrap-the-image\" class=\"anchor\" aria-label=\"Permalink: 3. Bootstrap the image\" href=\"#3-bootstrap-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity create fasta-utils.img\nsudo singularity bootstrap fasta-utils.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e4. Run commands\u003c/h2\u003e\u003ca id=\"user-content-4-run-commands\" class=\"anchor\" aria-label=\"Permalink: 4. Run commands\" href=\"#4-run-commands\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWhat commands are in bin?\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e $ ./fasta-utils.img ls\n2big.pl\t\t\t fetch_entrez.pl\t pairs_unsorted.pl\nCpG_count.pl\t\t fetch_gi.pl\t\t percent_GC.pl\nabsolute_coordinates.pl fetch_sra.pl\t\t regex_fasta.pl\nadd_type.pl\t\t filter_align.pl\t remap_file.pl\nalign_progress.pl\t filter_bam.pl\t\t remove_ambiguous.pl\nascii2csv.pl\t\t filter_reads.pl\t rename_script.pl\navg_coverage.pl\t\t fix_headers.pl\t\t reverse_complement.pl\nbed2fasta.pl\t\t generate_fasta.pl\t sam2fastq.pl\nbed2igv.pl\t\t generate_map.pl\t sam_lengths.pl\nbisulfite_convert.pl\t get_fasta.pl\t\t sequence_counts.pl\nblast_information.pl\t gff2bed.pl\t\t size.pl\ncalcN.pl\t\t gff2data_frame.pl\t size_select.pl\ncollapse_duplicates.pl\t grep.pl\t\t sort.pl\ncombine_bed.pl\t\t in_list.pl\t\t splice.pl\ncommify.pl\t\t lengths.pl\t\t split_fasta.pl\nconsensus.pl\t\t maf2bed.pl\t\t standardize_names.pl\ndistances.pl\t\t mate_pair2paired_end.pl subset_fasta.pl\nfasta2fastq.pl\t\t merge_records.pl\t trans_fasta.pl\nfasta_head.pl\t\t mpileup_consensus.pl\t trim_fasta.pl\nfasta_tail.pl\t\t mpileup_counts.pl\t unique_headers.pl\nfastq2fasta.pl\t\t pairs_sorted.pl\t wrap.pl\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun a command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e ./fasta-utils.img perl add_type.pl\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eMount the data directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity run -b /path/to/data:/data/ fasta-utils.img\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo specify inputs and outputs, and run with data (not tested)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity run -b /path/to/data:/data/ fasta-utils.img perl in_list.pl [args]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eShell into a (writable) container to test changes (that you should then add to the build file \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e sudo singularity shell --writable fasta-utils.img\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAbricate --- A Singularity Container\u003c/h1\u003e\u003ca id=\"user-content-abricate-----a-singularity-container\" class=\"anchor\" aria-label=\"Permalink: Abricate --- A Singularity Container\" href=\"#abricate-----a-singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/1288\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity container for \u003ca href=\"https://github.com/tseemann/abricate\"\u003eAbricate\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePre-requisite\u003c/h2\u003e\u003ca id=\"user-content-pre-requisite\" class=\"anchor\" aria-label=\"Permalink: Pre-requisite\" href=\"#pre-requisite\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstall \u003ca href=\"http://singularity.lbl.gov/docs-installation\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eLatest version\u003c/h3\u003e\u003ca id=\"user-content-latest-version\" class=\"anchor\" aria-label=\"Permalink: Latest version\" href=\"#latest-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following steps are needed to use the image:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003ePull the image:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name TMP_DIRECTORY shub://phgenomics-singularity/Abricate@latest\n\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis will command will create a file \u003ccode\u003eAbricate.simg\u003c/code\u003e, which is executable.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUse the image:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./Abricate.simg --help\n\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eA particular version\u003c/h3\u003e\u003ca id=\"user-content-a-particular-version\" class=\"anchor\" aria-label=\"Permalink: A particular version\" href=\"#a-particular-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name mlst shub://phgenomics-singularityAbricate@VERSION.NUMBER\n\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSuggested pattern\u003c/h2\u003e\u003ca id=\"user-content-suggested-pattern\" class=\"anchor\" aria-label=\"Permalink: Suggested pattern\" href=\"#suggested-pattern\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eCreate a \u003ccode\u003esingularity\u003c/code\u003e folder:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emkdir HOME/singularity\n\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ePull the image to the \u003ccode\u003esingularity\u003c/code\u003e folder.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name Abricate shub://phgenomics-singularity/Abricate@latest\n\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eLink the image to a folder in your \u003ccode\u003ePATH\u003c/code\u003e (e.g., \u003ccode\u003eHOME/bin\u003c/code\u003e)\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eln -s HOME/singularity/Abricate.simg HOME/bin/Abricate\n\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eNow, when you login again, you should be able to just type:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e abricate --help\n\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUpdating the DB\u003c/h2\u003e\u003ca id=\"user-content-updating-the-db\" class=\"anchor\" aria-label=\"Permalink: Updating the DB\" href=\"#updating-the-db\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eRun the \u003ccode\u003eupdate_db.py\u003c/code\u003e script (default version is 0.8 at the moment)\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [],
- "updated_at": 1484506830.0
+ "updated_at": 1576546683.0
},
{
"data_format": 2,
- "description": "Arkiweb docker image",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "ARPA-SIMC/arkiweb-docker-image",
+ "full_name": "StefReck/OrcaNet",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003earkiweb-docker-image\u003c/h1\u003e\u003ca id=\"user-content-arkiweb-docker-image\" class=\"anchor\" aria-label=\"Permalink: arkiweb-docker-image\" href=\"#arkiweb-docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/ARPA-SIMC/arkiweb/\"\u003eArkiweb\u003c/a\u003e recently became\nincompatible with the \u003ca href=\"https://github.com/ARPA-SIMC/arkimet/\"\u003earkimet\u003c/a\u003e\nC++ API\u0027s. This package allows to create a docker container including\na web server, arkiweb and an arkiweb-compatible version of arkimet, to\nbe run within a host having a newer arkimet version, replacing arkiweb\non the host. This allows to keep arkiweb running while keeping arkimet\nupdated to the latest version.\u003c/p\u003e\n\u003cp\u003eThe web server in the host talks with the web server in the container\nthrough apache \u003ccode\u003emod_proxy\u003c/code\u003e module, while the arkiweb in the container\ninteracts with the arkimet datasets in the host through the host\narkimet server http interface.\u003c/p\u003e\n\u003cp\u003eFor more detailed instruction on how to build and start the docker\nimage and configure the system, see the \u003ca href=\"HOWTO_it.md\"\u003eHOWTO\u003c/a\u003e in\nItalian.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1636458123.0
+ "updated_at": 1628086621.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Container configuration file for GPU+Singularity tests.",
"filenames": [
- "containers/Singularity.omnia.rocm"
+ "Singularity",
+ "Singularity.1404",
+ "Singularity.1604"
],
- "full_name": "PhilipVinc/uvtest",
+ "full_name": "ruycastilho/GPUtest",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eOmnia\u003c/h1\u003e\u003ca id=\"user-content-omnia\" class=\"anchor\" aria-label=\"Permalink: Omnia\" href=\"#omnia\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is a single repository containing all working codes of the group.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStructure\u003c/h2\u003e\u003ca id=\"user-content-structure\" class=\"anchor\" aria-label=\"Permalink: Structure\" href=\"#structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e/packages # contains packages used by multiple users\n # This contains both internal versions of public packages\n # (netket) and private packages.\n```\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1732149584.0
+ "updated_at": 1504295844.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Docker and Singularity images for FSL 5.11 and Resting State FMRI pipeline (Nan-kuei Chen/Duke University)",
"filenames": [
"Singularity"
],
- "full_name": "rses-singularity/fsl-debian-stretch-singularity",
+ "full_name": "chidiugonna/nklab-neuro-fsl",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity image definition for FSL\u003c/h1\u003e\u003ca id=\"user-content-singularity-image-definition-for-fsl\" class=\"anchor\" aria-label=\"Permalink: Singularity image definition for FSL\" href=\"#singularity-image-definition-for-fsl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eMaking it easier to start using \u003ca href=\"https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/\" rel=\"nofollow\"\u003eFSL\u003c/a\u003e on e.g. HPC.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2514\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSee \u003ca href=\"LICENSE.txt\"\u003eLICENSE.txt\u003c/a\u003e, particularly the conditions regarding commercial use.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning FSL within a Singularity container using this Singularity image definition\u003c/h2\u003e\u003ca id=\"user-content-running-fsl-within-a-singularity-container-using-this-singularity-image-definition\" class=\"anchor\" aria-label=\"Permalink: Running FSL within a Singularity container using this Singularity image definition\" href=\"#running-fsl-within-a-singularity-container-using-this-singularity-image-definition\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe quickest way to start using FSL via this Singularity image is to\npull the image from the \u003ca href=\"http://singularity-hub.org/\" rel=\"nofollow\"\u003eSingularityHub\u003c/a\u003e on-line repository:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e SINGULARITY_CACHEDIR=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/home/\u003cspan class=\"pl-smi\"\u003e$USER\u003c/span\u003e/singularity_cache\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\nmkdir -p \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e${SINGULARITY_CACHEDIR}\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\nsingularity pull --name fsl-debian-stretch-singularity-latest.sif shub://rses-singularity/fsl-debian-stretch-singularity:latest \nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e${SINGULARITY_CACHEDIR}\u003c/span\u003e/fsl-debian-stretch-singularity-latest.sif\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e /bin/bash\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAfter running \u003ccode\u003esingularity exec\u003c/code\u003e you are then able to run commands \u0027within\u0027 a FSL \u0027container\u0027 e.g.\n\u003ccode\u003efsl-selftest\u003c/code\u003e or \u003ccode\u003efsl5.0-gps\u003c/code\u003e. Note that most FSL commands start with \u003ccode\u003efsl5.0-\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eA note re SingularityHub: the \u003ca href=\"https://www.singularity-hub.org/collections/2514\" rel=\"nofollow\"\u003eFSL image provided via SingularityHub\u003c/a\u003e is\nrebuilt whenever there is a push to this GitHub repository.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding a Singularity image and running a FSL container \u003cem\u003ewithout\u003c/em\u003e using SingularityHub\u003c/h2\u003e\u003ca id=\"user-content-building-a-singularity-image-and-running-a-fsl-container-without-using-singularityhub\" class=\"anchor\" aria-label=\"Permalink: Building a Singularity image and running a FSL container without using SingularityHub\" href=\"#building-a-singularity-image-and-running-a-fsl-container-without-using-singularityhub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you don\u0027t want to use the SingularityHub-built image then you can build it yourself \u003cstrong\u003eon your own machine\u003c/strong\u003e (not HPC):\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eMake sure you have Singularity installed.\u003c/li\u003e\n\u003cli\u003eEnsure you\u0027re read the \u003ca href=\"LICENSE.txt\"\u003eFSL license\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eInspect the \u003ca href=\"Singularity\"\u003eSingularity image definition in this repo\u003c/a\u003e; this includes steps to:\n\u003cul\u003e\n\u003cli\u003eInstall FSL.\u003c/li\u003e\n\u003cli\u003eInstall the \u003ca href=\"https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEEDS\" rel=\"nofollow\"\u003eFSL Evaluation and Example Data Suite (FEEDS)\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eStart building an image file:\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo SINGULARITY_TMPDIR=\u003cspan class=\"pl-smi\"\u003e$HOME\u003c/span\u003e/.cache/singularity singularity build ./fsl-debian-stretch-singularity.sif ./Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eTo start a FSL container using this image:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e ./fsl-debian-stretch-singularity.sif /bin/bash\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ethen from the resulting shell start the FSL command you want to use.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTesting FSL inside a container\u003c/h2\u003e\u003ca id=\"user-content-testing-fsl-inside-a-container\" class=\"anchor\" aria-label=\"Permalink: Testing FSL inside a container\" href=\"#testing-fsl-inside-a-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003efsl-selftest\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDocker and Singularity images for FSL 5.11 and Resting State FMRI pipeline (Nan-kuei Chen/Duke University)\u003c/h1\u003e\u003ca id=\"user-content-docker-and-singularity-images-for-fsl-511-and-resting-state-fmri-pipeline-nan-kuei-chenduke-university\" class=\"anchor\" aria-label=\"Permalink: Docker and Singularity images for FSL 5.11 and Resting State FMRI pipeline (Nan-kuei Chen/Duke University)\" href=\"#docker-and-singularity-images-for-fsl-511-and-resting-state-fmri-pipeline-nan-kuei-chenduke-university\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePlease refer to \u003ca href=\"https://wiki.biac.duke.edu/biac:analysis:resting_pipeline\" rel=\"nofollow\"\u003ehttps://wiki.biac.duke.edu/biac:analysis:resting_pipeline\u003c/a\u003e for details of use.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSummary\u003c/h1\u003e\u003ca id=\"user-content-summary\" class=\"anchor\" aria-label=\"Permalink: Summary\" href=\"#summary\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository contains the build scripts for Docker and Singularity images of the Duke resting pipeline that perform processing of resting state data using FSL (Jenkinson et al. 2012) tools and custom scripts.\u003c/p\u003e\n\u003cp\u003eversion information can be obtained as \u003ccode\u003edocker run --rm orbisys/nklab-neuro-fsl -V\u003c/code\u003e and \u003ccode\u003esingularity run orbisys/nklab-neuro-fsl -V\u003c/code\u003e\nhelp information can be obtained as \u003ccode\u003edocker run --rm orbisys/nklab-neuro-fsl -h\u003c/code\u003e and \u003ccode\u003esingularity run orbisys/nklab-neuro-fsl -h\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe Docker image will be quite large when built. It comes with version 5.11 of FSL and also includes gpu versions of eddy, probtrackx and bedpostx. It is recommended if possible to use the Singularity version of this container.\u003c/p\u003e\n\u003cp\u003eAlternatively if you do not want to build the docker image locally you can pull it from the Docker hub using the command \u003ccode\u003edocker run -it --rm -v $PWD:/opt/data orbisys/nklab-neuro-fsl\u003c/code\u003e or \u003ccode\u003edocker pull orbisys/nklab-neuro-fsl\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe Singularity image will be about 6GB when built. It comes with version 5.11 of FSL and also includes gpu versions of eddy, probtrackx and bedpostx. Again if you prefer not to build this locally then a sister version of this singularity image can be downloaded as \u003ccode\u003eSingularity pull shub://chidiugonna/nklab-neuro-fsl\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIntroduction\u003c/h2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe original python source \u003ccode\u003eresting_pipeline.py\u003c/code\u003e available at at [\u003ca href=\"https://wiki.biac.duke.edu/biac:analysis:resting_pipeline\" rel=\"nofollow\"\u003ehttps://wiki.biac.duke.edu/biac:analysis:resting_pipeline\u003c/a\u003e] has been slightly amended. These changes are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003edata1\u003c/code\u003e has been selectively converted to dtype \u003ccode\u003enumpy.float64\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eslice indices have been cast as longs in certain instances.\u003c/li\u003e\n\u003cli\u003eBXH functionality is ignored. To explicitly use BXH info pass the flag --ignorebxh=N\u003c/li\u003e\n\u003cli\u003eChanges have been made in step 8 to force the diagonals of the correlation matrix to zero to prevent inconsistencies due to NaNs.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSliding window functionality\u003c/h3\u003e\u003ca id=\"user-content-sliding-window-functionality\" class=\"anchor\" aria-label=\"Permalink: Sliding window functionality\" href=\"#sliding-window-functionality\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA new step has been added \u003ccode\u003e-7sw\u003c/code\u003e to enable sliding window functionality. In order to use this step you will need to use the \u003ccode\u003e--slidewin\u003c/code\u003e parameter which takes 2 numbers seperated by a comma. The 1st number is the window size in seconds and the second number is the shift in seconds between sequential windows. So for example \u003ccode\u003e--slidewin=60,3\u003c/code\u003e will use a window size of \u003ccode\u003e60\u003c/code\u003e seconds shifted by \u003ccode\u003e3\u003c/code\u003e seconds for each subsequent window. Keep in mind that the \u003ccode\u003e--tr\u003c/code\u003e (in milliseconds) parameter is required to calculate the number of volumes to use for each sliding window correlation. If you do not specify the --slidwin parameter and run step \u003ccode\u003e7sw\u003c/code\u003e then default values of \u003ccode\u003e30,3\u003c/code\u003e will be used. Sliding window files are exported to a new directory \u003ccode\u003eSlidingWindow_W_S\u003c/code\u003e and image files are consolidated into 4D volumes for viewing in FSL as a movie\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eExtensions to Slice Correction functionality\u003c/h3\u003e\u003ca id=\"user-content-extensions-to-slice-correction-functionality\" class=\"anchor\" aria-label=\"Permalink: Extensions to Slice Correction functionality\" href=\"#extensions-to-slice-correction-functionality\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe pipeline has been extended to accept custom slice correction timing files. A python script \u003ccode\u003emake_fsl_stc.py\u003c/code\u003e has been bundled in this container which can take .json files created by dcm2niix. This python program will create a slice correction file with timing values and one with slices in order of acquisition. It can be called as follows:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003e/opt/rsfmri_python/bin/make_fsl_stc.py fmri.json\u003c/code\u003e where fmri.json is the json output from dcm2niix. custom names for the slice order and slice time files can be provided as parameters as follows:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003emake_fsl_stc.py fmri.json --slicenum=/path/num.txt --slicetime=/path/time.txt\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eOtherwise these files default to \u003ccode\u003esliceorder.txt\u003c/code\u003e and \u003ccode\u003eslicetimes.txt\u003c/code\u003e in the current directory.\u003c/p\u003e\n\u003cp\u003eIf \u003ccode\u003e--slicetime\u003c/code\u003e is provided and --sliceorder is not then only the slicetimes textfile is created. The opposite is true if \u003ccode\u003e--slicenum\u003c/code\u003e is provided.\u003c/p\u003e\n\u003cp\u003eOnce these custom files have been created then they can be provided to the resting state pipeline using the full path as input to the \u003ccode\u003e--sliceorder\u003c/code\u003e parameter\n\u003ccode\u003e--sliceorder=/path/num.txt\u003c/code\u003e as follows \u003ccode\u003edocker run --rm -v $PWD:/opt/data orbisys/rest-state-fmri /opt/rsfmri_python/bin/resting_pipeline.py --func /opt/data/fmri-std-pre.nii.gz -o restoutput --steps=1,2,3,4,5,6,7,8 --slidewin=30,3 --sliceorder=/opt/data/slicetimes.txt --slicetiming=time --tr=3000\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eplease note that the default custom slice file expected uses slice order. If you pass a text file with slice times then you will need to use another parameter \u003ccode\u003e--slicetimings=time\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDocker\u003c/h2\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-label=\"Permalink: Docker\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eBuild Docker Image\u003c/h3\u003e\u003ca id=\"user-content-build-docker-image\" class=\"anchor\" aria-label=\"Permalink: Build Docker Image\" href=\"#build-docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eYou will need to have docker installed. Simply clone this repository to a convenient directory.\u003c/li\u003e\n\u003cli\u003eNavigate into the \u003ccode\u003erest-state-fmri\u003c/code\u003edirectory and check that have a Docker file \u003ccode\u003eDockerfile\u003c/code\u003e and the directory \u003ccode\u003esrc\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eConfirm that \u003ccode\u003esrc\u003c/code\u003e folder and the \u003ccode\u003esrc/resting_pipeline.py\u003c/code\u003e file have full read and write privileges. if not then \u003ccode\u003esudo chmod -R 777 src\u003c/code\u003e should accomplish this.\u003c/li\u003e\n\u003cli\u003eNow build the image as follows \u003ccode\u003esudo docker build -t orbisys/nklab-neuro-fsl .\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRun Docker Image\u003c/h3\u003e\u003ca id=\"user-content-run-docker-image\" class=\"anchor\" aria-label=\"Permalink: Run Docker Image\" href=\"#run-docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eWithin Shell\u003c/h4\u003e\u003ca id=\"user-content-within-shell\" class=\"anchor\" aria-label=\"Permalink: Within Shell\" href=\"#within-shell\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eNavigate to a directory with a test NIFTII image and enter \u003ccode\u003edocker run -it --rm -v $PWD:/opt/data --entrypoint /bin/bash orbisys/nklab-neuro-fsl\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eThe docker image should run and automatically start in \u003ccode\u003e/opt/data\u003c/code\u003e directory which is mapped to the original directory from which you ran the image. The prompt should look something like below:\n\u003ccode\u003eroot@62e040b47368:/opt/data#\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eYou can now run the pipeline with the shell as follows: \u003ccode\u003eresting_pipeline.py --func PBIA6_26386_20140402_045154_93696_magnitude.nii --throwaway=4 --steps=2,3,4,5,6,7 -o PBIA6_26386_20140402_045154_93696 --sliceorder=odd --tr=5000\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eAs a one line command\u003c/h4\u003e\u003ca id=\"user-content-as-a-one-line-command\" class=\"anchor\" aria-label=\"Permalink: As a one line command\" href=\"#as-a-one-line-command\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eNavigate to a directory with a test NIFTII image and enter:\n\u003ccode\u003edocker run --rm -v $PWD:/opt/data orbisys/rest-state-fmri /opt/rsfmri_python/bin/resting_pipeline.py --func moco14a0001.nii.gz --steps=1,2,3,4,5,6,7,8 -o 14a0001 --sliceorder=\"even\" --tr=3000\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eRunning Gui within docker\u003c/h4\u003e\u003ca id=\"user-content-running-gui-within-docker\" class=\"anchor\" aria-label=\"Permalink: Running Gui within docker\" href=\"#running-gui-within-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo access GUI interaces of programs in the docker image then use the construct shown next (Courtesy of work by Fabio Rehm [\u003ca href=\"https://fabiorehm.com/blog/2014/09/11/running-gui-apps-with-docker/\" rel=\"nofollow\"\u003ehttps://fabiorehm.com/blog/2014/09/11/running-gui-apps-with-docker/\u003c/a\u003e] ). For example to run FSL as GUI then perform the following:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esudo docker run --rm -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix -v $HOME/.Xauthority:/home/developer/.Xauthority -it --net=host --pid=host --ipc=host orbisys/rest-state-fmri fsl\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eExample Commands\u003c/h3\u003e\u003ca id=\"user-content-example-commands\" class=\"anchor\" aria-label=\"Permalink: Example Commands\" href=\"#example-commands\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eCreate Slice Timing files from json\u003c/h4\u003e\u003ca id=\"user-content-create-slice-timing-files-from-json\" class=\"anchor\" aria-label=\"Permalink: Create Slice Timing files from json\" href=\"#create-slice-timing-files-from-json\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003edocker run --rm -v $PWD:/opt/data orbisys/nklab-neuro-fsl /opt/rsfmri_python/bin/make_fsl_stc.py fmri.json\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eRun pipeline (also runs sliding window with window-30s, shift=3s) using custom slice timing file\u003c/h4\u003e\u003ca id=\"user-content-run-pipeline-also-runs-sliding-window-with-window-30s-shift3s-using-custom-slice-timing-file\" class=\"anchor\" aria-label=\"Permalink: Run pipeline (also runs sliding window with window-30s, shift=3s) using custom slice timing file\" href=\"#run-pipeline-also-runs-sliding-window-with-window-30s-shift3s-using-custom-slice-timing-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003edocker run --rm -v $PWD:/opt/data orbisys/nklab-neuro-fsl /opt/rsfmri_python/bin/resting_pipeline.py --func /opt/data/fmri-std-pre.nii.gz -o restoutput --steps=1,2,3,4,5,6,7,8 --slidewin=30,3 --sliceorder=/opt/data/slicetimes.txt --slicetiming=time --tr=3000\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSingularity\u003c/h2\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: Singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eBuild Singularity Image\u003c/h3\u003e\u003ca id=\"user-content-build-singularity-image\" class=\"anchor\" aria-label=\"Permalink: Build Singularity Image\" href=\"#build-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eYou will need to have singularity 2.4 or greater installed. Simply clone this repository to a convenient directory.\u003c/li\u003e\n\u003cli\u003eNavigate into the \u003ccode\u003enklab-neuro-fsl\u003c/code\u003edirectory and check that you have a Singularity definiton file \u003ccode\u003eSingularity\u003c/code\u003e and the directory \u003ccode\u003esrc\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eConfirm that \u003ccode\u003esrc\u003c/code\u003e folder and all the files in \u003ccode\u003esrc\u003c/code\u003e have full read and write privileges. if not then \u003ccode\u003esudo chmod -R 777 src\u003c/code\u003e should accomplish this.\u003c/li\u003e\n\u003cli\u003eNow build the image as follows \u003ccode\u003esudo singularity build nklab-neuro-fsl.simg Singularity\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRun Singularity Image\u003c/h3\u003e\u003ca id=\"user-content-run-singularity-image\" class=\"anchor\" aria-label=\"Permalink: Run Singularity Image\" href=\"#run-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eYou can now run the pipeline as follows: \u003ccode\u003esingularity run nklab-neuro-fsl.simg /opt/rsfmri_python/bin/resting_pipeline.py --func PBIA6_26386_20140402_045154_93696_magnitude.nii --throwaway=4 --steps=2,3,4,5,6,7 -o PBIA6_26386_20140402_045154_93696 --sliceorder=odd --tr=5000\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eYou can also run FSL commands (e.g. flirt) directly as follows: \u003ccode\u003esingularity run --nv rest-state-fmri.simg /opt/fsl/bin/flirt ....\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eShell into Singularity Image\u003c/h3\u003e\u003ca id=\"user-content-shell-into-singularity-image\" class=\"anchor\" aria-label=\"Permalink: Shell into Singularity Image\" href=\"#shell-into-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eYou can shell into the singularity image using: \u003ccode\u003esingularity shell nklab-neuro-fsl.simg\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eExample Commands\u003c/h3\u003e\u003ca id=\"user-content-example-commands-1\" class=\"anchor\" aria-label=\"Permalink: Example Commands\" href=\"#example-commands-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eCreate Slice Timing files from json\u003c/h4\u003e\u003ca id=\"user-content-create-slice-timing-files-from-json-1\" class=\"anchor\" aria-label=\"Permalink: Create Slice Timing files from json\" href=\"#create-slice-timing-files-from-json-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003esingularity run -B $PWD:/opt/data nklab-neuro-fsl.simg /opt/rsfmri_python/bin/make_fsl_stc.py fmri.json\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eRun pipeline (also runs sliding window with window-30s, shift=3s) using custom slice timing file\u003c/h4\u003e\u003ca id=\"user-content-run-pipeline-also-runs-sliding-window-with-window-30s-shift3s-using-custom-slice-timing-file-1\" class=\"anchor\" aria-label=\"Permalink: Run pipeline (also runs sliding window with window-30s, shift=3s) using custom slice timing file\" href=\"#run-pipeline-also-runs-sliding-window-with-window-30s-shift3s-using-custom-slice-timing-file-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --rm -B $PWD:/opt/data nklab-neuro-fsl.simg /opt/rsfmri_python/bin/resting_pipeline.py --func /opt/data/fmri-std-pre.nii.gz -o restoutput --steps=1,2,3,4,5,6,7,8 --slidewin=30,3 --sliceorder=/opt/data/slicetimes.txt --slicetiming=time --tr=3000\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eReferences\u003c/h2\u003e\u003ca id=\"user-content-references\" class=\"anchor\" aria-label=\"Permalink: References\" href=\"#references\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eM. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, S.M. Smith. FSL. NeuroImage, 62:782-90, 2012\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1552339344.0
+ "updated_at": 1533338767.0
},
{
"data_format": 2,
- "description": "Build amazing TUIs (Text User Interfaces) with this innovative Python framework.",
+ "description": "The BARI RStudio Singularity container, for the Discovery cluster",
"filenames": [
- "1.8.0/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-rich-cli",
- "latest_release": "v1.8.0",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-rich-cli/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-rich-cli/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-rich-cli/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-rich-cli/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/bcc09e15c6913a24778356e114f64ed669e51406eccbf8671e3dc3ac18f5610f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d726963682d636c69\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bcc09e15c6913a24778356e114f64ed669e51406eccbf8671e3dc3ac18f5610f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d726963682d636c69\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-rich-cli\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/2a1d9bdee597dea864b05afd5814685a72bdb6f36f2b6383a6734c8296644b3d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d726963682d636c69\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2a1d9bdee597dea864b05afd5814685a72bdb6f36f2b6383a6734c8296644b3d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d726963682d636c69\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-rich-cli\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/6b3c80e5ab41877d9e48d6b59f00c710c486977b5ce9bdc53cfe8c03b8a3213a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d726963682d636c69\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6b3c80e5ab41877d9e48d6b59f00c710c486977b5ce9bdc53cfe8c03b8a3213a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d726963682d636c69\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-rich-cli\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/cbd43977ff4ce22f0fd3f1e8a332320dfe3f28bf48e8d503ed4329ce3f66b82e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d726963682d636c69\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cbd43977ff4ce22f0fd3f1e8a332320dfe3f28bf48e8d503ed4329ce3f66b82e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d726963682d636c69\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-rich-cli\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-rich-cli\u003c/h1\u003e\u003ca id=\"user-content-singularity-rich-cli\" class=\"anchor\" aria-label=\"Permalink: singularity-rich-cli\" href=\"#singularity-rich-cli\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\n \u003csource type=\"video/mp4\"\u003e\n\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://www.textualize.io/\" rel=\"nofollow\"\u003erich-cli\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003erich\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/rich-cli/1.8.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/rich-cli\u003c/code\u003e as \u003ccode\u003e1.8.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "BARIBoston/bari_singularity_rstudio",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ebari_singularity_rstudio\u003c/h1\u003e\u003ca id=\"user-content-bari_singularity_rstudio\" class=\"anchor\" aria-label=\"Permalink: bari_singularity_rstudio\" href=\"#bari_singularity_rstudio\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository contains the source code for the BARI Singularity image, containing R packages for geospatial analysis. The full documentation for Singularity can be found on the \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/index.html\" rel=\"nofollow\"\u003esyslabs.io documentation site\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eConfiguring installed packages\u003c/h2\u003e\u003ca id=\"user-content-configuring-installed-packages\" class=\"anchor\" aria-label=\"Permalink: Configuring installed packages\" href=\"#configuring-installed-packages\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe complete image build process is outlined in the \u003ca href=\"Singularity\"\u003eSingularity definition file\u003c/a\u003e. Most likely, you will want to edit the \u003ccode\u003ePACKAGES\u003c/code\u003e array in the \u003ccode\u003e%post\u003c/code\u003e section of the definition file.\u003c/p\u003e\n\u003cp\u003eFor full documentation, see the \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/definition_files.html\" rel=\"nofollow\"\u003eThe Definition File\u003c/a\u003e section of the syslabs.io documentation site.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding\u003c/h2\u003e\u003ca id=\"user-content-building\" class=\"anchor\" aria-label=\"Permalink: Building\" href=\"#building\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo quickly build the BARI Singularity image, run the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity build bari.img Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eWhen prototyping, though, it will likely be more useful to use a temporary sandbox directory to iterate through commands before writing the final procedure to the Singularity definition file:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity build --sandbox bari-dev/ Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can then access a root shell that will persist changes as follows:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity shell --writable bari-dev/\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eOnce you are finished prototyping, it is best to edit the definition file so that future builds will reflect your updated process and you can see if it is working as intended from a clean base image, but if you are impatient, you can build an image directly from the temporary sandbox:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build bari.img bari-dev/\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFor full documentation, see the \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/build_a_container.html\" rel=\"nofollow\"\u003eBuilding a container\u003c/a\u003e section of the syslabs.io documentation site.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1660873798.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1594835811.0
},
{
"data_format": 2,
- "description": "Build scripts to create singularity containers for kaldi + pop-up-archive",
+ "description": "Singularity containers to run Gmsh",
"filenames": [
- "Singularity.in"
+ "Singularity.paraview",
+ "Singularity",
+ "Singularity.pvbatch"
],
- "full_name": "AudiovisualMetadataPlatform/kaldi-pua-singularity",
+ "full_name": "stephansmit/gmsh_containers",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Kaldi + PUA\u003c/h1\u003e\u003ca id=\"user-content-singularity-kaldi--pua\" class=\"anchor\" aria-label=\"Permalink: Singularity Kaldi + PUA\" href=\"#singularity-kaldi--pua\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBuild (working) Singularity containers with Kaldi and the Pop-Up-Archive\ntraining with both CPU and GPU support.\u003c/p\u003e\n\u003cp\u003eDisclaimer: With the exception of the scripts in the top directory, all\nof the content was either pulled directly or inspired by other sources,\nincluding (but not limited to):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://hub.docker.com/r/hipstas/kaldi-pop-up-archive/tags\" rel=\"nofollow\"\u003ehttps://hub.docker.com/r/hipstas/kaldi-pop-up-archive/tags\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/kaldi-asr/kaldi/blob/master/misc/docker/ubuntu-cuda/Dockerfile\"\u003ehttps://github.com/kaldi-asr/kaldi/blob/master/misc/docker/ubuntu-cuda/Dockerfile\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/brandeis-llc/aapb-pua-kaldi-docker\"\u003ehttps://github.com/brandeis-llc/aapb-pua-kaldi-docker\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://xtra.arloproject.com/datasets/kaldi-pop-up-archive/repo_backups/\" rel=\"nofollow\"\u003ehttp://xtra.arloproject.com/datasets/kaldi-pop-up-archive/repo_backups/\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAlso, there are some really...unpleasant...scripts in this mix. They\u0027re not mine and I have no idea how they work, but they seem to, so hooray!\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the containers\u003c/h2\u003e\u003ca id=\"user-content-building-the-containers\" class=\"anchor\" aria-label=\"Permalink: Building the containers\" href=\"#building-the-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe build_singularity.sh script will build the container. It takes one\nargument: either \u0027gpu\u0027 or \u0027cpu\u0027. The build process is nearly identical,\nbut if you select the \u0027gpu\u0027 option, it will require SUDO access to build\nthe container. It will ask you when it\u0027s time.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning the container\u003c/h2\u003e\u003ca id=\"user-content-running-the-container\" class=\"anchor\" aria-label=\"Permalink: Running the container\" href=\"#running-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe containers are designed to be standalone, but due to the scripts inside,\nthe do require a writable overlay filesystem. The script run_kaldi.sh\ntakes care of it -- it will create a sparce overlay filesystem which will\nbe discarded when the processing has finished.\u003c/p\u003e\n\u003cp\u003eWhen deploying, only the .sif files and run_kaldi.sh need to be copied to\nthe run-time server.\u003c/p\u003e\n\u003cp\u003eThe syntax to run it is:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e run_kaldi.sh \u0026lt;mode\u0026gt; \u0026lt;media_directory\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe mode is either \u0027cpu\u0027 or \u0027gpu\u0027, which is used to select which image to\nuse.\u003c/p\u003e\n\u003cp\u003eThe media_directory should hold files and the transcripts will be placed\nin this directory in a transcripts directory\u003c/p\u003e\n\u003cp\u003eTo test it, try:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./run_kaldi.sh cpu test_files\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity container for gmsh\u003c/h1\u003e\u003ca id=\"user-content-singularity-container-for-gmsh\" class=\"anchor\" aria-label=\"Permalink: Singularity container for gmsh\" href=\"#singularity-container-for-gmsh\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity container with \u003ca href=\"http://gmsh.info/\" rel=\"nofollow\"\u003eGmsh\u003c/a\u003e and \u003ca href=\"http://www.coolprop.org/\" rel=\"nofollow\"\u003eCoolProp\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild Container\u003c/h2\u003e\u003ca id=\"user-content-build-container\" class=\"anchor\" aria-label=\"Permalink: Build Container\" href=\"#build-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build gmsh_containers.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePull Image\u003c/h2\u003e\u003ca id=\"user-content-pull-image\" class=\"anchor\" aria-label=\"Permalink: Pull Image\" href=\"#pull-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://stephansmit/gmsh_containers\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRun Image\u003c/h3\u003e\u003ca id=\"user-content-run-image\" class=\"anchor\" aria-label=\"Permalink: Run Image\" href=\"#run-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run gmsh_containers test.geo\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHosted on Singularity Hub:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3419\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"h://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1659367162.0
+ "updated_at": 1567069655.0
},
{
"data_format": 2,
- "description": "STAR-Fusion is a component of the Trinity Cancer Transcriptome Analysis Toolkit (CTAT).",
+ "description": null,
"filenames": [
- "1.9.1/Singularity",
- "1.11.1/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-star-fusion",
- "latest_release": "v1.11.1",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-star-fusion/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-star-fusion/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-star-fusion/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-star-fusion/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/730795aae0a8346332ec211f8d0b3113e8a917e1b7106ffed407c7ebbb9102b2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d737461722d667573696f6e\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/730795aae0a8346332ec211f8d0b3113e8a917e1b7106ffed407c7ebbb9102b2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d737461722d667573696f6e\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-star-fusion\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/25696986acf6b6f3651c739b24804afb212695c2c561a2734e7e57862f1f7caf/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d737461722d667573696f6e\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/25696986acf6b6f3651c739b24804afb212695c2c561a2734e7e57862f1f7caf/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d737461722d667573696f6e\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-star-fusion\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5fe0c9ec591212ad970580635f0e0e0b0c9ce57201207253ba90659c15e8727f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d737461722d667573696f6e\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5fe0c9ec591212ad970580635f0e0e0b0c9ce57201207253ba90659c15e8727f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d737461722d667573696f6e\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-star-fusion\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f9d2339d9895863d2b09eabb921f4fedbb665f04823e79c1f16ad23296d0b609/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d737461722d667573696f6e\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f9d2339d9895863d2b09eabb921f4fedbb665f04823e79c1f16ad23296d0b609/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d737461722d667573696f6e\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-star-fusion\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-star-fusion\u003c/h1\u003e\u003ca id=\"user-content-singularity-star-fusion\" class=\"anchor\" aria-label=\"Permalink: singularity-star-fusion\" href=\"#singularity-star-fusion\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/STAR-Fusion/STAR-Fusion\"\u003eSTAR-Fusion\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/STAR-Fusion/1.11.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/STAR-Fusion\u003c/code\u003e as \u003ccode\u003e1.11.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "aseetharam/class2",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eclass2\u003c/h1\u003e\u003ca id=\"user-content-class2\" class=\"anchor\" aria-label=\"Permalink: class2\" href=\"#class2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
- "topics": [
- "bioinformatics",
- "singularity"
- ],
- "updated_at": 1668127864.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1599421677.0
},
{
"data_format": 2,
- "description": "asciinema [as-kee-nuh-muh] is a free and open source solution for recording terminal sessions and sharing them on the web.",
+ "description": "Singularity GENIE image built on Ubuntu",
"filenames": [
- "2.2.0/Singularity",
- "2.4.0/Singularity",
- "2.1.0/Singularity",
- "2.3.0/Singularity",
- "2.0.2/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-asciinema",
- "latest_release": "v2.3.0",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-asciinema/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-asciinema/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-asciinema/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-asciinema/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/35478770911b6ab1d5857192d6b81d9c33caee554eca26d82a100a76f4baa7ac/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d61736369696e656d61\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/35478770911b6ab1d5857192d6b81d9c33caee554eca26d82a100a76f4baa7ac/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d61736369696e656d61\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-asciinema\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/95e58d1cf98658b615e9766aa1e980ae2f20a5766700b22cf6305a04a5dbc4d9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d61736369696e656d61\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/95e58d1cf98658b615e9766aa1e980ae2f20a5766700b22cf6305a04a5dbc4d9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d61736369696e656d61\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-asciinema\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/9c72cbedd0caeb1d743b89c88ffd0c58127bef0190ff870d55f77558955fb4d6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d61736369696e656d61\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9c72cbedd0caeb1d743b89c88ffd0c58127bef0190ff870d55f77558955fb4d6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d61736369696e656d61\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-asciinema\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/2057263ea33bb56562217253a6b2770574d3deddcbecd54e862b8c6aa31edc90/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d61736369696e656d61\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2057263ea33bb56562217253a6b2770574d3deddcbecd54e862b8c6aa31edc90/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d61736369696e656d61\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-asciinema\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-asciinema\u003c/h1\u003e\u003ca id=\"user-content-singularity-asciinema\" class=\"anchor\" aria-label=\"Permalink: singularity-asciinema\" href=\"#singularity-asciinema\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://asciinema.org/a/232377\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/42ed19c8f85a29cee03b6168a5afbc320999af106f8af5afa28b3ae8f072cf76/68747470733a2f2f61736369696e656d612e6f72672f612f3233323337372e737667\" alt=\"asciicast\" data-canonical-src=\"https://asciinema.org/a/232377.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://asciinema.org/\" rel=\"nofollow\"\u003easciinema\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003easciinema\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/asciinema/2.4.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/asciinema\u003c/code\u003e as \u003ccode\u003e2.4.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2023 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "twongjirad/singularity-genie-ubuntu",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-genie-ubuntu\u003c/h1\u003e\u003ca id=\"user-content-singularity-genie-ubuntu\" class=\"anchor\" aria-label=\"Permalink: singularity-genie-ubuntu\" href=\"#singularity-genie-ubuntu\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow to run\u003c/h2\u003e\u003ca id=\"user-content-how-to-run\" class=\"anchor\" aria-label=\"Permalink: How to run\" href=\"#how-to-run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eComing soon.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1633086930.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1496374870.0
},
{
"data_format": 2,
- "description": "Singularity container description for BigStitcher",
+ "description": "singularity container for edgeR",
"filenames": [
- "Singularity-BigStitcher"
+ "Singularity",
+ "Singularity.1"
],
- "full_name": "PreibischLab/BigStitcher-Singularity",
+ "full_name": "deanpettinga/edger-singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eBigStitcher-Singularity\u003c/h1\u003e\u003ca id=\"user-content-bigstitcher-singularity\" class=\"anchor\" aria-label=\"Permalink: BigStitcher-Singularity\" href=\"#bigstitcher-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity container description that automatically creates an Uber-JAR of the current BigStitcher version (including all dependencies) using local copy of the Oracle JDK.\u003c/p\u003e\n\u003cp\u003eCan easily be deployed for example on a cluster for parallel resaving.\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Container: EdgeR\u003c/h1\u003e\u003ca id=\"user-content-singularity-container-edger\" class=\"anchor\" aria-label=\"Permalink: Singularity Container: EdgeR\" href=\"#singularity-container-edger\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3573\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 11,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1584624624.0
+ "updated_at": 1569864443.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.trial"
+ "Singularity"
],
- "full_name": "EdOates84/Sigularity_test",
+ "full_name": "phgenomics-singularity/iqtree",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSigularity_test\u003c/h1\u003e\u003ca id=\"user-content-sigularity_test\" class=\"anchor\" aria-label=\"Permalink: Sigularity_test\" href=\"#sigularity_test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1589221154.0
+ "updated_at": 1576535464.0
},
{
"data_format": 2,
- "description": "Shared nextflow modules and assets",
+ "description": null,
"filenames": [
- "pipelines/tumWgs/container/Singularity"
+ "Singularity"
],
- "full_name": "Clinical-Genomics-Lund/nextflow-modules",
+ "full_name": "phgenomics-singularity/prokka",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003enextflow-modules\u003c/h1\u003e\u003ca id=\"user-content-nextflow-modules\" class=\"anchor\" aria-label=\"Permalink: nextflow-modules\" href=\"#nextflow-modules\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eShared nextflow modules and assets used at CMD\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eThe basic structure of the pipeline is as follows\u003c/h1\u003e\u003ca id=\"user-content-the-basic-structure-of-the-pipeline-is-as-follows\" class=\"anchor\" aria-label=\"Permalink: The basic structure of the pipeline is as follows\" href=\"#the-basic-structure-of-the-pipeline-is-as-follows\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e\n\u251c\u2500\u2500 LICENSE\n\u251c\u2500\u2500 modules\n\u2502 \u251c\u2500\u2500 bwa\n\u2502 \u2502 \u2514\u2500\u2500 main.nf\n\u2502 \u251c\u2500\u2500 samtools\n\u2502 \u2502 \u2514\u2500\u2500 main.nf\n\u2502 \u2514\u2500\u2500 senteion\n\u2502 \u2514\u2500\u2500 bwa\n\u251c\u2500\u2500 pipeline\n\u2502 \u251c\u2500\u2500 micro\n\u2502 \u2502 \u251c\u2500\u2500 data\n\u2502 \u2502 \u2502 \u2514\u2500\u2500 micro\n\u2502 \u2502 \u2502 \u251c\u2500\u2500 SRR10490537_1.fastq.gz\n\u2502 \u2502 \u2502 \u2514\u2500\u2500 SRR10490537_2.fastq.gz\n\u2502 \u2502 \u251c\u2500\u2500 main.nf\n\u2502 \u2502 \u2514\u2500\u2500 nextflow.config\n\u2502 \u2514\u2500\u2500 nextflow.config\n\u2514\u2500\u2500 README.md\n\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1648196462.0
+ "updated_at": 1564451005.0
},
{
"data_format": 2,
- "description": "Terminal string styling done right",
+ "description": "Pipeline to run the Paintor program and its associated visualization tools on GWAS summary statistics data",
"filenames": [
- "4.1.0/Singularity",
- "5.0.0/Singularity",
- "5.0.1/Singularity"
+ "Singularity"
],
- "full_name": "icaoberg/singularity-chalk-cli",
- "latest_release": "v5.0.0",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/icaoberg/singularity-chalk-cli/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-chalk-cli/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/icaoberg/singularity-chalk-cli/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-chalk-cli/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/1c66c240bc38df64015075ec6f68767bb7e4634a835398142bfc7c1999c34256/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d6368616c6b2d636c69\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1c66c240bc38df64015075ec6f68767bb7e4634a835398142bfc7c1999c34256/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d6368616c6b2d636c69\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-chalk-cli\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/05b8d9fb69618bfe0ec53c85330e3b0f7b8c73c7a36486e22f25d2b16d12f27b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d6368616c6b2d636c69\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/05b8d9fb69618bfe0ec53c85330e3b0f7b8c73c7a36486e22f25d2b16d12f27b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d6368616c6b2d636c69\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-chalk-cli\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a24818a83e2601459d1e387affd74934bd1718bbb3aa8380df073c768dc67828/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d6368616c6b2d636c69\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a24818a83e2601459d1e387affd74934bd1718bbb3aa8380df073c768dc67828/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d6368616c6b2d636c69\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-chalk-cli\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/11483fce283481c4a2af404bb7eeb1692c1d85a3bb2eb4f9a22d485caad35407/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d6368616c6b2d636c69\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/11483fce283481c4a2af404bb7eeb1692c1d85a3bb2eb4f9a22d485caad35407/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d6368616c6b2d636c69\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-chalk-cli\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-chalk-cli\u003c/h1\u003e\u003ca id=\"user-content-singularity-chalk-cli\" class=\"anchor\" aria-label=\"Permalink: singularity-chalk-cli\" href=\"#singularity-chalk-cli\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/chalk/chalk-cli/blob/main/screenshot.png?raw=true\"\u003e\u003cimg src=\"https://github.com/chalk/chalk-cli/raw/main/screenshot.png?raw=true\" width=\"50%\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/chalk/chalk-cli\"\u003echalk-cli\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges (or similar)\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-or-similar\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges (or similar)\" href=\"#installing-the-container-on-bridges-or-similar\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003echalk-cli\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/chalk-cli/4.1.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modules/chalk-cli\u003c/code\u003e as \u003ccode\u003e4.1.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eExample\u003c/h3\u003e\u003ca id=\"user-content-example\" class=\"anchor\" aria-label=\"Permalink: Example\" href=\"#example\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec singularity-chalk-cli-4.1.0.sif chalk -t \u0027{red.bold Dungeons and Dragons {~bold.blue (with added fairies)}}\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/screenshot.png\"\u003e\u003cimg src=\"images/screenshot.png\" alt=\"Screenshot\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAlternative Installation\u003c/h2\u003e\u003ca id=\"user-content-alternative-installation\" class=\"anchor\" aria-label=\"Permalink: Alternative Installation\" href=\"#alternative-installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003espack install npm\nspack load npm\nnpm install -g chalk-cli\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2023 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "sdjebali/PaintorPipe",
+ "latest_release": "v2.0",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"files/logo_PaintorPipe.png\"\u003e\u003cimg src=\"files/logo_PaintorPipe.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePaintorPipe\u003c/h1\u003e\u003ca id=\"user-content-paintorpipe\" class=\"anchor\" aria-label=\"Permalink: PaintorPipe\" href=\"#paintorpipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003ePaintorPipe\u003c/code\u003e is a pipeline that perform fine-mapping analysis, using GWAS summary statistics data and diverse functionnal annotations, implemented in Nextflow.\nThis pipeline run the Paintor program and its associated visualization tools and can be run locally or on a slurm cluster and handles containerisation using Singularity.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"files/flowchart_PaintorPipe.png\"\u003e\u003cimg src=\"files/flowchart_PaintorPipe.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTable of Contents\u003c/h1\u003e\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" aria-label=\"Permalink: Table of Contents\" href=\"#table-of-contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#dependencies\"\u003eDependencies\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#usage\"\u003eUsage\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#pull-the-pre-built-container\"\u003ePull the pre-built container\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#local-machine\"\u003eLocal Machine\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#running-on-a-compute-cluster-with-slurm\"\u003eSlurm compute cluster\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#pipeline-parameters\"\u003ePipeline parameters\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#input-options\"\u003eInput options\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#output-options\"\u003eOutput options\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#nextflow-options\"\u003eNextflow options\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#example-on-a-small-dataset\"\u003eExample on a small dataset\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#gwas-summary-statistics\"\u003eGWAS summary statistics\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#functionnal-annotations\"\u003eFunctionnal Annotations\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#outputs\"\u003eOutputs\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#citation\"\u003eCitation\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDependencies\u003c/h1\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-label=\"Permalink: Dependencies\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo use this pipeline you will need:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eNextflow\u003c/code\u003e \u0026gt;= 21.10.6\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eSingularity\u003c/code\u003e \u0026gt;= 3.7.3\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFirst of all, you need to install GO and singularity.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eUsage\u003c/h1\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA small dataset \u003ccode\u003eCAD_META_extract\u003c/code\u003e is provided to test this pipeline (\u003ca href=\"#example-on-a-small-dataset\"\u003eExample on a small dataset\u003c/a\u003e section). To try it out, use one of the followings commands after pulling the singularity image.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePull the pre-built container\u003c/h2\u003e\u003ca id=\"user-content-pull-the-pre-built-container\" class=\"anchor\" aria-label=\"Permalink: Pull the pre-built container\" href=\"#pull-the-pre-built-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can pull the image we built for the \u003ccode\u003ePaintorPipe\u003c/code\u003e from our repository on Sylabs cloud using the command bellow :\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --arch amd64 library://zgerber/paintorpipe/mainimage:0.1\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLocal Machine\u003c/h2\u003e\u003ca id=\"user-content-local-machine\" class=\"anchor\" aria-label=\"Permalink: Local Machine\" href=\"#local-machine\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you are running the pipeline on a local machine with limited resources and want to use the default configuration (at least 2 CPUs/4G mem), use this command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf -config nextflow.config --gwasFile \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003edata/input/CAD_META_extract\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --annotationsFile \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003edata/input/annotations.txt\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --ref_genome \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehg19\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --chromosome_header \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eChr\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --pvalue_nonlead \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e1\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --snp \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e100000\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --pp_threshold \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e0.001\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e -profile singularity -resume\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning on a Compute Cluster with Slurm\u003c/h2\u003e\u003ca id=\"user-content-running-on-a-compute-cluster-with-slurm\" class=\"anchor\" aria-label=\"Permalink: Running on a Compute Cluster with Slurm\" href=\"#running-on-a-compute-cluster-with-slurm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you have access to a compute cluster that uses the Slurm Workload Manager and you want to utilize the resources available there (at least 22 CPUs / 60 G mem), use this command with the slurm profile:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf -config nextflow.config --gwasFile \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003edata/input/CAD_META_extract\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --annotationsFile \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003edata/input/annotations.txt\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --ref_genome \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehg19\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --chromosome_header \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eChr\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --pvalue_nonlead \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e1\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --snp \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e100000\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --pp_threshold \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e0.001\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e -profile singularity, slurm -resume\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePipeline parameters\u003c/h1\u003e\u003ca id=\"user-content-pipeline-parameters\" class=\"anchor\" aria-label=\"Permalink: Pipeline parameters\" href=\"#pipeline-parameters\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInput options\u003c/h2\u003e\u003ca id=\"user-content-input-options\" class=\"anchor\" aria-label=\"Permalink: Input options\" href=\"#input-options\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003ctable\u003e\n \u003cthead\u003e\n \u003ctr\u003e\n \u003cth width=\"200px\"\u003eOption\u003c/th\u003e\n \u003cth width=\"200px\"\u003eBy default, example\u003c/th\u003e\n \u003cth width=\"350px\"\u003eDescription\u003c/th\u003e\n \u003cth width=\"90px\"\u003eRequired\u003c/th\u003e\n \u003c/tr\u003e\n \u003c/thead\u003e\n \u003ctbody\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--gwasFile\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003epath/to/GWAS_FILE\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eThe GWAS file must contains 7 required columns : Allele1, Allele2, Effect (Beta), StdErr (SE), Pvalue, CHR, BP. The order is not important, but the name of the column is (see header parameters).\u003c/td\u003e\n \u003ctd align=\"center\"\u003eRequired\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--annotationsFile\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003epath/to/ANNOTATIONS_FILE\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eThe file should contains 2 columns separeted by tabulation. The first one is the name of the annotation (of the annotation file, or the annotation type for example) and the second is the associated path to the file.\u003c/td\u003e\n \u003ctd align=\"center\"\u003eRequired\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--ref_genome\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003ehg19\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eOnly two values are allowed : \u0027hg19\u0027 or \u0027hg38\u0027. Make sure you are using the correct reference genome for your summary statistics GWAS file, because the results of the pipeline coulb be incorrect.\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--population\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003eEUR\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eSpecifies the name of the mainland population : AFR, AMR, EAS, EUR, SAS.\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--pvalue_header\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003ePvalue\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003ePvalue header column name\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--stderr_header\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003eStdErr\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eStandard Error (SE) header column name\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--effect_header\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003eEffect\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eEffect (BETA) header column name\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--chromosome_header\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003eCHR\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eChromosome header column name\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--effectallele_header\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003eAllele1\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eAllele with effect header column name\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--altallele_header\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003eAllele2\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eAllele without effect header column name\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--position_header\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003eBP\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eVariant position in base pair in the chromosome header column name\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--rsID_header\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003ersID\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eUnique variant identifiant or markermane header\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003c/tr\u003e\n\u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--zheader_header\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003eZscore\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eThe computed zscore is added in a new column, corresponding to the Effect/StdErr for each SNP, for each locus.\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--kb\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003e500\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eSNPs selection distance in kilo bases upstream and downstream of the lead SNP during the split of the GWAS file.\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--pp_treshold\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003e0\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eSignificant posterior probability threshold.\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--snp\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003e10000000\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eNumber of significant SNPs to keep.\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--pvalue_lead\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003e5e-08\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eSignificant Pvalue threshold for lead SNP.\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--pvalue_nonlead\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003e1\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eSignificant Pvalue threshold for other SNPs around the lead SNP.\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOutput options\u003c/h2\u003e\u003ca id=\"user-content-output-options\" class=\"anchor\" aria-label=\"Permalink: Output options\" href=\"#output-options\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003ctable\u003e\n \u003cthead\u003e\n \u003ctr\u003e\n \u003cth width=\"200px\"\u003eOption\u003c/th\u003e\n \u003cth width=\"200px\"\u003eBy default, example\u003c/th\u003e\n \u003cth width=\"350px\"\u003eDescription\u003c/th\u003e\n \u003cth width=\"90px\"\u003eRequired\u003c/th\u003e\n \u003c/tr\u003e\n \u003c/thead\u003e\n \u003ctbody\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--outputDir_locus\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003edata/output_locus\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003e\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--outputDir_sorted_locus\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003edata/output_sorted_locus\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003e\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--outputDir_VCFandMAPfrom1000G\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003edata/output_VCF_map_files\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003e\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--outputDir_ld\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003edata/output_ld\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003e\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--outputDir_bed\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003edata/output_bed\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003e\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--outputDir_annotations\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003edata/output_annotations\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003e\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--outputDir_annotated_locus\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003edata/output_annotated_locus\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003e\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--outputDir_paintor\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003edata/output_paintor\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003e\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--outputDir_results\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003edata/output_results\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003e\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--outputDir_posteriorprob\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003edata/output_posteriorprob\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003e\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--outputDir_plot\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003edata/output_plot\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003e\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e--outputDir_canvis\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003edata/output_canvis\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003e\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eNextflow options\u003c/h2\u003e\u003ca id=\"user-content-nextflow-options\" class=\"anchor\" aria-label=\"Permalink: Nextflow options\" href=\"#nextflow-options\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe pipeline is written in Nextflow, which provides the following default options:\u003c/p\u003e\n\u003ctable\u003e\n \u003cthead\u003e\n \u003ctr\u003e\n \u003cth width=\"200px\"\u003eOption\u003c/th\u003e\n \u003cth width=\"200px\"\u003eBy default, example\u003c/th\u003e\n \u003cth width=\"350px\"\u003eDescription\u003c/th\u003e\n \u003cth width=\"90px\"\u003eRequired\u003c/th\u003e\n \u003c/tr\u003e\n \u003c/thead\u003e\n \u003ctbody\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e-profile\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003esingularity\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eProfile(s) to use when running the pipeline. Specify the profiles that fit your infrastructure among \u003ccode\u003esingularity\u003c/code\u003e, \u003ccode\u003eslurm\u003c/code\u003e.\u003c/td\u003e\n \u003ctd align=\"center\"\u003eRequired\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e-config\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003enextflow.config\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003e\n Configuration file tailored to your infrastructure and dataset.\n \u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e-revision\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003eversion\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eVersion of the pipeline to launch.\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e-work-dir\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003ccode\u003edirectory\u003c/code\u003e\u003c/td\u003e\n \u003ctd\u003eWork directory where all temporary files are written.\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e-resume\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003c/td\u003e\n \u003ctd\u003eResume the pipeline from the last completed process.\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e-with-report\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003c/td\u003e\n \u003ctd\u003eNextflow can create an HTML execution report. It is a single document that includes many useful metrics on pipeline execution\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd nowrap=\"\"\u003e\u003cstrong\u003e\u003ccode\u003e-with-timeline\u003c/code\u003e\u003c/strong\u003e\u003c/td\u003e\n \u003ctd nowrap=\"\"\u003e\u003c/td\u003e\n \u003ctd\u003eNextflow can display a timeline in HTML format for all processes performed in the pipeline\u003c/td\u003e\n \u003ctd align=\"center\"\u003eOptional\u003c/td\u003e\n \u003c/tr\u003e\n \u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eFor more Nextflow options, see \u003ca href=\"https://www.nextflow.io/docs/latest/cli.html#run\" rel=\"nofollow\"\u003eNextflow\u0027s documentation\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eExample on a small dataset\u003c/h1\u003e\u003ca id=\"user-content-example-on-a-small-dataset\" class=\"anchor\" aria-label=\"Permalink: Example on a small dataset\" href=\"#example-on-a-small-dataset\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGWAS summary statistics\u003c/h2\u003e\u003ca id=\"user-content-gwas-summary-statistics\" class=\"anchor\" aria-label=\"Permalink: GWAS summary statistics\" href=\"#gwas-summary-statistics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003eCAD_META_extract\u003c/code\u003e GWAS file is an extract of the GWAS results from the latest \u003ccode\u003eCoronary Artery Disease\u003c/code\u003e (CAD) meta-analysis involving 122,733 cases and 424,528 controls (van der Harst P et al, 2018).\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eunzip CAD_META_extract.zip\nhead CAD_META_extract\u003c/pre\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003eMarkerName\tAllele1\tAllele2\tFreq1\tFreqSE\tMinFreq\tMaxFreq\tEffect\tStdErr\tPvalue\tDirection\tHetISq\tHetChiSq\tHetDf\tHetPVal\trsID\tChr\tBP\n9:34486713_A_G\ta\tg\t0.9363\t0.0023\t0.9346\t0.9394\t0.0058\t0.0115\t0.6106\t+-\t0\t0.663\t1\t0.4156\trs72735241\t9\t34486713\n4:187387354_G_T\tt\tg\t0.0359\t0.0045\t0.032\t0.041\t0.009\t0.0155\t0.5604\t-+\t0\t0.847\t1\t0.3574\trs73020749\t4\t187387354\n4:76326344_C_G\tc\tg\t0.1743\t0.0062\t0.1694\t0.1823\t-3e-04\t0.0075\t0.9641\t-+\t69.2\t3.252\t1\t0.07136\trs11727982\t4\t76326344\n1:88710048_C_T\tt\tc\t0.4234\t0.008\t0.4172\t0.4337\t-0.0064\t0.0057\t0.2601\t--\t0\t0.371\t1\t0.5427\trs6428642\t1\t88710048\n1:189237277_C_T\tt\tc\t0.5217\t0.0011\t0.5209\t0.5232\t0.005\t0.0056\t0.3742\t++\t0\t0.129\t1\t0.719\trs1578705\t1\t189237277\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003eCAD_META_extract\u003c/code\u003e GWAS test file provided contains the 8 required columns :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAllele1\u003c/li\u003e\n\u003cli\u003eAllele2\u003c/li\u003e\n\u003cli\u003eEffect\u003c/li\u003e\n\u003cli\u003eStdErr\u003c/li\u003e\n\u003cli\u003eCHR\u003c/li\u003e\n\u003cli\u003eBP\u003c/li\u003e\n\u003cli\u003ersID\u003c/li\u003e\n\u003cli\u003ePvalue\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe chromosome column is the only column with an incorrect header entry. We need to provide the correct version of the header: \u003ccode\u003eChr\u003c/code\u003e instead of \u003ccode\u003eCHR\u003c/code\u003e with the \u003ccode\u003e--chromosome_header\u003c/code\u003e parameter (see \u003ca href=\"#usage\"\u003eusage\u003c/a\u003e part).\u003c/p\u003e\n\u003cp\u003eThis is important that the column names are correctly written. If you have supplementary columns like in the exampe above, you can keep them, the pipeline is going to ignore them. If you don\u0027t want to change the required column names in the file, like the \u003ccode\u003eChr\u003c/code\u003ecolumn, you have to indicate the alternative names with the header arguments when launching Nextflow command. Make sure the columns are separated by tabulations.\u003c/p\u003e\n\u003cp\u003eBe careful when running the pipe, about the reference genome version (\u003ccode\u003e--ref_genome\u003c/code\u003e parameter). By default, the pipeline uses hg19 version (more used). Depending on the GWAS dataset you want to fine map, you can change by hg38 version (more recent).\u003c/p\u003e\n\u003cp\u003eAdditionally, it is important to ensure that the pvalue for non-leader SNPs is correct. Indeed, if you run \u003ccode\u003ePaintorPipe\u003c/code\u003e on a small number of variants, as in the example here, the pipeline will generate errors. We recommend in the testing phases to keep the \u003ccode\u003e--pvalue_nonlead\u003c/code\u003e parameter at 1.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eFunctionnal annotations\u003c/h2\u003e\u003ca id=\"user-content-functionnal-annotations\" class=\"anchor\" aria-label=\"Permalink: Functionnal annotations\" href=\"#functionnal-annotations\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eConcerning the annotation library, you can use the annotations given in the Paintor github wiki or directely following this link (Warning: This is a large 6.7 GB file).\u003c/p\u003e\n\u003cp\u003eOnce the annotation bed files are downloaded, you can write the \u003ccode\u003eannotations.txt\u003c/code\u003e file, to give to the pipeline, pointing to all annotation bed files (use tabulation) looking like:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egenc.exon path/to/exons.proj.bed\ngenc.intron path/to/introns.proj.bed\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe first column is the name of the functionnal annotation and the second is the path to the bed file. Above, an example for a run with 2 annotations (exons \u0026amp; introns). We recommand to use no more than 4 or 5 annotations per run.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOutputs\u003c/h2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-label=\"Permalink: Outputs\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou should obtain 43 loci in the \u003ccode\u003eoutput_locus\u003c/code\u003e directory. Check the \u003ccode\u003eslurm-46703827.out\u003c/code\u003e output file in the \u003ccode\u003efiles\u003c/code\u003e directory.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCitation\u003c/h1\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-label=\"Permalink: Citation\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you use \u003ccode\u003ePaintorPipe\u003c/code\u003e for your analysis, please cite the publication as follows :\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eGerber, Z., Fisun, M., Aschard, H., \u0026amp; Djebali, S. (2024). PaintorPipe: a pipeline for genetic variant fine-mapping using functional annotations. Bioinformatics Advances, 4(1), vbad188.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eYou can find the publication by following this link (\u003ca href=\"https://doi.org/10.1093/bioadv/vbad188\" rel=\"nofollow\"\u003ehttps://doi.org/10.1093/bioadv/vbad188\u003c/a\u003e).\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1653903915.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1715613103.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity container for qiime1.9.1",
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "kit-cml/DrugSimulationGPU-naver",
+ "full_name": "scleveland/qiime1.9.1-singularity",
"latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/1242\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Recipe for QIIME1.9.1 For the University of Hawaii HPC system\u003c/h1\u003e\u003ca id=\"user-content-singularity-recipe-for-qiime191-for-the-university-of-hawaii-hpc-system\" class=\"anchor\" aria-label=\"Permalink: Singularity Recipe for QIIME1.9.1 For the University of Hawaii HPC system\" href=\"#singularity-recipe-for-qiime191-for-the-university-of-hawaii-hpc-system\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repo contains recipe run \u003ca href=\"https://qiime.org\" rel=\"nofollow\"\u003eqiime1.9.1\u003c/a\u003e within a\n\u003ca href=\"https://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e container running the Ubuntu Xenial OS,which can be built\nusing \u003ca href=\"https://singularity-hub.org/\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow to Use:\u003c/h2\u003e\u003ca id=\"user-content-how-to-use\" class=\"anchor\" aria-label=\"Permalink: How to Use:\" href=\"#how-to-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003esingularity run shub://scleveland/qiime1.9.1-singularity\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1723195578.0
+ "updated_at": 1571075539.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "kit-cml/ORd_dynamic_BDF",
+ "full_name": "CNCLgithub/liquid_gen_model_depth_img",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eliquid_gen_model_depth_img\u003c/h1\u003e\u003ca id=\"user-content-liquid_gen_model_depth_img\" class=\"anchor\" aria-label=\"Permalink: liquid_gen_model_depth_img\" href=\"#liquid_gen_model_depth_img\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eClone the repo\u003c/h2\u003e\u003ca id=\"user-content-clone-the-repo\" class=\"anchor\" aria-label=\"Permalink: Clone the repo\" href=\"#clone-the-repo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFirst, clone this repo:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003egit clone git@github.com:CNCLgithub/liquid_gen_model_depth_img.git\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGet started with setting up simulation engine\u003c/h2\u003e\u003ca id=\"user-content-get-started-with-setting-up-simulation-engine\" class=\"anchor\" aria-label=\"Permalink: Get started with setting up simulation engine\" href=\"#get-started-with-setting-up-simulation-engine\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo get started, you need to have SPlisHSPlasH installed inside this repo. You can either go to their website and follow the instructions, as in here: \u003ca href=\"https://splishsplash.readthedocs.io/en/latest/build_from_source.html\" rel=\"nofollow\"\u003ehttps://splishsplash.readthedocs.io/en/latest/build_from_source.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eOr we provide a way to install, first download this singularity container (\u003ca href=\"https://yale.box.com/shared/static/j40o27bcfgjkzzgecltoh0vj0v411ph5.sif\" rel=\"nofollow\"\u003ehttps://yale.box.com/shared/static/j40o27bcfgjkzzgecltoh0vj0v411ph5.sif\u003c/a\u003e),\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ewget https://yale.box.com/shared/static/j40o27bcfgjkzzgecltoh0vj0v411ph5.sif -O ss.sif\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThen use the following command to install\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity exec ${path_to_downloaded_singularity_container} bash ./setup_ss.sh\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003ewhere you can have \u003ccode\u003e./ss.sif\u003c/code\u003e instead of \u003ccode\u003e${path_to_downloaded_singularity_container}\u003c/code\u003e if you have been following along.\u003c/p\u003e\n\u003cp\u003eRemember to install SPlisHSPlasH inside this project directory. i.e., the structure should look like \u003ccode\u003eliquid_gen_model_depth_img/SPlisHSPlasH/\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGet started with the model\u003c/h2\u003e\u003ca id=\"user-content-get-started-with-the-model\" class=\"anchor\" aria-label=\"Permalink: Get started with the model\" href=\"#get-started-with-the-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003euse \u003ccode\u003e./setup.sh all\u003c/code\u003e to install all the modeling environment. Please note that if packages for Julia cannot be installed in this way, run \u003ccode\u003e./run.sh julia\u003c/code\u003e to open Julia interface and install them manually.\nIf you were to install manually, type the following command in the interface:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eusing Pkg; Pkg.instantiate()\nusing Pkg; Pkg.add(\"FileIO\")\nPkg.add(\"GeometryBasics\")\nPkg.add(\"MeshIO\")\nPkg.add(\"PyCall\")\nPkg.add(\"Reexport\")\nPkg.add(\"Formatting\")\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun model\u003c/h2\u003e\u003ca id=\"user-content-run-model\" class=\"anchor\" aria-label=\"Permalink: Run model\" href=\"#run-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the model, use \u003ccode\u003e./run.sh julia src/exp_basic.jl ${#}/{Scene_name}\u003c/code\u003e. Please note that {#} corresponding to the number in library. [1-box, 2-boxwithahole, 3-oneobject, 4-obstacle, 5-motor, 6-wall]\n{Scene_names} corresponds to the available scene names. The scene names are combinations of scene names, which are \"box\" \"boxwithahole\" \"oneobject\" \"obstacle\" \"motor\" \"wall\", and viscosities, which are \"1016\" \"104\" \"1\" \"4\" \"16\". Connect them using an underscore, such as \u003ccode\u003ebox_1016\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eAs an example, if you were to run box scene at viscosity 4, then run \u003ccode\u003e./run.sh julia src/exp_basic.jl 1/box_4\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eA pre-built singularity container can be downloaded here: \u003ca href=\"https://yale.box.com/s/7xjvx27hijjaewezso8l0mbf6hsrq3ha\" rel=\"nofollow\"\u003ehttps://yale.box.com/s/7xjvx27hijjaewezso8l0mbf6hsrq3ha\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1727234462.0
+ "updated_at": 1679446657.0
},
{
"data_format": 2,
- "description": "Simulate drug effect to get each component using GPU parallelisation",
+ "description": "GATK 4beta singularity",
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "kit-cml/DrugSimulationGPU",
+ "full_name": "DoaneAS/gatk",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003egatk\u003c/h1\u003e\u003ca id=\"user-content-gatk\" class=\"anchor\" aria-label=\"Permalink: gatk\" href=\"#gatk\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eGATK 4beta singularity\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1720503899.0
+ "updated_at": 1499573007.0
},
{
"data_format": 2,
- "description": "github actions testing",
+ "description": "Singulary recipe for plasflow",
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "martinghunt/gat",
- "latest_release": "v0.0.6",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003egat\u003c/h1\u003e\u003ca id=\"user-content-gat\" class=\"anchor\" aria-label=\"Permalink: gat\" href=\"#gat\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003egithub actions testing\u003c/p\u003e\n",
+ "full_name": "ISU-HPC/plasflow",
+ "latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eplasflow\u003c/h1\u003e\u003ca id=\"user-content-plasflow\" class=\"anchor\" aria-label=\"Permalink: plasflow\" href=\"#plasflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingulary recipe for plasflow\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1639739073.0
+ "updated_at": 1525896053.0
},
{
"data_format": 2,
- "description": "singularity examples",
+ "description": "unofficial conversion of python from docker to singularity",
"filenames": [
- "Singularity.python",
- "Singularity.MG5_alone",
- "Singularity.MG5_MA5_PY8_DEL",
- "Singularity.cowsay",
- "Singularity.MG5_MA5_PY8_ROOT",
- "Singularity.MG5_MA5_PY8",
- "Singularity.MG5"
+ "Singularity"
],
- "full_name": "oliviermattelaer/singularity-recipe",
+ "full_name": "tin6150/python",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-recipe\u003c/h1\u003e\u003ca id=\"user-content-singularity-recipe\" class=\"anchor\" aria-label=\"Permalink: singularity-recipe\" href=\"#singularity-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003epython\u003c/h1\u003e\u003ca id=\"user-content-python\" class=\"anchor\" aria-label=\"Permalink: python\" href=\"#python\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eunofficial\ncontainerization of python,\u003c/p\u003e\n\u003cp\u003efirst intended as conversion of python from docker to singularity\u003c/p\u003e\n\u003cp\u003enow have github workflow build docker container, the convert to singularity during a pull process\u003c/p\u003e\n\u003cp\u003efor incorporation into software_module_farm\u003c/p\u003e\n\u003cp\u003eplan to be a fairly fat container with many python libraries, numby, pandas, and likely many less common one requested by researchers.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eexample run command (in testing)\u003c/h1\u003e\u003ca id=\"user-content-example-run-command-in-testing\" class=\"anchor\" aria-label=\"Permalink: example run command (in testing)\" href=\"#example-run-command-in-testing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003edocker pull ghcr.io/tin6150/python:main\ndocker run -it --rm --entrypoint=/bin/bash ghcr.io/tin6150/python:main\ndocker run -it --rm --entrypoint=/bin/pip ghcr.io/tin6150/python:main list\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003einvoking docker from inside docker, passthru, not exactly dind (docker-in-docker)\u003c/h1\u003e\u003ca id=\"user-content-invoking-docker-from-inside-docker-passthru-not-exactly-dind-docker-in-docker\" class=\"anchor\" aria-label=\"Permalink: invoking docker from inside docker, passthru, not exactly dind (docker-in-docker)\" href=\"#invoking-docker-from-inside-docker-passthru-not-exactly-dind-docker-in-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003epushd ~/tin-gh/lbnl-science-it/atlas-run\u003c/p\u003e\n\u003cp\u003edocker run -it --rm --entrypoint=python3 -v \u003ccode\u003epwd\u003c/code\u003e:/mnt -v /var/run/docker.sock:/var/run/docker.sock \u003cbr\u003e\nghcr.io/tin6150/python:main \u003cbr\u003e\n-u ./atlas_run.py -v\n2\u0026gt;\u0026amp;1 | tee ./log_atlas_testv12.out\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ethe tee is to local fs, not inside the container\u003c/h1\u003e\u003ca id=\"user-content-the-tee-is-to-local-fs-not-inside-the-container\" class=\"anchor\" aria-label=\"Permalink: the tee is to local fs, not inside the container\" href=\"#the-tee-is-to-local-fs-not-inside-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e\nsingularity pull --name python.sif docker://ghcr.io/tin6150/py-conda:main\n\n\n\n# historical info\n\nthis repo was started back in 2019... \n2024.0413 changed branch name from master to main\nrename used web gui, manually changing URL to \"/branches\" to get list to rename, set default.\n\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1543410032.0
+ "updated_at": 1714970469.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for angsd (https://github.com/ANGSD/angsd)",
+ "description": null,
"filenames": [
- "Singularity.0.925",
- "Singularity.0.922",
- "Singularity.0.919",
- "Singularity.0.917",
- "Singularity.0.921",
- "Singularity.0.918",
- "Singularity.0.937",
- "Singularity.0.940",
+ "Singularity.v0.0.1",
+ "Singularity.v0.0.3",
"Singularity",
- "Singularity.0.923"
+ "Singularity.v0.0.2",
+ "Singularity.v0.0.4"
],
- "full_name": "powerPlant/angsd-srf",
+ "full_name": "darachm/singularity_python3_for_darach",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2300\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the angsd program for analysing NGS data\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/1972\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis container is for providing a python3 environment, as Darach likes it\nfor some bioinformatics pipelines. Expect this to grow as more stuff is used.\u003c/p\u003e\n\u003cp\u003eThe primary reason for this is so that it flows nicely through SingularityHub\nfor Nextflow pipelines.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1645138593.0
+ "updated_at": 1584545946.0
},
{
"data_format": 2,
- "description": "Epilepsy prediction codes running on Docker",
+ "description": "singularity container for nanopolish",
"filenames": [
- "Singularity.fea"
+ "Singularity"
],
- "full_name": "hlya23dd/Code_evaluation_Container",
+ "full_name": "ISU-HPC/nanopolish",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003enanopolish\u003c/h1\u003e\u003ca id=\"user-content-nanopolish\" class=\"anchor\" aria-label=\"Permalink: nanopolish\" href=\"#nanopolish\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003esingularity container for nanopolish\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1598271532.0
+ "updated_at": 1561744596.0
},
{
"data_format": 2,
- "description": "Singularity containers to run Paraview",
+ "description": null,
"filenames": [
- "Singularity.paraview",
- "Singularity.pvbatch"
+ "Singularity"
],
- "full_name": "stephansmit/paraview_containers",
+ "full_name": "krafczyk/j.jcp.2016.08.012",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eParaview_containers\u003c/h1\u003e\u003ca id=\"user-content-paraview_containers\" class=\"anchor\" aria-label=\"Permalink: Paraview_containers\" href=\"#paraview_containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity containers to run paraview\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUse\u003c/h2\u003e\u003ca id=\"user-content-use\" class=\"anchor\" aria-label=\"Permalink: Use\" href=\"#use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor the GUI with paraview\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec paraview_containers.sif \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHosted on Singularity Hub:\n\u003ca href=\"https://singularity-hub.org/collections/3435\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eJulia article containerized with Docker and Singularity\u003c/h1\u003e\u003ca id=\"user-content-julia-article-containerized-with-docker-and-singularity\" class=\"anchor\" aria-label=\"Permalink: Julia article containerized with Docker and Singularity\" href=\"#julia-article-containerized-with-docker-and-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDocker\u003c/h2\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-label=\"Permalink: Docker\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eFrom docker hub without cloning this repo:\u003c/h3\u003e\u003ca id=\"user-content-from-docker-hub-without-cloning-this-repo\" class=\"anchor\" aria-label=\"Permalink: From docker hub without cloning this repo:\" href=\"#from-docker-hub-without-cloning-this-repo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003edocker run -it adb16x/julia_test:fresh\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eWhen inside the container:\n\u003ccode\u003esh run.sh\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThe output is stored in \u003ccode\u003eresults.txt\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eBy cloning this repo:\u003c/h3\u003e\u003ca id=\"user-content-by-cloning-this-repo\" class=\"anchor\" aria-label=\"Permalink: By cloning this repo:\" href=\"#by-cloning-this-repo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003edocker build --no-cache -t julia .\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003edocker run -it julia\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eWhen inside the container:\n\u003ccode\u003esh run.sh\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThe output is stored in \u003ccode\u003eresults.txt\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSingularity\u003c/h2\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: Singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eBuild image \u003cstrong\u003eand\u003c/strong\u003e run the code:\n\u003ccode\u003esudo singularity --debug build test.simg Singularity |\u0026amp; tee sing-build.output\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGo into the image:\n\u003ccode\u003esingularity shell test.simg\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eView the results:\n\u003ccode\u003ecat /usr/local/data/results.txt\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eNotes\u003c/h2\u003e\u003ca id=\"user-content-notes\" class=\"anchor\" aria-label=\"Permalink: Notes\" href=\"#notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eAny output/issues with the build can be view at: \u003ccode\u003ecat sing-build.output\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTo reproduce all 6 rows, change the \u003ccode\u003enumOfRefinements\u003c/code\u003e in \u003ccode\u003e/data/examples/runExperiments.jl\u003c/code\u003e to 6. It consumes a lot of memory though.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1586875597.0
+ "updated_at": 1544035761.0
},
{
"data_format": 2,
- "description": null,
+ "description": "A Docker Image to run LLaMA on TACC",
"filenames": [
- "Singularity.v0.2.0",
- "Singularity.v0.4.0",
- "Singularity.v0.5.0",
- "Singularity",
- "Singularity.v0.1.0"
+ "Singularity"
],
- "full_name": "darachm/singularity_runningJobs",
- "latest_release": "v0.1.0",
+ "full_name": "mosoriob/tacc-jupyter-llama-docker-image",
+ "latest_release": null,
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1593741796.0
+ "updated_at": 1702471258.0
},
{
"data_format": 2,
- "description": "This source code is now deprecated. For updated workflows visit",
+ "description": "test singularity definition",
"filenames": [
- "build/Singularity.beta"
+ "Singularity"
],
- "full_name": "glass-consortium/glasstools",
+ "full_name": "deanpettinga/alpine-singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSingularity image for GLASS workflows\u003c/h2\u003e\u003ca id=\"user-content-singularity-image-for-glass-workflows\" class=\"anchor\" aria-label=\"Permalink: Singularity image for GLASS workflows\" href=\"#singularity-image-for-glass-workflows\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cspan\u003e\u003ca href=\"https://www.singularity-hub.org/collections/262\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6089d24b6232e35051c9f5d1f23d3b2440289a8bdab500934c1f194dbba13ccb/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f53696e67756c61726974792d312e312e3273322d627269676874677265656e2e737667\" alt=\"Singularity 1.1.2s2\" data-canonical-src=\"https://img.shields.io/badge/Singularity-1.1.2s2-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://hub.docker.com/r/glasstools/keystone/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/183e5dd3d93e42f62573ab86aa911caf6c12dab38c41c6c08e2a495e8aee14f8/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f446f636b65722d312e322e322d627269676874677265656e2e737667\" alt=\"Docker 1.2.2\" data-canonical-src=\"https://img.shields.io/badge/Docker-1.2.2-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://github.com/glass-consortium/glassdocs/issues\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5874f7ca01d26ee4c18b1ba13da87158f986395e8ab9464d0a1bc0fd26477538/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f676c6173732d636f6e736f727469756d2f676c617373646f63732e737667\" alt=\"GitHub issues\" data-canonical-src=\"https://img.shields.io/github/issues/glass-consortium/glassdocs.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/span\u003e\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003e18-Nov-2017\u003cbr\u003e\nv1.1.2s2\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eBuild details for \u003ccode\u003eglass-consortium/glasstools\u003c/code\u003e images.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ePS:\u003c/strong\u003e Documentation to run workflows is not yet ready. Visit \u003ca href=\"https://docker.glass-consortium.org\" rel=\"nofollow\"\u003ehttps://docker.glass-consortium.org\u003c/a\u003e for updates.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eCurrent Build\u003c/h4\u003e\u003ca id=\"user-content-current-build\" class=\"anchor\" aria-label=\"Permalink: Current Build\" href=\"#current-build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003eSee below on how to install Singularity version: \u003ccode\u003e2.4-install_718360bb.g718360bb\u003c/code\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull shub://glass-consortium/glasstools:beta\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAutomated build, when successfully built is available at Singularity Hub: \u003ca href=\"https://www.singularity-hub.org/collections/262\" rel=\"nofollow\"\u003ehttps://www.singularity-hub.org/collections/262\u003c/a\u003e with image tag: \u003ccode\u003eglass-consortium/glasstools:beta\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDownload using \u003ca href=\"http://singularity.lbl.gov\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e, v2.4 or higher.\u003c/li\u003e\n\u003cli\u003eAvoid running container as root. Singularity images does not require root privileges to run workflows.\u003c/li\u003e\n\u003cli\u003eDefault bind while running workflow is user ${HOME}.\u003c/li\u003e\n\u003cli\u003eFor better potability and disk mounts, ask your system admin to configure \u003ccode\u003e/etc/singularity/singularity.conf\u003c/code\u003e and set \u003ccode\u003eenable overlay = yes\u003c/code\u003e. Read \u003ca href=\"http://singularity.lbl.gov/docs-mount\" rel=\"nofollow\"\u003ehttp://singularity.lbl.gov/docs-mount\u003c/a\u003e for details.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eManual build\u003c/h4\u003e\u003ca id=\"user-content-manual-build\" class=\"anchor\" aria-label=\"Permalink: Manual build\" href=\"#manual-build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe recommend pulling pre-built Singularity image from Singularity registry at \u003ca href=\"https://www.singularity-hub.org/collections/262\" rel=\"nofollow\"\u003ehttps://www.singularity-hub.org/collections/262\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eManual build is for improvement and debugging of current beta image, especially with reducing image size and adding shortcodes to additional GLASS workflows.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/glass-consortium/glasstools.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e build\n\nsingularity build glasstools_keystone_beta.simg Singularity.beta\nsingularity inspect glasstools_keystone_beta.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eSee file: \u003cem\u003eglasstools_keystone_beta.simg.inspect.log\u003c/em\u003e for image details.\u003c/p\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eHow to install Singularity\u003c/h3\u003e\u003ca id=\"user-content-how-to-install-singularity\" class=\"anchor\" aria-label=\"Permalink: How to install Singularity\" href=\"#how-to-install-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eOne time installation, \u003cstrong\u003erequires admin privileges\u003c/strong\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cblockquote\u003e\n\u003cp\u003ePlease ask your system administrator to install Singularity with following version. While installation should be done by IT administrator, running GLASS workflows does not require \u003ccode\u003esudo\u003c/code\u003e privilege. Also, unlike potential root escalation while running docker container, Singularity based workflows are more isolated from host environment and less vulnerable to root escalation. Visit \u003ca href=\"http://singularity.lbl.gov/user-guide#security-and-privilege-escalation\" rel=\"nofollow\"\u003ehttp://singularity.lbl.gov/user-guide#security-and-privilege-escalation\u003c/a\u003e for more on security.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003eGLASS workflows are using Singularity \u003ccode\u003ev2.4\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cblockquote\u003e\n\u003cp\u003eFull version at the time of install: v2.4-install_718360bb.g718360bb\u003cbr\u003e\nCommit: \u003ca href=\"https://github.com/singularityware/singularity/commit/718360bb20b66cbafb85dd9d0a73bd6bb60c7a1f\"\u003ehttps://github.com/singularityware/singularity/commit/718360bb20b66cbafb85dd9d0a73bd6bb60c7a1f\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003eFor better compatibility with pre-built GLASS image, please install Singularity from forked reposioty as follows:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003eumask\u003c/span\u003e 0022\n\ngit clone https://github.com/glass-consortium/singularity.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e singularity\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e# confirm last commit ID to be 718360bb20b66cbafb85dd9d0a73bd6bb60c7a1f for HEAD -\u0026gt; master branch\u003c/span\u003e\ngit log --name-status HEAD^..HEAD\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e# fork master branch to a new branch, named install_718360bb\u003c/span\u003e\ngit checkout -b install_718360bb\ngit status\u003c/pre\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003eThis will show...\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cblockquote\u003e\n\u003cp\u003eOn branch install_718360bb\u003cbr\u003e\nnothing to commit, working tree clean\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./autogen.sh \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e ./configure --prefix=/usr/local \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e make\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e return exit code for compilation status\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$?\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e# only one time, we need root privileges\u003c/span\u003e\nsudo make install\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e# return to non-root user environment\u003c/span\u003e\nsudo -k\n\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e${HOME}\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e non-root user\u003c/span\u003e\n\nsingularity --version\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis will show \u003ccode\u003e2.4-install_718360bb.g718360bb\u003c/code\u003e. If so, installation is identical to an environment used to build GLASS Singularity image.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eBugs, issues\u003c/h3\u003e\u003ca id=\"user-content-bugs-issues\" class=\"anchor\" aria-label=\"Permalink: Bugs, issues\" href=\"#bugs-issues\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eReport issues related to setting up Docker/Singularity image and running workflows at \u003ca href=\"https://github.com/glass-consortium/glassdocs/issues\"\u003ehttps://github.com/glass-consortium/glassdocs/issues\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCredits\u003c/h3\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-label=\"Permalink: Credits\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eOriginal Singularity file was based on \u003ca href=\"https://github.com/jekriske/r-base\"\u003ehttps://github.com/jekriske/r-base\u003c/a\u003e by \u003ca href=\"https://github.com/jekriske\"\u003eJeff Kriske\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ealpine-singularity\u003c/h1\u003e\u003ca id=\"user-content-alpine-singularity\" class=\"anchor\" aria-label=\"Permalink: alpine-singularity\" href=\"#alpine-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003etest singularity definition\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1585336352.0
+ "updated_at": 1571758824.0
},
{
"data_format": 2,
- "description": null,
+ "description": "This pipeline analyses rna data, deeloped for OvCa and HCC samples",
"filenames": [
- "Singularity.fmriprep_1.5.0_ciftify",
- "Singularity.fmriprep_ciftify_short3",
- "Singularity.fmriprep_1.5.0_basic",
- "Singularity.repronim_fmriprep_oldconnectome",
- "Singularity.repronim_fmriprep_1.5.0",
- "Singularity.fmriprep_old_connectome",
- "Singularity.fmriprep_ciftify_short2",
- "Singularity.sing_fmriprep_ciftify",
- "Singularity.fmriprep_ciftify_short6",
- "Singularity.repronim_fmriprep_1.5.0_with_connectome",
- "Singularity.ciftify_only",
- "Singularity.fmriprep_1.5.0_no_connectome",
- "Singularity.fmriprep_test",
- "Singularity.fmriprep_ciftify_short5",
- "Singularity.test",
- "Singularity.fmriprep_ciftify",
- "Singularity.fmriprep_ciftify_short",
- "Singularity.fmriprep_ciftify4",
- "Singularity.oldconnectome"
+ "Singularity"
],
- "full_name": "kellyuw/SingularityRecipes",
+ "full_name": "Krebsro/nf-core-neointrons",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularityRecipes\u003c/h1\u003e\u003ca id=\"user-content-singularityrecipes\" class=\"anchor\" aria-label=\"Permalink: SingularityRecipes\" href=\"#singularityrecipes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCollection of Singularity recipes for neuroimaging.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u0026lt;\u0026lt;\u0026lt;\u0026lt;\u0026lt;\u0026lt;\u0026lt; HEAD\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003enf-core/neointrons\u003c/h1\u003e\u003ca id=\"user-content-nf-coreneointrons\" class=\"anchor\" aria-label=\"Permalink: nf-core/neointrons\" href=\"#nf-coreneointrons\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eThis pipeline analyses rna data, developed for OvCa and HCC data\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nf-core/neointrons\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b518c18e7a0eb37dff64a817b9d7599868058ef6d149d40f2fa83d7482070f6b/68747470733a2f2f7472617669732d63692e6f72672f6e662d636f72652f6e656f696e74726f6e732e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nf-core/neointrons.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b9d943c6da4bb0a73fe6bc476304001a1e93cbc8ccadf264da8fe47716ab6c53/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33322e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.32.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/00ceea296d710222922f0f50135c1c5453f5da6e106d89c3af96072c6dcc6d8a/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/neointrons\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/454e72258d5a13e5ba99c19a69f42f9df6f888965ed224607e80a9a984bdd7dd/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f6e656f696e74726f6e732e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/neointrons.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/3f0c745c9a388bc1b2b56ea29cd21a301b7736d98bcfea6cdb5a2c5ee2129f11/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3f0c745c9a388bc1b2b56ea29cd21a301b7736d98bcfea6cdb5a2c5ee2129f11/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eIntroduction\u003c/h3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDocumentation\u003c/h3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-label=\"Permalink: Documentation\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe nf-core/neointrons pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/local.md\"\u003eLocal installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eAdding your own system\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\n=======\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003enf-core-neointrons\u003c/h1\u003e\u003ca id=\"user-content-nf-core-neointrons\" class=\"anchor\" aria-label=\"Permalink: nf-core-neointrons\" href=\"#nf-core-neointrons\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis pipeline analyses rna data, deeloped for OvCa and HCC samples\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cblockquote\u003e\n\u003cblockquote\u003e\n\u003cblockquote\u003e\n\u003cblockquote\u003e\n\u003cblockquote\u003e\n\u003cblockquote\u003e\n\u003cp\u003ef1b73feef4f24607374c98f4c1efc1f1bef016af\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003c/blockquote\u003e\n\u003c/blockquote\u003e\n\u003c/blockquote\u003e\n\u003c/blockquote\u003e\n\u003c/blockquote\u003e\n\u003c/blockquote\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1572493534.0
+ "updated_at": 1541497875.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe for Braker",
"filenames": [
- "docker/Singularity.snowflake"
+ "Singularity",
+ "Singularity.2.1.2"
],
- "full_name": "pnplab/bids-preproc",
+ "full_name": "ISU-HPC/braker",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003epnplab\u0027s bids-preproc pipeline\u003c/h1\u003e\u003ca id=\"user-content-pnplabs-bids-preproc-pipeline\" class=\"anchor\" aria-label=\"Permalink: pnplab\u0027s bids-preproc pipeline\" href=\"#pnplabs-bids-preproc-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAn fmriprep superlayer to handle hcp/cloud or distributed scheduling for heavy longitudinal datasets.\u003c/p\u003e\n\u003cp\u003eIt does six things:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eabstract and orchestrate the preprocessing across any kind of distributed environments,\nit currently works with SLURM, but can easily be extended to any system, ie. ssh, amazon cloud, through any existing of the existing dask distributed/jobqueue implementation.\u003c/li\u003e\n\u003cli\u003eprovide an extra granularity to fmriprep at the level of session,\nas fmriprep currently only handles processing of either full dataset or of single participant at a time.\u003c/li\u003e\n\u003cli\u003ewrap tool execution calls around docker or singularity virtual containers (or none at all), with the same source code.\u003c/li\u003e\n\u003cli\u003earchive dataset with dar and only extract the relevant parts (ie. specific sessions or subjects) when needed on computing node for mutualised hypercomputing environments,\nas filesystem such as lustre, which we tested on the beluga cluster (compute canada):\n\u003cul\u003e\n\u003cli\u003ecause fmriprep to randomly hang indefinitely due to process getting stuck in D-state mode (pending kernel-level state, likely due to the network filesystem drivers)\u003c/li\u003e\n\u003cli\u003eare slow (\u003ccode\u003eseff\u003c/code\u003e averages to 2.17% of CPU utilization for 92.36% for memory usage).\u003c/li\u003e\n\u003cli\u003eare limited in the amount of file one can write (the 1M default per-user scratch file count limit is already broken out for a single dataset such as kaminati, when considering for fmriprep intermediary generated files)\nand inner compute-nodes storages are too limited (a few hundreds gigs only) to store a single dataset, or even a single subject, considering all fmriprep\u0027s intermediary generated files (for kaminati).\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003emonkey patch currently broken fmriprep anatomic fast-track mechanism, which is buggy with some dataset, cf. \u003ca href=\"https://github.com/nipreps/smriprep/issues/224\"\u003ehttps://github.com/nipreps/smriprep/issues/224\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003emonitor unreachable dask workers (likely due to hypercomputer network congestion issues) and kill and reschedule their associated compute nodes, if dask+slurm is the used scheduler.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe architecture should enable easy changes of the pipeline:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eie. to partially download the dataset, such as a single session, at the relevant time instead of extracting it from dar.\u003c/li\u003e\n\u003cli\u003eie. to use a different orchestration system than slurm (for instance kubernetes, ..., basically anything, check both dask distributed and dask jobqueue documentations for most of the currently available options).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eBefore use, you must:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esetup the license/freesurfer.txt file (get a license from freesurfer website and put it inside that file, cf. fmriprep doc)\u003c/li\u003e\n\u003cli\u003edownload the templateflow atlas using the script in \u003ccode\u003e./scripts/download-templateflow-data.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003edownload and build the relevant singularity images (this step is only required if singularity is used):\n\u003ccode\u003emkdir ../singularity-images/; cd ../singularity-images/; singularity build bids-validator-1.8.5.simg docker://bids/validator:v1.8.5 ; singularity build fmriprep-20.2.6.simg docker://nipreps/fmriprep:20.2.6 ; singularity build smriprep-0.8.1.simg docker://nipreps/smriprep:0.8.1\u003c/code\u003e.\nfile \u003ccode\u003econfig.py\u003c/code\u003e might have to be adapted to get the proper path.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSample usage:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003epython main.py --help\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003epython main.py --vm-engine docker --granularity subject --executor none --disable-mriqc \u0027/scratch/nuks/kaminati-bids\u0027 \u0027/scratch/nuks/kaminati-preproc\u0027\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003e./preprocessing.sh --vm-engine singularity --granularity session --executor slurm --disable-mriqc --worker-memory-gb 64 --worker-cpu-count 16 --worker-count 7 --worker-walltime 2-12:00:00 --worker-local-dir \u0027$SLURM_TMPDIR/pnplab-kaminati\u0027 \u0027/scratch/nuks/kaminati-bids\u0027 \u0027/scratch/nuks/kaminati-preproc\u0027\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ebraker\u003c/h1\u003e\u003ca id=\"user-content-braker\" class=\"anchor\" aria-label=\"Permalink: braker\" href=\"#braker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for Braker\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1638698896.0
+ "updated_at": 1541795875.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Anvi\u2019o is an open-source, community-driven analysis and visualization platform for microbial \u2018omics.",
"filenames": [
- "Singularityfile.def"
+ "8/Singularity",
+ "7/Singularity"
],
- "full_name": "shanzewang/ros_jackal_image",
+ "full_name": "pscedu/singularity-anvio",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eROS-Jackal\u003c/h1\u003e\u003ca id=\"user-content-ros-jackal\" class=\"anchor\" aria-label=\"Permalink: ROS-Jackal\" href=\"#ros-jackal\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is the repository for the paper \"\u003ca href=\"https://arxiv.org/abs/2210.04839\" rel=\"nofollow\"\u003eBenchmarking Reinforcement Learning Techniques for Autonomous Navigation\u003c/a\u003e\".\u003c/p\u003e\n\u003cp\u003eThe results shown in the paper use Condor Cluster to distribute 100 actors for collecting trajectories. This setting can greatly speed up the training and make it feasible to finish all the experiments presented in the paper, however Condor Cluster is relatively inaccessible to most users. Instead, to guarantee reproducibility, we provide this version of repository that distributes the actors over 10 Singularity containers that can run locally on a single machine.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation\u003c/h2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col start=\"0\"\u003e\n\u003cli\u003eClone this repository\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/Daffan/ros_jackal.git\ncd ros_jackal\n\u003c/code\u003e\u003c/pre\u003e\n\u003col\u003e\n\u003cli\u003eIn your virtual environment, install the python dependencies:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003epip install -r requirements.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003e\n\u003cp\u003eFollow this instruction to install Singularity: \u003ca href=\"https://docs.sylabs.io/guides/latest/admin-guide/installation.html#installation-on-linux\" rel=\"nofollow\"\u003ehttps://docs.sylabs.io/guides/latest/admin-guide/installation.html#installation-on-linux\u003c/a\u003e. Singularity version \u0026gt;= 3.6.3 is \u003cstrong\u003erequired\u003c/strong\u003e to build the image.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e(Only do following step if you really need!) The code does not require ROS installation, since the rollout happens in the container, but if you have need to develop based on our repo, running ROS and Gazebo simulation out of the container enables GUI and is easier to debug. Follow steps below to install ROS dependencies (assume \u003ccode\u003emelodic\u003c/code\u003e ROS installed already):\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eCreate ROS workspace\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003emkdir -p /\u0026lt;YOUR_HOME_DIR\u0026gt;/jackal_ws/src\ncd /\u0026lt;YOUR_HOME_DIR\u0026gt;/jackal_ws/src\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eClone this repo and required ros packages\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/Daffan/ros_jackal.git\ngit clone https://github.com/jackal/jackal.git --branch melodic-devel\ngit clone https://github.com/jackal/jackal_simulator.git --branch melodic-devel\ngit clone https://github.com/jackal/jackal_desktop.git --branch melodic-devel\ngit clone https://github.com/utexas-bwi/eband_local_planner.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eInstall ROS package dependencies\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003ecd ..\nsource /opt/ros/melodic/setup.bash\nrosdep init; rosdep update\nrosdep install -y --from-paths . --ignore-src --rosdistro=melodic\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eBuild the workspace\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003ecatkin_make\nsource devel/setup.bash\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eVerify your installation: (this script will run open-ai gym environment for 5 episodes)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003ePull image file (modify the \u0026lt;FOLDER_PATH_TO_SAVE_IMAGE\u0026gt; in the command, image file size ~ 3G\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name \u0026lt;PATH_TO_THIS_REPO\u0026gt;/local_buffer/image:latest.sif library://zifanxu/ros_jackal_image/image:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003e./singularity_run.sh \u0026lt;PATH_TO_THIS_REPO\u0026gt;/local_buffer/nav_benchmark.sif python3 test_env.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTrain a deep RL navigation policy\u003c/h2\u003e\u003ca id=\"user-content-train-a-deep-rl-navigation-policy\" class=\"anchor\" aria-label=\"Permalink: Train a deep RL navigation policy\" href=\"#train-a-deep-rl-navigation-policy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo train a navigation policy, you just need to specify a \u003ccode\u003e.yaml\u003c/code\u003e file that includes the parameters for specific experiment. For instance,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython train.py --config configs/e2e_default_TD3.yaml\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWe provide the full list of \u003ccode\u003e.yaml\u003c/code\u003e files used in our experiment in the end.\u003c/p\u003e\n\u003cp\u003eThis repo saves the collected trajectories from each actor in a local buffer folder, also actors load the recent policy from this folder. By default, buffer folder is a folder named \u003ccode\u003elocal_buffer\u003c/code\u003e in current dictionary. You can specify a new folder as \u003ccode\u003eexport BUFFER_FOLDER=/PATH/TO/YOUR/BUFFER_FOLDER\u003c/code\u003e. The logging files can be found under folder \u003ccode\u003elogging\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTrain in computing cluster\u003c/h2\u003e\u003ca id=\"user-content-train-in-computing-cluster\" class=\"anchor\" aria-label=\"Permalink: Train in computing cluster\" href=\"#train-in-computing-cluster\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCluster requires a shared file system, where multiple actors load the lastest policy, rollout, and save the trajectory in the \u003ccode\u003eBUFFER_FOLDER\u003c/code\u003e. Then, a critic collects trajectories from \u003ccode\u003eBUFFER_FOLDER\u003c/code\u003e and updates the policy.\u003c/p\u003e\n\u003cp\u003eThis is asyncronized training pipeline, namely the actors might fall behind and do not generate trajectories from the latest policy.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDownload the Singularity image\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name \u0026lt;PATH/TO/IMAGE\u0026gt;/image:latest.sif library://zifanxu/ros_jackal_image/image:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eOn critic computing node\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eexport BUFFER_PATH=\u0026lt;BUFFER_PATH\u0026gt;\n./singularity_run.sh \u0026lt;PATH/TO/IMAGE\u0026gt;/image:latest.sif python train.py --config configs/e2e_default_TD3_cluster.yaml\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eOn actor computing node 0 (you need to run \u003ccode\u003e0-50\u003c/code\u003e computing nodes as defined in line 60 in \u003ccode\u003econtainer_config.yaml\u003c/code\u003e).\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eexport BUFFER_PATH=\u0026lt;BUFFER_PATH\u0026gt;\n./singularity_run.sh \u0026lt;PATH/TO/IMAGE\u0026gt;/image:latest.sif python actor.py --id 0\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eResults\u003c/h2\u003e\u003ca id=\"user-content-results\" class=\"anchor\" aria-label=\"Permalink: Results\" href=\"#results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSuccess rate of policies trained with different neural network architectures and history lengths in static (top) and dynamic-wall (bottom) environments.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003e\u003cstrong\u003eStatic\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eHistory length\u003c/td\u003e\n\u003ctd\u003e1\u003c/td\u003e\n\u003ctd\u003e4\u003c/td\u003e\n\u003ctd\u003e8\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMLP\u003c/td\u003e\n\u003ctd\u003e65 \u00b1 4%\u003c/td\u003e\n\u003ctd\u003e57 \u00b1 7%\u003c/td\u003e\n\u003ctd\u003e42 \u00b1 2%\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGRU\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003ctd\u003e51 \u00b1 2%\u003c/td\u003e\n\u003ctd\u003e43 \u00b1 4%\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCNN\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003ctd\u003e55 \u00b1 4%\u003c/td\u003e\n\u003ctd\u003e45 \u00b1 5%\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTransformer\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003e68 \u00b1 2%\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e46 \u00b1 3%\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003e\u003cstrong\u003eDynamic box\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eHistory length\u003c/td\u003e\n\u003ctd\u003e1\u003c/td\u003e\n\u003ctd\u003e4\u003c/td\u003e\n\u003ctd\u003e8\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMLP\u003c/td\u003e\n\u003ctd\u003e50 \u00b1 5%\u003c/td\u003e\n\u003ctd\u003e35 \u00b1 2%\u003c/td\u003e\n\u003ctd\u003e46 \u00b1 3%\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGRU\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003ctd\u003e48 \u00b1 4%\u003c/td\u003e\n\u003ctd\u003e45 \u00b1 1%\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCNN\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003ctd\u003e42 \u00b1 5%\u003c/td\u003e\n\u003ctd\u003e40 \u00b1 1%\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTransformer\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003e52 \u00b1 1%\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e44 \u00b1 4%\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003e\u003cstrong\u003eDynamic wall\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eHistory length\u003c/td\u003e\n\u003ctd\u003e1\u003c/td\u003e\n\u003ctd\u003e4\u003c/td\u003e\n\u003ctd\u003e8\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMLP\u003c/td\u003e\n\u003ctd\u003e67 \u00b1 7%\u003c/td\u003e\n\u003ctd\u003e72 \u00b1 1%\u003c/td\u003e\n\u003ctd\u003e69 \u00b1 4%\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGRU\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003e82 \u00b1 4%\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e78 \u00b1 5%\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCNN\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003ctd\u003e63 \u00b1 3%\u003c/td\u003e\n\u003ctd\u003e43 \u00b1 3%\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTransformer\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003ctd\u003e33 \u00b1 28%\u003c/td\u003e\n\u003ctd\u003e15 \u00b1 13%\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eSuccess rate, survival time and traversal time of policies trained with different safe-RL methods, MPC with probabilistic transition model and DWA.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003e\u003cstrong\u003eSafe-RL method\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003eMLP\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003eLagrangian\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003eMPC\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003eDWA\u003c/strong\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eSuccess rate\u003c/td\u003e\n\u003ctd\u003e65 \u00b1 4%\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003e74 \u00b1 2%\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e70 \u00b1 3%\u003c/td\u003e\n\u003ctd\u003e43%\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSurvival time\u003c/td\u003e\n\u003ctd\u003e8.0 \u00b1 1.5s\u003c/td\u003e\n\u003ctd\u003e16.2 \u00b1 2.5s\u003c/td\u003e\n\u003ctd\u003e55.7 \u00b1 4.9s\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003e88.6s\u003c/strong\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTraversal time\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003e7.5 \u00b1 0.3s\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e8.6 \u00b1 0.2s\u003c/td\u003e\n\u003ctd\u003e24.7 \u00b1 2.0s\u003c/td\u003e\n\u003ctd\u003e38.5s\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eSuccess rate of policies trained with different model-based methods and different number of transition samples\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003e\u003cstrong\u003eTransition samples\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003e100k\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003e500k\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003e2000k\u003c/strong\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eMLP\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003e13 \u00b1 7%\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003e58 \u00b1 2%\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e65 \u00b1 4%\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDyna-style deterministic\u003c/td\u003e\n\u003ctd\u003e8 \u00b1 2%\u003c/td\u003e\n\u003ctd\u003e30 \u00b1 10%\u003c/td\u003e\n\u003ctd\u003e66 \u00b1 5%\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMPC deterministic\u003c/td\u003e\n\u003ctd\u003e0 \u00b1 0%\u003c/td\u003e\n\u003ctd\u003e21 \u00b1 10%\u003c/td\u003e\n\u003ctd\u003e62 \u00b1 3%\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDyna-style probabilistic\u003c/td\u003e\n\u003ctd\u003e0 \u00b1 0%\u003c/td\u003e\n\u003ctd\u003e48 \u00b1 4%\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003e70 \u00b1 1%\u003c/strong\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMPC probabilistic\u003c/td\u003e\n\u003ctd\u003e0 \u00b1 0%\u003c/td\u003e\n\u003ctd\u003e45 \u00b1 4%\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003e70 \u00b1 3%\u003c/strong\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eSuccess rate of policies trained with different number of training environments\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003e\u003cstrong\u003eEnvironments\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003e5\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003e10\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003e50\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003e100\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003e250\u003c/strong\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eSuccess rate\u003c/td\u003e\n\u003ctd\u003e43 \u00b1 3%\u003c/td\u003e\n\u003ctd\u003e54 \u00b1 8%\u003c/td\u003e\n\u003ctd\u003e65 \u00b1 4%\u003c/td\u003e\n\u003ctd\u003e72 \u00b1 6%\u003c/td\u003e\n\u003ctd\u003e74 \u00b1 2 %\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e(See below for all the config files used to reproduce the experiments)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e \u2514\u2500configs\n \u2502 \u2514\u2500safe_rl\n \u2502 \u2502 \u2514\u2500mpc.yaml\n \u2502 \u2502 \u2514\u2500mlp.yaml\n \u2502 \u2502 \u2514\u2500lagrangian.yaml\n \u2502 \u2514\u2500architecture_static\n \u2502 \u2502 \u2514\u2500mlp_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500cnn_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500cnn_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500cnn_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_8.yaml\n \u2502 \u2514\u2500architecture_dynamic_wall\n \u2502 \u2502 \u2514\u2500cnn_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500cnn_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500cnn_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_8.yaml\n \u2502 \u2514\u2500architecture_dynamic_box\n \u2502 \u2502 \u2514\u2500cnn_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500cnn_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500cnn_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_8.yaml\n \u2502 \u2514\u2500model_based\n \u2502 \u2502 \u2514\u2500dyna.yaml\n \u2502 \u2502 \u2514\u2500mpc.yaml\n \u2502 \u2514\u2500generalization\n \u2502 \u2502 \u2514\u2500num_world_50.yaml\n \u2502 \u2502 \u2514\u2500num_world_5.yaml\n \u2502 \u2502 \u2514\u2500num_world_10.yaml\n \u2502 \u2502 \u2514\u2500num_world_100.yaml\n \u2502 \u2502 \u2514\u2500num_world_250.yamlconfigs\n \u2502 \u2514\u2500safe_rl\n \u2502 \u2502 \u2514\u2500mpc.yaml\n \u2502 \u2502 \u2514\u2500mlp.yaml\n \u2502 \u2502 \u2514\u2500lagrangian.yaml\n \u2502 \u2514\u2500architecture_static\n \u2502 \u2502 \u2514\u2500mlp_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500cnn_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500cnn_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500cnn_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_8.yaml\n \u2502 \u2514\u2500architecture_dynamic_wall\n \u2502 \u2502 \u2514\u2500cnn_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500cnn_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500cnn_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_8.yaml\n \u2502 \u2514\u2500architecture_dynamic_box\n \u2502 \u2502 \u2514\u2500cnn_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500cnn_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500cnn_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500mlp_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500rnn_history_length_8.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_1.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_4.yaml\n \u2502 \u2502 \u2514\u2500transformer_history_length_8.yaml\n \u2502 \u2514\u2500model_based\n \u2502 \u2502 \u2514\u2500dyna.yaml\n \u2502 \u2502 \u2514\u2500mpc.yaml\n \u2502 \u2514\u2500generalization\n \u2502 \u2502 \u2514\u2500num_world_50.yaml\n \u2502 \u2502 \u2514\u2500num_world_5.yaml\n \u2502 \u2502 \u2514\u2500num_world_10.yaml\n \u2502 \u2502 \u2514\u2500num_world_100.yaml\n \u2502 \u2502 \u2514\u2500num_world_250.yaml\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-anvio/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-anvio/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-anvio/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-anvio/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/76e66b0528620e6de223824bc0811e43da5305bc225fde5e0da2581d636a4d79/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d616e76696f\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/76e66b0528620e6de223824bc0811e43da5305bc225fde5e0da2581d636a4d79/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d616e76696f\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-anvio\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/b266c3fbd482290cf4c5e346f3832162d4903334e17f80734b14d5a75a2d437e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d616e76696f\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b266c3fbd482290cf4c5e346f3832162d4903334e17f80734b14d5a75a2d437e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d616e76696f\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-anvio\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/e125772a3252bfd4304809a815f2de28bd93d1d43e97d512f356a8db123116ce/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d616e76696f\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e125772a3252bfd4304809a815f2de28bd93d1d43e97d512f356a8db123116ce/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d616e76696f\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-anvio\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/7becb11640fa75f5c844770229b3132b8ed32bee6c4001e30be8dd3c86e26513/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d616e76696f\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7becb11640fa75f5c844770229b3132b8ed32bee6c4001e30be8dd3c86e26513/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d616e76696f\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-anvio\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-anvio\u003c/h1\u003e\u003ca id=\"user-content-singularity-anvio\" class=\"anchor\" aria-label=\"Permalink: singularity-anvio\" href=\"#singularity-anvio\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/4ec10e0b03386960c0b2a8183e88162122d72b83655bd09576000f057f5bb00f/68747470733a2f2f6d6572656e6c61622e6f72672f696d616765732f616e76696f2d6e6574776f726b2e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4ec10e0b03386960c0b2a8183e88162122d72b83655bd09576000f057f5bb00f/68747470733a2f2f6d6572656e6c61622e6f72672f696d616765732f616e76696f2d6e6574776f726b2e706e67\" data-canonical-src=\"https://merenlab.org/images/anvio-network.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://https://merenlab.org/software/anvio/\" rel=\"nofollow\"\u003eanvio\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eanvio-*\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/anvio/8\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/anvio\u003c/code\u003e as \u003ccode\u003e8.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2023 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1713930886.0
+ "subscribers_count": 3,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1641398359.0
},
{
"data_format": 2,
- "description": "Superparameterization coupler",
+ "description": "Singularity image for (last working verison) of OpenSees",
"filenames": [
"Singularity"
],
- "full_name": "CloudResolvingClimateModeling/sp-coupler",
- "latest_release": "v1.1",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSuperparameterization of OpenIFS with DALES\u003c/h1\u003e\u003ca id=\"user-content-superparameterization-of-openifs-with-dales\" class=\"anchor\" aria-label=\"Permalink: Superparameterization of OpenIFS with DALES\" href=\"#superparameterization-of-openifs-with-dales\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.5281/zenodo.1968305\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c1d1645aa679213f22216cc946a1fab69f500e5442f02f1e947c083a061e921d/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e313936383330352e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.1968305.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis repository contains a script for running the global atmospheric model \u003ca href=\"https://confluence.ecmwf.int/display/OIFS/OpenIFS+Home\" rel=\"nofollow\"\u003eOpenIFS\u003c/a\u003e\ncoupled to local cloud-resolving LES simulations. The LES used is \u003ca href=\"https://github.com/dalesteam/dales\"\u003eDALES\u003c/a\u003e,\nthe Dutch Atmospheric Large Eddy Simulation.\u003c/p\u003e\n\u003cp\u003eA description of the coupling procedure and simulation results are given in\u003c/p\u003e\n\u003cp\u003eJansson, F., van den Oord, G., Pelupessy, I., Gr\u00f6nqvist, J. H., Siebesma, A. P., \u0026amp; Crommelin, D. (2019). Regional superparameterization in a global circulation model using large eddy simulations. \u003ca href=\"https://doi.org/10.1029/2018MS001600\" rel=\"nofollow\"\u003eJournal of Advances in Modeling Earth Systems, 11\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eInterfaces to the models are built with \u003ca href=\"https://bitbucket.org/omuse/omuse/src/default/\" rel=\"nofollow\"\u003eOMUSE\u003c/a\u003e.\nThe interfaces are documented in the \u003ca href=\"https://omuse.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003eOMUSE documentation\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAuthors\u003c/h2\u003e\u003ca id=\"user-content-authors\" class=\"anchor\" aria-label=\"Permalink: Authors\" href=\"#authors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFredrik Jansson (TU Delft and CWI, Amsterdam),\nGijs van den Oord (Netherlands e-Science center, Amsterdam),\nInti Pelupessy (Netherlands e-Science center, Amsterdam),\nMaria Chertova (Netherlands e-Science center, Amsterdam),\nPier Siebesma (TU Delft and KNMI),\nDaan Crommelin (CWI, Amsterdam),\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe code in this repository is available under the Apache 2.0 license.\u003c/p\u003e\n\u003cp\u003eDALES and OpenIFS have their own licenses.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSingularity image\u003c/h2\u003e\u003ca id=\"user-content-singularity-image\" class=\"anchor\" aria-label=\"Permalink: Singularity image\" href=\"#singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor easy setup of the superparameterized simulation, we provide a\nSingularity recipe. This recipe can be used to build a Singularity\ncontainer including everything required to run the simulation.\nSee the \u003ca href=\"https://www.sylabs.io/docs/\" rel=\"nofollow\"\u003eSingularity documentation\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstall singularity on a computer where you have root access.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBuild the image. This step requires root access.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build sp.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe build procedure will ask for a user name and password for the OpenIFS git repository at ECMWF,\nto download the modified OpenIFS.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eTo run the simulation, launch a shell inside the container. This step does not require root access,\nand can be done on a different machine.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell sp.img\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBy default Singularity mounts the user\u0027s home directory inside the image. If you have the sp-coupler directory somewhere in your home directory,\nthe singularity shell will be opened there.\u003c/p\u003e\n\u003cp\u003eRun the example simulation with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./run_T21_sockets.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eLimitations of the Singularity setup\u003c/h3\u003e\u003ca id=\"user-content-limitations-of-the-singularity-setup\" class=\"anchor\" aria-label=\"Permalink: Limitations of the Singularity setup\" href=\"#limitations-of-the-singularity-setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIt\u0027s unclear whether the Singularity image supports running on multiple nodes. AMUSE launches the workers using MPI_COMM_SPAWN,\nand this may not work over multiple nodes in this setup. For large runs, we recommend a manual installation for now.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eExample case\u003c/h2\u003e\u003ca id=\"user-content-example-case\" class=\"anchor\" aria-label=\"Permalink: Example case\" href=\"#example-case\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository contains a small example case which can be run on a single workstation, with OpenIFS on a T21 grid coupled to two DALES models.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eoifs-input/\u003c/code\u003e contains the files required to run OpenIFS for the small T21 grid. This is the standard OpenIFS test case bundled with OpenIFS itself.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003edales-input/\u003c/code\u003e contains files required for DALES. This is a case with 64 x 64 x 160 grid points. The horizontal resolution can easily be changed by editing the file \u003ccode\u003enamoptions.001\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003erun_T21_mpi.sh\u003c/code\u003e run example simulation using MPI. For simulations using one or more computer nodes.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003erun_T21_sockets.sh\u003c/code\u003e run example simulation using the AMUSE sockets channel. For simulations that fit within one node.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003erun_T21_nospawn.sh\u003c/code\u003e run example simulation with work-around for MPI that does not support spawn. Experimental, provided as-is.\u003c/p\u003e\n\u003cp\u003eIn the Singularity image, the sockets variant works immediately. The MPI variant requires the following command to load the openMPI module:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eeval `/usr/bin/modulecmd sh load mpi/openmpi-x86_64`\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe full run of 100 time steps took about 13h on a quad-core workstation (i7-4790).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eModel settings\u003c/h2\u003e\u003ca id=\"user-content-model-settings\" class=\"anchor\" aria-label=\"Permalink: Model settings\" href=\"#model-settings\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eModel settings and input data are provided in three places:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ean OpenIFS input directory, containing an initial state, and model settings in fort.4\u003c/li\u003e\n\u003cli\u003ea DALES input directory, containing model settings in namoptions.001\u003c/li\u003e\n\u003cli\u003eoptions for the model coupling, provided on the command line of the coupling script. For a list of them, run \u003ccode\u003e./spmaster.py --help\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor a small example, see \u003ccode\u003erun_T21_sockets.sh\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eResults\u003c/h2\u003e\u003ca id=\"user-content-results\" class=\"anchor\" aria-label=\"Permalink: Results\" href=\"#results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAll model output is organized in an output directory:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edales-work-nnn/ DALES work directory, one for each LES instance.\n surf_xy*.nc surface fields: liquid water path, rain water path, total water path, accumulated surface rain\n cross*.nc cross section fields of the LES volume\nles-input copy of the DALES input files.\noifs-work OpenIFS work directory, contains output from the global model, mainly in GRIB format.\nspifs.nc netCDF file containing vertical profiles and tendencies for the superparameterized columns.\ntiming.txt CPU time statistics per time step for all models.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOpenIFS and DALES can be configured as usual with their respective input files, in particular the type and frequency of the output they provide.\nSee the model documentation for details.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eFormat of spifs.nc\u003c/h3\u003e\u003ca id=\"user-content-format-of-spifsnc\" class=\"anchor\" aria-label=\"Permalink: Format of spifs.nc\" href=\"#format-of-spifsnc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe output file spifs.nc contains vertical profiles of model variables and superparameterization tendencies\nfor every superparameterized grid point and global model time step.\nThe data is organized in groups according to the grid point where the model is located,\nfor example all data for the DALES at grid point 888 is located in the group 888/ in the netCDF file.\nIn general, variables in upper case relate to the global model, and variables in lower case relate to the local model.\nForcings \u003cem\u003eon\u003c/em\u003e the global model are denoted e.g. f_T, and on the local model f_thl.\u003c/p\u003e\n\u003cp\u003eThe superparameterization coupler can also store profiles in spifs.nc for columns that are not superparameterized.\nThe data for these columns then contain only quantities for the global model, there are no forcings and no local model quantities.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eVertical coordinates\u003c/h4\u003e\u003ca id=\"user-content-vertical-coordinates\" class=\"anchor\" aria-label=\"Permalink: Vertical coordinates\" href=\"#vertical-coordinates\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eProfiles in the local model use \u003ccode\u003ezf\u003c/code\u003e, in the root group of the file, as vertical coordinate. These are constant in time and the same for all the local models.\nFor the global model, the vertical coordinate is \u003ccode\u003eZf\u003c/code\u003e, which depends on both the grid point and time (because the global model\u0027s\nlevels are not on a fixed height but defined by pressure, they vary in time and space).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eVariables\u003c/h4\u003e\u003ca id=\"user-content-variables\" class=\"anchor\" aria-label=\"Permalink: Variables\" href=\"#variables\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe most important variables are summarized below.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOpenIFS Variable\u003c/th\u003e\n\u003cth\u003eUnit\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003elat, lon\u003c/td\u003e\n\u003ctd\u003edegrees\u003c/td\u003e\n\u003ctd\u003egrid point coordinates\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eU, V\u003c/td\u003e\n\u003ctd\u003em/s\u003c/td\u003e\n\u003ctd\u003evelocity components in x, y directions\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eT\u003c/td\u003e\n\u003ctd\u003eK\u003c/td\u003e\n\u003ctd\u003etemperature\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSH\u003c/td\u003e\n\u003ctd\u003ekg/kg\u003c/td\u003e\n\u003ctd\u003especific humidity (i.e. water vapor, not cloud condensate)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eQL\u003c/td\u003e\n\u003ctd\u003ekg/kg\u003c/td\u003e\n\u003ctd\u003especific cloud condensate, liquid\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eQI\u003c/td\u003e\n\u003ctd\u003ekg/kg\u003c/td\u003e\n\u003ctd\u003especific cloud condensate in the form of ice\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eQT\u003c/td\u003e\n\u003ctd\u003ekg/kg\u003c/td\u003e\n\u003ctd\u003etotal specific humidity, SH+QL+QI\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePf\u003c/td\u003e\n\u003ctd\u003ePa\u003c/td\u003e\n\u003ctd\u003epressure\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eA\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003ctd\u003ecloud fraction\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ef_U, f_V\u003c/td\u003e\n\u003ctd\u003em/s^2\u003c/td\u003e\n\u003ctd\u003eforcings on global model\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ef_T\u003c/td\u003e\n\u003ctd\u003eK/s\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ef_SH, f_QL, f_QI\u003c/td\u003e\n\u003ctd\u003ekg/kg/s\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eDALES Variable\u003c/th\u003e\n\u003cth\u003eUnit\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eu, v\u003c/td\u003e\n\u003ctd\u003em/s\u003c/td\u003e\n\u003ctd\u003evelocity components in x, y directions\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ethl\u003c/td\u003e\n\u003ctd\u003eK\u003c/td\u003e\n\u003ctd\u003eliquid water potential temperature\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eqt\u003c/td\u003e\n\u003ctd\u003ekg/kg\u003c/td\u003e\n\u003ctd\u003etotal specific humidity\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eql\u003c/td\u003e\n\u003ctd\u003ekg/kg\u003c/td\u003e\n\u003ctd\u003econdensed water specific humidity\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ewthl\u003c/td\u003e\n\u003ctd\u003eK m/s\u003c/td\u003e\n\u003ctd\u003esurface heat flux\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ewqt\u003c/td\u003e\n\u003ctd\u003em/s\u003c/td\u003e\n\u003ctd\u003esurface moisture flux\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ef_u, f_v\u003c/td\u003e\n\u003ctd\u003em/s^2\u003c/td\u003e\n\u003ctd\u003eforcings on local model\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ef_thl\u003c/td\u003e\n\u003ctd\u003eK/s\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ef_qt\u003c/td\u003e\n\u003ctd\u003ekg/kg/s\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eSample Python script for reading spifs.nc\u003c/h4\u003e\u003ca id=\"user-content-sample-python-script-for-reading-spifsnc\" class=\"anchor\" aria-label=\"Permalink: Sample Python script for reading spifs.nc\" href=\"#sample-python-script-for-reading-spifsnc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA sample python script for extracting data from the spifs.nc file is provided in \u003ccode\u003eexamples/access-spifs-nc.py\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eRequirements and manual installation procedure - Python 3 version\u003c/h1\u003e\u003ca id=\"user-content-requirements-and-manual-installation-procedure---python-3-version\" class=\"anchor\" aria-label=\"Permalink: Requirements and manual installation procedure - Python 3 version\" href=\"#requirements-and-manual-installation-procedure---python-3-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCartesius\u003c/h2\u003e\u003ca id=\"user-content-cartesius\" class=\"anchor\" aria-label=\"Permalink: Cartesius\" href=\"#cartesius\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003emodule load 2020\nmodule load netCDF-Fortran/4.5.2-gompi-2020a\nmodule load CMake/3.16.4-GCCcore-9.3.0\nmodule load FFTW/3.3.8-gompi-2020a\nmodule load Hypre/2.18.2-foss-2020a\nmodule load Python/3.8.2-GCCcore-9.3.0\nmodule load ecCodes/2.18.0-foss-2020a-Python-3.8.2\n# OpenMPI 4.0.3\n\ngit clone https://github.com/omuse-geoscience/omuse/\ncd omuse\npython3 -m venv omuse_env_2000\nsource omuse_env_2000/bin/activate\n\npip install -e .\n\nexport DOWNLOAD_CODES=all\nexport SYST=gnu-fast\n\n# work-around for OMUSE not finding netCDF\nexport DALES_FCFLAGS=\"`nf-config --flibs` -fdefault-real-8 -cpp\"\n\n# install DALES\npython setup.py build_code --code-name dales --inplace\n\n\nexport OIFS_GRIB_API_DIR=/sw/arch/RedHatEnterpriseServer7/EB_production/2020/software/ecCodes/2.18.0-foss-2020a-Python-3.8.2\nexport OIFS_GRIB_API_LIB=\"-L$OIFS_GRIB_API_DIR/lib -leccodes_f90\"\nexport GRIB_SAMPLES_PATH=$OIFS_GRIB_API_DIR/share/eccodes/ifs_samples/grib1_mlgrib2/\nexport OIFS_LAPACK_LIB=\"-L/sw/arch/RedHatEnterpriseServer7/EB_production/2020/software/ScaLAPACK/2.1.0-gompi-2020a/lib -L/sw/arch/RedHatEnterpriseServer7/EB_production/2020/software/OpenBLAS/0.3.9-GCC-9.3.0/lib -lopenblas -lscalapack\"\n\n# install open-ifs - requires ECMWF username/password\npython setup.py build_code --code-name oifs --inplace\n\npip install scipy moviepy matplotlib h5py shapely psutil\n# ERROR: pandas 1.0.3 requires pytz\u0026gt;=2017.2, which is not installed. - ignoring this for now\n\n# install SP-coupler, this repository. \ncd \npip install scipy moviepy matplotlib h5py shapely psutil\ngit clone https://github.com/CloudResolvingClimateModeling/sp-coupler\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eRequirements and manual installation procedure - Python 2 version\u003c/h1\u003e\u003ca id=\"user-content-requirements-and-manual-installation-procedure---python-2-version\" class=\"anchor\" aria-label=\"Permalink: Requirements and manual installation procedure - Python 2 version\" href=\"#requirements-and-manual-installation-procedure---python-2-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following applies to the Python2 version, year 2020 or before.\nThese instructions are becoming obsolete, since OMUSE has switched to Python 3.\u003c/p\u003e\n\u003cp\u003eFor initial tests, we recommend trying the Singularity image, since it simplifies the installation.\nThe singularity recipe in the file \u003ccode\u003eSingularity\u003c/code\u003e can also be used as instructions for a manual setup.\u003c/p\u003e\n\u003cp\u003eFor a manual setup, the following tools and libraries are required:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eC and Fortran compilers, e.g. gcc and gfortran\u003c/li\u003e\n\u003cli\u003emake\u003c/li\u003e\n\u003cli\u003ecmake\u003c/li\u003e\n\u003cli\u003enetCDF4\u003c/li\u003e\n\u003cli\u003eeccodes or gribapi\u003c/li\u003e\n\u003cli\u003eMPI\u003c/li\u003e\n\u003cli\u003empi4py\u003c/li\u003e\n\u003cli\u003ethe following Python modules:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003epip install --upgrade mercurial moviepy f90nml numpy scipy matplotlib nose h5py docutils netCDF4 shapely psutil\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNext, install the following programs, in this order:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAMUSE \u003ca href=\"http://amusecode.org/\" rel=\"nofollow\"\u003ehttp://amusecode.org/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eOMUSE \u003ca href=\"https://bitbucket.org/omuse/omuse\" rel=\"nofollow\"\u003ehttps://bitbucket.org/omuse/omuse\u003c/a\u003e\nThe OMUSE Makefiles downloads and builds the two models.\n\u003cul\u003e\n\u003cli\u003eOpenIFS (note: requires username/password from ECMWF)\u003c/li\u003e\n\u003cli\u003eDALES \u003ca href=\"https://github.com/CloudResolvingClimateModeling/dales\"\u003ehttps://github.com/CloudResolvingClimateModeling/dales\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eNote that OpenIFS might require several environment variables to be set both at compilation and at runtime.\nSee \u003ca href=\"https://confluence.ecmwf.int/display/OIFS/OpenIFS+User+Guides\" rel=\"nofollow\"\u003ethe OpenIFS manual\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eOnce the above are installed, you will need to add the python modules to your PYTHONPATH:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport PYTHONPATH=\u0026lt;AMUSE clone path\u0026gt;/src:\u0026lt;SP-coupler clone path\u0026gt;/splib\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto run the main driver script in this repo, spmaster.py. To view all the superparametrization options and configurations (e.g. the choice of the superparametrized region), type\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./spmaster.py --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eInstallation notes for specific systems\u003c/h1\u003e\u003ca id=\"user-content-installation-notes-for-specific-systems\" class=\"anchor\" aria-label=\"Permalink: Installation notes for specific systems\" href=\"#installation-notes-for-specific-systems\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation on Arch Linux\u003c/h2\u003e\u003ca id=\"user-content-installation-on-arch-linux\" class=\"anchor\" aria-label=\"Permalink: Installation on Arch Linux\" href=\"#installation-on-arch-linux\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWhen configuring OMUSE, one must explicitly specify python2, since the default is python3.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd amuse\nPYTHON=python2 ./configure --with-netcdf=/usr/\nmake framework\n\nexport DOWNLOAD_CODES=all\n\ncd src/omuse/community/dales\nmake\n\ncd ../oifs\nmake\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation on Fedora\u003c/h2\u003e\u003ca id=\"user-content-installation-on-fedora\" class=\"anchor\" aria-label=\"Permalink: Installation on Fedora\" href=\"#installation-on-fedora\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFedora\u0027s netcdf require some extra settings, becuse the module files\nand .inc files are in different places. We specify the module path\nwith FCFLAGS: Another issue seen on Fedora is that make in the dales\ndirectory fails with \u003ccode\u003ebuild.py: error: No module named dalesreader\u003c/code\u003e. One solution is to add . to PYTHONPATH. This seems to confuse mercurial though.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFCFLAGS=-I/usr/lib64/gfortran/modules ./configure --with-netcdf=/usr\nmake framework\n\nexport DOWNLOAD_CODES=all\n\nexport PYTHONPATH=$PYTHONPATH:. # for dalesreader to be found when creating the interface code\ncd src/omuse/community/dales\nmake\n\ncd ../oifs\nmake\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation on ECMWF Cray system\u003c/h2\u003e\u003ca id=\"user-content-installation-on-ecmwf-cray-system\" class=\"anchor\" aria-label=\"Permalink: Installation on ECMWF Cray system\" href=\"#installation-on-ecmwf-cray-system\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eInitial setup\u003c/h3\u003e\u003ca id=\"user-content-initial-setup\" class=\"anchor\" aria-label=\"Permalink: Initial setup\" href=\"#initial-setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eLoad modules\u003c/h4\u003e\u003ca id=\"user-content-load-modules\" class=\"anchor\" aria-label=\"Permalink: Load modules\" href=\"#load-modules\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003eprgenvswitchto intel\n\nmodule load python/2.7.12-01\nmodule load netcdf4/4.4.1\nmodule load cmake/3.12.0\nmodule load git\nmodule load eccodes\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eOther settings\u003c/h4\u003e\u003ca id=\"user-content-other-settings\" class=\"anchor\" aria-label=\"Permalink: Other settings\" href=\"#other-settings\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e# https proxy\nexport https_proxy=proxy:2222\n\nexport AMUSE_DIR=$PERM/2019/amuse/\nexport PYTHONPATH=$PYTHONPATH:$AMUSE_DIR/src/\n\nsource $PERM/meteo/bin/activate\n\n# OpenIFS compilation options\nexport OIFS_COMP=intel\nexport OIFS_BUILD=craynomp\n\n# Cray setup: all compilers are invoked with these names:\nexport OIFS_FC=ftn\nexport OIFS_CC=cc\n\nexport OIFS_GRIB_API_DIR=$ECCODES_DIR\nexport OIFS_GRIB_API_LIB=\"-L $ECCODES_LIB_DIR -leccodes_f90 -leccodes\"\nexport OIFS_GRIB_API_INCLUDE=\"-I $ECCODES_INCLUDE_DIR\"\n\nexport FCFLAGS=\"-convert big_endian\"\n\n# On the Cray, we don\u0027t want any linking flags for Lapack\n# they are included when using the Cray compiler wrappers\nexport OIFS_LAPACK_LIB=\" \"\n\n# DALES compilation options\nexport SYST=ECMWF-intel\nexport DALES_FCFLAGS=\"-g -traceback -O3 -r8 -xHost -fpp\"\n#these flags apply to the interface only\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003evirtual Python environment\u003c/h4\u003e\u003ca id=\"user-content-virtual-python-environment\" class=\"anchor\" aria-label=\"Permalink: virtual Python environment\" href=\"#virtual-python-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003epip install --user virtualenv\nPATH=$PATH:~/.local/bin/\n\ncd $PERM\nvirtualenv meteo\nsource $PERM/meteo/bin/activate\npip install --upgrade mercurial moviepy f90nml numpy scipy matplotlib nose h5py docutils netCDF4 shapely psutil\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003empi4py on ECMWF\u003c/h4\u003e\u003ca id=\"user-content-mpi4py-on-ecmwf\" class=\"anchor\" aria-label=\"Permalink: mpi4py on ECMWF\" href=\"#mpi4py-on-ecmwf\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSince mid-2018 the mpi4py installed with the python modules at ECMWF no longer works. It can be installed manually from source.\nThis should be done with the same set of compilers and modules loaded as used for everything else.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eactivate the virtual python environment, and with the intel compiler and our modules loaded.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003ecd $PERM\nwget https://bitbucket.org/mpi4py/mpi4py/downloads/mpi4py-3.0.0.tar.gz -O mpi4py-3.0.0.tar.gz\ntar zxf mpi4py-3.0.0.tar.gz\ncd mpi4py-3.0.0\n\n# add an enry for the Cray system in mpi.cfg\ncat \u0026gt;\u0026gt; mpi.cfg \u0026lt;\u0026lt;EOF\n[cray]\nmpicc = cc\nmpicxx = CC\nextra_link_args = -shared\nEOF\n\npython setup.py build --mpi=cray\npython setup.py install \n\ncd $PERM\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eNotes\u003c/h5\u003e\u003ca id=\"user-content-notes\" class=\"anchor\" aria-label=\"Permalink: Notes\" href=\"#notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFJ tried to compile mpi4py with the gnu compiler (\u003ccode\u003eprgenvswitchto gnu\u003c/code\u003e). Compilation seemed OK, but python segfaulted when testing the coupled system. Compiling mpi4py with the intel compiler seems to work - no module changes needed.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://jaist-hpc.blogspot.com/2015/02/mpi4py.html\" rel=\"nofollow\"\u003eSource for mpi4py instructions\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe following instructions install omuse and amuse sibe by side in the directory $PERM/2019/.\nThen a symlink in amuse/src is created, to omuse/src/omuse, so that the path amuse/src/omuse/community still works.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eOMUSE\u003c/h3\u003e\u003ca id=\"user-content-omuse\" class=\"anchor\" aria-label=\"Permalink: OMUSE\" href=\"#omuse\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003ecd $PERM/2019\nhg clone --insecure https://bitbucket.org/omuse/omuse\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAmuse\u003c/h3\u003e\u003ca id=\"user-content-amuse\" class=\"anchor\" aria-label=\"Permalink: Amuse\" href=\"#amuse\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/fjansson/amuse\ncd amuse\ngit checkout spawnless\n\ncd src\nln -s $PERM/2019/omuse/src/omuse omuse\n# so that the old path amuse/src/omuse/community still works\n\ncd ..\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis version is our own no-spawn fork for use at ECMWF. Elsewhere, the official amuse can be used:\n\u003ca href=\"https://github.com/amusecode/amuse/\"\u003ehttps://github.com/amusecode/amuse/\u003c/a\u003e .\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#make AMUSE find the right python:\nexport PYTHON=python\n\n./configure FC=ftn CC=cc --with-netcdf=`nc-config --prefix`\n# some libraries will not be found, e.g. gsl. This is OK \n\nmake framework\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eOpenIFS and DALES\u003c/h3\u003e\u003ca id=\"user-content-openifs-and-dales\" class=\"anchor\" aria-label=\"Permalink: OpenIFS and DALES\" href=\"#openifs-and-dales\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOpenIFS and DALES can be cloned using the OMUSE make file.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport DOWNLOAD_CODES=all\n# DOWNLOAD_CODES=all will checkout entire repo with ssh, intended for developers of the components.\n# DOWNLOAD_CODES=latest will (shallow) checkout latest revision only\n# DOWNLOAD_CODES=\u0026lt;anything else\u0026gt; will (shallow) checkout release tag spifs_v1.0.0\n\nexport AMUSE_DIR=$PERM/2019/amuse/\nexport PYTHONPATH=$PYTHONPATH:$AMUSE_DIR/src/\nexport PATH=$PATH:$AMUSE_DIR/bin/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003ecd community/dales\nmake\ncd ../..\n\ncd community/oifs\nmake\n# note: this downloads OpenIFS, which requires ECMWF credentials\n\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "researchapps/opensees",
+ "latest_release": null,
"stargazers_count": 0,
"subscribers_count": 3,
- "topics": [],
- "updated_at": 1645814234.0
+ "topics": [
+ "singularity-container",
+ "singularity-containers",
+ "opensees"
+ ],
+ "updated_at": 1486514968.0
},
{
"data_format": 2,
- "description": null,
+ "description": "https://github.com/trinityrnaseq/trinityrnaseq for Hebbe via Singularity Hub",
"filenames": [
- "pipelines/0037-cell_cell_interaction/env/Singularity.cell_cell_interaction",
- "pipelines/0015-preprocessing/env/Singularity.preprocessing",
- "pipelines/0025-qc_cluster/env/Singularity.sc_qc_cluster"
+ "Singularity"
],
- "full_name": "ckrilow/dev-ckrilow",
+ "full_name": "SysBioChalmers/trinityrnaseq-hebbe",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDescription\u003c/h1\u003e\u003ca id=\"user-content-description\" class=\"anchor\" aria-label=\"Permalink: Description\" href=\"#description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis README is pulled from a default template for workflows.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eWorkflow template setup\u003c/h1\u003e\u003ca id=\"user-content-workflow-template-setup\" class=\"anchor\" aria-label=\"Permalink: Workflow template setup\" href=\"#workflow-template-setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003elib\u003c/h2\u003e\u003ca id=\"user-content-lib\" class=\"anchor\" aria-label=\"Permalink: lib\" href=\"#lib\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eThe \u003ccode\u003elib\u003c/code\u003e directory contains general libraries that may be referenced by multiple workflows, for instance cromwell configs and python configs. Currently nothing in this directory is used.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003epipelines\u003c/h2\u003e\u003ca id=\"user-content-pipelines\" class=\"anchor\" aria-label=\"Permalink: pipelines\" href=\"#pipelines\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eEach pipeline is a full analysis. Think of it like the heading of a methods section in a paper. For instance if this were genetic summary statistics workflow, a pipeline might be \"fine-mapping\" that does both conditional and credible set analysis. Another pipeline may be \"colocalization\".\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ePipelines may have numbers prior to their name (e.g., \u003ccode\u003eexample_pipeline_1\u003c/code\u003e to \u003ccode\u003e0025-example_pipeline_1\u003c/code\u003e). These numbers do not mean anything, but merely used to keep pipelines in their general order of execution. These are optional.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eA pipeline consists of :\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003col\u003e\n\u003cli\u003eA workflow.\u003c/li\u003e\n\u003cli\u003eA \u003ccode\u003escripts\u003c/code\u003e directory with \u003cem\u003eall\u003c/em\u003e scripts referenced by that workflow (unless a general lib script is called). Scripts may have numbers prior to their name. These numbers do not mean anything, but merely used to keep scripts in their general order of execution. These are optional.\u003c/li\u003e\n\u003cli\u003eA \u003ccode\u003edocs\u003c/code\u003e directory that contains a documentation of the default parameters written in a style that is publishable as methods in a paper (including citations). Within the \u003ccode\u003edocs\u003c/code\u003e directory there may be a \u003ccode\u003ereference\u003c/code\u003e with any additional reference materials.\u003c/li\u003e\n\u003cli\u003eAn \u003ccode\u003eexample_runtime_setup\u003c/code\u003e directory contains files that give an example of actual config files and any other files used to run the pipeline.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003estudies\u003c/h2\u003e\u003ca id=\"user-content-studies\" class=\"anchor\" aria-label=\"Permalink: studies\" href=\"#studies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eA studies directory should either exist within the workflow repo or be a separate repo that has the same name as the workflow repo, but with \u003ccode\u003estudies\u003c/code\u003e appended to it (e.g. \u003ccode\u003etemplate-workflow\u003c/code\u003e becomes \u003ccode\u003etemplate-workflow-studies\u003c/code\u003e).\u003c/li\u003e\n\u003cli\u003eIf there is a standard set of plots that will always look the same way, a pipeline should generate such plots. Otherwise, all code to analyze the results of a pipeline run should be in the \u003ccode\u003estudies\u003c/code\u003e directory. For instance if this were genetic summary statistics workflow, \u003ccode\u003estudies\u003c/code\u003e may contain a \u003ccode\u003et2d\u003c/code\u003e directory and a \u003ccode\u003eweight\u003c/code\u003e directory.\u003c/li\u003e\n\u003cli\u003eWithin a study is either an Jupyter notebook (either python or R kernel) or an R markdown file. Nearly all plots / analysis of the results of running the various pipelines should be done in the notebook / markdown file.\u003c/li\u003e\n\u003cli\u003eA study may also contain a scripts directory with scripts to aggregate data for a one off analysis (if the analysis is going to be repeated, consider making a new pipeline or adding it to an existing pipeline) or for special plots that cannot be done in the notebook / markdown file.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eNew workflow reminders\u003c/h1\u003e\u003ca id=\"user-content-new-workflow-reminders\" class=\"anchor\" aria-label=\"Permalink: New workflow reminders\" href=\"#new-workflow-reminders\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] Documentation\u003c/li\u003e\n\u003cli\u003e[ ] Environment version control\u003c/li\u003e\n\u003cli\u003e[ ] Pipeline version control\u003c/li\u003e\n\u003cli\u003e[ ] Git branches\u003c/li\u003e\n\u003cli\u003e[ ] Code review\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDocumentation\u003c/h1\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-label=\"Permalink: Documentation\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBe sure to document your code!\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eEnvironment version control\u003c/h1\u003e\u003ca id=\"user-content-environment-version-control\" class=\"anchor\" aria-label=\"Permalink: Environment version control\" href=\"#environment-version-control\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAnalysis environment is controlled using conda. Each pipeline should have an \u003ccode\u003eenvironment.yml\u003c/code\u003e file with all of the packages used. If a required package or library is missing from conda (and therefore not in the \u003ccode\u003eenvironment.yml\u003c/code\u003e), it should be noted in the \u003ccode\u003eREADME.md\u003c/code\u003e of the pipeline.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda env \u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e --no-builds \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e grep -v prefix \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e grep -v name \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e environment.yml\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePipeline version control\u003c/h1\u003e\u003ca id=\"user-content-pipeline-version-control\" class=\"anchor\" aria-label=\"Permalink: Pipeline version control\" href=\"#pipeline-version-control\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eEach pipeline within this workflow uses \u003ca href=\"https://pypi.org/project/bumpversion\" rel=\"nofollow\"\u003ebumpversion\u003c/a\u003e for automatic \u003ca href=\"https://semver.org\" rel=\"nofollow\"\u003esemantic versioning\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e bump the appropriate increment\u003c/span\u003e\nbumpversion patch --verbose --dry-run\nbumpversion minor --verbose --dry-run\nbumpversion major --verbose --dry-run\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e commit with tags\u003c/span\u003e\ngit push --tags\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eGitHub forks\u003c/h1\u003e\u003ca id=\"user-content-github-forks\" class=\"anchor\" aria-label=\"Permalink: GitHub forks\" href=\"#github-forks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eForking the repository allows developers to work independently while retaining well-maintained code on the master fork. For instructions on how to fork, follow the \u003ca href=\"https://help.github.com/en/articles/fork-a-repo\"\u003eFork a repo\u003c/a\u003e instructions.\u003c/p\u003e\n\u003cp\u003eAfter forking the repo, clone the repo to your local desktop:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e to use SSH\u003c/span\u003e\ngit clone git@github.com:\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eusername\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/template-workflow.git\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e to use Https\u003c/span\u003e\ngit clone https://github.com/\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eusername\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/template-workflow.git\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis creates a replica of the remote repository on your local desktop. \u003cem\u003eNote\u003c/em\u003e: When you create your local repository, it will also make a local clone of the remote repository (typically as \u003ccode\u003eorigin\u003c/code\u003e). So, your local master branch would simply be \u003ccode\u003emaster\u003c/code\u003e. But, your remote master branch will be \u003ccode\u003eorigin/master\u003c/code\u003e. You can also add multiple remote repositories. For instance, let us say our main repository is under the remote repository \u003ccode\u003emy_repo\u003c/code\u003e. We will want to add it as a remote repository, so we can fetch the most up-to-date code. You could add it by:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Add the my_repo remote repo to your local desktop -- this will allow you to pull and push to branches on the my_repo repository\u003c/span\u003e\ngit remote add my_repo git@github.com:my_repo/template-workflow.git\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eGit branches\u003c/h1\u003e\u003ca id=\"user-content-git-branches\" class=\"anchor\" aria-label=\"Permalink: Git branches\" href=\"#git-branches\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBranching is how git actually tracks code development. For more information, see the \u003ca href=\"https://www.atlassian.com/git/tutorials/using-branches\" rel=\"nofollow\"\u003eGit Branch Tutorial\u003c/a\u003e on Atlassian. If you want to add a new feature, pipeline, or fix a bug, a common work flow would look like this:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Update your local copy of the master branch to make sure you are getting the most up-to-date code\u003c/span\u003e\ngit pull\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Create the branch on your local machine and switch in this branch \u003c/span\u003e\ngit checkout -b [name_of_your_new_branch]\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Push the branch on github\u003c/span\u003e\ngit push origin [name_of_your_new_branch]\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAs you develop, you want to commit your work to your branch, so you don\u0027t lose it all if something happens!\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Confirm we\u0027re on the right branch\u003c/span\u003e\ngit branch -a\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Add all your work to be tracked (Note: there are many ways to add specific files, etc. See https://git-scm.com/docs/git-add for more information). The following command adds everything in your currently directory.\u003c/span\u003e\ngit add \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Commit your work to the branch with a message describing what\u0027s in the commit\u003c/span\u003e\ngit commit -m \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eCreated the scATAC-seq pipeline!\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e You can add a -u parameter to set-upstream for a push\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Alternatively, git will also automatically query you when you do your first push.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e You can also set this manually by adding a new remote for your branch:\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003egit remote add [name_of_your_remote] [name_of_your_new_branch]\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Here is another push where we specify HEAD\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003egit push origin HEAD # HEAD pushes everything up to the most recent commit\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCode review\u003c/h1\u003e\u003ca id=\"user-content-code-review\" class=\"anchor\" aria-label=\"Permalink: Code review\" href=\"#code-review\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCreate a \u003ca href=\"https://help.github.com/en/articles/creating-a-pull-request\"\u003eGitHub Pull Request\u003c/a\u003e. A PR allows other developers a chance to go through and comment on lines of code they believe can be improved. In addition, it will tell you if the code you are trying to merge into the \u003ccode\u003emy_repo\u003c/code\u003e branch actually conflicts with code that already exists in the branch, so you don\u0027t overwrite someone else\u0027s work.\u003c/p\u003e\n\u003cp\u003eOnce another developer approves the PR, you have the go-ahead to merge your code! Congrats, you finished your feature!\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNote\u003c/em\u003e: There are some cases where you may just want to push directly to the my_repo fork, thereby avoiding code reviews. For instance, if you\u0027re working on a one-off project that you want people to be able to see, but no one else is necessarily working on, you can always push directly to the branches on my_repo fork. Or, you could also still go through the steps of a PR, but simply merge your own code without CR.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3239\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis repository hosts just the Singularity recipe that is used to automatically build the latest image up on Singularity Hub. A custom recipe was needed for the image to run on the Hebbe cluster.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/trinityrnaseq/trinityrnaseq\"\u003eThe original source code is here\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eTo obtain the \u003ccode\u003eSingularity\u003c/code\u003e file, the \u003ccode\u003eDockerfile\u003c/code\u003e from the \u003ccode\u003e2.8.5\u003c/code\u003e release was copied here and converted to a recipe with \u003ccode\u003espython\u003c/code\u003e after which it was manually tweaked. The original \u003ccode\u003erecipe.basic\u003c/code\u003e that uses the Docker image has been kept for reference.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1596817893.0
+ "updated_at": 1571750826.0
},
{
"data_format": 2,
- "description": "Tool for gathering dicom files into organized tarballs, each containing unique study instance",
+ "description": "Singularity container for R language\u0027s current version.",
"filenames": [
- "singularity/Singularity.v0.0.4",
- "singularity/Singularity.v.0.0.6",
- "singularity/Singularity.v0.0.3",
- "singularity/Singularity.v0.0.2",
- "singularity/Singularity"
+ "Singularity"
],
- "full_name": "khanlab/dicom2tar",
+ "full_name": "romxero/R-singularity",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://circleci.com/gh/khanlab/dicom2tar/tree/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5df563272b031151262e6399cc5983d2599e0152273767935f1b2c66cf119507/68747470733a2f2f636972636c6563692e636f6d2f67682f6b68616e6c61622f6469636f6d327461722f747265652f6d61737465722e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/khanlab/dicom2tar/tree/master.svg?style=svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003edicom2tar\u003c/h1\u003e\u003ca id=\"user-content-dicom2tar\" class=\"anchor\" aria-label=\"Permalink: dicom2tar\" href=\"#dicom2tar\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTool for extract compressed files(if any), sort dicom files according to given rule, or tar the sorted, to a destination directory.\u003c/p\u003e\n\u003cp\u003eCheck dicom2tar.py for example.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo install on graham:\u003c/h3\u003e\u003ca id=\"user-content-to-install-on-graham\" class=\"anchor\" aria-label=\"Permalink: To install on graham:\" href=\"#to-install-on-graham\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003emodule unload python\nmodule load python/2\nvirtualenv ~/python_dicom2tar\nsource ~/python_dicom2tar/bin/activate\npip install dicom2tar\ndeactivate\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can then run it with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esource ~/python_dicom2tar/bin/activate\ndicom2tar \u0026lt;input\u0026gt; \u0026lt;output\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e#R Singularity for Sherlock\u003c/p\u003e\n\u003cp\u003eThis is an R singularity image for Sherlock using Debian SID unstable distribution\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1666690069.0
+ "updated_at": 1562008683.0
},
{
"data_format": 2,
- "description": "A singularity container that ships MALT, the MEGAN alignment tool.",
+ "description": null,
"filenames": [
- "Singularity.v0.4.0",
- "Singularity.latest"
+ "Singularity"
],
- "full_name": "qbicsoftware-archive/qbic-singularity-malt",
+ "full_name": "marcoserenelli/WESADevaluator",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eqbic-singularity-malt\u003c/h1\u003e\u003ca id=\"user-content-qbic-singularity-malt\" class=\"anchor\" aria-label=\"Permalink: qbic-singularity-malt\" href=\"#qbic-singularity-malt\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/641\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA Singularity container with MALT, the MEGAN alignment tool (\u003ca href=\"https://ab.inf.uni-tuebingen.de/software/malt\" rel=\"nofollow\"\u003ehttps://ab.inf.uni-tuebingen.de/software/malt\u003c/a\u003e), created by \u003ca href=\"https://ab.inf.uni-tuebingen.de/people/welcome.html/huson/welcome.html\" rel=\"nofollow\"\u003eDaniel H. Huson\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor further information or help reffering the \u003cem\u003econtainer\u003c/em\u003e, please contact: \u003ca href=\"mailto:sven.fillinger@qbic.uni-tuebingen.de\"\u003esven.fillinger@qbic.uni-tuebingen.de\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDocumentation\u003c/h2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-label=\"Permalink: Documentation\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eBootstrap files with tags\u003c/h3\u003e\u003ca id=\"user-content-bootstrap-files-with-tags\" class=\"anchor\" aria-label=\"Permalink: Bootstrap files with tags\" href=\"#bootstrap-files-with-tags\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe provide always a bootstrap file (\u003ccode\u003eSingularity\u003c/code\u003e) tagged \u003ccode\u003e.latest\u003c/code\u003e which represents the most resent development status of the container. If you see version tags like \u003ccode\u003e.v0.4.0\u003c/code\u003e, this means that this is the recipe of a container with a stable version tag of MALT.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eHow to build the container\u003c/h3\u003e\u003ca id=\"user-content-how-to-build-the-container\" class=\"anchor\" aria-label=\"Permalink: How to build the container\" href=\"#how-to-build-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eClone the repository:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/qbicsoftware/qbic-singularity-malt.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e qbic-singularity-malt\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eSince Singularity 2.4, the build command from file looks like this:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build myContainer.simg \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eSingularity file\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can also download the build and ready-to-use container from Singularity Hub:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull shub://qbicsoftware/qbic-singularity-malt:latest\n...\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eHow to run the container and calling MALT\u003c/h3\u003e\u003ca id=\"user-content-how-to-run-the-container-and-calling-malt\" class=\"anchor\" aria-label=\"Permalink: How to run the container and calling MALT\" href=\"#how-to-run-the-container-and-calling-malt\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the malt-run script, you just need to\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e myContainer.simg malt-run --help\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e or even shorter\u003c/span\u003e\nsingularity run myContainer.simg --help \n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e or even more shorter\u003c/span\u003e\n./myContainer.simg --help\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAuthor\u003c/h2\u003e\u003ca id=\"user-content-author\" class=\"anchor\" aria-label=\"Permalink: Author\" href=\"#author\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/sven1103\"\u003eSven Fillinger\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 11,
- "topics": [
- "other"
- ],
- "updated_at": 1600938903.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1716120220.0
},
{
"data_format": 2,
- "description": "SpecBCFuzz - Fuzzing LTL Solvers",
+ "description": "temp to troubleshoot assignment of version",
"filenames": [
- "Singularity_black_reduced_size_v92",
- "Singularity_black_v052",
- "Singularity_black_v092",
- "Singularity_black_reduced_size_v54",
- "Singularity_black_debian_v53"
+ "Singularity"
],
- "full_name": "lzmths/SpecBCFuzz",
+ "full_name": "yarikoptic/neurodebian-singularity-temp",
"latest_release": null,
- "readme": "\u003cp\u003eChange pom.xml and update project.baseDir\nIt should address the SpecBCFuzz project. For example, lib is a subfolder of the SpecBCFuzz project.\u003c/p\u003e\n\u003cp\u003eAfter that, you must set the Main.java (src/main/).\u003c/p\u003e\n\u003cp\u003eYou should edit:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esolverBin_version (File instance).\u003c/li\u003e\n\u003cli\u003esolver_version (SATSolver instance).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eCertify that solver_version is an element of the list solvers.\u003c/p\u003e\n\u003cp\u003eAfter that, you need to provide some parameters to run SpecBCFuzz.\u003c/p\u003e\n\u003cp\u003eFor example:\u003c/p\u003e\n\u003cp\u003e-log=/home/user/outcomes -lib=/home/user/lib -id=1 -run=1 -id=10 -sattimeout=60 -experiment=searchbased:SemSyn-format:gore -popSize=50 -maxNumOfInd=600 -specs=/home/user/specs/atm -os=mac\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003elog represents the folder for the outcomes;\u003c/li\u003e\n\u003cli\u003elib represents the folder for lib. You may reference a copy of /lib present in the SpecBCFuzz repository;\u003c/li\u003e\n\u003cli\u003eid indicates a single number or name for the execution;\u003c/li\u003e\n\u003cli\u003erun is the number of executions of the differential search fuzzing;\u003c/li\u003e\n\u003cli\u003esattimeout is the timeout for each LTL solver;\u003c/li\u003e\n\u003cli\u003eexperiment indicates the type of experiment. For instance, the format of inputs;\u003c/li\u003e\n\u003cli\u003epopSize indicates the population size for the genetic algorithm;\u003c/li\u003e\n\u003cli\u003emaxNumOfInd indicates the maximum number of individuals created in the genetic algorithm;\u003c/li\u003e\n\u003cli\u003especs is the path for the specification and boundary conditions;\u003c/li\u003e\n\u003cli\u003eos refers to the operating systems;\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAdditional parameters and options are available in src/main/Main.java. Feel free to test them or add new ones.\u003c/p\u003e\n\u003cp\u003eYou can find specifications and boundary conditions (divergences or conflicts in the specification) in the following repository: \u003ca href=\"https://github.com/SpecBCFuzz/repo\"\u003ehttps://github.com/SpecBCFuzz/repo\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1730392930.0
+ "updated_at": 1503090511.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Facial Emotion Recognition on PSU ACI",
"filenames": [
- "pong_game/singularity/team_server/Singularity.def",
- "pong_game/singularity/umpire/Singularity.def"
+ "Singularity"
],
- "full_name": "WarwickRSE/basics-of-linux-scrtp-git",
+ "full_name": "d-bohn/emorec_aci",
"latest_release": null,
- "readme": "",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eopenpose_aci\u003c/h1\u003e\u003ca id=\"user-content-openpose_aci\" class=\"anchor\" aria-label=\"Permalink: openpose_aci\" href=\"#openpose_aci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCode and workflow for building some emotion recognition models on PSU\nACI HPC clusters.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQuick Start\u003c/h2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-label=\"Permalink: Quick Start\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003essh\u003c/code\u003e into the PSU ACI HPC with X11 flags.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003essh USERID@aci-b.aci.ics.psu.edu -X -Y\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eStart an interactive session using \u003ccode\u003eqsub\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eqsub -A open -I -X -l walltime=24:00:00 -l nodes=5:ppn=10 -l pmem=20gb\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eStart the container, and execute the \u003ccode\u003evideo_analysis.py\u003c/code\u003e script.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull -n emorec_aci.simg shub://d-bohn/emorec_aci\n\nsingularity exec emorec_aci.simg /bin/bash\n\npython3 /opt/emorec/video_analysis.py VIDEOFILE OUTDIR SAVENAME\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe arguments to be passed (in order) are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eVIDEOFILE\u003c/strong\u003e: Full path to video file to be analyzed\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eOUTDIR\u003c/strong\u003e: Full path to a writable director to store\nresults (e.g., \u003ccode\u003e/storage/home\u003c/code\u003e)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eSAVENAME\u003c/strong\u003e: File name to save the results (e.g., \u003ccode\u003edata.csv\u003c/code\u003e).\nIt will save automatically to the specified output directory.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eImage Builds\u003c/h2\u003e\u003ca id=\"user-content-image-builds\" class=\"anchor\" aria-label=\"Permalink: Image Builds\" href=\"#image-builds\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe emorec_aci docker image was built on docker hub.\u003c/p\u003e\n\u003cp\u003eThe emorec_aci singularity image was built using the docker image base and\nconverting it to a singularity image via singularity hub.\u003c/p\u003e\n\u003cp\u003eSetup for linking Github with Docker Hub and Singularity Hub can be found here:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://docs.docker.com/docker-hub/\" rel=\"nofollow\"\u003edocker Hub\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/singularityhub/singularityhub.github.io/wiki\"\u003eSingularity Hub\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe \u003ccode\u003eSingularity\u003c/code\u003e file specifies creating a Singularity-compatible image\nfrom the docker image, as well as adding access to folders within ACI, specifically:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# ACI mappings so you can access your files.\nmkdir -p /storage/home\nmkdir -p /storage/work\nmkdir -p /gpfs/group\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eNotes\u003c/h2\u003e\u003ca id=\"user-content-notes\" class=\"anchor\" aria-label=\"Permalink: Notes\" href=\"#notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eCreate command function for automatic execution of \u003ccode\u003evideo_analysis.py\u003c/code\u003e\nscript\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eAdd a \u003ccode\u003eArgumentParser\u003c/code\u003e and help files.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1731587629.0
+ "updated_at": 1557428867.0
},
{
"data_format": 2,
- "description": "Singularity Recipe for scipion",
+ "description": null,
"filenames": [
- "Singularity.1.1",
- "Singularity.1.1.cuda",
- "Singularity.2.0",
- "Singularity.2.0.cuda"
+ "Singularity"
],
- "full_name": "ResearchIT/scipion",
+ "full_name": "phgenomics-singularity/assemblers",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 7,
- "topics": [
- "singularity",
- "scipion"
- ],
- "updated_at": 1592515044.0
+ "subscribers_count": 3,
+ "topics": [],
+ "updated_at": 1576539518.0
},
{
"data_format": 2,
- "description": "Singularity container with R, tidyverse, and other packages",
+ "description": null,
"filenames": [
- "Singularity.v0.0.14",
- "Singularity.v0.0.13",
- "Singularity.v0.0.11",
- "Singularity.v0.0.12",
- "Singularity.v0.0.10",
- "Singularity.v0.0.15"
+ "Singularity"
],
- "full_name": "darachm/singularity_r_for_darach",
+ "full_name": "gijzelaerr/singularity-notebook",
"latest_release": null,
- "readme": "\u003cp\u003eThis container is for providing \u003ccode\u003eR\u003c/code\u003e and some packages, that Darach likes.\u003c/p\u003e\n\u003cp\u003eThe primary reason for this is so that it flows nicely through SingularityHub\nfor Nextflow pipelines.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1581093246.0
+ "updated_at": 1489998021.0
},
{
"data_format": 2,
- "description": "This project contains build scripts, setup and how-to instructions.",
+ "description": "singularity container for chlist binary",
"filenames": [
- "hpc/simplace/Singularityfile.def",
- "hpc/simplace/Singularityfile_HM.def"
+ "Singularity"
],
- "full_name": "zalf-rpm/build-pipeline",
+ "full_name": "ISU-HPC/chlist",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ebuild-pipeline\u003c/h1\u003e\u003ca id=\"user-content-build-pipeline\" class=\"anchor\" aria-label=\"Permalink: build-pipeline\" href=\"#build-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis project contains build scripts, setups, how-to instructions and examples.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [],
- "updated_at": 1731428353.0
+ "updated_at": 1580398633.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.rabbitMQ",
- "Singularity.def",
- "worker/Singularity.worker"
+ "Singularity"
],
- "full_name": "tahahah/py-pacman",
+ "full_name": "jordiae/simpaux-release",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePyPacman\u003c/h1\u003e\u003ca id=\"user-content-pypacman\" class=\"anchor\" aria-label=\"Permalink: PyPacman\" href=\"#pypacman\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/0c9e4d33bbb7708d007d67d3a5ef0de48b6f82ae6ba5a45524573ef512e0aeef/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c616e67756167652d707974686f6e2d626c7565\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0c9e4d33bbb7708d007d67d3a5ef0de48b6f82ae6ba5a45524573ef512e0aeef/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c616e67756167652d707974686f6e2d626c7565\" alt=\"language\" data-canonical-src=\"https://img.shields.io/badge/language-python-blue\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/9d525da30058c10a3a4c3339225203b08f2e5ea08582d046ff1fd43b4dfda173/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d6f72616e6765\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9d525da30058c10a3a4c3339225203b08f2e5ea08582d046ff1fd43b4dfda173/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d6f72616e6765\" alt=\"license\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-orange\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe classic game of Pacman built with Pygame, provided also with a Reinforcement Learning environment.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"res/pacman-example.gif\"\u003e\u003cimg src=\"res/pacman-example.gif\" alt=\"example\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTable of Contents\u003c/h1\u003e\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" aria-label=\"Permalink: Table of Contents\" href=\"#table-of-contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"#quick-start\"\u003eQuick Start\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#game\"\u003eGame\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#rl-environment\"\u003eRL Enviroment\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eQuick Start\u003c/h1\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-label=\"Permalink: Quick Start\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGame\u003c/h2\u003e\u003ca id=\"user-content-game\" class=\"anchor\" aria-label=\"Permalink: Game\" href=\"#game\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstall the requirements\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip install -r requirements.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun the Game with the classic maze\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython main.py -lay classic -snd\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun the Game without music or sounds\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython main.py -lay classic\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun the game with others option\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eusage: main.py [-h] [-lay LAYOUT] [-snd] [-stt]\n\nArgument for the Pacman Game\n\noptional arguments:\n -h, --help show this help message and exit\n -lay LAYOUT, --layout LAYOUT\n Name of layout to load in the game\n -snd, --sound Activate sounds in the game\n -stt, --state Display the state matrix of the game\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRL Environment\u003c/h2\u003e\u003ca id=\"user-content-rl-environment\" class=\"anchor\" aria-label=\"Permalink: RL Environment\" href=\"#rl-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003ePacmanEnv\u003c/code\u003e class extends the \u003ccode\u003egym.Env\u003c/code\u003e class, so if you already know how to\nuse the \u003cstrong\u003eopen ai gym\u003c/strong\u003e, the api is the same.\u003c/p\u003e\n\u003cp\u003eHere\u0027s a little example:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003egym\u003c/span\u003e\n\n\u003cspan class=\"pl-s1\"\u003eenv\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003egym\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003emake\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\u0027pacman-v0\u0027\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003elayout\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003eself\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003elayout\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003eframe_to_skip\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e10\u003c/span\u003e)\n\n\u003cspan class=\"pl-k\"\u003efor\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eepisode\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ein\u003c/span\u003e \u003cspan class=\"pl-en\"\u003erange\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003eepisodes\u003c/span\u003e):\n \u003cspan class=\"pl-s1\"\u003eenv\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003ereset\u003c/span\u003e()\n \u003cspan class=\"pl-k\"\u003efor\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ei\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ein\u003c/span\u003e \u003cspan class=\"pl-en\"\u003erange\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003emax_steps\u003c/span\u003e):\n \u003cspan class=\"pl-s1\"\u003eaction\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eenv\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eaction_space\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003esample\u003c/span\u003e()\n \u003cspan class=\"pl-s1\"\u003eobs\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003erewards\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003edone\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003einfo\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eenv\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003estep\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003eaction\u003c/span\u003e)\n \n \u003cspan class=\"pl-k\"\u003eif\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003edone\u003c/span\u003e: \n \u003cspan class=\"pl-k\"\u003ebreak\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAgent class\u003c/h3\u003e\u003ca id=\"user-content-agent-class\" class=\"anchor\" aria-label=\"Permalink: Agent class\" href=\"#agent-class\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003esrc.env\u003c/code\u003e folder provides also an abstract class that you can use to make your own AI agent.\nYou can use it to make your own agent, train it and directly plug into the game and see\nhow will perform.\u003c/p\u003e\n\u003cp\u003eHere\u0027s how you can use it:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003esrc\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eenv\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eagent\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAgent\u003c/span\u003e\n\n\u003cspan class=\"pl-k\"\u003eclass\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eMyAgent\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eAgent\u003c/span\u003e):\n \u003cspan class=\"pl-s1\"\u003ename\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u0027my_agent\u0027\u003c/span\u003e\n\n \u003cspan class=\"pl-k\"\u003edef\u003c/span\u003e \u003cspan class=\"pl-en\"\u003e__init__\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003eself\u003c/span\u003e):\n \u003cspan class=\"pl-k\"\u003epass\u003c/span\u003e\n\n \u003cspan class=\"pl-k\"\u003edef\u003c/span\u003e \u003cspan class=\"pl-en\"\u003eact\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003eself\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003estate\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e**\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003ekwargs\u003c/span\u003e):\n \u003cspan class=\"pl-s\"\u003e\"\"\"\u003c/span\u003e\n\u003cspan class=\"pl-s\"\u003e The code that return the action to take\u003c/span\u003e\n\u003cspan class=\"pl-s\"\u003e \"\"\"\u003c/span\u003e\n \u003cspan class=\"pl-k\"\u003epass\u003c/span\u003e\n \n \u003cspan class=\"pl-k\"\u003edef\u003c/span\u003e \u003cspan class=\"pl-en\"\u003etrain\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003eself\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e**\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003ekwargs\u003c/span\u003e):\n \u003cspan class=\"pl-s\"\u003e\"\"\"\u003c/span\u003e\n\u003cspan class=\"pl-s\"\u003e Your code to train the agent\u003c/span\u003e\n\u003cspan class=\"pl-s\"\u003e \"\"\"\u003c/span\u003e\n \u003cspan class=\"pl-k\"\u003epass\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAnd after you\u0027re done with the training you can simply plug it into the game:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003edef\u003c/span\u003e \u003cspan class=\"pl-en\"\u003erun_agent\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003elayout\u003c/span\u003e: \u003cspan class=\"pl-s1\"\u003estr\u003c/span\u003e):\n \u003cspan class=\"pl-s1\"\u003eagent\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eMyAgent\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003elayout\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003elayout\u003c/span\u003e)\n \u003cspan class=\"pl-s1\"\u003econtroller\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eController\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003elayout_name\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003elayout\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003eact_sound\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003eact_state\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003eai_agent\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003eagent\u003c/span\u003e)\n \u003cspan class=\"pl-s1\"\u003econtroller\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eload_menu\u003c/span\u003e()\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFor more examples check out the \u003ca href=\"./examples\"\u003e\u003ccode\u003eexamples\u003c/code\u003e\u003c/a\u003e folder.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTodos\u003c/h1\u003e\u003ca id=\"user-content-todos\" class=\"anchor\" aria-label=\"Permalink: Todos\" href=\"#todos\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] refactor everything using ECS\u003c/li\u003e\n\u003cli\u003e[ ] implement fruit\u003c/li\u003e\n\u003cli\u003e[ ] flashing power pellet\u003c/li\u003e\n\u003cli\u003e[x] state matrix in another screen\u003c/li\u003e\n\u003cli\u003e[x] Provide an RL Environment so an AI agent can be trained\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eLicense\u003c/h1\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eMIT\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAuthor\u003c/h1\u003e\u003ca id=\"user-content-author\" class=\"anchor\" aria-label=\"Permalink: Author\" href=\"#author\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePaolo D\u0027Elia\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esimpaux\u003c/h1\u003e\u003ca id=\"user-content-simpaux\" class=\"anchor\" aria-label=\"Permalink: simpaux\" href=\"#simpaux\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003esimple auxiliary network for metalearning\u003c/p\u003e\n\u003cp\u003eThe ProtoNet++ code is built on top of the \u003ca href=\"https://github.com/tristandeleu/pytorch-meta/tree/master/examples/protonet\"\u003eProtoNet example\u003c/a\u003e by @tristandeleu.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003esimpaux_dev.sh\u003c/code\u003e script depends on the helper scripts for establishing persistent ssh connections \u003ca href=\"https://github.com/vmichals/ssh_persistent_connection_helpers\"\u003ehere\u003c/a\u003e. You just have to clone the repo and put the local folder in your $PATH.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1730625041.0
+ "updated_at": 1714350232.0
},
{
"data_format": 2,
- "description": "Hold me closer, tiny container...",
+ "description": "A shovill singularity recipe",
"filenames": [
- "Singularity.tiny",
- "Singularity"
+ "Singularity",
+ "v0.9.0/Singularity.v0.9.0"
],
- "full_name": "singularityhub/tiny-container",
+ "full_name": "phgenomics-singularity/shovill",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eshovill\u003c/h1\u003e\u003ca id=\"user-content-shovill\" class=\"anchor\" aria-label=\"Permalink: shovill\" href=\"#shovill\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA shovill singularity recipe\u003c/p\u003e\n\u003cp\u003eSingularity container for Torsten Seemann\u0027s \u003ca href=\"https://github.com/tseemann/shovill\"\u003eSHOVILL\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePre-requisite\u003c/h2\u003e\u003ca id=\"user-content-pre-requisite\" class=\"anchor\" aria-label=\"Permalink: Pre-requisite\" href=\"#pre-requisite\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstall \u003ca href=\"http://singularity.lbl.gov/docs-installation\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eLatest version\u003c/h3\u003e\u003ca id=\"user-content-latest-version\" class=\"anchor\" aria-label=\"Permalink: Latest version\" href=\"#latest-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following steps are needed to use the image:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003ePull the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name shovill shub://phgenomics-singularity/shovill@latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will command will create a file \u003ccode\u003eshovill.simg\u003c/code\u003e, which is executable.\u003c/p\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eUse the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003e./shovill.simg --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eA particular version\u003c/h3\u003e\u003ca id=\"user-content-a-particular-version\" class=\"anchor\" aria-label=\"Permalink: A particular version\" href=\"#a-particular-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name shovill shub://phgenomics-singularity/shovill@v0.9.0\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSuggested pattern\u003c/h2\u003e\u003ca id=\"user-content-suggested-pattern\" class=\"anchor\" aria-label=\"Permalink: Suggested pattern\" href=\"#suggested-pattern\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eCreate a \u003ccode\u003esingularity\u003c/code\u003e folder:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003emkdir $HOME/singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003ePull the image to the \u003ccode\u003esingularity\u003c/code\u003e folder.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name shovill_v0.9.0 shub://phgenomics-singularity/shovill@v0.9.0\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eLink the image to a folder in your \u003ccode\u003e$PATH\u003c/code\u003e (e.g., \u003ccode\u003e$HOME/bin\u003c/code\u003e)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eln -s $HOME/singularity/shovill_v0.9.0.simg $HOME/bin/shovill\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNow, when you login again, you should be able to just type:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eshovill --help\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1566311836.0
+ "updated_at": 1521520426.0
},
{
"data_format": 2,
- "description": "My Singularity recipe files",
+ "description": null,
"filenames": [
- "gerda-tgsend/Singularity.def",
- "root-cern/Singularity.def",
- "asciinema/Singularity.def",
- "bat/Singularity.def",
- "julia/Singularity.def",
- "itunes/Singularity.def",
- "lilypond/Singularity.def",
- "texlive/Singularity.def",
- "centos-base/Singularity.def",
- "arch-base/Singularity.def"
+ "Singularity"
],
- "full_name": "gipert/Singularity.def",
+ "full_name": "stephansmit/vuenode_containers",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity recipe files\u003c/h1\u003e\u003ca id=\"user-content-singularity-recipe-files\" class=\"anchor\" aria-label=\"Permalink: Singularity recipe files\" href=\"#singularity-recipe-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/sylabs/singularity\"\u003eSingularity\u003c/a\u003e containers I use the most on HPC clusters.\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eNodeJS container\u003c/h1\u003e\u003ca id=\"user-content-nodejs-container\" class=\"anchor\" aria-label=\"Permalink: NodeJS container\" href=\"#nodejs-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eContainer with \u003ca href=\"https://vuejs.org\" rel=\"nofollow\"\u003eVue.js\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild the container locally\u003c/h2\u003e\u003ca id=\"user-content-build-the-container-locally\" class=\"anchor\" aria-label=\"Permalink: Build the container locally\" href=\"#build-the-container-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build vuenode_containers.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePull the container\u003c/h2\u003e\u003ca id=\"user-content-pull-the-container\" class=\"anchor\" aria-label=\"Permalink: Pull the container\" href=\"#pull-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://stephansmit/vuenode_containers:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHosted on Singularity Hub:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3589\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "containers"
- ],
- "updated_at": 1587858477.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1569691552.0
},
{
"data_format": 2,
- "description": "Content for MAPNET Workshop in analysis of low-coverage population genomic data",
+ "description": "PlanDEM is a domain-independent planner that works with dynamically estimated action models.",
"filenames": [
- "MAPGD/Singularity"
+ "misc/releases/latest/Singularity",
+ "misc/releases/20.06/Singularity.20.06",
+ "misc/releases/19.06/Singularity.19.06",
+ "misc/releases/19.12/Singularity.19.12"
],
- "full_name": "MapNetNZ/Pop-Genomics-Workshop2019",
+ "full_name": "eyal-weiss/plandem-public",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePop-Genomics-Workshop2019\u003c/h1\u003e\u003ca id=\"user-content-pop-genomics-workshop2019\" class=\"anchor\" aria-label=\"Permalink: Pop-Genomics-Workshop2019\" href=\"#pop-genomics-workshop2019\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eContent for MAPNET Workshop in analysis of low-coverage population genomic data\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLinks\u003c/h2\u003e\u003ca id=\"user-content-links\" class=\"anchor\" aria-label=\"Permalink: Links\" href=\"#links\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/LynchLab/MAPGD\"\u003ehttps://github.com/LynchLab/MAPGD\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003eSingularity\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.sylabs.io/docs/\" rel=\"nofollow\"\u003ehttps://www.sylabs.io/docs/\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://singularity-hub.org/\" rel=\"nofollow\"\u003ehttps://singularity-hub.org/\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://singularityhub.github.io/\" rel=\"nofollow\"\u003ehttps://singularityhub.github.io/\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eVagrant Box \u003ca href=\"https://app.vagrantup.com/sylabs/boxes/singularity-3.0-ubuntu-bionic64\" rel=\"nofollow\"\u003ehttps://app.vagrantup.com/sylabs/boxes/singularity-3.0-ubuntu-bionic64\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eJupyter \u003ca href=\"https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook\" rel=\"nofollow\"\u003ehttps://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eMBIE TPP REPO\u003c/h2\u003e\u003ca id=\"user-content-mbie-tpp-repo\" class=\"anchor\" aria-label=\"Permalink: MBIE TPP REPO\" href=\"#mbie-tpp-repo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/PlantandFoodResearch/MBIE_TPP_Populations\"\u003ehttps://github.com/PlantandFoodResearch/MBIE_TPP_Populations\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eReproducing the Conda Environment\u003c/h3\u003e\u003ca id=\"user-content-reproducing-the--conda-environment\" class=\"anchor\" aria-label=\"Permalink: Reproducing the Conda Environment\" href=\"#reproducing-the--conda-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003erun this under Linux.\u003c/li\u003e\n\u003cli\u003eassuming you have installed miniconda\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml \n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePlanDEM\u003c/h1\u003e\u003ca id=\"user-content-plandem\" class=\"anchor\" aria-label=\"Permalink: PlanDEM\" href=\"#plandem\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePlanDEM is a research project, developed at Bar-Ilan University,\nthat aims to build a domain-independent classical planning system\nwhich uses dynamically estimated action models.\nIt is based on the Fast Downward planning system,\nwith modifications that support dynamic action model estimation.\u003c/p\u003e\n\u003cp\u003eCopyright 2021--2023 PlanDEM contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePlanDEM main repository: \u003ca href=\"https://github.com/eyal-weiss/plandem-public\"\u003ehttps://github.com/eyal-weiss/plandem-public\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTested Software Versions\u003c/h2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-label=\"Permalink: Tested Software Versions\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis version of PlanDEM is tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributors\u003c/h2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-label=\"Permalink: Contributors\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to PlanDEM.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2021--2023 Eyal Weiss\u003c/li\u003e\n\u003cli\u003e2021--2023 Gal A. Kaminka\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContact\u003c/h2\u003e\u003ca id=\"user-content-contact\" class=\"anchor\" aria-label=\"Permalink: Contact\" href=\"#contact\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eEyal: \u003ca href=\"mailto:eyal.weiss@biu.ac.il\"\u003eeyal.weiss@biu.ac.il\u003c/a\u003e, \u003ca href=\"https://sites.google.com/view/eyal-weiss\" rel=\"nofollow\"\u003ehttps://sites.google.com/view/eyal-weiss\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eGal: \u003ca href=\"mailto:galk@cs.biu.ac.il\"\u003egalk@cs.biu.ac.il\u003c/a\u003e, \u003ca href=\"https://u.cs.biu.ac.il/~kaminkg/\" rel=\"nofollow\"\u003ehttps://u.cs.biu.ac.il/~kaminkg/\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePapers\u003c/h2\u003e\u003ca id=\"user-content-papers\" class=\"anchor\" aria-label=\"Permalink: Papers\" href=\"#papers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003ePlanning with Multiple Action-Cost Estimates, Eyal Weiss and Gal A. Kaminka, ICAPS 2023\u003c/li\u003e\n\u003cli\u003eA Generalization of the Shortest Path Problem to Graphs with Multiple Edge-Cost Estimates, Eyal Weiss, Ariel Felner and Gal A. Kaminka, ECAI 2023\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eRelevant information appears in directories with the same name.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild\u003c/h2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-label=\"Permalink: Build\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSame as Fast Downward.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun\u003c/h2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-label=\"Permalink: Run\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSame as Fast Downward, but with the following choices in the run command:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eTo run ACE choose the search engine \"synchronic\". See documentation in plugin_synchronic_estimation.cc. To switch between estimator types, open the file synchronic_estimation_search.cc and modify the class of *estimator_ptr (currently two options: Estimator or OntarioEstimator) and the input parameters of get_estimator accordingly.\u003c/li\u003e\n\u003cli\u003eTo run BEAUTY choose the search engine \"beauty\". See documentation in plugin_beauty.cc. To run Anytime-BEAUTY choose the search engine \"anytime_beauty\". See documentation in anytime_beauty.cc.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following directory is not part of PlanDEM as covered by this license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ePlanDEM is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nPlanDEM is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1553205187.0
+ "updated_at": 1689680580.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "HPOBench/hpobench/container/recipes/Singularity.template",
- "HPOBench/hpobench/container/recipes/surrogates/Singularity.SupportVectorMachine",
- "HPOBench/hpobench/container/recipes/surrogates/Singularity.YAHPOGymBenchmark",
- "HPOBench/hpobench/container/recipes/surrogates/Singularity.ParamnetBenchmark",
- "HPOBench/hpobench/container/recipes/mo/Singularity.AdultBenchmark",
- "HPOBench/hpobench/container/recipes/mo/Singularity.CNNBenchmark",
- "HPOBench/hpobench/container/recipes/od/Singularity.ODBenchmarks",
- "HPOBench/hpobench/container/recipes/od/Singularity.ODKernelDensityEstimation",
- "HPOBench/hpobench/container/recipes/ml/Singularity.ml_mmfb",
- "HPOBench/hpobench/container/recipes/ml/Singularity.PyBNN",
- "HPOBench/hpobench/container/recipes/ml/Singularity.SupportVectorMachine",
- "HPOBench/hpobench/container/recipes/ml/Singularity.XGBoostBenchmark",
- "HPOBench/hpobench/container/recipes/ml/Singularity.YahpoRawBenchmark",
- "HPOBench/hpobench/container/recipes/ml/Singularity.ml_tabular_benchmark",
- "HPOBench/hpobench/container/recipes/nas/Singularity.TabularBenchmarks",
- "HPOBench/hpobench/container/recipes/nas/Singularity.nasbench_101",
- "HPOBench/hpobench/container/recipes/nas/Singularity.nasbench_201",
- "HPOBench/hpobench/container/recipes/nas/Singularity.nasbench_1shot1",
- "HPOBench/hpobench/container/recipes/rl/Singularity.learnaBenchmark",
- "HPOBench/hpobench/container/recipes/rl/Singularity.Cartpole"
+ "misc/releases/latest/Singularity",
+ "misc/releases/20.06/Singularity.20.06",
+ "misc/releases/19.06/Singularity.19.06",
+ "misc/releases/19.12/Singularity.19.12"
],
- "full_name": "jr2021/ManyFairHPO-AIES",
+ "full_name": "hejia-zhang/downward",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eManyFairHPO: Many-Objective Fairness-Aware Hyperparameter Optimization\u003c/h1\u003e\u003ca id=\"user-content-manyfairhpo-many-objective-fairness-aware-hyperparameter-optimization\" class=\"anchor\" aria-label=\"Permalink: ManyFairHPO: Many-Objective Fairness-Aware Hyperparameter Optimization\" href=\"#manyfairhpo-many-objective-fairness-aware-hyperparameter-optimization\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn this repository you will find all source code for experiments and analyses accompanying the submission \"A Human-in-the-Loop Fairness-Aware Model Selection Framework for Complex Fairness Objective Landscapes\" to the ACM/AAAI AIES \u002724 Conference.\u003c/p\u003e\n\n \u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"flowchart_aies_ternary.png\"\u003e\u003cimg src=\"flowchart_aies_ternary.png\" alt=\"Image Description\" width=\"500\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGetting Started\u003c/h2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-label=\"Permalink: Getting Started\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eInstall dependencies\u003c/h3\u003e\u003ca id=\"user-content-install-dependencies\" class=\"anchor\" aria-label=\"Permalink: Install dependencies\" href=\"#install-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eHPOBench\u003c/h4\u003e\u003ca id=\"user-content-hpobench\" class=\"anchor\" aria-label=\"Permalink: HPOBench\" href=\"#hpobench\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003ecd HPOBench\npip install -e .\ncd ..\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eMO-HPOBenchExperimentUtils\u003c/h4\u003e\u003ca id=\"user-content-mo-hpobenchexperimentutils\" class=\"anchor\" aria-label=\"Permalink: MO-HPOBenchExperimentUtils\" href=\"#mo-hpobenchexperimentutils\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003ecd MO-HPOBenchExperimentUtils\npip install -e .\ncd ..\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun a ManyFairHPO Experiment\u003c/h2\u003e\u003ca id=\"user-content-run-a-manyfairhpo-experiment\" class=\"anchor\" aria-label=\"Permalink: Run a ManyFairHPO Experiment\" href=\"#run-a-manyfairhpo-experiment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003epython -u runner.py --objective_name f1_multi --model_name rf --dataset_name adult --seed 0 --optimizer_name nsga3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAnalyze ManyFairHPO Results\u003c/h2\u003e\u003ca id=\"user-content-analyze-manyfairhpo-results\" class=\"anchor\" aria-label=\"Permalink: Analyze ManyFairHPO Results\" href=\"#analyze-manyfairhpo-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe logs of our experimental results are provided on \u003ca href=\"https://drive.google.com/file/d/1TcYjjctuSEAHxL_SWopcTJ_IHRNb7tIA/view?usp=sharing\" rel=\"nofollow\"\u003eGoogle Drive\u003c/a\u003e. Please download the \u003ccode\u003eexpiriments.pkl\u003c/code\u003e file and place it in your the main project directory.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003epickle\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eas\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003epkl\u003c/span\u003e\n\n\u003cspan class=\"pl-k\"\u003ewith\u003c/span\u003e \u003cspan class=\"pl-en\"\u003eopen\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\u0027experiments.pkl\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027rb\u0027\u003c/span\u003e) \u003cspan class=\"pl-k\"\u003eas\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ef\u003c/span\u003e:\n \u003cspan class=\"pl-s1\"\u003eexperiments\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003epkl\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eload\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ef\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e[\u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e] \u003cspan class=\"pl-s1\"\u003eexperiments\u003c/span\u003e[(\u003cspan class=\"pl-s\"\u003e\u0027f1_multi\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027rf\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027adult\u0027\u003c/span\u003e)][\u003cspan class=\"pl-s\"\u003e\u0027function_values\u0027\u003c/span\u003e]\n\n \u003cspan class=\"pl-s1\"\u003eval_f1\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eval_ddsp\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eval_deod\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eval_deop\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eval_invd\u003c/span\u003e \n\u003cspan class=\"pl-c1\"\u003e0\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.316078\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.081204\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.026665\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.031306\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.019893\u003c/span\u003e \n\u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.331510\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.075258\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.023383\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.026932\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.018170\u003c/span\u003e \n\u003cspan class=\"pl-c1\"\u003e2\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.323927\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.076689\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.023580\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.027098\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.019064\u003c/span\u003e \n\u003cspan class=\"pl-c1\"\u003e3\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.318430\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.081030\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.026330\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.031248\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.020370\u003c/span\u003e \n\u003cspan class=\"pl-c1\"\u003e4\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.397887\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.055827\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.007331\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.006138\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.017072\u003c/span\u003e \n... ... ... ... ... ... \n\u003cspan class=\"pl-c1\"\u003e996\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e1.000000\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.000000\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.000000\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.000000\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.000000\u003c/span\u003e \n\u003cspan class=\"pl-c1\"\u003e997\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.973703\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.001843\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.001118\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.002210\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.000258\u003c/span\u003e \n\u003cspan class=\"pl-c1\"\u003e998\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.905509\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.006025\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.003782\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.007564\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.000940\u003c/span\u003e \n\u003cspan class=\"pl-c1\"\u003e999\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.405365\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.055905\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.014091\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.017897\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.013220\u003c/span\u003e \n\u003cspan class=\"pl-c1\"\u003e1000\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.340335\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.067798\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.017519\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.021524\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.017845\u003c/span\u003e\n\n[\u003cspan class=\"pl-c1\"\u003e10010\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003erows\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ex\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e10\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ecolumns\u003c/span\u003e]\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e[\u003cspan class=\"pl-c1\"\u003e2\u003c/span\u003e] \u003cspan class=\"pl-s1\"\u003eexperiments\u003c/span\u003e[(\u003cspan class=\"pl-s\"\u003e\u0027f1_multi\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027rf\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027adult\u0027\u003c/span\u003e)][\u003cspan class=\"pl-s\"\u003e\u0027archive\u0027\u003c/span\u003e]\n\n \u003cspan class=\"pl-s1\"\u003emax_depth\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003emax_features\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003emin_samples_leaf\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003emin_samples_split\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003en_estimators\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e28\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.896547\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e15\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e78\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e109\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e22\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.367562\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e13\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e57\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e179\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e2\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e49\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.435865\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e8\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e102\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e106\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e3\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e29\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.891923\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e19\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e11\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e18\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e4\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e2\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.806194\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e17\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e100\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e175\u003c/span\u003e\n... ... ... ... ... ...\n\u003cspan class=\"pl-c1\"\u003e996\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e2\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.004743\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e3\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e127\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e167\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e997\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.580992\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e14\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e83\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e173\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e998\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.643578\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e16\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e88\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e163\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e999\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e4\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.544248\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e10\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e89\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e167\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e1000\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e9\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e0.608166\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e5\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e69\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e173\u003c/span\u003e\n\n[\u003cspan class=\"pl-c1\"\u003e10010\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003erows\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ex\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e5\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ecolumns\u003c/span\u003e]\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eManyFairHPO-AIES\u003c/h1\u003e\u003ca id=\"user-content-manyfairhpo-aies\" class=\"anchor\" aria-label=\"Permalink: ManyFairHPO-AIES\" href=\"#manyfairhpo-aies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eFast Downward\u003c/h1\u003e\u003ca id=\"user-content-fast-downward\" class=\"anchor\" aria-label=\"Permalink: Fast Downward\" href=\"#fast-downward\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2020 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"http://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttp://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTested software versions\u003c/h2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-label=\"Permalink: Tested software versions\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2017 (MSVC 19.16) and 2019 (MSVC 19.28)\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributors\u003c/h2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-label=\"Permalink: Contributors\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2020 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2020 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2020 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2020 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2020 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2020 Salome Eriksson\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2018-2020 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2015 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHistory\u003c/h2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-label=\"Permalink: History\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1723300161.0
+ "updated_at": 1663278115.0
},
{
"data_format": 2,
- "description": null,
+ "description": "\ud83c\udf5d Code for the paper \"Understanding Sample Generation Strategies for Learning Heuristic Functions in Classical Planning.\"",
"filenames": [
- "Singularity.def"
+ "misc/releases/latest/Singularity",
+ "misc/releases/20.06/Singularity.20.06",
+ "misc/releases/19.06/Singularity.19.06",
+ "misc/releases/19.12/Singularity.19.12"
],
- "full_name": "BeatriceDRM/BoinDiRaimondoMetallo_softeng2",
+ "full_name": "yaaig-ufrgs/NeuralFastDownward-FSM",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSE4HPCproject\u003c/h1\u003e\u003ca id=\"user-content-se4hpcproject\" class=\"anchor\" aria-label=\"Permalink: SE4HPCproject\" href=\"#se4hpcproject\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOur project satisfies all the requests correctly.\u003c/p\u003e\n\u003cp\u003eFurthermore, we have been able to upload the two files .txt (respectively output.txt and error.txt) using an artifact.\nAs a result, in txtFilesAction, you can see the two .txt created by the action \"Upload the files\".\nInside txtFiles, you can see the .txt obtained by copy.\u003c/p\u003e\n\u003cp\u003eThese two folders are both present because, in this way, we were able to make a comparison and to be sure that the result was correct.\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eNeuralFastDownward-FSM\u003c/h1\u003e\u003ca id=\"user-content-neuralfastdownward-fsm\" class=\"anchor\" aria-label=\"Permalink: NeuralFastDownward-FSM\" href=\"#neuralfastdownward-fsm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eCode for the paper \"Understanding Sample Generation Strategies for Learning Heuristic Functions in Classical Planning\".\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eNeural Fast Downward is intended to help with generating training data for\nclassical planning domains, as well as, using machine learning techniques with\nFast Downward (especially, Tensorflow and PyTorch).\u003c/p\u003e\n\u003cp\u003eNeuralFastDownward-FSM is a fork from \u003ca href=\"https://github.com/PatrickFerber/NeuralFastDownward\"\u003eFerber\u0027s Neural Fast Downward\u003c/a\u003e, which in turn derives from \u003ca href=\"https://github.com/aibasel/downward\"\u003eFast Downward\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eImportant: you can find our experiments from the paper in the \u003ccode\u003epaper-experiments\u003c/code\u003e directory.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eFast Instructions\u003c/h2\u003e\u003ca id=\"user-content-fast-instructions\" class=\"anchor\" aria-label=\"Permalink: Fast Instructions\" href=\"#fast-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePre-run\u003c/h3\u003e\u003ca id=\"user-content-pre-run\" class=\"anchor\" aria-label=\"Permalink: Pre-run\" href=\"#pre-run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eClone this repository.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDownload and extract\n\u003ca href=\"https://pytorch.org/cppdocs/installing.html\" rel=\"nofollow\"\u003e\u003ccode\u003elibtorch\u003c/code\u003e\u003c/a\u003e to a directory \u003ccode\u003ep\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ecd\u003c/code\u003e to the directory where the root of the cloned repository is located, then:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport Torch_DIR=p OR export PATH_TORCH=p\npip install -r requirements.txt\n./build.py release\n# And if interested in running FastDownward in debug mode:\n./build.py debug\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e3.1. If torch 1.9.0 is not found, install Python \u0026lt;= 3.9.10.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eMessing with the neural network code\u003c/h3\u003e\u003ca id=\"user-content-messing-with-the-neural-network-code\" class=\"anchor\" aria-label=\"Permalink: Messing with the neural network code\" href=\"#messing-with-the-neural-network-code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSee\n\u003ca href=\"https://github.com/yaaig-ufrgs/NeuralFastDownward-FSM/tree/main/src/pytorch\"\u003e\u003ccode\u003esrc/pytorch/\u003c/code\u003e\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDefault arguments\u003c/h3\u003e\u003ca id=\"user-content-default-arguments\" class=\"anchor\" aria-label=\"Permalink: Default arguments\" href=\"#default-arguments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/yaaig-ufrgs/NeuralFastDownward-FSM/tree/main/src/pytorch/utils/default_args.py\"\u003e\u003ccode\u003esrc/pytorch/utils/default_args.py\u003c/code\u003e\u003c/a\u003e and \u003ca href=\"https://github.com/yaaig-ufrgs/NeuralFastDownward-FSM/tree/main/src/pytorch/utils/parse_args.py\"\u003e\u003ccode\u003esrc/pytorch/utils/parse_args.py\u003c/code\u003e\u003c/a\u003e for lists of default argument values when invoking programs.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eGenerating samples\u003c/h3\u003e\u003ca id=\"user-content-generating-samples\" class=\"anchor\" aria-label=\"Permalink: Generating samples\" href=\"#generating-samples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003eusage: fast-sample.py [-h] [-tst-dir TEST_TASKS_DIR] [-stp STATESPACE] [-tech {rw,dfs,bfs,bfs_rw}] [-search {greedy,astar}]\n [-heur {ff,lmcut}] [-st {complete,complete_nomutex,forward_statespace}] [-max MAX_SAMPLES] [-scs SEARCHES]\n [-sscs SAMPLES_PER_SEARCH] [-rd REGRESSION_DEPTH] [-rdm REGRESSION_DEPTH_MULTIPLIER] [-s SEED]\n [-dups {all,interrollout,none}] [-ms MULT_SEED] [-c RANDOM_PERCENTAGE] [-rhg RESTART_H_WHEN_GOAL_STATE]\n [-sf {none,mutex,statespace}] [-bfsp BFS_PERCENTAGE] [-o OUTPUT_DIR] [-sai {none,partial,complete,both}]\n [-sui SUCCESSOR_IMPROVEMENT] [-suirule {supersets,subsets,samesets}] [-kd K_DEPTH] [-unit UNIT_COST]\n [-cores CORES] [-t MAX_TIME] [-m MEM_LIMIT] [-eval EVALUATOR] [-dbg DEBUG]\n instance {yaaig}\nfast-sample.py: error: the following arguments are required: instance, method\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe example below takes all the instances in the \u003ccode\u003eblocks\u003c/code\u003e directory and saves the\nsamples, facts and defaults files in the \u003ccode\u003esamples\u003c/code\u003e directory with an\nappropriate filename. In the example below, we\u0027re generating 1000 samples. Of the final sample set, 500 are generated using BFS+RW and the remaining will be randomly generated. Duplicates are only allowed between rollout, states are completed with mutexes, all h-value improvements are used and the regression depth is limited by facts/avg(eff).\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./fast-sample.py tasks/experiments/blocks yaaig --technique bfs_rw --state-representation complete --max-samples 1000 --seed 0 --allow-dups interrollout --restart-h-when-goal-state yes --sample-improvement both --statespace tasks/experiments/statespaces/statespace_blocks_probBLOCKS-7-0_hstar --successor-improvement yes --regression-depth facts_per_avg_effects --state-filtering mutex --bfs-percentage 0.1 --random-percentage 0.5 --cores 1 --output-dir samples\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTraining a neural network\u003c/h3\u003e\u003ca id=\"user-content-training-a-neural-network\" class=\"anchor\" aria-label=\"Permalink: Training a neural network\" href=\"#training-a-neural-network\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eExecuting \u003ccode\u003e./train.py -h\u003c/code\u003e will show how to use it with all\nthe possible arguments. Almost everything is modifiable, and the default neural\nnetwork is a ResNet.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eusage: train.py [-h] [-mdl {hnn,resnet}] [-sb SAVE_BEST_EPOCH_MODEL] [-diff SAVE_GIT_DIFF] [-pte POST_TRAIN_EVAL] [-pat PATIENCE]\n [-o {regression,prefix,one-hot}] [-lo LINEAR_OUTPUT] [-f NUM_FOLDS] [-hl HIDDEN_LAYERS]\n [-hu HIDDEN_UNITS [HIDDEN_UNITS ...]] [-b BATCH_SIZE] [-lr LEARNING_RATE] [-e MAX_EPOCHS] [-t MAX_TRAINING_TIME]\n [-a {sigmoid,relu,leakyrelu}] [-w WEIGHT_DECAY] [-d DROPOUT_RATE] [-shs SHUFFLE_SEED] [-sh SHUFFLE] [-gpu USE_GPU]\n [-bi BIAS] [-tsize TRAINING_SIZE] [-spt SAMPLE_PERCENTAGE] [-us UNIQUE_SAMPLES] [-ust UNIQUE_STATES]\n [-biout BIAS_OUTPUT] [-of OUTPUT_FOLDER] [-s SEED] [-sp SCATTER_PLOT] [-spn PLOT_N_EPOCHS]\n [-wm {default,sqrt_k,1,01,xavier_uniform,xavier_normal,kaiming_uniform,kaiming_normal,rai}] [-lf {mse,rmse}]\n [-no NORMALIZE_OUTPUT] [-rst RESTART_NO_CONV] [-cdead CHECK_DEAD_ONCE] [-sibd SEED_INCREMENT_WHEN_BORN_DEAD]\n [-trd NUM_CORES] [-dnw DATA_NUM_WORKERS] [-hpred SAVE_HEURISTIC_PRED]\n [-addfn [{patience,output-layer,num-folds,hidden-layers,hidden-units,batch-size,learning-rate,max-epochs,max-training-time,activation,weight-decay,dropout-rate,shuffle-seed,shuffle,use-gpu,bias,bias-output,normalize-output,restart-no-conv,sample-percentage,training-size} [{patience,output-layer,num-folds,hidden-layers,hidden-units,batch-size,learning-rate,max-epochs,max-training-time,activation,weight-decay,dropout-rate,shuffle-seed,shuffle,use-gpu,bias,bias-output,normalize-output,restart-no-conv,sample-percentage,training-size} ...]]]\n samples\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe example below will train a neural network with a sampling file as input, utilizing seed 0 (for reproducibility), a max of 20 training epochs, ReLU activation, regression output, MSE loss function and Kaiming Uniform network initialization. The trained model will be saved in the \u003ccode\u003eresults\u003c/code\u003e folder.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./train.py samples/yaaig_blocks_probBLOCKS-7-0_tech-bfsrw_sui_dups-ir_sai-both_repr-complete_bnd-factseff_maxs-1000_rs-500_ss0 -s 0 -e 20 -a relu -o regression -of results -lf mse -wm kaiming_uniform\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eEvaluating instances\u003c/h3\u003e\u003ca id=\"user-content-evaluating-instances\" class=\"anchor\" aria-label=\"Permalink: Evaluating instances\" href=\"#evaluating-instances\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eExecuting \u003ccode\u003e./test.py -h\u003c/code\u003e will show how to use it with all\nthe possible arguments.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eusage: test.py [-h] [-tfc TRAIN_FOLDER_COMPARE] [-diff SAVE_GIT_DIFF] [-d DOMAIN_PDDL] [-a {astar,eager_greedy}]\n [-heu {nn,add,blind,ff,goalcount,hmax,lmcut,hstar}] [-hm HEURISTIC_MULTIPLIER] [-u UNARY_THRESHOLD] [-t MAX_SEARCH_TIME]\n [-m MAX_SEARCH_MEMORY] [-e MAX_EXPANSIONS] [-pt {all,best,epochs}] [-sdir SAMPLES_DIR] [-ffile FACTS_FILE]\n [-dfile DEFAULTS_FILE] [-atn AUTO_TASKS_N] [-atf AUTO_TASKS_FOLDER] [-ats AUTO_TASKS_SEED] [-dlog DOWNWARD_LOGS]\n [-unit-cost UNIT_COST]\n train_folder [problem_pddls [problem_pddls ...]]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe example below takes a network folder (the trained model is located within\nit) as the first argument and will automatically find 50 random (fixed seed as default)\ninstances of the same domain to use for testing. \u003ccode\u003e-t\u003c/code\u003e is the time limit to solve the task, \u003ccode\u003e-a\u003c/code\u003e is the search algorithm used.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./test.py results/nfd_train.yaaig_blocks_probBLOCKS-7-0_tech-bfsrw_sui_dups-ir_sai-both_repr-complete_bnd-factseff_maxs-1000_rs-500_ss0.ns0 -t 360 -a eager_greedy\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning full experiments\u003c/h3\u003e\u003ca id=\"user-content-running-full-experiments\" class=\"anchor\" aria-label=\"Permalink: Running full experiments\" href=\"#running-full-experiments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can create multiple files like \u003ccode\u003eexp_example.json\u003c/code\u003e and call \u003ccode\u003e./run.py exp_example.json\u003c/code\u003e. Batch experiments will be performed according to the content in the JSON files. All the empty/unspecified settings will be run as\ndefault, and missing sections will be ignored.\u003c/p\u003e\n\u003cp\u003eYou can find a multitude of examples in the \u003ccode\u003epaper-experiments\u003c/code\u003e directory.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cblockquote\u003e\n\u003cblockquote\u003e\n\u003cblockquote\u003e\n\u003cblockquote\u003e\n\u003cblockquote\u003e\n\u003cblockquote\u003e\n\u003cblockquote\u003e\n\u003cp\u003eorigin/release\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003c/blockquote\u003e\n\u003c/blockquote\u003e\n\u003c/blockquote\u003e\n\u003c/blockquote\u003e\n\u003c/blockquote\u003e\n\u003c/blockquote\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1717602739.0
+ "updated_at": 1690974593.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Build Singularity containers to run SpaDES simulations on HPC clusters.",
"filenames": [
- "Singularity_tf1",
- "Singularity",
- "tf1.12/Singularity.tf1.12",
- "tf1.13/Singularity.tf1.13"
+ "Singularity.spades_github-development",
+ "Singularity.spades_base",
+ "Singularity.spades_github-master"
],
- "full_name": "mani3/tensorflow-gpu-py3-singularity",
+ "full_name": "gparadis/spades-singularity",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2179\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003espades-singularity\u003c/h1\u003e\u003ca id=\"user-content-spades-singularity\" class=\"anchor\" aria-label=\"Permalink: spades-singularity\" href=\"#spades-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAbout this project\u003c/h2\u003e\u003ca id=\"user-content-about-this-project\" class=\"anchor\" aria-label=\"Permalink: About this project\" href=\"#about-this-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis project implements a scripted framework for automating the process of building Singularity containers for running SpaDES simulations on HPC clusters.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eI am super impatient, and refuse to take the time to understand what I am doing before running any commands. Just tell me how to do the thing right now!\u003c/h2\u003e\u003ca id=\"user-content-i-am-super-impatient-and-refuse-to-take-the-time-to-understand-what-i-am-doing-before-running-any-commands-just-tell-me-how-to-do-the-thing-right-now\" class=\"anchor\" aria-label=\"Permalink: I am super impatient, and refuse to take the time to understand what I am doing before running any commands. Just tell me how to do the thing right now!\" href=\"#i-am-super-impatient-and-refuse-to-take-the-time-to-understand-what-i-am-doing-before-running-any-commands-just-tell-me-how-to-do-the-thing-right-now\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo build, sign, and push the base container flavour to the cloud image repository, simply run \u003ccode\u003emake all flavour=FLAVOUR\u003c/code\u003e, where \u003ccode\u003eFLAVOUR\u003c/code\u003e is one of \u003ccode\u003ebase\u003c/code\u003e, \u003ccode\u003egithub-master\u003c/code\u003e, or \u003ccode\u003egithub-development\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eNot sure which flavour to use? Read on!\u003c/p\u003e\n\u003cp\u003eNote that, if you do not have Singularity installed yet, you will need to run \u003ccode\u003emake install-singularity\u003c/code\u003e first.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSingularity container definition files\u003c/h2\u003e\u003ca id=\"user-content-singularity-container-definition-files\" class=\"anchor\" aria-label=\"Permalink: Singularity container definition files\" href=\"#singularity-container-definition-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis Singularity container definition files follow standard Singularity definition file naming conventions (i.e., they are prefixed with \u003ccode\u003eSingularity.\u003c/code\u003e followed by a \u003cem\u003etag\u003c/em\u003e string). There are three flavours (tags) defined in this project: \u003ccode\u003ebase\u003c/code\u003e, \u003ccode\u003egithub-master\u003c/code\u003e, and \u003ccode\u003egithub-development\u003c/code\u003e. Note that the R code that installs SpaDES packages for each flavour is contained in a script named \u003ccode\u003espades-setup_flavour.R\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eYou can also create new custom flavours by copying and modifying some files from an existing flavour. New flavours should be compatible with automated make targets (as long as you did not break the filename patterns).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eBase flavour\u003c/h3\u003e\u003ca id=\"user-content-base-flavour\" class=\"anchor\" aria-label=\"Permalink: Base flavour\" href=\"#base-flavour\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe base container flavour includes the latest stable CRAN versions of core SpaDES R packages. This base can be used to run SpaDES models directly (for simpler projects, where the CRAN packages are all you need). The base image also serves as a \u003cem\u003ebootstrap\u003c/em\u003e image for other flavours. The base container flavour is implemented in \u003ccode\u003eSingularity.spades_base\u003c/code\u003e and \u003ccode\u003espades-setup_base.R\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eGitHub flavours\u003c/h3\u003e\u003ca id=\"user-content-github-flavours\" class=\"anchor\" aria-label=\"Permalink: GitHub flavours\" href=\"#github-flavours\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThere are two GitHub container flavours (\u003ccode\u003egithub-master\u003c/code\u003e, \u003ccode\u003egithub-development\u003c/code\u003e). These install core SpaDES R packages from the latest code pushed to GitHub repositories for \u003ccode\u003emaster\u003c/code\u003e and \u003ccode\u003edevelopment\u003c/code\u003e branches, respectively. The GitHub container flavours are implemented in the \u003ccode\u003eSingularity.spades-github_BRANCH\u003c/code\u003e and \u003ccode\u003espades-setup_github-BRANCH\u003c/code\u003e (where \u003ccode\u003eBRANCH\u003c/code\u003e is one of \u003ccode\u003emaster\u003c/code\u003e or \u003ccode\u003edevelopment\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eThe GitHub container flavours are \u003cem\u003ebootstrapped\u003c/em\u003e from the base container flavour. Defintion file implementation assumes that a local base container image is available in path \u003ccode\u003ebuild/spades.sif\u003c/code\u003e, so the base container must be built first (the base container will automatically get built if not present if you run \u003ccode\u003emake build flavour=FLAVOUR\u003c/code\u003e, where \u003ccode\u003eFLAVOUR\u003c/code\u003e is any value except for \u003ccode\u003ebase\u003c/code\u003e).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCustom flavours\u003c/h3\u003e\u003ca id=\"user-content-custom-flavours\" class=\"anchor\" aria-label=\"Permalink: Custom flavours\" href=\"#custom-flavours\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can create a custom container flavour but copying \u003ccode\u003eSingularity.spades_github-master\u003c/code\u003e and \u003ccode\u003espades-setup_github-master.R\u003c/code\u003e---rename these to \u003ccode\u003eSingularity.spades_foo\u003c/code\u003e and \u003ccode\u003espades-setup_foo.R\u003c/code\u003e (where \u003ccode\u003efoo\u003c/code\u003e is whatever unique flavour name you want) and modify as required. Minimally, you just need to edit one line of code in the Singularity definition file to point to \u003ccode\u003espades-setup_foo.R\u003c/code\u003e, and edit the code in \u003ccode\u003espades-setup_foo.R\u003c/code\u003e to install whatever versions of SpaDES R packages you need.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eMakefile details\u003c/h2\u003e\u003ca id=\"user-content-makefile-details\" class=\"anchor\" aria-label=\"Permalink: Makefile details\" href=\"#makefile-details\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003eMakefile\u003c/code\u003e implements a number of make targets.\u003c/p\u003e\n\u003cp\u003eRun \u003ccode\u003emake build flavour=FLAVOUR sandbox=true\u003c/code\u003e to build a sandbox container (in \u003ccode\u003ebuild/spades_FLAVOUR_sandbox\u003c/code\u003e). See Singularity documentation for details on sandbox containers.\u003c/p\u003e\n\u003cp\u003eRun \u003ccode\u003emake build flavour=FLAVOUR\u003c/code\u003e to build a container as a single \u003cem\u003esingularity image file\u003c/em\u003e (in \u003ccode\u003ebuild/spades_FLAVOUR.sif\u003c/code\u003e). See Singularity documentation for details on SIF containers.\u003c/p\u003e\n\u003cp\u003eRun \u003ccode\u003emake push flavour=FLAVOUR\u003c/code\u003e to sign your SIF image and push it to your Sylabs cloud image library account. See the \u003ca href=\"https:%5Ccloud.sylabs.io\"\u003eSylabs Container Library\u003c/a\u003e to create and configure your account.\u003c/p\u003e\n\u003cp\u003eRun \u003ccode\u003emake all flavour=FLAVOUR\u003c/code\u003e to build and push your image in one step.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1582782591.0
+ "updated_at": 1602038529.0
},
{
"data_format": 2,
- "description": "Research code from 2018 that doesn\u0027t fit in a more specific library.",
+ "description": null,
"filenames": [
- "Singularity.cpu",
- "Singularity.gpu"
+ "misc/releases/21.12/Singularity.21.12",
+ "misc/releases/latest/Singularity",
+ "misc/releases/20.06/Singularity.20.06",
+ "misc/releases/19.06/Singularity.19.06",
+ "misc/releases/22.06/Singularity.22.06",
+ "misc/releases/19.12/Singularity.19.12"
],
- "full_name": "dmorrill10/research2018",
+ "full_name": "ipc2023-classical/planner3",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eresearch2018\u003c/h1\u003e\u003ca id=\"user-content-research2018\" class=\"anchor\" aria-label=\"Permalink: research2018\" href=\"#research2018\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eResearch code from 2018 that doesn\u0027t fit in a more specific library.\u003c/p\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSymk \u003ca href=\"https://github.com/speckdavid/symk/actions?query=workflow%3A%22Linux+build%22\"\u003e\u003cimg src=\"https://github.com/speckdavid/symk/workflows/Linux%20build/badge.svg\" alt=\"Linux build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://github.com/speckdavid/symk/actions?query=workflow%3A%22MacOS+build%22\"\u003e\u003cimg src=\"https://github.com/speckdavid/symk/workflows/MacOS%20build/badge.svg\" alt=\"MacOS build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\u003ca id=\"user-content-symk--\" class=\"anchor\" aria-label=\"Permalink: Symk \" href=\"#symk--\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSymk is a state-of-the-art classical \u003cem\u003eoptimal\u003c/em\u003e and \u003cem\u003etop-k planner\u003c/em\u003e based on symbolic search.\u003c/p\u003e\n\u003cp\u003eWith Symk, it is possible to find a \u003cem\u003esingle optimal plan\u003c/em\u003e or a \u003cem\u003eset of k different best plans\u003c/em\u003e with the lowest cost for a given planning task.\nIn addition, Symk natively supports a variety of PDDL features that are rarely supported by other planners, such as conditional effects, derived predicates with axioms, and state-dependent action costs.\nSee this readme file for more information on running Symk and the various configurations.\nWe appreciate citations when SymK is used in a scientific context (see \u003ca href=\"#references\"\u003eReferences\u003c/a\u003e for more details).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTable of Contents\u003c/h2\u003e\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" aria-label=\"Permalink: Table of Contents\" href=\"#table-of-contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"#getting-started\"\u003eGetting Started\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#dependencies\"\u003eDependencies\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#compiling-the-symk-planner\"\u003eCompiling the Symk Planner\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#apptainer-image\"\u003eApptainer Image\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#generating-a-single-optimal-solution\"\u003eGenerating A Single Optimal Solution\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#generating-multiple-solutions\"\u003eGenerating Multiple Solutions\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#top-k-configurations\"\u003eTop-k Configurations\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#top-q-configurations\"\u003eTop-q Configurations\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#loopless-planning\"\u003eLoopless Planning\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#other-configurations\"\u003eOther Configurations\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#plan-selection-framework\"\u003ePlan Selection Framework\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#unordered-plan-selector\"\u003eUnordered Plan Selector\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#new-plan-selector\"\u003eNew Plan Selector\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#pitfalls-and-troubleshooting\"\u003ePitfalls and Troubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#references\"\u003eReferences\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGetting Started\u003c/h2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-label=\"Permalink: Getting Started\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDependencies\u003c/h3\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-label=\"Permalink: Dependencies\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCurrently we only support Linux systems. The following should install all necessary dependencies.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003esudo apt-get -y install cmake g++ make python3 autoconf automake\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eSymk should compile on MacOS with the GNU C++ compiler and clang with the same instructions described above.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCompiling the Symk Planner\u003c/h3\u003e\u003ca id=\"user-content-compiling-the-symk-planner\" class=\"anchor\" aria-label=\"Permalink: Compiling the Symk Planner\" href=\"#compiling-the-symk-planner\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e./build.py \u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eApptainer Image\u003c/h3\u003e\u003ca id=\"user-content-apptainer-image\" class=\"anchor\" aria-label=\"Permalink: Apptainer Image\" href=\"#apptainer-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo simplify the installation process, we alternatively provide an executable \u003ca href=\"https://apptainer.org/\" rel=\"nofollow\"\u003eApptainer\u003c/a\u003e container (formerly known as Singularity). It accepts the same arguments as Symk (\u003ccode\u003efast-downward.py\u003c/code\u003e script; see below).\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e# \u003cspan class=\"pl-s1\"\u003eDownload the image,\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eapptainer pull symk.sif oras://ghcr.io/speckdavid/symk:latest\u003c/span\u003e\n\n# \u003cspan class=\"pl-s1\"\u003eor build it yourself.\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eapptainer build symk.sif Apptainer\u003c/span\u003e\n\n# \u003cspan class=\"pl-s1\"\u003eThen run the desired configuration (for other configurations see below).\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e./symk.sif domain.pddl problem.pddl --search \"sym-bd()\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGenerating A Single Optimal Solution\u003c/h2\u003e\u003ca id=\"user-content-generating-a-single-optimal-solution\" class=\"anchor\" aria-label=\"Permalink: Generating A Single Optimal Solution\" href=\"#generating-a-single-optimal-solution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe recommend to use the following configuration which uses bidirectional search.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e./fast-downward.py domain.pddl problem.pddl --search \"sym-bd()\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eOther configurations are forward or backward search: \u003ccode\u003e--search \"sym-fw()\"\u003c/code\u003e or \u003ccode\u003e--search \"sym-bw()\"\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGenerating Multiple Solutions\u003c/h2\u003e\u003ca id=\"user-content-generating-multiple-solutions\" class=\"anchor\" aria-label=\"Permalink: Generating Multiple Solutions\" href=\"#generating-multiple-solutions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTop-k Configurations\u003c/h3\u003e\u003ca id=\"user-content-top-k-configurations\" class=\"anchor\" aria-label=\"Permalink: Top-k Configurations\" href=\"#top-k-configurations\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe recommend to use the following configuration which uses bidirectional search and\nreports the best \u003cstrong\u003ek\u003c/strong\u003e plans. Note that you can also specify \u003ccode\u003enum_plans=infinity\u003c/code\u003e if you want to find all possible plans.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e./fast-downward.py domain.pddl problem.pddl --search \"symk-bd(plan_selection=top_k(num_plans=**k**))\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTop-q Configurations\u003c/h3\u003e\u003ca id=\"user-content-top-q-configurations\" class=\"anchor\" aria-label=\"Permalink: Top-q Configurations\" href=\"#top-q-configurations\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe recommend to use the following configuration which uses bidirectional search and\nreports the \u003cstrong\u003ek\u003c/strong\u003e plans with quality bound \u003cstrong\u003eq\u003c/strong\u003e. Quality \u003ccode\u003e1\u0026lt;=q\u0026lt;=infinity\u003c/code\u003e is a multiplier that is multiplied to the cost of the cheapest solution.\nFor example, \u003ccode\u003eq=1\u003c/code\u003e reports only the cheapest plans, where \u003ccode\u003equality=infinity\u003c/code\u003e corresponds to the top-k planning.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e./fast-downward.py domain.pddl problem.pddl --search \"symq-bd(plan_selection=top_k(num_plans=**k**),quality=**q**)\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eLoopless Planning\u003c/h3\u003e\u003ca id=\"user-content-loopless-planning\" class=\"anchor\" aria-label=\"Permalink: Loopless Planning\" href=\"#loopless-planning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIt is possible to generate loopless/simple plans, i.e., plans that do not visit any state more than once. In general, the option to consider and generate only simple plans can be combined with any Symk search engine and with different plan selectors by setting the \u003ccode\u003esimple\u003c/code\u003e parameter to true. See the following two examples and our \u003ca href=\"https://gki.informatik.uni-freiburg.de/papers/vontschammer-etal-icaps2022.pdf\" rel=\"nofollow\"\u003eICAPS 2022 Paper\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e./fast-downward.py domain.pddl problem.pddl --search \"symk-bd(simple=true,plan_selection=top_k(num_plans=**k**))\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e./fast-downward.py domain.pddl problem.pddl --search \"symq-bd(simple=true,plan_selection=top_k(num_plans=**k**),quality=**q**)\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eOther Configurations\u003c/h3\u003e\u003ca id=\"user-content-other-configurations\" class=\"anchor\" aria-label=\"Permalink: Other Configurations\" href=\"#other-configurations\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIt is possible to run Symk also with forward or backward search instead of bidirectional search, e.g., with \u003ccode\u003e--search \"symk-fw(...)\"\u003c/code\u003e or \u003ccode\u003e--search \"symk-bw(...)\"\u003c/code\u003e. Depending on the domain, one of these configurations may be faster than bidirectional search (\u003ccode\u003e\"--search symk-bd(...)\"\u003c/code\u003e).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePlan Selection Framework\u003c/h2\u003e\u003ca id=\"user-content-plan-selection-framework\" class=\"anchor\" aria-label=\"Permalink: Plan Selection Framework\" href=\"#plan-selection-framework\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIt is possible to create plans until a number of plans or simply a single plan is found that meets certain requirements.\nFor this purpose it is possible to write your own plan selector. During the search, plans are created and handed over to a plan selector with an anytime behavior.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eUnordered Plan Selector\u003c/h3\u003e\u003ca id=\"user-content-unordered-plan-selector\" class=\"anchor\" aria-label=\"Permalink: Unordered Plan Selector\" href=\"#unordered-plan-selector\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAn example of a plan selector is the \u003ca href=\"src/search/symbolic/plan_selection/unordered_selector.cc\"\u003eunordered_selector\u003c/a\u003e, which considers two plans as equivalent if their action multi-sets are equivalent. In other words, plans with the same multi-set of actions form an equivalence class and only one representative plan is reported for each equivalence class.\nNote that plan selectors can be combined with the different planning configurations.\u003c/p\u003e\n\u003cp\u003eWe recommend to use the following configurations which use bidirectional search.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eUnordered Top-k:\u003c/h4\u003e\u003ca id=\"user-content-unordered-top-k\" class=\"anchor\" aria-label=\"Permalink: Unordered Top-k:\" href=\"#unordered-top-k\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e./fast-downward.py domain.pddl problem.pddl --search \"symk-bd(plan_selection=unordered(num_plans=**k**))\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eUnordered Top-q:\u003c/h4\u003e\u003ca id=\"user-content-unordered-top-q\" class=\"anchor\" aria-label=\"Permalink: Unordered Top-q:\" href=\"#unordered-top-q\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e./fast-downward.py domain.pddl problem.pddl --search \"symq-bd(plan_selection=unordered(num_plans=**k**),quality=**q**)\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eNew Plan Selector\u003c/h3\u003e\u003ca id=\"user-content-new-plan-selector\" class=\"anchor\" aria-label=\"Permalink: New Plan Selector\" href=\"#new-plan-selector\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTwo simple examples of plan selectors are the \u003ca href=\"src/search/symbolic/plan_selection/top_k_selector.cc\"\u003etop_k_selector\u003c/a\u003e and\nthe \u003ca href=\"src/search/symbolic/plan_selection/top_k_even_selector.cc\"\u003etop_k_even_selector\u003c/a\u003e.\nFor this purpose it is possible to write your own plan selector.\nThe most important function is \u003cem\u003eadd_plan\u003c/em\u003e, in which you can specify whether a newly generated plan shall be accepted or rejected.\nTo create your own plan selector, you can copy the \u003cem\u003e.cc\u003c/em\u003e and \u003cem\u003e.h\u003c/em\u003e files of one of these two selectors and adjust them accordingly. Also add the new file name to \u003ca href=\"src/search/DownwardFiles.cmake\"\u003eDownwardFiles.cmake\u003c/a\u003e, similar to the other selection files.\nFinally, if you want to find a plan with your \u003cem\u003eawesome_selector\u003c/em\u003e selector (the name of the selector you specified for the plugin in the \u003cem\u003e.cc\u003c/em\u003e file), you can use the following command.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e./fast-downward.py domain.pddl problem.pddl --search \"symk-bd(plan_selection=awesome_selector(num_plans=1))\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNote, that you can also search for the best \u003cstrong\u003ek\u003c/strong\u003e plans using your selector.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePitfalls and Troubleshooting\u003c/h2\u003e\u003ca id=\"user-content-pitfalls-and-troubleshooting\" class=\"anchor\" aria-label=\"Permalink: Pitfalls and Troubleshooting\" href=\"#pitfalls-and-troubleshooting\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBy default, the planner performs a relevance analysis and removes components such as variables and actions that are irrelevant to achieving the goal. Although such variables and actions can in principle lead to further (simple) plans, they are classified as irrelevant and removed when translating PDDL to SAS+. If you wish to \u003cstrong\u003eobtain all plans\u003c/strong\u003e (even the non-relevant ones), please use the following options:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e./fast-downward.py --translate --search domain.pddl problem.pddl --translate-options --keep-unimportant-variables --search-options --search \"symk-bd(plan_selection=top_k(num_plans=**k**))\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eReferences\u003c/h1\u003e\u003ca id=\"user-content-references\" class=\"anchor\" aria-label=\"Permalink: References\" href=\"#references\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eNote that several components of SymK have been developed and published separately.\nWe appreciate citations of these sources when used.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eMain source\u003c/h3\u003e\u003ca id=\"user-content-main-source\" class=\"anchor\" aria-label=\"Permalink: Main source\" href=\"#main-source\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eDavid Speck, Robert Mattm\u00fcller, Bernhard Nebel: Symbolic Top-k Planning. AAAI 2020: 9967-9974 \u003ca href=\"https://rlplab.com/papers/speck-et-al-aaai2020.pdf\" rel=\"nofollow\"\u003e[pdf]\u003c/a\u003e \u003ca href=\"https://rlplab.com/papers/speck-et-al-aaai2020.html\" rel=\"nofollow\"\u003e[bib]\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eLoopless Top-k planning\u003c/h3\u003e\u003ca id=\"user-content-loopless-top-k-planning\" class=\"anchor\" aria-label=\"Permalink: Loopless Top-k planning\" href=\"#loopless-top-k-planning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eJulian von Tschammer, Robert Mattm\u00fcller, David Speck: Loopless Top-K Planning. ICAPS 2022: 380-384 \u003ca href=\"https://rlplab.com/papers/vontschammer-et-al-icaps2022.pdf\" rel=\"nofollow\"\u003e[pdf]\u003c/a\u003e \u003ca href=\"https://rlplab.com/papers/vontschammer-et-al-icaps2022.html\" rel=\"nofollow\"\u003e[bib]\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAxiom and derived predicate support\u003c/h3\u003e\u003ca id=\"user-content-axiom-and-derived-predicate-support\" class=\"anchor\" aria-label=\"Permalink: Axiom and derived predicate support\" href=\"#axiom-and-derived-predicate-support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eDavid Speck, Florian Gei\u00dfer, Robert Mattm\u00fcller, \u00c1lvaro Torralba: Symbolic Planning with Axioms. ICAPS 2019: 464-472 \u003ca href=\"https://rlplab.com/papers/speck-et-al-icaps2019.pdf\" rel=\"nofollow\"\u003e[pdf]\u003c/a\u003e \u003ca href=\"https://rlplab.com/papers/speck-et-al-icaps2019.html\" rel=\"nofollow\"\u003e[bib]\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eState-dependent action cost support\u003c/h3\u003e\u003ca id=\"user-content-state-dependent-action-cost-support\" class=\"anchor\" aria-label=\"Permalink: State-dependent action cost support\" href=\"#state-dependent-action-cost-support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eDavid Speck: Symbolic Search for Optimal Planning with Expressive Extensions. Ph.D. thesis: University of Freiburg (2022) \u003ca href=\"https://rlplab.com/papers/speck-phd2022.pdf\" rel=\"nofollow\"\u003e[pdf]\u003c/a\u003e \u003ca href=\"https://rlplab.com/papers/speck-phd2022.html\" rel=\"nofollow\"\u003e[bib]\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eYou can find examples of domains with state-dependent action cost \u003ca href=\"https://github.com/speckdavid/SDAC-Benchmarks\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eWe want to acknowledge that SymK is based on:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward (22.06): \u003ca href=\"http://www.fast-downward.org/\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eSymbolic Fast Downward: \u003ca href=\"https://people.cs.aau.dk/~alto/software.html\" rel=\"nofollow\"\u003ehttps://people.cs.aau.dk/~alto/software.html\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFinally, SymK uses some external software, which can be found in the following folders\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"src/dd_libs/cudd-3.0.0\"\u003esrc/dd_libs/cudd-3.0.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"src/search/ext\"\u003esrc/search/ext\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"src/search/sdac_parser/boost_dependencies\"\u003esrc/search/sdac_parser/boost_dependencies\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eLicense\u003c/h1\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003eSymK is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nSymK is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1604944821.0
+ "updated_at": 1688990794.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Grouping of my docker recipes",
"filenames": [
- "Singularity-old",
- "Singularity.cuda9.0-tf1.13",
- "Singularity.v8",
- "Singularity.cuda10.0-tf2.0",
- "Singularity.cuda9.0-tf1.14",
- "Singularity.cuda-10.0",
- "Singularity.cuda9.0-tf1.13-without_ofed",
- "Singularity.cuda10.0-tf1.13-v2",
- "Singularity.v7",
- "Singularity.cuda9.0-tf1.13-v2",
- "Singularity.cuda-9.0",
- "Singularity.test-cuda9.0",
- "Singularity.cuda9.0-tf1.13-fixed_ofed",
- "Singularity.cuda9.0-tf1.13-with_ucx",
- "Singularity",
- "Singularity.cuda9.0-tf1.13-v3"
+ "pschive_test/Singularity",
+ "psrchive_py2/Singularity_old",
+ "psrchive_py2/Singularity",
+ "gitlab_runner/Singularity",
+ "psrchive_Allegro/Singularity",
+ "psrchive_py3/Singularity_psrchive_last",
+ "psrchive_py3/Singularity_old",
+ "psrchive_py3/Singularity",
+ "Stable_Diffusion/Singularity"
],
- "full_name": "BensonYang1999/tensorflow-gpu",
+ "full_name": "louisbondonneau/Docker_receipts",
"latest_release": null,
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Containers\u003c/h1\u003e\u003ca id=\"user-content-singularity-containers\" class=\"anchor\" aria-label=\"Permalink: Singularity Containers\" href=\"#singularity-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity + Docker receipts can be found on github \u003ca href=\"https://github.com/louisbondonneau/Docker_receipts\"\u003ehttps://github.com/louisbondonneau/Docker_receipts\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eDepending on the installation singularity executable can be named \"singularity\" or \"apptainer\".\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun a contaner\u003c/h2\u003e\u003ca id=\"user-content-run-a-contaner\" class=\"anchor\" aria-label=\"Permalink: Run a contaner\" href=\"#run-a-contaner\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"left\"\u003eINSTALL\u003c/th\u003e\n\u003cth align=\"left\"\u003epschive_py2\u003c/th\u003e\n\u003cth align=\"left\"\u003epschive_py3\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003epsrchive\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py2)\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py3)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003etempo2\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003etempo1\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003epresto\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (v2.2 py2)\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (v4 py3)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003edspsr\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py2)\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py3)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003epsrsalsa\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003eSIGPROC\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003eRFICLEAN\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003eGPTOOL\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003ePlotX/TransientX\u003c/td\u003e\n\u003ctd align=\"left\"\u003eNOK\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003epylib - nenupy\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py3)\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py3)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003epylib - AntPat\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py3)\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py3)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003epylib - dreamBeam\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py3)\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py3)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003epylib - psrqpy\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py3)\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py3)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003epylib - clean.py\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py2)\u003c/td\u003e\n\u003ctd align=\"left\"\u003eNOK\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003epylib - pyqt5\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py3)\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py3)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"left\"\u003epylib - pyglow\u003c/td\u003e\n\u003ctd align=\"left\"\u003eNOK\u003c/td\u003e\n\u003ctd align=\"left\"\u003eOK (py3)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRUN pschive_py2 container\u003c/h3\u003e\u003ca id=\"user-content-run-pschive_py2-container\" class=\"anchor\" aria-label=\"Permalink: RUN pschive_py2 container\" href=\"#run-pschive_py2-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run -B /databf:/databf -B /data:/data -B /cep:/cep /cep/lofar/pulsar/Singularity/pschive_py2.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRUN pschive_py3 container\u003c/h3\u003e\u003ca id=\"user-content-run-pschive_py3-container\" class=\"anchor\" aria-label=\"Permalink: RUN pschive_py3 container\" href=\"#run-pschive_py3-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run -B /databf:/databf -B /data:/data -B /cep:/cep /cep/lofar/pulsar/Singularity/pschive_py3.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eknown issues\u003c/h2\u003e\u003ca id=\"user-content-known-issues\" class=\"anchor\" aria-label=\"Permalink: known issues\" href=\"#known-issues\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003epsrdata, hdf5... and other things in Vlad installed used by LOFAR are not installed at this time\u003c/li\u003e\n\u003cli\u003epython installation on your home or environment variables in your bashrc can affect the operation inside the container. To avoid this, add the following lines to the beginning of your ~/.bashrc ~/.bash_profile\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Check if we are inside a Singularity container\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eif\u003c/span\u003e [ \u003cspan class=\"pl-k\"\u003e-n\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e$SINGULARITY_CONTAINER\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e ]\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003ethen\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e If we are inside a Singularity container, exit the script here\u003c/span\u003e\n \u003cspan class=\"pl-k\"\u003ereturn\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efi\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild a container from nothing\u003c/h2\u003e\u003ca id=\"user-content-build-a-container-from-nothing\" class=\"anchor\" aria-label=\"Permalink: Build a container from nothing\" href=\"#build-a-container-from-nothing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003einstall Go and Singularity\u003c/h3\u003e\u003ca id=\"user-content-install-go-and-singularity\" class=\"anchor\" aria-label=\"Permalink: install Go and Singularity\" href=\"#install-go-and-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eapt-get update\napt-get install -y build-essential libssl-dev uuid-dev libgpgme11-dev squashfs-tools libseccomp-dev wget pkg-config git cryptsetup libglib2.0-dev\nGO_VERSION=1.20.2 OS=linux ARCH=amd64\nwget -O /tmp/go\u003cspan class=\"pl-smi\"\u003e${GO_VERSION}\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e${OS}\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e${ARCH}\u003c/span\u003e.tar.gz https://dl.google.com/go/go\u003cspan class=\"pl-smi\"\u003e${GO_VERSION}\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e${OS}\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e${ARCH}\u003c/span\u003e.tar.gz\ntar -C /usr/local -xzf /tmp/go\u003cspan class=\"pl-smi\"\u003e${GO_VERSION}\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e${OS}\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e${ARCH}\u003c/span\u003e.tar.gz\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eexport PATH=$PATH:/usr/local/go/bin\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc\n\u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc\ngit clone --recurse-submodules https://github.com/sylabs/singularity.git singularity\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e singularity\n./mconfig\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e builddir\nmake\nmake install\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ebuild python2 psrchive container\u003c/h3\u003e\u003ca id=\"user-content-build-python2-psrchive-container\" class=\"anchor\" aria-label=\"Permalink: build python2 psrchive container\" href=\"#build-python2-psrchive-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/louisbondonneau/Docker_receipts\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e Docker_receipts/psrchive_py2\nsingularity build /cep/lofar/pulsar/Singularity/pschive_py2.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ebuild python3 psrchive container\u003c/h3\u003e\u003ca id=\"user-content-build-python3-psrchive-container\" class=\"anchor\" aria-label=\"Permalink: build python3 psrchive container\" href=\"#build-python3-psrchive-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/louisbondonneau/Docker_receipts\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e Docker_receipts/psrchive_py3\nsingularity build /cep/lofar/pulsar/Singularity/pschive_py3.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003etry a writable container\u003c/h3\u003e\u003ca id=\"user-content-try-a-writable-container\" class=\"anchor\" aria-label=\"Permalink: try a writable container\" href=\"#try-a-writable-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003esingularity run --writable-tmpfs\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003etry without any interference of your personal environment\u003c/h3\u003e\u003ca id=\"user-content-try-without-any-interference-of-your-personal-environment\" class=\"anchor\" aria-label=\"Permalink: try without any interference of your personal environment\" href=\"#try-without-any-interference-of-your-personal-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003esingularity run --cleanenv\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003euse CUDA\u003c/h3\u003e\u003ca id=\"user-content-use-cuda\" class=\"anchor\" aria-label=\"Permalink: use CUDA\" href=\"#use-cuda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eon nancep5 there is a TESLA T4 that you can use with dspsr for example\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003esingularity run --nv ***\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e nvidia-smi\nFri May 12 12:20:25 2023\n+-----------------------------------------------------------------------------+\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e NVIDIA-SMI 525.105.17 Driver Version: 525.105.17 CUDA Version: 12.0 \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-------------------------------+----------------------+----------------------+\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e GPU Name Persistence-M\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e Bus-Id Disp.A \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e Volatile Uncorr. ECC \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e Fan Temp Perf Pwr:Usage/Cap\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e Memory-Usage \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e GPU-Util Compute M. \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e MIG M. \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e===============================+======================+======================\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e 0 Tesla T4 On \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e 00000000:3B:00.0 Off \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e 0 \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e N/A 36C P8 9W / 70W \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e 4MiB / 15360MiB \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e 0% Default \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e N/A \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e\n+-------------------------------+----------------------+----------------------+\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTODO\u003c/h2\u003e\u003ca id=\"user-content-todo\" class=\"anchor\" aria-label=\"Permalink: TODO\" href=\"#todo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eajouter:\nspyder\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCONTAINER TEST\u003c/h2\u003e\u003ca id=\"user-content-container-test\" class=\"anchor\" aria-label=\"Permalink: CONTAINER TEST\" href=\"#container-test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003etempo1\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ebash /cep/lofar/pulsar/ephem_scripts/par_conv_to_tempo1.sh /databf/nenufar-pulsar/ES03/ephem/B1919+21.par\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003etempo2\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e /usr/local/pulsar/tempo2/example_data\ntempo2 -f example1.par example1.tim -nofit\npsrchive_info \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Tempo2::Predictor support enabled~\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003epsrchive\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython -c \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eimport psrchive\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\npython /cep/lofar/pulsar/NenPlot...\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003epsrcat\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epsrcat -E B1919+21\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003epsredit\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003epsredit -c dm ....\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003epresto\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython -c \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eimport presto\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\npython /usr/local/pulsar/presto/tests/test_presto_python.py\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003epsrsalsa\u003c/p\u003e\n\u003cblockquote\u003e\n\u003c/blockquote\u003e\n\u003cp\u003edreamBeam\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003ecalibration of a NenuFAR archive\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003edspsr\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003epython -c \u0027import dspsr\u0027\ndspsr -A -L 10 -E /databf/nenufar-pulsar/ES03/ephem/B2217+47.par -b 512 -O B2217+47_D20220304T1154_59642_002110_0057_BEAM0_dspsr /databf/nenufar-pulsar/DATA/B2217+47/RAW/B2217+47_D20220304T1154_59642_002110_0057_BEAM0.0000.raw\u003c/p\u003e\n\u003c/blockquote\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1570345087.0
+ "updated_at": 1696427759.0
},
{
"data_format": 2,
- "description": "A place to keep my Singularity recipes",
+ "description": "singularity image for assembly course",
"filenames": [
- "Singularity.paralogfinder",
- "Singularity.tetrad",
- "Singularity.gatk",
- "Singularity.plink",
- "Singularity.ipyrad",
- "Singularity.secapr",
- "Singularity.yamp",
- "Singularity.paup",
- "Singularity.kat",
- "Singularity.sra",
- "Singularity.yangsmith",
- "Singularity.snapper",
- "Singularity.chloe",
- "Singularity.clumpak",
- "Singularity.hyphy",
- "Singularity.hybpiper",
- "Singularity.structure",
- "Singularity.paragone_conda",
- "Singularity.phylo",
- "Singularity.gapfiller",
- "Singularity.unicycler",
- "Singularity.faststructure",
- "Singularity.igv",
- "Singularity.getorganelle",
- "Singularity.hybphaser",
- "Singularity.trinity",
- "Singularity.samtools",
- "Singularity.paragone",
- "Singularity.qiime",
- "Singularity.stacks",
- "Singularity.quast"
+ "Singularity"
],
- "full_name": "bmichanderson/singularity-containers",
+ "full_name": "MontseTor/assembly_course",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-containers\u003c/h1\u003e\u003ca id=\"user-content-singularity-containers\" class=\"anchor\" aria-label=\"Permalink: singularity-containers\" href=\"#singularity-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA place to keep my Singularity recipes.\nThis repository contains recipes in the format \"Singularity.[program]\" and is linked to Singularity Hub so that all commits trigger builds there. Since Singularity Hub is no longer automatically building, new commits are no longer built.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1727856342.0
+ "updated_at": 1573119853.0
},
{
"data_format": 2,
- "description": null,
+ "description": "CondaEnv for DM analysis pipeline",
"filenames": [
- "Singularity.1.0.0"
+ "Singularity"
],
- "full_name": "pndni/freesurfer-5.3.0-container",
+ "full_name": "golamshaifullah/DManalysis_condaenv",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1558118428.0
+ "updated_at": 1568984053.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Fork of CoqGym to implement a simple ablation study for EECS595.",
"filenames": [
- "Singularity.fortran",
- "Singularity.mpi"
+ "Singularity"
],
- "full_name": "thomas-robinson/hello_world",
+ "full_name": "M-XI/CoqGym-EECS595",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ehello_world\u003c/h1\u003e\u003ca id=\"user-content-hello_world\" class=\"anchor\" aria-label=\"Permalink: hello_world\" href=\"#hello_world\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSingularity.fortran\u003c/h2\u003e\u003ca id=\"user-content-singularityfortran\" class=\"anchor\" aria-label=\"Permalink: Singularity.fortran\" href=\"#singularityfortran\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo build the singularity Fortran container, you can use a \u003ccode\u003esingularity build\u003c/code\u003e command. This example uses \u003cstrong\u003efakeroot\u003c/strong\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity build -f fortran.sif Singularity.fortran\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can then test the functionality of the container with different commands\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run fortran.sif\n./fortran.sif\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e fortran.sif hello.x\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e SINGULARITYENV_HELLO=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eyo wassup\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\nsingularity run fortran.sif\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e SINGULARITYENV_HELLO=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eHola mundo\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n./fortran.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eif using csh\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run fortran.sif\n./fortran.sif\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e fortran.sif hello.x\nsetenv SINGULARITYENV_HELLO \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eyo wassup\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\nsingularity run fortran.sif\nsetenv SINGULARITYENV_HELLO \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eHola mundo\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n./fortran.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSingularity.mpi\u003c/h2\u003e\u003ca id=\"user-content-singularitympi\" class=\"anchor\" aria-label=\"Permalink: Singularity.mpi\" href=\"#singularitympi\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo build the singularity MPI continer, you follow pretty much the same procedure\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity build -f mpi.sif Singularity.mpi\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis container uses mpich, so you should use a compatible version of MPI (mvapich, impi, etc).\nDo not use openmpi.\u003c/p\u003e\n\u003cp\u003eYou can run the mpi.sif by using the appropriate MPI running command for your system on singularity\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003empirun -n 10 singularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e mpi.sif mpi_hello.x\nmpirun -n 10 singularity run mpi.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUsing slurm requires an extra argument to srun\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esrun --mpi=pmi2 -n 10 singularity run mpi.sif\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCoqGym\u003c/h1\u003e\u003ca id=\"user-content-coqgym\" class=\"anchor\" aria-label=\"Permalink: CoqGym\" href=\"#coqgym\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eNOTE\u003c/h2\u003e\u003ca id=\"user-content-note\" class=\"anchor\" aria-label=\"Permalink: NOTE\" href=\"#note\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is a fork of the original CoqGym repository, made in order to implement a simple ablation study of the ASTactic model below.\nThe following sections consist of the original README.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSTART OF ORIGINAL README\u003c/h2\u003e\u003ca id=\"user-content-start-of-original-readme\" class=\"anchor\" aria-label=\"Permalink: START OF ORIGINAL README\" href=\"#start-of-original-readme\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/example_proof.jpg\"\u003e\u003cimg src=\"images/example_proof.jpg\" alt=\"Example proof\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eCode for the paper:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://arxiv.org/abs/1905.09381\" rel=\"nofollow\"\u003eLearning to Prove Theorems via Interacting with Proof Assistants\u003c/a\u003e\u003cbr\u003e\n\u003ca href=\"https://www.cs.princeton.edu/~kaiyuy/\" rel=\"nofollow\"\u003eKaiyu Yang\u003c/a\u003e and \u003ca href=\"https://www.cs.princeton.edu/~jiadeng/\" rel=\"nofollow\"\u003eJia Deng\u003c/a\u003e\u003cbr\u003e\nInternational Conference on Machine Learning (ICML) 2019\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-bibtex\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003e@inproceedings\u003c/span\u003e{\u003cspan class=\"pl-en\"\u003eyang2019coqgym\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003etitle\u003c/span\u003e=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eLearning to Prove Theorems via Interacting with Proof Assistants\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003eauthor\u003c/span\u003e=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eYang, Kaiyu and Deng, Jia\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003ebooktitle\u003c/span\u003e=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eInternational Conference on Machine Learning (ICML)\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003eyear\u003c/span\u003e=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003e2019\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e\n}\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFor potential bugs, please open an issue. For any other questions, please ask in \u003ca href=\"https://github.com/princeton-vl/CoqGym/discussions\"\u003eDiscussions\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTable of Contents\u003c/h2\u003e\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" aria-label=\"Permalink: Table of Contents\" href=\"#table-of-contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ca href=\"#1-installing-coqgym\"\u003eInstalling CoqGym\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 1.1 \u003ca href=\"#11-dependencies\"\u003eDependencies\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 1.2 \u003ca href=\"#12-building-coq-serapi-coqhammer-and-the-coq-projects\"\u003eBuilding Coq, SerAPI, CoqHammer, and the Coq Projects\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 1.3 \u003ca href=\"#13-extracting-the-proofs-from-coq-code-optional\"\u003eExtracting the Proofs from Coq Code\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 1.4 \u003ca href=\"#14-downloading-the-pre-extracted-proofs-recommended\"\u003eDownloading the Pre-extracted Proofs\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#2-using-coqgym-in-a-container\"\u003eUsing CoqGym in a Container\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 2.1 \u003ca href=\"#21-dependencies\"\u003eDependencies\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 2.2 \u003ca href=\"#22-downloading-the-pre-built-container-image\"\u003eDownloading the Pre-built Container Image\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 2.3 \u003ca href=\"#23-using-the-container\"\u003eUsing the Container\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 2.4 \u003ca href=\"#24-building-the-container-by-yourself\"\u003eBuilding the Container by Yourself\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#3-data-format\"\u003eData Format\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 3.1 \u003ca href=\"#31-json-files\"\u003eJSON Files\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 3.2 \u003ca href=\"#32-lmdb-file\"\u003eLMDB File\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 3.3 \u003ca href=\"#33-glossary\"\u003eGloassary\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#4-data-utilities\"\u003eData Utilities\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 4.1 \u003ca href=\"#41-interacting-with-coqgym\"\u003eInteracting with CoqGym\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 4.2 \u003ca href=\"#42-parsing-coq-terms\"\u003eParsing Coq Terms\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 4.3 \u003ca href=\"#43-computing-dataset-statistics\"\u003eComputing Dataset Statistics\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#5-the-astactic-model\"\u003eThe ASTactic Model\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 5.1 \u003ca href=\"#51-prerequisites\"\u003ePrerequisites\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 5.2 \u003ca href=\"#52-extracting-proof-steps\"\u003eExtracting Proof Steps\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 5.3 \u003ca href=\"#53-training\"\u003eTraining\u003c/a\u003e\u003cbr\u003e\n\u00a0 \u00a0 5.4 \u003ca href=\"#54-testing\"\u003eTesting\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#6-credits\"\u003eCredits\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#7-contributing\"\u003eContributing\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e1. Installing CoqGym\u003c/h2\u003e\u003ca id=\"user-content-1-installing-coqgym\" class=\"anchor\" aria-label=\"Permalink: 1. Installing CoqGym\" href=\"#1-installing-coqgym\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFollow these steps to obtain the CoqGym dataset and build the environment for interacting with it.\nAlternatively, you may also use CoqGym in a \u003ca href=\"#2-using-coqgym-in-a-container\"\u003econtainer\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e1.1 Dependencies\u003c/h3\u003e\u003ca id=\"user-content-11-dependencies\" class=\"anchor\" aria-label=\"Permalink: 1.1 Dependencies\" href=\"#11-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://opam.ocaml.org/\" rel=\"nofollow\"\u003eOPAM\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.anaconda.com/distribution/\" rel=\"nofollow\"\u003eAnaconda Python 3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://symas.com/lmdb/\" rel=\"nofollow\"\u003eLMDB\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.ruby-lang.org/en/\" rel=\"nofollow\"\u003eRuby\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e1.2 Building Coq, SerAPI, CoqHammer, and the Coq Projects\u003c/h3\u003e\u003ca id=\"user-content-12-building-coq-serapi-coqhammer-and-the-coq-projects\" class=\"anchor\" aria-label=\"Permalink: 1.2 Building Coq, SerAPI, CoqHammer, and the Coq Projects\" href=\"#12-building-coq-serapi-coqhammer-and-the-coq-projects\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eCreate an OPAM switch for OCaml 4.07.1+flambda: \u003ccode\u003eopam switch create 4.07.1+flambda \u0026amp;\u0026amp; eval $(opam env)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eUpgrade the installed OPAM packages (optional): \u003ccode\u003eopam upgrade \u0026amp;\u0026amp; eval $(opam env)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eClone the repository: \u003ccode\u003egit clone https://github.com/princeton-vl/CoqGym\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eInstall Coq, SerAPI and CoqHammer: \u003ccode\u003ecd CoqGym \u0026amp;\u0026amp; source install.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eBuild the Coq projects (can take a while): \u003ccode\u003ecd coq_projects \u0026amp;\u0026amp; make \u0026amp;\u0026amp; cd ..\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eCreate and activate the conda environment: \u003ccode\u003econda env create -f coq_gym.yml \u0026amp;\u0026amp; conda activate coq_gym\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003cem\u003eNote\u003c/em\u003e: \u003ca href=\"https://github.com/coq/coq\"\u003eCoq\u003c/a\u003e, \u003ca href=\"https://github.com/ejgallego/coq-serapi\"\u003eSerAPI\u003c/a\u003e, \u003ca href=\"https://github.com/lukaszcz/coqhammer\"\u003eCoqHammer\u003c/a\u003e, and the Coq projects in \u003ca href=\"./coq_projects\"\u003ecoq_projects\u003c/a\u003e directory are indendent software projects with their own code repositories, but please follow the instructions above to build the specific versions we need.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e1.3 Extracting the Proofs from Coq Code (Optional)\u003c/h3\u003e\u003ca id=\"user-content-13-extracting-the-proofs-from-coq-code-optional\" class=\"anchor\" aria-label=\"Permalink: 1.3 Extracting the Proofs from Coq Code (Optional)\" href=\"#13-extracting-the-proofs-from-coq-code-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe include the code for extracting CoqGym from Coq source code. However, it is not guaranteed to reproduce exactly the same data. The timeout and other miscellaneous errors during the data extraction may be machine-dependent. For example, a faster machine is likely to have fewer timeout errors and thus can extract more proofs.\nFor benchmark purpose, please download and use our pre-extracted version of CoqGym.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eCheck all Coq files and locate the proofs:\u003cbr\u003e\nFor each \u003ccode\u003e*.meta\u003c/code\u003e file in \u003ccode\u003e./coq_projects/\u003c/code\u003e, run \u003ccode\u003epython check_proofs.py --file /path/to/*.meta\u003c/code\u003e\u003cbr\u003e\nNow you have generated a \u003ccode\u003e*.json\u003c/code\u003e file in \u003ccode\u003e./data/\u003c/code\u003e corresponding to each \u003ccode\u003e*.meta\u003c/code\u003e file. The \u003ccode\u003eproofs\u003c/code\u003e field of the JSON object is a list containing the proof names.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eExtract the proofs:\u003cbr\u003e\nFor each \u003ccode\u003e*.meta\u003c/code\u003e file and each proof, run:\u003cbr\u003e\n\u003ccode\u003epython extract_proof.py --file /path/to/*.meta --proof $PROOF_NAME\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003epython extract_synthetic_proofs.py --file /path/to/*.meta --proof $PROOF_NAME\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ePost-processing: \u003ccode\u003epython postprocess.py\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003cem\u003eCaveat\u003c/em\u003e: The steps above are computationally expensive. When we say \"For each XXX, run \u003ccode\u003eYYY\u003c/code\u003e\", the tasks are embarrassingly parallel, which means you can run them in parallel in any order. We do not provide the code for that because it depends on a particular HPC infrastructure.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e1.4 Downloading the Pre-extracted Proofs (Recommended)\u003c/h3\u003e\u003ca id=\"user-content-14-downloading-the-pre-extracted-proofs-recommended\" class=\"anchor\" aria-label=\"Permalink: 1.4 Downloading the Pre-extracted Proofs (Recommended)\" href=\"#14-downloading-the-pre-extracted-proofs-recommended\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eDownload the CoqGym dataset \u003ca href=\"https://drive.google.com/drive/folders/149m_17VkYYkl0kdSB4AI8zodCuTmPaA6?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUnzip the data and set the paths: \u003ccode\u003epython unzip_data.py\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003cem\u003eCaveat\u003c/em\u003e: The second step sets the absolute paths in the data. You have to re-do it whenever the absolote path of the \u003ccode\u003edata/\u003c/code\u003e directory changes (e.g. after moving the entire repo to another directory).\u003c/p\u003e\n\u003cp\u003eNow you are ready to interact with CoqGym! Run \u003ccode\u003epython eval_env.py\u003c/code\u003e to check if it terminates normally without raising an error.\u003c/p\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e2. Using CoqGym in a Container\u003c/h2\u003e\u003ca id=\"user-content-2-using-coqgym-in-a-container\" class=\"anchor\" aria-label=\"Permalink: 2. Using CoqGym in a Container\" href=\"#2-using-coqgym-in-a-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAs a less painful alternative to \u003ca href=\"#1-installing-coqgym\"\u003einstalling CoqGym\u003c/a\u003e from scratch, we provide a pre-built Singularity container (There is also a 3rd-party \u003ca href=\"https://hub.docker.com/r/innochainver/coqgym\" rel=\"nofollow\"\u003edocker image\u003c/a\u003e that may be useful).\nFeel free to skip these steps if you have finished installing CoqGym.\nCurrently we do not support GPUs for the container, therefore you have to complete the installation steps manually if you want to train models on CoqGym using GPUs.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e2.1 Dependencies\u003c/h3\u003e\u003ca id=\"user-content-21-dependencies\" class=\"anchor\" aria-label=\"Permalink: 2.1 Dependencies\" href=\"#21-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://apptainer.org/\" rel=\"nofollow\"\u003eSingularity (a.k.a. Apptainer)\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e2.2 Downloading the Pre-built Container Image\u003c/h3\u003e\u003ca id=\"user-content-22-downloading-the-pre-built-container-image\" class=\"anchor\" aria-label=\"Permalink: 2.2 Downloading the Pre-built Container Image\" href=\"#22-downloading-the-pre-built-container-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe container image can be downloaded \u003ca href=\"https://drive.google.com/drive/folders/13Rwa5no6W4MwSvdjRrENAdDCQqTWhcqy?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e2.3 Using the Container\u003c/h3\u003e\u003ca id=\"user-content-23-using-the-container\" class=\"anchor\" aria-label=\"Permalink: 2.3 Using the Container\" href=\"#23-using-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eStart a shell session inside the container: \u003ccode\u003esingularity shell coq_gym.simg\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003esource /.bashrc \u0026amp;\u0026amp; cd /CoqGym \u0026amp;\u0026amp; eval $(opam env) \u0026amp;\u0026amp; conda activate coq_gym\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eYou are now ready to use CoqGym! Try \u003ccode\u003epython eval_env.py\u003c/code\u003e to see if it terminates normally without raising an error.\u003cbr\u003e\nFor further instructions about how to use a Singularity container, please consult the documentation of Singularity.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e2.4 Building the Container by Yourself\u003c/h3\u003e\u003ca id=\"user-content-24-building-the-container-by-yourself\" class=\"anchor\" aria-label=\"Permalink: 2.4 Building the Container by Yourself\" href=\"#24-building-the-container-by-yourself\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe provide a \u003ca href=\"./Singularity\"\u003eSingularity recipe\u003c/a\u003e from which you can build the container by yourself.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eYou need to be on a Linux machine of which you have sudo privileges.\u003c/li\u003e\n\u003cli\u003eDownload the dataset \u003ca href=\"https://drive.google.com/drive/folders/149m_17VkYYkl0kdSB4AI8zodCuTmPaA6?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e and put the files in your \u003ccode\u003eCoqGym/\u003c/code\u003e directory.\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003esudo singularity build coq_gym.simg Singularity\u003c/code\u003e to build the container image \u003ccode\u003ecoq_gym.simg\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003cem\u003eCaveat\u003c/em\u003e: If you run out of disk space when building the container, it may because your \u003ccode\u003e/tmp\u003c/code\u003e directory is not large enough. See \u003ca href=\"https://sylabs.io/guides/3.0/user-guide/build_env.html#temporary-folders\" rel=\"nofollow\"\u003ehttps://sylabs.io/guides/3.0/user-guide/build_env.html#temporary-folders\u003c/a\u003e for a workaround.\u003c/p\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e3. Data Format\u003c/h2\u003e\u003ca id=\"user-content-3-data-format\" class=\"anchor\" aria-label=\"Permalink: 3. Data Format\" href=\"#3-data-format\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe dataset contains three parts:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eThe \u003ccode\u003edata\u003c/code\u003e directory: \u003ccode\u003e*.json\u003c/code\u003e files corresponding to the \u003ccode\u003e*.v\u003c/code\u003e files in Coq source code, whose format is explained below. The \u003ccode\u003e*.json\u003c/code\u003e files contain all important information about the proofs: environment, local context, goals, tactics, proof trees, etc.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThe \u003ccode\u003esexp_cache\u003c/code\u003e directory: A LMDB file that serves as an index for the S-expressions in \u003ccode\u003e*.json\u003c/code\u003e files. The \u003ccode\u003e*.json\u003c/code\u003e files contain keys for querying \u003ccode\u003esexp_cache\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eprojs_split.json\u003c/code\u003e: A JSON object containing the training/validation/testing split\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e3.1 JSON Files\u003c/h3\u003e\u003ca id=\"user-content-31-json-files\" class=\"anchor\" aria-label=\"Permalink: 3.1 JSON Files\" href=\"#31-json-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eEach \u003ccode\u003e*.json\u003c/code\u003e file in \u003ccode\u003edata/\u003c/code\u003e corresponds to a Coq source file \u003ccode\u003e*.v\u003c/code\u003e in \u003ccode\u003ecoq_projects/\u003c/code\u003e. For example, \u003ccode\u003edata/StructTact/Assoc.json\u003c/code\u003e corresponds to \u003ca href=\"https://github.com/princeton-vl/CoqGym/blob/master/coq_projects/StructTact/Assoc.v\"\u003ecoq_projects/StructTact/Assoc.v\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe format of the JSON files is described below.\nThe hash codes are used as keys to query the LMDB \u003ccode\u003esexp_cache\u003c/code\u003e.\nConsult the \u003ca href=\"#33-glossary\"\u003eglossary\u003c/a\u003e for the terminology.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e{\n \u0027filename\u0027: \u0027Assoc.v\u0027, # the path of the Coq source file relative to the root directory of the Coq project\n \u0027coq_project\u0027: \u0027StructTact\u0027, # the name of the Coq project\n \u0027vernac_cmds\u0027: [ # a list of Coq commands [6] in the source file\n [\u0027Cd \"$COQGYM_ROOT/coq_projects/StructTact\".\u0027, \u0027VernacChdir\u0027, \u00273701e61f37b72b3e61788fce6317466b7bb92b55\u0027], # [raw command, command type, command AST (in hash code)]\n [\u0027Arguments a_equiv {_} {_} _ _ _.\u0027, \u0027VernacArguments\u0027, \u00276777d3c472595dae20427d0892ad03d38f70fde9\u0027],\n ...\n [\u0027Arguments a_equiv {_} {_} _ _ _.\u0027, \u0027VernacArguments\u0027, \u00276777d3c472595dae20427d0892ad03d38f70fde9\u0027],\n ],\n \u0027num_extra_cmds\u0027: 107, # the code in the original Coq file starts at vernac_cmds[num_extra_cmds]\n \u0027proofs\u0027: [ # a list of human-written proofs\n ...\n ],\n \u0027synthetic_proofs\u0027: [ # a list of synthetic proofs\n ...\n ],\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe format for a proof is as follows, taking the \u003ca href=\"https://github.com/princeton-vl/CoqGym/tree/master/coq_projects/StructTact/Assoc.v#L47\"\u003e\u003ccode\u003eget_set_same\u003c/code\u003e\u003c/a\u003e in \u003ccode\u003ecoq_projects/StructTact/Assoc.v\u003c/code\u003e as an example.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e{\n \u0027name\u0027: get_set_same, # the name of the theorem\n \u0027line_nb\u0027: 118, # the theorem is defined in $file_data[\u0027vernac_cmds\u0027][$line_nb]\n \n \u0027env_delta\u0027: { # the global environment relative to the previous proof in the same file\n \u0027add\u0027 : { # entries that should be added to the environment\n \u0027constants\u0027 : [\n {\n \u0027physical_path\u0027: \u0027coq/theories/Arith/PeanoNat.vo:Nat.mul_wd\u0027, # the unique identifier\n \u0027short_ident\u0027: \u0027PeanoNat.Nat.mul_wd\u0027, # the short identifier\n \u0027qualid\u0027: \u0027Coq.Arith.PeanoNat.Nat.mul_wd\u0027, # the qualified identifier [1]\n \u0027type\u0027: \u0027@Morphisms.Proper (forall (_ : nat) (_ : nat), nat) (@Morphisms.respectful nat (forall _ : nat, nat) (@eq nat) (@Morphisms.respectful nat nat (@eq nat) (@eq nat))) Nat.mul\u0027, # the type [7] of the constant\n \u0027sort\u0027: \u0027Prop\u0027, # the sort [2] of the constant (the type of its type) [2]\n \u0027opaque\u0027: False, # whether the constant is opaque or transparent [3]\n \u0027sexp\u0027: \u0027333b2895c8e62d21856476bf89fa9681c9058bb9\u0027 # the S-expression [4] of the constant produced by SerAPI\n }, \n ...\n ],\n \u0027inductives\u0027 : [\n {\n \u0027physical_path\u0027 : \u0027coq/theories/Init/Wf.vo:Acc\u0027,\n \u0027blocks\u0027: [ # a list of blocks in a mutual inductive definition [5]. For regular inductive definitions (most cases), the list has length 1\n {\n \u0027short_ident\u0027: \u0027Acc\u0027,\n \u0027qualid\u0027: \u0027Coq.Init.Wf.Acc\u0027,\n \u0027constructors\u0027: [\n [\u0027Acc_intro\u0027, \u0027forall (A : Type) (R : forall (_ : A) (_ : A), Prop) (x : A) (_ : forall (y : A) (_ : R y x), _UNBOUND_REL_6 A R y), _UNBOUND_REL_5 A R x\u0027], # [constructor name, constructor type]\n ...\n ]\n }\n ],\n \u0027is_record\u0027: False,\n \u0027sexp\u0027: \u002731537cb98179ad7d2de0dd2cc783b4672b34b25b\u0027\n }\n ...\n \n ],\n },\n \u0027subtract\u0027 : { # entries that should be removed from the environment\n \u0027constants\u0027 : [],\n \u0027inductives\u0027 : [],\n },\n },\n \n \u0027steps\u0027: [ # a list of proof steps\n {\n \u0027command\u0027: [\u0027induction l; intros; simpl; repeat (break_match; simpl); subst; congruence.\u0027, \u0027VernacExtend\u0027, \u0027f6d2cb314d72d23562e5f2ef2657bd2589d44794\u0027], # (raw command, command type, command AST (in hash code)) the Coq command (usually a tactic but also includes other commands such as +, -, *, etc.) \n \u0027goal_ids\u0027: { # the IDs of the goals in the current proof step\n \u0027fg\u0027: [27], # focused goals \n \u0027bg\u0027: [] . # unfocused goals\n }\n }\n ...\n ], \n \n \u0027goals\u0027 { # the goals\n 27\u0027: { # $goal_id -\u0026gt; goal\n \u0027id\u0027: 27, # the goal ID\n \u0027type\u0027: \u0027forall (k : K) (v : V) (l : list (prod K V)), @eq (option V) (assoc (assoc_set l k v) k) (@Some V v)\u0027, # the type (logical statement) of the goal\n \u0027hypotheses\u0027: [ # the local context, a list of local premises\n {\u0027idents\u0027: [\u0027K\u0027, \u0027V\u0027], \u0027term\u0027: [], \u0027type\u0027: \u0027Type\u0027, \u0027sexp\u0027: \u0027cd1531c49fce6657997962b5375a3ef0a59db34a\u0027} # {\u0027idents\u0027: [a list of identifiers of the premises (usually of length one)], \u0027term\u0027: [a list of Coq terms (usually empty)], \u0027type\u0027: the type (logical statement) of the premise}\n {\u0027idents\u0027: [\u0027K_eq_dec\u0027], \u0027term\u0027: [], \u0027type\u0027: \"forall k k\u0027 : K, sumbool (@eq K k k\u0027) (not (@eq K k k\u0027))\", \u0027sexp\u0027: \u00275f5f5bcf9e10621f8c0c4642c0eba3ff36cbfff8\u0027},\n ],\n }\n }, \n \n \u0027proof_tree\u0027 : { # the proof tree\n \u0027goal_id\u0027: 27, \u0027children\u0027: []\n }, \n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e3.2 LMDB File\u003c/h3\u003e\u003ca id=\"user-content-32-lmdb-file\" class=\"anchor\" aria-label=\"Permalink: 3.2 LMDB File\" href=\"#32-lmdb-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003esexp_cache\u003c/code\u003e is a LMDB mapping hash codes in \u003ccode\u003e*.json\u003c/code\u003e files to their corresponding S-expressions. Below is a code snippet in Python for accessing them.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eutils\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eSexpCache\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003esexp_cache\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eSexpCache\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\u0027sexp_cache\u0027\u003c/span\u003e)\n\u003cspan class=\"pl-en\"\u003eprint\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003esexp_cache\u003c/span\u003e[\u003cspan class=\"pl-s\"\u003e\u0027333b2895c8e62d21856476bf89fa9681c9058bb9\u0027\u003c/span\u003e])\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e3.3 Glossary\u003c/h3\u003e\u003ca id=\"user-content-33-glossary\" class=\"anchor\" aria-label=\"Permalink: 3.3 Glossary\" href=\"#33-glossary\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"https://coq.inria.fr/distrib/current/refman/language/gallina-specification-language.html#qualified-identifiers-and-simple-identifiers\" rel=\"nofollow\"\u003equalified identifier\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://coq.inria.fr/distrib/current/refman/language/gallina-specification-language.html#sorts\" rel=\"nofollow\"\u003esort\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://coq.inria.fr/distrib/current/refman/language/gallina-specification-language.html#sorts\" rel=\"nofollow\"\u003eopaque, transparent\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://en.wikipedia.org/wiki/S-expression\" rel=\"nofollow\"\u003eS-expression\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://coq.inria.fr/distrib/current/refman/language/gallina-specification-language.html#mutually-defined-inductive-types\" rel=\"nofollow\"\u003einductive definition, mutual inductive definition\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://coq.inria.fr/distrib/current/refman/language/gallina-specification-language.html#mutually-defined-inductive-types\" rel=\"nofollow\"\u003eCoq (vernac) command\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://coq.inria.fr/distrib/current/refman/language/gallina-specification-language.html#types\" rel=\"nofollow\"\u003etype\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e4. Data Utilities\u003c/h2\u003e\u003ca id=\"user-content-4-data-utilities\" class=\"anchor\" aria-label=\"Permalink: 4. Data Utilities\" href=\"#4-data-utilities\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe include some tools for interacting with CoqGym, but they are NOT a part of the dataset.\nYou may implement your own tools for similar purposes.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e4.1 Interacting with CoqGym\u003c/h3\u003e\u003ca id=\"user-content-41-interacting-with-coqgym\" class=\"anchor\" aria-label=\"Permalink: 4.1 Interacting with CoqGym\" href=\"#41-interacting-with-coqgym\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003eeval_env.py\u003c/code\u003e enables the interaction with the proofs in CoqGym.\nSee \u003ca href=\"ASTactic/agent.py\"\u003eASTactic/agent.py\u003c/a\u003e for examples.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e4.2 Parsing Coq Terms\u003c/h3\u003e\u003ca id=\"user-content-42-parsing-coq-terms\" class=\"anchor\" aria-label=\"Permalink: 4.2 Parsing Coq Terms\" href=\"#42-parsing-coq-terms\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003egallina.py\u003c/code\u003e: a parser the S-expressions of Coq terms.\nIt may be useful for learning the embeddings of the term ASTs.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eutils.py\u003c/code\u003e: functions for iterating through all proofs or Coq files in the dataset.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e4.3 Computing Dataset Statistics\u003c/h3\u003e\u003ca id=\"user-content-43-computing-dataset-statistics\" class=\"anchor\" aria-label=\"Permalink: 4.3 Computing Dataset Statistics\" href=\"#43-computing-dataset-statistics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003estats/count_human_proofs.py\u003c/code\u003e: count the number of human-written proofs in CoqGym.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003estats/count_synthetic_proofs.py\u003c/code\u003e: count the number of synthetic-written proofs in CoqGym.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003estats/proofs.py\u003c/code\u003e: compute some statistics of the proofs.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e5. The ASTactic Model\u003c/h2\u003e\u003ca id=\"user-content-5-the-astactic-model\" class=\"anchor\" aria-label=\"Permalink: 5. The ASTactic Model\" href=\"#5-the-astactic-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"/images/astactic.jpg\"\u003e\u003cimg src=\"/images/astactic.jpg\" alt=\"ASTactic\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eHere we describe how to train and test the ASTactic model on CoqGym.\nThe following content is NOT a part of the CoqGym dataset, and therefore you do not need it if you only want to access the data.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e5.1 Prerequisites\u003c/h3\u003e\u003ca id=\"user-content-51-prerequisites\" class=\"anchor\" aria-label=\"Permalink: 5.1 Prerequisites\" href=\"#51-prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eMake sure CoqGym has been properly installed and configured. The \u003ccode\u003ecoq_gym\u003c/code\u003e conda environment is activated, the OPAM switch is on \u003ccode\u003e4.07.1+flambda\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eAutomated theorem provers: \u003ca href=\"https://vprover.github.io\" rel=\"nofollow\"\u003eVampire\u003c/a\u003e, \u003ca href=\"http://cvc4.cs.stanford.edu/\" rel=\"nofollow\"\u003eCVC4\u003c/a\u003e, \u003ca href=\"http://www.eprover.org\" rel=\"nofollow\"\u003eEprover\u003c/a\u003e, and \u003ca href=\"https://github.com/Z3Prover/z3\"\u003eZ3\u003c/a\u003e. Install all of them and make sure they are accessible in PATH, otherwise you may see a performance degradation of the hammer baseline.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://pytorch.org/\" rel=\"nofollow\"\u003ePyTorch\u003c/a\u003e: Install the correct version for your hardware in the conda environment \u003ccode\u003ecoq_gym\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eThe instructions below assume that you are in the \u003ca href=\"./ASTactic/\"\u003eASTactic\u003c/a\u003e directory.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e5.2 Extracting Proof Steps\u003c/h3\u003e\u003ca id=\"user-content-52-extracting-proof-steps\" class=\"anchor\" aria-label=\"Permalink: 5.2 Extracting Proof Steps\" href=\"#52-extracting-proof-steps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe ASTactic model is trained on individual proof steps, rather than entire proofs.\nAfter obtaining the CoqGym dataset, run \u003ccode\u003epython extract_proof_steps.py\u003c/code\u003e. This can take a while, and you have the option to run it in parallel, please see the \u003ccode\u003e--filter\u003c/code\u003e option in the source code for details.\u003c/p\u003e\n\u003cp\u003eThe extracted proof steps are in \u003ccode\u003eproof_steps/\u003c/code\u003e. You can double-check the number of proof steps to make sure everything works as expected:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eDirectory\u003c/th\u003e\n\u003cth\u003e# files\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eproof_steps/train\u003c/td\u003e\n\u003ctd\u003e121,644\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eproof_steps/valid\u003c/td\u003e\n\u003ctd\u003e68,180\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e5.3 Training\u003c/h3\u003e\u003ca id=\"user-content-53-training\" class=\"anchor\" aria-label=\"Permalink: 5.3 Training\" href=\"#53-training\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo train on the proof steps in training + validation set: \u003ccode\u003epython main.py --no_validation --exp_id astactic\u003c/code\u003e\u003cbr\u003e\nThe \"astactic\" above is an experiment ID, and you may change it to other IDs. Model checkpoints will be saved to \u003ccode\u003eruns/astactic/checkpoints/\u003c/code\u003e. See \u003ccode\u003eoptions.py\u003c/code\u003e for command line options.\u003c/p\u003e\n\u003cp\u003eA pre-trained model can be downloaded \u003ca href=\"https://drive.google.com/drive/folders/1AzLaEpoGS3BPMUz9Bl63MHAFRqlF4CtH?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e5.4 Testing\u003c/h3\u003e\u003ca id=\"user-content-54-testing\" class=\"anchor\" aria-label=\"Permalink: 5.4 Testing\" href=\"#54-testing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAssuming you want to test the model checkpoint \u003ccode\u003eruns/astactic/checkpoints/model_003.pth\u003c/code\u003e on the proof \u003ccode\u003eget_set_same\u003c/code\u003e in \u003ccode\u003e../data/StructTact/Assoc.json\u003c/code\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eTesting ASTactic:\u003cbr\u003e\n\u003ccode\u003epython evaluate.py ours ours-TEST --path runs/astactic/checkpoints/model_003.pth --file ../data/StructTact/Assoc.json --proof \"get_set_same\"\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eTesting an automated tactic X (may be \"auto\", \"trivial\", \"easy\", \"intuition\", or \"hammer\"):\u003cbr\u003e\n\u003ccode\u003epython -u evaluate.py X X-TEST --file ../data/StructTact/Assoc.json --proof \"get_set_same\"\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eTesting ASTactic+X:\u003cbr\u003e\n\u003ccode\u003epython -u evaluate.py ours+X ours+X-TEST --path runs/astactic/checkpoints/model_003.pth --file ../data/StructTact/Assoc.json --proof \"get_set_same\"\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cem\u003eCaveat\u003c/em\u003e: Testing is computationally expensive, but the workloads are embarrassingly parallel, which means you can run them in parallel in any order. We do not provide the code for that because it depends on a particular HPC infrastructure.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e6. Credits\u003c/h2\u003e\u003ca id=\"user-content-6-credits\" class=\"anchor\" aria-label=\"Permalink: 6. Credits\" href=\"#6-credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eThe code is formatted using \u003ca href=\"https://github.com/psf/black\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7d770c433d6198d89f8c1e2f187b904a9721d176259d0e97157337741cc8e837/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f636f64652532307374796c652d626c61636b2d3030303030302e737667\" alt=\"Code style: black\" data-canonical-src=\"https://img.shields.io/badge/code%20style-black-000000.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eThis repo includes the codebase of \u003ca href=\"https://github.com/coq/coq\"\u003eCoq\u003c/a\u003e, \u003ca href=\"https://github.com/ejgallego/coq-serapi\"\u003eSerAPI\u003c/a\u003e, \u003ca href=\"https://github.com/lukaszcz/coqhammer\"\u003eCoqHammer\u003c/a\u003e, and the Coq projects in \u003ca href=\"./coq_projects\"\u003ecoq_projects\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e7. Contributing\u003c/h2\u003e\u003ca id=\"user-content-7-contributing\" class=\"anchor\" aria-label=\"Permalink: 7. Contributing\" href=\"#7-contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe welcome and appreciate contributions from the community. For bug fixes and relatively minor changes (such as comments, typos, etc.), feel free to submit a pull request directly. For anything beyond, please first post in \u003ca href=\"https://github.com/princeton-vl/CoqGym/discussions\"\u003eDiscussions\u003c/a\u003e before implementing.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1617038655.0
+ "updated_at": 1702431652.0
},
{
"data_format": 2,
- "description": "Singularity containers to run SU2",
+ "description": "This is a pipeline to run basic RNA-seq analysis for single-end data.",
"filenames": [
- "Singularity.blackbird_v7.0.2",
- "Singularity.fork_blackbird_v7.0.2",
- "Singularity.forkv2_blackbird_v7.0.2",
- "Singularity.fork_dev",
- "Singularity.dev",
- "Singularity",
- "Singularity.master"
+ "envs/Singularity.deseq2_QC",
+ "envs/Singularity.fastqscreen",
+ "envs/Singularity.glimma_env",
+ "envs/Singularity.omic_qc_wf",
+ "envs/Singularity.fastqc",
+ "envs/Singularity.runGO",
+ "envs/Singularity.rseqc",
+ "envs/Singularity.deseq2",
+ "envs/Singularity.trim",
+ "envs/Singularity.permutation"
],
- "full_name": "stephansmit/su2_containers",
+ "full_name": "ohsu-cedar-comp-hub/Bulk-RNA-seq-pipeline-SE",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity containers for SU2\u003c/h1\u003e\u003ca id=\"user-content-singularity-containers-for-su2\" class=\"anchor\" aria-label=\"Permalink: Singularity containers for SU2\" href=\"#singularity-containers-for-su2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eContainers to run \u003ca href=\"https://su2code.github.io/\" rel=\"nofollow\"\u003eSU2\u003c/a\u003e with \u003ca href=\"https://www.open-mpi.org/\" rel=\"nofollow\"\u003eOpen MPI\u003c/a\u003e version 1.10.2.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePull a container\u003c/h2\u003e\u003ca id=\"user-content-pull-a-container\" class=\"anchor\" aria-label=\"Permalink: Pull a container\" href=\"#pull-a-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://stephansmit/su2_containers:master\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun Local\u003c/h2\u003e\u003ca id=\"user-content-run-local\" class=\"anchor\" aria-label=\"Permalink: Run Local\" href=\"#run-local\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003empirun -np 6 singularity exec su2_containers_master.sif /SU2/bin/SU2_CFD SU2.cfg \u0026gt; log.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun SurfSara\u003c/h2\u003e\u003ca id=\"user-content-run-surfsara\" class=\"anchor\" aria-label=\"Permalink: Run SurfSara\" href=\"#run-surfsara\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\n#SBATCH -N 2\n#SBATCH -p normal\n#SBATCH -n 40\n\nmodule load mpi/openmpi/1.10.2\nmpirun --hostfile hostfile.txt -np 40 singularity exec su2_containers_master.sif /SU2/bin/SU2_CFD SU2.cfg \u0026gt; log.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHosted on Singularity Hub:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3334\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/892af8861c721181ec79bb73e9fdeacca71296f1df88960ad9c1fc2ab1ab3067/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f736e616b656d616b652d254532253839254135352e322e312d627269676874677265656e2e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/892af8861c721181ec79bb73e9fdeacca71296f1df88960ad9c1fc2ab1ab3067/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f736e616b656d616b652d254532253839254135352e322e312d627269676874677265656e2e737667\" alt=\"Snakemake\" data-canonical-src=\"https://img.shields.io/badge/snakemake-%E2%89%A55.2.1-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://travis-ci.com/ohsu-cedar-comp-hub/Bulk-RNA-seq-pipeline-SE\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a49d71aead60190e71bf72c6971f4e53d9cb58b28bae978ab977e30e8912e1c4/68747470733a2f2f7472617669732d63692e636f6d2f6f6873752d63656461722d636f6d702d6875622f42756c6b2d524e412d7365712d706970656c696e652d53452e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.com/ohsu-cedar-comp-hub/Bulk-RNA-seq-pipeline-SE.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-bulk-rna-seq-pipeline-se\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#bulk-rna-seq-pipeline-se\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBulk-RNA-seq-pipeline-SE\u003c/h1\u003e\n\u003cp\u003ePipeline to run basic RNA-seq analysis on single-end data.\u003c/p\u003e\n\u003cp\u003eThis is a package of Python and R scripts that enable reading, processing and analysis of Omics\u0027 datasets.\nThis package implements the Snakemake management workflow system and is currently implemented to work with\nthe cluster management and job scheduling system SLURM. This snakemake workflow utilizes conda installations to download and use packages for further analysis, so please ensure that you have installed miniconda prior to use.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-questionsissues\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#questionsissues\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuestions/issues\u003c/h1\u003e\n\u003cp\u003ePlease add an issue to the Omics-QC-pipeline repository. We would appreciate if your issue included sample code/files\n(as appropriate) so that we can reproduce your bug/issue.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h1\u003e\n\u003cp\u003eWe welcome contributors! For your pull requests, please include the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSample code/file that reproducibly causes the bug/issue\u003c/li\u003e\n\u003cli\u003eDocumented code providing fix\u003c/li\u003e\n\u003cli\u003eUnit tests evaluating added/modified methods.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-use\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUse\u003c/h1\u003e\n\u003cp\u003eLocate raw files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAfter sequencing, your raw fastq files are placed in \u003ccode\u003e/path/to/sequencing/files\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e$ cd /path/to/raw/data\n$ ls -alh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eCheck md5sum.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ md5sum \u2013c md5sum.txt \u0026gt; md5sum_out.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eMove your files into the archive to be stored.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ mv /path/to/raw/data /path/to/archive\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eCheck md5sum again to ensure your sequencing files are not corrupted.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ md5sum \u2013c md5sum.txt \u0026gt; md5sum_out.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eClone this Pipeline into your working directory.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone https://github.com/ohsu-cedar-comp-hub/Bulk-RNA-seq-pipeline-SE.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eCreate a \u003ccode\u003esamples/raw\u003c/code\u003e directory, and a \u003ccode\u003elogs\u003c/code\u003e directory in your \u003ccode\u003ewdir()\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ mkdir logs\n$ mkdir samples\n$ cd samples\n$ mkdir raw\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSymbollically link the fastq files of your samples to the \u003ccode\u003ewdir/samples/raw\u003c/code\u003e directory using a bash script loop in your terminal.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003els -1 /path/to/data/LIB*gz | while read gz; do\n R=$( basename $gz | cut -d \u0027_\u0027 -f 3 | awk \u0027{print $1\".fastq.gz\"}\u0027 )\n echo $R\n ln -s ${gz} ./${R}\ndone\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUpload your metadata file to the \u003ccode\u003edata\u003c/code\u003e directory, with the correct formatting:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eColumns should read:\n\u003ccode\u003eStudyID Column2 Column3 ...\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eEach row should be a sample, with subsequent desired information provided (RNA extraction date, etc.)\u003c/li\u003e\n\u003cli\u003eEdit omic_config.yaml to include only columns included in this metadata file:\n\u003cul\u003e\n\u003cli\u003eThis includes \u003ccode\u003emeta_columns_to_plot\u003c/code\u003e and \u003ccode\u003epca labels\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eAll values in this file should be tab-separated\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eEdit the \u003ccode\u003eomic_config.yaml\u003c/code\u003e in your \u003ccode\u003ewdir()\u003c/code\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eChange the \u003ccode\u003eproject_id\u003c/code\u003e to a unique project identifier\u003c/li\u003e\n\u003cli\u003eAdd appropriate contrasts based on your samples under the \u003ccode\u003e[diffexp][contrasts]\u003c/code\u003e section\u003c/li\u003e\n\u003cli\u003eAdd the path to your metadata file for the \u003ccode\u003eomic_meta_data\u003c/code\u003e and \u003ccode\u003esamples\u003c/code\u003e parameters\u003c/li\u003e\n\u003cli\u003eChange \u003ccode\u003ebase_dir\u003c/code\u003e to your current working directory\u003c/li\u003e\n\u003cli\u003eEnsure you have the correct \u003ccode\u003eassembly\u003c/code\u003e specified\n\u003cul\u003e\n\u003cli\u003eCurrent options for this are: hg19, hg38.89 (ensembl v89) and hg38.90 (ensembl v90)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eDo a dry-run of snakemake to ensure proper execution before submitting it to the cluster (in your wdir).\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ snakemake -np --verbose\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce your files are symbolically linked, you can submit the job to exacloud via your terminal window.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ sbatch submit_snakemake.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo see how the job is running, look at your queue.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ squeue -u your_username\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-directed-acyclic-graph-dag-of-an-example-workflow-including-two-samples\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#directed-acyclic-graph-dag-of-an-example-workflow-including-two-samples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDirected Acyclic Graph (DAG) of an example workflow including two samples\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/ohsu-cedar-comp-hub/Bulk-RNA-seq-pipeline-SE/blob/master/data/dag.png\"\u003e\u003cimg src=\"https://github.com/ohsu-cedar-comp-hub/Bulk-RNA-seq-pipeline-SE/raw/master/data/dag.png\" alt=\"Example Workflow\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1593778647.0
+ "updated_at": 1582765139.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Analysis code supporting the publication \"Trim66\u2019s paternal deficiency causes intrauterine overgrowth\"",
"filenames": [
- "Singularity.fun"
+ "snakemake-rna-seq/singularity/Singularity.qc",
+ "snakemake-rna-seq/singularity/Singularity.deeptools",
+ "snakemake-rna-seq/singularity/Singularity.samtools",
+ "snakemake-rna-seq/singularity/Singularity.R",
+ "snakemake-rna-seq/singularity/Singularity.picard",
+ "snakemake-rna-seq/singularity/Singularity.bedtools",
+ "snakemake-rna-seq/singularity/Singularity.SalmonTE",
+ "snakemake-rna-seq/singularity/Singularity.ncbi",
+ "snakemake-rna-seq/singularity/Singularity.Trimmomatic",
+ "snakemake-rna-seq/singularity/Singularity.alignment"
],
- "full_name": "m-novikov/singularity_training",
+ "full_name": "boulardlab/trim66-testis",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-trim66s-paternal-deficiency-causes-intrauterine-overgrowth\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#trim66s-paternal-deficiency-causes-intrauterine-overgrowth\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTrim66\u2019s paternal deficiency causes intrauterine overgrowth\u003c/h1\u003e\n\u003cp\u003eThis repository holds the analysis code for the paper \"Trim66\u2019s paternal deficiency causes intrauterine overgrowth\".\u003c/p\u003e\n\u003cp\u003eThe content is organized as follows:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003efigures/\u003c/code\u003e holds scripts to reproduce most of the figures in the paper.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003enotebooks/\u003c/code\u003e directory holds both the rmarkdown and compiled version of a notebook comparing the RNA-seq datasets.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esnakemake-chip-seq/\u003c/code\u003e holds a Snakemake pipeline used to process the ChIP-seq data presented in the paper.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esnakemake-rna-seq/\u003c/code\u003e holds a Snakemake pipeline used to process the RNA-seq data presetend in the paper.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-running-the-snakemake-pipelines\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#running-the-snakemake-pipelines\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the Snakemake pipelines\u003c/h1\u003e\n\u003cp\u003eTo run the pipelines users need to \u003ca href=\"https://snakemake.readthedocs.io/en/v7.28.3/getting_started/installation.html#installation-via-conda-mamba\" rel=\"nofollow\"\u003einstall Snakemake as per the official docs\u003c/a\u003e. The pipelines were developed and run using Snakemake 7.28.3. Later version should also work.\u003c/p\u003e\n\u003cp\u003eUsers will need to download our raw data from the ENA archive following the link given in the pubblication.\u003c/p\u003e\n\u003cp\u003eWe strongly encourage users to familiarize themselves with Snakemake execution profiles, the Portable Encapsulted Projects standard and Singularity before running the pipelines.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-reproducing-figures\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#reproducing-figures\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReproducing figures\u003c/h1\u003e\n\u003cp\u003eOnce the pipelines executed correctly, users can build the notebook in \u003ccode\u003enotebooks/compare_TRIM66_spermatid_libs.Rmd\u003c/code\u003e to generate Figure 4b and 4c, among the others.\u003c/p\u003e\n\u003cp\u003eIn addition, users can run the scripts in the \u003ccode\u003efigures\u003c/code\u003e directory to reproduce other figures:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003efigures/heatmap_markers.R\u003c/code\u003e produces figure S5;\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003efigures/plot_sashimi.R\u003c/code\u003e produces figure 2;\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003efigures/single_copy_genes_v2.R\u003c/code\u003e: produces figure S6, among other figures;\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003efigures/te_v1.R\u003c/code\u003e produces figure 4a;\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003efigures/scrna-seq-testis\u003c/code\u003e contains scripts to download and prepare the data for a basic Seurat analysis to generate figure 1B and S1b;\u003c/li\u003e\n\u003cli\u003eFigures 4d and 4e are generated from the Snakemake pipeline in \u003ccode\u003esnakemake-chip-seq\u003c/code\u003e;\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003efigures/dotplot-npeaks.R\u003c/code\u003e generates figure 4f.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-reporting-issues\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#reporting-issues\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReporting issues\u003c/h1\u003e\n\u003cp\u003eIf users encouter problems, please use the Issue tracker to open issues, we will get back to you.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1551277834.0
+ "updated_at": 1707815581.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Collection of singularity recipes",
"filenames": [
- "Singularity.r_sf"
+ "clumpak/Singularity.clumpak_v1.1",
+ "raisd/Singularity.raisd_v2.9",
+ "ngsRelate/Singularity.ngsRelate_v2.0",
+ "selscan/Singularity.selscan_v1.3.0",
+ "genespace/Singularity.genespace_v1.2.3",
+ "gushr/Singularity.gushr_v1.0.0",
+ "ohana/Singularity.ohana_vlatest",
+ "circos/Singularity.circos_v0.69-9",
+ "xpclr/Singularity.xpclr_v1.2.1",
+ "PCAngsd/Singularity.PCAngsd_v0.99",
+ "PCAngsd/Singularity.PCAngsd_vlatest",
+ "ngsLD/Singularity.ngsLD_v1.1.1",
+ "angsd/Singularity.angsd_v0.938",
+ "angsd/Singularity.angsd_v0.933",
+ "braker/Singularity.braker_v2.6.1",
+ "lassip/Singularity.lassip_v1.1.1",
+ "interproscan/Singularity.interproscan_v5.61-93.0"
],
- "full_name": "callaghanmt-containers/recipes",
+ "full_name": "James-S-Santangelo/singularity-recipes",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eARC at University of Leeds\u003c/h1\u003e\u003ca id=\"user-content-arc-at-university-of-leeds\" class=\"anchor\" aria-label=\"Permalink: ARC at University of Leeds\" href=\"#arc-at-university-of-leeds\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity container recipes\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/942\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eSingularity.r_sf\u003c/em\u003e: Latest version of R built on top of Ubuntu 16.04. R \u0027sf\u0027 package plus associated helper libraries and packages.\u003c/p\u003e\n\u003cp\u003eCheck singularity.r_sf for details.\u003c/p\u003e\n\u003cp\u003eTo build: \u003ccode\u003esudo singularity build r_sf.simg Singularity.r_sf\u003c/code\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eThis repository contains Singularity recipes for genomics tools that I have not found available through other means (e.g., Conda, Docker).\u003c/p\u003e\n\u003cp\u003eSingularity images are available on \u003ca href=\"https://cloud.sylabs.io/library/james-s-santangelo\" rel=\"nofollow\"\u003eSylab\u0027s Cloud Library\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1524235012.0
+ "updated_at": 1651280675.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.dev"
+ "Singularity.rocm",
+ "Singularity.power9",
+ "Singularity.nvidia"
],
- "full_name": "pndni/minc-ants-fsl-and-fs-container",
+ "full_name": "Delaunay/training-container",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1555097278.0
+ "updated_at": 1559741876.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Base container images using CentOS 7",
"filenames": [
- "Singularity.def"
+ "Singularity",
+ "Singularity.centos7-perl"
],
- "full_name": "dome01polimi/santarsiero_ferrario_sweng_part2",
+ "full_name": "ISU-HPC/centos7-base",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSE4HPCproject - Step 2 CI/CD Pipeline and automation\u003c/h1\u003e\u003ca id=\"user-content-se4hpcproject---step-2-cicd-pipeline-and-automation\" class=\"anchor\" aria-label=\"Permalink: SE4HPCproject - Step 2 CI/CD Pipeline and automation\" href=\"#se4hpcproject---step-2-cicd-pipeline-and-automation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe automated the build, test and release process with a CI/CD pipeline, triggering Github actions on \u0027push\u0027 events.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eWorkflow file\u003c/h2\u003e\u003ca id=\"user-content-workflow-file\" class=\"anchor\" aria-label=\"Permalink: Workflow file\" href=\"#workflow-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe definition of the action workflow is defined in \u003ccode\u003e./github/workflows/c-cpp.yml\u003c/code\u003e. Here is a brief explanation of the code.\nThe job runs on the latest Ubuntu environment provided by GitHub.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstall MPI: The first step updates the package list and installs MPI to run the matrix multiplication library.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCheckout Repository: This step checks out the project\u0027s repository from GitHub, including any submodules.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBuild Application: It creates a build directory, runs CMake to generate build files, and compiles the project.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun Tests: The built application is tested by running an MPI job with two processes using mpirun.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInstall Dependencies for Singularity: Several dependencies required to install Singularity (a container platform) are installed.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInstall Go: The Go programming language is installed, which is necessary for building Singularity.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSet Up Go Environment: The Go binary path is added to the environment variables.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInstall Singularity: Singularity is downloaded, compiled, and installed.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eVerify Singularity Installation: This step checks the installed version of Singularity to ensure it was installed correctly.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBuild Singularity Container: A Singularity container is built using a definition file (Singularity.def).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ePrepare Files for Transfer to Galileo: The container file and a SLURM job script are moved into a directory (to_send) for the upcoming transfer to Galileo cluster.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSSH to Remote Server: Using sshpass for password-based SSH, the files are transferred to a remote server. The job script is executed on the remote server, and the output is printed. The server job queue status is also checked.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis workflow streamlines the process of building, testing, and deploying the C/C++ application, while also leveraging Singularity containers for consistent and portable execution environments.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eOn Galileo\u003c/h1\u003e\u003ca id=\"user-content-on-galileo\" class=\"anchor\" aria-label=\"Permalink: On Galileo\" href=\"#on-galileo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOn Galileo, cluster management and job scheduling is handled by SLURM. We run the container image \u003ccode\u003econtainer.sif\u003c/code\u003e through a script named \u003ccode\u003ejob.sh\u003c/code\u003e, both transfered previously during the workflow. \u003ccode\u003ejob.sh\u003c/code\u003e contains the command for \u003cem\u003esingularity\u003c/em\u003e to run the image and where to pipe the output, in addition to other setup variables.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-centos7-base\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#centos7-base\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecentos7-base\u003c/h1\u003e\n\u003cp\u003eBase container images using CentOS 7\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1717671915.0
+ "updated_at": 1525366145.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Convert a VCF into a MAF, where each variant is annotated to only one of all possible gene isoforms",
"filenames": [
- "Singularity.def"
+ "1.6.21/Singularity"
],
- "full_name": "evlabwebapps/langatlas",
+ "full_name": "pscedu/singularity-vcf2maf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eLanA\u003c/h1\u003e\u003ca id=\"user-content-lana\" class=\"anchor\" aria-label=\"Permalink: LanA\" href=\"#lana\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow to add a new page\u003c/h2\u003e\u003ca id=\"user-content-how-to-add-a-new-page\" class=\"anchor\" aria-label=\"Permalink: How to add a new page\" href=\"#how-to-add-a-new-page\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eNavigation bar is defined at \u003ccode\u003e./components/Navigation.jsx\u003c/code\u003e file. In order to add\na new page to navbar you must define a new page inside \u003ccode\u003e./pages\u003c/code\u003e and add route\nat \u003ccode\u003eroutes.js\u003c/code\u003e file. Also do not forget to export page by updating \u003ccode\u003e./pages/index.jsx\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow to build and push image to DockerHub\u003c/h2\u003e\u003ca id=\"user-content-how-to-build-and-push-image-to-dockerhub\" class=\"anchor\" aria-label=\"Permalink: How to build and push image to DockerHub\" href=\"#how-to-build-and-push-image-to-dockerhub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eyarn build\ndocker build --tag \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eyour-username\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/evlabwebapps-langatlas:latest \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\ndocker push \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eyour-username\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/evlabwebapps-langatlas:latest\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eOR edit and run \u003ccode\u003ebuild_push.sh\u003c/code\u003e script.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow to deploy on the server (same as for backend)\u003c/h2\u003e\u003ca id=\"user-content-how-to-deploy-on-the-server-same-as-for-backend\" class=\"anchor\" aria-label=\"Permalink: How to deploy on the server (same as for backend)\" href=\"#how-to-deploy-on-the-server-same-as-for-backend\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou need to enter Vagrant VM, pull Docker images and recreate containers with updated images.\u003c/p\u003e\n\u003cp\u003eOn HPC:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e /om2/user/amirov/vagrant_images/evlabwebapps/\nvagrant ssh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eInside VM:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker-compose pull\ndocker-compose up -d\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eDocker-compose on VM that is common for frontend and backend\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003eversion\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e3.5\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-ent\"\u003eservices\u003c/span\u003e:\n\n \u003cspan class=\"pl-ent\"\u003eadmin\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003eimage\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003eaamirov/evlab-web-apps-admin:latest\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ebuild\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e.\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003eenv_file\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e.env\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003evolumes\u003c/span\u003e:\n - \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e./assets:/app/assets\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e./backend-data:/app/data\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003eports\u003c/span\u003e:\n - \u003cspan class=\"pl-c1\"\u003e8000:8000\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003enetworks\u003c/span\u003e:\n - \u003cspan class=\"pl-s\"\u003ebackend\u003c/span\u003e\n\n \u003cspan class=\"pl-ent\"\u003eredis\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003eimage\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003eredis:5-alpine\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003enetworks\u003c/span\u003e:\n - \u003cspan class=\"pl-s\"\u003ebackend\u003c/span\u003e\n\n \u003cspan class=\"pl-ent\"\u003ecelery\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003eimage\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003eaamirov/evlab-web-apps-admin:latest\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ebuild\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e.\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003eenv_file\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e.env\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003evolumes\u003c/span\u003e:\n - \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e./assets:/app/assets\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e./backend-data:/app/data\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003enetworks\u003c/span\u003e:\n - \u003cspan class=\"pl-s\"\u003ebackend\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ecommand\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003ecelery -A src.evlabwebapps worker -l INFO\u003c/span\u003e\n\n \u003cspan class=\"pl-ent\"\u003ecelery-beat\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003eimage\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003eaamirov/evlab-web-apps-admin:latest\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ebuild\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e.\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003eenv_file\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e.env\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003enetworks\u003c/span\u003e:\n - \u003cspan class=\"pl-s\"\u003ebackend\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ecommand\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003ecelery -A src.evlabwebapps beat -l INFO\u003c/span\u003e\n\n \u003cspan class=\"pl-ent\"\u003efrontend\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003eimage\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003eaamirov/evlabwebapps-langatlas:latest\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003eports\u003c/span\u003e:\n - \u003cspan class=\"pl-c1\"\u003e8760:8760\u003c/span\u003e\n\n\u003cspan class=\"pl-ent\"\u003enetworks\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ebackend\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ename\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003eevlabwebapps\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLearn More\u003c/h2\u003e\u003ca id=\"user-content-learn-more\" class=\"anchor\" aria-label=\"Permalink: Learn More\" href=\"#learn-more\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can learn more in the \u003ca href=\"https://facebook.github.io/create-react-app/docs/getting-started\" rel=\"nofollow\"\u003eCreate React App documentation\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eTo learn React, check out the \u003ca href=\"https://reactjs.org/\" rel=\"nofollow\"\u003eReact documentation\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-vcf2maf/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-vcf2maf/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/6c32b67e6bcfd7b78cca6dcfe21c4556b4fba959e13dd4612bb3e0b2846abfe7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d766366326d6166\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6c32b67e6bcfd7b78cca6dcfe21c4556b4fba959e13dd4612bb3e0b2846abfe7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d766366326d6166\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-vcf2maf\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/3ccc0089fe10f56f8768d722e148118222cba7cc032e7f2e3b6222aa6ec402ee/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d766366326d6166\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3ccc0089fe10f56f8768d722e148118222cba7cc032e7f2e3b6222aa6ec402ee/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d766366326d6166\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-vcf2maf\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/0068d09a09f0dde007625472c34b7e25f43da89ecd63871960f9fe0072f18edc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d766366326d6166\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0068d09a09f0dde007625472c34b7e25f43da89ecd63871960f9fe0072f18edc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d766366326d6166\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-vcf2maf\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/ff4771367a9654e511e5615d881b40f20b2ecf30679402c3517d2695b88380cf/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d766366326d6166\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ff4771367a9654e511e5615d881b40f20b2ecf30679402c3517d2695b88380cf/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d766366326d6166\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-vcf2maf\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-singularity-vcf2maf\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#singularity-vcf2maf\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-vcf2maf\u003c/h2\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/mskcc/vcf2maf\"\u003evcf2maf\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003evcf2maf\u003c/code\u003e, \u003ccode\u003evcf2vcf\u003c/code\u003e, \u003ccode\u003emaf2maf\u003c/code\u003e and \u003ccode\u003emaf2vcf\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/vcf2maf/1.6.21\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/vcf2maf\u003c/code\u003e as \u003ccode\u003e1.6.21.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1640121099.0
+ "subscribers_count": 4,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1653962577.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.0.8.0"
+ "Singularityfile.def"
],
- "full_name": "arcsUVA/caffe2",
+ "full_name": "pouya-codes/singularity_create_groups",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ecaffe2\u003c/h1\u003e\u003ca id=\"user-content-caffe2\" class=\"anchor\" aria-label=\"Permalink: caffe2\" href=\"#caffe2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-create-groups\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#create-groups\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreate Groups\u003c/h1\u003e\n\u003ch3\u003e\u003ca id=\"user-content-development-information\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#development-information\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopment Information\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003eBefore running any experiment to be sure you are using the latest commits of all modules run the following script:\u003c/strong\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e(cd /projects/ovcare/classification/singularity_modules ; ./update_modules.sh --bcgsc-pass your/bcgsc/path)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eusage: app.py [-h] {from-experiment-manifest,from-arguments} ...\n\nSplits patches to groups by patient case and saves the path to these patches in a group file (i.e. /path/to/patient_groups.json).\nThe patient_groups.json file uses Mitch\u0027s format for groups i.e. it is a json file with the format\n\n{\n \"chunks\": [\n {\n \"id\": int,\n \"imgs\": list of paths to patches\n },\n ...DEAFULT_SEEDE || Total ||\n| Patient in Group 1 | 9 | 13 | 20 | 3 | 45 |\n| Patient in Group 2 | 9 | 13 | 20 | 3 | 45 |\n| Patient in Group 3 | 8 | 13 | 20 | 3 | 44 |\n| Whole Slide Image | 38 | 63 | 79 | 13 | 193 |\n\n|| Patch Counts || MMRD || P53ABN || P53WT || POLE || Total ||\n| Patch in Group 1 | 38659 | 43918 | 52645 | 1791 | 137013 |\n| Patch in Group 2 | 15261 | 71059 | 34979 | 17248 | 138547 |\n| Patch in Group 3 | 19431 | 51330 | 53700 | 7881 | 132342 |\n| Total | 73351 | 166307 | 141324 | 26920 | 407902 |\n\nWhat are **categories**?\n\n1) if the --is_binary flag is used, then categories=(\u0027Tumor\u0027, \u0027Normal\u0027) where \u0027Tumor\u0027 is any patch annotated as \u0027Tumor\u0027 and \u0027Normal\u0027 is any patch with annotated as \u0027Other\u0027, \u0027MucinousBorderlineTumor\u0027, \u0027Necrosis\u0027 or \u0027Stroma\u0027\n2) if the --is_binary flag is not used, then categories=subtype (i.e. CC, EC, MC, LGSC, HGSC)\n\n**balance_patches**:\n\nThe --balance_patches flag gives the following options (illustrated):\n\n1) `--balance_patches overall` sets every cell to the min cell.\nDEAFULT_SEEDll to the min cell in each group.\n\n|| Patch Counts || MMRD || P53ABN || P53WT || POLE || Total ||\n| Patch in Group 1 | 1791 | 1791 | 1791 | 1791 | 7164 |\n| Patch in Group 2 | 15261 | 15261 | 15261 | 15261 | 61044 |\n| Patch in Group 3 | 7881 | 7881 | 7881 | 7881 | 31524 |\n| Total | 24933 | 24933 | 24933 | 24933 | 99732 |\nset_random_seedup 1 | 30000 | 30000 | 30000 | 1791 | 91791 |\n| Patch in Group 2 | 15261 | 30000 | 30000 | 17248 | 92509 |\n| Patch in Group 3 | 19431 | 30000 | 30000 | 7881 | 87312 |\n| Total | 64692 | 90000 | 90000 | 26920 | 271612 |\n\n3) `--balance_patches group=cap_amt` caps the number of patches in every group by cap_amt.\n`--balance_patches group=135000`\n\n|| Patch Counts || MMRD || P53ABN || P53WT || POLE || Total ||\n| Patch in Group 1 | 38659 | 43918 | 50632 | 1791 | 135000 |\n| Patch in Group 2 | 15261 | 67512 | 34979 | 17248 | 135000 |\n| Patch in Group 3 | 19431 | 51330 | 53700 | 7881 | 132342 |\n| Total | 73351 | 162760 | 139311 | 26920 | 402342 |\n\n3) `--balance_patches category=cap_amt` caps the number of patches in every category by cap_amt.\n`--balance_patches category=100000`\n\n|| Patch Counts || MMRD || P53ABN || P53WT || POLE || Total ||\n| Patch in Group 1 | 38659 | 33333 | 33333 | 1791 | 107116 |\n| Patch in Group 2 | 15261 | 33333 | 33333 | 17248 | 99175 |\n| Patch in Group 3 | 19431 | 33333 | 33333 | 7881 | 93978 |\n| Total | 73351 | 99999 | 99999 | 26920 | 300269 |\n\n**max_patient_patches**:\n\nIf --max_patient_patches is set, then we will select max_patient_patches from each patient case, so if max_patient_patches=60 then we will select at most 60 patches across all slides belonging to the patient.\n\n (1) this will select patches uniformly across all slides belonging to the patient. For example if there are 3 slides, then we will sample 20 patches from each slide unless a few slides have \u0026lt;20 patches in which case we select \u0026gt;20 patches from the slides with enough patches until we have 60 in total.\n (2) this will select patches uniformly across all categories belonging to the patient. For example if categories=(\u0027Tumor\u0027, \u0027Normal\u0027) then we will select 30 patches each category unless one category has \u0026lt;30 slides in which case we select we select \u0026gt;30 patches in the other category until we have 60 in total.\n (3) --max_patient_patches is applied before --balance_patches if both flags are set\n\npositional arguments:\n {from-experiment-manifest,from-arguments}\n Choose whether to use arguments from experiment manifest or from commandline\n from-experiment-manifest\n Use experiment manifest\n\n from-arguments Use arguments\n\noptional arguments:\n -h, --help show this help message and exit\n\nusage: app.py from-experiment-manifest [-h] [--component_id COMPONENT_ID]\n experiment_manifest_location\n\npositional arguments:\n experiment_manifest_location\n\noptional arguments:\n -h, --help show this help message and exit\n\n --component_id COMPONENT_ID\n\nusage: app.py from-arguments [-h] [--seed SEED] [--n_groups N_GROUPS]\n [--subtypes SUBTYPES [SUBTYPES ...]]\n [--is_binary] [--is_multiscale]\n [--balance_patches BALANCE_PATCHES]\n [--patch_pattern PATCH_PATTERN]\n [--filter_labels FILTER_LABELS [FILTER_LABELS ...]]\n --out_location OUT_LOCATION\n [--min_patches MIN_PATCHES]\n [--max_patches MAX_PATCHES]\n [--max_patient_patches MAX_PATIENT_PATCHES]\n {use-extracted-patches,use-hd5} ...\n\npositional arguments:\n {use-extracted-patches,use-hd5}\n Specify how to load patches.\n There are 2 ways of loading patches: by use_extracted_patches and by use_hd5.\n use-extracted-patches\n Use extracted and saved patches\n\n use-hd5 Use hd5 files\n\noptional arguments:\n -h, --help show this help message and exit\n\n --seed SEED Seed for random shuffle.\n (default: 256)\n\n --n_groups N_GROUPS The number of groups in groups file.\n (default: 3)\n\n --subtypes SUBTYPES [SUBTYPES ...]\n Space separated words describing subtype=groupping pairs for this study. Example: if doing one-vs-rest on the subtypes MMRD vs P53ABN, P53WT and POLE then the input should be \u0027MMRD=0 P53ABN=1 P53WT=1 POLE=1\u0027\n (default: {\u0027MMRD\u0027: 0, \u0027P53ABN\u0027: 1, \u0027P53WT\u0027: 2, \u0027POLE\u0027: 3})\n\n --is_binary Whether we want to categorize patches by the Tumor/Normal category (true) or by the subtype category (false).\n (default: False)\n\n --is_multiscale Whether patches have multiple scales i.e. different magnifications. Not currently used.\n (default: False)\n\n --balance_patches BALANCE_PATCHES\n Optional method to balance patches. Can choose (1) (\u0027group\u0027, \u0027overall\u0027, \u0027category\u0027) or (2) one of (\u0027group=cap_amt\u0027, \u0027overall=cap_amt\u0027, \u0027category=cap_amt\u0027).In the case (1), we will balance out the patches in every group, category, or overall (see description for more details). In case (2), we will cap the number of patches in every group, category, or overall to the number cap_amt.\n (default: None)\n\n --patch_pattern PATCH_PATTERN\n \u0027/\u0027 separated words describing the directory structure of the patch paths. The words are (\u0027annotation\u0027, \u0027subtype\u0027, \u0027slide\u0027, \u0027patch_size\u0027, \u0027magnification\u0027). A non-multiscale patch can be contained in a directory /path/to/patch/rootdir/Tumor/MMRD/VOA-1234/1_2.png so its patch_pattern is annotation/subtype/slide. A multiscale patch can be contained in a directory /path/to/patch/rootdir/Stroma/P53ABN/VOA-1234/10/3_400.png so its patch_pattern is annotation/subtype/slide/magnification\n (default: annotation/subtype/slide)\n\n --filter_labels FILTER_LABELS [FILTER_LABELS ...]\n Space separated words describing label=value pairs to filter patch by label value. For example, if a dataset contains patche paths like path/to/patch/rootdir/Tumor/MMRD/VOA-1234/256/20/1_2.png and we want to select Tumor patches of pixel size 256 * 256 and 20x magnification then the patch_pattern is annotation/subtype/slide/patch_size/magnification and the select_labels is \u0027annotation=Tumor patch_size=256 magnification=20\u0027\n (default: {})\n\n --out_location OUT_LOCATION\n full path of the groups file (i.e. /path/to/patient_groups.json). An example is \u0027/projects/ovcare/classification/cchen/ml/data/local_ec_100/patient_groups.json\u0027\n (default: None)\n\n --min_patches MIN_PATCHES\n Only include from slides that have at least min_patches number of patches\n (default: None)\n\n --max_patches MAX_PATCHES\n Only include from slides that have at most max_patches number of patches\n (default: None)\n\n --max_patient_patches MAX_PATIENT_PATCHES\n Select at most max_patient_patches number of patches from each patient.\n (default: None)\n\nusage: app.py from-arguments use-extracted-patches [-h] --patch_location\n PATCH_LOCATION\n {use-manifest,use-origin}\n ...\n\npositional arguments:\n {use-manifest,use-origin}\n Specify how to define patient ID and slide ID:\n 1. use-manifest 2. origin\n use-manifest Use manifest file to locate slides.\n a CSV file with minimum of 4 column and maximum of 6 columns. The name of columns\n should be among [\u0027origin\u0027, \u0027patient_id\u0027, \u0027slide_id\u0027, \u0027slide_path\u0027, \u0027annotation_path\u0027, \u0027subtype\u0027].\n origin, slide_id, patient_id must be one of the columns.\n\n use-origin Use origin for detecting patient ID and slide ID.\n NOTE: It only works for German, OVCARE, and TCGA.\n\noptional arguments:\n -h, --help show this help message and exit\n\n --patch_location PATCH_LOCATION\n root directory of all patches of a study. The patch directory structure is \u0027/patch_location/patch_pattern/x_y.png\u0027. See --patch_pattern below. An example is \u0027/projects/ovcare/classification/cchen/ml/data/local_ec_100/patches_256_sorted\u0027\n (default: None)\n\nusage: app.py from-arguments use-extracted-patches use-manifest\n [-h] --manifest_location MANIFEST_LOCATION\n\noptional arguments:\n -h, --help show this help message and exit\n\n --manifest_location MANIFEST_LOCATION\n Path to manifest CSV file.\n (default: None)\n\nusage: app.py from-arguments use-extracted-patches use-origin\n [-h] [--dataset_origin DATASET_ORIGIN [DATASET_ORIGIN ...]]\n\noptional arguments:\n -h, --help show this help message and exit\n\n --dataset_origin DATASET_ORIGIN [DATASET_ORIGIN ...]\n List of the origins of the slide dataset the patches are generated from. Should be from (\u0027ovcare\u0027, \u0027tcga\u0027, \u0027german\u0027, \u0027other\u0027). (For multiple origins, works for TCGA+ovcare. Mix of Other origins must be tested.)\n (default: [\u0027ovcare\u0027])\n\nusage: app.py from-arguments use-hd5 [-h] --hd5_location HD5_LOCATION\n {use-manifest,use-origin} ...\n\npositional arguments:\n {use-manifest,use-origin}\n Specify how to define patient ID and slide ID:\n 1. use-manifest 2. origin\n use-manifest Use manifest file to locate slides.\n a CSV file with minimum of 4 column and maximum of 6 columns. The name of columns\n should be among [\u0027origin\u0027, \u0027patient_id\u0027, \u0027slide_id\u0027, \u0027slide_path\u0027, \u0027annotation_path\u0027, \u0027subtype\u0027].\n origin, slide_id, patient_id must be one of the columns.\n\n use-origin Use origin for detecting patient ID and slide ID.\n NOTE: It only works for German, OVCARE, and TCGA.\n\noptional arguments:\n -h, --help show this help message and exit\n\n --hd5_location HD5_LOCATION\n root directory of all hd5 of a study.\n (default: None)\n\nusage: app.py from-arguments use-hd5 use-manifest [-h] --manifest_location\n MANIFEST_LOCATION\n\noptional arguments:\n -h, --help show this help message and exit\n\n --manifest_location MANIFEST_LOCATION\n Path to manifest CSV file.\n (default: None)\n\nusage: app.py from-arguments use-hd5 use-origin [-h]\n [--dataset_origin DATASET_ORIGIN [DATASET_ORIGIN ...]]\n\noptional arguments:\n -h, --help show this help message and exit\n\n --dataset_origin DATASET_ORIGIN [DATASET_ORIGIN ...]\n List of the origins of the slide dataset the patches are generated from. Should be from (\u0027ovcare\u0027, \u0027tcga\u0027, \u0027german\u0027, \u0027other\u0027). (For multiple origins, works for TCGA+ovcare. Mix of Other origins must be tested.)\n (default: [\u0027ovcare\u0027])\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTODO: there is a chance --balance_patches sets empty groups. This happens if any patches for some (group, category) is zero.\nTODO: in create_groups, variables are named \u0027subtype\u0027 instead of \u0027category\u0027. That leads to confusion.\nTODO: further explain how --max_patient_patches works in description.\nTODO: make GroupCreator.group_summary() return DataFrame. Test against DataFrame output.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1550983020.0
+ "updated_at": 1698864845.0
},
{
"data_format": 2,
- "description": "Snakemake pipeline for genome coassembly",
+ "description": "Singularity recipes for singularity images containing ANTs (Advanced Normalization Tools).",
"filenames": [
- "Singularity.def"
+ "Singularity.2.2.0"
],
- "full_name": "EI-CoreBioinformatics/CoassemblyPipeline",
+ "full_name": "MPIB/singularity-ants",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCoassemblyPipeline\u003c/h2\u003e\u003ca id=\"user-content-coassemblypipeline\" class=\"anchor\" aria-label=\"Permalink: CoassemblyPipeline\" href=\"#coassemblypipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSnakemake pipeline to generate and QC genome (co)assemblies from single-cell (e.g., G\u0026amp;T-Seq) or metagenome data.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eTHIS PIPELINE DOES NOT TRIM READS. IT EXPECTS THE INPUT READS TO HAVE ALREADY BEEN ADAPTER TRIMMED\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eThe input to this pipeline is a comma separated file. The first line specifies the name of the coassembly, the following lines contain 4 comma separated values to specify the gDNA and cDNA libraries:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esample name\u003c/li\u003e\n\u003cli\u003elibrary type (gDNA or cDNA)\u003c/li\u003e\n\u003cli\u003epath to forward reads\u003c/li\u003e\n\u003cli\u003epath to reverse reads\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eSample names should not contain periods\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eExample input file: \u003ccode\u003einput.csv\u003c/code\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eCOASSEMBLY_NAME\nSample1,gDNA,Sample1_gDNA_R1.fq.gz,Sample1_gDNA_R2.fq.gz\nSample1,cDNA,Sample1_cDNA_R1.fg.gz,Sample1_cDNA_R2.fq.gz\nSample2,gDNA,Sample2_gDNA_R1.fq.gz,Sample2_gDNA_R2.fq.gz\nSample2,cDNA,Sample2_cDNA_R1.fg.gz,Sample2_cDNA_R2.fq.gz\nSample3,gDNA,Sample3_gDNA_R1.fq.gz,Sample3_gDNA_R2.fq.gz\nSample4,cDNA,Sample4_cDNA_R1.fq.gz,Sample4_cDNA_R2.fq.gz\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExample config file: \u003ccode\u003econfig.yaml\u003c/code\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# File listing input reads, better to set this at command line with \"--config input=XXX.csv\"\n# Should use absolute paths\ninput:\n\n# Mode to run SPAdes in - \"sc\" for single-cell or \"meta\" for metagenome\nassembly_type: [sc / meta]\n\n# Optional tools to run\nrun_checkm: true\nrun_busco: true\n\n# SPAdes parameters\nkmers: \"21,33,55,77\"\nmin_scaffold_length: 1000 # for bbtools reformat\n\n# BUSCO parameters\nbusco_version: 3\nbusco_database: XXXXX\n\n# MetaBat2 parameters\nmetabat2_min_contig: 1500\n\n# Tiara parameters\ntiara_min_length: 1000\n\n# EukRep parameters\neukrep_min_length: 1000\n\n# Blobtools parameters\ndiamond_database: XXXXX\nmegablast_database: XXXXX\nnodesdb: XXXXX\nn_chunks: 4 # chunk the fasta file into N splits for the megablastn search; randomly to balance as input fasta will be sorted by sequence length\n\n# CAT parameters\ncat_database: XXXXX\ntaxonomy_dir: XXXXX\ndiamond_path: XXXXX\n\n# pr2 database\npr2_database: XXXXX\n\n# cleanup options\ncleanup_spades: true\ncleanup_cat: true\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExample command to launch snakemake:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -p --config input=input.csv -j 20 --retries 1 --latency-wait 60 --snakefile CoassemblyPipeline.smk --cluster-config cluster.json --cluster \"sbatch -p {cluster.partition} -c {cluster.c} --mem={cluster.memory} --job-name={cluster.J} --time={cluster.time} --exclude={cluster.exclude} -o slurm_logs/slurm.{cluster.J}.%j.out\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eThis pipeline runs:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003egenome assembly using \u003ca href=\"https://github.com/ablab/spades\"\u003eSPAdes\u003c/a\u003e in single-cell or metagenome mode\u003c/li\u003e\n\u003cli\u003eannotation of rRNA genes using \u003ca href=\"https://github.com/tseemann/barrnap\"\u003ebarrnap\u003c/a\u003e, followed by classification based on comparison with the \u003ca href=\"https://github.com/pr2database/pr2database\"\u003epr2\u003c/a\u003e database\u003c/li\u003e\n\u003cli\u003etaxonomic classification using:\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/DRL/blobtools\"\u003eBlobtools\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/dutilh/CAT\"\u003eCAT\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/patrickwest/EukRep\"\u003eEukRep\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/ibe-uw/tiara/\"\u003eTiara\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eassembly stats using \u003ca href=\"https://github.com/ablab/quast\"\u003eQUAST\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ecoverage stats based on mapping reads with \u003ca href=\"https://github.com/lh3/minimap2\"\u003eminimap2\u003c/a\u003e and \u003ca href=\"http://qualimap.conesalab.org/\" rel=\"nofollow\"\u003eQualiMap\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003econtig binning using \u003ca href=\"https://bitbucket.org/berkeleylab/metabat\" rel=\"nofollow\"\u003eMetaBAT2\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://gitlab.com/ezlab/busco\" rel=\"nofollow\"\u003eBUSCO\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Ecogenomics/CheckM\"\u003eCheckM\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003eOptionally, aligns RNA-Seq reads using \u003ca href=\"https://github.com/DaehwanKimLab/hisat2\"\u003ehisat2\u003c/a\u003e and assembles transcripts using \u003ca href=\"https://github.com/gpertea/stringtie\"\u003eStringTie2\u003c/a\u003e. RNA-Seq reads can come from any source (e.g., single-cell, metatranscriptome, or isolate RNA-Seq)\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cp\u003eThe Singularity definition file \u003ccode\u003eSingularity.def\u003c/code\u003e contains most of the required software. Additional software requirements not included in the definition file (due to compatbility issues):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/DRL/blobtools\"\u003eblobtools (v1.1.1)\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://gitlab.com/ezlab/busco\" rel=\"nofollow\"\u003ebusco (v3/4/5)\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/patrickwest/EukRep\"\u003eEukRep\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/ibe-uw/tiara\"\u003eTiara\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cp\u003e\u003cstrong\u003eExample DAG\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"example_DAG.png\"\u003e\u003cimg src=\"example_DAG.png\" alt=\"Example Snakemake DAG\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-ants\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#singularity-ants\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-ants\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/660\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipes for base-images containing ANTs (Advanced Normalization Tools). You can get the \u003ca href=\"https://github.com/ANTsX/ANTs\"\u003ecode and documentation for ANTs through GitHub\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eANTs is pulled from its \u003ca href=\"https://github.com/ANTsX/ANTs\"\u003egithub repository\u003c/a\u003e and build using cmake.\u003c/li\u003e\n\u003cli\u003ecmake and its dependencies are installed through the debian repositories via \u003ccode\u003eapt-get install\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eAt the end of the build process the image is cleaned up by:\n\u003cul\u003e\n\u003cli\u003eremoving cmake and its dependencies through \u003ccode\u003eapt-get purge\u003c/code\u003e,\u003c/li\u003e\n\u003cli\u003edeleting the package cache,\u003c/li\u003e\n\u003cli\u003edeleting the folder containing the cloned repository.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e$ANTSPATH\u003c/code\u003e and \u003ccode\u003e$PATH\u003c/code\u003e are set according to the \u003ca href=\"https://github.com/ANTsX/ANTs/wiki/Compiling-ANTs-on-Linux-and-Mac-OS\"\u003ecompilation guide\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eANTs executable should therefore be directly available.\u003c/li\u003e\n\u003cli\u003eSuccessful build and \u003ccode\u003e$PATH\u003c/code\u003e setup is tested through calling antsRegistration with the -h flag.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1724235234.0
+ "updated_at": 1519211227.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity Container for SDAPS",
"filenames": [
- "Singularity"
+ "Singularity.sdaps"
],
- "full_name": "ddbj/singularity_apache_jekyll",
+ "full_name": "williamssanders/sdaps",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity image\u306e\u30d3\u30eb\u30c9\u003c/h1\u003e\u003ca id=\"user-content-singularity-image\u306e\u30d3\u30eb\u30c9\" class=\"anchor\" aria-label=\"Permalink: singularity image\u306e\u30d3\u30eb\u30c9\" href=\"#singularity-image\u306e\u30d3\u30eb\u30c9\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity build ubuntu-18.04-apache2-jekyll.simg Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ejekyll\u3067\u9759\u7684\u30d5\u30a1\u30a4\u30eb\u3092\u751f\u6210\u3059\u308b\u30bd\u30fc\u30b9\u306e\u6e96\u5099\u003c/h1\u003e\u003ca id=\"user-content-jekyll\u3067\u9759\u7684\u30d5\u30a1\u30a4\u30eb\u3092\u751f\u6210\u3059\u308b\u30bd\u30fc\u30b9\u306e\u6e96\u5099\" class=\"anchor\" aria-label=\"Permalink: jekyll\u3067\u9759\u7684\u30d5\u30a1\u30a4\u30eb\u3092\u751f\u6210\u3059\u308b\u30bd\u30fc\u30b9\u306e\u6e96\u5099\" href=\"#jekyll\u3067\u9759\u7684\u30d5\u30a1\u30a4\u30eb\u3092\u751f\u6210\u3059\u308b\u30bd\u30fc\u30b9\u306e\u6e96\u5099\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u9069\u5f53\u306a\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u3092\u4f5c\u6210\u3057\u3001jekyll\u306e\u30c7\u30fc\u30bf\u3092\u305d\u306e\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u5185\u306b\u7f6e\u304f\u3002\u003c/p\u003e\n\u003cp\u003estart_container-build.sh \u307e\u305f\u306f start_container-serve.sh \u306e SOURCE_DIR\u5909\u6570\u306e\u5024\u3092\u30c7\u30fc\u30bf\u3092\u5165\u308c\u305f\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306e\u30d1\u30b9\u306b\u4fee\u6b63\u3059\u308b\u3002\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity instance \u306e\u8d77\u52d5\u003c/h1\u003e\u003ca id=\"user-content-singularity-instance-\u306e\u8d77\u52d5\" class=\"anchor\" aria-label=\"Permalink: singularity instance \u306e\u8d77\u52d5\" href=\"#singularity-instance-\u306e\u8d77\u52d5\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ejekyll\u3092build\u3067\u5b9f\u884c\u3057\u3066apache2\u306eDocumentRoot\u306b\u9759\u7684\u30d5\u30a1\u30a4\u30eb\u3092\u51fa\u529b\u3055\u305b\u3001\u751f\u6210\u3057\u305f\u30b5\u30a4\u30c8\u3092apache2\u3067\u516c\u958b\u3059\u308b\u5834\u5408\u306fstart_container-build.sh\u3092\u5b9f\u884c\u3059\u308b\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash start_container-build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ejekyll\u3092serve\u3067\u5b9f\u884c\u3057\u3001jekyll\u306ehttp\u30b5\u30fc\u30d0\u3092apache2\u306e\u30ea\u30d0\u30fc\u30b9\u30d7\u30ed\u30ad\u30b7\u3067\u53d7\u3051\u308b\u5834\u5408\u306fstart_container-serve.sh\u3092\u5b9f\u884c\u3059\u308b\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash start_container-serve.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u3044\u305a\u308c\u306e\u5834\u5408\u3082httpd.conf.build\u307e\u305f\u306fhttpd.conf.serve\u306eListen\u30c7\u30a3\u30ec\u30af\u30c6\u30a3\u30d6\u306bsingularity instance\u3067\u4f7f\u7528\u3059\u308b\u30dd\u30fc\u30c8\u756a\u53f7\u3092\u8a2d\u5b9a\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-sdaps_container\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#sdaps_container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esdaps_container\u003c/h1\u003e\n\u003cp\u003eSingularity Container for SDAPS\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage:\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eSingularity-Hub:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://williamssanders/sdaps:sdaps\n./williamssanders-sdaps-master-sdaps.simg setup /fastscratch/ssander/sdaps/example_2 example.tex\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eBuild the container:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build -c sdaps.simg Singularity.sdaps\n./sdaps.simg setup /fastscratch/ssander/sdaps/example_1 example.tex\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1593769075.0
+ "updated_at": 1553200061.0
},
{
"data_format": 2,
- "description": "OpenEXR in a Singularity container",
+ "description": null,
"filenames": [
- "Singularity.2.2",
- "Singularity"
+ "Singularity.tensorflow_venv",
+ "Singularity.tensorflow-1.14"
],
- "full_name": "OSC/sa_singularity_openexr",
+ "full_name": "MuhsinFatih/singularityimages",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity OpenEXR\u003c/h1\u003e\u003ca id=\"user-content-singularity-openexr\" class=\"anchor\" aria-label=\"Permalink: Singularity OpenEXR\" href=\"#singularity-openexr\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3586\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/44e7845c81a431dc740c9a7f76d0ea33e030e05d7a41d6164167ee435b17168f/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image for \u003ca href=\"https://www.openexr.com/\" rel=\"nofollow\"\u003eOpenEXR\u003c/a\u003e. It was built on top of the base Docker image \u003ca href=\"https://hub.docker.com/_/ubuntu\" rel=\"nofollow\"\u003eubuntu\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild\u003c/h2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-label=\"Permalink: Build\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can build a local Singularity image named \u003ccode\u003eopenexr.sif\u003c/code\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build openexr.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDeploy\u003c/h2\u003e\u003ca id=\"user-content-deploy\" class=\"anchor\" aria-label=\"Permalink: Deploy\" href=\"#deploy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstead of building it yourself you can download the pre-built image from \u003ca href=\"https://www.singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name openexr.sif shub://OSC/sa_singularity_openexr\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun\u003c/h2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-label=\"Permalink: Run\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRender .EXR image\u003c/h3\u003e\u003ca id=\"user-content-render-exr-image\" class=\"anchor\" aria-label=\"Permalink: Render .EXR image\" href=\"#render-exr-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003eexrdisplay\u003c/code\u003e command is launched using the command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e openexr.sif exrdisplay -h\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e openexr.sif exrdisplay rendertest_0001.exr\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe code is available as open source under the terms of the \u003ca href=\"http://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003eMIT License\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 8,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1569951214.0
+ "updated_at": 1565383245.0
},
{
"data_format": 2,
- "description": "A public Docker container for WRF 3.8.1 with Fitch patch",
+ "description": "gpu image for folding at home",
"filenames": [
"Singularity"
],
- "full_name": "federatedcloud/Docker-WRF-3.8.1-Fitch",
+ "full_name": "slaclab/folding-at-home-gpu",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDocker-WRF-3.8.1-Fitch\u003c/h1\u003e\u003ca id=\"user-content-docker-wrf-381-fitch\" class=\"anchor\" aria-label=\"Permalink: Docker-WRF-3.8.1-Fitch\" href=\"#docker-wrf-381-fitch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA public Docker container for WRF 3.8.1 with Fitch patches.\u003c/p\u003e\n\u003cp\u003eDocker image: \u003ca href=\"https://hub.docker.com/repository/docker/cornellcac/wrf\" rel=\"nofollow\"\u003eDocker Hub\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image: \u003ca href=\"https://singularity-hub.org/collections/5227\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eBuild\u003c/h1\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-label=\"Permalink: Build\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe Docker container can be built using the script \u003ca href=\"https://github.com/federatedcloud/Docker-WRF-3.8.1-Fitch/blob/main/docker-build.sh\"\u003e\u003ccode\u003edocker-build.sh\u003c/code\u003e\u003c/a\u003e,\nwhich will produce an output file named \u003ccode\u003ebuild_output.txt\u003c/code\u003e (included in the\n\u003ca href=\"https://github.com/federatedcloud/Docker-WRF-3.8.1-Fitch/blob/main/.gitignore\"\u003e\u003ccode\u003e.gitignore\u003c/code\u003e\u003c/a\u003e).\nThe build will take some time, so it is recommended to use a terminal multiplexer, such as tmux.\nOne can view the full output at any time using a text editor to open \u003ccode\u003ebuild_output.txt\u003c/code\u003e.\nTo determine what step the build it is at, one can do:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecat build_output.txt | grep Step | tail -n 1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will print the current command Docker is executing to build the container.\nTo view Docker build errors, try:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecat build_output.txt | grep ERROR\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis is actually the last command in the \u003ccode\u003edocker-build.sh\u003c/code\u003e script, so Docker build\nerrors will be listed upon completion. If there are no errors listed the container\nwas built successfully. Code and dependencies should be checked independently of\na Docker build error list.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePatches\u003c/h2\u003e\u003ca id=\"user-content-patches\" class=\"anchor\" aria-label=\"Permalink: Patches\" href=\"#patches\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSince there are some \u003ca href=\"https://www2.mmm.ucar.edu/wrf/users/wrfv3.8/known-prob-3.8.1.html\" rel=\"nofollow\"\u003eknown problems with WRF 3.8.1\u003c/a\u003e,\nwe have implemented the following patches provided by the WRF Users page:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www2.mmm.ucar.edu/wrf/src/fix/module_radiation_driver.F.fix-for-v3.8.1.tar.gz\" rel=\"nofollow\"\u003e\u003ccode\u003emodule_radiation_driver.F\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www2.mmm.ucar.edu/wrf/src/fix/module_cu_g3_random_seed_fix.F.gz\" rel=\"nofollow\"\u003e\u003ccode\u003emodule_cu_g3.F\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www2.mmm.ucar.edu/wrf/src/fix/Registry.EM_COMMON.v381.tar.gz\" rel=\"nofollow\"\u003e\u003ccode\u003eRegistry.EM_COMMON\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAll of these patches, as well as our custom patches, are included in the repository.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCompiling\u003c/h2\u003e\u003ca id=\"user-content-compiling\" class=\"anchor\" aria-label=\"Permalink: Compiling\" href=\"#compiling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWRF and WPS compilation is performed in bash. Please see the \u003ca href=\"https://github.com/federatedcloud/Docker-WRF-3.8.1-Fitch/blob/main/Dockerfile\"\u003eDockerfile\u003c/a\u003e\nfor full commands.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-folding-at-home-gpu\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#folding-at-home-gpu\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efolding-at-home-gpu\u003c/h1\u003e\n\u003cp\u003egpu image for folding at home\u003c/p\u003e\n\u003cp\u003esimple merge of nvidia cl image with folding at home v7.5.1 to enable gpu processing.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 8,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1620413771.0
+ "updated_at": 1584940583.0
},
{
"data_format": 2,
- "description": "singularity def file for flair(fluka)",
+ "description": null,
"filenames": [
- "flair.def",
- "flair-cern.def"
+ "Singularity.latest"
],
- "full_name": "ifurther/flair-def",
+ "full_name": "bioexcel/biobb_haddock",
"latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"https://biobb-haddock.readthedocs.io/en/latest/?badge=latest\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/59df560cf8b0622113f818a5a58a208df19e819ebe6795409cacdad4c9514fea/68747470733a2f2f72656164746865646f63732e6f72672f70726f6a656374732f62696f62622d686164646f636b2f62616467652f3f76657273696f6e3d6c6174657374\" alt=\"\" data-canonical-src=\"https://readthedocs.org/projects/biobb-haddock/badge/?version=latest\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://anaconda.org/bioconda/biobb_haddock\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a477fdb1fd9bc9eb7ffa6cae6a019c6d4c3902fd468b3126f1b78e56c7dcff83/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e7376673f7374796c653d666c6174\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://quay.io/repository/biocontainers/biobb_haddock\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ca418e4db0b3de91a09a5df4a59446da015b6164598a8bc255918e911484f84f/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d517561792e696f2d626c7565\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/docker-Quay.io-blue\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/Apache-2.0\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2a2157c971b7ae1deb8eb095799440551c33dcf61ea3d965d86b496a5a65df55/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d417061636865253230322e302d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/License-Apache%202.0-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-biobb_haddock\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#biobb_haddock\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebiobb_haddock\u003c/h1\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003ebiobb_haddock is the Biobb module collection to compute information-driven flexible protein-protein docking.\nBiobb (BioExcel building blocks) packages are Python building blocks that\ncreate new layer of compatibility and interoperability over popular\nbioinformatics tools.\nThe latest documentation of this package can be found in our readthedocs site:\n\u003ca href=\"http://biobb-haddock.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003elatest API documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-version\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVersion\u003c/h3\u003e\n\u003cp\u003ev3.8.0 2022.1\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cp\u003eUsing PIP:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eImportant:\u003c/strong\u003e PIP only installs the package. All the dependencies must be installed separately. To perform a complete installation, please use ANACONDA, DOCKER or SINGULARITY.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e pip install \"biobb_haddock\u0026gt;=3.8.0\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage: \u003ca href=\"https://biobb-haddock.readthedocs.io/en/latest/modules.html\" rel=\"nofollow\"\u003ePython API documentation\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing ANACONDA:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e conda install -c bioconda \"biobb_haddock\u0026gt;=3.8.0\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage: With conda installation BioBBs can be used with the \u003ca href=\"https://biobb-haddock.readthedocs.io/en/latest/modules.html\" rel=\"nofollow\"\u003ePython API documentation\u003c/a\u003e and the \u003ca href=\"https://biobb-haddock.readthedocs.io/en/latest/command_line.html\" rel=\"nofollow\"\u003eCommand Line documentation\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing DOCKER:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker pull quay.io/biocontainers/biobb_haddock:3.8.0--pyhdfd78af_0\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker run quay.io/biocontainers/biobb_haddock:3.8.0--pyhdfd78af_0 \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing SINGULARITY:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eMacOS users\u003c/strong\u003e: it\u0027s strongly recommended to avoid Singularity and use \u003cstrong\u003eDocker\u003c/strong\u003e as containerization system.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity pull --name biobb_haddock.sif shub://bioexcel/biobb_haddock\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity exec biobb_haddock.sif \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe command list and specification can be found at the \u003ca href=\"https://biobb-haddock.readthedocs.io/en/latest/command_line.html\" rel=\"nofollow\"\u003eCommand Line documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-copyright--licensing\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#copyright--licensing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCopyright \u0026amp; Licensing\u003c/h3\u003e\n\u003cp\u003eThis software has been developed in the \u003ca href=\"http://mmb.irbbarcelona.org\" rel=\"nofollow\"\u003eMMB group\u003c/a\u003e at the \u003ca href=\"http://www.bsc.es/\" rel=\"nofollow\"\u003eBSC\u003c/a\u003e \u0026amp; \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eIRB\u003c/a\u003e for the \u003ca href=\"http://bioexcel.eu/\" rel=\"nofollow\"\u003eEuropean BioExcel\u003c/a\u003e, funded by the European Commission (EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/823830\" rel=\"nofollow\"\u003e823830\u003c/a\u003e, EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/675728\" rel=\"nofollow\"\u003e675728\u003c/a\u003e).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e(c) 2015-2022 \u003ca href=\"https://www.bsc.es/\" rel=\"nofollow\"\u003eBarcelona Supercomputing Center\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e(c) 2015-2022 \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eInstitute for Research in Biomedicine\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eLicensed under the\n\u003ca href=\"https://www.apache.org/licenses/LICENSE-2.0\" rel=\"nofollow\"\u003eApache License 2.0\u003c/a\u003e, see the file LICENSE for details.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/39c04282e694d49ea0d56c716a27845cd25b9931f791484540f625dcecf68af2/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/39c04282e694d49ea0d56c716a27845cd25b9931f791484540f625dcecf68af2/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\" alt=\"\" title=\"Bioexcel\" data-canonical-src=\"https://bioexcel.eu/wp-content/uploads/2019/04/Bioexcell_logo_1080px_transp.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 9,
"topics": [],
- "updated_at": 1619686613.0
+ "updated_at": 1654724526.0
},
{
"data_format": 2,
- "description": "Singularity definition files for various projects",
+ "description": null,
"filenames": [
- "miniconda/Singularity",
- "hauntedhouse/Singularity",
- "hauntedhouse_freesurfer/Singularity"
+ "src/Singularity.def"
],
- "full_name": "mvdoc/singularity-def",
+ "full_name": "currocam/BiRC-Gaussian-graphical-models",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1495630055.0
+ "updated_at": 1698331009.0
},
{
"data_format": 2,
- "description": "Def File of Singularity",
+ "description": null,
"filenames": [
- "def/vae-mnist.def",
- "def/lafin.def",
- "def/stargan.def",
- "def/wav2pix.def",
- "def/singan.def",
- "def/contextual-attention.def",
- "def/edge-connect.def",
- "def/sc-fegan.def"
+ "anaconda2/Singularity.5.3.0",
+ "anaconda2/Singularity",
+ "anaconda3/Singularity.5.3.0",
+ "anaconda3/Singularity",
+ "gephi/Singularity.0.9.1",
+ "gephi/Singularity.0.9.2",
+ "jupyter/Singularity",
+ "jupyter/Singularity.4.4.0",
+ "rstudio/Singularity",
+ "rstudio/Singularity.3.5.1",
+ "rstudio/Singularity.3.4.4"
],
- "full_name": "Nahuel-Mk2/def-space",
+ "full_name": "OdumInstitute/singularity-dev-images",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003edef-space\u003c/h1\u003e\u003ca id=\"user-content-def-space\" class=\"anchor\" aria-label=\"Permalink: def-space\" href=\"#def-space\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository is def-space for Singularity\u003c/p\u003e\n",
+ "readme": "\u003ch1 id=\"user-content-singularity-dev-images\"\u003e\u003ca class=\"heading-link\" href=\"#singularity-dev-images\"\u003esingularity-dev-images\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1606189900.0
+ "updated_at": 1556725305.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "scripts/singularity_container_scripts/Singularity.def"
+ "misc/releases/21.12/Singularity.21.12",
+ "misc/releases/22.12/Singularity.22.12",
+ "misc/releases/19.06/Singularity.19.06",
+ "misc/releases/19.12/Singularity.19.12",
+ "misc/releases/20.06/Singularity.20.06",
+ "misc/releases/22.06/Singularity.22.06"
],
- "full_name": "aperonalope/TFM_computacional",
+ "full_name": "salome-eriksson/downward-unsolvability",
"latest_release": null,
- "readme": "\u003cp\u003eThis repository contains all the scripts and files that were used for the masters thesis titled \"vscRNAFinder: A biochemical-bioinformatic pipeline to detect small circular RNAs\"\u003c/p\u003e\n\u003cp\u003eVscRNAFinder is a bioquemical-bioinformatic pipeline aimed at detecting very small circle RNAs by detecting the repetitive units of rolling circle tandem repeats and aligning them to the genome.\nIt is a nextflow pipeline that uses a singularity container\u003c/p\u003e\n\u003cp\u003eThe scipts folder contain all the scripts used either for creating the graphs present on the masters thesis manuscript or the ones employed by nextflow\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2023 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2 id=\"user-content-tested-software-versions\"\u003e\u003ca class=\"heading-link\" href=\"#tested-software-versions\"\u003eTested software versions\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 22.04\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eGCC 11, GCC 12, Clang 14\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 10, Clang 12\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 12\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eAppleClang 14\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 11\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eAppleClang 13\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 22.1.1 and SoPlex 6.0.3+. On Ubuntu we\ntest both CPLEX and SoPlex. On Windows we currently only test CPLEX,\nand on macOS we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2 id=\"user-content-contributors\"\u003e\u003ca class=\"heading-link\" href=\"#contributors\"\u003eContributors\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2023 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2023 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2023 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2023 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2023 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2023 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2015, 2021-2023 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2018-2023 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2018-2020, 2023 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2021-2023 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2022-2023 Remo Christen\u003c/li\u003e\n\u003cli\u003e2023 Simon Dold\u003c/li\u003e\n\u003cli\u003e2023 Claudia S. Grundke\u003c/li\u003e\n\u003cli\u003e2023 Emanuele Tirendi\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2 id=\"user-content-history\"\u003e\u003ca class=\"heading-link\" href=\"#history\"\u003eHistory\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2 id=\"user-content-license\"\u003e\u003ca class=\"heading-link\" href=\"#license\"\u003eLicense\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1724876381.0
+ "updated_at": 1696843043.0
},
{
"data_format": 2,
- "description": "Counter RNA seq Window (CRAW) compute and visualize the coverage of RNA seq experiment.",
+ "description": null,
"filenames": [
- "Singularity.1.0",
- "Singularity"
+ "misc/releases/19.06/Singularity.19.06",
+ "misc/releases/22.12/Singularity.22.12",
+ "misc/releases/latest/Singularity",
+ "misc/releases/22.06/Singularity.22.06",
+ "misc/releases/21.12/Singularity.21.12",
+ "misc/releases/19.12/Singularity.19.12",
+ "misc/releases/20.06/Singularity.20.06"
],
- "full_name": "C3BI-pasteur-fr/craw",
+ "full_name": "ipc2023-classical/planner23",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCRAW_singularity\u003c/h1\u003e\u003ca id=\"user-content-craw_singularity\" class=\"anchor\" aria-label=\"Permalink: CRAW_singularity\" href=\"#craw_singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003esingularity definition files for Counter RnAseq Window\u003c/p\u003e\n\u003cp\u003eCRAW compute and visualize the coverage of RNA seq experiment.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eHomepage project: \u003ca href=\"https://gitlab.pasteur.fr/bneron/craw\" rel=\"nofollow\"\u003ehttps://gitlab.pasteur.fr/bneron/craw\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFull documentation: \u003ca href=\"http://bneron.pages.pasteur.fr/craw\" rel=\"nofollow\"\u003ehttp://bneron.pages.pasteur.fr/craw\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2 id=\"user-content-tested-software-versions\"\u003e\u003ca class=\"heading-link\" href=\"#tested-software-versions\"\u003eTested software versions\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 22.04\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eGCC 11, GCC 12, Clang 14\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 12\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eAppleClang 14\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 11\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eAppleClang 13\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2 id=\"user-content-contributors\"\u003e\u003ca class=\"heading-link\" href=\"#contributors\"\u003eContributors\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2015, 2021-2022 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2 id=\"user-content-history\"\u003e\u003ca class=\"heading-link\" href=\"#history\"\u003eHistory\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2 id=\"user-content-license\"\u003e\u003ca class=\"heading-link\" href=\"#license\"\u003eLicense\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 12,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1554456657.0
+ "updated_at": 1688990723.0
+ },
+ {
+ "data_format": 2,
+ "description": "Implementation of the Property-Directed Reachability algorithm in the Fast Downward planning system. Implementation of my masters thesis.",
+ "filenames": [
+ "misc/releases/19.06/Singularity.19.06",
+ "misc/releases/latest/Singularity",
+ "misc/releases/22.06/Singularity.22.06",
+ "misc/releases/21.12/Singularity.21.12",
+ "misc/releases/19.12/Singularity.19.12",
+ "misc/releases/20.06/Singularity.20.06"
+ ],
+ "full_name": "Tiim/fast-downward-pdr",
+ "latest_release": "pdr-final",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2 id=\"user-content-tested-software-versions\"\u003e\u003ca class=\"heading-link\" href=\"#tested-software-versions\"\u003eTested software versions\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 22.04\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eGCC 11, GCC 12, Clang 14\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 12\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eAppleClang 14\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 11\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eAppleClang 13\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2 id=\"user-content-contributors\"\u003e\u003ca class=\"heading-link\" href=\"#contributors\"\u003eContributors\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2015, 2021 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2 id=\"user-content-history\"\u003e\u003ca class=\"heading-link\" href=\"#history\"\u003eHistory\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2 id=\"user-content-license\"\u003e\u003ca class=\"heading-link\" href=\"#license\"\u003eLicense\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 1,
+ "topics": [
+ "fast-downward",
+ "pdr-algorithm",
+ "problem-solving"
+ ],
+ "updated_at": 1683295351.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "nextflow/modules/SVG/Singularity.def",
- "nextflow/modules/SCENVI/Singularity.def"
+ "misc/releases/19.06/Singularity.19.06",
+ "misc/releases/latest/Singularity",
+ "misc/releases/19.12/Singularity.19.12",
+ "misc/releases/20.06/Singularity.20.06"
],
- "full_name": "joechanlab/Xenium_lung_NE_Plasticity_2024",
+ "full_name": "IBM/shortest-optimal-downward",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eXenium Lung NE Plasticity\u003c/h1\u003e\u003ca id=\"user-content-xenium-lung-ne-plasticity\" class=\"anchor\" aria-label=\"Permalink: Xenium Lung NE Plasticity\" href=\"#xenium-lung-ne-plasticity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository contains the nextflow pipeline and scripts to analyze Xenium data for lung NE plasticity project.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003e[!NOTE]\nIf you are new to Nextflow and nf-core, please refer to \u003ca href=\"https://nf-co.re/docs/usage/installation\" rel=\"nofollow\"\u003ethis page\u003c/a\u003e on how to set-up Nextflow. Make sure to \u003ca href=\"https://nf-co.re/docs/usage/introduction#how-to-run-a-pipeline\" rel=\"nofollow\"\u003etest your setup\u003c/a\u003e with \u003ccode\u003e-profile test\u003c/code\u003e before running the workflow on actual data.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eFirst, prepare a samplesheet with your input data that looks as follows, where each row contains the sample name, path to Xenium Ranger output.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esamplesheet.csv\u003c/code\u003e:\u003c/p\u003e\n\u003cpre lang=\"csv\"\u003e\u003ccode\u003esample, xenium\nCONTROL_REP1, xenium_output_folder\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNext, prepare a parameter YAML file that looks as follows:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eparams.yml\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003esamplesheet\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e../results/samplesheet.csv\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e path to the sample sheet\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003eoutdir\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e../results/\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e output folder\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003eexperiment\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ename\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eXenium\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003eQC\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003egene_information_file\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e../data/annotation.csv\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e gene annotation file\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003eextra_markers\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003ePHOX2B\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e custom markers to plot\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003emax_memory\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e36.GB\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e memory\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003emax_cpus\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e6\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e cpu\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNow, you can run the pipeline. For local run on HPC with singularity installed, execute the following command\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run ./main.nf \\\n -profile singularity \\\n -params-file ./params.yml \\\n -w ./work/\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf you are using MSKCC lilac, you can use the pre-defined \u003ccode\u003elilac\u003c/code\u003e profile that uses the LSF executor.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run ./main.nf \\\n -profile lilac \\\n -params-file ./params.yml \\\n -w ./work/\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1 id=\"user-content-a-planner-for-shortest-cost-optimal-planning-problem\"\u003e\u003ca class=\"heading-link\" href=\"#a-planner-for-shortest-cost-optimal-planning-problem\"\u003eA planner for shortest cost optimal planning problem\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h1\u003e\n\u003ch2 id=\"user-content-the-code-implements-two-approaches-in-two-separate-branches\"\u003e\u003ca class=\"heading-link\" href=\"#the-code-implements-two-approaches-in-two-separate-branches\"\u003eThe code implements two approaches in two separate branches\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eCost-algebraic A* in branch \u003ccode\u003eshortest-optimal-cost-algebra\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eCost transformation with regular A* in branch \u003ccode\u003eshortest-optimal-cost-transformation\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eCiting:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@InProceedings{katz-et-al-socs2022,\n title = \"On Producing Shortest Cost-Optimal Plans\",\n author = \"Michael Katz and Gabriele R{\\\"o}ger and Malte Helmert\",\n booktitle = \"Proceedings of the 15th Annual Symposium on\n Combinatorial Search (SoCS 2022)\",\n publisher = \"{AAAI} Press\",\n year = \"2022\"\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2020 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"http://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttp://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2 id=\"user-content-tested-software-versions\"\u003e\u003ca class=\"heading-link\" href=\"#tested-software-versions\"\u003eTested software versions\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2017 (MSVC 19.16) and 2019 (MSVC 19.28)\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2 id=\"user-content-contributors\"\u003e\u003ca class=\"heading-link\" href=\"#contributors\"\u003eContributors\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2020 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2020 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2020 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2020 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2020 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2020 Salome Eriksson\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2018-2020 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2015 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2 id=\"user-content-history\"\u003e\u003ca class=\"heading-link\" href=\"#history\"\u003eHistory\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2 id=\"user-content-license\"\u003e\u003ca class=\"heading-link\" href=\"#license\"\u003eLicense\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1728663251.0
+ "updated_at": 1652293206.0
},
{
"data_format": 2,
- "description": null,
+ "description": "geant4 in contianer.",
"filenames": [
- "Singularity-v0.1",
"Singularity"
],
- "full_name": "fksato/caffe2_singularity",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ecaffe2_singularity\u003c/h1\u003e\u003ca id=\"user-content-caffe2_singularity\" class=\"anchor\" aria-label=\"Permalink: caffe2_singularity\" href=\"#caffe2_singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCaffe2 singularity environment for facebook research video models\u003c/h2\u003e\u003ca id=\"user-content-caffe2-singularity-environment-for-facebook-research-video-models\" class=\"anchor\" aria-label=\"Permalink: Caffe2 singularity environment for facebook research video models\" href=\"#caffe2-singularity-environment-for-facebook-research-video-models\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ecomplete installation guide:\n\u003ca href=\"https://github.com/facebookresearch/VMZ/blob/master/tutorials/Installation_guide.md\"\u003ehttps://github.com/facebookresearch/VMZ/blob/master/tutorials/Installation_guide.md\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUbuntu Version\u003c/h2\u003e\u003ca id=\"user-content-ubuntu-version\" class=\"anchor\" aria-label=\"Permalink: Ubuntu Version\" href=\"#ubuntu-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e16.04\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOfficial Nvidia docker image\u003c/h2\u003e\u003ca id=\"user-content-official-nvidia-docker-image\" class=\"anchor\" aria-label=\"Permalink: Official Nvidia docker image\" href=\"#official-nvidia-docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003envidia/cuda:10.0-cudnn7-devel-ubuntu16.04\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTested on\u003c/h2\u003e\u003ca id=\"user-content-tested-on\" class=\"anchor\" aria-label=\"Permalink: Tested on\" href=\"#tested-on\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eGPU architecture: Pascal\u003c/p\u003e\n\u003cp\u003eCuda version: 10.0\u003c/p\u003e\n\u003cp\u003eCudnn version: 7.4.2\u003c/p\u003e\n\u003cp\u003eCompute Compatibility: 6.0 (TORCH_CUDA_ARCH_LIST)\u003c/p\u003e\n",
+ "full_name": "ifurther/geant4-docker",
+ "latest_release": "11.0.1",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-geant4-docker\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#geant4-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egeant4-docker\u003c/h1\u003e\n\u003cp\u003egeant4 in contianer.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1571015501.0
+ "updated_at": 1638461581.0
},
{
"data_format": 2,
- "description": "Create a NeuroDebian Singularity image with all Python packages I need.",
+ "description": null,
"filenames": [
- "docker/NeuroDebian/Singularity",
- "docker/python2.7/Singularity",
- "docker/python3.6/Singularity"
+ "diffuser/Singularity.def"
],
- "full_name": "feilong/neurodebian-singularity",
+ "full_name": "ShravanRavi2002/Diffusion_RL_RectifiedFlow",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1502647456.0
+ "updated_at": 1680977053.0
},
{
"data_format": 2,
- "description": "SParsity-based Analysis of Reliable K-hubness (SPARK) library optimized to run on HPCs and computing clusters",
+ "description": "Singularity container with stack for LArCV/pytorch",
"filenames": [
- "for_build/containers/Singularity"
+ "Singularity"
],
- "full_name": "multifunkim/spark-hpc",
+ "full_name": "LArbys/singularity-larbys-pytorch",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003espark-hpc\u003c/h1\u003e\u003ca id=\"user-content-spark-hpc\" class=\"anchor\" aria-label=\"Permalink: spark-hpc\" href=\"#spark-hpc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSParsity-based Analysis of Reliable K-hubness (SPARK) library optimized to run on HPCs and computing clusters\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-larbys-pytorch\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-larbys-pytorch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-larbys-pytorch\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [],
- "updated_at": 1565355677.0
+ "updated_at": 1527174404.0
},
{
"data_format": 2,
- "description": "Imputation workflow with sanger impuation server, originally prepared for sceQTL-Gen consortium but copied here on 30 August, 2021 when updating to hg38 for sceQTL-Gen consortium",
+ "description": null,
"filenames": [
- "Singularity.WGpipeline",
- "Singularity.Imputation"
+ "Singularity.4",
+ "Singularity.2",
+ "Singularity.update",
+ "Singularity.0",
+ "Singularity.3",
+ "Singularity.1"
],
- "full_name": "powellgenomicslab/Imputation_pipeline",
+ "full_name": "ddbj/singularity_R-3.6.3-CRAN-Bioconductor-packages",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eWG1-pipeline-QC\u003c/h1\u003e\u003ca id=\"user-content-wg1-pipeline-qc\" class=\"anchor\" aria-label=\"Permalink: WG1-pipeline-QC\" href=\"#wg1-pipeline-qc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis pipeline was built to assist with imputation of SNP genotype data. The data will be preprocessed with instructions for imputation on Sanger Imputation server and finally processing after impation.\u003c/p\u003e\n\u003cp\u003ePlease see the \u003ca href=\"https://github.com/powellgenomicslab/Imputation_pipeline/wiki\"\u003eWiki\u003c/a\u003e for information on running the QC pipeline.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-ubuntu2004-lts--r-363--cran-packages--bioconductor-packages-\u306e-singularity\u30a4\u30e1\u30fc\u30b8\u30ec\u30b7\u30d4\u30d5\u30a1\u30a4\u30eb\" class=\"anchor\" aria-hidden=\"true\" href=\"#ubuntu2004-lts--r-363--cran-packages--bioconductor-packages-\u306e-singularity\u30a4\u30e1\u30fc\u30b8\u30ec\u30b7\u30d4\u30d5\u30a1\u30a4\u30eb\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eubuntu20.04 LTS + R-3.6.3 + CRAN packages + Bioconductor packages \u306e singularity\u30a4\u30e1\u30fc\u30b8\u30ec\u30b7\u30d4\u30d5\u30a1\u30a4\u30eb\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity.0 : ubuntu-20.04 LTS\u306bapt\u3067R\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u5f8c\u3001R\u3092\u524a\u9664\u003c/li\u003e\n\u003cli\u003eSingularity.1 : Singularity.0\u3067\u4f5c\u6210\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u306bR-3.6.3\u3092\u30bd\u30fc\u30b9\u304b\u3089\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u003c/li\u003e\n\u003cli\u003eSingularity.2 : Singularity.1\u3067\u4f5c\u6210\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u306bCRAN, Bioconductor\u30d1\u30c3\u30b1\u30fc\u30b8\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u306b\u5fc5\u8981\u306a\u30e9\u30a4\u30d6\u30e9\u30ea\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u003c/li\u003e\n\u003cli\u003eSingularity.3 : Singularity.2\u3067\u4f5c\u6210\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u306bCRAN\u30d1\u30c3\u30b1\u30fc\u30b8\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u003c/li\u003e\n\u003cli\u003eSingularity.4 : Singularity.3\u3067\u4f5c\u6210\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u306bCRAN\u30d1\u30c3\u30b1\u30fc\u30b8\u306e\u6b8b\u308a\u3068Bioconductor\u30d1\u30c3\u30b1\u30fc\u30b8\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u003c/li\u003e\n\u003cli\u003eSingularity.update : Singularity.4\u3067\u4f5c\u6210\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u5185\u306eR\u30d1\u30c3\u30b1\u30fc\u30b8\u3092\u66f4\u65b0\u30fb\u65b0\u898f\u8ffd\u52a0\u30d1\u30c3\u30b1\u30fc\u30b8\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u30a4\u30e1\u30fc\u30b8\u306e\u30d3\u30eb\u30c9\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u30a4\u30e1\u30fc\u30b8\u306e\u30d3\u30eb\u30c9\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u30a4\u30e1\u30fc\u30b8\u306e\u30d3\u30eb\u30c9\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity build ubuntu-20.04-R-install-base.simg Singularity.0 2\u0026gt;\u0026amp;1 | tee log.0\n$ sudo singularity build ubuntu-20.04-R-3.6.3.simg Singularity.1 2\u0026gt;\u0026amp;1 | tee log.1\n$ sudo singularity build ubuntu-20.04-R-3.6.3-2.simg Singularity.2 2\u0026gt;\u0026amp;1 | tee log.2\n$ sudo singularity build ubuntu-20.04-R-3.6.3-CRAN-packages.simg Singularity.3 2\u0026gt;\u0026amp;1 | tee log.3\n$ sudo singularity build ubuntu-20.04-R-3.6.3-CRAN-Bioconductor-packages.simg Singularity.4 2\u0026gt;\u0026amp;1 | tee log.4\n$ sudo singularity build ubuntu-20.04-R-3.6.3-CRAN-Bioconductor-packages-update.simg Singularity.update 2\u0026gt;\u0026amp;1 | tee log.update\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSingularity.update\u3092\u4f7f\u3063\u3066\u30a4\u30e1\u30fc\u30b8\u3092\u30d3\u30eb\u30c9\u3057\u305f\u969b\u306e\u30ed\u30b0\u3067\u3001\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u306b\u5931\u6557\u3057\u305f\u30d1\u30c3\u30b1\u30fc\u30b8\u3092\u628a\u63e1\u3059\u308b\u3002\n\u4e0d\u8db3\u3057\u3066\u3044\u308b\u30e9\u30a4\u30d6\u30e9\u30ea\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3092Singularity.update\u306b\u8ffd\u52a0\u3057\u3001\u518d\u5ea6\u30a4\u30e1\u30fc\u30b8\u306e\u30d3\u30eb\u30c9\u3092\u884c\u3046\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u751f\u6210\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u306e\u30b5\u30a4\u30ba\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u751f\u6210\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u306e\u30b5\u30a4\u30ba\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u751f\u6210\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u306e\u30b5\u30a4\u30ba\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e$ ls -lh\n-rwxr-xr-x 1 root root 2.1G 6\u6708 5 14:29 ubuntu-20.04-R-3.6.3-2.simg\n-rwxr-xr-x 1 root root 143G 6\u6708 12 15:17 ubuntu-20.04-R-3.6.3-CRAN-Bioconductor-packages.simg\n-rwxr-xr-x 1 root root 17G 6\u6708 8 10:59 ubuntu-20.04-R-3.6.3-CRAN-packages.simg\n-rwxr-xr-x 1 root root 1.4G 5\u6708 28 14:56 ubuntu-20.04-R-3.6.3.simg\n-rwxr-xr-x 1 root root 562M 5\u6708 28 12:34 ubuntu-20.04-R-install-base.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3067\u304d\u306a\u304b\u3063\u305fr\u30d1\u30c3\u30b1\u30fc\u30b8\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3067\u304d\u306a\u304b\u3063\u305fr\u30d1\u30c3\u30b1\u30fc\u30b8\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3067\u304d\u306a\u304b\u3063\u305fR\u30d1\u30c3\u30b1\u30fc\u30b8\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u30d1\u30c3\u30b1\u30fc\u30b8\u304c\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3055\u308c\u306a\u3044\n\u003cul\u003e\n\u003cli\u003eBioconductor (1)\n\u003cul\u003e\n\u003cli\u003echarm : Bioconductor 3.10\u306b\u542b\u307e\u308c\u3066\u3044\u306a\u3044\u305f\u3081\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u4f9d\u5b58\u30e9\u30a4\u30d6\u30e9\u30ea\u306e\u4e0d\u8db3\n\u003cul\u003e\n\u003cli\u003eCRAN (11)\n\u003cul\u003e\n\u003cli\u003eBALD\uff1a\u003ca href=\"http://mcmc-jags.sourceforge.net\" rel=\"nofollow\"\u003eJAGS\u003c/a\u003e\u304c\u5fc5\u8981\u3002\u003c/li\u003e\n\u003cli\u003eBRugs\uff1a\u003ca href=\"http://www.openbugs.net/w/FrontPage\" rel=\"nofollow\"\u003eOpenBUGS\u003c/a\u003e\u304c\u5fc5\u8981\u3002\u003c/li\u003e\n\u003cli\u003eOpenCL\uff1aNVIDIA CUDA\u7b49\u3067\u306eOpenCL\u30e9\u30f3\u30bf\u30a4\u30e0\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eROracle\uff1aOracle Instant Client or Oracle Database Client\u304c\u5fc5\u8981\u3002\u003c/li\u003e\n\u003cli\u003eRcplex\uff1aIBM ILOG CPLEX\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eRsymphony\uff1a\u003ca href=\"https://projects.coin-or.org/SYMPHONY\" rel=\"nofollow\"\u003eSYMPHONY\u003c/a\u003e\u304c\u5fc5\u8981\u3002\u003c/li\u003e\n\u003cli\u003ecplexAPI\uff1aIBM ILOG CPLEX\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003ekmcudaR\uff1aNVIDIA CUDA\u304c\u5fc5\u8981\u3002\u003c/li\u003e\n\u003cli\u003eqtbase\uff1aQt 4.x\u304c\u5fc5\u8981\u3002ubuntu 20.04\u306eapt\u30ea\u30dd\u30b8\u30c8\u30ea\u306b\u5165\u3063\u3066\u3044\u306a\u3044\u3002\u003c/li\u003e\n\u003cli\u003erLindo\uff1a\u003ca href=\"https://www.lindo.com/\" rel=\"nofollow\"\u003eLindo API\u003c/a\u003e\u304c\u5fc5\u8981\u3002LINDOAPI_HOME\u3092\u8a2d\u5b9a\u305b\u3088\u3002\u003c/li\u003e\n\u003cli\u003erunjags\uff1a\u003ca href=\"http://mcmc-jags.sourceforge.net\" rel=\"nofollow\"\u003eJAGS\u003c/a\u003e\u304c\u5fc5\u8981\u3002\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eBioconductor\uff0811\uff09\n\u003cul\u003e\n\u003cli\u003eChemineOB\uff1a\u003ca href=\"http://openbabel.org/wiki/Main_Page\" rel=\"nofollow\"\u003eOpen Babel\u003c/a\u003e \u304c\u5fc5\u8981\u3002\u003c/li\u003e\n\u003cli\u003eSharedObject\uff1a\u539f\u56e0\u4e0d\u660e\u003c/li\u003e\n\u003cli\u003emlm4omics\uff1a\u539f\u56e0\u4e0d\u660e\u003c/li\u003e\n\u003cli\u003ersbml\uff1alibsbml\u304c\u5fc5\u8981\uff08libsbml5-dev\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305f\u304c\u9055\u3046\u3088\u3046\u3060\uff09\u3002\u003c/li\u003e\n\u003cli\u003exps\uff1a\u003ca href=\"https://root.cern.ch/releases\" rel=\"nofollow\"\u003eroot_v5.34.36\u003c/a\u003e\u304c\u5fc5\u8981\u3002\u003c/li\u003e\n\u003cli\u003eRcwl\uff1acwltool\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305f\u304c\u3001cwlversion\u306e\u5224\u5b9a\u306b\u5931\u6557\u3057\u3066\u3044\u308b\u3002\u003c/li\u003e\n\u003cli\u003epermGPU\uff1aNVIDIA CUDA\u304c\u5fc5\u8981\u3002\u003c/li\u003e\n\u003cli\u003eMSGFplus\uff1a\u539f\u56e0\u4e0d\u660e\u003c/li\u003e\n\u003cli\u003escAlign\uff1atensorflow\u30d1\u30c3\u30b1\u30fc\u30b8\u3092\u4f7f\u3063\u3066tensorflow\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3059\u308b\u5fc5\u8981\u304c\u3042\u308b\u3002\u003c/li\u003e\n\u003cli\u003eMoonlightR\uff1a\u539f\u56e0\u4e0d\u660e\u003c/li\u003e\n\u003cli\u003eRariant\uff1a\u539f\u56e0\u4e0d\u660e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u4f9d\u5b58R\u30d1\u30c3\u30b1\u30fc\u30b8\u306e\u4e0d\u8db3 (20)\n\u003cul\u003e\n\u003cli\u003eBANOVA\uff1arunjags\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eBayesPostEst\uff1arunjags\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eIsotopeR\uff1arunjags\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003ePortfolioOptim\uff1aRsymphony\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eROI.plugin.cplex\uff1aRcplex\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eROI.plugin.symphony\uff1aRsymphony\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eRcmdrPlugin.RMTCJags\uff1arunjags\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eTreeBUGS\uff1arunjags\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003ebayescount\uff1arunjags\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003ebfw\uff1arunjags\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eora\uff1aROracle\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003epivmet\uff1arunjags\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eqtpaint\uff1aqtbase\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eBiGGR\uff1arsbml\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eMPTmultiverse\uff1aTreeBUGS, runjags\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eRcwlPipelines\uff1aRcwl\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eMSGFgui\uff1aMSGFplus\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eReplication\uff1arunjags\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003echarmData\uff1acharm\u304c\u5fc5\u8981\u003c/li\u003e\n\u003cli\u003eproteomics\uff1aMSGFplus\u304c\u5fc5\u8981\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1648700971.0
+ "updated_at": 1592213830.0
},
{
"data_format": 2,
- "description": "Scripts used for manuscript for Demuxafy",
+ "description": "Tools and information for building/running the Epoch Singularity container.",
"filenames": [
- "files/Singularity.chord"
+ "Singularity/Singularity"
],
- "full_name": "powellgenomicslab/Demuxafy_manuscript",
- "latest_release": "v1.0.0",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDemuxafy_manuscript\u003c/h1\u003e\u003ca id=\"user-content-demuxafy_manuscript\" class=\"anchor\" aria-label=\"Permalink: Demuxafy_manuscript\" href=\"#demuxafy_manuscript\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "full_name": "PlasmaFAIR/epoch_containers",
+ "latest_release": "v0.3.1",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-epoch-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#epoch-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEpoch Containers\u003c/h1\u003e\n\u003cp\u003eTools and information for building/running \u003ca href=\"https://epochpic.github.io/\" rel=\"nofollow\"\u003eEpoch\u003c/a\u003e using Docker/Singularity\ncontainers. This repository is targeted at users of the Viking HPC cluster at the\nUniversity of York, but the contents may be of use to other Epoch users.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003eContainers package up software and dependencies so that code compiled on one machine\ncan be reliably run on others. When used in conjunction with scientific software, they\nallow researchers to run code without needing to build it themselves, and they make\nit much easier to share reproducible workflows.\u003c/p\u003e\n\u003cp\u003eWe provide support for two container platforms: \u003ca href=\"https://docs.docker.com/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e and\n\u003ca href=\"https://docs.sylabs.io/guides/3.11/user-guide/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e. Docker is the most widely used platform, and\nhas been used here to build a \u0027base image\u0027 of Epoch on which other tools may be built.\nSingularity is an alternative that was designed from the ground up to be useable on\nHPC systems, so unlike Docker it can be run on multi-node architectures using MPI\nwithout issue.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-epoch-with-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-epoch-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Epoch with Singularity\u003c/h2\u003e\n\u003cp\u003eTo run Epoch on Viking, first create a directory within \u003ccode\u003e~/scratch\u003c/code\u003e in which you\nwant to run your code:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ssh \u0026lt;userid\u0026gt;@viking.york.ac.uk\n$ mkdir -p ~/scratch/epoch\n$ cd ~/scratch/epoch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou\u0027ll need to ensure your \u003ccode\u003einput.deck\u003c/code\u003e file is within this directory:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e From your own machine\u003c/span\u003e\n$ scp input.deck \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003euserid\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e@viking.york.ac.uk:/users/\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003euserid\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/scratch/epoch\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTo run the Singularity container, you\u0027ll need to load the following modules:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ module load tools/Singularity mpi/OpenMPI\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can then run using:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e library://liampattinson/epoch/epoch.sif:latest \\\n run_epoch --help\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis should download and cache the container, and then display some help text.\nYou can then run using:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e library://liampattinson/epoch/epoch.sif:latest \\\n run_epoch -d 2 -o \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e --photons\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNote that you should only run short tests on the login nodes. Let\u0027s break this down:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003esingularity exec\u003c/code\u003e: Run a singularity container with a user provided command.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003elibrary://\u003c/code\u003e: Download and run a container from \u003ca href=\"https://sylabs.io\" rel=\"nofollow\"\u003esylabs.io\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eliampattinson/epoch/epoch.sif:latest\u003c/code\u003e: The specific container we want to run. This\none is a prebuilt Epoch container using the \u003ccode\u003eSingularity/Singularity\u003c/code\u003e recipe file in\nthis repo. Note that the Singularity container is built on top of the Docker\ncontainer.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003erun_epoch\u003c/code\u003e: The scripting entrypoint to launch an Epoch variant.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-d 2\u003c/code\u003e: Run 2D epoch. Can also be 1D and 3D.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-o .\u003c/code\u003e: Location of the output directory, which should container you \u003ccode\u003einput.deck\u003c/code\u003e\nfile. Ensure this is somewhere within your scratch space!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--photons\u003c/code\u003e: Optional flag that switches on QED features.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor a simplified interface, we can also use the \u003ccode\u003eepoch_singularity.py\u003c/code\u003e script within\nthis repository:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ ./epoch_singularity.py -d 2 -o \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e --photons\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis script mimics Epoch\u0027s behaviour of prompting the user to input their output\ndirectory after the program is running, so the following also works:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e ./epoch_singularity.py -d 2 --photons\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTo run using MPI, we put the \u003ccode\u003empirun\u003c/code\u003e command \u003cem\u003ebefore\u003c/em\u003e the \u003ccode\u003esingularity\u003c/code\u003e command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ mpirun -n 2 \\\n singularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e library://liampattinson/epoch/epoch.sif:latest \\\n run_epoch -d 2 -o \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e --photons\n$ \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Or...\u003c/span\u003e\n$ mpirun -n 2 ./epoch_singularity.py -d 2 -o \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e --photons\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eWhen running the \u003ccode\u003eepoch_singularity.py\u003c/code\u003e script with MPI, note that we must supply the\noutput directory via the \u003ccode\u003e-o\u003c/code\u003e flag, and can\u0027t input it using \u003ccode\u003eecho output_dir |\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eFor real runs, we\u0027ll want to run Epoch via the Slurm scheduler. See the \u003ccode\u003e./examples\u003c/code\u003e\nfolder for an example job script \u003ccode\u003erun_sbatch.sh\u003c/code\u003e and an example \u003ccode\u003einput.deck\u003c/code\u003e. Once we\nhave a job script, we can submit a job using:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sbatch run_sbatch.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eWe can check the progress of our job using:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ squeue -u \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003euserid\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIt is also possible to pull the container from the remote repo:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull epoch.sif library://liampattinson/epoch/epoch.sif:latest\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis will download the container image to the file \u003ccode\u003eepoch.sif\u003c/code\u003e (\u003ccode\u003e.sif\u003c/code\u003e denoting a\n\u0027Singularity Image Format\u0027 file). You can then use \u003ccode\u003eepoch.sif\u003c/code\u003e in place of\n\u003ccode\u003elibrary://account/repo/container\u003c/code\u003e in any of the commands above.\u003c/p\u003e\n\u003cp\u003eTo see help text for the Singularity container, first pull it using the methods above,\nand then try:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity run-help epoch.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf you want to inspect the container, it has been set up so that the following\ncommand opens a bash shell inside of it:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity run epoch.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTry to avoid getting \u003ccode\u003esingularity exec\u003c/code\u003e and \u003ccode\u003esingularity run\u003c/code\u003e mixed up; the\nformer lets you specify which command you want to run, while the later runs a\npre-defined script.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-analysing-code-output\" class=\"anchor\" aria-hidden=\"true\" href=\"#analysing-code-output\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAnalysing code output\u003c/h2\u003e\n\u003cp\u003eIt is recommended to analyse Epoch output data on your own machine rather than on\nViking:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ scp \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003euserid\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e@viking.york.ac.uk:/users/\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003euserid\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/scratch/epoch/\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e.sdf \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou\u0027ll need a particular Python library to read \u003ccode\u003e.sdf\u003c/code\u003e files, and this is packaged with\nEpoch itself. To install this library, try:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git clone https://github.com/Warwick-Plasma/epoch\n$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e epoch/epoch1d\n$ make sdfutils\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNote that the SDF Python library is not packaged with modern best-practices in mind\n(i.e. using virtual environments, uploading packages to PyPI/conda-forge). It will\ninstall to \u003ccode\u003e~/.local/lib/python3.x/site-packages\u003c/code\u003e regardless of whether you\u0027re in a\n\u003ccode\u003evenv\u003c/code\u003e or \u003ccode\u003econda\u003c/code\u003e environment. If you feel you know what you\u0027re doing, you can manually\ncopy/move the installed files to the environment of your choice after installing, but\nit\u0027s recommended to just use the base user environment.\u003c/p\u003e\n\u003cp\u003ePlease see the \u003ca href=\"https://epochpic.github.io/\" rel=\"nofollow\"\u003eEpoch docs\u003c/a\u003e for info on using SDF analysis tools.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-epoch-with-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-epoch-with-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Epoch with Docker\u003c/h2\u003e\n\u003cp\u003eTo run Epoch on your own machine, you\u0027ll first need to install Docker if you don\u0027t have\nit already.\u003c/p\u003e\n\u003cp\u003eThe Epoch Docker container can be found at \u003ccode\u003eghcr.io/plasmafair/epoch:latest\u003c/code\u003e.\nTo run it, try:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker run --rm -v /path/to/output/dir:/output \\\n ghcr.io/plasmafair/epoch:latest -d 2 --photons\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBreaking down each component here:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003edocker run\u003c/code\u003e starts up the container and runs its \u0027entrypoint\u0027, which is the script\n\u003ccode\u003erun_epoch\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--rm\u003c/code\u003e automatically removes the container after running.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-v /path/to/output/dir:/output\u003c/code\u003e mounts the directory \u003ccode\u003e/path/to/output/dir\u003c/code\u003e on the\nhost machine to \u003ccode\u003e/output\u003c/code\u003e on the container. \u003ccode\u003e/path/to/output/dir\u003c/code\u003e should contain\nyour \u003ccode\u003einput.deck\u003c/code\u003e file before running.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eghcr.io/plasmafair/epoch:latest\u003c/code\u003e is the container to run. This will be downloaded\nthe first time you run the container, and cached for future use. It is created using\nthe file \u003ccode\u003eDocker/Dockerfile\u003c/code\u003e in this repo.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-d 2\u003c/code\u003e: Run 2D epoch. Can also be 1D and 3D.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--photons\u003c/code\u003e: Optional flag that switches on QED features.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eNote that you shouldn\u0027t mount your current working directory. Provided the second path\nprovided to \u003ccode\u003e-v\u003c/code\u003e is \u003ccode\u003e/output\u003c/code\u003e, there\u0027s no need to provide an argument to the \u003ccode\u003e-o\u003c/code\u003e flag.\nIf you want to open an interactive shell inside the container, try:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker run --rm -it -v /path/to/output/dir:/output \\\n --entrypoint /bin/bash ghcr.io/plasmafair/epoch:latest\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFor a simplified interface, try using the script \u003ccode\u003eepoch_docker.py\u003c/code\u003e. To achieve the\nsame results as the call above, try:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ ./epoch_docker.py -d 2 -o /path/to/output/dir --photons\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNote that the \u003ccode\u003e-o\u003c/code\u003e flag here refers to the run location on the host machine, not the\nlocation in the docker container. If \u003ccode\u003e-o\u003c/code\u003e is not provided, this script mimics the\nbehaviour of Epoch itself by prompting the user to input their output directory after\nthe program starts:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e /path/to/output/dir \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e ./epoch_docker.py -d 2 --photons\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-docker-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-docker-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding Docker images\u003c/h2\u003e\n\u003cp\u003eTo build a Docker image, enter the \u003ccode\u003eDocker\u003c/code\u003e directory and try:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker build \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e -t epoch\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can then run the container via:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker run --rm -v /path/to/output/dir:/output \\\n epoch -d 2 --photons\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ePlease see the \u003ca href=\"https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry\"\u003eonline docs\u003c/a\u003e to set up your GitHub account to permit pushing to\nthe GitHub Container Registry (GHCR). Once set up, you should tag your repo with the\nname it should use online:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker tag epoch ghcr.io/\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003emy_profile\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/epoch:0.1\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can then push using:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker push ghcr.io/\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003emy_profile\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/epoch:0.1\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-singularity-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-singularity-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding Singularity images\u003c/h2\u003e\n\u003cp\u003eThe file \u003ccode\u003eSingularity/Singularity\u003c/code\u003e contains the definitions for an Epoch Singularity\ncontainer. As this builds on the Docker image, it doesn\u0027t do much beyond updating\nsome file access permissions.\u003c/p\u003e\n\u003cp\u003eDue to permission issues, we can\u0027t build new containers directly on Viking. However,\nwe can make use of the Sylabs remote builder. To use this, first go to\n\u003ca href=\"https://sylabs.io\" rel=\"nofollow\"\u003esylabs.io\u003c/a\u003e and create an account. From there, you should be able to generate\nan \u0027access token\u0027. After doing so, copy the generated token to a file \u003ccode\u003e.token\u003c/code\u003e on\nyour system. Then:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity remote login\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eCopy-paste your access token when prompted. You can then build your image using:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity build --remote epoch.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis may take some time. Once it\u0027s done, you should find the image file \u003ccode\u003eepoch.sif\u003c/code\u003e\nin your current directory. You can run this container directly using \u003ccode\u003esingularity exec\u003c/code\u003e\nas shown above.\u003c/p\u003e\n\u003cp\u003eIf you wish to share your container with others, you\u0027ll first need to sign it. This can\nbe done using:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity keys newpair\n$ \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Fill in the prompts as they appear.\u003c/span\u003e\n$ \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Use the same email as your sylabs account.\u003c/span\u003e\n$ \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e You can leave passwords blank\u003c/span\u003e\n$ singularity sign epoch.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eWe can check it worked using:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity verify epoch.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFinally, we can upload it to Sylabs using:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity push epoch.sif library://\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003emy_sylabs_account\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/epoch/epoch.sif:latest\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIn addition to uploading an image with the \u003ccode\u003e:latest\u003c/code\u003e tag, we may also want to upload a\nversion with a version code like \u003ccode\u003e:1.0\u003c/code\u003e. If we add new features to the container, we\ncan then upload version \u003ccode\u003e:1.1\u003c/code\u003e etc. If we change how the container works in such a way\nthat our users must interact with it differently (e.g. we might have renamed an existing\nexecutable), we can then upload version \u003ccode\u003e:2.0\u003c/code\u003e etc.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-licensing\" class=\"anchor\" aria-hidden=\"true\" href=\"#licensing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicensing\u003c/h2\u003e\n\u003cp\u003eThis repo is licensed under the GNU GPLv3 license, as it contains files from the\nsimilarly-licensed \u003ca href=\"https://github.com/Warwick-Plasma/epoch\"\u003eEpoch repository\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1700598267.0
+ "updated_at": 1688409808.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for QIIME 2 (https://docs.qiime2.org/)",
"filenames": [
- "Singularity"
+ "Singularity.2019.4",
+ "Singularity.2020.6",
+ "Singularity.2021.11",
+ "Singularity.2018.11",
+ "Singularity.2021.2",
+ "Singularity.2022.2",
+ "Singularity.2019.1-picrust2",
+ "Singularity.2020.11-aldex2",
+ "Singularity.2020.11",
+ "Singularity.2019.10",
+ "Singularity.2022.8",
+ "Singularity.2018.2",
+ "Singularity.2021.4",
+ "Singularity.2019.7",
+ "Singularity.2020.2",
+ "Singularity.2019.7-picrust2",
+ "Singularity.2021.8",
+ "Singularity.2020.8",
+ "Singularity.2019.1"
],
- "full_name": "callaghanmt-containers/python_jupyter",
+ "full_name": "powerPlant/qiime2-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003epython_jupyter\u003c/h1\u003e\u003ca id=\"user-content-python_jupyter\" class=\"anchor\" aria-label=\"Permalink: python_jupyter\" href=\"#python_jupyter\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2268\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the QIIME 2 microbiome analysis package\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1553554603.0
+ "updated_at": 1638265189.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "volsung-cudnn8-runtime-ubuntu18.04/Singularity",
- "vdt_base/Singularity"
+ "environments/Singularity.preproc"
],
- "full_name": "nesi/containers",
+ "full_name": "yarikoptic/demo-cifar-preproc",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4539\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eUsing conventions described here.\n\u003ca href=\"https://singularityhub.github.io/singularityhub-docs/docs/getting-started/naming\" rel=\"nofollow\"\u003ehttps://singularityhub.github.io/singularityhub-docs/docs/getting-started/naming\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-materials-for-a-basic-demo-of-datalad-functionalities\" class=\"anchor\" aria-hidden=\"true\" href=\"#materials-for-a-basic-demo-of-datalad-functionalities\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMaterials for a basic demo of DataLad functionalities\u003c/h1\u003e\n\u003cp\u003eTo demonstrate\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eComposition of datasets\u003c/li\u003e\n\u003cli\u003eAutomated recording of commands results\u003c/li\u003e\n\u003cli\u003ePublishing to GitHub and FigShare\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1611608990.0
+ "updated_at": 1553541127.0
},
{
"data_format": 2,
- "description": null,
+ "description": "simple login wrapper for token entry to web applications",
"filenames": [
- "Singularity"
+ "Singularity",
+ "docs/singularity/examples/sh_notebook/Singularity.notebook",
+ "docs/singularity/examples/hello-world/Singularity.helloworld",
+ "docs/singularity/examples/notebook/Singularity.notebook"
],
- "full_name": "marchoeppner/metagenomic-profiling",
- "latest_release": "1.2",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/ikmb_bfx_logo.png\"\u003e\u003cimg src=\"images/ikmb_bfx_logo.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eIKMB Metagenomic profiling pipeline\u003c/h1\u003e\u003ca id=\"user-content-ikmb-metagenomic-profiling-pipeline\" class=\"anchor\" aria-label=\"Permalink: IKMB Metagenomic profiling pipeline\" href=\"#ikmb-metagenomic-profiling-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOverview\u003c/h2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-label=\"Permalink: Overview\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis pipelines analyses short reads and identifies the most likely species in the respective sample.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDocumentation\u003c/h3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-label=\"Permalink: Documentation\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDocumentation about the pipeline can be found in the \u003ccode\u003edocs/\u003c/code\u003e directory or under the links below:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/pipeline.md\"\u003eWhat happens in this pipeline?\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation and configuration\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "full_name": "vsoch/sh_login",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-shell-login-portal\" class=\"anchor\" aria-hidden=\"true\" href=\"#shell-login-portal\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eShell Login Portal\u003c/h1\u003e\n\u003cp\u003eThis is an experiment to provide a general web server to wrap access to\na particular port served by nginx. We do this by having the main nginx\nroot (/) serve as a proxy for the flask application, and then the Flask\napplication expects a particular environment variable (defined at runtime)\nto check against a token provided by the user. If the token is correct,\nthe Flask response adds a header to authenticate it as so, and returns\nthe response to the user. If the response is incorrect, the user is\nreturned permission denied (403). The user cannot go to the port to\nbypass the application because of the proxy, and not exposing the port\ndirectly.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDocker works fairly well, as we can not expose particular ports to the host\u003c/li\u003e\n\u003cli\u003eSingularity does not, because all ports are shared\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSee the \u003ca href=\"docs\"\u003edocs\u003c/a\u003e for details.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [],
- "updated_at": 1612364252.0
+ "updated_at": 1545323610.0
},
{
"data_format": 2,
- "description": "singularity image for deepribo",
+ "description": null,
"filenames": [
- "Singularity"
+ "code/Singularity.def",
+ "code/Singularity_COMMIT.def"
],
- "full_name": "RickGelhausen/deepribo_image",
+ "full_name": "inm7/vbc_mri_pipeline",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-containerized-structural-connectivity-sc-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#containerized-structural-connectivity-sc-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainerized structural connectivity (SC) pipeline\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-hidden=\"true\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eREQUIREMENTS\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eTo use the containerized SC pipeline, please install \u0027singularity\u0027 on your computing system: \u003ca href=\"https://sylabs.io/guides/3.3/user-guide/installation.html\" rel=\"nofollow\"\u003ehttps://sylabs.io/guides/3.3/user-guide/installation.html\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThis pipeline uses Freesurfer. If you do not have a license, please register for Freesurfer: \u003ca href=\"https://surfer.nmr.mgh.harvard.edu/registration.html\" rel=\"nofollow\"\u003ehttps://surfer.nmr.mgh.harvard.edu/registration.html\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eEssential files\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ecode/Singularity\u003c/code\u003e: Recipe file to be used with \u003ccode\u003esingularity build\u003c/code\u003e to generate a container image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecode/input.txt\u003c/code\u003e: Example pipeline parameter specification\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecode/container_SC_pipeline_JURECA.sh\u003c/code\u003e: Example SLURM submission scripts for the JURECA HPC system\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-instruction\" class=\"anchor\" aria-hidden=\"true\" href=\"#instruction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eINSTRUCTION\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-arguments\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-arguments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. ARGUMENTS\u003c/h3\u003e\n\u003cp\u003eThere are three main paths for this pipeline: working path, raw data path, and target (result) path. These paths have to be specified by the end-users based on their own computing system.\u003c/p\u003e\n\u003cp\u003eThe containerized SC pipeline consists of 4 modules: preprocessing, tractography, atlas transformation, and reconstruction. The containerized SC pipeline uses 2 arguments (module script and input file) as below.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --bind /mount/path:/mnt_sc Container_dwMRI.simg /usr/local/bin/container_SC_pipeline.sh /mnt_sc/working/path/input.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can also run a sigle module as below.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --bind /mount/path:/mnt_sc Container_dwMRI.simg /usr/local/bin/container_SC_preprocess.sh /mnt_sc/working/path/input.txt\nsingularity exec --bind /mount/path:/mnt_sc Container_dwMRI.simg /usr/local/bin/container_SC_tractography.sh /mnt_sc/working/path/input.txt\nsingularity exec --bind /mount/path:/mnt_sc Container_dwMRI.simg /usr/local/bin/container_SC_atlas_transformation.sh /mnt_sc/working/path/input.txt\nsingularity exec --bind /mount/path:/mnt_sc Container_dwMRI.simg /usr/local/bin/container_SC_reconstruct.sh /mnt_sc/working/path/input.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe first argument specifies a module script and the second argument specifies an input file of it.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-2-input\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-input\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. INPUT\u003c/h3\u003e\n\u003cp\u003eAn example of an input text file is the following.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Freesurfer license\n# ------------------\nemail=end.user@your-institute.de\ndigit=xxxxx\nline1=xxxxxxxxxxxxx\nline2=xxxxxxxxxxxxx\n\n# Input variables\n# ---------------\ngrp=INM # Name of dataset\ntract=100000 # Total number of streamlines for whole-brain tractography\natlname=atlas_prefix # Name of atlas for prefixing results\nnumparc=100 # Total number of regions in a given atlas\nshells=0,1000,2000,3000 # shells=0,1000,2000,3000 for HCP dwMRI, i.e., b-values\nnon_zero_shells=1000,2000,3000 # shells=1000,2000,3000 for HCP dwMRI\n\n# Paths setting\n# -------------\ntp=/mnt_tp # Target (result) path\nsp=/mnt_sp # Source (raw) data path\nfp=/mnt_fp # Subject\u0027s path for freesurfer\nap=/mnt_ap # Atlas path\natlas=atlas.nii.gz # Atlas on the MNI 1mm space (6th generation in FSL)\nmni=/usr/share/fsl/5.0/data/standard/MNI152_T1_1mm.nii.gz # Standard template for registration\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe parameters can be modified by the end-users. For licensing Freesurfer, they should get a license code via a registration with a license agreement and put the license code in the input text file. Input files should be prepared for each subject and each condition. For example, a process of 8 subjects with 2 conditions needs 16 input text files. All input text files should be in the working path, \u0027wp=/mount/path/to/scripts\u0027.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-3-data-structure\" class=\"anchor\" aria-hidden=\"true\" href=\"#3-data-structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. DATA STRUCTURE\u003c/h3\u003e\n\u003cp\u003eThe raw data path should have a data structure (BIDS) as below (in case of /mnt_sp=/path/to/DATA_DIR, grp=INM-BIDS, and sbj=sub-01).\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e/mnt_sp/INM-BIDS/sub-01/anat/sub-01_T1w.json\n/mnt_sp/INM-BIDS/sub-01/anat/sub-01_T1w.nii.gz\n/mnt_sp/INM-BIDS/sub-01/dwi/sub-01_dwi.bval\n/mnt_sp/INM-BIDS/sub-01/dwi/sub-01_dwi.bvec\n/mnt_sp/INM-BIDS/sub-01/dwi/sub-01_dwi.json\n/mnt_sp/INM-BIDS/sub-01/dwi/sub-01_dwi.nii.gz\n\nDATA_DIR (/mnt_sp)\n\u251c\u2500\u2500 INM-BIDS\n\u2502 \u251c\u2500\u2500 sub-01\n\u2502 \u2502\u00a0\u00a0 \u251c\u2500\u2500 anat\n\u2502 \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 sub-01_T1w.json\n\u2502 \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 sub-01_T1w.nii.gz\n\u2502 \u2502\u00a0\u00a0 \u251c\u2500\u2500 dwi\n\u2502 \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 sub-01_dwi.bval\n\u2502 \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 sub-01_dwi.bvec\n\u2502 \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 sub-01_dwi.json\n\u2502 \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 sub-01_dwi.nii.gz\n. . .\n. . .\n. . .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-4-example-script-for-the-condor\" class=\"anchor\" aria-hidden=\"true\" href=\"#4-example-script-for-the-condor\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. EXAMPLE SCRIPT FOR THE CONDOR\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\n\nCPUS=\u00272\u0027\nRAM=\u00278G\u0027\nDISK=\u002790G\u0027\nLOGS_DIR=\u0027/path/to/condor/logs/directory\u0027\nVBC_DWMRI=\u0027/path/to/container/Container_SC_pipeline.simg\u0027\nDATA_DIR=\u0027/path/to/data/directory/prior/to/BIDS\u0027\nATLAS_DIR=\u0027/path/to/atlas/directory\u0027\nOUTPUT_DIR=\u0027/path/to/output/directory\u0027\nFREESURFER_OUTPUT=\u0027/path/to/freesurfer/subjects/directory\u0027\nFREESURFER_LICENSE=\u0027/opt/freesurfer/6.0/license.txt\u0027\nINPUT_PARAMETERS=\u0027/path/to/input/text/file\u0027\n\n# create the logs dir if it doesn\u0027t exist\n[ ! -d \"${LOGS_DIR}\" ] \u0026amp;\u0026amp; mkdir -p \"${LOGS_DIR}\"\n\n# print the .submit header\nprintf \"# The environment\nuniverse = vanilla\ngetenv = True\nrequest_cpus = ${CPUS}\nrequest_memory = ${RAM}\nrequest_disk = ${DISK}\n\n# Execution\ninitial_dir = \\$ENV(HOME)/htcondor-templates/vbc_dwmri\nexecutable = /usr/bin/singularity\n\\n\"\n\n# loop over all subjects\nfor sub in 110411; do\n printf \"arguments = exec --cleanenv \\\n -B ${DATA_DIR}:/mnt_sp,${OUTPUT_DIR}:/mnt_tp,${FREESURFER_OUTPUT}:/mnt_fp,${ATLAS_DIR}:/mnt_ap,${FREESURFER_LICENSE}:/opt/freesurfer/license.txt,${INPUT_PARAMETERS}:/opt/input.txt \\\n ${VBC_DWMRI} \\\n /usr/local/bin/container_SC_pipeline.sh \\\n /opt/input.txt \\\n ${CPUS} \\\n ${sub}\\n\"\n printf \"log = ${LOGS_DIR}/\\$(Cluster).\\$(Process).${sub}.log\\n\"\n printf \"output = ${LOGS_DIR}/\\$(Cluster).\\$(Process).${sub}.out\\n\"\n printf \"error = ${LOGS_DIR}/\\$(Cluster).\\$(Process).${sub}.err\\n\"\n printf \"Queue\\n\\n\"\ndone\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-5-example-script-for-the-slurm\" class=\"anchor\" aria-hidden=\"true\" href=\"#5-example-script-for-the-slurm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e5. EXAMPLE SCRIPT FOR THE SLURM\u003c/h3\u003e\n\u003cp\u003eBased on the optimized configuration for the containerized SC pipeline on JURECA at Forschungszentrum J\u00fclich, we provide a script to run the SC pipeline, container_SC_pipeline_JURECA.sh. With a modification of three lines in it, you can use the script on JURECA. This script uses 9 arguments: a module name, 8 subject IDs.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esimg_path=/path/to/container/Container_dwMRI.simg\nwp=/mnt_sc/path/to/scripts\nmnt=/local/path/to/mount\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe following example is a script for the slurm system on JURECA. You can copy the following lines and create a file for \u0027sbatch\u0027, for instance, \u0027run_sc_pipeline.sbatch\u0027, then execute like this, \u0027sbatch run_sc_pipeline.sbatch\u0027.\u003c/p\u003e\n\u003cp\u003ePrepare 8 input files for each subject in the working path (wp=/mnt_sc/path/to/scripts) as below.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003einput_sub-01.txt\ninput_sub-02.txt\ninput_sub-03.txt\ninput_sub-04.txt\ninput_sub-05.txt\ninput_sub-06.txt\ninput_sub-07.txt\ninput_sub-08.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen, make a script for \u0027sbatch\u0027 as below.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\n#SBATCH -J SC_pipeline\n#SBATCH -o slurm_logs/SC_pipeline-out.%j\n#SBATCH -e slurm_logs/SC_pipeline-err.%j\n#SBATCH -A ${project_account}\n#SBATCH --nodes=1\n#SBATCH --time=16:00:00\n#SBATCH --mail-user=end.user@your-institute.de\n#SBATCH --mail-type=All\n#SBATCH --partition=batch\n\nbash container_SC_pipeline_JURECA.sh Preprocess sub-01 sub-02 sub-03 sub-04 sub-05 sub-06 sub-07 sub-08\nwait\n\nbash container_SC_pipeline_JURECA.sh Tractography sub-01 sub-02 sub-03 sub-04 sub-05 sub-06 sub-07 sub-08\nwait\n\nbash container_SC_pipeline_JURECA.sh Atlas_transformation sub-01 sub-02 sub-03 sub-04 sub-05 sub-06 sub-07 sub-08\nwait\n\nbash container_SC_pipeline_JURECA.sh Reconstruction sub-01 sub-02 sub-03 sub-04 sub-05 sub-06 sub-07 sub-08\nwait\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eEach module can perform independently. For instance, if the preprocessing module was already performed for considered subjects, then you can continue to perform on the tractography module for the given subjects. An advanced version will have more parameters such as tracking algorithms, tracking steps, tracking angles, and so forth.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-troubleshoot\" class=\"anchor\" aria-hidden=\"true\" href=\"#troubleshoot\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTROUBLESHOOT\u003c/h2\u003e\n\u003cp\u003eIf you have a problem to use the containerized SC pipeline. Please contact Kyesam Jung (\u003ca href=\"mailto:k.jung@fz-juelich.de\"\u003ek.jung@fz-juelich.de\u003c/a\u003e).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-acknowledgements\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgements\u003c/h2\u003e\n\u003cp\u003eThis development was supported by European Union\u2019s Horizon 2020 research and innovation programme under grant agreement \u003ca href=\"https://cordis.europa.eu/project/id/826421\" rel=\"nofollow\"\u003eVirtualBrainCloud (H2020-EU.3.1.5.3, grant no. 826421)\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1580979437.0
+ "updated_at": 1635942025.0
},
{
"data_format": 2,
- "description": "Spliced Transcripts Alignment to a Reference.",
+ "description": "Custom Linux Container Build for Large Scale File Parsing in High Performance Computing Environments",
"filenames": [
- "2.7.9a/Singularity",
- "2.7.10b/Singularity",
- "2.7.6a/Singularity"
+ "base-image-ubuntu-22.04/base-image/.singularity.d/Singularity"
],
- "full_name": "pscedu/singularity-star",
- "latest_release": "v2.7.10b",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-star/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-star/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-star/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-star/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/045d3775a082afd77b840cd32fde10dd75e09c910307d3b4f7647c037b7a4ef6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d73746172\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/045d3775a082afd77b840cd32fde10dd75e09c910307d3b4f7647c037b7a4ef6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d73746172\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-star\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/e558688ff5d4af5bf2ce91ee40e43c83deaa6078c30edf6b895a94497dcf95f7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d73746172\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e558688ff5d4af5bf2ce91ee40e43c83deaa6078c30edf6b895a94497dcf95f7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d73746172\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-star\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/89ccbf93867c716c4fb9024fc6d759c8722465a2221d907a0e42b806cb0478e2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d73746172\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/89ccbf93867c716c4fb9024fc6d759c8722465a2221d907a0e42b806cb0478e2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d73746172\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-star\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/42907d2df93df3e4e292a73cf6b96da5f0158eee37ee91309a0b50ceb8dbb50a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d73746172\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/42907d2df93df3e4e292a73cf6b96da5f0158eee37ee91309a0b50ceb8dbb50a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d73746172\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-star\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-star\u003c/h1\u003e\u003ca id=\"user-content-singularity-star\" class=\"anchor\" aria-label=\"Permalink: singularity-star\" href=\"#singularity-star\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/alexdobin/STAR\"\u003estar\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eSTAR\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/star/2.7.6a\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/star\u003c/code\u003e as \u003ccode\u003e2.7.6a.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "alexander-labarge/hpc-tika-build",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-high-performance-computing-hpc-file-parsing-solution---direct-access-to-gpu--cpu-resources\" class=\"anchor\" aria-hidden=\"true\" href=\"#high-performance-computing-hpc-file-parsing-solution---direct-access-to-gpu--cpu-resources\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHigh-Performance Computing (HPC) File Parsing Solution - Direct Access to GPU \u0026amp; CPU Resources\u003c/h1\u003e\n\u003cp\u003eThis solution provides direct access to GPU and CPU resources for high-performance computing (HPC) and high-throughput computing (HTC) environments. Unlike enterprise-based container frameworks, which are designed for microservices and require root privileges to install and run applications, this solution is optimized for complex applications that require all available resources without special privileges.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-targeted-toolsets-implemented\" class=\"anchor\" aria-hidden=\"true\" href=\"#targeted-toolsets-implemented\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTargeted Toolsets Implemented\u003c/h2\u003e\n\u003cp\u003eThis solution uses the following targeted toolsets:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eApache Tika\u2122 by Oracle\u003c/li\u003e\n\u003cli\u003eApptainer (formerly Singularity) by Berkeley National Laboratory\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-initial-cause-for-solution-development\" class=\"anchor\" aria-hidden=\"true\" href=\"#initial-cause-for-solution-development\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInitial Cause for Solution Development\u003c/h2\u003e\n\u003cp\u003eThe development of this solution was motivated by the need to parse 7.5 TB of digital forensics data produced and stored in a variety of non-standard formats. The parsing of all data is necessary to drive subsequent efforts wherein conjectures are made from the subsequent data parsed.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-why-apptainer-for-hpc-instead-of-virtual-machines-or-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#why-apptainer-for-hpc-instead-of-virtual-machines-or-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy Apptainer for HPC instead of Virtual Machines or Docker\u003c/h2\u003e\n\u003cp\u003eApptainer/Singularity is a container platform created for the HPC/HTC use case and presents key concepts for the scientific community:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eIt\u2019s designed to execute applications with bare-metal performance while retaining a high level of security, portability, and reproducibility.\u003c/li\u003e\n\u003cli\u003eContainers run rootless to prohibit privilege escalation.\u003c/li\u003e\n\u003cli\u003eAble to Leverage GPUs, FPGAs, high-speed networks, and filesystems.\u003c/li\u003e\n\u003cli\u003eA container platform for building and running Linux containers that packages software, libraries, and runtime compilers in a self-contained environment.\n\u003cul\u003e\n\u003cli\u003eApplication portability (single image file, contain all dependencies)\u003c/li\u003e\n\u003cli\u003eReproducibility, run cross platform, provide support for legacy OS and apps.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eAbility to run, and in modern systems also to be installed, without any root daemon or setuid privileges. This makes it safer for large computer centers with shared resources.\u003c/li\u003e\n\u003cli\u003ePreserves the permissions in the environment. The user outside the container can be the same user inside.\u003c/li\u003e\n\u003cli\u003eApptainer propagates most environment variables set on the host into the container, by default. Docker does not propagate any host environment variables into the container. Environment variables may change the behavior of software.\u003c/li\u003e\n\u003cli\u003eSimple integration with resource managers (SLURM in our case) and distributed computing frameworks because it runs as a regular application.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/945a382c-3488-4c65-a743-44f0a704c7a5\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/945a382c-3488-4c65-a743-44f0a704c7a5\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-development-steps\" class=\"anchor\" aria-hidden=\"true\" href=\"#development-steps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopment Steps:\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-test-host-machine-bare-metal\" class=\"anchor\" aria-hidden=\"true\" href=\"#test-host-machine-bare-metal\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest Host Machine (Bare Metal):\u003c/h3\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/0c14fa9e-2508-4c80-9883-f016eb70484f\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/0c14fa9e-2508-4c80-9883-f016eb70484f\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-1-apptainer---build-from-source-install-debian-packages-for-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-1-apptainer---build-from-source-install-debian-packages-for-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 1: Apptainer - Build from Source/ Install Debian Packages for Dependencies\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo apt-get install -y \\\n build-essential \\\n libseccomp-dev \\\n pkg-config \\\n uidmap \\\n squashfs-tools \\\n squashfuse \\\n fuse2fs \\\n fuse-overlayfs \\\n fakeroot \\\n cryptsetup \\\n curl wget git \\\n \u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e GOVERSION=1.20.6 OS=linux ARCH=amd64 \\\n wget -O /tmp/go\u003cspan class=\"pl-smi\"\u003e${GOVERSION}\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e${OS}\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e${ARCH}\u003c/span\u003e.tar.gz \\\n https://dl.google.com/go/go\u003cspan class=\"pl-smi\"\u003e${GOVERSION}\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e${OS}\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e${ARCH}\u003c/span\u003e.tar.gz \\\n sudo tar -C /usr/local -xzf /home/service-typhon/Downloads/go\u003cspan class=\"pl-smi\"\u003e${GOVERSION}\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e${OS}\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e${ARCH}\u003c/span\u003e.tar.gz \\\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eexport PATH=$PATH:/usr/local/go/bin\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc\n \u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc \\\n curl -sSfL https://raw.githubusercontent.com/golangci/golangci-lint/master/install.sh \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e sh -s -- -b \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003ego env GOPATH\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e/bin v1.51.1 \\\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eexport PATH=$PATH:$(go env GOPATH)/bin\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc\n \u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc \\\n git clone https://github.com/apptainer/apptainer.git \\\n \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e apptainer \\\n git checkout v1.2.0 \\\n ./mconfig \\\n \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e ./builddir \\\n make \\\n sudo make install\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-2-create-sandbox-directory--pull-ubuntu-2204---jammy-docker-container-base-ubuntu-build\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-2-create-sandbox-directory--pull-ubuntu-2204---jammy-docker-container-base-ubuntu-build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 2: Create Sandbox Directory / Pull Ubuntu 22.04 - Jammy Docker Container (Base Ubuntu Build)\u003c/h3\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/7aaf3e7e-cb74-40d1-9971-24808b0885f8\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/7aaf3e7e-cb74-40d1-9971-24808b0885f8\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-3-convert-to-immutable-sif-image-for-future-builds---demonstrate-shell-access\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-3-convert-to-immutable-sif-image-for-future-builds---demonstrate-shell-access\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 3: Convert to Immutable .sif Image for Future Builds - Demonstrate Shell Access\u003c/h3\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/88b8bf10-0e96-4ad3-8d91-6135140e9a00\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/88b8bf10-0e96-4ad3-8d91-6135140e9a00\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-4-definition-file-configuration-for-building-dependencies---1st-build-scuccessful\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-4-definition-file-configuration-for-building-dependencies---1st-build-scuccessful\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 4: Definition File Configuration for Building Dependencies - 1st Build Scuccessful\u003c/h3\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/ce94c114-8b0b-44b2-a7c0-33c26e4e36b7\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/ce94c114-8b0b-44b2-a7c0-33c26e4e36b7\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/0d3b4389-7329-4a06-b551-392b07586abc\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/0d3b4389-7329-4a06-b551-392b07586abc\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-5-now-that-there-is-a-base-instance-working-lets-create-a-live-sandbox-for-testing-from-the-image-we-just-created\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-5-now-that-there-is-a-base-instance-working-lets-create-a-live-sandbox-for-testing-from-the-image-we-just-created\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 5: Now that There is a Base Instance Working, lets create a live sandbox for testing from the image we just created:\u003c/h3\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/a45a0aed-0b5b-4cc9-abdb-5178ad5ac648\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/a45a0aed-0b5b-4cc9-abdb-5178ad5ac648\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-note-initial-containers-are-limited-to-64mb-in-size-fix\" class=\"anchor\" aria-hidden=\"true\" href=\"#note-initial-containers-are-limited-to-64mb-in-size-fix\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNote: Initial Containers are limited to 64MB in size. Fix:\u003c/h4\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/0f2b5e02-d8a1-42bc-995a-507b802c4c3a\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/0f2b5e02-d8a1-42bc-995a-507b802c4c3a\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-6-create-a-new-file-system-overlay-add-as-a-layer-in-sif-build\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-6-create-a-new-file-system-overlay-add-as-a-layer-in-sif-build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 6: Create a New File System Overlay/ add as a layer in SIF build:\u003c/h3\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/441d3a4a-18cd-4c74-8cf8-b7ffe18167eb\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/441d3a4a-18cd-4c74-8cf8-b7ffe18167eb\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-7-build-tika-configure-properly---completed-success\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-7-build-tika-configure-properly---completed-success\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 7: Build Tika/ Configure Properly - Completed/ Success:\u003c/h3\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/7c7320ab-999b-45b9-bd3c-beb8a19c1230\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/7c7320ab-999b-45b9-bd3c-beb8a19c1230\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-tika-dependency-install-script-implemented-at-post\" class=\"anchor\" aria-hidden=\"true\" href=\"#tika-dependency-install-script-implemented-at-post\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTIKA DEPENDENCY INSTALL SCRIPT IMPLEMENTED AT %POST\u003c/h4\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#!\u003c/span\u003e/bin/bash\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install Java\u003c/span\u003e\napt-get update\napt-get install -y software-properties-common\napt-get install -y wget\napt-get install -y default-jre\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install Tesseract OCR\u003c/span\u003e\napt-get install -y tesseract-ocr\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install ImageMagick\u003c/span\u003e\napt-get install -y imagemagick\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install Poppler\u003c/span\u003e\napt-get install -y poppler-utils\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install FFmpeg\u003c/span\u003e\napt-get install -y ffmpeg\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install Tika\u003c/span\u003e\nwget https://dlcdn.apache.org/tika/2.8.0/tika-app-2.8.0.jar\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install Maven\u003c/span\u003e\nwget https://dlcdn.apache.org/maven/maven-3/3.9.3/binaries/apache-maven-3.9.3-bin.tar.gz\ntar -xvf apache-maven-3.9.3-bin.tar.gz \nmv apache-maven-3.9.3 /opt\nM2_HOME=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eopt/apache-maven-3.9.3/\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\nPATH=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e$M2_HOME\u003c/span\u003e/bin:\u003cspan class=\"pl-smi\"\u003e$PATH\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e PATH\u003c/pre\u003e\u003c/div\u003e\n\u003ch4\u003e\u003ca id=\"user-content-tika-automated-test-end-of-install\" class=\"anchor\" aria-hidden=\"true\" href=\"#tika-automated-test-end-of-install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTIKA AUTOMATED TEST END OF INSTALL:\u003c/h4\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#!\u003c/span\u003e/bin/bash\u003c/span\u003e\n\n\u003cspan class=\"pl-k\"\u003efunction\u003c/span\u003e \u003cspan class=\"pl-en\"\u003echeck_tika_test\u003c/span\u003e {\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eChecking Tika test...\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-k\"\u003eif\u003c/span\u003e grep -q \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eTIKA PASSED TEST - ALEX\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e /output-files/tika-test-file.txt.json\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003ethen\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eTika test passed. FOUND STRING: TIKA PASSED TEST - ALEX in file.\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e============TIKA HPC BUILD COMPLETING FINAL STEPS================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-k\"\u003eelse\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eTika test failed.\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-k\"\u003efi\u003c/span\u003e\n}\n\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eStarting Tika... at \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003edate\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003einput-files directory contents:\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\ncp /opt/tika-test-file.txt /input-files\nls -l /input-files/\njava -jar /tika-app-2.8.0.jar -i /input-files -o /output-files -J\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eTika started.\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eTika output complete.\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eoutput-files directory contents:\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\nls -l /output-files\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eCompleted at: \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003edate\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eExtracting text from files...\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eExtracted JSON OUTPUT:\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Extract text from files \u0026amp; ignore JSON text\u003c/span\u003e\nextracted_text=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003efind /output-files -type f -exec strings {} \u003cspan class=\"pl-cce\"\u003e\\;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e grep -vE \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e^{.*}$\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Print extracted text\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e$extracted_text\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Check Tika test\u003c/span\u003e\ncheck_tika_test\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-8-final-beta-build-script-other-bash-scripts-embedded\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-8-final-beta-build-script-other-bash-scripts-embedded\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSTEP 8: FINAL BETA BUILD SCRIPT (OTHER BASH SCRIPTS EMBEDDED)\u003c/h3\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/71d64b44-a95e-484b-ad2d-082d3bc9ab60\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/71d64b44-a95e-484b-ad2d-082d3bc9ab60\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1668134054.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1690283498.0
},
{
"data_format": 2,
- "description": "message of the day examples for Singularity containers",
+ "description": null,
"filenames": [
- "graphic/Singularity",
- "fortune/Singularity.lolcow",
- "fortune/Singularity",
- "asciiart/Singularity",
- "general/Singularity",
- "greeting/Singularity",
- "help/Singularity"
+ "containers/Singularity.1.3.3.el7"
],
- "full_name": "singularityhub/motd",
+ "full_name": "pestoura/OpenHPC",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eMessage of the Day\u003c/h1\u003e\u003ca id=\"user-content-message-of-the-day\" class=\"anchor\" aria-label=\"Permalink: Message of the Day\" href=\"#message-of-the-day\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003efor Singularity containers\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://asciinema.org/a/223333?speed=2\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8faea5a9de38c71271a17454687573c439d37ecfaec6d803dfcd064657aa7a5f/68747470733a2f2f61736369696e656d612e6f72672f612f3232333333332e737667\" alt=\"asciicast\" data-canonical-src=\"https://asciinema.org/a/223333.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eNote that these were modified for Singularity 3.x due to a \u003ca href=\"https://github.com/singularityhub/motd/issues/2\"\u003eloss of functionality\u003c/a\u003e\nto customize the actions shell file. If you are looking for the original recipes for 2.x containers,\nsee \u003ca href=\"https://github.com/singularityhub/motd/tree/release/2.x\"\u003erelease/2.x\u003c/a\u003e. The current\nmaster should work on both.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eWhat is a message of the day?\u003c/h2\u003e\u003ca id=\"user-content-what-is-a-message-of-the-day\" class=\"anchor\" aria-label=\"Permalink: What is a message of the day?\" href=\"#what-is-a-message-of-the-day\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you\u0027ve ever logged into a linux cluster, or played a computer\ngame like Half Life or World of Warcraft, you might be greeted with some\nasciiart, or something along the lines of a \"tip of the day.\" This is more\nofficial called a \"message of the day,\" (short is \u003ca href=\"https://en.wikipedia.org/wiki/Motd_(Unix)\" rel=\"nofollow\"\u003emotd\u003c/a\u003e\nand there is a bit of \u003ca href=\"https://ownyourbits.com/2017/04/05/customize-your-motd-login-message-in-debian-and-ubuntu/\" rel=\"nofollow\"\u003ehistory behind it\u003c/a\u003e. In short, we print a message to the terminal\nfor the user to see when he or she first logs into a shell.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow can we use motd with containers?\u003c/h2\u003e\u003ca id=\"user-content-how-can-we-use-motd-with-containers\" class=\"anchor\" aria-label=\"Permalink: How can we use motd with containers?\" href=\"#how-can-we-use-motd-with-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn the context of a container, we might want to give the user a friendly message\nif they shell inside. The simplest use case is to greet the user. A more useful\nuse case is to provide some help for how to interact with the container, or\nwhere to find documentation.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow do we add motd to Singularity containers?\u003c/h2\u003e\u003ca id=\"user-content-how-do-we-add-motd-to-singularity-containers\" class=\"anchor\" aria-label=\"Permalink: How do we add motd to Singularity containers?\" href=\"#how-do-we-add-motd-to-singularity-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf we are creating a Singularity container,\nwe can\u0027t just echo a message in the runscript, because this gets executed on\na shell \u003cem\u003eor\u003c/em\u003e a run. We need to edit the \u003ccode\u003e/.singularity.d/actions/shell\u003c/code\u003e\nscript that is executed \u003cstrong\u003eonly\u003c/strong\u003e on a shell.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity MOTDs\u003c/h1\u003e\u003ca id=\"user-content-singularity-motds\" class=\"anchor\" aria-label=\"Permalink: Singularity MOTDs\" href=\"#singularity-motds\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn this repository, we will provide you with a few fun examples for generating\nmessages of the day in Singularity containers.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"general\"\u003egeneral\u003c/a\u003e: will show you how to customize a message for shell, exec, run, or test.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"greeting\"\u003egreeting\u003c/a\u003e: a simple message of the day to greet the user\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"fortune\"\u003efortune\u003c/a\u003e: give the user a fortune instead, add a cow, and some color!\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"help\"\u003ehelp\u003c/a\u003e: show the container\u0027s %help section to the user when they shell inside\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"asciiart\"\u003easciiart\u003c/a\u003e: generate a greeting with awesome asciiart!\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"graphic\"\u003egraphic\u003c/a\u003e: generate a colored graphic to surprise the user with.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eClearly, many of these examples are for fun, and others are better for communicating\ninformation. I\u0027m of the firm belief that we should aspire for both - interaction\nwith containers should be both informative and fun.\u003c/p\u003e\n",
+ "readme": "\n\u003ch1\u003e\u003ca id=\"\" class=\"anchor\" aria-hidden=\"true\" href=\"#\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/openhpc/ohpc/blob/master/docs/recipes/install/common/figures/ohpc_logo.png\"\u003e\u003cimg src=\"https://github.com/openhpc/ohpc/raw/master/docs/recipes/install/common/figures/ohpc_logo.png\" width=\"170\" valign=\"middle\" hspace=\"5\" alt=\"OpenHPC\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/h1\u003e\n\n\u003ch2\u003e\u003ca id=\"user-content-community-building-blocks-for-hpc-systems\" class=\"anchor\" aria-hidden=\"true\" href=\"#community-building-blocks-for-hpc-systems\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCommunity building blocks for HPC systems\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThis stack provides a variety of common, pre-built ingredients required to\ndeploy and manage an HPC Linux cluster including provisioning tools, resource\nmanagement, I/O clients, runtimes, development tools, containers, and a variety of\nscientific libraries.\u003c/p\u003e\n\u003cp\u003eThere are currently two release series: \u003ca href=\"https://github.com/openhpc/ohpc/wiki/1.3.X\"\u003e1.3.x\u003c/a\u003e and \u003ca href=\"https://github.com/openhpc/ohpc/wiki/2.x\"\u003e2.x\u003c/a\u003e,\nwhich target different major Linux OS distributions. The 1.3.x series targets\nCentOS7 and SLES12 while the 2.x series targets CentOS8 and Leap15.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-hidden=\"true\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting started\u003c/h3\u003e\n\u003cp\u003eOpenHPC provides pre-built binaries via repositories for use with standard\nLinux package manager tools (e.g. \u003ccode\u003eyum\u003c/code\u003e or \u003ccode\u003ezypper\u003c/code\u003e). To get started,\nyou can enable an OpenHPC repository locally through installation of an\n\u003ccode\u003eohpc-release\u003c/code\u003e RPM which includes gpg keys for package signing and defines\nthe URL locations for [base] and [update] package repositories. Installation\nguides tailored for each supported provisioning system and resource manager\nwith detailed example instructions for installing a cluster are also available.\nCopies of the \u003ccode\u003eohpc-release\u003c/code\u003e package and installation guides along with\nmore information is available on the relevant release series pages\n(\u003ca href=\"https://github.com/openhpc/ohpc/wiki/1.3.X\"\u003e1.3.x\u003c/a\u003e or \u003ca href=\"https://github.com/openhpc/ohpc/wiki/2.x\"\u003e2.x\u003c/a\u003e).\u003c/p\u003e\n\u003chr\u003e\n\u003ch3\u003e\u003ca id=\"user-content-questions-comments-or-bug-reports\" class=\"anchor\" aria-hidden=\"true\" href=\"#questions-comments-or-bug-reports\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuestions, Comments, or Bug Reports?\u003c/h3\u003e\n\u003cp\u003eSubscribe to the \u003ca href=\"https://groups.io/g/openhpc-users\" rel=\"nofollow\"\u003eusers email list\u003c/a\u003e or see the\n\u003ca href=\"https://openhpc.community/\" rel=\"nofollow\"\u003ehttps://openhpc.community/\u003c/a\u003e page for more pointers.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-additional-software-requests\" class=\"anchor\" aria-hidden=\"true\" href=\"#additional-software-requests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAdditional Software Requests?\u003c/h3\u003e\n\u003cp\u003ePlease see the component \u003ca href=\"https://github.com/openhpc/submission\"\u003esubmission page\u003c/a\u003e for more information\nregarding new software inclusion requests.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-contributing-to-openhpc\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing-to-openhpc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing to OpenHPC\u003c/h3\u003e\n\u003cp\u003ePlease see the steps described in \u003ca href=\"CONTRIBUTING.md\"\u003eCONTRIBUTING.md\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-register-your-system\" class=\"anchor\" aria-hidden=\"true\" href=\"#register-your-system\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRegister your system\u003c/h3\u003e\n\u003cp\u003eIf you are using elements of OpenHPC, please consider registering your system(s)\nusing the \u003ca href=\"https://drive.google.com/open?id=1KvFM5DONJigVhOlmDpafNTDDRNTYVdolaYYzfrHkOWI\" rel=\"nofollow\"\u003eSystem Registration Form\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "singularity-container",
- "motd",
- "message-of-the-day"
- ],
- "updated_at": 1639382975.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1679150954.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "envs/Singularity.1",
+ "envs/Singularity.1.2",
+ "envs/Singularity.1.1"
],
- "full_name": "marchoeppner/exome-seq",
+ "full_name": "adswa/test_simg",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/ikmb_bfx_logo.png\"\u003e\u003cimg src=\"images/ikmb_bfx_logo.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eExome-seq Pipeline\u003c/h1\u003e\u003ca id=\"user-content-exome-seq-pipeline\" class=\"anchor\" aria-label=\"Permalink: Exome-seq Pipeline\" href=\"#exome-seq-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis pipeline offers a end-to-end workflow for exome analysis using the GATK4 toolchain\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003etrimming with Fastp\u003c/li\u003e\n\u003cli\u003eread alignment with BWA\u003c/li\u003e\n\u003cli\u003eduplicate marking using Picard MarkDuplicates\u003c/li\u003e\n\u003cli\u003equality score recalibration\u003c/li\u003e\n\u003cli\u003egvcf calling\u003c/li\u003e\n\u003cli\u003ejoint variant calling\n-- variant hard-filtering [default]\n-- variant recalibration (SNPs and Indels) and filtering [optional, off by default and only recommended for \u0026gt;= 30 exomes]\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe result will be a multi-sample VCF file as well as a list of VCF files for each sample.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDocumentation\u003c/h2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-label=\"Permalink: Documentation\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/pipeline.md\"\u003eWhat happens in this pipeline?\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation and configuration\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1568723827.0
+ "updated_at": 1601186003.0
},
{
"data_format": 2,
- "description": "This repo contains the singularity container to run snpPhylo which will build a phyogenetic tree from SNPS",
+ "description": null,
"filenames": [
- "Singularity.1.0.0"
+ "Singularity"
],
- "full_name": "ISUGIFsingularity/snpPhylo",
+ "full_name": "callaghanmt/cont_autobuild",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esnpPhylo\u003c/h1\u003e\u003ca id=\"user-content-snpphylo\" class=\"anchor\" aria-label=\"Permalink: snpPhylo\" href=\"#snpphylo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repo contains the singularity container to run snpPhylo which will build a phyogenetic tree from SNPS\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-cont_autobuild\" class=\"anchor\" aria-hidden=\"true\" href=\"#cont_autobuild\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econt_autobuild\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1529509581.0
+ "updated_at": 1582590721.0
},
{
"data_format": 2,
- "description": "Genome Annotation Tools",
+ "description": null,
"filenames": [
- "Singularity.FastQC",
- "Singularity.SAMtools",
- "Singularity.BRAKER",
- "Singularity.Diamond",
- "Singularity.BLAST",
- "Singularity.Augustus",
- "Singularity.RepeatModeler",
- "Singularity.RepeatMasker",
- "Singularity.GeneMark",
- "Singularity.Trimmomatic",
- "Singularity.SRAToolkit",
- "Singularity.STAR"
+ "hello-world/Singularity",
+ "singularity-definitions/Singularity.git-session",
+ "singularity-definitions/Singularity.hello-world"
],
- "full_name": "williamssanders/annotate",
+ "full_name": "kaczmarj/container-workshop",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eannotate\u003c/h1\u003e\u003ca id=\"user-content-annotate\" class=\"anchor\" aria-label=\"Permalink: annotate\" href=\"#annotate\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eGenome Annotation Tools\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-code-for-container-workshop\" class=\"anchor\" aria-hidden=\"true\" href=\"#code-for-container-workshop\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCode for container workshop\u003c/h1\u003e\n\u003cp\u003eSee \u003ca href=\"https://www.eventbrite.com/e/reproducible-research-in-computational-science-tickets-41433469623\" rel=\"nofollow\"\u003ethe Eventbrite page\u003c/a\u003e for more information.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1627567602.0
+ "updated_at": 1532718524.0
},
{
"data_format": 2,
- "description": "Kraken 2 is the newest version of Kraken, a taxonomic classification system using exact k-mer matches to achieve high accuracy and fast classification speeds.",
+ "description": "singularity image for biocontainers blast (anaconda)",
"filenames": [
- "2.1.2/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-kraken2",
+ "full_name": "researchapps/blast",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-kraken2/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-kraken2/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-kraken2/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-kraken2/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/41387ab28ffce0d6eb470b0985070ed2f26a5482cb76c030e7808e61c6f7bff6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6b72616b656e32\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/41387ab28ffce0d6eb470b0985070ed2f26a5482cb76c030e7808e61c6f7bff6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6b72616b656e32\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-kraken2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/e09d4753dfe7d898dae179b7a4fb26537ecae9ea5ef93c14d72565bbc57bdf65/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6b72616b656e32\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e09d4753dfe7d898dae179b7a4fb26537ecae9ea5ef93c14d72565bbc57bdf65/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6b72616b656e32\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-kraken2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5c939d3d6c35cabd4124398d1bd40917486d7009350ee47978428e4fbd940497/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6b72616b656e32\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c939d3d6c35cabd4124398d1bd40917486d7009350ee47978428e4fbd940497/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6b72616b656e32\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-kraken2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/8aa53054e06c22dace4c851fb49c4740abe4d366f4e21895d122b09a60899b65/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6b72616b656e32\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8aa53054e06c22dace4c851fb49c4740abe4d366f4e21895d122b09a60899b65/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6b72616b656e32\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-kraken2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-kraken2\u003c/h1\u003e\u003ca id=\"user-content-singularity-kraken2\" class=\"anchor\" aria-label=\"Permalink: singularity-kraken2\" href=\"#singularity-kraken2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web\u0026amp;PAGE_TYPE=BlastDocs\u0026amp;DOC_TYPE=Download\" rel=\"nofollow\"\u003ekraken2\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the other scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/kraken2/2.1.2\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/kraken2\u003c/code\u003e as \u003ccode\u003e2.1.2.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-blast\" class=\"anchor\" aria-hidden=\"true\" href=\"#blast\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBlast\u003c/h1\u003e\n\u003cp\u003eThis is a singularity image to deploy blast.\u003c/p\u003e\n\u003cp\u003eThis will produce a Singularity image (suitable for running in a cluster environment) using \u003ca href=\"https://hub.docker.com/r/broadinstitute/picard/\" rel=\"nofollow\"\u003ehttps://hub.docker.com/r/broadinstitute/picard/\u003c/a\u003e. We do this by way of a bootstrap file for the Docker image.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-1-install-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-install-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Install Singularity\u003c/h2\u003e\n\u003cp\u003eInstructions can be found on the \u003ca href=\"https://singularityware.github.io\" rel=\"nofollow\"\u003esingularity site\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-2-bootstrap-the-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-bootstrap-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Bootstrap the image\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity create --size 4000 blast.img\nsudo singularity bootstrap blast.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-3-run-commands\" class=\"anchor\" aria-hidden=\"true\" href=\"#3-run-commands\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. Run commands\u003c/h2\u003e\n\u003cp\u003eHow to access the blast runtime executables?\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e ./blast.img\n\nThis container provides the following executables:\n2to3\t\t genbrk\t\t python-config\nactivate\t gencfu\t\t python2\nblast_formatter gencnval\t\t python2.7\nblastdb_aliastool gendict\t\t rpsblast\nblastdbcheck\t gene_info_reader\t rpstblastn\nblastdbcmd\t genrb\t\t seedtop\nblastdbcp\t icu-config\t\t segmasker\nblastn\t\t icuinfo\t\t seqdb_demo\nblastp\t\t idle\t\t\t seqdb_perf\nblastx\t\t legacy_blast.pl\t smtpd.py\nc_rehash\t makeblastdb\t\t sqlite3\nconda\t\t makeconv\t\t tblastn\nconda-env\t makembindex\t\t tblastx\nconvert2blastmask makeprofiledb\t tclsh8.5\ndatatool\t openssl\t\t test_pcre\ndeactivate\t pip\t\t\t uconv\ndeltablast\t pkgdata\t\t update_blastdb.pl\nderb\t\t project_tree_builder wheel\ndustmasker\t psiblast\t\t windowmasker\neasy_install\t pydoc\t\t windowmasker_2.2.22_adapter.py\neasy_install-2.7 python\t\t wish8.5\n\nExample usage: blast.img blastn [args] [options]\n\n\n\n ./blast.img blastn\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1629226178.0
+ "updated_at": 1484518249.0
},
{
"data_format": 2,
- "description": "Singularity container recipe for Deep Learning with GPU for architecture x86_64 based on a CentOS 7. In the specific: centOS 7 with cuda library (10.0-devel-centos7) GNU compiler 7 Python 3.6 OpenMPI 2.1.1 (compiled with support for psm2, pmix, verbs) Tensorflow 1.14.0 GPU (pip) Py-Torch 1.4.0 GPU (pip) Torchvision 0.5.0 CPU (pip) MxNet 1.5.1 CPU (pip) Horovod 0.19.1 (compiled with Tensorflow, Pytorch, MxNet) This recipe works on in the Cineca cluster (arch x86_64): Galileo",
+ "description": "Singularity definition file for pycortex",
"filenames": [
"Singularity"
],
- "full_name": "CINECA-HPC/container_deep_learning_gpu_centos7_x86_64",
+ "full_name": "mvdoc/pycortex-singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003econtainer_deep_learning_gpu_centos7_x86_64\u003c/h1\u003e\u003ca id=\"user-content-container_deep_learning_gpu_centos7_x86_64\" class=\"anchor\" aria-label=\"Permalink: container_deep_learning_gpu_centos7_x86_64\" href=\"#container_deep_learning_gpu_centos7_x86_64\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eContainer recipes for Deep Learning with GPU for architecture x86_64 based on a CentOS 7. In the specific:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCentOS 7 with cuda library (10.0-devel-centos7)\u003c/li\u003e\n\u003cli\u003eGNU compiler 7\u003c/li\u003e\n\u003cli\u003ePython 3.6\u003c/li\u003e\n\u003cli\u003eOpenMPI 2.1.1 (compiled with support for psm2, pmix, verbs)\u003c/li\u003e\n\u003cli\u003eTensorflow 1.14.0 GPU (pip)\u003c/li\u003e\n\u003cli\u003ePy-Torch 1.4.0 GPU (pip)\u003c/li\u003e\n\u003cli\u003eTorchvision 0.5.0 CPU (pip)\u003c/li\u003e\n\u003cli\u003eMxNet 1.5.1 CPU (pip)\u003c/li\u003e\n\u003cli\u003eHorovod 0.19.1 (compiled with Tensorflow, Pytorch, MxNet)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis recipe works on in the Cineca cluster (arch x86_64):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eGalileo\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/604\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-pycortex-singularity-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#pycortex-singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epycortex Singularity container\u003c/h1\u003e\n\u003cp\u003eThis repository contains a singularity definition file to create a\ncontainer with \u003ca href=\"https://gallantlab.github.io\" rel=\"nofollow\"\u003epycortex\u003c/a\u003e, FreeSurfer, and\nFSL. It installs the \u003ccode\u003eglrework-merged\u003c/code\u003e branch of pycortex. Pycortex\u0027s\nfilestore database needs to be mounted externally so that it is\npersistent, and must be pointed to \u003ccode\u003e/cortex-filestore\u003c/code\u003e inside the\ncontainer.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-build-the-container-this-assumes-singularity--242-or-pull-from-singularity-hub\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-build-the-container-this-assumes-singularity--242-or-pull-from-singularity-hub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Build the container (this assumes Singularity \u0026gt;= 2.4.2), or pull from singularity hub\u003c/h3\u003e\n\u003cpre lang=\"terminal\"\u003e\u003ccode\u003esingularity build pycortex.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ealternatively, the image can be pulled from singularity-hub\u003c/p\u003e\n\u003cpre lang=\"terminal\"\u003e\u003ccode\u003esingularity pull --name pycortex.img shub://mvdoc/pycortex-singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-2-run-it-mounting-the-relevant-directories-eg\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-run-it-mounting-the-relevant-directories-eg\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Run it mounting the relevant directories, e.g.\u003c/h3\u003e\n\u003cpre lang=\"terminal\"\u003e\u003ccode\u003esingularity run -B /path/to/my/data:/data \\\n -B /path/to/my/filestore:/cortex-filestore \\\n -e -c pycortex.img\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will start a shell inside the container; then one can run a jupyter\nnotebook session with\u003c/p\u003e\n\u003cpre lang=\"terminal\"\u003e\u003ccode\u003ejupyter notebook --no-browser --port=9999\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you need to use FreeSurfer, you should set the environment variable \u003ccode\u003eFS_LICENSE\u003c/code\u003e to point to your \u003ccode\u003elicense.txt\u003c/code\u003e file:\u003c/p\u003e\n\u003cpre lang=\"terminal\"\u003e\u003ccode\u003eexport FS_LICENSE=/path/to/license.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe container can also be used as a wrapper for commands, for example\u003c/p\u003e\n\u003cpre lang=\"terminal\"\u003e\u003ccode\u003e$ singularity run \\\n -B /path/to/my/filestore:/cortex-filestore \\\n -e -c pycortex.img \\\n \"python -c \u0027import cortex; print(cortex.__file__)\u0027\"\n\n/src/pycortex/cortex/__init__.py\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1604486860.0
+ "updated_at": 1518741953.0
},
{
"data_format": 2,
- "description": "ncdu is a disk utility for Unix systems",
+ "description": "Eukaryotic Genome Annotation Pipeline",
"filenames": [
- "2.5/Singularity",
- "1.17/Singularity",
- "2.2.2/Singularity",
- "2.3.1/Singularity",
- "1.13/Singularity",
- "1.16/Singularity"
+ "1.8.15/Singularity",
+ "1.8.13/Singularity",
+ "1.8.9/Singularity"
],
- "full_name": "pscedu/singularity-ncdu",
- "latest_release": "v2.2.2",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-ncdu/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-ncdu/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-ncdu/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-ncdu/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f9e74e6eaa558f8de96b5323befbe89f15952145bcd584b1b75b07dc8f1b61d6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6e636475\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f9e74e6eaa558f8de96b5323befbe89f15952145bcd584b1b75b07dc8f1b61d6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6e636475\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-ncdu\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/e2a7e960201dfb14c0ba1a3ca02f73241aaf0e2fdd48ee298e3fa977c90e2112/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6e636475\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e2a7e960201dfb14c0ba1a3ca02f73241aaf0e2fdd48ee298e3fa977c90e2112/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6e636475\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-ncdu\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/df2f5f5dec729dd2c276b41738797fc83987906652195bb30d4b10274d156bff/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6e636475\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df2f5f5dec729dd2c276b41738797fc83987906652195bb30d4b10274d156bff/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6e636475\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-ncdu\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/d5c7c6650a24f7f3338ee4f85a9f3c1a5b43212b105e88c8a22a47cfb460bea2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6e636475\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d5c7c6650a24f7f3338ee4f85a9f3c1a5b43212b105e88c8a22a47cfb460bea2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6e636475\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-ncdu\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-ncdu\u003c/h1\u003e\u003ca id=\"user-content-singularity-ncdu\" class=\"anchor\" aria-label=\"Permalink: singularity-ncdu\" href=\"#singularity-ncdu\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/753d93f57df7c50b16d94eddfe1805ea221ff7d1a321786617d9f12e280fc1e3/68747470733a2f2f6465762e796f7268656c2e6e6c2f696d672f6e63647568656c70322d322e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/753d93f57df7c50b16d94eddfe1805ea221ff7d1a321786617d9f12e280fc1e3/68747470733a2f2f6465762e796f7268656c2e6e6c2f696d672f6e63647568656c70322d322e706e67\" alt=\"Screenshot\" data-canonical-src=\"https://dev.yorhel.nl/img/ncduhelp2-2.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://dev.yorhel.nl/ncdu\" rel=\"nofollow\"\u003encdu\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003encdu\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/ncdu/2.3.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/ncdu\u003c/code\u003e as \u003ccode\u003e2.3.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2019-2023 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-funannotate",
+ "latest_release": null,
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-funannotate/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-funannotate/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-funannotate/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-funannotate/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5db6f9744c3c7d051d19348b21768f84f789cc84db6989490b1098cdee6d38e7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d66756e616e6e6f74617465\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5db6f9744c3c7d051d19348b21768f84f789cc84db6989490b1098cdee6d38e7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d66756e616e6e6f74617465\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-funannotate\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/7ce313f3a5197862191f8b70f543e4fbba7c0c6032325bfb1113fbe4d57f88b1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d66756e616e6e6f74617465\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7ce313f3a5197862191f8b70f543e4fbba7c0c6032325bfb1113fbe4d57f88b1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d66756e616e6e6f74617465\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-funannotate\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/ec0ba12b6cec391402dbbe6193f93d5322dcf2af0aaf708398f82c707693536f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d66756e616e6e6f74617465\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ec0ba12b6cec391402dbbe6193f93d5322dcf2af0aaf708398f82c707693536f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d66756e616e6e6f74617465\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-funannotate\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/260091bdd6a589c218c92d76f07d447cf463bde01be55549ac6c70baff972a1b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d66756e616e6e6f74617465\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/260091bdd6a589c218c92d76f07d447cf463bde01be55549ac6c70baff972a1b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d66756e616e6e6f74617465\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-funannotate\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-funannotate\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-funannotate\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-funannotate\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/nextgenusfs/funannotate\"\u003efunannotate\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003efunannotate\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/funannotate/1.8.15\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/funannotate\u003c/code\u003e as \u003ccode\u003e1.8.15.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2023 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [
- "singularity",
- "utilities"
+ "bioinformatics",
+ "singularity"
],
- "updated_at": 1729794217.0
+ "updated_at": 1651105066.0
},
{
"data_format": 2,
- "description": "Browsh is a fully-modern text-based browser.",
+ "description": "A powerful toolset for genome arithmetic.",
"filenames": [
- "1.6.4/Singularity"
+ "2.30.0/Singularity",
+ "2.29.2/Singularity"
],
- "full_name": "pscedu/singularity-browsh",
- "latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-browsh/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-browsh/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-browsh/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-browsh/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/aae04b7121c139bf037b44c4863a21114a989b54ecef4cbd4833136653229c4b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62726f777368\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aae04b7121c139bf037b44c4863a21114a989b54ecef4cbd4833136653229c4b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62726f777368\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-browsh\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/3af86587ec17b775233a49c21959f73ef8bc6b15c0051db0cb1d241235635441/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62726f777368\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3af86587ec17b775233a49c21959f73ef8bc6b15c0051db0cb1d241235635441/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62726f777368\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-browsh\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/1df3e071a59c704e00cf554ccca039f39a79e1af0aab077774f3667861022e67/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62726f777368\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1df3e071a59c704e00cf554ccca039f39a79e1af0aab077774f3667861022e67/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62726f777368\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-browsh\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/c26a4fa48fbb99d7dec96104a642f3370e1430043143f9d36faef559894144eb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62726f777368\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c26a4fa48fbb99d7dec96104a642f3370e1430043143f9d36faef559894144eb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62726f777368\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-browsh\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-browsh\u003c/h1\u003e\u003ca id=\"user-content-singularity-browsh\" class=\"anchor\" aria-label=\"Permalink: singularity-browsh\" href=\"#singularity-browsh\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://www.brow.sh\" rel=\"nofollow\"\u003ebrowsh\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebrowsh\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/browsh/1.6.4\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/browsh\u003c/code\u003e as \u003ccode\u003e1.6.4.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-bedtools",
+ "latest_release": "v2.30.0",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-bedtools/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bedtools/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-bedtools/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bedtools/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/22f661e5e94b3846e5f54afaf85c1023c03126e1750ee8026abcc863f0440822/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626564746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/22f661e5e94b3846e5f54afaf85c1023c03126e1750ee8026abcc863f0440822/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626564746f6f6c73\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bedtools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/215e7058c975fe33562a88d720a2d615ed22430b54ce020a97e7d35ae59bea21/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626564746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/215e7058c975fe33562a88d720a2d615ed22430b54ce020a97e7d35ae59bea21/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626564746f6f6c73\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bedtools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/645b58875deba1ebd7ec091eade1c85984090c2733a2582ae0eb4d5dc25ebdb8/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626564746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/645b58875deba1ebd7ec091eade1c85984090c2733a2582ae0eb4d5dc25ebdb8/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626564746f6f6c73\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bedtools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/0f0e78a9c8323c2222fcb5d8d3acc383e7ebeef75933d388482e97b0b7ce6584/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626564746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0f0e78a9c8323c2222fcb5d8d3acc383e7ebeef75933d388482e97b0b7ce6584/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626564746f6f6c73\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bedtools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-bedtools\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-bedtools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bedtools\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/c477879255fc6a4ecf10f46c416998a1d4cb8bb316920074503c7cfc17b11364/687474703a2f2f7777772e616e647265772e636d752e6564752f757365722f6963616f626572672f706f73742f73696e67756c61726974792d626564746f6f6c732d7570646174652f6c6f676f2e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c477879255fc6a4ecf10f46c416998a1d4cb8bb316920074503c7cfc17b11364/687474703a2f2f7777772e616e647265772e636d752e6564752f757365722f6963616f626572672f706f73742f73696e67756c61726974792d626564746f6f6c732d7570646174652f6c6f676f2e706e67\" width=\"10%\" data-canonical-src=\"http://www.andrew.cmu.edu/user/icaoberg/post/singularity-bedtools-update/logo.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebedtools\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bedtools/2.30.2\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bedtools\u003c/code\u003e as \u003ccode\u003e2.30.2.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2023 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/tigers/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [
"singularity",
- "utilities"
+ "bioinformatics"
],
- "updated_at": 1631148643.0
+ "updated_at": 1668470461.0
},
{
"data_format": 2,
- "description": "Example Singularity MPI container (mpich and openmpi)",
+ "description": null,
"filenames": [
- "Singularity.openmpi",
- "Singularity.mpich"
+ "centos/xclock_centos/Singularity",
+ "centos/turbo_xfce_centos/Singularity.turbo_xfce_centos",
+ "centos/gnome_centos/Singularity",
+ "centos/xfce_centos/Singularity",
+ "ubuntu/gnome_ubuntu/Singularity",
+ "ubuntu/xclock_ubuntu/Singularity",
+ "ubuntu/nautilus_ubuntu/Singularity"
],
- "full_name": "rse-ops/singularity-mpi",
+ "full_name": "nesi/nesi-singularity-recipes",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Flux\u003c/h1\u003e\u003ca id=\"user-content-singularity-flux\" class=\"anchor\" aria-label=\"Permalink: Singularity Flux\" href=\"#singularity-flux\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis will reproduce the example \u003ca href=\"https://docs.sylabs.io/guides/3.10/user-guide/mpi.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePull the container with Singularity and oras:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull oras://ghcr.io/rse-ops/singularity-mpi:mpich\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou might want an allocation (with or without userns):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ salloc --userns\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTry running the container:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ mpirun -n 6 singularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e singularity-mpi_mpich.sif /opt/mpitest\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003eHello, I am rank 1/6\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eHello, I am rank 2/6\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eHello, I am rank 3/6\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eHello, I am rank 4/6\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eHello, I am rank 0/6\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eHello, I am rank 5/6\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAnd then try running with flux\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ flux start mpirun -n 6 singularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e singularity-mpi_mpich.sif /opt/mpitest\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4539\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1663784213.0
+ "updated_at": 1604055970.0
},
{
"data_format": 2,
- "description": null,
+ "description": "bids app wrapper for microstructure diffusion toolbox",
"filenames": [
+ "Singularity.v0.1",
"Singularity"
],
- "full_name": "Saford91/openfoam-singularity",
- "latest_release": null,
+ "full_name": "khanlab/mdt-bids",
+ "latest_release": "v0.1",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-mdt-bids\" class=\"anchor\" aria-hidden=\"true\" href=\"#mdt-bids\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emdt-bids\u003c/h1\u003e\n\u003cp\u003ebids app wrapper for microstructure diffusion toolbox\u003c/p\u003e\n\u003cp\u003ePlease see \u003ca href=\"http://github.com/cbclab/mdt\"\u003ehttp://github.com/cbclab/mdt\u003c/a\u003e for more details\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eUsage: ./run.sh \u0026lt;bids_dir\u0026gt; \u0026lt;output_dir\u0026gt; participant \u0026lt;optional arguments\u0026gt;\n\n Required arguments:\n [--in_prepdwi_dir PREPDWI_DIR]\n [--model MODEL (e.g. NODDI)]\n\n Optional arguments:\n [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL...]]\n [--model_fit_opts \"[options for mdt-model-fit]\"\n [--create_protocol_opts \"[options for mdt-create-protocol]\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor HCP WU-Minn data (e.g. HCP 1200 3T), use:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e--create_protocol_opts \\\"--Delta 21.8e-3 --delta 12.9e-3 --TR 8800e-3 --TE 57e-3\\\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTO DO:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eread in json files to get TR and TE\u003c/li\u003e\n\u003cli\u003eset default --maxG as 0.08 (80 mT/m for our 3T and 7T)\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1525881846.0
+ "updated_at": 1591844448.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe for ms3 mountainlab processor package",
"filenames": [
- "Singularity"
+ "Singularity.v0.0.2"
],
- "full_name": "GodloveD/lolcow",
+ "full_name": "magland/ml_ms3",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-ml_ms3\" class=\"anchor\" aria-hidden=\"true\" href=\"#ml_ms3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eml_ms3\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for ms3 mountainlab processor package\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1493671740.0
+ "updated_at": 1535668701.0
+ },
+ {
+ "data_format": 2,
+ "description": "VCF normalization",
+ "filenames": [
+ "Singularity/Singularity.v1.0",
+ "Singularity/Singularity.v1.1"
+ ],
+ "full_name": "IARCbioinfo/vcf_normalization-nf",
+ "latest_release": "v1.1",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-vcf_normalization-nf\" class=\"anchor\" aria-hidden=\"true\" href=\"#vcf_normalization-nf\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003evcf_normalization-nf\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-nextflow-pipeline-for-vcf-normalization\" class=\"anchor\" aria-hidden=\"true\" href=\"#nextflow-pipeline-for-vcf-normalization\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNextflow pipeline for vcf normalization\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://circleci.com/gh/IARCbioinfo/vcf_normalization-nf/tree/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/972f6bfd365386090c6b3e3cd6e549a88d55259c394799f2be26101fa1495f52/68747470733a2f2f636972636c6563692e636f6d2f67682f4941524362696f696e666f2f7663665f6e6f726d616c697a6174696f6e2d6e662f747265652f6d61737465722e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/IARCbioinfo/vcf_normalization-nf/tree/master.svg?style=svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/iarcbioinfo/vcf_normalization-nf/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c5d5383ee3d6248c7d31b5fcaa21fc7d689b53ecb330dbfe628cd1fae38c853/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d72656164792d626c75652e737667\" alt=\"Docker Hub\" data-canonical-src=\"https://img.shields.io/badge/docker-ready-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/4381\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"vcf_normalization-nf.png\"\u003e\u003cimg src=\"vcf_normalization-nf.png\" alt=\"Workflow representation\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-description\" class=\"anchor\" aria-hidden=\"true\" href=\"#description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h2\u003e\n\u003cp\u003eApply \u003ca href=\"http://samtools.github.io/bcftools/bcftools.html\" rel=\"nofollow\"\u003ebcftools norm\u003c/a\u003e to decompose and normalize variants from a set of VCF (compressed with gzip/bgzip).\u003c/p\u003e\n\u003cp\u003eThis scripts takes a set of a folder containing \u003ca href=\"https://samtools.github.io/hts-specs/VCFv4.2.pdf\" rel=\"nofollow\"\u003ecompressed VCF files\u003c/a\u003e (\u003ccode\u003e*.vcf.gz\u003c/code\u003e) as an input.\nIt consists at four piped steps:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e(optional) filtering of variants (\u003ccode\u003ebcftoolvs view -f\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003esplit multiallelic sites into biallelic records (\u003ccode\u003ebcftools norm -m -\u003c/code\u003e) and left-alignment and normalization (\u003ccode\u003e-f ref\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003esorting (\u003ccode\u003ebcftools sort \u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eduplicate removal (\u003ccode\u003ebcftools norm -d exact\u003c/code\u003e) and compression (\u003ccode\u003e-Oz\u003c/code\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eThis pipeline is based on \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003enextflow\u003c/a\u003e. As we have several nextflow pipelines, we have centralized the common information in the \u003ca href=\"https://github.com/IARCbioinfo/IARC-nf\"\u003eIARC-nf\u003c/a\u003e repository. Please read it carefully as it contains essential information for the installation, basic usage and configuration of nextflow and our pipelines.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eExternal software:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://samtools.github.io/bcftools/bcftools.html\" rel=\"nofollow\"\u003ebcftools\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eCaution\u003c/strong\u003e: \u003ccode\u003ebcftools\u003c/code\u003e has to be in your $PATH. Try each of the commands \u003ccode\u003ebcftools\u003c/code\u003e and \u003ccode\u003ebgzip\u003c/code\u003e, if it returns the options this is ok.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-input\" class=\"anchor\" aria-hidden=\"true\" href=\"#input\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003e--vcf_folder\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eFolder containing tumor zipped VCF files\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\u003ca id=\"user-content-parameters\" class=\"anchor\" aria-hidden=\"true\" href=\"#parameters\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParameters\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ch4\u003e\u003ca id=\"user-content-mandatory\" class=\"anchor\" aria-hidden=\"true\" href=\"#mandatory\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMandatory\u003c/h4\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eExample value\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003e--ref\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003e/path/to/ref.fasta\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eReference fasta file indexed\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ch4\u003e\u003ca id=\"user-content-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOptional\u003c/h4\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eDefault value\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003e--output_folder\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003enormalized_VCF/\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eFolder to output resulting compressed vcf\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003e--filter_opt\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003e-f PASS\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eOptions for bcftools view\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003e--cpu\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e2\u003c/td\u003e\n\u003ctd\u003eNumber of cpus to use\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003e--mem\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e8\u003c/td\u003e\n\u003ctd\u003eSize of memory used for mapping (in GB)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eNote that the default is to filter variants with the PASS flag. To deactivate, use \u003ccode\u003e--filter_opt \" \"\u003c/code\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ch4\u003e\u003ca id=\"user-content-flags\" class=\"anchor\" aria-hidden=\"true\" href=\"#flags\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFlags\u003c/h4\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFlags are special parameters without value.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003e--help\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eDisplay help\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003eSimple use case example:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run iarcbioinfo/vcf_normalization-nf -r v1.1 -profile singularity --vcf_folder VCF/ --ref ref.fasta\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTo run the pipeline without singularity just remove \"-profile singularity\". Alternatively, one can run the pipeline using a docker container (-profile docker) the conda receipe containing all required dependencies (-profile conda).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-output\" class=\"anchor\" aria-hidden=\"true\" href=\"#output\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eType\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eVCF.gz, VCF.gz.tbi\u003c/td\u003e\n\u003ctd\u003eCompressed normalized VCF files with indexes\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributions\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributions\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eEmail\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eNicolas Alcala*\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"mailto:alcalan@iarc.fr\"\u003ealcalan@iarc.fr\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eDeveloper to contact for support\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTiffany Delhomme\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"mailto:delhommet@students.iarc.fr\"\u003edelhommet@students.iarc.fr\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eDeveloper\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 3,
+ "topics": [],
+ "updated_at": 1590414197.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.279",
- "Singularity.conda-bpy",
- "Singularity.deb",
- "Singularity.pg",
- "Singularity.conda",
- "Singularity",
- "Singularity.bpy"
+ "Singularity_recipev5.Shannon",
+ "Singularity_recipev2.R3.5",
+ "Singularity_recipev3.Rpackages",
+ "Singularity_recipe_4.0.3_libraries",
+ "Singularity_recipe_R4.0.3",
+ "Singularity_recipe_scenic",
+ "Singularity_recipev4.PyPackages"
],
- "full_name": "darikg/blan_singularity_def",
+ "full_name": "elisadonnard/singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eblan_singularity_def\u003c/h1\u003e\u003ca id=\"user-content-blan_singularity_def\" class=\"anchor\" aria-label=\"Permalink: blan_singularity_def\" href=\"#blan_singularity_def\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1589238602.0
+ "updated_at": 1616106303.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.readfish_77c11e2",
+ "Singularity.readfish_14ddf60",
+ "Singularity.clairvoyante_1.01",
+ "Singularity.minionqc_1.4.2",
+ "Singularity.guppy_4.2.2",
+ "Singularity.medaka_v0.10.1",
+ "Singularity.chopchop_a301f2d",
+ "Singularity.minknow_20.10.3",
+ "Singularity.qcat_1.0.1",
+ "Singularity.guppy-cpu_4.2.2",
+ "Singularity.porechop_0.2.4"
],
- "full_name": "murphygroup/singularity-matlabmcr2018b",
+ "full_name": "TomHarrop/ont-containers",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-matlabmcr2018b\u003c/h1\u003e\u003ca id=\"user-content-singularity-matlabmcr2018b\" class=\"anchor\" aria-label=\"Permalink: singularity-matlabmcr2018b\" href=\"#singularity-matlabmcr2018b\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.mathworks.com/products/compiler/matlab-runtime.html\" rel=\"nofollow\"\u003eMATLAB Runtime\u003c/a\u003e is a standalone set of shared libraries that enables the execution of compiled MATLAB applications or components on computers that do not have MATLAB installed. When used together, MATLAB, MATLAB Compiler, and the MATLAB Runtime enable you to create and distribute numerical applications or software components quickly and securely.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributing\u003c/h2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-label=\"Permalink: Contributing\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWhen contributing to this repository, please first discuss the change you wish to make via issue, \u003ca href=\"mailto:cellorganizer-dev@compbio.cmu.edu\"\u003eemail\u003c/a\u003e, or any other method with the owners of this repository before making a change.\u003c/p\u003e\n\u003chr\u003e\n\u003cp\u003eSupport for \u003ca href=\"http://cellorganizer.org/\" rel=\"nofollow\"\u003eCellOrganizer\u003c/a\u003e has been provided by grants GM075205, GM090033 and GM103712 from the \u003ca href=\"http://www.nigms.nih.gov/\" rel=\"nofollow\"\u003eNational Institute of General Medical Sciences\u003c/a\u003e, grants MCB1121919 and MCB1121793 from the \u003ca href=\"http://nsf.gov/\" rel=\"nofollow\"\u003eU.S. National Science Foundation\u003c/a\u003e, by a Forschungspreis from the \u003ca href=\"http://www.humboldt-foundation.de/\" rel=\"nofollow\"\u003eAlexander von Humboldt Foundation\u003c/a\u003e, and by the \u003ca href=\"http://www.frias.uni-freiburg.de/lifenet?set_language=en\" rel=\"nofollow\"\u003eFreiburg Institute for Advanced Studies\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.mmbios.org\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/da21af862d75eb41d1c50d7556125597f1e9c95b7551e77d66d998b7eaf87ce5/68747470733a2f2f69312e77702e636f6d2f7777772e63656c6c6f7267616e697a65722e6f72672f77702d636f6e74656e742f75706c6f6164732f323031372f30382f4d4d42696f536c6f676f2d65313530333531373835373331332e6769663f683d3630\" alt=\"MMBioS\" data-canonical-src=\"https://i1.wp.com/www.cellorganizer.org/wp-content/uploads/2017/08/MMBioSlogo-e1503517857313.gif?h=60\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eCopyright (c) 2007-2019 by the \u003ca href=\"http://murphylab.web.cmu.edu\" rel=\"nofollow\"\u003eMurphy Lab\u003c/a\u003e at the \u003ca href=\"http://www.cbd.cmu.edu\" rel=\"nofollow\"\u003eComputational Biology Department\u003c/a\u003e in \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch2\u003e\u003ca id=\"user-content-service-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#service-installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eService installation\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eChange the paths in \u003ccode\u003elaunch_server.sh\u003c/code\u003e and copy it to its location, e.g. \u003ccode\u003e/usr/local/bin\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eCopy the example systemd service and replace the paths in \u003ccode\u003eExecStart\u003c/code\u003e with path to \u003ccode\u003elaunch_server.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eInstall the systemd service\n\u003ccode\u003esudo cp config/guppy.service /etc/systemd/user/\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eStart the service\u003cbr\u003e\n\u003ccode\u003esystemctl --user enable guppy.timer\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003esystemctl --user start guppy.timer\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1555428752.0
+ "updated_at": 1607563658.0
},
{
"data_format": 2,
- "description": "This is a snakemake/singularity pipelin for metabarcoding data processing using the OBItools and dada2.",
+ "description": "MountainLab package with various spike sorting utilities",
"filenames": [
- "workflow/envs/Singularity"
+ "Singularity.v0.1.7"
],
- "full_name": "LafontRapnouilTristan/metabarcoding_pipelino",
+ "full_name": "magland/ml_spikeforest",
"latest_release": null,
- "readme": "\u003cp\u003eThis pipeline starts from raw foward (R1) and reverse (R2) \u003ccode\u003e.fastq\u003c/code\u003e files and a \u003ccode\u003e.tab\u003c/code\u003e ngsfilter file.\u003c/p\u003e\n\u003cp\u003eThis pipeline aims to respects the \u003ca href=\"https://www.go-fair.org/fair-principles/\" rel=\"nofollow\"\u003eFAIR\u003c/a\u003e principles using \u003ca href=\"https://snakemake.readthedocs.io/en/stable/#\" rel=\"nofollow\"\u003esnakemake\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDescription\u003c/h1\u003e\u003ca id=\"user-content-description\" class=\"anchor\" aria-label=\"Permalink: Description\" href=\"#description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePipeline for raw NGS metabarcoding data processing using a combination of the OBItools, dada2 and sumaclust.\u003c/p\u003e\n\u003cp\u003eYou\u0027ll find parameters used by the pipeline in the \u003ca href=\"config/config.yaml\"\u003econfig file\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eDAG of the pipeline:\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"dag/dag.png\"\u003e\u003cimg src=\"dag/dag.png\" alt=\"DAG of the pipeline\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eInput\u003c/h1\u003e\u003ca id=\"user-content-input\" class=\"anchor\" aria-label=\"Permalink: Input\" href=\"#input\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequired\u003c/h2\u003e\u003ca id=\"user-content-required\" class=\"anchor\" aria-label=\"Permalink: Required\" href=\"#required\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eEnvironment\u003c/h3\u003e\u003ca id=\"user-content-environment\" class=\"anchor\" aria-label=\"Permalink: Environment\" href=\"#environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn order to run this pipeline you need \u003cstrong\u003esnakemake\u003c/strong\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eFiles\u003c/h3\u003e\u003ca id=\"user-content-files\" class=\"anchor\" aria-label=\"Permalink: Files\" href=\"#files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRaw illumina sequencing output for forward and reverse reads in \u003ccode\u003e.fastq\u003c/code\u003e format\u003c/p\u003e\n\u003cp\u003eForward file named \u003cem\u003eXXX_R1.fastq\u003c/em\u003e and reverse \u003cem\u003eXXX_R2.fastq\u003c/em\u003e.\u003c/p\u003e\n\u003cp\u003eAdditionally, you will need a text file named \u003cem\u003eXXX_ngsfilter.tab\u003c/em\u003e as required by the \u003ca href=\"https://pythonhosted.org/OBITools/scripts/ngsfilter.html\" rel=\"nofollow\"\u003engsfilter\u003c/a\u003e command of the obitools.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTree\u003c/h2\u003e\u003ca id=\"user-content-tree\" class=\"anchor\" aria-label=\"Permalink: Tree\" href=\"#tree\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is what your directory tree should look like in order to run the pipeline.\u003c/p\u003e\n\u003cp\u003eName with \u003ccode\u003e*.extension\u003c/code\u003e are file and other are folders.\u003c/p\u003e\n\u003cp\u003eThe different \u003cstrong\u003erun\u003c/strong\u003e will be independantly processed.\u003c/p\u003e\n\u003cp\u003eMake sure that you have a different folders containing associated resources.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- Snakefile\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- benchmarks\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- config\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- config.yaml\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- dag\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- log\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- report\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- resources\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- run1\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- run1_ngsfilter.tab\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- run1_R1.fastq\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- run1_R2.fastq\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- run2\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- run2_ngsfilter.tab\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- run2_R1.fastq\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- run2_R2.fastq\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- results\n\u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- workflow\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- envs\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- R_env.yaml\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- obi_env.yaml\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- suma_env.yaml\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- rules\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 01-pairing.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 02-sort_alignments.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 03-demultiplex.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 04-dada_prep.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 05-filterandtrim.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 06-derep.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 07-obi_clean.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 08-abbundance_filt.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 09-bimera_rm.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 10-otu_clust.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 11-merge_clust.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 12-format_out.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 12-seq_tracking.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 12-taxassign.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- 13-benchmark.smk\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- scripts\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- benchmark.R\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- derep_dada2.R\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- filtandtrim_dada2.R\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- rm_bimera_dada2.R\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- seq_tracking.R\n \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e-- taxassign_dada2.R\n\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePipeline steps and tools\u003c/h1\u003e\u003ca id=\"user-content-pipeline-steps-and-tools\" class=\"anchor\" aria-label=\"Permalink: Pipeline steps and tools\" href=\"#pipeline-steps-and-tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eI - Pre-processing\u003c/h2\u003e\u003ca id=\"user-content-i---pre-processing\" class=\"anchor\" aria-label=\"Permalink: I - Pre-processing\" href=\"#i---pre-processing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e1 - merging paired-end sequenced reads\u003c/h3\u003e\u003ca id=\"user-content-1---merging-paired-end-sequenced-reads\" class=\"anchor\" aria-label=\"Permalink: 1 - merging paired-end sequenced reads\" href=\"#1---merging-paired-end-sequenced-reads\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003ea\u003c/strong\u003e - split fasq for faster processing\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eOBItools\u003c/strong\u003e - \u003ca href=\"https://pythonhosted.org/OBITools/scripts/obidistribute.html\" rel=\"nofollow\"\u003e\u003cem\u003eobidistribute\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e-n\u003c/code\u003e : number of files to split in, \u003ccode\u003enfile\u003c/code\u003e in \u003ca href=\"config/config.yaml\"\u003e\u003ccode\u003econfig\u003c/code\u003e\u003c/a\u003e. (between 2 and 1000).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eb\u003c/strong\u003e - align paired-end sequence\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eOBItools\u003c/strong\u003e - \u003ca href=\"https://pythonhosted.org/OBItools/scripts/illuminapairedend.html\" rel=\"nofollow\"\u003e\u003cem\u003eilluminapairedend\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ec\u003c/strong\u003e - merge output and remove temp files\u003c/p\u003e\n\u003cp\u003ebasic cat and rm UNIX commands.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e2 - filtering alignments\u003c/h3\u003e\u003ca id=\"user-content-2---filtering-alignments\" class=\"anchor\" aria-label=\"Permalink: 2 - filtering alignments\" href=\"#2---filtering-alignments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eOBItools\u003c/strong\u003e - \u003ca href=\"https://pythonhosted.org/OBItools/scripts/obiannotate.html\" rel=\"nofollow\"\u003e\u003cem\u003eobiannotate\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e-S\u003c/code\u003e : expression used for annotation, ali:\u003ccode\u003egood\u003c/code\u003e if alignment score \u0026gt; \u003ccode\u003eminscore\u003c/code\u003e in \u003ca href=\"config/config.yaml\"\u003e\u003ccode\u003econfig\u003c/code\u003e\u003c/a\u003e.\nelse \u003ccode\u003ebad\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eOBItools\u003c/strong\u003e - \u003ca href=\"https://pythonhosted.org/OBItools/scripts/obisplit.html\" rel=\"nofollow\"\u003e\u003cem\u003eobisplit\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e-t\u003c/code\u003e : split according to a condition, here \u003ccode\u003eali = good\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e-p\u003c/code\u003e : prefix of the resulting files.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e3 - demultiplexing and tag/primer trimming\u003c/h3\u003e\u003ca id=\"user-content-3---demultiplexing-and-tagprimer-trimming\" class=\"anchor\" aria-label=\"Permalink: 3 - demultiplexing and tag/primer trimming\" href=\"#3---demultiplexing-and-tagprimer-trimming\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003ea\u003c/strong\u003e - annotate average phred quality\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eOBItools\u003c/strong\u003e - \u003ca href=\"https://pythonhosted.org/OBItools/scripts/obiannotate.html\" rel=\"nofollow\"\u003e\u003cem\u003eobiannotate\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e-S\u003c/code\u003e : expression used for annotation, Avgqphred:-int(math.log10(sum(sequence.quality)/len(sequence))*10)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eb\u003c/strong\u003e - demultiplex according to the ngsfilter file\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eOBItools\u003c/strong\u003e - \u003ca href=\"https://pythonhosted.org/OBItools/scripts/ngsfilter.html\" rel=\"nofollow\"\u003e\u003cem\u003engsfilter\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e-ngs\u003c/code\u003e : ngs filter used for the demultiplexing in a \u003ccode\u003e.tab\u003c/code\u003e format.\nCheck \u003ca href=\"##Required\"\u003einput\u003c/a\u003e for details about input format.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-u\u003c/code\u003e : name of the unassigned output file.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e4 - prepare files for dada2\u003c/h3\u003e\u003ca id=\"user-content-4---prepare-files-for-dada2\" class=\"anchor\" aria-label=\"Permalink: 4 - prepare files for dada2\" href=\"#4---prepare-files-for-dada2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eOBItools\u003c/strong\u003e - \u003ca href=\"https://pythonhosted.org/OBItools/scripts/obisplit.html\" rel=\"nofollow\"\u003e\u003cem\u003eobisplit\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e-t\u003c/code\u003e : attribute to use for splitting, here \u003ccode\u003esample\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-p\u003c/code\u003e : path to split into.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e5 - sequence quality filtering and trimming\u003c/h3\u003e\u003ca id=\"user-content-5---sequence-quality-filtering-and-trimming\" class=\"anchor\" aria-label=\"Permalink: 5 - sequence quality filtering and trimming\" href=\"#5---sequence-quality-filtering-and-trimming\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003edada2\u003c/strong\u003e - \u003ca href=\"https://rdrr.io/bioc/dada2/man/filterAndTrim.html\" rel=\"nofollow\"\u003e\u003cem\u003efilterAndTrim\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003etruncLen\u003c/code\u003e: 200, length at which perform trimming.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emaxN\u003c/code\u003e: 0, maximum number of accepted \u003ccode\u003eN\u003c/code\u003e nucleotides.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emaxEE\u003c/code\u003e: 2, maximum number of accepted errors.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003etruncQ\u003c/code\u003e: 2,\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ematchIDs\u003c/code\u003e: TRUE\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003everbose\u003c/code\u003e: TRUE\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emultithread\u003c/code\u003e: 15\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e6 - sequence dereplication\u003c/h3\u003e\u003ca id=\"user-content-6---sequence-dereplication\" class=\"anchor\" aria-label=\"Permalink: 6 - sequence dereplication\" href=\"#6---sequence-dereplication\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003edada2\u003c/strong\u003e - \u003ca href=\"https://rdrr.io/bioc/dada2/man/derepFastq.html\" rel=\"nofollow\"\u003e\u003cem\u003ederepFastq\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003en\u003c/code\u003e : number of sequence simutaneously processed.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eII - Key processing\u003c/h2\u003e\u003ca id=\"user-content-ii---key-processing\" class=\"anchor\" aria-label=\"Permalink: II - Key processing\" href=\"#ii---key-processing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e1 - sequencing and error elimination\u003c/h3\u003e\u003ca id=\"user-content-1---sequencing-and-error-elimination\" class=\"anchor\" aria-label=\"Permalink: 1 - sequencing and error elimination\" href=\"#1---sequencing-and-error-elimination\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eOBItools\u003c/strong\u003e - \u003ca href=\"https://pythonhosted.org/OBItools/scripts/obiclean.html\" rel=\"nofollow\"\u003e\u003cem\u003eobiclean\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e-r\u003c/code\u003e : Threshold ratio between counts (rare/abundant counts) of two sequence records so that the less abundant one is a variant of the more abundant (default: 1, i.e. all less abundant sequences are variants)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-H\u003c/code\u003e : Select only sequences with the head status in a least one sample.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e2 - Abundance filtering\u003c/h3\u003e\u003ca id=\"user-content-2---abundance-filtering\" class=\"anchor\" aria-label=\"Permalink: 2 - Abundance filtering\" href=\"#2---abundance-filtering\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eOBItools\u003c/strong\u003e - \u003ca href=\"https://pythonhosted.org/OBITools/scripts/obigrep.html\" rel=\"nofollow\"\u003e\u003cem\u003eobigrep\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e-s\u003c/code\u003e : Regular expression pattern to be tested against the sequence itself. The pattern is case insensitive. Here, \u003ccode\u003e\u0027^[acgt]+$\u0027\u003c/code\u003e , corresponding only to sequence containing no ambiguous nucleotids (\u003cem\u003ee.g.\u003c/em\u003e n).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-p\u003c/code\u003e : Predicat to filter, here \u003ccode\u003ecount\u0026gt;{params.mincount}\u003c/code\u003e to filter on reads count.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIII - Post-processing\u003c/h2\u003e\u003ca id=\"user-content-iii---post-processing\" class=\"anchor\" aria-label=\"Permalink: III - Post-processing\" href=\"#iii---post-processing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e1 - Chimera removal\u003c/h3\u003e\u003ca id=\"user-content-1---chimera-removal\" class=\"anchor\" aria-label=\"Permalink: 1 - Chimera removal\" href=\"#1---chimera-removal\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003edada2\u003c/strong\u003e - \u003ca href=\"https://rdrr.io/bioc/dada2/man/removeBimeraDenovo.html\" rel=\"nofollow\"\u003e\u003cem\u003eremoveBimeraDenovo\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003emultithread\u003c/code\u003e : number of thread to use for bimera detection.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e2 Sequence clustering\u003c/h3\u003e\u003ca id=\"user-content-2-sequence-clustering\" class=\"anchor\" aria-label=\"Permalink: 2 Sequence clustering\" href=\"#2-sequence-clustering\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003esumaclust\u003c/strong\u003e - \u003ca href=\"https://git.metabarcoding.org/OBItools/sumaclust/-/wikis/home\" rel=\"nofollow\"\u003e\u003cem\u003esumaclust\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e-t\u003c/code\u003e : Score threshold for clustering (\u003cem\u003ee.g.\u003c/em\u003e 0.97).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-p\u003c/code\u003e : Threads to use for clustering.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e3 Merging Clusters\u003c/h3\u003e\u003ca id=\"user-content-3-merging-clusters\" class=\"anchor\" aria-label=\"Permalink: 3 Merging Clusters\" href=\"#3-merging-clusters\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eOBItools\u003c/strong\u003e - \u003ca href=\"https://pythonhosted.org/OBItools/scripts/obiselect.html\" rel=\"nofollow\"\u003e\u003cem\u003eobiselect\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e-c\u003c/code\u003e : Attribute used to categorize the sequence records, \u003cem\u003ei.e.\u003c/em\u003e \u003ccode\u003ecluster\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-n\u003c/code\u003e : Indicates how many sequence records per group have to be retrieved, \u003cem\u003ei.e.\u003c/em\u003e \u003ccode\u003e1\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--merge\u003c/code\u003e : Attribute to merge, \u003cem\u003ei.e.\u003c/em\u003e \u003ccode\u003esample\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-f\u003c/code\u003e : function used to score the sequence, \u003cem\u003ei.e.\u003c/em\u003e \u003ccode\u003ecount\u003c/code\u003e to have the reads per sample.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-M\u003c/code\u003e : maximize the \u003ccode\u003e-f\u003c/code\u003e function and order sample IDs in the headers of the sequences by their reads count.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e4 Output Formating\u003c/h3\u003e\u003ca id=\"user-content-4-output-formating\" class=\"anchor\" aria-label=\"Permalink: 4 Output Formating\" href=\"#4-output-formating\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eOBItools\u003c/strong\u003e - \u003ca href=\"https://pythonhosted.org/OBItools/scripts/obitab.html\" rel=\"nofollow\"\u003e\u003cem\u003eobitab\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e-n\u003c/code\u003e : String written in the table for the not available values (\u003cem\u003ei.e.\u003c/em\u003e NA).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-d\u003c/code\u003e : Removes column containing the sequence definition in the output tab file.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-d\u003c/code\u003e : add column at the end of the tab for the sequence itself.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e5 Assign taxonomy\u003c/h3\u003e\u003ca id=\"user-content-5-assign-taxonomy\" class=\"anchor\" aria-label=\"Permalink: 5 Assign taxonomy\" href=\"#5-assign-taxonomy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003edada2\u003c/strong\u003e - \u003ca href=\"https://rdrr.io/bioc/dada2/man/assignTaxonomy.html\" rel=\"nofollow\"\u003e\u003cem\u003eassignTaxonomy\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eoptions :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003erefFasta\u003c/code\u003e : Path to the \u003ccode\u003e.fasta\u003c/code\u003e database used to assign taxonomy to the sequence table.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emultithread\u003c/code\u003e : Number of threads used to perform taxonomic assignment.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIV - Workflow evaluation\u003c/h2\u003e\u003ca id=\"user-content-iv---workflow-evaluation\" class=\"anchor\" aria-label=\"Permalink: IV - Workflow evaluation\" href=\"#iv---workflow-evaluation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e1 Sequence tracking\u003c/h3\u003e\u003ca id=\"user-content-1-sequence-tracking\" class=\"anchor\" aria-label=\"Permalink: 1 Sequence tracking\" href=\"#1-sequence-tracking\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor each step of the workflow, computes the total number of sequences and reads.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e2 Benchmark\u003c/h3\u003e\u003ca id=\"user-content-2-benchmark\" class=\"anchor\" aria-label=\"Permalink: 2 Benchmark\" href=\"#2-benchmark\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor each step of the workflow, computes the amount of time and computing resources used and plot them.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-ml_spikeforest\" class=\"anchor\" aria-hidden=\"true\" href=\"#ml_spikeforest\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eml_spikeforest\u003c/h1\u003e\n\u003cp\u003eSpike sorting tools\nMountainLab processor package\u003c/p\u003e\n\u003cp\u003eInstallation from conda (with python 3.6):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip install -c flatiron -c conda-forge ml_spikeforest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1667832079.0
+ "updated_at": 1537460132.0
},
{
"data_format": 2,
- "description": "Singularity container for deploying smudgeplot",
+ "description": "These are a collection of scripts we commonly use on the command line for exploring data and for documentation",
"filenames": [
- "Singularity"
+ "Singularity.1.0.1",
+ "Singularity.1.0.0"
],
- "full_name": "HuffordLab-Containers/smudgeplot",
+ "full_name": "ISUGIFsingularity/utilities",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esmudgeplot\u003c/h1\u003e\u003ca id=\"user-content-smudgeplot\" class=\"anchor\" aria-label=\"Permalink: smudgeplot\" href=\"#smudgeplot\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity container for deploying smudgeplot\u003c/p\u003e\n\u003cp\u003eOriginal source for this package is found here:\n\u003ca href=\"https://github.com/KamilSJaron/smudgeplot\"\u003ehttps://github.com/KamilSJaron/smudgeplot\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-bioinformatic-scripts-that-we-commonly-use\" class=\"anchor\" aria-hidden=\"true\" href=\"#bioinformatic-scripts-that-we-commonly-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBioinformatic scripts that we commonly use\u003c/h1\u003e\n\u003cp\u003eThis Singularity container is primarily for testing out how containers function. All of the functions included in the container will run without a container. Having them in a container results in a huge performance hit as singularity has to be called and these scripts do not have dependencies that could benefit from a container.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003enb\u003c/strong\u003e = notebook to add text to a notebook but not the readme file\n**readme **= readme will create a README file in the folder and put the date and text into this file along with a copy in the notebook\n\u003cstrong\u003ecreatehist.awk\u003c/strong\u003e = function that will take a binsize argument and a list of numbers and return a count of numbers within increments of binsize\n\u003cstrong\u003eintervalBins.awk\u003c/strong\u003e = modified createhist script that gives the intervals and counts of elements in the interval\n\u003cstrong\u003enew_Assemblathon.pl\u003c/strong\u003e = script that will create summary statistics from a fasta file usually used for genome assemblies (see Assemblathon2 paper)\n**seqlen.awk **= script that will take a fasta file and report the ID and the length of the sequence.\n\u003cstrong\u003ecolsum\u003c/strong\u003e = used to sum the Nth colum of a file.\n\u003cstrong\u003esummary\u003c/strong\u003e = give summary statistics of a column of numbers\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-clone-this-repository\" class=\"anchor\" aria-hidden=\"true\" href=\"#clone-this-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eClone this repository\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003emkdir isugif\ncd isugif\ngit clone git@github.com:ISUGIFsingularity/utilities.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-place-singularity-container-into-simg-folder-inside-this-repo\" class=\"anchor\" aria-hidden=\"true\" href=\"#place-singularity-container-into-simg-folder-inside-this-repo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePlace singularity container into SIMG folder inside this repo\u003c/h3\u003e\n\u003cp\u003eYou can pull the singularity image using these commands\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd utilities\nmkdir SIMG\ncd SIMG\nsingularity pull shub://ISUGIFsingularity/utilities:1.0.1\nln -s utilities_1.0.1.sif ISUGIFsingularity-utilities-master.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-add-alias-and-path\" class=\"anchor\" aria-hidden=\"true\" href=\"#add-alias-and-path\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAdd Alias and PATH\u003c/h3\u003e\n\u003cp\u003ePlace the following into your .bashrc folder for container use\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ealias UTILITIESgit=Path2thisRepo\nexport PATH=$PATH:$UTILITIESgit/wrappers\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePlace the following into your .bashrc folder to use scripts without container (preferred method unless testing container functions)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ealias UTILITIESgit=Path2thisRepo\nexport PATH=$PATH:$UTILITIESgit/utilities\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-notes\" class=\"anchor\" aria-hidden=\"true\" href=\"#notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h3\u003e\n\u003cp\u003eFor this to function properly had to add \u003ccode\u003e--bind $UTILITIESgit:/mnt\u003c/code\u003e to the wrappers\u003c/p\u003e\n\u003cp\u003eExample\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity exec --bind $UTILITIESgit:/mnt --bind $PWD $UTILITIESgit/SIMG/ISUGIFsingularity-utilities-master.simg /mnt/utilities/summary.sh\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1612751126.0
+ "updated_at": 1560444723.0
},
{
"data_format": 2,
- "description": "bcftools \u2014 utilities for variant calling and manipulating VCFs and BCFs.",
+ "description": null,
"filenames": [
- "1.10.2/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-bcftools",
+ "full_name": "KM3NeT/OrcaSong",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-bcftools/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bcftools/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-bcftools/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bcftools/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/7ca9386ab21efbdc68e7ef3c00a6dc53638e07bd6b621e85510512c1273746ed/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626366746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7ca9386ab21efbdc68e7ef3c00a6dc53638e07bd6b621e85510512c1273746ed/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626366746f6f6c73\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bcftools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/b2aa819c47bb92269300f234936b1a0be2eebd89037240af5c1474b7848152f0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626366746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b2aa819c47bb92269300f234936b1a0be2eebd89037240af5c1474b7848152f0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626366746f6f6c73\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bcftools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/9b54f3037e3481e0a19ad82ebd352d2138f1b42ac7e9d0495b4b99cbae77d08e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626366746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9b54f3037e3481e0a19ad82ebd352d2138f1b42ac7e9d0495b4b99cbae77d08e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626366746f6f6c73\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bcftools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5afb6c31b9ddfeb6d0bbc5d7e455eaf2a4d8d3f63596867e32743e5cfc036d04/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626366746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5afb6c31b9ddfeb6d0bbc5d7e455eaf2a4d8d3f63596867e32743e5cfc036d04/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626366746f6f6c73\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bcftools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-bcftools\u003c/h1\u003e\u003ca id=\"user-content-singularity-bcftools\" class=\"anchor\" aria-label=\"Permalink: singularity-bcftools\" href=\"#singularity-bcftools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/icaoberg/bcftools\"\u003ebcftools\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1629217454.0
+ "subscribers_count": 4,
+ "topics": [],
+ "updated_at": 1625135038.0
},
{
"data_format": 2,
- "description": "Numerical representation of mountains in atmospheric models",
+ "description": "WineHQ in a Singularity container",
"filenames": [
+ "Singularity.4.0.3",
+ "Singularity.5.0.0",
"Singularity"
],
- "full_name": "hertzsprung/thesis",
- "latest_release": "jshaw-thesis-v2",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eNumerical representation of mountains in atmospheric models\u003c/h1\u003e\u003ca id=\"user-content-numerical-representation-of-mountains-in-atmospheric-models\" class=\"anchor\" aria-label=\"Permalink: Numerical representation of mountains in atmospheric models\" href=\"#numerical-representation-of-mountains-in-atmospheric-models\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCompiling the thesis with Singularity\u003c/h2\u003e\u003ca id=\"user-content-compiling-the-thesis-with-singularity\" class=\"anchor\" aria-label=\"Permalink: Compiling the thesis with Singularity\" href=\"#compiling-the-thesis-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eUse \u003ca href=\"http://singularity.lbl.gov\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e to compile the thesis. On Ubuntu 16.10 and later, \u003ccode\u003esudo apt-get install singularity-container\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eOnce installed,\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eExecute the \u003ca href=\"https://github.com/hertzsprung/AtmosTests\"\u003eAtmosTests\u003c/a\u003e simulations\u003c/li\u003e\n\u003cli\u003eEdit \u003ca href=\"https://github.com/hertzsprung/thesis/blob/master/build.properties\"\u003e\u003ccode\u003ebuild.properties\u003c/code\u003e\u003c/a\u003e so that \u003ccode\u003eatmostests_builddir\u003c/code\u003e points to the \u003ccode\u003eAtmosTests/build\u003c/code\u003e directory\u003c/li\u003e\n\u003cli\u003eExecute \u003ccode\u003e./singularity.bootstrap.sh\u003c/code\u003e to bootstrap the Singularity image, \u003ccode\u003ethesis.img\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eExecute \u003ccode\u003e./singularity.ninja.sh\u003c/code\u003e to compile \u003ccode\u003ethesis.pdf\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "full_name": "OSC/sa_singularity_winehq",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-winehq\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-winehq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity WineHQ\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3891\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image for \u003ca href=\"https://www.winehq.org/\" rel=\"nofollow\"\u003eWineHQ\u003c/a\u003e. It was built on top of the base Docker image \u003ca href=\"https://hub.docker.com/_/ubuntu\" rel=\"nofollow\"\u003eubuntu\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-hidden=\"true\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild\u003c/h2\u003e\n\u003cp\u003eYou can build a local Singularity image named \u003ccode\u003ewinehq.sif\u003c/code\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build winehq.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-deploy\" class=\"anchor\" aria-hidden=\"true\" href=\"#deploy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeploy\u003c/h2\u003e\n\u003cp\u003eInstead of building it yourself you can download the pre-built image from \u003ca href=\"https://www.singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull winehq.sif shub://OSC/sa_singularity_winehq\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-run-64-bit-windows-binary\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-64-bit-windows-binary\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun 64-bit Windows binary\u003c/h3\u003e\n\u003cp\u003eWineHQ is started using the default run command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run winehq.sif /path/to/windows_64bit_exe\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor as a native command\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./winehq.sif /path/to/windows_64bit_exe\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-run-32-bit-windows-binary\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-32-bit-windows-binary\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun 32-bit Windows binary\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e winehq.sif wine /path/to/windows_32bit_exe\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe code is available as open source under the terms of the \u003ca href=\"http://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003eMIT License\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1537256120.0
+ "updated_at": 1581361908.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Picard is a set of command line tools for manipulating high-throughput sequencing (HTS) data and formats such as SAM/BAM/CRAM and VCF. ",
"filenames": [
- "Singularity"
+ "2.23.2/Singularity"
],
- "full_name": "ricardovialle/singularity-rstudio-r4",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity RStudio Server\u003c/h1\u003e\u003ca id=\"user-content-singularity-rstudio-server\" class=\"anchor\" aria-label=\"Permalink: Singularity RStudio Server\" href=\"#singularity-rstudio-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eR 4.0.3\nRStudio 1.3.1903\u003c/p\u003e\n\u003cp\u003eBased on repo \u003ca href=\"https://github.com/nickjer/singularity-rstudio\"\u003ehttps://github.com/nickjer/singularity-rstudio\u003c/a\u003e\nSingularity image for \u003ca href=\"https://www.rstudio.com/products/rstudio/\" rel=\"nofollow\"\u003eRStudio Server\u003c/a\u003e. It was built on top of the base\nSingularity image \u003ca href=\"https://github.com/nickjer/singularity-r\"\u003enickjer/singularity-r\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThis is still a work in progress.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild\u003c/h2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-label=\"Permalink: Build\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can build a local Singularity image named \u003ccode\u003esingularity-rstudio.simg\u003c/code\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build singularity-rstudio.simg rstudio.def\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDeploy\u003c/h2\u003e\u003ca id=\"user-content-deploy\" class=\"anchor\" aria-label=\"Permalink: Deploy\" href=\"#deploy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstead of building it yourself you can download the pre-built image from\n\u003ca href=\"https://www.singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --arch amd64 library://vigo332/default/singularity-rstudio-r4:v0.01\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun\u003c/h2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-label=\"Permalink: Run\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRStudio Server\u003c/h3\u003e\u003ca id=\"user-content-rstudio-server\" class=\"anchor\" aria-label=\"Permalink: RStudio Server\" href=\"#rstudio-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003erserver\u003c/code\u003e command is launched using the default run command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run singularity-rstudio.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor as an explicit app:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --app rserver singularity-rstudio.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003esingularity run --app rserver singularity-rstudio.simg --help\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ecommand-line options:\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003everify:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --verify-installation arg (=0) verify the current installation\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eserver:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-working-dir arg (=/) program working directory\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-user arg (=rstudio-server) program user\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-daemonize arg (=0) run program as daemon\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-app-armor-enabled arg (=1) is app armor enabled for this session\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-set-umask arg (=1) set the umask to 022 on startup\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003e...\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eSimple Password Authentication\u003c/h4\u003e\u003ca id=\"user-content-simple-password-authentication\" class=\"anchor\" aria-label=\"Permalink: Simple Password Authentication\" href=\"#simple-password-authentication\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo secure the RStudio Server you will need to:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eLaunch the container with the environment variable \u003ccode\u003eRSTUDIO_PASSWORD\u003c/code\u003e set to\na password of your choosing.\u003c/li\u003e\n\u003cli\u003eLaunch the \u003ccode\u003erserver\u003c/code\u003e command with the PAM helper script \u003ccode\u003erstudio_auth\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eAn example is given as:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eRSTUDIO_PASSWORD=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003epassword\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e singularity run singularity-rstudio.simg \\\n --auth-none 0 \\\n --auth-pam-helper-path=pam-helper \\\n --server-data-dir=/tmp\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNow when you attempt to access the RStudio Server you will be presented with a\nlog in form. You can log in with your current user name and password you set in\n\u003ccode\u003eRSTUDIO_PASSWORD\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eLDAP Authentication -- To be verified\u003c/h4\u003e\u003ca id=\"user-content-ldap-authentication----to-be-verified\" class=\"anchor\" aria-label=\"Permalink: LDAP Authentication -- To be verified\" href=\"#ldap-authentication----to-be-verified\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAnother option is using an LDAP (or Active Directory) server for\nauthentication. Configuration of the LDAP authentication script \u003ccode\u003eldap_auth\u003c/code\u003e is\nhandled through the following environment variables:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eLDAP_HOST\u003c/code\u003e - the host name of the LDAP server\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eLDAP_USER_DN\u003c/code\u003e - the formatted string (where \u003ccode\u003e%s\u003c/code\u003e is replaced with the\nusername supplied during log in) of the bind DN used for LDAP authentication\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eLDAP_CERT_FILE\u003c/code\u003e - the file containing the CA certificates used by\nthe LDAP server (default: use system CA certificates)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAn example for an LDAP server with signed SSL certificate from a trusted CA:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_HOST=ldap.example.com\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_USER_DN=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ecn=%s,dc=example,dc=com\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\nsingularity run singularity-rstudio.simg \\\n --auth-none 0 \\\n --auth-pam-helper-path ldap_auth\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAn example for an LDAP server with a self-signed SSL certificate:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_HOST=ldap.example.com\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_USER_DN=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ecn=%s,dc=example,dc=com\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_CERT_FILE=/ca-certs.pem\nsingularity run \\\n --bind /path/to/ca-certs.pem:/ca-certs.pem \\\n singularity-rstudio.simg \\\n --auth-none 0 \\\n --auth-pam-helper-path ldap_auth\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNote that we had to bind mount the CA certificates file from the host machine\ninto the container and specify the container\u0027s path in \u003ccode\u003eLDAP_CERT_FILE\u003c/code\u003e (not\nthe host\u0027s path).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eR and Rscript\u003c/h3\u003e\u003ca id=\"user-content-r-and-rscript\" class=\"anchor\" aria-label=\"Permalink: R and Rscript\" href=\"#r-and-rscript\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/nickjer/singularity-r\"\u003enickjer/singularity-r\u003c/a\u003e for more information on how to run \u003ccode\u003eR\u003c/code\u003e and\n\u003ccode\u003eRscript\u003c/code\u003e from within this Singularity image.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributing\u003c/h2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-label=\"Permalink: Contributing\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBug reports and pull requests are welcome on GitHub at\n\u003ca href=\"https://github.com/nickjer/singularity-rstudio\"\u003ehttps://github.com/nickjer/singularity-rstudio\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe code is available as open source under the terms of the \u003ca href=\"http://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003eMIT License\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-picard",
+ "latest_release": "v2.23.2",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-picard/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-picard/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f2ee028725767bd1588c30ee90365dddfc357c08ce7b5a43ed492ec5987e19f9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d706963617264\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f2ee028725767bd1588c30ee90365dddfc357c08ce7b5a43ed492ec5987e19f9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d706963617264\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-picard\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/0011e731d3015546848fd1f5982cbad69352604dc45cd908e9ff27c2773e8107/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d706963617264\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0011e731d3015546848fd1f5982cbad69352604dc45cd908e9ff27c2773e8107/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d706963617264\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-picard\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a19ffb10b86582f80f0dd57f7696abb065ebaaab0d440703423ea0f2441278ea/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d706963617264\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a19ffb10b86582f80f0dd57f7696abb065ebaaab0d440703423ea0f2441278ea/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d706963617264\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-picard\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/b6afcdc9a6fce9707e6a449e49036b6136dd0335325684f4c8605d441b992e1f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d706963617264\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b6afcdc9a6fce9707e6a449e49036b6136dd0335325684f4c8605d441b992e1f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d706963617264\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-picard\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-picard\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-picard\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-picard\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/PIGER\"\u003ePicard\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003epicard\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/picard/2.23.2\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/picard\u003c/code\u003e as \u003ccode\u003e2.23.2.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
- "topics": [],
- "updated_at": 1629302355.0
+ "subscribers_count": 3,
+ "topics": [
+ "bioinformatics",
+ "singularity"
+ ],
+ "updated_at": 1628991999.0
},
{
"data_format": 2,
- "description": "Singularity images for MITgcm testing and examples",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.template",
+ "bamcmp/Singularity.bamcmp",
+ "star-fusion/Singularity.star-fusion",
+ "bcl2fastq/Singularity.bcl2fastq"
],
- "full_name": "christophernhill/mitgcm-shub-images",
+ "full_name": "BUBioinformaticsHub/bubhub-singularity-apps",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003emitgcm-shub-images\u003c/h1\u003e\u003ca id=\"user-content-mitgcm-shub-images\" class=\"anchor\" aria-label=\"Permalink: mitgcm-shub-images\" href=\"#mitgcm-shub-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity images for MITgcm testing and examples\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esee \u003ca href=\"https://singularity-hub.org\" rel=\"nofollow\"\u003ehttps://singularity-hub.org\u003c/a\u003e and \u003ca href=\"http://singularity.lbl.gov\" rel=\"nofollow\"\u003ehttp://singularity.lbl.gov\u003c/a\u003e, and also \u003ca href=\"https://hub.docker.com\" rel=\"nofollow\"\u003ehttps://hub.docker.com\u003c/a\u003e and \u003ca href=\"https://www.docker.com\" rel=\"nofollow\"\u003ehttps://www.docker.com\u003c/a\u003e for background on material here.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn MITgcm containers through Docker and Singluarity can provide a way to test code and maintain strong portability and interoperability and more complete workflow reproducibility. Many other projects use Docker and Singularity to share code that is neither portable or interoperable.\u003c/p\u003e\n\u003cp\u003eThere are also images here that allow MITgcm to work with example codes that are not particularly portable or interoperable. This is only possible because the core MITgcm code is widely tested on many platforms to ensure portability and interoperability. Importantly, for this to work, Singularity and/or Docker should not be a way to create MITgcm setups that unecessairily break portability, interoperability, reproducibility or ease of use by adopting narrow software stacks or user unfriendly code practices.\u003c/p\u003e\n\u003cp\u003eMainstream code in MITgcm should continue to be written with goals, as far as possible, that most model configurations\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003ecan run on many platforms, including (but not limited to!) a wide array of Linux distributions, handheld devices, Windows, OSX and iOS devices, single board computers.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ecan checkpoint and restart in order to run in multiple sub-steps.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003esupports validating exact and statistical reproducibility, even in the presence of floating point round off\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003einclude appropriate documentation of key features and modes of use\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003etries to make minimum necessary assumptions about domain geometry and/or model equation configuration(s) to which the code will be applied\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003etries to maintain robust compatibility with automatice differentiation where relevant and possible\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFollowing these guidelines helps create code that can be applied to the broadest range of problems; spanning, for example, laboratory experiments to Jovian deep atmospheres to Earth system ecosystem sensitvity calculations. The guidelines also serve to make meaningful coupling to external components (such as atmospheric model suites) relatively straightforward and flexible.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-apps\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-apps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity apps\u003c/h1\u003e\n\u003cp\u003eThis repo contains Singularity build images for various bubhub tools\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1517003494.0
+ "updated_at": 1539704222.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.tf-nightly",
+ "Singularity.compute-0-27",
+ "Singularity.compute-0-36"
],
- "full_name": "callaghanmt-containers/decryptics",
+ "full_name": "bstriner/tensorflow-cuda-10.0-cudnn7-devel-ubuntu16.04",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003edecryptics\u003c/h1\u003e\u003ca id=\"user-content-decryptics\" class=\"anchor\" aria-label=\"Permalink: decryptics\" href=\"#decryptics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-tensorflow-cuda-100-cudnn7-devel-ubuntu1604\" class=\"anchor\" aria-hidden=\"true\" href=\"#tensorflow-cuda-100-cudnn7-devel-ubuntu1604\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etensorflow-cuda-10.0-cudnn7-devel-ubuntu16.04\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1553554241.0
+ "updated_at": 1560847380.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.v0.0.1"
],
- "full_name": "phgenomics-singularity/snippy",
+ "full_name": "baxpr/cerconn",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-cerconn-cerebellar-functional-connectivity-maps\" class=\"anchor\" aria-hidden=\"true\" href=\"#cerconn-cerebellar-functional-connectivity-maps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecerconn: cerebellar functional connectivity maps\u003c/h1\u003e\n\u003cp\u003eSeed regions are the Buckner 7 set as produced by cersuit pipeline. Four sets are computed: with\nand without removal of the mean gray matter signal by regression; with and without erosion of the\nseed ROIs with a 1-voxel radius spherical kernel. Both bivariate Pearson correlation and partial\ncorrelation with respect to the other seed regions are computed.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-inputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003eFrom cersuit_v2 cerebellar segmentation pipeline\u003c/em\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecerseg_niigz Native space Buckner7 segmentation, ATLASES_NATIVE iw_Buckner_7Networks_u_a_c_rt1_seg1.nii.gz\nwcerseg_niigz Atlas space Buckner7 segmentation, ATLASES_SUIT Buckner_7Networks.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cem\u003eFrom CAT12, e.g. cat12_ss2p0_v2 pipeline\u003c/em\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewmt1_niigz MNI space bias corrected T1, BIAS_NORM\nfwddef_niigz Forward deformation from native to MNI, DEF_FWD\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cem\u003eFrom connectivity preprocessing pipeline connprep_v2\u003c/em\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eremovegm_niigz Native space with mean gray signal removed, FILTERED_REMOVEGM_NATIVE\nkeepgm_niigz Native space with mean gray signal kept, FILTERED_KEEPGM_NATIVE\nmeanfmri_niigz Native space mean fmri, MEAN_FMRI_NATIVE\nwmeanfmri_niigz MNI space mean fmri, MEAN_FMRI_MNI\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cem\u003eOther options\u003c/em\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erefimg_nii Filename of existing image for geometry reference (\u0027avg152T1.nii\u0027,\u0027mask_ICV.nii\u0027)\nfwhm Smoothing kernel for connectivity maps, in mm\nout_dir Output directory\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cem\u003eInfo for PDF report title if run on XNAT\u003c/em\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eproject\nsubject\nsession\nscan\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cem\u003eFor testing only\u003c/em\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003efsl_dir Location of FSL installation\nmagick_dir Location of ImageMagick binaries\nsrc_dir Location of pipeline shell scripts\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eROIS Seed ROI images in native fMRI geometry (eroded and non-eroded) and list of ROI labels\n\nEROIS Eroded seed ROI images in native T1 geometry\n\nFMRIMASK Native fMRI space mask used to exclude voxels without fMRI signal from seeds\n\nCONNMAP Connectivity maps for the seed ROIs. There are a number of different types:\n\n R_* Pearson correlation\n Z_* Fisher Z transform of Pearson correlation\n pR_* Partial correlation conditioning on the the other seeds\n pZ_* Fisher transform of the partial correlation\n \n *E* Indicates eroded seed ROIs (no E indicates uneroded ROIs)\n \n REMOVEGM Mean gray matter removed during preprocessing\n KEEPGM Mean gray matter retained during preprocessing\n \n _MNI Indicates MNI space images (no _MNI indicates native space)\n\nSCONNMAP Smoothed connectivity maps. As above.\n\nCONNMAT Connectivity matrices for seed ROIs. As above.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1576562320.0
+ "updated_at": 1616681036.0
},
{
"data_format": 2,
- "description": "It is for ptsim using cvmfs in singularity conitaner",
+ "description": "Container with xrootd for file xfer from FNAL",
"filenames": [
"Singularity"
],
- "full_name": "ifurther/ptsim-singularity",
+ "full_name": "LArbys/singularity-xrootd",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-for-root-with-xrootd\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-for-root-with-xrootd\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity for ROOT with XROOTD\u003c/h1\u003e\n\u003cp\u003eContainer to be used for file xfer from FNAL.\nIn order to xfer files, the container must have its certificates to FNAL updated periodically.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-steps-to-using-this-container-and-image-from-scratch\" class=\"anchor\" aria-hidden=\"true\" href=\"#steps-to-using-this-container-and-image-from-scratch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSteps to using this container and image (from scratch)\u003c/h1\u003e\n\u003cp\u003ePart 1: build the container\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ebuild the container\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ePart 2: move the container to Tufts\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ego to the Tufts cluster (and probably to some place your user directory)\u003c/li\u003e\n\u003cli\u003eclone this repository\u003c/li\u003e\n\u003cli\u003ecopy the container to the repository folder as there are scripts we will use\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ePart 3: renew your user grid certificate on a MicroBooNE machine\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003elog into the microboone machine\u003c/li\u003e\n\u003cli\u003eon the UBmachine: load/renew your certificates, find your UID\u003c/li\u003e\n\u003cli\u003eback on tufts cluster: make a copy of example_setup_container_X.sh and edit it as instructed\u003c/li\u003e\n\u003cli\u003estart the container, go to the repo dir, run the script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ePart 4: make a list of files to transfer. either:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003emake a filelist\u003c/li\u003e\n\u003cli\u003eretrieve or setup a SAM definition\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ePart 5: setup xfer_script and run\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the container\u003c/h2\u003e\n\u003cp\u003eFirst find a computer that has docker and singularity (e.g. meitner). You will also need \u003ccode\u003esudo\u003c/code\u003e access to build the container.\u003c/p\u003e\n\u003cp\u003eClone this repo onto a computer:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/larbys/singularity-xrootd\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNext, follow the steps below to grab the required certificates from uboonebuild and copy them to your local machine\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003emake sure your computer is setup to be able to get a FNAL kerberos ticket (i.e. \u003ccode\u003ekinit\u003c/code\u003e workse)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eclone this repo to your computer\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eget a kerberos ticket: \u003ccode\u003ekinit [username]@FNAL.GOV\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003emake the directory \u003ccode\u003e/tmp/$USER\u003c/code\u003e to hold certificates (must be somewhere in \u003ccode\u003e/tmp\u003c/code\u003e in order for singularity to read from outside the new container)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eif running this not for the first time, make sure \u003ccode\u003e/tmp/$USER/grid-security\u003c/code\u003e and \u003ccode\u003e/tmp/$USER/vomses\u003c/code\u003e are removed from your \u003ccode\u003e/tmp/$USER/\u003c/code\u003e folder\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003escp -r \u003ccode\u003e/etc/grid-security\u003c/code\u003e and \u003ccode\u003e/etc/vomses\u003c/code\u003e to your \u003ccode\u003e/tmp/$USER\u003c/code\u003e folder from one of the uboone gpvms.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003escp -r fnal-username@ubcomputer:/etc/grid-security /tmp/$USER/\nscp fnal-username@ubcomputer:/etc/vomses /tmp/$USER/\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ecp \u003ccode\u003e/etc/krb5.conf\u003c/code\u003e to \u003ccode\u003e/tmp/$USER/\u003c/code\u003e or get this from the web using\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewget https://cdcvs.fnal.gov/redmine/attachments/download/9616/krb5.conf /tmp/$USER/\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ego into \u003ccode\u003eSingularity\u003c/code\u003e file (this is the build instructions), and set your username at the line\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport USER=your-name-here\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFinally, build the container using:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build singularity-xrootd.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBasically what is happening is that, while being built, the container can see your system\u0027s \u003ccode\u003e/tmp\u003c/code\u003e folder.\nSo we put the required security files into \u003ccode\u003e/tmp\u003c/code\u003e and these get copied into the container\u0027s \u003ccode\u003e/etc/\u003c/code\u003e folder when it is built.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-using-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing container\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003ecopy the new container to the Tuft\u0027s grid at: \u003ccode\u003e/cluster/tufts/wongjiradlab/larbys/images/singularity-xrootd\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003estart the container using \u003ccode\u003esource start_container.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eyou\u0027ll see a prompt once you are in the container. type \u003ccode\u003ebash\u003c/code\u003e to start a bash shell\u003c/li\u003e\n\u003cli\u003enavigate back to the container folder: \u003ccode\u003ecd /cluster/kappa/wongjiradlab/larbys/images/singularity-xrootd\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003ein another terminal, log into one of the uboone gpvms. refresh your vomses certificates.\u003c/li\u003e\n\u003cli\u003emake a copy of \u003ccode\u003eexample_setup_container_X.sh\u003c/code\u003e, where \u003ccode\u003eX\u003c/code\u003e is your FNAL username\u003c/li\u003e\n\u003cli\u003echange XXXXXX with your FNAL username and YYYYYY with your user id\u003c/li\u003e\n\u003cli\u003erun this script\u003c/li\u003e\n\u003cli\u003eyou can test that your container now has permissions to use xrootd to access PNFS by running: \u003ccode\u003epython test_setup.py\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [],
- "updated_at": 1641846771.0
+ "updated_at": 1614268311.0
},
{
"data_format": 2,
- "description": "Singularity port of Picard tools",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.dev"
],
- "full_name": "researchapps/singularity-picard",
+ "full_name": "pndni/minc-ants-and-fsl-container",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Picard\u003c/h1\u003e\u003ca id=\"user-content-singularity-picard\" class=\"anchor\" aria-label=\"Permalink: Singularity Picard\" href=\"#singularity-picard\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis will produce a Singularity image (suitable for running in a cluster environment) using \u003ca href=\"https://hub.docker.com/r/broadinstitute/picard/\" rel=\"nofollow\"\u003ehttps://hub.docker.com/r/broadinstitute/picard/\u003c/a\u003e. We do this by way of a bootstrap file for the Docker image.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e1. Install Singularity\u003c/h2\u003e\u003ca id=\"user-content-1-install-singularity\" class=\"anchor\" aria-label=\"Permalink: 1. Install Singularity\" href=\"#1-install-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstructions can be found on the \u003ca href=\"https://singularityware.github.io\" rel=\"nofollow\"\u003esingularity site\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e2. Bootstrap the image\u003c/h2\u003e\u003ca id=\"user-content-2-bootstrap-the-image\" class=\"anchor\" aria-label=\"Permalink: 2. Bootstrap the image\" href=\"#2-bootstrap-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity create --size 4000 picard.img\nsudo singularity bootstrap picard.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e3. Run commands\u003c/h2\u003e\u003ca id=\"user-content-3-run-commands\" class=\"anchor\" aria-label=\"Permalink: 3. Run commands\" href=\"#3-run-commands\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHow to access the picard runtime executable?\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e ./picard.img [args] ...\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1479258335.0
+ "updated_at": 1555092034.0
},
{
"data_format": 2,
- "description": "container_openmpi_gnu/_centos7_x86_64",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.latest"
],
- "full_name": "CINECA-HPC/container_openmpi_gnu7_centos7_x86_64",
+ "full_name": "bioexcel/acpype_container",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003econtainer_openmpi_gnu7_centos7_x86_64\u003c/h1\u003e\u003ca id=\"user-content-container_openmpi_gnu7_centos7_x86_64\" class=\"anchor\" aria-label=\"Permalink: container_openmpi_gnu7_centos7_x86_64\" href=\"#container_openmpi_gnu7_centos7_x86_64\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003econtainer_openmpi_gnu/_centos7_x86_64\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://hub.docker.com/r/mmbirb/acpype\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b48b2d8417bd2482df9aa6a920101731c2f1a73416deb25291044c5278738d4a/68747470733a2f2f717561792e696f2f7265706f7369746f72792f62696f636f6e7461696e6572732f62696f62625f696f2f737461747573\" alt=\"\" data-canonical-src=\"https://quay.io/repository/biocontainers/biobb_io/status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/3787\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/Apache-2.0\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2a2157c971b7ae1deb8eb095799440551c33dcf61ea3d965d86b496a5a65df55/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d417061636865253230322e302d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/License-Apache%202.0-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-acpype-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#acpype-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eACPYPE container\u003c/h1\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eACPYPE docker and singularity containers used for \u003ca href=\"https://github.com/bioexcel/biobb_chemistry\"\u003ebiobb_chemistry\u003c/a\u003e BioExcel Building Blocks modules.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-docker-use\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker Use\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker pull mmbirb/acpype:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker run mmbirb/acpype:latest \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity-use\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Use\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity pull --name acpype.sif shub://bioexcel/acpype_container\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity exec acpype.sif \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-copyright--licensing\" class=\"anchor\" aria-hidden=\"true\" href=\"#copyright--licensing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCopyright \u0026amp; Licensing\u003c/h3\u003e\n\u003cp\u003eThis software has been developed in the \u003ca href=\"http://mmb.irbbarcelona.org\" rel=\"nofollow\"\u003eMMB group\u003c/a\u003e at the \u003ca href=\"http://www.bsc.es/\" rel=\"nofollow\"\u003eBSC\u003c/a\u003e \u0026amp; \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eIRB\u003c/a\u003e for the \u003ca href=\"http://bioexcel.eu/\" rel=\"nofollow\"\u003eEuropean BioExcel\u003c/a\u003e, funded by the European Commission (EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/823830\" rel=\"nofollow\"\u003e823830\u003c/a\u003e, EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/675728\" rel=\"nofollow\"\u003e675728\u003c/a\u003e).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e(c) 2015-2020 \u003ca href=\"https://www.bsc.es/\" rel=\"nofollow\"\u003eBarcelona Supercomputing Center\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e(c) 2015-2020 \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eInstitute for Research in Biomedicine\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eLicensed under the\n\u003ca href=\"https://www.apache.org/licenses/LICENSE-2.0\" rel=\"nofollow\"\u003eApache License 2.0\u003c/a\u003e, see the file LICENSE for details.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-acknolegements\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknolegements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknolegements\u003c/h3\u003e\n\u003cp\u003eThe singularity container has been built through \u003ca href=\"https://singularity-hub.org/\" rel=\"nofollow\"\u003esingularity hub\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/39c04282e694d49ea0d56c716a27845cd25b9931f791484540f625dcecf68af2/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/39c04282e694d49ea0d56c716a27845cd25b9931f791484540f625dcecf68af2/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\" alt=\"\" title=\"Bioexcel\" data-canonical-src=\"https://bioexcel.eu/wp-content/uploads/2019/04/Bioexcell_logo_1080px_transp.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1605607119.0
+ "updated_at": 1584436958.0
},
{
"data_format": 2,
- "description": "official build specifications for scientific linux",
+ "description": "This is a Nextflow pipeline for generating sequencing reports for the SNP\u0026Seq Technology platform, NGI Uppsala, SciLifelab Genomics.",
"filenames": [
- "Singularity",
- "7.0/Singularity"
+ "images/Singularity.checkqc-3.6.0"
],
- "full_name": "singularityhub/scientific-linux",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eScientific Linux\u003c/h1\u003e\u003ca id=\"user-content-scientific-linux\" class=\"anchor\" aria-label=\"Permalink: Scientific Linux\" href=\"#scientific-linux\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is the official library of scientific linux builds for Singularity images hosted on Singularity Hub. The following standard applies:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eeach \u003ccode\u003eSingularity\u003c/code\u003e file corresponds to a build\u003c/li\u003e\n\u003cli\u003ethe builds are organized by folders, with one \u003ccode\u003eSingularity\u003c/code\u003e file per folder. This ensures that we can find the files programatically.\u003c/li\u003e\n\u003cli\u003ethe different image tags correspond to these folders, and the name of the tag is specified on Singularity Hub\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUnder Development\u003c/h2\u003e\u003ca id=\"user-content-under-development\" class=\"anchor\" aria-label=\"Permalink: Under Development\" href=\"#under-development\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThese images are currently not connected to Singularity Hub, but this will be done in early 2017. The first effort will be to develop a core set of images, and then any necessary builders / templating systems that would be necessary to help with this process. If you are interested in contributing, please \u003ca href=\"http://singularity.lbl.gov/contributing-code\" rel=\"nofollow\"\u003ereach out\u003c/a\u003e!\u003c/p\u003e\n",
+ "full_name": "Molmed/seqreports",
+ "latest_release": "v1.1.1",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-seqreports-snpseq-run-folder-qc-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#seqreports-snpseq-run-folder-qc-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eseqreports: SNP\u0026amp;Seq Run folder QC pipeline\u003c/h1\u003e\n\u003cp\u003eThis is a Nextflow pipeline for generating sequencing reports for the SNP\u0026amp;Seq Technology platform, NGI Uppsala, SciLifelab Genomics.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pre-requisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#pre-requisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePre-requisites\u003c/h2\u003e\n\u003cp\u003eYou need to:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003einstall Nextflow (e.g. using conda \u003ccode\u003econda create -n nextflow-env nextflow\u003c/code\u003e or downloading from \u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003enextflow.io\u003c/a\u003e).\u003c/li\u003e\n\u003cli\u003einstall \u003ca href=\"https://singularity.lbl.gov/install-linux#adding-the-mirror-and-installing\" rel=\"nofollow\"\u003eSingularity (version \u0026gt; 2.6)\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOptional:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e(currently mandatory: see known issues) Download the fastq-screen database by downloading fastq-screen from \u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/fastq_screen_v0.13.0.tar.gz\" rel=\"nofollow\"\u003ehere\u003c/a\u003e, extract the archive and then run \u003ccode\u003efastq_screen --get_genomes\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-run-the-nextflow-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-run-the-nextflow-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run the nextflow pipeline\u003c/h2\u003e\n\u003cp\u003eAwesome, you\u0027re all set! Let\u0027s try generating reports for your favourite runfolder:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Using parameters supplied in a config (see below)\u003c/span\u003e\n nextflow run -c custom.config -profile snpseq,singularity main.nf\n\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Using parameters supplied on the command line\u003c/span\u003e\n nextflow run -profile snpseq,singularity main.nf \\\n --run_folder \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e/path/to/runfolder\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \\\n --fastqscreen_databases \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e/path/to/databases\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \\\n --checkqc_config \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e/path/to/checkqc.config\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-available-profiles\" class=\"anchor\" aria-hidden=\"true\" href=\"#available-profiles\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAvailable profiles\u003c/h3\u003e\n\u003cp\u003eThese are the primary config profiles:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003edev\u003c/code\u003e: Run locally with low memory.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eirma\u003c/code\u003e: Uppmax slurm profile for use on the cluster \u003ccode\u003eirma\u003c/code\u003e (note: The parameter \u003ccode\u003eparams.project\u003c/code\u003e must be supplied).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esnpseq\u003c/code\u003e: Run locally with greater memory available than \u003ccode\u003edev\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esingularity\u003c/code\u003e: Enables singularity and provides container URLs.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003etest\u003c/code\u003e: Run the pipeline using test data\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAdditional profiles:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003edebug\u003c/code\u003e: prints out the \u003ccode\u003eenv\u003c/code\u003e properties before executing processes.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-supplying-a-custom-config-file\" class=\"anchor\" aria-hidden=\"true\" href=\"#supplying-a-custom-config-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSupplying a custom config file\u003c/h3\u003e\n\u003cp\u003eCustom config files can contain all command line parameters, nextflow parameters, and overriding options.\u003c/p\u003e\n\u003cp\u003eFor example:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eresume = true\nparams.run_folder = \u0027/path/to/runfolder\u0027\nparams.fastqscreen_databases = \u0027/path/to/databases\u0027\nparams.checkqc_config = \u0027/path/to/checkqc.config\u0027\nworkDir = \u0027/path/to/temporary/storage/space\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-development\" class=\"anchor\" aria-hidden=\"true\" href=\"#development\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopment\u003c/h2\u003e\n\u003cp\u003eThere are two primary branches of this project:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003emaster\u003c/code\u003e: The stable release branch\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003edev\u003c/code\u003e: The development and test branch, to which pull requests should be made.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTests are run through GitHub Actions when pushing code to the repo. See instructions below on how to reproduce it locally.\u003c/p\u003e\n\u003cp\u003eTo keep the python parts of the project nice and tidy, we enforce that code should be formatted according to \u003ca href=\"https://github.com/psf/black\"\u003eblack\u003c/a\u003e.\nTo re-format your code with black, simply run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eblack .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-tests-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-tests-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning tests locally\u003c/h3\u003e\n\u003cp\u003eAssuming you have installed all pre-requisites (except the fastq screen database: test data comes with a minimal version of it), you can run tests locally by following these steps:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# create virtual environment \nvirtualenv -p python3.9 venv/ \n\n# activate venv\nsource venv/bin/activate\n\n# install dependencies\npip install -r requirements-dev.txt\n\n# run tests\npytest tests/\n\n# perform black formatter check\nblack --check .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-known-issues\" class=\"anchor\" aria-hidden=\"true\" href=\"#known-issues\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eKnown issues:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eUnable to download genome indicies using \u003ccode\u003efastq_screen --get_genomes\u003c/code\u003e as wget within the container does not resolve the address correctly. Fastq Screen must be installed separately (e.g. with conda) and the genomes downloaded prior to running the workflow. The path to the databases must then be given using the \u003ccode\u003eparams.fastqscreen_databases\u003c/code\u003e parameter.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 10,
"topics": [],
- "updated_at": 1484506870.0
+ "updated_at": 1644241679.0
},
{
"data_format": 2,
- "description": "Haploid bacterial assembly and automatic annotation implemented using Nextflow",
+ "description": "Build recipe for a singularity container running RStudio Server.",
"filenames": [
+ "Singularity.3.6.2",
"Singularity"
],
- "full_name": "BU-ISCIII/bacterial_assembly-nf",
+ "full_name": "gparadis/singularity-rstudio",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-rstudio-server\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-rstudio-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity RStudio Server\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nickjer/singularity-rstudio\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/291de9d065fa77b739def518b0430f977c5793f78b1b4ce88d235e61c42332ee/68747470733a2f2f7472617669732d63692e6f72672f6e69636b6a65722f73696e67756c61726974792d7273747564696f2e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nickjer/singularity-rstudio.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/463\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"Singularity Hub\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image for \u003ca href=\"https://www.rstudio.com/products/rstudio/\" rel=\"nofollow\"\u003eRStudio Server\u003c/a\u003e. It was built on top of the base\nSingularity image \u003ca href=\"https://github.com/nickjer/singularity-r\"\u003enickjer/singularity-r\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThis is still a work in progress.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-hidden=\"true\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild\u003c/h2\u003e\n\u003cp\u003eYou can build a local Singularity image named \u003ccode\u003esingularity-rstudio.simg\u003c/code\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build singularity-rstudio.simg Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-deploy\" class=\"anchor\" aria-hidden=\"true\" href=\"#deploy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeploy\u003c/h2\u003e\n\u003cp\u003eInstead of building it yourself you can download the pre-built image from\n\u003ca href=\"https://www.singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name singularity-rstudio.simg shub://nickjer/singularity-rstudio\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-rstudio-server\" class=\"anchor\" aria-hidden=\"true\" href=\"#rstudio-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRStudio Server\u003c/h3\u003e\n\u003cp\u003eThe \u003ccode\u003erserver\u003c/code\u003e command is launched using the default run command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run singularity-rstudio.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor as an explicit app:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --app rserver singularity-rstudio.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003esingularity run --app rserver singularity-rstudio.simg --help\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ecommand-line options:\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003everify:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --verify-installation arg (=0) verify the current installation\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eserver:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-working-dir arg (=/) program working directory\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-user arg (=rstudio-server) program user\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-daemonize arg (=0) run program as daemon\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-app-armor-enabled arg (=1) is app armor enabled for this session\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-set-umask arg (=1) set the umask to 022 on startup\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003e...\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch4\u003e\u003ca id=\"user-content-simple-password-authentication\" class=\"anchor\" aria-hidden=\"true\" href=\"#simple-password-authentication\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSimple Password Authentication\u003c/h4\u003e\n\u003cp\u003eTo secure the RStudio Server you will need to:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eLaunch the container with the environment variable \u003ccode\u003eRSTUDIO_PASSWORD\u003c/code\u003e set to\na password of your choosing.\u003c/li\u003e\n\u003cli\u003eLaunch the \u003ccode\u003erserver\u003c/code\u003e command with the PAM helper script \u003ccode\u003erstudio_auth\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eAn example is given as:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eRSTUDIO_PASSWORD=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003epassword\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e singularity run singularity-rstudio.simg \\\n --auth-none 0 \\\n --auth-pam-helper rstudio_auth\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNow when you attempt to access the RStudio Server you will be presented with a\nlog in form. You can log in with your current user name and password you set in\n\u003ccode\u003eRSTUDIO_PASSWORD\u003c/code\u003e.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-ldap-authentication\" class=\"anchor\" aria-hidden=\"true\" href=\"#ldap-authentication\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLDAP Authentication\u003c/h4\u003e\n\u003cp\u003eAnother option is using an LDAP (or Active Directory) server for\nauthentication. Configuration of the LDAP authentication script \u003ccode\u003eldap_auth\u003c/code\u003e is\nhandled through the following environment variables:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eLDAP_HOST\u003c/code\u003e - the host name of the LDAP server\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eLDAP_USER_DN\u003c/code\u003e - the formatted string (where \u003ccode\u003e%s\u003c/code\u003e is replaced with the\nusername supplied during log in) of the bind DN used for LDAP authentication\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eLDAP_CERT_FILE\u003c/code\u003e - the file containing the CA certificates used by\nthe LDAP server (default: use system CA certificates)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAn example for an LDAP server with signed SSL certificate from a trusted CA:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_HOST=ldap.example.com\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_USER_DN=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ecn=%s,dc=example,dc=com\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\nsingularity run singularity-rstudio.simg \\\n --auth-none 0 \\\n --auth-pam-helper-path ldap_auth\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAn example for an LDAP server with a self-signed SSL certificate:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_HOST=ldap.example.com\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_USER_DN=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ecn=%s,dc=example,dc=com\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_CERT_FILE=/ca-certs.pem\nsingularity run \\\n --bind /path/to/ca-certs.pem:/ca-certs.pem \\\n singularity-rstudio.simg \\\n --auth-none 0 \\\n --auth-pam-helper-path ldap_auth\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNote that we had to bind mount the CA certificates file from the host machine\ninto the container and specify the container\u0027s path in \u003ccode\u003eLDAP_CERT_FILE\u003c/code\u003e (not\nthe host\u0027s path).\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-r-and-rscript\" class=\"anchor\" aria-hidden=\"true\" href=\"#r-and-rscript\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR and Rscript\u003c/h3\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/nickjer/singularity-r\"\u003enickjer/singularity-r\u003c/a\u003e for more information on how to run \u003ccode\u003eR\u003c/code\u003e and\n\u003ccode\u003eRscript\u003c/code\u003e from within this Singularity image.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003cp\u003eBug reports and pull requests are welcome on GitHub at\n\u003ca href=\"https://github.com/nickjer/singularity-rstudio\"\u003ehttps://github.com/nickjer/singularity-rstudio\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe code is available as open source under the terms of the \u003ca href=\"http://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003eMIT License\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1650379680.0
+ "updated_at": 1597274627.0
},
{
"data_format": 2,
- "description": "Singularity container for canu",
+ "description": null,
"filenames": [
- "Singularity.1.8.0"
+ "Singularity.biopython_1.78",
+ "Singularity.pandas_0.25.3"
],
- "full_name": "ISUGIFsingularity/canu",
+ "full_name": "TomHarrop/py-containers",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity container recipe and run script for the MaSuRCA assembler\u003c/h1\u003e\u003ca id=\"user-content-singularity-container-recipe-and-run-script-for-the-masurca-assembler\" class=\"anchor\" aria-label=\"Permalink: Singularity container recipe and run script for the MaSuRCA assembler\" href=\"#singularity-container-recipe-and-run-script-for-the-masurca-assembler\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eClone this repository\u003c/h3\u003e\u003ca id=\"user-content-clone-this-repository\" class=\"anchor\" aria-label=\"Permalink: Clone this repository\" href=\"#clone-this-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003emkdir isugif\ncd isugif\ngit clone git@github.com:ISUGIFsingularity/canu.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePlace singularity container into SIMG folder inside this repo\u003c/h3\u003e\u003ca id=\"user-content-place-singularity-container-into-simg-folder-inside-this-repo\" class=\"anchor\" aria-label=\"Permalink: Place singularity container into SIMG folder inside this repo\" href=\"#place-singularity-container-into-simg-folder-inside-this-repo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can pull the singularity image using these commands\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd canu\nmkdir SIMG\ncd SIMG\nsingularity pull shub://ISUGIFsingularity/canu:1.8.0\nln -s ISUGIFsingularity-canu-master-1.8.0.simg ISUGIFsingularity-canu-master.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAdd Alias and PATH\u003c/h3\u003e\u003ca id=\"user-content-add-alias-and-path\" class=\"anchor\" aria-label=\"Permalink: Add Alias and PATH\" href=\"#add-alias-and-path\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePlace the following into your .bashrc folder for container use\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#make sure you are in the canu folder that corresponds to the Path2thisRepo\nexport canugit=`pwd`\nexport PATH=$PATH:$canugit/wrappers\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePlace the following into your .bashrc folder to use scripts without container (preferred method unless testing container functions)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport canugit=path2thisrepo\nexport PATH=$PATH:$canugit/canu\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eNotes\u003c/h3\u003e\u003ca id=\"user-content-notes\" class=\"anchor\" aria-label=\"Permalink: Notes\" href=\"#notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor this to function properly had to add \u003ccode\u003e--bind $canugit:/mnt\u003c/code\u003e to the wrappers\u003c/p\u003e\n\u003cp\u003eExample\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity exec --bind $canugit:/mnt --bind $PWD $canugit/SIMG/ISUGIFsingularity-canu-master.simg /mnt/canu/summary.sh\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1550868367.0
+ "updated_at": 1602640832.0
},
{
"data_format": 2,
- "description": "Singularity container with a working version of the stringr R package",
+ "description": "Angsd_Singularity_Install",
"filenames": [
"Singularity"
],
- "full_name": "richelbilderbeek/stringr_singularity",
+ "full_name": "carte731/Angsd_Singularity_Install",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003estringr_singularity\u003c/h1\u003e\u003ca id=\"user-content-stringr_singularity\" class=\"anchor\" aria-label=\"Permalink: stringr_singularity\" href=\"#stringr_singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/richelbilderbeek/stringr_singularity/actions/workflows/build_singularity.yaml\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/stringr_singularity/actions/workflows/build_singularity.yaml/badge.svg\" alt=\"build_singularity\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity container with a working version of the \u003ccode\u003estringr\u003c/code\u003e R package.\u003c/p\u003e\n\u003cp\u003eIt does run remotely (i.e. on GitHub Actions),\nbut not on my Ubuntu 20.04 LTS laptop).\u003c/p\u003e\n\u003cp\u003eBecause I do not understand why, I\n\u003ca href=\"https://stackoverflow.com/questions/71252123/singularity-container-with-stringr-fails-only-locally-with-libicui18n-so-66-ca\" rel=\"nofollow\"\u003eposted a question on StackOverflow\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity install recipe for Angsd-Wrapper program. University of Minnesota - Twin Cities, Morrell Lab.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1645702896.0
+ "updated_at": 1566918717.0
},
{
"data_format": 2,
- "description": "A repository with simple singularity recipes for tutorial purpose",
+ "description": null,
"filenames": [
- "Singularity.ub16.04-step1",
- "Singularity.ub16.04-step0",
- "Singularity.ub16.04-step2",
- "Singularity.ub16.04-step3",
- "Singularity.ub16.04-step4"
+ "containers/Singularity",
+ "containers/Singularity_freesurfer_and_fastsurfer.def"
],
- "full_name": "DeepLearnPhysics/playground-singularity",
+ "full_name": "neurodatascience/watts_up_compute",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://raw.githubusercontent.com/DeepLearnPhysics/playground-singularity/master/LICENSE\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e581ac49b7e1e99fb951242be63f6fdc6ebbc20c89a97fca0de99e1f2e6ae87e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6d6173686170652f6170697374617475732e737667\" alt=\"license\" data-canonical-src=\"https://img.shields.io/github/license/mashape/apistatus.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/459\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eplayground-singularity\u003c/h1\u003e\u003ca id=\"user-content-playground-singularity\" class=\"anchor\" aria-label=\"Permalink: playground-singularity\" href=\"#playground-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA repository with simple singularity recipes for tutorial purpose. Checkout the \u003ca href=\"https://github.com/DeepLearnPhysics/playground-singularity/wiki\"\u003ewiki\u003c/a\u003e for documentation!\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-watts_up_compute\" class=\"anchor\" aria-hidden=\"true\" href=\"#watts_up_compute\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ewatts_up_compute\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-code-repo-to-assess-compute-costs-of-neuroimaging-pipelines\" class=\"anchor\" aria-hidden=\"true\" href=\"#code-repo-to-assess-compute-costs-of-neuroimaging-pipelines\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCode repo to assess compute costs of neuroimaging pipelines\u003c/h2\u003e\n\u003ch2\u003e\u003ca id=\"user-content-motivation\" class=\"anchor\" aria-hidden=\"true\" href=\"#motivation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMotivation\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eIncreasing supply of large datasets and machine-learning models\u003c/li\u003e\n\u003cli\u003eGrowing demand for computational resources exceeding Moore\u2019s law [\u003ca href=\"https://openai.com/blog/ai-and-compute/\" rel=\"nofollow\"\u003e1\u003c/a\u003e, \u003ca href=\"https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/\" rel=\"nofollow\"\u003e2\u003c/a\u003e, \u003ca href=\"https://arxiv.org/abs/1907.10597\" rel=\"nofollow\"\u003e3\u003c/a\u003e, \u003ca href=\"https://dl.acm.org/doi/10.1145/3442188.3445922\" rel=\"nofollow\"\u003e4\u003c/a\u003e, \u003ca href=\"https://arxiv.org/abs/2104.10350\" rel=\"nofollow\"\u003e5\u003c/a\u003e]\u003c/li\u003e\n\u003cli\u003eEstimated carbon footprint of AI model: 284,000 Kgs of CO2 (5x lifetime emissions of a car or 300x RT-flights for single passenger between NYC and SF [\u003ca href=\"https://openai.com/blog/ai-and-compute/\" rel=\"nofollow\"\u003e1\u003c/a\u003e, \u003ca href=\"https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/\" rel=\"nofollow\"\u003e2\u003c/a\u003e, \u003ca href=\"https://arxiv.org/abs/1907.10597\" rel=\"nofollow\"\u003e3\u003c/a\u003e])\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eDataset sizes\u003c/th\u003e\n\u003cth align=\"center\"\u003eModel sizes\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"figures/Fig1b.png\"\u003e\u003cimg src=\"figures/Fig1b.png\" alt=\"Drawing\" align=\"middle\" width=\"500px\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd align=\"center\"\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"figures/Fig1c.png\"\u003e\u003cimg src=\"figures/Fig1c.png\" alt=\"Drawing\" align=\"middle\" width=\"570px\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\u003ca id=\"user-content-experiment-objectives\" class=\"anchor\" aria-hidden=\"true\" href=\"#experiment-objectives\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExperiment objectives:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eBenchmark following compute cost metrics for neuroimaging pipelines:\n\u003cul\u003e\n\u003cli\u003emodel complexity (parameters, FLOPs/MACs)\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://www.bnikolic.co.uk/blog/python/flops/2019/09/27/python-counting-events.html\" rel=\"nofollow\"\u003egeneral purpose\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/sovrasov/flops-counter.pytorch\"\u003epytorch:ptflops\u003c/a\u003e (Primarily used)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003emodel energy/power consumption using several carbon trackers\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/Breakend/experiment-impact-tracker\"\u003eexperiment-impact-tracker\u003c/a\u003e (Primarily used)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/lfwa/carbontracker\"\u003eCarbonTracker\u003c/a\u003e (in-progress)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/mlco2/codecarbon\"\u003eCodeCarbon\u003c/a\u003e (in-progress)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003emodel runtime\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eComparisons:\n\u003cul\u003e\n\u003cli\u003ehardware: cpu vs gpu\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-repo-organization-ongoing\" class=\"anchor\" aria-hidden=\"true\" href=\"#repo-organization-ongoing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRepo organization (ongoing)\u003c/h2\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"figures/Watts_up_compute_org.jpg\"\u003e\u003cimg src=\"figures/Watts_up_compute_org.jpg\" alt=\"Drawing\" align=\"middle\" width=\"800px\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-preliminary-results-on-a-pilot-sample\" class=\"anchor\" aria-hidden=\"true\" href=\"#preliminary-results-on-a-pilot-sample\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreliminary results on a pilot sample\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDatasets: \u003ca href=\"https://www.ukbiobank.ac.uk/enable-your-research/register\" rel=\"nofollow\"\u003eUK Biobank sample\u003c/a\u003e (N=72)\u003c/li\u003e\n\u003cli\u003ePipelines: \u003ca href=\"https://surfer.nmr.mgh.harvard.edu/\" rel=\"nofollow\"\u003eFreeSurfer 6.0\u003c/a\u003e implementation with \u003ca href=\"https://nipype.readthedocs.io/en/latest/users/examples/smri_fsreconall.html\" rel=\"nofollow\"\u003eNipype\u003c/a\u003e vs. FastSurfer (deep-learning approach)\u003c/li\u003e\n\u003cli\u003eOutput: Volumetric brain segmentation and cortical thickness estimation with DKT parcellations (see figure below)\u003c/li\u003e\n\u003cli\u003eProc: CPU (Intel Xeon(R) Gold 6148 @ 2.40GHz) vs. GPU (Tesla V100-SXM2-16GB CUDA:11.0)\u003c/li\u003e\n\u003cli\u003eHPC location: Compute Canada @ Quebec, Canada (\u003ca href=\"https://en.wikipedia.org/wiki/Power_usage_effectiveness\" rel=\"nofollow\"\u003ePUE\u003c/a\u003e ~ 1.2)\u003c/li\u003e\n\u003cli\u003eCompute cost metrics\n\u003col\u003e\n\u003cli\u003eRuntime 2) Power draw 3) Carbon emissions\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003eCompute cost tracker: experiment-impact-tracker\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"figures/FreeSurfer_FastSurfer.png\"\u003e\u003cimg src=\"figures/FreeSurfer_FastSurfer.png\" alt=\"Drawing\" align=\"middle\" width=\"800px\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-compute-cost-benchmarks\" class=\"anchor\" aria-hidden=\"true\" href=\"#compute-cost-benchmarks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompute cost benchmarks:\u003c/h3\u003e\n\u003cp\u003eNote: The values in table are for processing of a single scan. A typical inference/deployment pipeline may do ~10k of these runs for a large dataset. And a model training/development pipeline may incur over 1M runs.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003ePipeline (single run)\u003c/th\u003e\n\u003cth\u003eRuntime (hrs): CPU\u003c/th\u003e\n\u003cth\u003eRuntime (hrs): GPU\u003c/th\u003e\n\u003cth\u003ePower (W-hrs): CPU\u003c/th\u003e\n\u003cth\u003ePower (W-hrs): GPU\u003c/th\u003e\n\u003cth\u003eCarbon Emissions (grams): CPU\u003c/th\u003e\n\u003cth\u003eCarbon Emissions (grams): GPU\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eFreeSurfer\u003c/td\u003e\n\u003ctd\u003e8.3 (1.03)\u003c/td\u003e\n\u003ctd\u003eN/A\u003c/td\u003e\n\u003ctd\u003e108.5 (19.8)\u003c/td\u003e\n\u003ctd\u003eN/A\u003c/td\u003e\n\u003ctd\u003e3.26 (0.5)\u003c/td\u003e\n\u003ctd\u003eN/A\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFastSurfer\u003c/td\u003e\n\u003ctd\u003e9.8 (0.74)\u003c/td\u003e\n\u003ctd\u003e1.6 (0.47)\u003c/td\u003e\n\u003ctd\u003e126.4 (16.1)\u003c/td\u003e\n\u003ctd\u003e26.7 (7.7)\u003c/td\u003e\n\u003ctd\u003e3.79 (0.5)\u003c/td\u003e\n\u003ctd\u003e0.80 (0.2)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1536417204.0
+ "updated_at": 1639003401.0
},
{
"data_format": 2,
@@ -3900,722 +3530,694 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "kavonrtep/assembly_repeat_annotation_pipeline",
+ "full_name": "rkalyanapurdue/mpitest",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAssembly Repeat Annotation Pipeline\u003c/h1\u003e\u003ca id=\"user-content-assembly-repeat-annotation-pipeline\" class=\"anchor\" aria-label=\"Permalink: Assembly Repeat Annotation Pipeline\" href=\"#assembly-repeat-annotation-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequirements\u003c/h2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity is required to use the container. Singularity can be installed using conda environment.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda create -n singularity3 -c conda-forge \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003esingularity\u0026gt;=3.6\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\nconda activate singularity3\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQuick Start\u003c/h2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-label=\"Permalink: Quick Start\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity image (.sif file) can be downloaded from \u003ca href=\"https://github.com/kavonrtep/assembly_repeat_annotation_pipeline/releases\"\u003ehttps://github.com/kavonrtep/assembly_repeat_annotation_pipeline/releases\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFormat of \u003ccode\u003econfig.yaml\u003c/code\u003e file is as follows:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003egenome_fasta\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003edata/CEN6_ver_220406_part.fasta\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003eoutput_dir\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003eoutput\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003ecustom_library\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003edata/pisum_custom_library.fasta\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003etandem_repeat_library\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003edata/FabTR_all_sequences_210901.db.RM_format.fasta\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e posible values are : sensitive, default, quick,\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e if missing, default is used\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003erepeatmasker_sensitivity\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003edefault\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e perform library size reduction, possible values are True, False, if missinf True is used\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003ereduce_library\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eLines specifying \u003ccode\u003ecustom_library\u003c/code\u003e and \u003ccode\u003etandem_repeat_library\u003c/code\u003e are optional. File \u003ccode\u003ecustom_library\u003c/code\u003e is\nused by RepeatMasker fo similarity based annotation. Sequences must be as FASTA with\nsequence IDs in format \u003ccode\u003e\u0026gt;repeatname#class/subclass\u003c/code\u003e\nClassification categories are:\u003c/p\u003e\n\u003cpre lang=\"text\"\u003e\u003ccode\u003eClass_I/LINE\nClass_I/LTR/Ty1_copia\nClass_I/LTR/Ty1_copia/Ale\nClass_I/LTR/Ty1_copia/Angela\nClass_I/LTR/Ty1_copia/Bianca\nClass_I/LTR/Ty1_copia/Ikeros\nClass_I/LTR/Ty1_copia/Ivana\nClass_I/LTR/Ty1_copia/SIRE\nClass_I/LTR/Ty1_copia/TAR\nClass_I/LTR/Ty1_copia/Tork\nClass_I/LTR/Ty1_copia/Alexandra\nClass_I/LTR/Ty1_copia/Bryana\nClass_I/LTR/Ty1_copia/Ferco\nClass_I/LTR/Ty3_gypsy\nClass_I/LTR/Ty3_gypsy/chromovirus\nClass_I/LTR/Ty3_gypsy/chromovirus/Ferney\nClass_I/LTR/Ty3_gypsy/chromovirus/CRM\nClass_I/LTR/Ty3_gypsy/chromovirus/Reina\nClass_I/LTR/Ty3_gypsy/chromovirus/Tekay\nClass_I/LTR/Ty3_gypsy/non-chromovirus/OTA\nClass_I/LTR/Ty3_gypsy/non-chromovirus/OTA/Tatius\nClass_I/LTR/Ty3_gypsy/non-chromovirus/OTA/Athila\nClass_I/LTR/Ty3_gypsy/non-chromovirus/OTA/Tat\nClass_I/LTR/Ty3_gypsy/non-chromovirus/OTA/Tat/Ogre\nClass_I/LTR/Ty3_gypsy/non-chromovirus/OTA/Tat/Retand\nClass_II/Subclass_1/TIR/EnSpm_CACTA\nClass_II/Subclass_1/TIR/hAT\nClass_II/Subclass_1/TIR/MITE\nClass_II/Subclass_1/TIR/MITE/Stowaway\nClass_II/Subclass_1/TIR/MuDR_Mutator\nClass_II/Subclass_1/TIR/PIF_Harbinger\nClass_II/Subclass_1/TIR/Tc1_Mariner\nClass_II/Subclass_2/Helitron\nrDNA_45S/18S\nrDNA_45S/25S\nrDNA_45S/5.8S\nrDNA_5S/5S\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIt is possible to include additional categories to repeat library. Note that \u003ccode\u003eSubclass_1\u003c/code\u003e repeats are used to clean \u003ccode\u003eClass_I/LTR\u003c/code\u003e library which is built by DANTE_LTR thus it is critical to use correct codes for \u003ccode\u003eClass_II/Subclass_1\u003c/code\u003e mobile elements in repeat library.\u003c/p\u003e\n\u003cp\u003eFile \u003ccode\u003ecustom_library\u003c/code\u003e is used by TideCluster to annotate discovered tandem repeats based\non the similarity. Format is the same as above repeat database. E.g.\n\u003ccode\u003e\u0026gt;sequence_id/Satellite/PisTR-B\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTo run annotation pipeline, execute following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run -B /path/to/ -B \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e assembly_repeat_annotation_pipeline.sif -c config.yaml -t 20\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eParameter \u003ccode\u003e-t\u003c/code\u003e specifies the number of threads to use. Singularity parameter \u003ccode\u003e-B\u003c/code\u003e is used to bind the input and output directories to the container. Without this parameter, the container will not be able to access the input and output files. File \u003ccode\u003econfig.yaml\u003c/code\u003e must be also in directory which is accessible to the container. In the example above this is the current directory \u003ccode\u003e$PWD\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning pipeline on metacentrum\u003c/h2\u003e\u003ca id=\"user-content-running-pipeline-on-metacentrum\" class=\"anchor\" aria-label=\"Permalink: Running pipeline on metacentrum\" href=\"#running-pipeline-on-metacentrum\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eUse \u003ca href=\"./scripts/annotate_repeats_metacentrum.sh\"\u003e./scripts/annotate_repeats_metacentrum.sh\u003c/a\u003e script to run the pipeline on metacentrum. Adjust paths to the input files , output directory and singularity image.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOutput structure\u003c/h2\u003e\u003ca id=\"user-content-output-structure\" class=\"anchor\" aria-label=\"Permalink: Output structure\" href=\"#output-structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTODO\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild the container\u003c/h2\u003e\u003ca id=\"user-content-build-the-container\" class=\"anchor\" aria-label=\"Permalink: Build the container\" href=\"#build-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo build the container, run the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eSINGULARITY=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e`\u003c/span\u003ewhich singularity\u003cspan class=\"pl-pds\"\u003e`\u003c/span\u003e\u003c/span\u003e\nsudo ionice -c3 \u003cspan class=\"pl-smi\"\u003e$SINGULARITY\u003c/span\u003e build images/assembly_repeat_annotation_pipeline_0.6.3.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eChangelog:\u003c/h2\u003e\u003ca id=\"user-content-changelog\" class=\"anchor\" aria-label=\"Permalink: Changelog:\" href=\"#changelog\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003ev 0.5.1 - graphical output to PDF added\u003c/li\u003e\n\u003cli\u003ev 0.5.2 - RepeatMasker sensitivity can be set\u003c/li\u003e\n\u003cli\u003ev 0.6.0 - REXdb Viridiplante v4.0, library size reduction added, RepeatMasker parallelization added, missing full LTR-RT handling added\u003c/li\u003e\n\u003cli\u003ev 0.6.1 DANTE_LTR update to 0.4.0.3 (bugfix)\u003c/li\u003e\n\u003cli\u003ev 0.6.2 bugfix in bigwig calculation\u003c/li\u003e\n\u003cli\u003ev 0.6.3 dante update to 0.2.5 - bugfix\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-mpitest\" class=\"anchor\" aria-hidden=\"true\" href=\"#mpitest\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003empitest\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1729236602.0
+ "updated_at": 1567614468.0
},
{
"data_format": 2,
- "description": "Common tools for w3const project",
+ "description": "Singularity recipe for ROS Indigo and Kinetic",
"filenames": [
- "Singularity"
+ "Singularity",
+ "indigo/Singularity.indigo",
+ "kinetic/Singularity.kinetic"
],
- "full_name": "ddbj/w3const_base",
+ "full_name": "ISU-HPC/ros",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ew3const_base\u003c/h1\u003e\u003ca id=\"user-content-w3const_base\" class=\"anchor\" aria-label=\"Permalink: w3const_base\" href=\"#w3const_base\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCommon tools for w3const project\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eHow to build the container\u003c/h1\u003e\u003ca id=\"user-content-how-to-build-the-container\" class=\"anchor\" aria-label=\"Permalink: How to build the container\" href=\"#how-to-build-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003ecd ~\ngit clone https://github.com/ddbj/w3const_base.git\nsudo singularity build constbase.sif ~/w3const_base/Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cem\u003ecuratortool\u003c/em\u003e directory contains the following scripts and binaries.\u003c/strong\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003egetblastdb_ncbi.sh\u003c/h2\u003e\u003ca id=\"user-content-getblastdb_ncbish\" class=\"anchor\" aria-label=\"Permalink: getblastdb_ncbi.sh\" href=\"#getblastdb_ncbish\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDownload blast/db data from NCBI by using aspera connect and decompress to the blastdb directory.\u003c/p\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec /home/w3const/work-kosuge/constbase.sif getblastdb_ncbi.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eVariables:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDBNAME ... blast db to be downloaded.\u003c/li\u003e\n\u003cli\u003eMAXTRY ... Retry download until the times, when a downloaded file is broken.\u003c/li\u003e\n\u003cli\u003eBASE ... Base directory for running the script.\u003c/li\u003e\n\u003cli\u003eDBSRC ... URL of NCBI data resource.\u003c/li\u003e\n\u003cli\u003eDATLOC ... Usually, the latest tar.gz archives from NCBI are placed. When the downloading was failed, the tar.gz files are copied from DATLOCF directory.\u003c/li\u003e\n\u003cli\u003eDATLOCF ... Former tar.gz archives from NCBI are placed.\u003c/li\u003e\n\u003cli\u003eJSONLOC ... Manifest json files from NCBI. Each file are downloaded based on the information in the json file.\u003c/li\u003e\n\u003cli\u003eBDB ... A directory where decompressed data are placed.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003esendgmail_w3const.py\u003c/h2\u003e\u003ca id=\"user-content-sendgmail_w3constpy\" class=\"anchor\" aria-label=\"Permalink: sendgmail_w3const.py\" href=\"#sendgmail_w3constpy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSends email by using the google account. You can specify a sender address if you have set the other email address(es) (e.g. sender alias) on the account.\u003c/p\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec /home/w3const/work-kosuge/constbase.sif sendgmail_w3const.py [-h] --sj subject --to email --body file [--cc email] [--bcc email] [--att file] [--sender address]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou must prepare credential and white list files in advance.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eCreate a credential file to run the script.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003emkdir -m 700 ~/.sendgmail_w3const\necho \u0027GmailAccount:ApplicationPassword\u0027 \u0026gt; ~/.sendgmail_w3const/account\nchmod 600 ~/.sendgmail_w3const/account\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eCreate a whitelist\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003etouch ~/.sendgmail_w3const/whitelist; chmod 600 ~/.sendgmail_w3const/whitelist\nWrite an email address to the whitelist in each line.\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eExample\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003ecd /home/w3const\nsingularity exec /home/w3const/work-kosuge/constbase.sif sendgmail_w3const.py --sj \"\u3066\u3059\u3068\u3067\u3059\" --to addr1,addr2 --body /home/w3const/work-kosuge/emailbody.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003esendmail_gw1.py\u003c/h2\u003e\u003ca id=\"user-content-sendmail_gw1py\" class=\"anchor\" aria-label=\"Permalink: sendmail_gw1.py\" href=\"#sendmail_gw1py\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can send email only when sender address is \u003cem\u003enig\u003c/em\u003e and \u003cem\u003eddbj\u003c/em\u003e domain. Works only in supercomputer nodes.\u003c/p\u003e\n\u003cp\u003eYou must prepare whitelist file as mentioned above.\u003c/p\u003e\n\u003cp\u003eUsage\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec /home/w3const/work-kosuge/constbase.sif sendgmail_gw1.py --sender foo@ddbj.nig.ac.jp --sj \"\u3066\u3059\u3068\u3067\u3059\" --to addr1,addr2 --body /home/w3const/work-kosuge/emailbody.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003emakeUniVec_blastdb.sh\u003c/h2\u003e\u003ca id=\"user-content-makeunivec_blastdbsh\" class=\"anchor\" aria-label=\"Permalink: makeUniVec_blastdb.sh\" href=\"#makeunivec_blastdbsh\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDownload the UniVec fasta from NCBI and replace the local file with newwer ones. The script also prepares blast databases whose names are UniVec and UniVec_Core.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eBefore use\u003c/h3\u003e\u003ca id=\"user-content-before-use\" class=\"anchor\" aria-label=\"Permalink: Before use\" href=\"#before-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eEdit the directory name of BASE (line 8). It is used for base directory. You need to create \"UniVec\" directory under the base directory. The blast databases for UniVec and UniVec_Core are created to the directory designated by BLASTDIR (line 12).\u003c/p\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec /home/w3const/work-kosuge/constbase.sif makeUniVec_blastdb.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003esplitff.sh\u003c/h2\u003e\u003ca id=\"user-content-splitffsh\" class=\"anchor\" aria-label=\"Permalink: splitff.sh\" href=\"#splitffsh\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSeparate a huge flatfile into small-sized flat files.\u003c/p\u003e\n\u003cp\u003eUsage\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esplitff.sh -f \u0026lt;flatfile\u0026gt; -s \u0026lt;number of lines\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003egetorganismdivFF.py\u003c/h2\u003e\u003ca id=\"user-content-getorganismdivffpy\" class=\"anchor\" aria-label=\"Permalink: getorganismdivFF.py\" href=\"#getorganismdivffpy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eObtain or search taxnomyc division for a target entry from the flatfile, Entrez, or local taxonomy dump file. In the case of ENV or taxid=0, taxonomic division is obtained from Entrez search or tax dump file by using the beginning of the /organism as a query.\u003c/p\u003e\n\u003cp\u003eUsage\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ee.g.1\ngetorganismdivFF.py -i \u0026lt;flatfile\u0026gt; -a \u0026lt;accession num\u0026gt;\ne.g.2\ngetorganismdivFF.py -i \u0026lt;flatfile\u0026gt; -a \u0026lt;accession num\u0026gt; -p \u0026lt;tax dump directory\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ejParser \u0026amp; transChecker\u003c/h2\u003e\u003ca id=\"user-content-jparser--transchecker\" class=\"anchor\" aria-label=\"Permalink: jParser \u0026amp; transChecker\" href=\"#jparser--transchecker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://ddbj.nig.ac.jp/public/ddbj-cib/MSS/\" rel=\"nofollow\"\u003ehttps://ddbj.nig.ac.jp/public/ddbj-cib/MSS/\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eblast \u0026amp; matrix\u003c/h2\u003e\u003ca id=\"user-content-blast--matrix\" class=\"anchor\" aria-label=\"Permalink: blast \u0026amp; matrix\" href=\"#blast--matrix\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eftp://ftp.ncbi.nih.gov/blast/executables/blast+/\nftp://ftp.ncbi.nih.gov/blast/matrices\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003evecscrnfilter.py\u003c/h2\u003e\u003ca id=\"user-content-vecscrnfilterpy\" class=\"anchor\" aria-label=\"Permalink: vecscrnfilter.py\" href=\"#vecscrnfilterpy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eReads vecscreen result that carried out with options -outfmt 0 -text_output, and filter the results with the degree of blast matches.\u003c/p\u003e\n\u003cp\u003eUsage\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003evecscrnfilter.py [-s|-m|-w] [alignment file]\n# \u0027-s\u0027 outputs only \u0027Strong match\u0027\n# \u0027-m\u0027 outputs \u0027Moderate match\u0027 \u0026amp; \u0027Strong Match\u0027\n# \u0027-w\u0027 outputs \u0027Weak match\u0027 besides \u0027Moderate match\u0027 \u0026amp; \u0027Strong match\u0027\n# They may contain \u0027Suspect origin\u0027 if included in the result\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSRA Toolkit\u003c/h2\u003e\u003ca id=\"user-content-sra-toolkit\" class=\"anchor\" aria-label=\"Permalink: SRA Toolkit\" href=\"#sra-toolkit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eLatest version of \u003ca href=\"https://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/\" rel=\"nofollow\"\u003ehttps://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAspera Connect\u003c/h2\u003e\u003ca id=\"user-content-aspera-connect\" class=\"anchor\" aria-label=\"Permalink: Aspera Connect\" href=\"#aspera-connect\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://www.ibm.com/aspera/connect/\" rel=\"nofollow\"\u003ehttps://www.ibm.com/aspera/connect/\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-ros\" class=\"anchor\" aria-hidden=\"true\" href=\"#ros\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eros\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for ROS Indigo and Kinetic\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 11,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1727936224.0
+ "updated_at": 1524505755.0
},
{
"data_format": 2,
- "description": "Base centos7 with miniconda installed",
+ "description": "build index for several aligners and writes a module file",
"filenames": [
- "Singularity"
+ "Singularity.1.0.2",
+ "Singularity.1.0.1"
],
- "full_name": "scleveland/centos7-miniconda",
+ "full_name": "ISUGIFsingularity/genomeModules",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Recipe for base CentOS 7 image with Miniconda Installed\u003c/h1\u003e\u003ca id=\"user-content-singularity-recipe-for-base-centos-7-image-with-miniconda-installed\" class=\"anchor\" aria-label=\"Permalink: Singularity Recipe for base CentOS 7 image with Miniconda Installed\" href=\"#singularity-recipe-for-base-centos-7-image-with-miniconda-installed\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repo contains recipe to install MiniConda on a base CentOS-7 singularity containteri (shub://scleveland/centos7-base-singularity)\n\u003ca href=\"https://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e, which can be built\nusing \u003ca href=\"https://singularity-hub.org/\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow to Use:\u003c/h2\u003e\u003ca id=\"user-content-how-to-use\" class=\"anchor\" aria-label=\"Permalink: How to Use:\" href=\"#how-to-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003esingularity run shub://scleveland\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-genomemodules\" class=\"anchor\" aria-hidden=\"true\" href=\"#genomemodules\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egenomeModules\u003c/h1\u003e\n\u003cp\u003ebuild index for several aligners and writes a module file\u003c/p\u003e\n\u003cp\u003eAfter cloning this repository\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-download-the-following-singularity-images-and-place-them-in-simg-folder\" class=\"anchor\" aria-hidden=\"true\" href=\"#download-the-following-singularity-images-and-place-them-in-simg-folder\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownload the following singularity images and place them in SIMG folder\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003esingularity pull shub://ISUGIFsingularity/genomeModules:1.0.2\u003c/li\u003e\n\u003cli\u003esingularity pull shub://ISUGIFsingularity/utilities:1.0.1\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\u003ca id=\"user-content-modify-the-following-environmental-variables-in-prepare_genome_modulessh\" class=\"anchor\" aria-hidden=\"true\" href=\"#modify-the-following-environmental-variables-in-prepare_genome_modulessh\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModify the following environmental variables in prepare_genome_modules.sh\u003c/h4\u003e\n\u003cp\u003eUse full paths so that the module file will work correctly\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport GENMODgit=\"/pylon5/mc48o5p/severin/isugif/genomeModules\"\nGENMOD=\"/pylon5/mc48o5p/severin/isugif/\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eGENMODgit is the location of this github repository.\nGENMOD is the location where you would like to store genome modules and sequence files that this script generates.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-running-the-prepare-genome-modules-command-to-generate-a-genome-module-file\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-the-prepare-genome-modules-command-to-generate-a-genome-module-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the prepare genome modules command to generate a genome module file.\u003c/h4\u003e\n\u003cp\u003eI ran this on the Seriola dorsalis genome and its corresponding GFF3 file.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eprepare_genome_modules.sh serdor v2 Serdor_V2.fasta Serdor_V2.gff3\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-adding-the-modules-to-your-module-path\" class=\"anchor\" aria-hidden=\"true\" href=\"#adding-the-modules-to-your-module-path\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAdding the modules to your module path.\u003c/h4\u003e\n\u003cp\u003emodule use $GENMOD/genomes/modules/\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-example-of-a-genome-module\" class=\"anchor\" aria-hidden=\"true\" href=\"#example-of-a-genome-module\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample of a genome module\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003emodule load serdor\nmodule show serdor\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003e-------------------------------------------------------------------\n/pylon5/mc48o5p/severin/genmodTest/genomes/modules//serdor/v2:\n\nmodule-whatis serdor \nunsetenv GENOME \nunsetenv GMAPDB \nunsetenv GNAME \nsetenv GENOMEDIR .//genomes/sequences/serdor/v2/ \nsetenv GENOMEFASTA .//genomes/sequences/serdor/v2/serdor_v2.fasta \nsetenv GENOMEINTERVALS .//genomes/sequences/serdor/v2/serdor_v2_100kb_coords.bed \nsetenv GNAME serdor_v2 \nsetenv GMAPDB .//genomes/sequences/serdor/v2/ \nsetenv modulefile .//genomes/modules/serdor/v2 \nsetenv VERSION v2 \nsetenv serdor_v2_genome .//genomes/sequences/serdor/v2/ \nsetenv serdor_v2_GMAPDB .//genomes/sequences/serdor/v2/serdor_v2 \nsetenv serdor_v2_GNAME serdor_v2 \nsetenv serdor_v2_intervals100k .//genomes/sequences/serdor/v2/serdor_v2_100kb_coords.bed \nsetenv serdor_v2_cdna .//genomes/sequences/serdor/v2/serdor_v2.fasta \nsetenv serdor_v2_cdna .//genomes/sequences/serdor/v2/serdor_v2.gff3 \nsetenv serdor_v2_cdna .//genomes/sequences/serdor/v2/serdor_v2.cdna.fasta \nsetenv serdor_v2_cds .//genomes/sequences/serdor/v2/serdor_v2.cds.fasta \nsetenv serdor_v2_gene .//genomes/sequences/serdor/v2/serdor_v2.gene.fasta \nsetenv serdor_v2_pep .//genomes/sequences/serdor/v2/serdor_v2.pep.fasta \nsetenv serdor_v2_upstream3000 serdor_v2.upstream3000.fasta \n-------------------------------------------------------------------\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1543871839.0
+ "updated_at": 1523035282.0
},
{
"data_format": 2,
- "description": "Container Template for the Soil and Water Assessment Toolkit",
+ "description": "Bayesian poissonian histogram decomposition engine for the GERDA experiment",
"filenames": [
- "Singularity"
+ "Singularity.def"
],
- "full_name": "XSEDE/singularity-swat681",
+ "full_name": "gipert/gerda-fitter",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSoil \u0026amp; Water Assessment Tool\u003c/h1\u003e\u003ca id=\"user-content-soil--water-assessment-tool\" class=\"anchor\" aria-label=\"Permalink: Soil \u0026amp; Water Assessment Tool\" href=\"#soil--water-assessment-tool\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis container includes the Soil and Water Assessment Tool (\u003ca href=\"https://swat.tamu.edu/software/\" rel=\"nofollow\"\u003ehttps://swat.tamu.edu/software/\u003c/a\u003e)\nrevision 681,\nbuilt for use on amd64 Linux systems. The binary is installed at /usr/local/swat681/swat.\nAt run-time, any input files MUST be bind-mounted to /usr/local/swat681 - for example:\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\".github/gerda-logo.png\"\u003e\u003cimg src=\".github/gerda-logo.png\" align=\"left\" height=\"80\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-gerda-fitter-\" class=\"anchor\" aria-hidden=\"true\" href=\"#gerda-fitter-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egerda-fitter \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/gipert/gerda-fitter/workflows/CI/badge.svg\"\u003e\u003cimg src=\"https://github.com/gipert/gerda-fitter/workflows/CI/badge.svg\" alt=\"CI\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003eA fully JSON-configurable bayesian fitting engine (based on\n\u003ca href=\"https://github.com/bat/bat\"\u003eBAT\u003c/a\u003e and\n\u003ca href=\"https://github.com/root-project/root\"\u003eROOT\u003c/a\u003e) for data in the form of ROOT\nhistograms. Taylored on GERDA data and Probability Density Functions.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-compile-and-install\" class=\"anchor\" aria-hidden=\"true\" href=\"#compile-and-install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompile and install\u003c/h3\u003e\n\u003cp\u003eRequirements\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/root-project/root\"\u003eROOT\u003c/a\u003e \u2265 v6.12/04\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/bat/bat\"\u003eBAT\u003c/a\u003e \u2265 v1.0.0 (with Cuba enabled)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThen just \u003ccode\u003ePREFIX=/path/to/prefix make install\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eAlternatively, a Singularity container can be used:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003esudo singularity build gerda-fitter.sif Singularity.def\u003c/span\u003e\n$ \u003cspan class=\"pl-s1\"\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e gerda-fitter.sif gerda-fitter -h\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eUSAGE: gerda-fitter [-h|--help] json-config\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003cp\u003eThe \u003ccode\u003egerda-fitter\u003c/code\u003e executable acceps a JSON config file as the only argument.\nExamples can be found in this repository under \u003ccode\u003econfig/\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eThe JSON config file begins with some general settings:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-js\"\u003e\u003cpre\u003e\u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"id\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"phIIAfterLAr\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// model name\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"logging\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"summary\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// BAT verbosity level, see manual\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"precision\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"kMedium\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// precision (number and length of Markov chains), see BAT manual\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"output-dir\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"../results\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// folder with fit results\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e// ...\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003esettings about the global mode search algorithm:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-js\"\u003e\u003cpre\u003e \u003cspan class=\"pl-s\"\u003e\"global-mode-search\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"method\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"kOptMinuit\"\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// see the BAT manual to learn about the other algorithms\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003esettings about the numerical integration needed to compute the evidence:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-js\"\u003e\u003cpre\u003e \u003cspan class=\"pl-s\"\u003e\"integration\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"enabled\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003efalse\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// enable/disable the integration step\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"method\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"kIntCuba\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// see the BAT manual to learn about the other algorithms\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"cuba-method\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"kCubaDivonne\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// see the Cuba manual\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"integrator-settings\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"kIntCuba\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// here you can tweak the Cuba integration settings\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"kCubaDivonne\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// here for the Divonne algorithm\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"niter-max\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e1E07\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"niter-min\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e0\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"flags\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e0\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\n \"\u003cspan class=\"pl-s1\"\u003ekCubaVegas\u003c/span\u003e\" : { // here for Vegas...\n // ...\n }\n // ...\n }\n }\n },\n // ...\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003esettings about the p-value determination\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-js\"\u003e\u003cpre\u003e \u003cspan class=\"pl-s\"\u003e\"p-value\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"enabled\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003efalse\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// enable/disable the computation\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"iterations\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e1E07\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// play with this number until the p-value is stable\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eand finally the fit configuration section \u003ccode\u003e\"fit\"\u003c/code\u003e, where everything about the data and\nthe fit components is specified in a modular fashion:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-js\"\u003e\u003cpre\u003e \u003cspan class=\"pl-c\"\u003e// ...\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"fit\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"parameters\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e/* ... */\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// define fit parameters globally\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"theoretical-expectations\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e/* ... */\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// import PDFs and associated parameters\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\n\u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eLet\u0027s start with the \u003ccode\u003e\"parameters\"\u003c/code\u003e section, here the fit parameters must be defined:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-js\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s\"\u003e\"parameters\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"alpha-slope-bege\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// unique internal name\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"range\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e2E-5\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e1E-4\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"long-name\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"#alpha-model BEGe - slope\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"units\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"cts\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"prior\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\"histogram\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"priorfile.root:objname\"\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// specify prior via external TH1\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"alpha-offset-bege\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"range\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e0\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e1E-1\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"long-name\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"#alpha-model BEGe - offset\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"units\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"cts\"\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"prior\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\"TFormula\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"gaus:1,10,5\"\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// specify prior via TFormula\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"background\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"fixed\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e1234\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// parameters can be fixed to a value (not fit parameters anymore)\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"long-name\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"Background model\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"units\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"cts\"\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e// ...\u003c/span\u003e\n\u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eand then associated to PDFs in the \u003ccode\u003e\"theoretical-expectations\"\u003c/code\u003e section:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-js\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s\"\u003e\"theoretical-expectations\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// takes a list of files with data histograms\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"../data/gerda-data-bkgmodel-phaseII-v04.00-lar.root\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// takes a list of object names in the file\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"M1_enrBEGe\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// this is a 1D histogram\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"gerda-pdfs\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"../data/gerda-pdfs/v2.1\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// set here the path to the gerda-pdfs, if you want\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"fit-range\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e560\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e2014\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e2064\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e5300\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// note the possibility to skip regions\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"rebin-factor\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e5\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// fixed-size rebin\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"rebin-factor\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"560:10:700,700:20:900,1000:100:5300\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// support for variable binning!\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"components\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// here you must specify a list of PDFs you want to use\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e/* ... */\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e/* ... */\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// ...\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"M1_enrCoax\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e/* ... */\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"M2_enrGe\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// this is a 2D histogram\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"fit-range-x\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e560\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e2014\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e2064\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e5300\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"fit-range-y\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e700\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e5300\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"rebin-factor-x\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e5\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// or just \"rebin-factor\" to rebin both axes\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"rebin-factor-y\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e2\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"components\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// here you must specify a list of PDFs you want to use\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e/* ... */\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e/* ... */\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// ...\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e// ...\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"../data/gerda-data-bkgmodel-phaseII-v04.00-raw.root\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e/* ... */\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e// ...\u003c/span\u003e\n\u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ethe keys in the \u003ccode\u003e\"theoretical-expectations\"\u003c/code\u003e dictionary must be paths to the\nfiles that contain histograms to be fitted (the data). Then for each of these\nfiles the user must specify what histograms (ROOT objects) the program should\ntry to fit. For every data histogram a list of fit components must be provided\nin the \u003ccode\u003e\"components\"\u003c/code\u003e array. The array is filled with JSON objects that can be\nof multiple types.\u003c/p\u003e\n\u003cp\u003eAs instance, one might want to use the GERDA PDFs distributed within\n\u003ca href=\"https://github.com/mppmu/gerda-mage-sim\"\u003egerda-mage-sim\u003c/a\u003e using the following\nstructure:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-js\"\u003e\u003cpre\u003e\u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"gerda-pdfs\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"../data/gerda-pdfs/v2.1\"\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// the gerda-pdfs path might be set here to override the global one\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"part\"\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\"cables/cables_all\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"components\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"Th228-cables\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// this parameter name must be defined in the \"parameters\" section!\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"isotope\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\"Tl208-larveto\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e0.3539\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\"Bi212-larveto\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// specify a mixture of isotopes\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"Co60-cables\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"isotope\"\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\"Co60-run68pca\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// no mixture here\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e// ...\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e// ...\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\n\u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n\u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"part\"\u003c/span\u003e: \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// you can also specify a mixture of parts!\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"calib/single_s2_8220\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e52183\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"calib/single_s2_8408\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e25337\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"calib/single_s2_8570\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e79868\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"calib/single_s3_8220\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e55438\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"calib/single_s3_8405\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e43433\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"calib/single_s3_8570\"\u003c/span\u003e : \u003cspan class=\"pl-c1\"\u003e24130\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"components\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e/* ... */\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\n\u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor even provide manually a ROOT histogram:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-js\"\u003e\u003cpre\u003e\u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"root-file\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"../data/gerda-pdfs/v2.0-RC/alphas/analytic/pdf-functions.root\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"components\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"alpha-offset\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"hist-name\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"flat\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e// ...\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\n\u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor even a ROOT \u003ccode\u003eTFormula\u003c/code\u003e in the form \u003ccode\u003e\"formula:par1,par2,...\"\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-js\"\u003e\u003cpre\u003e\u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"components\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"alpha-slope\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"TFormula\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"gaus:1,34,2\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e// ...\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\n\u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eLast but not least, observables that depend on the model parameters only can be\ndefined via JSON file with the following syntax:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-js\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s\"\u003e\"parameters\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"2nbb-half-life-bege\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// unique internal name\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"TFormula\"\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\"1.13380E26/[2nbb-bege]\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// ROOT\u0027s TFormula\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"multiply-fit-parameter-by-pdf-integral\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e{\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// there\u0027s the possibility to multiply each parameter\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e// above by the pdf integral in a range:\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e// [2nbb-bege] -\u0026gt; ([2nbb-bege]*Int)\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"range\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e10\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e19\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e80\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e89\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// range for the integral\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"dataset\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"h_data\"\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e// dataset pdf refers to\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"range\"\u003c/span\u003e : \u003cspan class=\"pl-kos\"\u003e[\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e2E-5\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e1E-4\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e]\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"long-name\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"T_{1/2}^{2#nu} - BEGe\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-s\"\u003e\"units\"\u003c/span\u003e : \u003cspan class=\"pl-s\"\u003e\"cts\"\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-kos\"\u003e}\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e// ...\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eModel parameters must be specified as they were a \u003ccode\u003eTFormula\u003c/code\u003e parameter,\nenclosing their name in square brackets.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-related-projects\" class=\"anchor\" aria-hidden=\"true\" href=\"#related-projects\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRelated projects\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/gipert/gerda-factory\"\u003egerda-factory\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 9,
- "topics": [],
- "updated_at": 1635279632.0
- },
- {
- "data_format": 2,
- "description": "Testing Apptainer container builds via GitHub Actions",
- "filenames": [
- "dir/Singularity"
+ "subscribers_count": 2,
+ "topics": [
+ "bayesian-statistics",
+ "histogram-decomposition",
+ "spectral-decomposition"
],
- "full_name": "maouw/test-apptainer-gh",
- "latest_release": "v0.0.1",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003etest-apptainer-gh\u003c/h1\u003e\u003ca id=\"user-content-test-apptainer-gh\" class=\"anchor\" aria-label=\"Permalink: test-apptainer-gh\" href=\"#test-apptainer-gh\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTesting Apptainer container builds via GitHub Actions\u003c/p\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1697496824.0
+ "updated_at": 1637679682.0
},
{
"data_format": 2,
- "description": "Container with psychopy",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.purge_haplotigs_0b9afdf",
+ "Singularity.circos_0.69-9",
+ "Singularity.busco_4.0.4",
+ "Singularity.racon_1.4.10",
+ "Singularity.ragtag_1.0.1",
+ "Singularity.quast_5.0.2",
+ "Singularity.gfatools_0.4r165",
+ "Singularity.agb_a41ac9e",
+ "Singularity.merqury_45fd3cc",
+ "Singularity.gffread_0.12.3"
],
- "full_name": "mvdoc/singularity-psychopy",
+ "full_name": "TomHarrop/assembly-utils",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1508289994.0
+ "updated_at": 1601346862.0
},
{
"data_format": 2,
- "description": "repository for collaborating with scg4 users on Singularity containers",
+ "description": null,
"filenames": [
- "cbanders/Singularity"
+ "Singularity.racon-chunks_0.0.6"
],
- "full_name": "researchapps/scg4",
+ "full_name": "TomHarrop/racon-chunks",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSCG4 Singularity\u003c/h1\u003e\u003ca id=\"user-content-scg4-singularity\" class=\"anchor\" aria-label=\"Permalink: SCG4 Singularity\" href=\"#scg4-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is a repository for Singularity image build files to help users of SCG4 build \u003ca href=\"http://singularity.lbl.gov\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e. If you are a user and need help, please submit an issue and we will help you build a container! When you are happy with your container, we recommend that you add the \u003ccode\u003eSingularity\u003c/code\u003e file to a new repo, and build automatically with \u003ca href=\"https://singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e. Generally, your workflow will look like the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAsk for help via an \u003ca href=\"https://www.github.com/researchapps/scg4/issues\"\u003eissue\u003c/a\u003e if you don\u0027t know how to start\u003c/li\u003e\n\u003cli\u003eCreate a build specification file, a text file called Singularity, for your software needs. You can start with another user\u0027s as an example.\u003c/li\u003e\n\u003cli\u003eAsk for help with your file! This is what this repo is here for. You can submit issues with questions, and we will discuss and work together on the issues.\u003c/li\u003e\n\u003cli\u003eTest your build locally.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis usually looks something like the following:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity create --size 4000 mynewimage.img\n singularity bootstrap mynewimage.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf it has a runscript, you can run as follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity run mynewimage.img # or\n ./mynewimage.img\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you are having trouble with the runscript, shell inside like this to look around. The runscript is a file at the base of the image (\u003ccode\u003e/\u003c/code\u003e) called singularity.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity shell mynewimage.img\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can also (on your local machine) use the \u003ccode\u003e--writable\u003c/code\u003e option to test installation of software. You should have your build file open in another window and copy down commands that work, and ensure that the entire build goes successfully from start to finish without an error. Remember, any command that you issue and don\u0027t write done is NOT reproducible!\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSingularity Hub\u003c/h2\u003e\u003ca id=\"user-content-singularity-hub\" class=\"anchor\" aria-label=\"Permalink: Singularity Hub\" href=\"#singularity-hub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThen once you are finished, and create a new repo linked to Singularity Hub, using the image on scg4 comes down to:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e module load singularity/january2017\n singularity run shub://reponame/mynewimage\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1488052770.0
+ "updated_at": 1578525260.0
},
{
"data_format": 2,
- "description": "A singularity recipe for GPU based machine learning",
+ "description": null,
"filenames": [
- "Singularity.cu80dnn6",
- "Singularity",
- "Singularity.cu80dnn7",
- "Singularity.cu90"
+ "1.1.3/Singularity"
],
- "full_name": "ISU-HPC/machine-learning",
+ "full_name": "pscedu/singularity-infernal",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003emachine-learning\u003c/h1\u003e\u003ca id=\"user-content-machine-learning\" class=\"anchor\" aria-label=\"Permalink: machine-learning\" href=\"#machine-learning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA singularity recipe for GPU based machine learning\u003c/p\u003e\n\u003cp\u003eCurrently includes the following applications/packages\u003c/p\u003e\n\u003cp\u003eKeras\u003c/p\u003e\n\u003cp\u003eMXNET\u003c/p\u003e\n\u003cp\u003escikit-learn\u003c/p\u003e\n\u003cp\u003etensorflow\u003c/p\u003e\n\u003cp\u003epytorch\u003c/p\u003e\n\u003cp\u003elasagne\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1550521785.0
+ "updated_at": 1629078386.0
},
{
"data_format": 2,
- "description": "Model implementation for \"Adaptive computation as a new mechanism of human attention\"",
+ "description": null,
"filenames": [
- "env.d/Singularity"
+ "Singularity"
],
- "full_name": "CNCLgithub/mot",
+ "full_name": "murphygroup/singularity-matlabmcr2017a",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003emot\u003c/h1\u003e\u003ca id=\"user-content-mot\" class=\"anchor\" aria-label=\"Permalink: mot\" href=\"#mot\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eImplementation of adaptive computation and a case study on multiple object tracking (Pylyshyn \u0026amp; Storm 1988).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSetup and running\u003c/h2\u003e\u003ca id=\"user-content-setup-and-running\" class=\"anchor\" aria-label=\"Permalink: Setup and running\" href=\"#setup-and-running\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eClone repository \u003ccode\u003egit clone https://github.com/CNCLgithub/mot\u003c/code\u003e and \u003ccode\u003ecd mot\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003e./env.d/setup.sh cont_pull python julia\u003c/code\u003e to build the container and setup python and Julia.\u003c/li\u003e\n\u003cli\u003eEnter \u003ccode\u003e./env.d/run.sh julia\u003c/code\u003e to get into Julia REPL\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003e./env.d/setup.sh datasets\u003c/code\u003e to download the datasets used for the experiments.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThis project has automatic configuration!! This configuration is defined in \u003ccode\u003edefault.conf\u003c/code\u003e.\nYou should always prepend \u003ccode\u003e./run.sh\u003c/code\u003e before any command (including running programs like \u003ccode\u003ejulia\u003c/code\u003e) to ensure consistency.\nIf you wish to have different values than \u003ccode\u003edefault.conf\u003c/code\u003e, simply:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ecp default.conf user.conf\nvi user.conf \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e edit to your liking without adding new elements\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eReplication details\u003c/h2\u003e\u003ca id=\"user-content-replication-details\" class=\"anchor\" aria-label=\"Permalink: Replication details\" href=\"#replication-details\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe project is organized into core routines (under \u003ccode\u003esrc\u003c/code\u003e) and user scripts (under \u003ccode\u003escripts\u003c/code\u003e).\nIn order to run the adaptive computation model from scratch:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eRun the relevant scripts under \u003ccode\u003escripts/experiments\u003c/code\u003e (batch scripts are provided for SLURM)\u003c/li\u003e\n\u003cli\u003eAggregrate model traces using \u003ccode\u003escripts/analysis/aggregate_chains.jl\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eExport the produces \"csv\" files to the \u003ca href=\"https://github.com/CNCLgithub/mot-analysis\"\u003eanalysis repo\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eMore details can be found in the README for each section.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eMac and Window users\u003c/h3\u003e\u003ca id=\"user-content-mac-and-window-users\" class=\"anchor\" aria-label=\"Permalink: Mac and Window users\" href=\"#mac-and-window-users\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn order to use singularity you must have a virtual machine running.\nAssuming you have vagrant (and something like virtualbox) setup on your host, you can follow these steps\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributing\u003c/h2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-label=\"Permalink: Contributing\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eContributing Rules\u003c/h3\u003e\u003ca id=\"user-content-contributing-rules\" class=\"anchor\" aria-label=\"Permalink: Contributing Rules\" href=\"#contributing-rules\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003ePlace all re-used code in packages (\u003ccode\u003esrc\u003c/code\u003e or \u003ccode\u003efunctional_scenes\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003ePlace all interactive code in \u003ccode\u003escripts\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eDo not use \"hard\" paths. Instead refer to the paths in \u003ccode\u003eSPATHS\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eAdd contributions to branches derived from \u003ccode\u003emaster\u003c/code\u003e or \u003ccode\u003edev\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eAvoid \u003ccode\u003egit add *\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eDo not commit large files (checkpoints, datasets, etc). Update \u003ccode\u003esetup.sh\u003c/code\u003e accordingly.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eProject layout\u003c/h3\u003e\u003ca id=\"user-content-project-layout\" class=\"anchor\" aria-label=\"Permalink: Project layout\" href=\"#project-layout\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe python package environment is managed by as defined in \u003ccode\u003esetup.sh\u003c/code\u003e (specifically \u003ccode\u003eSENV[pyenv]\u003c/code\u003e)\nLikewise, the Julia package is described under \u003ccode\u003esrc\u003c/code\u003e and \u003ccode\u003etest\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eAll scripts are located under \u003ccode\u003escripts\u003c/code\u003e and data/output is under \u003ccode\u003eenv.d/spaths\u003c/code\u003e as specific in the project config (\u003ccode\u003edefault.conf\u003c/code\u003e or \u003ccode\u003euser.conf\u003c/code\u003e)\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eChanging the enviroment\u003c/h3\u003e\u003ca id=\"user-content-changing-the-enviroment\" class=\"anchor\" aria-label=\"Permalink: Changing the enviroment\" href=\"#changing-the-enviroment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo add new python or julia packages use the provided package managers (\u003ccode\u003epoetry add\u003c/code\u003e or \u003ccode\u003ePkg.add \u003c/code\u003e for python and julia respectively.)\u003c/p\u003e\n\u003cp\u003eFor julia you can also use \u003ccode\u003e] add \u003c/code\u003e in the REPL\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003efor more info checkout \u003ca href=\"https://python-poetry.org/docs/cli/\" rel=\"nofollow\"\u003epoetry\u003c/a\u003e and \u003ca href=\"https://julialang.github.io/Pkg.jl/v1/managing-packages/\" rel=\"nofollow\"\u003ePkg\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-matlabmcr2017a\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-matlabmcr2017a\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-matlabmcr2017a\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003cp\u003eWhen contributing to this repository, please first discuss the change you wish to make via issue, \u003ca href=\"mailto:cellorganizer-dev@compbio.cmu.edu\"\u003eemail\u003c/a\u003e, or any other method with the owners of this repository before making a change.\u003c/p\u003e\n\u003chr\u003e\n\u003cp\u003eSupport for \u003ca href=\"http://cellorganizer.org/\" rel=\"nofollow\"\u003eCellOrganizer\u003c/a\u003e has been provided by grants GM075205, GM090033 and GM103712 from the \u003ca href=\"http://www.nigms.nih.gov/\" rel=\"nofollow\"\u003eNational Institute of General Medical Sciences\u003c/a\u003e, grants MCB1121919 and MCB1121793 from the \u003ca href=\"http://nsf.gov/\" rel=\"nofollow\"\u003eU.S. National Science Foundation\u003c/a\u003e, by a Forschungspreis from the \u003ca href=\"http://www.humboldt-foundation.de/\" rel=\"nofollow\"\u003eAlexander von Humboldt Foundation\u003c/a\u003e, and by the \u003ca href=\"http://www.frias.uni-freiburg.de/lifenet?set_language=en\" rel=\"nofollow\"\u003eFreiburg Institute for Advanced Studies\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.mmbios.org\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/868693f5973d8c9980a960c4ff8b9608ae5b009bec64db9cc1b92ab5cb831892/68747470733a2f2f69312e77702e636f6d2f7777772e63656c6c6f7267616e697a65722e6f72672f77702d636f6e74656e742f75706c6f6164732f323031372f30382f4d4d42696f536c6f676f2d65313530333531373835373331332e6769663f683d3630\" alt=\"MMBioS\" data-canonical-src=\"https://i1.wp.com/www.cellorganizer.org/wp-content/uploads/2017/08/MMBioSlogo-e1503517857313.gif?h=60\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eCopyright (c) 2007-2019 by the \u003ca href=\"http://murphylab.web.cmu.edu\" rel=\"nofollow\"\u003eMurphy Lab\u003c/a\u003e at the \u003ca href=\"http://www.cbd.cmu.edu\" rel=\"nofollow\"\u003eComputational Biology Department\u003c/a\u003e in \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
- "topics": [
- "adaptive-computation",
- "attention",
- "julia",
- "object-tracking"
- ],
- "updated_at": 1669660200.0
+ "topics": [],
+ "updated_at": 1554872376.0
},
{
"data_format": 2,
- "description": "Singularity Image with EigenH5 and some other R packages",
+ "description": "Singularity containers with ImageMagick",
"filenames": [
"Singularity"
],
- "full_name": "CreRecombinase/docker-eigenh5",
+ "full_name": "stephansmit/imagemagick_containers",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003edocker-eigenh5\u003c/h1\u003e\u003ca id=\"user-content-docker-eigenh5\" class=\"anchor\" aria-label=\"Permalink: docker-eigenh5\" href=\"#docker-eigenh5\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity Image with EigenH5 and some other R packages\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2630\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-imagemagick-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#imagemagick-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImageMagick Containers\u003c/h1\u003e\n\u003cp\u003eSingularity containers with ImageMagick\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-use\" class=\"anchor\" aria-hidden=\"true\" href=\"#use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUse\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://stephansmit/imagemagick_containers\nsingularity shell imagemagick_containers_latest.sif \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHosted on Singularity Hub:\n\u003ca href=\"https://singularity-hub.org/collections/3475\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1571526273.0
+ "updated_at": 1567168206.0
},
{
"data_format": 2,
- "description": "Singularity for samtools",
+ "description": "testing registry for singularity hub and singularity registry",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.test",
+ "os/centos/Singularity",
+ "os/ubuntu/Singularity.14.04",
+ "os/ubuntu/Singularity"
],
- "full_name": "hisplan/singularity-samtools",
+ "full_name": "singularityhub/hello-registry",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-samtools\u003c/h1\u003e\u003ca id=\"user-content-singularity-samtools\" class=\"anchor\" aria-label=\"Permalink: singularity-samtools\" href=\"#singularity-samtools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity for samtools\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePrerequisites\u003c/h2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-label=\"Permalink: Prerequisites\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity 2.2 must be installed on your system. \u003ca href=\"http://singularity.lbl.gov/docs-quick-start-installation\" rel=\"nofollow\"\u003eHere\u003c/a\u003e is the instruction.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild\u003c/h2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-label=\"Permalink: Build\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eDownload \u003ccode\u003eSingularity\u003c/code\u003e file from this git repository.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCreate an empty container image of 200MB:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo singularity create -s 200 samtools.img\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBootstrap the image using the \u003ccode\u003eSingularity\u003c/code\u003e image definition file you downloaded from the previous step:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo singularity bootstrap samtools.img Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun\u003c/h2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-label=\"Permalink: Run\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity run samtools.img --help\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOther Notes\u003c/h2\u003e\u003ca id=\"user-content-other-notes\" class=\"anchor\" aria-label=\"Permalink: Other Notes\" href=\"#other-notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eThis uses Alpine Linux as base image.\u003c/li\u003e\n\u003cli\u003eNote that the image definition file being used here contains a bunch of commands that downloads and compiles the source code of samtools, which is the main reason why the container image requires about 200MB. It would be nice if Singularity provides a way to shrink the image down to the only necessary size. Another workaround would be \u003ccode\u003eDockerfile\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [
"singularity",
- "samtools",
- "container"
+ "container",
+ "testing"
],
- "updated_at": 1486144479.0
+ "updated_at": 1561904313.0
},
{
"data_format": 2,
- "description": "singularity images for openmind",
+ "description": "Singularity recipe for salmon",
"filenames": [
+ "Singularity.0.10.1",
"Singularity"
],
- "full_name": "atacchet/om-images",
+ "full_name": "ISU-HPC/salmon",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eom-images\u003c/h1\u003e\u003ca id=\"user-content-om-images\" class=\"anchor\" aria-label=\"Permalink: om-images\" href=\"#om-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003esingularity images for openmind\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-salmon\" class=\"anchor\" aria-hidden=\"true\" href=\"#salmon\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esalmon\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for salmon \u003ca href=\"https://github.com/COMBINE-lab/salmon\"\u003ehttps://github.com/COMBINE-lab/salmon\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe docker file needs to be modified as the newer versions are installed in /home in the container which is not\nrecommended in our case.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1493648266.0
- },
- {
- "data_format": 2,
- "description": "Minimal implementations of distributed, recurrent, deep reinforcement learning algorithms",
- "filenames": [
- "SingularityFile.def"
- ],
- "full_name": "Jjschwartz/miniDRL",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eMiniDRL\u003c/h1\u003e\u003ca id=\"user-content-minidrl\" class=\"anchor\" aria-label=\"Permalink: MiniDRL\" href=\"#minidrl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eMinimal implementations of distributed deep reinforcement learning algorithms, with a focus on recurrent neural networks. Heavily inspired by \u003ca href=\"https://github.com/vwxyzjn/cleanrl\"\u003eCleanRL\u003c/a\u003e and \u003ca href=\"https://github.com/corl-team/CORL\"\u003eCORL\u003c/a\u003e this library provides high-quality and easy-to-follow stand-alone implementations of some distributed RL algorithms.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGetting Started\u003c/h2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-label=\"Permalink: Getting Started\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePrerequisites:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003epython \u0026gt;= 3.10 (tested with 3.10)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo install:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone git@github.com:Jjschwartz/miniDRL.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e miniDRL\npip install -e \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e or to install all dependencies\u003c/span\u003e\npip install -e .[all]\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eRun PPO on \u003ca href=\"https://gymnasium.farama.org/\" rel=\"nofollow\"\u003egymnasium\u003c/a\u003e \u003ccode\u003eCartPole-v1\u003c/code\u003e environment using four parallel workers (reduce number of workers if you have less than four cores, or feel free to increase it if you have more):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython minidrl/ppo/run_gym.py \\\n --env_id CartPole-v1 \\\n --total_timesteps 1000000 \\\n --num_workers 4\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e open another terminal and run tensorboard from repo root directory\u003c/span\u003e\ntensorboard --logdir runs\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTo use experiment tracking with wandb, run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ewandb login \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e only required for the first time\u003c/span\u003e\npython minidrl/ppo/run_gym.py \\\n --env_id CartPole-v1 \\\n --total_timesteps 1000000 \\\n --num_workers 4 \\\n --track_wandb \\\n --wandb_project minidrltest\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAlgorithms\u003c/h2\u003e\u003ca id=\"user-content-algorithms\" class=\"anchor\" aria-label=\"Permalink: Algorithms\" href=\"#algorithms\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository contains standalone implementations of some of the main distributed RL algorithms that support recurrent neural networks, including:\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePPO - Single Machine\u003c/h3\u003e\u003ca id=\"user-content-ppo---single-machine\" class=\"anchor\" aria-label=\"Permalink: PPO - Single Machine\" href=\"#ppo---single-machine\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://arxiv.org/abs/1707.06347\" rel=\"nofollow\"\u003epaper\u003c/a\u003e | \u003ca href=\"https://github.com/Jjschwartz/miniDRL/blob/main/minidrl/ppo/ppo.py\"\u003ecode\u003c/a\u003e | \u003ca href=\"https://github.com/Jjschwartz/miniDRL/blob/main/docs/ppo/ppo.md\"\u003edocs\u003c/a\u003e\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/ppo/figures/pong_vs_num_workers_wall_time.svg\"\u003e\u003cimg src=\"docs/ppo/figures/pong_vs_num_workers_wall_time.svg\" alt=\"Learning Curve by wall time vs num workers\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e\u003cem\u003eLearning curve of PPO - Single Machine on Atari Pong with different number of parallel workers\u003c/em\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eR2D2\u003c/h3\u003e\u003ca id=\"user-content-r2d2\" class=\"anchor\" aria-label=\"Permalink: R2D2\" href=\"#r2d2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://openreview.net/forum?id=r1lyTjAqYX\" rel=\"nofollow\"\u003epaper\u003c/a\u003e | \u003ca href=\"https://github.com/Jjschwartz/miniDRL/tree/main/minidrl/r2d2\"\u003ecode\u003c/a\u003e | \u003ca href=\"https://github.com/Jjschwartz/miniDRL/blob/main/docs/r2d2/r2d2.md\"\u003edocs\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eMaybe in the future\u003c/h3\u003e\u003ca id=\"user-content-maybe-in-the-future\" class=\"anchor\" aria-label=\"Permalink: Maybe in the future\" href=\"#maybe-in-the-future\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003ePPO - Multi Machine\u003c/li\u003e\n\u003cli\u003eIMPALA\u003c/li\u003e\n\u003cli\u003eR2D2 - Multi Machine\u003c/li\u003e\n\u003c/ul\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [
- "distributed-reinforcement-learning",
- "ppo",
- "pytorch",
- "r2d2",
- "reinforcement-learning",
- "rnn"
- ],
- "updated_at": 1700237055.0
+ "updated_at": 1528143444.0
},
{
"data_format": 2,
- "description": "Test what effect subssampling of a run has on QC",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.v3.3.1"
],
- "full_name": "JackCurragh/Subsample-Effect-On-QC",
+ "full_name": "baxpr/sct-singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSubsample Effect On QC\u003c/h1\u003e\u003ca id=\"user-content-subsample-effect-on-qc\" class=\"anchor\" aria-label=\"Permalink: Subsample Effect On QC\" href=\"#subsample-effect-on-qc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIntroduction\u003c/h2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSubsample a FASTQ to different degrees and run FASTQC on it. Output a MultiQC Report\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequirements\u003c/h2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis pipeline can be run using each of the following container methods\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eMethod\u003c/th\u003e\n\u003cth\u003eInstructions\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eSingularity\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.sylabs.io/guides/3.0/user-guide/installation.html\" rel=\"nofollow\"\u003edocs.syslabs.io\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSetup\u003c/h2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-label=\"Permalink: Setup\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eSingularity\u003c/h5\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: Singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build singularity/pipeline Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen as the profile \u003ccode\u003esingularity\u003c/code\u003e specifies \u003ccode\u003econtainer = \u0027singularity/pipeline\u0027\u003c/code\u003e use the following to execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile singularity\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-spinal-cord-toolbox-in-singularity-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#spinal-cord-toolbox-in-singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpinal Cord Toolbox in Singularity container\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-inputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs\u003c/h2\u003e\n\u003cp\u003eSee \u003ccode\u003e(/opt/)fmri_pipeline/fmri_pipeline_launch.sh\u003c/code\u003e, \u003ccode\u003e(/opt/)mffe_pipeline/mffe_pipeline_launch.sh\u003c/code\u003e for a list of the inputs for each app, and \u003ccode\u003e(/opt/)test_mffe.sh\u003c/code\u003e, \u003ccode\u003e(/opt/)test_fmri.sh\u003c/code\u003e for example run scripts. Many of the inputs for the fmri app are outputs of the mffe app.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-output-files\" class=\"anchor\" aria-hidden=\"true\" href=\"#output-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput files\u003c/h2\u003e\n\u003cp\u003eOutput images are named as \u003ccode\u003e\u0026lt;geometry\u0026gt;_\u0026lt;contents\u0026gt;.nii.gz\u003c/code\u003e. The tag \u003ccode\u003e_template_\u003c/code\u003e indicates the image was derived from the PAM50 template; all others are derived from the subject images.\u003c/p\u003e\n\u003cp\u003eGeometries are\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003efmri_ Native geometry of the fMRI\nmffe_ Native geometry of the mFFE\nt2sag_ Native geometry of the T2 sagittal.\nipmffe_ Iso-voxel padded geometry based on the native mFFE. This is used to accurately \n resample vertebral locations and ROIs between geometries.\nwarp_ Warp field between two geometries\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOutput contents from the mffe app are\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e_mffe Unprocessed mFFE\n\n_maskNN Registration mask, NN mm in size\n\n_cord Segmented spinal cord (\"seg\")\n_cord_labeled Vertebral label ROIs found on the t2sag\n_cord_labeled_discs Disc point labels found on the t2sag\n_cord_labeled_body Body center points from _cord_labeled\n\n_gm Segmented gray matter found on the mFFE\n_wm Segmented white matter found on the mFFE\n_csf Segmented CSF found on the mFFE\n_template_csf Atlas CSF compartment from the PAM50 template\n\n_synt2 Synthetic T2 built from the gray and white segmentations\n\nmffe_report.pdf QC report and view of results\nmffe_csa.csv Cross-sectional areas\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOutput contents from the fmri app are\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e_fmri Unprocessed fMRI\n_fmri0 First volume of unprocessed fMRI\n_moco Motion corrected fMRI\n_moco_mean Mean of motion corrected fMRI volumes\n_regbp Filtered fMRI (confound regression and bandpass)\n\n_mffe Resampled mFFE\n\n_maskNN Registration mask, NN mm in size\n\n_cord Segmented spinal cord (\"seg\")\n_cord_labeled Vertebral label ROIs found on the t2sag\n_centerline Cord centerline\n\n_gm Segmented gray matter found on the mFFE\n_wm Segmented white matter found on the mFFE\n_csf Atlas CSF compartment from the PAM50 template\n\n_notspine \"Not spine\" region used to obtain confound signals\n\n_gmcut Gray matter cut into four horns\n_gmcutlabel Gray matter cut into four horns and marked by level\n \n_R_*_inslice Connectivity maps for within-slice seeds (R)\n_Z_*_inslice Connectivity maps for within-slice seeds (Z)\n\nfmri_report.pdf QC report and view of results\nR_inslice.csv ROI-to-ROI connectivity within slice (R)\nZ_inslice.csv ROI-to-ROI connectivity within slice (Z)\n\nfmri_gmcut.csv Label info for ROI images of same base filename\nfmri_gmcutlabel.csv\n\nphyslog_cardiac.csv Cardiac signal from physlog\nphyslog_respiratory.csv Respiratory signal from physlog\nricor.slibase.1D Physlog signals as output from RetroTS\nricor.csv Computed respiratory regressors\n\nfmri_moco_params.tsv Estimated fMRI motion parameters\nfmri_moco_params_X.nii.gz\nfmri_moco_params_Y.nii.gz\n\nvolume_acquisition_time.txt Volume acq time used for filtering (sec)\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1700500572.0
+ "updated_at": 1586976537.0
},
{
"data_format": 2,
- "description": "Nextflow pipeline for running RiboMetric on Genomic BAMs (as per rdp.ucc.ie)",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.basecall_wrapper_0.0.32_albacore_2.3.3"
],
- "full_name": "JackCurragh/RiboMetric-nf",
+ "full_name": "TomHarrop/basecall_wrapper",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eRiboMetric-nf\u003c/h1\u003e\u003ca id=\"user-content-ribometric-nf\" class=\"anchor\" aria-label=\"Permalink: RiboMetric-nf\" href=\"#ribometric-nf\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIntroduction\u003c/h2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRuns RiboMetric on Genomic BAMs\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequirements\u003c/h2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis pipeline can be run using each of the following container methods\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eMethod\u003c/th\u003e\n\u003cth\u003eInstructions\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eSingularity\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.sylabs.io/guides/3.0/user-guide/installation.html\" rel=\"nofollow\"\u003edocs.syslabs.io\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDocker\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.docker.com/engine/install/\" rel=\"nofollow\"\u003edocs.docker.com\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eConda\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html\" rel=\"nofollow\"\u003edocs.conda.io\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSetup\u003c/h2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-label=\"Permalink: Setup\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eSingularity\u003c/h5\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: Singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build singularity/pipeline Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen as the profile \u003ccode\u003esingularity\u003c/code\u003e specifies \u003ccode\u003econtainer = \u0027singularity/pipeline\u0027\u003c/code\u003e use the following to execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eDocker\u003c/h5\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-label=\"Permalink: Docker\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003edocker build . -t pipeline-image\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen as the profile \u003ccode\u003edocker\u003c/code\u003e specifies \u003ccode\u003econtainer = \u0027pipeline-image:latest\u0027\u003c/code\u003e use the following to execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile docker\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eConda\u003c/h5\u003e\u003ca id=\"user-content-conda\" class=\"anchor\" aria-label=\"Permalink: Conda\" href=\"#conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCreate a conda definition yaml file \u003ca href=\"conda/example.yml\"\u003eeg. here\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile conda\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCall the pipeline directly\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun with all the frills\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash scripts/run-w-frills \u0026lt;params-file\u0026gt; \u0026lt;profile name from nextflow.config\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExample\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash scripts/run-w-frills example_parameters.yml standard\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e11 samtools index $file\n12 mudskipper bulk --alignment ${file} --out ${file}.trans.bam --index $MUD\n13 samtools sort ${file}.trans.bam -o ${file}.trans.bam\n14 samtools index ${file}.trans.bam\n15 RiboMetric run -b ${file}.trans.bam -a $RiboMetric -o $dir --all\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1709747987.0
+ "updated_at": 1567650634.0
},
{
"data_format": 2,
- "description": "Template repository for setting up new Nextflow pipelines",
+ "description": null,
"filenames": [
- "Singularity"
+ "devops_pipeline/Singularity",
+ "devops_base/Singularity"
],
- "full_name": "JackCurragh/Nextflow-Template",
+ "full_name": "ninamiolane/gnetree",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eNextflow-Template\u003c/h1\u003e\u003ca id=\"user-content-nextflow-template\" class=\"anchor\" aria-label=\"Permalink: Nextflow-Template\" href=\"#nextflow-template\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTemplate repository for setting up new Nextflow pipelines\u003c/p\u003e\n\u003cp\u003eThis template has been informed by many other Nextflow pipelines and templates. Some are much more advanced than this template. Please see:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/nextflow-io/awesome-nextflow\"\u003eAwesome-Nextflow\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/AustralianBioCommons/Nextflow_DSL2_template\"\u003eAustralian BioCommons Template\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/epi2me-labs/wf-template\"\u003eepi2me labs\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/FredHutch/workflow-template-nextflow\"\u003eFredHutch\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/search?q=Nextflow%20Template\u0026amp;type=repositories\"\u003eAnd Many More\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGeneral Setup Notes\u003c/h2\u003e\u003ca id=\"user-content-general-setup-notes\" class=\"anchor\" aria-label=\"Permalink: General Setup Notes\" href=\"#general-setup-notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eTower\u003c/h4\u003e\u003ca id=\"user-content-tower\" class=\"anchor\" aria-label=\"Permalink: Tower\" href=\"#tower\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003etower.nf allows GUI tracking of workflow progress\nSet it up using the instructions \u003ca href=\"https://help.tower.nf/22.4/getting-started/usage/#nextflow-with-tower\" rel=\"nofollow\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003cbr\u003e\n\u003cbr\u003e\n\u003cbr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003e||=====================================||\u003c/h1\u003e\u003ca id=\"\" class=\"anchor\" aria-label=\"Permalink: ||=====================================||\" href=\"#\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003e|| Template README\u003c/h1\u003e\u003ca id=\"user-content----template-readme\" class=\"anchor\" aria-label=\"Permalink: || Template README\" href=\"#---template-readme\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003e|| \u003cb\u003eDelete Everything Above\u003c/b\u003e\n\u003c/h1\u003e\u003ca id=\"user-content----delete-everything-above\" class=\"anchor\" aria-label=\"Permalink: || Delete Everything Above\" href=\"#---delete-everything-above\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003e||=====================================||\u003c/h1\u003e\u003ca id=\"user-content--1\" class=\"anchor\" aria-label=\"Permalink: ||=====================================||\" href=\"#-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003ch1\u003e\u003c/h1\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIntroduction\u003c/h2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e[Describe here what this pipeline does]\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequirements\u003c/h2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis pipeline can be run using each of the following container methods\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eMethod\u003c/th\u003e\n\u003cth\u003eInstructions\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eSingularity\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.sylabs.io/guides/3.0/user-guide/installation.html\" rel=\"nofollow\"\u003edocs.syslabs.io\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDocker\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.docker.com/engine/install/\" rel=\"nofollow\"\u003edocs.docker.com\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eConda\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html\" rel=\"nofollow\"\u003edocs.conda.io\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSetup\u003c/h2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-label=\"Permalink: Setup\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eSingularity\u003c/h5\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: Singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build singularity/pipeline Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen as the profile \u003ccode\u003esingularity\u003c/code\u003e specifies \u003ccode\u003econtainer = \u0027singularity/pipeline\u0027\u003c/code\u003e use the following to execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eDocker\u003c/h5\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-label=\"Permalink: Docker\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003edocker build . -t pipeline-image\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen as the profile \u003ccode\u003edocker\u003c/code\u003e specifies \u003ccode\u003econtainer = \u0027pipeline-image:latest\u0027\u003c/code\u003e use the following to execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile docker\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eConda\u003c/h5\u003e\u003ca id=\"user-content-conda\" class=\"anchor\" aria-label=\"Permalink: Conda\" href=\"#conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCreate a conda definition yaml file \u003ca href=\"conda/example.yml\"\u003eeg. here\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile conda\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCall the pipeline directly\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun with all the frills\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash scripts/run-w-frills \u0026lt;params-file\u0026gt; \u0026lt;profile name from nextflow.config\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExample\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash scripts/run-w-frills example_parameters.yml standard\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1681044968.0
+ "updated_at": 1548186366.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity Recipes for larcv3",
"filenames": [
- "docker/Singularity"
+ "recipes/cuda/Singularity.centos7-cuda-core",
+ "recipes/cuda/Singularity.centos7-cuda-core-mpich",
+ "recipes/cuda/torch/Singularity.centos7-cuda-torch",
+ "recipes/cuda/torch/Singularity.centos7-cuda-torch-mpich-larcv",
+ "recipes/cuda/torch/Singularity.centos7-cuda-torch-larcv",
+ "recipes/cuda/torch/Singularity.centos7-cuda-torch-mpich",
+ "recipes/cuda/tf/Singularity.centos7-cuda-tf-mpich",
+ "recipes/cuda/tf/Singularity.centos7-cuda-tf-mpich-larcv",
+ "recipes/cuda/tf/Singularity.centos7-cuda-tf",
+ "recipes/cuda/tf/Singularity.centos7-cuda-tf-larcv"
],
- "full_name": "arustamm/fwix",
+ "full_name": "DeepLearnPhysics/larcv3-singularity",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1722714141.0
+ "updated_at": 1584373427.0
},
{
"data_format": 2,
- "description": "repo for automated processing of Ribo-Seq (and associated RNA-seq) data ",
+ "description": "Singularity recipe for cDNA_cupcake",
"filenames": [
- "Singularity"
+ "Singularity.5.8.0"
],
- "full_name": "JackCurragh/riboseq_data_processing",
+ "full_name": "ISU-HPC/cDNA_cupcake",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eRibo-Seq Data Processing\u003c/h1\u003e\u003ca id=\"user-content-ribo-seq-data-processing\" class=\"anchor\" aria-label=\"Permalink: Ribo-Seq Data Processing\" href=\"#ribo-seq-data-processing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIntroduction\u003c/h2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e[Describe here what this pipeline does]\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequirements\u003c/h2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis pipeline can be run using each of the following container methods\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eMethod\u003c/th\u003e\n\u003cth\u003eInstructions\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eSingularity\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.sylabs.io/guides/3.0/user-guide/installation.html\" rel=\"nofollow\"\u003edocs.syslabs.io\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDocker\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.docker.com/engine/install/\" rel=\"nofollow\"\u003edocs.docker.com\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eConda\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html\" rel=\"nofollow\"\u003edocs.conda.io\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSetup\u003c/h2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-label=\"Permalink: Setup\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eSingularity\u003c/h5\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: Singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build singularity/pipeline Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen as the profile \u003ccode\u003esingularity\u003c/code\u003e specifies \u003ccode\u003econtainer = \u0027singularity/pipeline\u0027\u003c/code\u003e use the following to execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eDocker\u003c/h5\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-label=\"Permalink: Docker\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003edocker build . -t pipeline-image\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen as the profile \u003ccode\u003edocker\u003c/code\u003e specifies \u003ccode\u003econtainer = \u0027pipeline-image:latest\u0027\u003c/code\u003e use the following to execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile docker\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eConda\u003c/h5\u003e\u003ca id=\"user-content-conda\" class=\"anchor\" aria-label=\"Permalink: Conda\" href=\"#conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCreate a conda definition yaml file \u003ca href=\"conda/example.yml\"\u003eeg. here\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile conda\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCall the pipeline directly\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun with all the frills\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash scripts/run-w-frills \u0026lt;params-file\u0026gt; \u0026lt;profile name from nextflow.config\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExample\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash scripts/run-w-frills example_parameters.yml standard\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eData Processing For \u003ca href=\"riboseq.org\"\u003eRiboSeq.org\u003c/a\u003e\n\u003c/h1\u003e\u003ca id=\"user-content-data-processing-for-riboseqorg\" class=\"anchor\" aria-label=\"Permalink: Data Processing For RiboSeq.org\" href=\"#data-processing-for-riboseqorg\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAutomated processing of Ribo-Seq (and associated RNA-Seq) data for \u003ca href=\"https://gwips.ucc.ie/\" rel=\"nofollow\"\u003eGWIPS-Viz\u003c/a\u003e and \u003ca href=\"https://trips.ucc.ie/\" rel=\"nofollow\"\u003eTRIPS-Viz\u003c/a\u003e\n\u003c/h3\u003e\u003ca id=\"user-content-automated-processing-of-ribo-seq-and-associated-rna-seq-data-for-gwips-viz-and-trips-viz\" class=\"anchor\" aria-label=\"Permalink: Automated processing of Ribo-Seq (and associated RNA-Seq) data for GWIPS-Viz and TRIPS-Viz\" href=\"#automated-processing-of-ribo-seq-and-associated-rna-seq-data-for-gwips-viz-and-trips-viz\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAbout Riboseq.org\u003c/h2\u003e\u003ca id=\"user-content-about-riboseqorg\" class=\"anchor\" aria-label=\"Permalink: About Riboseq.org\" href=\"#about-riboseqorg\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is a set of resources for the analysis and visualisation of publically available ribosome profiling data produced and maintained by various members of LAPTI lab in the School of Biochemistry and Cell Biology at Univeristy College Cork. These resources are well documented in their respective publications\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eGWIPS-Viz\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://doi.org/10.1093/nar/gkx790\" rel=\"nofollow\"\u003eGWIPS-viz: 2018 update (2018).\u003c/a\u003e Nucleic Acids Res\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://doi.org/10.1002/cpbi.50\" rel=\"nofollow\"\u003eThe GWIPS-viz Browser (2018).\u003c/a\u003e Current Protocols in Bioinformatics\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://dx.doi.org/10.1002/pmic.201400603%20\" rel=\"nofollow\"\u003eGWIPS-viz as a tool for exploring ribosome profiling evidence supporting the synthesis of alternative proteoforms (2015).\u003c/a\u003e Proteomics\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://dx.doi.org/10.1093/nar/gkt1035\" rel=\"nofollow\"\u003e GWIPS-viz: development of a ribo-seq genome browser (2014).\u003c/a\u003e Nucleic Acids Res\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.1093/nar/gky842\" rel=\"nofollow\"\u003eTrips-Viz: a transcriptome browser for exploring Ribo-Seq data (2019).\u003c/a\u003e Nucleic Acids Res\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"http://dx.doi.org/10.1080/15476286.2016.1141862\" rel=\"nofollow\"\u003eRiboGalaxy: a browser based platform for the alignment, analysis and visualization of ribosome profiling data.\u003c/a\u003e RNA Biology-Viz\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e** Note: Ribogalaxy is being updated currently and functionality will be restored shortly (14-2-2022)**\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003c/h1\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequirements\u003c/h2\u003e\u003ca id=\"user-content-requirements-1\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://pypi.org/project/biopython/\" rel=\"nofollow\"\u003e Biopython \u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://pypi.org/project/pandas/\" rel=\"nofollow\"\u003e Pandas \u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://pypi.org/project/validators/\" rel=\"nofollow\"\u003e Validators \u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003c/h1\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOutline\u003c/h2\u003e\u003ca id=\"user-content-outline\" class=\"anchor\" aria-label=\"Permalink: Outline\" href=\"#outline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eProduce Database Of All Available Ribosome Profiling Studies\u003c/li\u003e\n\u003cli\u003eGather Metadata\u003c/li\u003e\n\u003cli\u003eFetch Files and Infer Gaps in Metadata\u003c/li\u003e\n\u003cli\u003eRun Pipeline\u003c/li\u003e\n\u003cli\u003eUpload to GWIPS \u0026amp; TRIPS\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch1\u003e\u003c/h1\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e1. Produce Database Of All Available Ribosome Profiling Studies\u003c/h2\u003e\u003ca id=\"user-content-1-produce-database-of-all-available-ribosome-profiling-studies\" class=\"anchor\" aria-label=\"Permalink: 1. Produce Database Of All Available Ribosome Profiling Studies\" href=\"#1-produce-database-of-all-available-ribosome-profiling-studies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn recent years the rate at which ribosome profiling studies have been published has steadily increased. When the riboseq.org resources were initiatlly developed the number of available ribo-seq datasets was managable via manual inclusion. Here we put in place a method that records the details of relevant ribosome profiling data deposited in GEO\u003c/p\u003e\n\u003cp\u003eInitially manual searching of GEO and SRA were used along with \u003ca href=\"10.3390/biology10101026\"\u003eARGEOS\u003c/a\u003e. The outputs of each of these methods were colated to find the set of unique datasets.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e2. Gather Metadata\u003c/h2\u003e\u003ca id=\"user-content-2-gather-metadata\" class=\"anchor\" aria-label=\"Permalink: 2. Gather Metadata\" href=\"#2-gather-metadata\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eGEO and SRA run tables contain valuable metadata that may be important for the processing and cateloging of the datasets. In this step we use python scripts to glean what we can from the information available\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e3. Fetch Files and Infer Gaps in Metadata\u003c/h2\u003e\u003ca id=\"user-content-3-fetch-files-and-infer-gaps-in-metadata\" class=\"anchor\" aria-label=\"Permalink: 3. Fetch Files and Infer Gaps in Metadata\" href=\"#3-fetch-files-and-infer-gaps-in-metadata\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA common problem with reprocessing data for these resources is that the data is deposited in GEO and SRA with inconsistent metadata. In the stage of the process we carry out a number of steps to check for the relevant data in the provided metadata and where it is absent we infer it from the data itself. This relates to information such as cell type and treatment but also UMI position and adapter position/sequence.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e4. Run pipeline\u003c/h2\u003e\u003ca id=\"user-content-4-run-pipeline\" class=\"anchor\" aria-label=\"Permalink: 4. Run pipeline\" href=\"#4-run-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn this stage we use nextflow to process the fetched reads following the schema below\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/JackCurragh/riboseq_data_processing/blob/main/images/pipeline.drawio.png\"\u003e\u003cimg src=\"https://github.com/JackCurragh/riboseq_data_processing/raw/main/images/pipeline.drawio.png\" alt=\"Deptiction of the data processing pipeline\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e5. Upload to GWIPS and TRIPS\u003c/h2\u003e\u003ca id=\"user-content-5-upload-to-gwips-and-trips\" class=\"anchor\" aria-label=\"Permalink: 5. Upload to GWIPS and TRIPS\" href=\"#5-upload-to-gwips-and-trips\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis stage uses the metadata to upload the processed files to the web resources in an automated fashion\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-cdna_cupcake\" class=\"anchor\" aria-hidden=\"true\" href=\"#cdna_cupcake\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecDNA_cupcake\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for cDNA_cupcake\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1685092664.0
+ "updated_at": 1545169004.0
},
{
"data_format": 2,
- "description": "official build specifications for tensorflow",
+ "description": "Small example TI method within a docker",
"filenames": [
- "Singularity"
+ "R_dynwrap/Singularity.R_dynwrap",
+ "python_hdf5/Singularity.python_hdf5",
+ "R_text/Singularity.R_text",
+ "python_text/Singularity.python_text",
+ "R_hdf5/Singularity.R_hdf5",
+ "R_feather/Singularity.R_feather",
+ "R_rds/Singularity.R_rds",
+ "python_feather/Singularity.python_feather"
],
- "full_name": "researchapps/tensorflow",
+ "full_name": "dynverse/dynwrap_tester",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTensorflow\u003c/h1\u003e\u003ca id=\"user-content-tensorflow\" class=\"anchor\" aria-label=\"Permalink: Tensorflow\" href=\"#tensorflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is a tensorflow image developed to work on the Sherlock cluster. We start with Docker bases to make life easy.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-creating-ti-methods-within-a-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#creating-ti-methods-within-a-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreating TI methods within a docker\u003c/h1\u003e\n\u003cp\u003eThis repository contains several examples of wrapping a TI method within a docker.\u003c/p\u003e\n\u003cp\u003eIt contains three main files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003edefinition.yml\u003c/code\u003e Defining the input, output and parameters of the method\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eDockerfile\u003c/code\u003e Used for building the docker, its entrypoint is used to run the method\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003erun.R\u003c/code\u003e Loads the data, infers a trajectory, and generates some output files\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe docker image is automatically build at \u003ca href=\"https://hub.docker.com/r/dynverse/dynwrap_tester/builds/\" rel=\"nofollow\"\u003edockerhub\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThis method can be run directly from dockerhub using\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003elibrary(\u003cspan class=\"pl-smi\"\u003edynwrap\u003c/span\u003e)\n\u003cspan class=\"pl-smi\"\u003eti_comp1\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e pull_docker_ti_method(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003edynverse/dynwrap_tester\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e)()\n\u003cspan class=\"pl-smi\"\u003emodel\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e infer_trajectory(\u003cspan class=\"pl-smi\"\u003etask\u003c/span\u003e, \u003cspan class=\"pl-smi\"\u003eti_comp1\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [],
- "updated_at": 1484507796.0
+ "updated_at": 1539684245.0
},
{
"data_format": 2,
- "description": "C++ API \u0026 command-line toolkit for working with BAM data",
+ "description": null,
"filenames": [
- "2.5.1/Singularity",
- "2.5.2/Singularity"
+ "Singularity.1.0.0",
+ "Singularity.1.1.0"
],
- "full_name": "pscedu/singularity-bamtools",
- "latest_release": "v2.5.2",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-bamtools/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bamtools/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-bamtools/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bamtools/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/054141521af458b1312c4cb51f20a90cba03b91c428ea0010ed08382f5118785/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/054141521af458b1312c4cb51f20a90cba03b91c428ea0010ed08382f5118785/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bamtools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5193a9daee0df89ed29bb24726e38247567acccb6fb574dadf1f299cf508f7c6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5193a9daee0df89ed29bb24726e38247567acccb6fb574dadf1f299cf508f7c6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bamtools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/22739bec1bac08d0d267605f10cb285794413bb170278dec0274e32df1f3a5da/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/22739bec1bac08d0d267605f10cb285794413bb170278dec0274e32df1f3a5da/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bamtools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/e9c1e69bc7ade96a1b70b1b296fc22b7df4bbb8415576d179012ecd76c87e28d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62616d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e9c1e69bc7ade96a1b70b1b296fc22b7df4bbb8415576d179012ecd76c87e28d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bamtools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-bamtools\u003c/h1\u003e\u003ca id=\"user-content-singularity-bamtools\" class=\"anchor\" aria-label=\"Permalink: singularity-bamtools\" href=\"#singularity-bamtools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/pezmaster31/bamtools\"\u003ebamtools\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebamtools\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bamtools/2.5.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bamtools\u003c/code\u003e as \u003ccode\u003e2.5.1\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "pndni/freesurfer-6.0.1-container",
+ "latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1629217479.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1556655715.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.build"
+ "Singularity.centos"
],
- "full_name": "bjorgve/hpc-build-box",
- "latest_release": "0.0.2",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ehpc-build-box\u003c/h1\u003e\u003ca id=\"user-content-hpc-build-box\" class=\"anchor\" aria-label=\"Permalink: hpc-build-box\" href=\"#hpc-build-box\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis container provides an environment with key libraries and tools for high-performance computing (HPC) development. It includes MPI (Message Passing Interface), OpenMP (Open Multi-Processing), Eigen (C++ template library for linear algebra), and CMake build system.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eFeatures\u003c/h2\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-label=\"Permalink: Features\" href=\"#features\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eMPI\u003c/strong\u003e: Pre-installed Open MPI for parallel computing.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eOpenMP\u003c/strong\u003e: Support for multi-platform shared-memory parallel programming.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eEigen\u003c/strong\u003e: Eigen 3.4 for high-level linear algebra operations.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eCMake\u003c/strong\u003e: Version 3.25.0 for configuring and building your projects.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePre-requisites\u003c/h2\u003e\u003ca id=\"user-content-pre-requisites\" class=\"anchor\" aria-label=\"Permalink: Pre-requisites\" href=\"#pre-requisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://sylabs.io/guides/3.7/user-guide/quick_start.html\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e installed on your machine.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDownload\u003c/h2\u003e\u003ca id=\"user-content-download\" class=\"anchor\" aria-label=\"Permalink: Download\" href=\"#download\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo pull the latest version of the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull https://github.com/bjorgve/hpc-build-box/releases/download/0.0.2/bjorgve-hpc-build-box.build.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning CMake\u003c/h3\u003e\u003ca id=\"user-content-running-cmake\" class=\"anchor\" aria-label=\"Permalink: Running CMake\" href=\"#running-cmake\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e./bjorgve-hpc-build-box.build.sif cmake [options]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCompiling Code with Make\u003c/h3\u003e\u003ca id=\"user-content-compiling-code-with-make\" class=\"anchor\" aria-label=\"Permalink: Compiling Code with Make\" href=\"#compiling-code-with-make\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e./bjorgve-hpc-build-box.build.sif make [options]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning Executables\u003c/h3\u003e\u003ca id=\"user-content-running-executables\" class=\"anchor\" aria-label=\"Permalink: Running Executables\" href=\"#running-executables\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e./bjorgve-hpc-build-box.build.sif ./executable [options]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInside the Container\u003c/h2\u003e\u003ca id=\"user-content-inside-the-container\" class=\"anchor\" aria-label=\"Permalink: Inside the Container\" href=\"#inside-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHere\u0027s what gets installed in the container based on the \u003ccode\u003e.def\u003c/code\u003e file:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBasic build utilities (\u003ccode\u003ebuild-essential\u003c/code\u003e, \u003ccode\u003ewget\u003c/code\u003e, \u003ccode\u003egit\u003c/code\u003e, \u003ccode\u003ecurl\u003c/code\u003e, etc.)\u003c/li\u003e\n\u003cli\u003eOpenMP (\u003ccode\u003elibgomp1\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eOpen MPI (\u003ccode\u003elibopenmpi-dev\u003c/code\u003e, \u003ccode\u003eopenmpi-bin\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eBoost libraries (\u003ccode\u003elibboost-all-dev\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCMake 3.25.0\u003c/li\u003e\n\u003cli\u003eEigen 3.4\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributions and Issues\u003c/h2\u003e\u003ca id=\"user-content-contributions-and-issues\" class=\"anchor\" aria-label=\"Permalink: Contributions and Issues\" href=\"#contributions-and-issues\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFeel free to open issues or submit pull requests if you have suggestions or encounter issues.\u003c/p\u003e\n",
+ "full_name": "ertheisen/test",
+ "latest_release": null,
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1694033038.0
+ "updated_at": 1570565785.0
},
{
"data_format": 2,
- "description": "Work I did for Google Summer of Code 2020",
+ "description": "Surface morphometry BIDS app",
"filenames": [
- "Singularity.test2",
- "Singularity",
- "Singularity_Test/Singularity.test"
+ "Singularity.v0.1",
+ "Singularity"
],
- "full_name": "timothydgreer/GSoC_2020",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eGSoC_2020\u003c/h1\u003e\u003ca id=\"user-content-gsoc_2020\" class=\"anchor\" aria-label=\"Permalink: GSoC_2020\" href=\"#gsoc_2020\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWork I did for Google Summer of Code 2020\u003c/p\u003e\n",
+ "full_name": "khanlab/surfmorph",
+ "latest_release": "v0.1",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-surfmorph\" class=\"anchor\" aria-hidden=\"true\" href=\"#surfmorph\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esurfmorph\u003c/h1\u003e\n\u003cp\u003eSurface morphometry BIDS app\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1589700293.0
+ "updated_at": 1591844426.0
},
{
"data_format": 2,
- "description": "Python Gene Expression Spatial Toolkit",
+ "description": "Singularity definition files and Dockerfiles for building RStudio and R packages on LURC\u0027s OOD portal",
"filenames": [
- "singularity/Singularity.stretch"
+ "Singularity.r402-lugeo",
+ "Singularity.r402-lubio",
+ "Singularity.r353",
+ "Singularity.r402-base",
+ "Singularity.r363"
],
- "full_name": "mfschmidt/PyGEST",
+ "full_name": "alexpacheco/lurc-ood-rstudio",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-lurc-ood-rstudio\" class=\"anchor\" aria-hidden=\"true\" href=\"#lurc-ood-rstudio\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003elurc-ood-rstudio\u003c/h1\u003e\n\u003cp\u003eSingularity definition files and Dockerfiles for building RStudio and R packages on LURC\u0027s OOD portal\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1611368377.0
+ "updated_at": 1615375080.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.borgbackup_1.1.13",
- "Singularity.clang-upc_3.9.1"
+ "Singularity.biodiverse"
],
- "full_name": "TomHarrop/misc-utils",
+ "full_name": "ternaustralia/coesra-singularity-biodiverse",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-coesra-singularity-biodiverse\" class=\"anchor\" aria-hidden=\"true\" href=\"#coesra-singularity-biodiverse\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-biodiverse\u003c/h1\u003e\n\u003cp\u003eAuthor: Hoang Nguyen\nCreated: 22 July 2019\nThis will create a image with Singularity 2.5.1\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [],
- "updated_at": 1619659263.0
+ "topics": [
+ "coesra"
+ ],
+ "updated_at": 1563776892.0
},
{
"data_format": 2,
- "description": "Model Evaluation Toolkit Singularity Containers",
+ "description": "A quality control pipeline for illumina data set. This pipeline removes contaminants (e.g. Phix), performs fastqc, adapter cleaning and trimming and checks for contaminants",
"filenames": [
- "Singularity",
- "previous/Singularity.8.0",
- "previous/Singularity.8.1"
+ "singularity/Singularity"
],
- "full_name": "trwhitcomb/metcontainers",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003emetcontainers\u003c/h1\u003e\u003ca id=\"user-content-metcontainers\" class=\"anchor\" aria-label=\"Permalink: metcontainers\" href=\"#metcontainers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eModel Evaluation Toolkit Singularity Containers\u003c/p\u003e\n\u003cp\u003eUnofficial Singularity version of official MET Docker containers\u003c/p\u003e\n",
+ "full_name": "sequana/quality_control",
+ "latest_release": "v0.10.0",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1570823060.0
+ "updated_at": 1634220788.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity definition files and Dockerfiles for CentOS desktop on LURC\u0027s OOD portal",
"filenames": [
- "Singularity"
+ "Singularity.xfce",
+ "Singularity.mate",
+ "Singularity.molgfx"
],
- "full_name": "feilong/artful-neurodebian",
+ "full_name": "alexpacheco/lurc-ood-desktop",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-lurc-ood-desktop\" class=\"anchor\" aria-hidden=\"true\" href=\"#lurc-ood-desktop\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003elurc-ood-desktop\u003c/h1\u003e\n\u003cp\u003eSingularity definition files and Dockerfiles for CentOS desktop on LURC\u0027s OOD portal\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1505485847.0
- },
- {
- "data_format": 2,
- "description": "Get Parflow built in a singularity container for distribution",
- "filenames": [
- "Singularity.parflow_ompi_206",
- "Singularity",
- "Singularity.no_netcdf",
- "base/Singularity.base",
- "base/Singularity.nv_base",
- "mpi/Singularity.mpich",
- "mpi/Singularity.ompi",
- "pf/Singularity.parflow_cuda",
- "pf/Singularity.parflow",
- "pf/Singularity.parflow_mpich",
- "pf/Singularity.parflow_ompi",
- "libs/Singularity.nv_libs",
- "libs/Singularity.libs_mpich",
- "libs/Singularity.libs",
- "libs/Singularity.libs_ompi"
- ],
- "full_name": "arezaii/pf_singularity",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eParFlow Singularity Definition Files\u003c/h1\u003e\u003ca id=\"user-content-parflow-singularity-definition-files\" class=\"anchor\" aria-label=\"Permalink: ParFlow Singularity Definition Files\" href=\"#parflow-singularity-definition-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA set of singularity definition files that allow for building Singularity containers for ParFlow with\neither OMPI or MPICH mpi layers.\u003c/p\u003e\n\u003cp\u003eEach ParFlow container is built as a sci-app container, providing access to both sequential and parallel\nbuilds of ParFlow\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAbout Apps\u003c/h2\u003e\u003ca id=\"user-content-about-apps\" class=\"anchor\" aria-label=\"Permalink: About Apps\" href=\"#about-apps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003epar = distributed build of ParFlow, -DPARFLOW_AMPS_SEQUENTIAL_IO=True\u003c/li\u003e\n\u003cli\u003eseq = sequential build of ParFlow, -DPARFLOW_AMPS_SEQUENTIAL_IO=False\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto run either:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity run --app \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eapp_name\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003e/path/to/singularity_container.sif\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003e.tcl input file\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eSee additional information about \u003ca href=\"https://sylabs.io/guides/3.3/user-guide/definition_files.html?highlight=apps#apps\" rel=\"nofollow\"\u003eApps in Singularity\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequirements\u003c/h2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eHost OS must have Singularity installed\u003c/li\u003e\n\u003cli\u003eTo build container from recipe file, user must have root access\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo Build Container\u003c/h2\u003e\u003ca id=\"user-content-to-build-container\" class=\"anchor\" aria-label=\"Permalink: To Build Container\" href=\"#to-build-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eGeneral build command is of the form:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo singularity build \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edestination/path/to/singularity_container.sif\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eSingularity definition file\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eas a specific example:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo singularity build \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/pf_singularity_ompi Singularity.parflow_ompi\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo Use ParFlow in Container\u003c/h2\u003e\u003ca id=\"user-content-to-use-parflow-in-container\" class=\"anchor\" aria-label=\"Permalink: To Use ParFlow in Container\" href=\"#to-use-parflow-in-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eexample of running the LW test case in \u003ccode\u003eparflow/test/washita/tcl_scripts\u003c/code\u003e directory\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity run --app par \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/pf_singularity_ompi LW_Test.tcl\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePull from Singularity Hub\u003c/h2\u003e\u003ca id=\"user-content-pull-from-singularity-hub\" class=\"anchor\" aria-label=\"Permalink: Pull from Singularity Hub\" href=\"#pull-from-singularity-hub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull shub://arezaii/pf_singularity:parflow_ompi\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ethen to use it:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --app par pf_singularity_parflow_ompi.sif LW_Test.tcl\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTesting\u003c/h2\u003e\u003ca id=\"user-content-testing\" class=\"anchor\" aria-label=\"Permalink: Testing\" href=\"#testing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBecause singularity containers are immutable and ParFlow tests write to disk, you must expand the image to a writable sandbox.\nUnfortunately this requires super user access to do...\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eMake Container Writable\u003c/h3\u003e\u003ca id=\"user-content-make-container-writable\" class=\"anchor\" aria-label=\"Permalink: Make Container Writable\" href=\"#make-container-writable\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFirst, create a writable sandbox from the immutable container using Singularity\u0027s build command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build --sandbox \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edirectory_to_create_for_sandbox/\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003esingularity_container\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eas an example, if you had pulled the parflow_ompi image from shub:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build --sandbox pf_singularity_parflow_ompi_test/ pf_singularity_parflow_ompi.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThere will now be a new directory pf_singularity_parflow_ompi_test/ that is the root of the container.\nEditing any of the folder contents will require super user permissions.\u003c/p\u003e\n\u003cp\u003eYou can enter a console into the container now by using the Singularity shell command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity shell --writable \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edirectory_to_create_for_sandbox/\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRun Tests\u003c/h3\u003e\u003ca id=\"user-content-run-tests\" class=\"anchor\" aria-label=\"Permalink: Run Tests\" href=\"#run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAfter making the container writable and accessing it through a shell, both documented above, running the ParFlow\ntests can be done by changing directories and exporting the PARFLOW_DIR environment variable for either distributed\nor sequential builds of ParFlow.\u003c/p\u003e\n\u003cp\u003eTake note of the ParFlow build and install directories in the container:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eSequential Build\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ebuild directory: /home/parflow/build_seq\u003c/li\u003e\n\u003cli\u003einstall directory: /home/parflow/pfdir_seq\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eDistributed Build\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ebuild directory: /home/parflow/build_par\u003c/li\u003e\n\u003cli\u003einstall directory: /home/parflow/pfdir_par\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e /home/parflow/\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003ebuild_dir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e PARFLOW_DIR=/home/parflow/\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003einstall_dir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \n\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e make \u003cspan class=\"pl-c1\"\u003etest\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1650137133.0
+ "updated_at": 1614296417.0
},
{
"data_format": 2,
- "description": "The simulation frame work for Craig Rafter\u0027s PhD research",
+ "description": "Repository of singularity containers",
"filenames": [
- "SingularityDef"
+ "nanopolish/Singularity.nanopolish"
],
- "full_name": "cbrafter/SUMO_FRAMEWORK",
+ "full_name": "alexiswl/singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSUMO Framework\u003c/h1\u003e\u003ca id=\"user-content-sumo-framework\" class=\"anchor\" aria-label=\"Permalink: SUMO Framework\" href=\"#sumo-framework\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe simulation framework for the PhD research of Craig B. Rafter at the\nUniversity of Southampton 2015-2019.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e1. SUMO API\u003c/h2\u003e\u003ca id=\"user-content-1-sumo-api\" class=\"anchor\" aria-label=\"Permalink: 1. SUMO API\" href=\"#1-sumo-api\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBase classes for signals and connecting to the simulation\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e2. Models\u003c/h2\u003e\u003ca id=\"user-content-2-models\" class=\"anchor\" aria-label=\"Permalink: 2. Models\" href=\"#2-models\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFiles describing the road networks for SUMO\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e3. Signal Controllers\u003c/h2\u003e\u003ca id=\"user-content-3-signal-controllers\" class=\"anchor\" aria-label=\"Permalink: 3. Signal Controllers\" href=\"#3-signal-controllers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCodes for the signal controllers used in this research\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e4. Simulation\u003c/h2\u003e\u003ca id=\"user-content-4-simulation\" class=\"anchor\" aria-label=\"Permalink: 4. Simulation\" href=\"#4-simulation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCodes that run simulations using the models and signal controllers\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e5. Results Analysis\u003c/h2\u003e\u003ca id=\"user-content-5-results-analysis\" class=\"anchor\" aria-label=\"Permalink: 5. Results Analysis\" href=\"#5-results-analysis\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eScripts for analysing the SUMO outputs\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTools\u003c/h2\u003e\u003ca id=\"user-content-tools\" class=\"anchor\" aria-label=\"Permalink: Tools\" href=\"#tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eScripts for doing useful things\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1653390685.0
+ "updated_at": 1522028262.0
},
{
"data_format": 2,
- "description": "Implementing the pytorch mnist example in a docker container.",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "LBaeriswyl/pytorch-mnist-docker",
+ "full_name": "NotTheKmers/main",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003epytorch-mnist-docker\u003c/h1\u003e\u003ca id=\"user-content-pytorch-mnist-docker\" class=\"anchor\" aria-label=\"Permalink: pytorch-mnist-docker\" href=\"#pytorch-mnist-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eImplementing the pytorch MNIST example in a docker or singularity container.\u003c/p\u003e\n\u003cp\u003eTo train for a single epoch on docker:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eEnsure docker is installed\u003c/li\u003e\n\u003cli\u003eEnsure you are in the root directory\u003c/li\u003e\n\u003cli\u003eExecute ./run_mnist_docker_container.sh\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo train for a single epoch on singularity:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eEnsure singularity is installed\u003c/li\u003e\n\u003cli\u003eEnsure you are in the root directory\u003c/li\u003e\n\u003cli\u003eExecute ./run_mnist_singularity_container.sh\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-replicate--reproduce-kmer-publication\" class=\"anchor\" aria-hidden=\"true\" href=\"#replicate--reproduce-kmer-publication\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReplicate \u0026amp; Reproduce Kmer Publication\u003c/h1\u003e\n\u003cp\u003eWe have been tasked with replicating, reproducing, and extending the previous work of the \"These Are Not the K-mers You Are Looking For: Efficient Online K-mer Counting Using a Probabilistic Data Structure\" publication\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-test-directory\" class=\"anchor\" aria-hidden=\"true\" href=\"#test-directory\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest directory\u003c/h2\u003e\n\u003cp\u003ePut scratch and testing code in this directory\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1700971295.0
+ "updated_at": 1532379702.0
},
{
"data_format": 2,
- "description": "Fetch FASTQ files, clean and collapse duplicated reads",
+ "description": "A test to see if we can make images through singularity hub",
"filenames": [
"Singularity"
],
- "full_name": "JackCurragh/Collapse-FASTQ",
+ "full_name": "s-andrews/singularitytest",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCollapse FASTQ Files\u003c/h1\u003e\u003ca id=\"user-content-collapse-fastq-files\" class=\"anchor\" aria-label=\"Permalink: Collapse FASTQ Files\" href=\"#collapse-fastq-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIntroduction\u003c/h2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eInputs\u003c/h3\u003e\u003ca id=\"user-content-inputs\" class=\"anchor\" aria-label=\"Permalink: Inputs\" href=\"#inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis pipeline is general purpose for preparing FASTQ read files but was specifically developed to prepare data for \u003ca href=\"https://riboseq.org/\" rel=\"nofollow\"\u003eRiboSeq.Org\u003c/a\u003e.\nInputs for this pipeline may vary. Options include:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eStudy accession\u003c/li\u003e\n\u003cli\u003eSample accession list\u003c/li\u003e\n\u003cli\u003ePath to FASTQ directory\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eOutputs\u003c/h3\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-label=\"Permalink: Outputs\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eCollapsed Read File\u003c/h4\u003e\u003ca id=\"user-content-collapsed-read-file\" class=\"anchor\" aria-label=\"Permalink: Collapsed Read File\" href=\"#collapsed-read-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe primary output is a gzipped collapsed read file of the following format:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt;read\u0026lt;read_number\u0026gt;_x\u0026lt;read_count\u0026gt;\nNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e\u0026lt;read_number\u0026gt;\u003c/code\u003e signifies that this is the nth read processed.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e\u0026lt;read_count\u0026gt;\u003c/code\u003e signifies how many times reads with this exact sequence was seen\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eFastQC Report\u003c/h4\u003e\u003ca id=\"user-content-fastqc-report\" class=\"anchor\" aria-label=\"Permalink: FastQC Report\" href=\"#fastqc-report\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003ehtml\u003c/code\u003e report for each sample is outputted\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eFastP\u003c/h4\u003e\u003ca id=\"user-content-fastp\" class=\"anchor\" aria-label=\"Permalink: FastP\" href=\"#fastp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003ehtml\u003c/code\u003e report from FastP\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eMultiQC Report\u003c/h4\u003e\u003ca id=\"user-content-multiqc-report\" class=\"anchor\" aria-label=\"Permalink: MultiQC Report\" href=\"#multiqc-report\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCombined report for each pipeline run. Merged FastP and FastQC\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequirements\u003c/h2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis pipeline can be run using each of the following container methods\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eMethod\u003c/th\u003e\n\u003cth\u003eInstructions\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eSingularity\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.sylabs.io/guides/3.0/user-guide/installation.html\" rel=\"nofollow\"\u003edocs.syslabs.io\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDocker\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.docker.com/engine/install/\" rel=\"nofollow\"\u003edocs.docker.com\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eConda\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html\" rel=\"nofollow\"\u003edocs.conda.io\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSetup\u003c/h2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-label=\"Permalink: Setup\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eSingularity\u003c/h5\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: Singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build singularity/pipeline Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen as the profile \u003ccode\u003esingularity\u003c/code\u003e specifies \u003ccode\u003econtainer = \u0027singularity/pipeline\u0027\u003c/code\u003e use the following to execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eDocker\u003c/h5\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-label=\"Permalink: Docker\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003edocker build . -t pipeline-image\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen as the profile \u003ccode\u003edocker\u003c/code\u003e specifies \u003ccode\u003econtainer = \u0027pipeline-image:latest\u0027\u003c/code\u003e use the following to execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile docker\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003eConda\u003c/h5\u003e\u003ca id=\"user-content-conda\" class=\"anchor\" aria-label=\"Permalink: Conda\" href=\"#conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCreate a conda definition yaml file \u003ca href=\"conda/example.yml\"\u003eeg. here\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf -profile conda\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCall the pipeline directly\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run main.nf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun with all the frills\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash scripts/run-w-frills \u0026lt;params-file\u0026gt; \u0026lt;profile name from nextflow.config\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExample\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash scripts/run-w-frills example_parameters.yml standard\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularitytest\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularitytest\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularitytest\u003c/h1\u003e\n\u003cp\u003eA test to see if we can make images through singularity hub\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1723558153.0
+ "updated_at": 1537371665.0
},
{
"data_format": 2,
- "description": "test_singularity",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.v3.0.0"
],
- "full_name": "leepc12/test_singularity",
+ "full_name": "baxpr/ndw_wm_edat",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003etest_singularity\u003c/h1\u003e\u003ca id=\"user-content-test_singularity\" class=\"anchor\" aria-label=\"Permalink: test_singularity\" href=\"#test_singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003etest_singularity\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1542209843.0
+ "updated_at": 1543615703.0
},
{
"data_format": 2,
- "description": "Singularity container with Nix and OpenMPI to be used in XSEDE compute environment (currently in development)",
+ "description": "Performance Evaluation Process Algebra",
"filenames": [
- "Singularity"
+ "gpanalyser/Singularity.gpanalyser",
+ "pepa/Singularity.pepa",
+ "ipc/Singularity.ipc",
+ "bio-pepa/Singularity.biopepa"
],
- "full_name": "XSEDE/singularity-nix-openmpi",
+ "full_name": "williamssanders/pepa",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-nix-openmpi\u003c/h1\u003e\u003ca id=\"user-content-singularity-nix-openmpi\" class=\"anchor\" aria-label=\"Permalink: singularity-nix-openmpi\" href=\"#singularity-nix-openmpi\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4462\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df010a2bcabf58c1b072442e95c5e1ae15d169798d425ec9423c2f5b79e08d6b/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity container with Nix and OpenMPI to be used in XSEDE compute environment (currently in development)\u003c/p\u003e\n",
+ "readme": "{\"message\":\"API rate limit exceeded for installation ID 633759.\",\"documentation_url\":\"https://docs.github.com/rest/overview/resources-in-the-rest-api#rate-limiting\"}",
"stargazers_count": 0,
- "subscribers_count": 16,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1637690636.0
+ "updated_at": 1592227688.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.4.2.0",
+ "Singularity.4.3.0"
],
- "full_name": "Raijeku/TensorOrder-tests",
+ "full_name": "MPIB/singularity-jags",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTensorOrder\u003c/h1\u003e\u003ca id=\"user-content-tensororder\" class=\"anchor\" aria-label=\"Permalink: TensorOrder\" href=\"#tensororder\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA Python 3 tool for automatically contracting tensor networks for weighted model counting on multiple CPUs and on a GPU.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning with docker\u003c/h2\u003e\u003ca id=\"user-content-running-with-docker\" class=\"anchor\" aria-label=\"Permalink: Running with docker\" href=\"#running-with-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBecause of the variety of dependencies used in the various graph decomposition tools, it is recommended to use the docker container to run TensorOrder.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eBuilding the container\u003c/h3\u003e\u003ca id=\"user-content-building-the-container\" class=\"anchor\" aria-label=\"Permalink: Building the container\" href=\"#building-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe docker container (for singlecore and multi-core) can be built with the following commands:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --tag tensororder .\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIn order to leverage a GPU, you must compile the (larger) docker container with TensorFlow and gpu drivers:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --tag tensororder-gpu -f Dockerfile-gpu .\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eUsing the container\u003c/h3\u003e\u003ca id=\"user-content-using-the-container\" class=\"anchor\" aria-label=\"Permalink: Using the container\" href=\"#using-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOnce built, docker containers can be used as follows to run TensorOrder:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -i tensororder:latest python /src/tensororder.py --planner=\"line-Flow\" --weights=\"unweighted\" \u0026lt; \"benchmarks/cubic_vertex_cover/cubic_vc_50_0.cnf\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBy default, this runs the tensor network contraction on all available CPU cores with numpy. One can also choose to use the GPU to perform the contraction. This requires \u003ca href=\"https://nvidia.github.io/nvidia-container-runtime/\" rel=\"nofollow\"\u003envidia-container-runtime\u003c/a\u003e to be installed.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -i --gpus all tensororder-gpu:latest python /src/tensororder.py --planner=\"line-Flow\" --weights=\"unweighted\" --tensor_library=\"tensorflow-gpu\" \u0026lt; \"benchmarks/cubic_vertex_cover/cubic_vc_50_0.cnf\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIt is also possible to connect to a TPU on Google Cloud to perform the tensor contractions:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -i tensororder:latest python /src/tensororder.py --timeout=\"1000\" --planner=\"line-Flow\" --weights=\"unweighted\" --tensor_library=\"jax-tpu\" --entry_type=\"float32\" --tpu=\"10.6.165.2\" \u0026lt; \"benchmarks/cubic_vertex_cover/cubic_vc_50_0.cnf\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBoth docker containers are compatible with \u003ca href=\"https://github.com/Kasekopf/Turbine\"\u003eTurbine\u003c/a\u003e to run experiments on Google Cloud.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning with Singularity\u003c/h2\u003e\u003ca id=\"user-content-running-with-singularity\" class=\"anchor\" aria-label=\"Permalink: Running with Singularity\" href=\"#running-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThere is also a \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e container available for TensorOrder.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eBuilding the container\u003c/h3\u003e\u003ca id=\"user-content-building-the-container-1\" class=\"anchor\" aria-label=\"Permalink: Building the container\" href=\"#building-the-container-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe Singularity container can be built with the following commands:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build tensororder Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eUsing the container\u003c/h3\u003e\u003ca id=\"user-content-using-the-container-1\" class=\"anchor\" aria-label=\"Permalink: Using the container\" href=\"#using-the-container-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOnce built, Singularity containers can be used as follows to run TensorOrder:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./tensororder --method=\"line-Flow\" \u0026lt; \"benchmarks/cubic_vertex_cover/cubic_vc_50_0.cnf\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning without containers\u003c/h2\u003e\u003ca id=\"user-content-running-without-containers\" class=\"anchor\" aria-label=\"Permalink: Running without containers\" href=\"#running-without-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTensorOrder can also be used directly as a Python 3 tool. Since TensorOrder uses \u003ca href=\"https://cython.org/\" rel=\"nofollow\"\u003eCython\u003c/a\u003e, it must be compiled:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emake -C src\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eMoreover, the various tensor methods each require additional setup. Consult the \u003ca href=\"Dockerfile\"\u003eDocker file\u003c/a\u003e for an example set of installation commands.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFor KCMR-metis and KCMR-gn, METIS must be installed using the instructions \u003ca href=\"src/tensorcsp\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor line-Tamaki and factor-Tamaki, the tree-decomposition solver Tamaki must be compiled using the \u003ccode\u003eheuristic\u003c/code\u003e instructions \u003ca href=\"solvers/TCS-Meiji\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor line-Flow and factor-Flow, the tree-decomposition solver FlowCutter must be compiled using the instructions \u003ca href=\"solvers/flow-cutter-pace17\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor line-htd and factor-htd, the tree-decomposition solver htd must be compiled using the instructions \u003ca href=\"solvers/htd-master\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor factor-hicks, the branch-decomposition solver Hicks must be compiled using the Makefile \u003ca href=\"solvers/hicks\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor line-portfolio3 and line-portfolio3, all tree-decompositions solvers must be compiled, and the portfolio must be compiled using the instructions \u003ca href=\"solvers/portfolio\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOnce everything has been built, the primary script is located in \u003ccode\u003esrc/tensororder.py\u003c/code\u003e. Example usage is\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython src/tensororder.py --method=\"line-Flow\" \u0026lt; \"benchmarks/cubic_vertex_cover/cubic_vc_50_0.cnf\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTensorOrder requires the following python packages (see \u003ca href=\"requirements.txt\"\u003erequirements.txt\u003c/a\u003e for a working set of exact version information if needed):\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ccode\u003eclick\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003enumpy\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003epython-igraph\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003enetworkx\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003ecython\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003ethreadpoolctl\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003etensorflow\u003c/code\u003e (optional)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePublications\u003c/h3\u003e\u003ca id=\"user-content-publications\" class=\"anchor\" aria-label=\"Permalink: Publications\" href=\"#publications\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePlease cite the following article if you use our code in a publication:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://arxiv.org/abs/2006.15512\" rel=\"nofollow\"\u003eParallel Weighted Model Counting with Tensor Networks\u003c/a\u003e. Jeffrey M. Dudek and Moshe Y. Vardi. Proceedings of MCW\u002720.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/1801\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-hidden=\"true\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://MPIB/singularity-jags\nsingularity exec singularity-jags_latest.sif jags\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-jags-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#jags-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eJAGS singularity\u003c/h1\u003e\n\u003cp\u003eSingularity images containing \u003ca href=\"https://sourceforge.net/projects/mcmc-jags/\" rel=\"nofollow\"\u003eJAGS\u003c/a\u003e [1]:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ebased on debian-slim\u003c/li\u003e\n\u003cli\u003edownloads and builds JAGS from: \u003ca href=\"https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Source/\" rel=\"nofollow\"\u003ehttps://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Source/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003elinks against libopenblas\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e[1]\n\u003ca href=\"https://sourceforge.net/projects/mcmc-jags/\" rel=\"nofollow\"\u003ehttps://sourceforge.net/projects/mcmc-jags/\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1706232720.0
+ "updated_at": 1580121725.0
},
{
"data_format": 2,
- "description": "preterm birth project singularity container",
+ "description": "A singularity container for TB-profiler",
"filenames": [
"Singularity"
],
- "full_name": "CreRecombinase/ptb_container",
+ "full_name": "phgenomics-singularity/tbprofiler",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [],
- "updated_at": 1566848645.0
+ "updated_at": 1578274663.0
},
{
"data_format": 2,
- "description": "Niftynet GPU singularity container",
+ "description": "Containerized DMC application for HPCs",
"filenames": [
- "Singularity.0.6.0"
+ "setup/build/Singularity/Singularity.def",
+ "setup/build/Singularity/Singularity.ubuntu",
+ "setup/build/Singularity/SingularityUpdate.def",
+ "setup/build/Singularity/SingularityCore.def"
],
- "full_name": "yinglilu/niftynet_gpu_singularity",
+ "full_name": "McCoyGroup/RynLib",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-rynlib\" class=\"anchor\" aria-hidden=\"true\" href=\"#rynlib\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRynLib\u003c/h1\u003e\n\u003cp\u003eThis started out as a quick layer between python and entos for running DMC\u003c/p\u003e\n\u003cp\u003eIt\u0027s grown a bit...\u003c/p\u003e\n\u003cp\u003eYou can find some documentation \u003ca href=\"https//:mccoygroup.github.io/Documentation/RynLib\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1714773139.0
+ "updated_at": 1613573199.0
},
{
"data_format": 2,
- "description": null,
+ "description": "A client-worker proxy using ZMQ to server SSNet predictions on the Tufts Cluster",
"filenames": [
- "Singularity"
+ "container/Singularity",
+ "container/SingularityX",
+ "container/SingularityNoDrivers",
+ "container/Singularity390.30"
],
- "full_name": "khanlab/MRtrix3Tissue_singularity",
- "latest_release": "v1.0.0",
- "readme": "\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell -v /data:/data MRtrix3Tissue.simg\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "LArbys/SSNetServer",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-ssnet-server\" class=\"anchor\" aria-hidden=\"true\" href=\"#ssnet-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSSNet Server\u003c/h1\u003e\n\u003cp\u003eA client-worker proxy using ZMQ to server SSNet predictions on the Tufts Cluster\u003c/p\u003e\n\u003cp\u003eThe code is a copy of the paranoid pirate proxy from the ZeroMQ Guide\u003c/p\u003e\n\u003cp\u003eThere are two goals:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCreate a production network where many clients read data event-by-event, send to a collection of workers, receive net output, and write to disk\u003c/li\u003e\n\u003cli\u003eCreate a training network where single client app asks workers for batch data\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-classes\" class=\"anchor\" aria-hidden=\"true\" href=\"#classes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eClasses\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-ssnetworkerssnetclient\" class=\"anchor\" aria-hidden=\"true\" href=\"#ssnetworkerssnetclient\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSSNetWorker/SSNetClient\u003c/h3\u003e\n\u003cp\u003eThese are base classes that are meant to handle the network portion of the code.\nThey are to be inherited by child classes that handle either the reading/writing of data or the processing through a network.\u003c/p\u003e\n\u003cp\u003eNote that child client and workers are meant to be implemented together so that they understand their messages.\nWe do not enforce a standard messaging protocol.\nThis is meant to reflect the fact that different tasks usually differ in the details of the input/output data required.\nThough similar, I am not smart enough to define generic behavior.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-ssnetbroker\" class=\"anchor\" aria-hidden=\"true\" href=\"#ssnetbroker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSSNetBroker\u003c/h3\u003e\n\u003cp\u003eThis class is the proxy between clients and workers.\nIt need not know anything about the data it is passing.\nIt\u0027s only job is to balance the load and keep track of connected workers (through heartbeats).\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-simplelarcv1client\" class=\"anchor\" aria-hidden=\"true\" href=\"#simplelarcv1client\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSimpleLArCV1Client\u003c/h3\u003e\n\u003cp\u003eThis is a very basic client that reads larcv1 event images and sends it out to the SSNetBroker.\nIt only handles Image2D objects for now.\nYou can provide it a list of producer names via the \u003ccode\u003eproduct_dict\u003c/code\u003e argument of the constructor.\nIt will prepare a numpy array for each image product given. The array shapes are\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e(batchsize, number of images in event container, height, width)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe message sent to the worker is:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e[frame 0] \"producer name\" (string)\n[frame 1] \u0027Plane 65535 (rows,cols) = (0,0) ... Left Top (0,0) ... Right Bottom (0,0)\u0027 (the output of ImageMeta::dump())\n[frame 2] numpy array for batch\n[frame 3] \"producer name\" (string)\n[frame 4] \u0027Plane 65535 (rows,cols) = (0,0) ... Left Top (0,0) ... Right Bottom (0,0)\u0027 (the output of ImageMeta::dump())\n[frame 5] numpy array for batch\n(and so on...)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe received message is expected in the same format\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e[frame 0] \"returned array name\" (string)\n[frame 1] \u0027Plane 65535 (rows,cols) = (0,0) ... Left Top (0,0) ... Right Bottom (0,0)\u0027 (the output of ImageMeta::dump())\n[frame 2] numpy array \n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe arrays in the received messages will be saved to an output larcv file.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-dummylarcv1worker\" class=\"anchor\" aria-hidden=\"true\" href=\"#dummylarcv1worker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDummyLArCV1Worker\u003c/h3\u003e\n\u003cp\u003eUsed for debugging. Expects message from SimpleLArCV1Client and dumps numpy array shapes to standard out.\nReturns:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e[frame 0] \"dummy\"\n[frame 1] \u0027Plane 65535 (rows,cols) = (0,0) ... Left Top (0,0) ... Right Bottom (0,0)\u0027 (the output of ImageMeta::dump())\n[frame 2] numpy array, filled with zeros, whose size is from the first received image\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-caffelarcv1clientworker\" class=\"anchor\" aria-hidden=\"true\" href=\"#caffelarcv1clientworker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaffeLArCV1Client/Worker\u003c/h3\u003e\n\u003cp\u003eWorker processes all three planes using Caffe1.\u003c/p\u003e\n\u003cp\u003eUses the same message protocol as Simple/Dummy pair above.\u003c/p\u003e\n\u003cp\u003eClient sends the images for one plane for one event as one batch. To send all three planes, 3 sets of frames are shipped together.\u003c/p\u003e\n\u003cp\u003eThe worker processes one frame at a time. It knows which plane\u0027s network to use from the meta. Because processing is frameset at a time,\nonly one network is running, while the others are idle. This could be improved by modeling the broker as a majordomo server, which\nknows how to ship different flavor of requests to different flavor of workers.\u003c/p\u003e\n\u003cp\u003eGood enough for now, though.\u003c/p\u003e\n\u003cp\u003eOn Meitner, 0.44 secs per event (read file+fill batch+roundtrip+write output)x3 planes.\nSeveral threads, but in total mem usage between 2.5 to 3 GB.\n(Will want to see mem usage in tests on separate nodes for worker and proxy.)\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1583525733.0
+ "updated_at": 1569100609.0
},
{
"data_format": 2,
- "description": "A singularity recipe for AMRfinderplus",
+ "description": "Singularity Bootstrap file for DL LEE SSNet using Caffe-LArbys",
"filenames": [
"Singularity",
- "v3.2.1/20191209/Singularity.v3.2.1_20191209",
- "v3.2.1/20191106/Singularity.v3.2.1_20191106",
- "v3.1.1b/20190924/Singularity.v3.1.1b_20190924"
+ "SingularityTufts"
],
- "full_name": "phgenomics-singularity/amrfinderplus",
+ "full_name": "LArbys/singularity-dllee-ssnet",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-dllee-ssnet\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-dllee-ssnet\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-dllee-ssnet\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [],
- "updated_at": 1575844748.0
+ "updated_at": 1497814537.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.cuda10",
+ "Singularity",
+ "Singularity.tf"
],
- "full_name": "photocyte/shournal_singularity",
+ "full_name": "callaghanmt-containers/ubuntu_cuda_cudnn_base",
"latest_release": null,
- "readme": "\u003cp\u003eImage building handled by singularity-hub.org\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eUsage\u003c/h3\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://photocyte/shournal_singularity\nsingularity shell shournal_singularity_latest.sif \nsource /usr/share/shournal/SOURCE_ME.bash\nSHOURNAL_ENABLE\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eCurrently not working with error:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eshournal-run: shournal-run seems to lack the suid-bit (SETUID) for root. You can correct that by\nchown root shournal-run \u0026amp;\u0026amp; chmod u+s shournal-run\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe Singularity build does do that, but still doesn\u0027t work.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-ubuntu_cuda_cudnn_base\" class=\"anchor\" aria-hidden=\"true\" href=\"#ubuntu_cuda_cudnn_base\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eubuntu_cuda_cudnn_base\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1597950515.0
+ "updated_at": 1556291490.0
},
{
"data_format": 2,
- "description": "Singularity Images for neurodebian",
+ "description": "example scientific filesystem to assess metrics across different solutions to a single problem, printing \"Hello World\"",
"filenames": [
"Singularity"
],
- "full_name": "singularityhub/neurodebian",
+ "full_name": "sci-f/container.scif",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-hello-world-scientific-filesystem\" class=\"anchor\" aria-hidden=\"true\" href=\"#hello-world-scientific-filesystem\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHello World Scientific Filesystem\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/containers-ftw.png\"\u003e\u003cimg src=\"img/containers-ftw.png\" alt=\"img/containers-ftw.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis is a Scientific Filesystem installed in a Singularity container, used to evaluate ~20 languages across different metrics for printing a simple \"Hello World,\" in dinosaur-speak of course! You can use the Makefile to build, clean, and run the container, and we will walk through the commands here. In all of these commands, we name the container based on the environment variable \u003ccode\u003e$CONTAINER\u003c/code\u003e (set in the \u003ca href=\"Makefile\"\u003eMakefile\u003c/a\u003e as \u003ccode\u003ehello-world\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eBuild the container!\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build hello-world Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhat applications are available?\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./hello-world apps\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun the primary timing analysis.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e/bin/bash test.sh hello-world\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [
- "neurodebian",
+ "singularity",
"singularity-container",
- "singularity-containers"
+ "scif",
+ "scientific-filesystem"
],
- "updated_at": 1487334737.0
+ "updated_at": 1516572904.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.master",
+ "Singularity.singularity3"
],
- "full_name": "ISU-HPC/ml-intel",
+ "full_name": "stephansmit/shipyard_containers",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eml-intel\u003c/h1\u003e\u003ca id=\"user-content-ml-intel\" class=\"anchor\" aria-label=\"Permalink: ml-intel\" href=\"#ml-intel\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eMachine learning container with Intel python bindings\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-shipyard-container-to-run-containers-on-azure-shipyard\" class=\"anchor\" aria-hidden=\"true\" href=\"#shipyard-container-to-run-containers-on-azure-shipyard\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eShipyard container to run containers on Azure Shipyard\u003c/h1\u003e\n\u003cp\u003eContainers to run containers on \u003ca href=\"https://batch-shipyard.readthedocs.io/en/latest/00-introduction/%22\" rel=\"nofollow\"\u003eAzure Shipyard\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-the-container-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-the-container-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild the container locally\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build su2_containers_master.sif Singularity.master\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pull-the-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#pull-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePull the container\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://stephansmit/shipyard_containers:master \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHosted on Singularity Hub:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3377\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1524599924.0
+ "updated_at": 1565710384.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity container with nbconvert for conversion of jupyter notebooks to other formats",
"filenames": [
- "Singularity",
- "__Deprecated__/Singularity_0_19"
+ "Singularity.latex"
],
- "full_name": "daverblair/singularity_vlpi",
+ "full_name": "vsoch/singularity-nbconvert",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity_vlpi\u003c/h1\u003e\u003ca id=\"user-content-singularity_vlpi\" class=\"anchor\" aria-label=\"Permalink: singularity_vlpi\" href=\"#singularity_vlpi\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity file for VLPI project.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-latex-converter\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-latex-converter\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Latex Converter\u003c/h1\u003e\n\u003cp\u003eThis container will help you to convert Jupyter notebooks to html pages.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003eBefore using, make sure you have the latest version of \u003ca href=\"https://singularityware.github.io\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e installed.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-pull\" class=\"anchor\" aria-hidden=\"true\" href=\"#pull\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePull\u003c/h3\u003e\n\u003cp\u003eThe easiest thing is to pull the container from Singularity Hub where it\u0027s already built.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name latex.simg shub://vsoch/singularity-nbconvert:latex\nProgress |===================================| 100.0% \nDone. Container is at: /tmp/singularity/latex.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h3\u003e\n\u003cp\u003eThe container is a file sitting in your present working directory! To convert from Jupyter notebook (extension \u003ccode\u003e.ipynb\u003c/code\u003e) to pdf. It\u0027s primary function (called a runscript) is to perform a conversion, and that looks like this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run latex.simg --to pdf test_notebook.ipynb\n[NbConvertApp] Converting notebook test_notebook.ipynb to pdf\n[NbConvertApp] Support files will be in test_notebook_files/\n[NbConvertApp] Making directory test_notebook_files\n[NbConvertApp] Writing 17358 bytes to notebook.tex\n[NbConvertApp] Building PDF\n[NbConvertApp] Running xelatex 3 times: [u\u0027xelatex\u0027, u\u0027notebook.tex\u0027]\n[NbConvertApp] Running bibtex 1 time: [u\u0027bibtex\u0027, u\u0027notebook\u0027]\n[NbConvertApp] WARNING | bibtex had problems, most likely because there were no citations\n[NbConvertApp] PDF successfully created\n[NbConvertApp] Writing 52431 bytes to test_notebook.pdf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe call above can have any custom arguments that you would give to \u003ccode\u003ejupyter nbconvert\u003c/code\u003e. It doesn\u0027t necessarily have to convert to \u003ccode\u003e--pdf\u003c/code\u003e, and you can add other options. E.g., to see help:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run latex --help\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-exec\" class=\"anchor\" aria-hidden=\"true\" href=\"#exec\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExec\u003c/h3\u003e\n\u003cp\u003eThe above command targets the nbconvert executable directly (via Jupyter), but you can also execute a custom command, the container has all of the dependencies like jupyter, nbconvert, etc. installed. For example, here I am listing the contents of the conda installation bin:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec latex ls /opt/conda/bin\n2to3\t\t infotocap\t\tpip\t\t tabs\nactivate\t jsonschema\t\tpydoc\t\t tclsh\nc_rehash\t jupyter\t\tpygmentize\t tclsh8.6\ncaptoinfo\t jupyter-kernelspec\tpython\t\t tic\nchardetect\t jupyter-migrate\tpython-config\t toe\nclear\t\t jupyter-nbconvert\tpython2\t\t tput\nconda\t\t jupyter-run\t\tpython2-config\t tset\nconda-env\t jupyter-troubleshoot\tpython2.7\t wheel\ndeactivate\t jupyter-trust\t\tpython2.7-config wish\neasy_install\t ncursesw6-config\treset\t\t wish8.6\neasy_install-2.7 openssl\t\tsmtpd.py\nidle\t\t pandoc\t\tsqlite3\ninfocmp\t\t pandoc-citeproc\tsqlite3_analyzer\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-development\" class=\"anchor\" aria-hidden=\"true\" href=\"#development\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopment\u003c/h2\u003e\n\u003cp\u003eDevelopment with Singularity is easiest when you build a \"sandbox,\" which is like building into a folder.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build --sandbox latex/ Singularity.latex\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-hidden=\"true\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild\u003c/h3\u003e\n\u003cp\u003eYou can build the image with \u003ca href=\"https://singularityware.github.io\" rel=\"nofollow\"\u003eSingularity 2.4\u003c/a\u003e with the following command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build --writable latex.simg Singularity.latex\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhen it\u0027s time for a \"production\" build (squash fs image):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build latex.simg Singularity.latex\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1646980294.0
+ "subscribers_count": 2,
+ "topics": [
+ "nbconvert",
+ "singularity-container",
+ "singularity",
+ "jupyter",
+ "pdf"
+ ],
+ "updated_at": 1589940582.0
},
{
"data_format": 2,
- "description": "TensorFlow Singularity recipes.",
+ "description": "Singularity recipes for building mriqc container",
"filenames": [
- "Singularity.1.12.0-py27",
- "Singularity.1.6.0-py27",
- "Singularity.1.13.1-py36",
- "Singularity.1.12.0-py36",
- "Singularity.1.13.0-py36",
- "Singularity.1.14.0-py36",
- "Singularity.1.6.0-py36"
+ "Singularity.0.10.4",
+ "Singularity.0.14.2",
+ "Singularity.0.11.0"
],
- "full_name": "arcsUVA/tensorflow",
+ "full_name": "MPIB/singularity-mriqc",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003etensorflow\u003c/h1\u003e\u003ca id=\"user-content-tensorflow\" class=\"anchor\" aria-label=\"Permalink: tensorflow\" href=\"#tensorflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2235\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003cbr\u003e\nTensorFlow Singularity recipes.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-mriqc\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-mriqc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-mriqc\u003c/h1\u003e\n\u003cp\u003eSingularity recipes for building mriqc container\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eUses the official docker image of mriqc as base: \u003ca href=\"https://hub.docker.com/r/poldracklab/mriqc/\" rel=\"nofollow\"\u003ehttps://hub.docker.com/r/poldracklab/mriqc/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eRecipes purge and reinstall libgsl2, since there were issues with it when just using the base container.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1567631554.0
+ "updated_at": 1535361688.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe for ML analysis in Python",
"filenames": [
- "Singularity.ubuntubase:10.0-u",
- "Singularity.tensorflowbase:ngc"
+ "envs/Singularity.1"
],
- "full_name": "nckucch/singularity",
+ "full_name": "adswa/python-ml",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1557068381.0
+ "updated_at": 1600779264.0
},
{
"data_format": 2,
- "description": "repository for singularity image of iMapSplice",
+ "description": "Singularity Image for SAIGE",
"filenames": [
"Singularity"
],
- "full_name": "cory-weller/iMapSplice.simg",
+ "full_name": "statgen/singularity-saige",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eiMapSplice.simg\u003c/h1\u003e\u003ca id=\"user-content-imapsplicesimg\" class=\"anchor\" aria-label=\"Permalink: iMapSplice.simg\" href=\"#imapsplicesimg\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003erepository for singularity image of iMapSplice\u003c/p\u003e\n\u003cp\u003eput the \u003ccode\u003eSingularity\u003c/code\u003e recipe file into your directory and build an image (if you have root access):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity build iMapSplice.simg ./Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAlternatively, retrieve the pre-built image from singularity hub:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull -n iMapSplice.simg shub://cory-weller/iMapSplice.simg\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 8,
"topics": [],
- "updated_at": 1551883466.0
+ "updated_at": 1543852783.0
},
{
"data_format": 2,
- "description": "Singularity recipe that includes git-annex, RStan, Python 3, and Snakemake",
+ "description": "Singularity Image for EPACTS",
"filenames": [
"Singularity"
],
- "full_name": "kyleam/garps",
+ "full_name": "statgen/singularity-epacts",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "snakemake",
- "singularity",
- "git-annex",
- "rstan"
- ],
- "updated_at": 1586815899.0
+ "subscribers_count": 8,
+ "topics": [],
+ "updated_at": 1543509361.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "testing-with-conveyors/bale_actor/singularity/Singularity.def"
+ "Singularity",
+ "Singularity-cpu"
],
- "full_name": "singhalshubh/Conveyors-Design-Reinvented",
+ "full_name": "p-h/ZHAW_deep_voice",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-zhaw-deep-voice\" class=\"anchor\" aria-hidden=\"true\" href=\"#zhaw-deep-voice\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eZHAW deep voice\u003c/h1\u003e\n\u003cp\u003eThe ZHAW deep voice is a package of multiple neural networks that try resolving the speaker clustering task. The goal is to provide a uniform way of data-access, -preprocession and analysis fo the results.\u003c/p\u003e\n\u003cp\u003eNote that the suite needs the TIMIT Dataset to function at this point. This is a paid product from the LDC and can be \u003ca href=\"https://www.ldc.upenn.edu/\" rel=\"nofollow\"\u003eobtained here.\u003c/a\u003e\nThis data also needs to be processed using the \u003ca href=\"https://www.ldc.upenn.edu/language-resources/tools/sphere-conversion-tools\" rel=\"nofollow\"\u003esph2pipe tool\u003c/a\u003e and be put in the folder common/data/training/TIMIT\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-using-deep-voice\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-deep-voice\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing deep voice\u003c/h2\u003e\n\u003cp\u003eIf you simply want to use it, you can let docker do the work for you and let it import all needed packages.\u003c/p\u003e\n\u003cp\u003eIn any way, whether you fork and pull the source code or let docker handle it for you, the whole suite is controllable over a one file interface, controller.py.\nIt can be run from console with the following calling structure:\ncontroller.py [-h] [-setup] [-n network] [-train] [-test] [-plot] [-clear] [-debug] [-best] [-val# ne]\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e-help Display the help screen you are seeing here\u003c/li\u003e\n\u003cli\u003e-setup Create all\u003c/li\u003e\n\u003cli\u003e-n specifiy which network should be used. Available:\n\u0027pairwise_lstm\u0027, \u0027pairwise_kldiv\u0027, \u0027flow_me\u0027, \u0027luvo\u0027 and \u0027all\u0027 (without the single quotes)\u003c/li\u003e\n\u003cli\u003e-train Specify to train the chosen network\u003c/li\u003e\n\u003cli\u003e-test Specify to test the chosen network\u003c/li\u003e\n\u003cli\u003e-plot Specify to plot the results of the chosen network. If network is \u0027all\u0027, all results will be displayed in one single plot\u003c/li\u003e\n\u003cli\u003e-clear Clear the folder in experiments\u003c/li\u003e\n\u003cli\u003e-debug Set the logging level of Tensorflow to Debug\u003c/li\u003e\n\u003cli\u003e-best Just the best results of the networks will be used in -plot\u003c/li\u003e\n\u003cli\u003e-val# specify which speaker number you want to use (40, 60, 80) to test the networks\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAs an example, you want to train, and test but not plot the network pairwise_lstm. you would call:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003econtroller.py -n pairwise_lstm -train -test\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch3\u003e\u003ca id=\"user-content-general-remarks\" class=\"anchor\" aria-hidden=\"true\" href=\"#general-remarks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGeneral remarks\u003c/h3\u003e\n\u003cp\u003eBefore you start with your training you should run the controller once with the setup flag. This can take a while, approximately around 10 minutes.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1677621757.0
+ "updated_at": 1541411393.0
},
{
"data_format": 2,
- "description": null,
+ "description": "A singularity container for building and running the Crispred pipeline (https://dubshen.astro.su.se/wiki/index.php/CRISPRED)",
"filenames": [
- "Singularity",
- "nova/Singularity.S17-12-08-maxopt"
+ "Singularity"
],
- "full_name": "dingp/singularity",
+ "full_name": "colinsauze/crispred_singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity\u003c/h1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1519058894.0
+ "updated_at": 1538673673.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.latest",
- "Singularity.ubuntu_test"
+ "SingularityRubuntu_RnBeads_FINAL",
+ "SingularityRRBSNF_FINAL"
],
- "full_name": "EPI-APE/sing_af",
+ "full_name": "AdrianS85/RRBS",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1551109916.0
+ "updated_at": 1540935055.0
},
{
"data_format": 2,
@@ -4623,143 +4225,141 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "oogasawa/singularity_jupyter_datascience",
+ "full_name": "mpachkov/singularity_test",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-jupyter-datascience\u003c/h1\u003e\u003ca id=\"user-content-singularity-jupyter-datascience\" class=\"anchor\" aria-label=\"Permalink: singularity-jupyter-datascience\" href=\"#singularity-jupyter-datascience\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA Singularity container of Jupyter notebook for datascience,\ncreated by converting an official Docker image\n\u003ca href=\"https://hub.docker.com/r/jupyter/datascience-notebook/\" rel=\"nofollow\"\u003ejupyter/datascience-notebook\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBuild the Singularity image as follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/oogasawa/singularity-jupyter-datascience\ncd singularity-jupyter-datascience\nsudo singularity build . singularity-jupyter-datascience.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eStart the server as follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity instance start singularity-jupyter-datascience.sif sing_jupyter_ds\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eEnter (attach) the Singularity container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# List the running containers.\nsingularity instance list\n\n# Attach the container\nsingularity shell instance://sing_jupyter_ds\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eStart the Jupyter notebook (or Jupyter Lab) from within the Singularity prompt.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity shell instance://sing_jupyter_ds\nSingularity\u0026gt; jupyter lab --port=50000\n[I 01:28:50.619 LabApp] JupyterLab extension loaded from /opt/conda/lib/python3.8/site-packages/jupyterlab\n[I 01:28:50.619 LabApp] JupyterLab application directory is /opt/conda/share/jupyter/lab\n[I 01:28:50.621 LabApp] Serving notebooks from local directory: /home/oogasawa/tmp3/singularity-jupyter-datascience\n[I 01:28:50.621 LabApp] The Jupyter Notebook is running at:\n[I 01:28:50.621 LabApp] http://mayfly:50000/?token=056ea4ee0e654429927ef2a0696a10100c623fbc7b4a8ee4\n[I 01:28:50.621 LabApp] or http://127.0.0.1:50000/?token=056ea4ee0e654429927ef2a0696a10100c623fbc7b4a8ee4\n[I 01:28:50.621 LabApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).\n[C 01:28:50.624 LabApp]\n\n To access the notebook, open this file in a browser:\n\t file:///home/oogasawa/.local/share/jupyter/runtime/nbserver-25-open.html\n\tOr copy and paste one of these URLs:\n\t\thttp://mayfly:50000/?token=056ea4ee0e654429927ef2a0696a10100c623fbc7b4a8ee4\n\t or http://127.0.0.1:50000/?token=056ea4ee0e654429927ef2a0696a10100c623fbc7b4a8ee4\t\t\t\t\t \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen you can access the Jupyter software \u003ca href=\"http://localhost:50000/\" rel=\"nofollow\"\u003ehttp://localhost:50000/\u003c/a\u003e .\u003c/p\u003e\n\u003cp\u003eStop the server (and return to the bash prompt) by Ctrl-C, and stop the container as follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity instance stop sing_jupyter_ds\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_test\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity_test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_test\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1622297568.0
+ "updated_at": 1536594044.0
},
{
"data_format": 2,
- "description": "Custom Linux Container Build for Large Scale File Parsing in High Performance Computing Environments",
+ "description": "Template repo for CircleCI DockerHub+SingularityHub continuous integration",
"filenames": [
- "base-image-ubuntu-22.04/base-image/.singularity.d/Singularity"
+ "Singularity",
+ "Singularity.v0.3"
],
- "full_name": "alexander-labarge/hpc-data-parser",
+ "full_name": "khanlab/template-circleci",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eHigh-Performance Computing (HPC) File Parsing Solution - Direct Access to GPU \u0026amp; CPU Resources\u003c/h1\u003e\u003ca id=\"user-content-high-performance-computing-hpc-file-parsing-solution---direct-access-to-gpu--cpu-resources\" class=\"anchor\" aria-label=\"Permalink: High-Performance Computing (HPC) File Parsing Solution - Direct Access to GPU \u0026amp; CPU Resources\" href=\"#high-performance-computing-hpc-file-parsing-solution---direct-access-to-gpu--cpu-resources\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis solution provides direct access to GPU and CPU resources for high-performance computing (HPC) and high-throughput computing (HTC) environments. Unlike enterprise-based container frameworks, which are designed for microservices and require root privileges to install and run applications, this solution is optimized for complex applications that require all available resources without special privileges.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTargeted Toolsets Implemented\u003c/h2\u003e\u003ca id=\"user-content-targeted-toolsets-implemented\" class=\"anchor\" aria-label=\"Permalink: Targeted Toolsets Implemented\" href=\"#targeted-toolsets-implemented\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis solution uses the following targeted toolsets:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eApache Tika\u2122 by Oracle\u003c/li\u003e\n\u003cli\u003eApptainer (formerly Singularity) by Berkeley National Laboratory\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInitial Cause for Solution Development\u003c/h2\u003e\u003ca id=\"user-content-initial-cause-for-solution-development\" class=\"anchor\" aria-label=\"Permalink: Initial Cause for Solution Development\" href=\"#initial-cause-for-solution-development\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe development of this solution was motivated by the need to parse 7.5 TB of digital forensics data produced and stored in a variety of non-standard formats. The parsing of all data is necessary to drive subsequent efforts wherein conjectures are made from the subsequent data parsed.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eWhy Apptainer for HPC instead of Virtual Machines or Docker\u003c/h2\u003e\u003ca id=\"user-content-why-apptainer-for-hpc-instead-of-virtual-machines-or-docker\" class=\"anchor\" aria-label=\"Permalink: Why Apptainer for HPC instead of Virtual Machines or Docker\" href=\"#why-apptainer-for-hpc-instead-of-virtual-machines-or-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eApptainer/Singularity is a container platform created for the HPC/HTC use case and presents key concepts for the scientific community:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eIt\u2019s designed to execute applications with bare-metal performance while retaining a high level of security, portability, and reproducibility.\u003c/li\u003e\n\u003cli\u003eContainers run rootless to prohibit privilege escalation.\u003c/li\u003e\n\u003cli\u003eAble to Leverage GPUs, FPGAs, high-speed networks, and filesystems.\u003c/li\u003e\n\u003cli\u003eA container platform for building and running Linux containers that packages software, libraries, and runtime compilers in a self-contained environment.\n\u003cul\u003e\n\u003cli\u003eApplication portability (single image file, contain all dependencies)\u003c/li\u003e\n\u003cli\u003eReproducibility, run cross platform, provide support for legacy OS and apps.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eAbility to run, and in modern systems also to be installed, without any root daemon or setuid privileges. This makes it safer for large computer centers with shared resources.\u003c/li\u003e\n\u003cli\u003ePreserves the permissions in the environment. The user outside the container can be the same user inside.\u003c/li\u003e\n\u003cli\u003eApptainer propagates most environment variables set on the host into the container, by default. Docker does not propagate any host environment variables into the container. Environment variables may change the behavior of software.\u003c/li\u003e\n\u003cli\u003eSimple integration with resource managers (SLURM in our case) and distributed computing frameworks because it runs as a regular application.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/945a382c-3488-4c65-a743-44f0a704c7a5\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/945a382c-3488-4c65-a743-44f0a704c7a5\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDevelopment Steps:\u003c/h2\u003e\u003ca id=\"user-content-development-steps\" class=\"anchor\" aria-label=\"Permalink: Development Steps:\" href=\"#development-steps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTest Host Machine (Bare Metal):\u003c/h3\u003e\u003ca id=\"user-content-test-host-machine-bare-metal\" class=\"anchor\" aria-label=\"Permalink: Test Host Machine (Bare Metal):\" href=\"#test-host-machine-bare-metal\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/0c14fa9e-2508-4c80-9883-f016eb70484f\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/0c14fa9e-2508-4c80-9883-f016eb70484f\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eStep 1: Apptainer - Build from Source/ Install Debian Packages for Dependencies\u003c/h3\u003e\u003ca id=\"user-content-step-1-apptainer---build-from-source-install-debian-packages-for-dependencies\" class=\"anchor\" aria-label=\"Permalink: Step 1: Apptainer - Build from Source/ Install Debian Packages for Dependencies\" href=\"#step-1-apptainer---build-from-source-install-debian-packages-for-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo apt-get install -y \\\n build-essential \\\n libseccomp-dev \\\n pkg-config \\\n uidmap \\\n squashfs-tools \\\n squashfuse \\\n fuse2fs \\\n fuse-overlayfs \\\n fakeroot \\\n cryptsetup \\\n curl wget git \\\n \u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e GOVERSION=1.20.6 OS=linux ARCH=amd64 \\\n wget -O /tmp/go\u003cspan class=\"pl-smi\"\u003e${GOVERSION}\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e${OS}\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e${ARCH}\u003c/span\u003e.tar.gz \\\n https://dl.google.com/go/go\u003cspan class=\"pl-smi\"\u003e${GOVERSION}\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e${OS}\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e${ARCH}\u003c/span\u003e.tar.gz \\\n sudo tar -C /usr/local -xzf /home/service-typhon/Downloads/go\u003cspan class=\"pl-smi\"\u003e${GOVERSION}\u003c/span\u003e.\u003cspan class=\"pl-smi\"\u003e${OS}\u003c/span\u003e-\u003cspan class=\"pl-smi\"\u003e${ARCH}\u003c/span\u003e.tar.gz \\\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eexport PATH=$PATH:/usr/local/go/bin\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc\n \u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc \\\n curl -sSfL https://raw.githubusercontent.com/golangci/golangci-lint/master/install.sh \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e sh -s -- -b \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003ego env GOPATH\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e/bin v1.51.1 \\\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eexport PATH=$PATH:$(go env GOPATH)/bin\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc\n \u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc \\\n git clone https://github.com/apptainer/apptainer.git \\\n \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e apptainer \\\n git checkout v1.2.0 \\\n ./mconfig \\\n \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e ./builddir \\\n make \\\n sudo make install\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eStep 2: Create Sandbox Directory / Pull Ubuntu 22.04 - Jammy Docker Container (Base Ubuntu Build)\u003c/h3\u003e\u003ca id=\"user-content-step-2-create-sandbox-directory--pull-ubuntu-2204---jammy-docker-container-base-ubuntu-build\" class=\"anchor\" aria-label=\"Permalink: Step 2: Create Sandbox Directory / Pull Ubuntu 22.04 - Jammy Docker Container (Base Ubuntu Build)\" href=\"#step-2-create-sandbox-directory--pull-ubuntu-2204---jammy-docker-container-base-ubuntu-build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/7aaf3e7e-cb74-40d1-9971-24808b0885f8\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/7aaf3e7e-cb74-40d1-9971-24808b0885f8\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eStep 3: Convert to Immutable .sif Image for Future Builds - Demonstrate Shell Access\u003c/h3\u003e\u003ca id=\"user-content-step-3-convert-to-immutable-sif-image-for-future-builds---demonstrate-shell-access\" class=\"anchor\" aria-label=\"Permalink: Step 3: Convert to Immutable .sif Image for Future Builds - Demonstrate Shell Access\" href=\"#step-3-convert-to-immutable-sif-image-for-future-builds---demonstrate-shell-access\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/88b8bf10-0e96-4ad3-8d91-6135140e9a00\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/88b8bf10-0e96-4ad3-8d91-6135140e9a00\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eStep 4: Definition File Configuration for Building Dependencies - 1st Build Scuccessful\u003c/h3\u003e\u003ca id=\"user-content-step-4-definition-file-configuration-for-building-dependencies---1st-build-scuccessful\" class=\"anchor\" aria-label=\"Permalink: Step 4: Definition File Configuration for Building Dependencies - 1st Build Scuccessful\" href=\"#step-4-definition-file-configuration-for-building-dependencies---1st-build-scuccessful\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/ce94c114-8b0b-44b2-a7c0-33c26e4e36b7\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/ce94c114-8b0b-44b2-a7c0-33c26e4e36b7\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/0d3b4389-7329-4a06-b551-392b07586abc\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/0d3b4389-7329-4a06-b551-392b07586abc\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eStep 5: Now that There is a Base Instance Working, lets create a live sandbox for testing from the image we just created:\u003c/h3\u003e\u003ca id=\"user-content-step-5-now-that-there-is-a-base-instance-working-lets-create-a-live-sandbox-for-testing-from-the-image-we-just-created\" class=\"anchor\" aria-label=\"Permalink: Step 5: Now that There is a Base Instance Working, lets create a live sandbox for testing from the image we just created:\" href=\"#step-5-now-that-there-is-a-base-instance-working-lets-create-a-live-sandbox-for-testing-from-the-image-we-just-created\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/a45a0aed-0b5b-4cc9-abdb-5178ad5ac648\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/a45a0aed-0b5b-4cc9-abdb-5178ad5ac648\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eNote: Initial Containers are limited to 64MB in size. Fix:\u003c/h4\u003e\u003ca id=\"user-content-note-initial-containers-are-limited-to-64mb-in-size-fix\" class=\"anchor\" aria-label=\"Permalink: Note: Initial Containers are limited to 64MB in size. Fix:\" href=\"#note-initial-containers-are-limited-to-64mb-in-size-fix\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/0f2b5e02-d8a1-42bc-995a-507b802c4c3a\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/0f2b5e02-d8a1-42bc-995a-507b802c4c3a\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eStep 6: Create a New File System Overlay/ add as a layer in SIF build:\u003c/h3\u003e\u003ca id=\"user-content-step-6-create-a-new-file-system-overlay-add-as-a-layer-in-sif-build\" class=\"anchor\" aria-label=\"Permalink: Step 6: Create a New File System Overlay/ add as a layer in SIF build:\" href=\"#step-6-create-a-new-file-system-overlay-add-as-a-layer-in-sif-build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/441d3a4a-18cd-4c74-8cf8-b7ffe18167eb\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/441d3a4a-18cd-4c74-8cf8-b7ffe18167eb\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eStep 7: Build Tika/ Configure Properly - Completed/ Success:\u003c/h3\u003e\u003ca id=\"user-content-step-7-build-tika-configure-properly---completed-success\" class=\"anchor\" aria-label=\"Permalink: Step 7: Build Tika/ Configure Properly - Completed/ Success:\" href=\"#step-7-build-tika-configure-properly---completed-success\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/7c7320ab-999b-45b9-bd3c-beb8a19c1230\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/7c7320ab-999b-45b9-bd3c-beb8a19c1230\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eTIKA DEPENDENCY INSTALL SCRIPT IMPLEMENTED AT %POST\u003c/h4\u003e\u003ca id=\"user-content-tika-dependency-install-script-implemented-at-post\" class=\"anchor\" aria-label=\"Permalink: TIKA DEPENDENCY INSTALL SCRIPT IMPLEMENTED AT %POST\" href=\"#tika-dependency-install-script-implemented-at-post\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#!\u003c/span\u003e/bin/bash\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install Java\u003c/span\u003e\napt-get update\napt-get install -y software-properties-common\napt-get install -y wget\napt-get install -y default-jre\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install Tesseract OCR\u003c/span\u003e\napt-get install -y tesseract-ocr\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install ImageMagick\u003c/span\u003e\napt-get install -y imagemagick\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install Poppler\u003c/span\u003e\napt-get install -y poppler-utils\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install FFmpeg\u003c/span\u003e\napt-get install -y ffmpeg\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install Tika\u003c/span\u003e\nwget https://dlcdn.apache.org/tika/2.8.0/tika-app-2.8.0.jar\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install Maven\u003c/span\u003e\nwget https://dlcdn.apache.org/maven/maven-3/3.9.3/binaries/apache-maven-3.9.3-bin.tar.gz\ntar -xvf apache-maven-3.9.3-bin.tar.gz \nmv apache-maven-3.9.3 /opt\nM2_HOME=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eopt/apache-maven-3.9.3/\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\nPATH=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e$M2_HOME\u003c/span\u003e/bin:\u003cspan class=\"pl-smi\"\u003e$PATH\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e PATH\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eTIKA AUTOMATED TEST END OF INSTALL:\u003c/h4\u003e\u003ca id=\"user-content-tika-automated-test-end-of-install\" class=\"anchor\" aria-label=\"Permalink: TIKA AUTOMATED TEST END OF INSTALL:\" href=\"#tika-automated-test-end-of-install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#!\u003c/span\u003e/bin/bash\u003c/span\u003e\n\n\u003cspan class=\"pl-k\"\u003efunction\u003c/span\u003e \u003cspan class=\"pl-en\"\u003echeck_tika_test\u003c/span\u003e {\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eChecking Tika test...\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-k\"\u003eif\u003c/span\u003e grep -q \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eTIKA PASSED TEST - ALEX\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e /output-files/tika-test-file.txt.json\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003ethen\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eTika test passed. FOUND STRING: TIKA PASSED TEST - ALEX in file.\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e============TIKA HPC BUILD COMPLETING FINAL STEPS================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e=================================================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-k\"\u003eelse\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eTika test failed.\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-k\"\u003efi\u003c/span\u003e\n}\n\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eStarting Tika... at \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003edate\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003einput-files directory contents:\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\ncp /opt/tika-test-file.txt /input-files\nls -l /input-files/\njava -jar /tika-app-2.8.0.jar -i /input-files -o /output-files -J\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eTika started.\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eTika output complete.\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eoutput-files directory contents:\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\nls -l /output-files\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eCompleted at: \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003edate\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eExtracting text from files...\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e======================================\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eExtracted JSON OUTPUT:\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Extract text from files \u0026amp; ignore JSON text\u003c/span\u003e\nextracted_text=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003efind /output-files -type f -exec strings {} \u003cspan class=\"pl-cce\"\u003e\\;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e grep -vE \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e^{.*}$\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Print extracted text\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e$extracted_text\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Check Tika test\u003c/span\u003e\ncheck_tika_test\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSTEP 8: FINAL BETA BUILD SCRIPT (OTHER BASH SCRIPTS EMBEDDED)\u003c/h3\u003e\u003ca id=\"user-content-step-8-final-beta-build-script-other-bash-scripts-embedded\" class=\"anchor\" aria-label=\"Permalink: STEP 8: FINAL BETA BUILD SCRIPT (OTHER BASH SCRIPTS EMBEDDED)\" href=\"#step-8-final-beta-build-script-other-bash-scripts-embedded\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/71d64b44-a95e-484b-ad2d-082d3bc9ab60\"\u003e\u003cimg src=\"https://github.com/alexander-labarge/hpc-tika-build/assets/103531175/71d64b44-a95e-484b-ad2d-082d3bc9ab60\" alt=\"image\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/1503\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://circleci.com/gh/khanlab/template-circleci\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c2b426ee0f066d201a83b9ac4156ab58b817dd4135c9dc90ebeac909f35a9925/68747470733a2f2f636972636c6563692e636f6d2f67682f6b68616e6c61622f74656d706c6174652d636972636c6563692e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/khanlab/template-circleci.svg?style=svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-template-circleci\" class=\"anchor\" aria-hidden=\"true\" href=\"#template-circleci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etemplate-circleci\u003c/h1\u003e\n\u003cp\u003eKhanlab template repo for CircleCI DockerHub+SingularityHub continuous integration.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-functionality\" class=\"anchor\" aria-hidden=\"true\" href=\"#functionality\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFunctionality:\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-every-commit\" class=\"anchor\" aria-hidden=\"true\" href=\"#every-commit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEvery commit:\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eBuilds Docker container\u003c/li\u003e\n\u003cli\u003eRuns tests (using built Docker container)\u003c/li\u003e\n\u003cli\u003eIf successful, pushes to Docker Hub with \u003ccode\u003elatest\u003c/code\u003e tag\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-every-night\" class=\"anchor\" aria-hidden=\"true\" href=\"#every-night\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEvery night:\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eDeploys on Singularity Hub (via recipe commit, from Docker container)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-make-a-release\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-make-a-release\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo make a release:\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eUse Github\u0027s Draft a New Release\u003c/li\u003e\n\u003cli\u003eInclude v* in the Tag name (e.g. v0.1)\u003c/li\u003e\n\u003cli\u003eWill then automatically build, test and deploy on DockerHub and SingularityHub with v* release tag\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-hidden=\"true\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eGithub repo in Khanlab organization\u003c/li\u003e\n\u003cli\u003eDockerfile in that repo\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-set-up-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#set-up-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSet-up Instructions:\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eCopy the .circleci/config.yml to your repository\u003c/li\u003e\n\u003cli\u003eLogin to circleci.com, and add the project\u003c/li\u003e\n\u003cli\u003eLogin to singularity hub, and add the project\u003c/li\u003e\n\u003cli\u003eEdit \u003ccode\u003etest\u003c/code\u003e section of .circleci/config.yml to set-up tests\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1697541728.0
+ "updated_at": 1569207854.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.larcv_fc",
+ "Singularity.larcv_cpu.txt",
+ "Singularity.larcv_fcAWS"
],
- "full_name": "compmetagen/taxies",
+ "full_name": "jonmiller3/singularity_imgs",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_imgs\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity_imgs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_imgs\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1544461967.0
+ "updated_at": 1602882140.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.efficient"
+ "Singularity"
],
- "full_name": "huynhngoc/CubiAI-VRU",
+ "full_name": "vsoch/BIDShcppipelines-debug",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCubiAI\u003c/h1\u003e\u003ca id=\"user-content-cubiai\" class=\"anchor\" aria-label=\"Permalink: CubiAI\" href=\"#cubiai\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDeep learning can detect elbow disease in dogs screened for elbow dysplasia\u003c/p\u003e\n\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGenerate dataset\u003c/h2\u003e\u003ca id=\"user-content-generate-dataset\" class=\"anchor\" aria-label=\"Permalink: Generate dataset\" href=\"#generate-dataset\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ccode\u003edataset_gen/gen_normal_abnormal.py\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eCheck for duplication\n\u003ccode\u003edataset_gen/QA_data_splitting.py\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun experiments locally\u003c/h2\u003e\u003ca id=\"user-content-run-experiments-locally\" class=\"anchor\" aria-label=\"Permalink: Run experiments locally\" href=\"#run-experiments-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003epython experiment_binary.py config/local/pretrain.json path_to_folder/pretrain --temp_folder path_to_temp_folder/pretrain --epochs 20\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun experiemts on Orion\u003c/h2\u003e\u003ca id=\"user-content-run-experiemts-on-orion\" class=\"anchor\" aria-label=\"Permalink: Run experiemts on Orion\" href=\"#run-experiemts-on-orion\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esbatch slurm_pretrain_binary.sh config/pretrain/b0_normal_level2.json b0_normal_level2 2\nsbatch slurm_pretrain_multiclass.sh config/pretrain/b0_normal_level1_level2.json b0_normal_level1_level2 2\n\nsbatch slurm_scratch_binary.sh config/scratch/b0_normal_level2.json b0_normal_level2 2\nsbatch slurm_scratch_multiclass.sh config/scratch/b0_normal_level1_level2.json b0_normal_level1_level2 2\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1724057222.0
+ "updated_at": 1545323608.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.adapterremoval_2.3.1",
- "Singularity.bbmap_38.86",
- "Singularity.seqtk_1.3r106",
- "Singularity.matlock_9fe3fdd",
- "Singularity.cutadapt_2.10",
- "Singularity.pysam_0.15.3"
+ "Singularity"
],
- "full_name": "TomHarrop/seq-utils",
+ "full_name": "upendrak/pacbio_singularity",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-running-iso-seq3-analysis-on-a-test-data-using-singularity-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-iso-seq3-analysis-on-a-test-data-using-singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Iso-Seq3 analysis on a Test data using Singularity container\u003c/h1\u003e\n\u003cp\u003e\u003cem\u003eIsoSeq3\u003c/em\u003e contains the newest tools to identify transcripts in PacBio single-molecule sequencing data. Starting in SMRT Link v6.0.0, those tools power the IsoSeq3 GUI-based analysis application. A composable workflow of existing tools and algorithms, combined with a new clustering technique, allows to process the ever-increasing yield of PacBio machines with similar performance to IsoSeq1 and IsoSeq2.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote:\u003c/strong\u003e This is an example of an end-to-end cmd-line-only workflow from this \u003ca href=\"https://github.com/PacificBiosciences/IsoSeq3\"\u003etutorial\u003c/a\u003e to get from subreads to polished isoforms; timings are system dependent.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-availability\" class=\"anchor\" aria-hidden=\"true\" href=\"#availability\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAvailability\u003c/h2\u003e\n\u003cp\u003eThe Iso-Seq3 can be run using Singualrity container hosted on Singularity hub\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall Singularity\u003c/h2\u003e\n\u003cp\u003eThere are many ways to \u003ca href=\"https://www.sylabs.io/guides/2.5.1/user-guide/quick_start.html#installation\" rel=\"nofollow\"\u003einstall Singularity\u003c/a\u003e but this quick start guide will only cover one.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/singularityware/singularity.git\ncd singularity\n./autogen.sh\n./configure --prefix=/usr/local\nmake\nsudo make install\ncd ..\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eNote:\u003c/strong\u003e Singularity must be installed as root to function properly.\u003c/p\u003e\n\u003cp\u003eAfter installing Singularity make sure to run the --help option gives an overview of Singularity options and subcommands\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity --help\n\nUSAGE: singularity [global options...] \u0026lt;command\u0026gt; [command options...] ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-download-the-test-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#download-the-test-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownload the test data\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eFor each cell, the \u0026lt;movie\u0026gt;.subreads.bam and \u0026lt;movie\u0026gt;.subreads.bam.pbi are needed for processing.\n\n$ mkdir tutorial \u0026amp;\u0026amp; cd tutorial\n$ wget https://downloads.pacbcloud.com/public/dataset/RC0_1cell_2017/m54086_170204_081430.subreads.bam\n$ wget https://downloads.pacbcloud.com/public/dataset/RC0_1cell_2017/m54086_170204_081430.subreads.bam.pbi\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation-pull-the-singularity-container-from-singularity-hub\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation-pull-the-singularity-container-from-singularity-hub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation: Pull the Singularity container from Singularity hub\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name isoseq.img shub://upendrak/pacbio_singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-1-consensus-calling\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-1-consensus-calling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 1: Consensus calling\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec isoseq.img ccs --version\nccs 3.0.0 (commit a54f14a)\n\n$ nohup singularity exec isoseq.img ccs m54086_170204_081430.subreads.bam m54086_170204_081430.ccs.bam --noPolish --minPasses 1 \u0026amp;\n\nNote: This step takes a long time. On a 6 CPU VM, it took around 5 hrs to complete\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-2-primer-removal-and-demultiplexing\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-2-primer-removal-and-demultiplexing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 2: Primer removal and demultiplexing\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec isoseq.img lima --version\nlima 1.7.0 (commit v1.7.0-2-g9479065)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003e$ cat primers.fasta\n\n\u0026gt;primer_5p\nAAGCAGTGGTATCAACGCAGAGTACATGGG\n\u0026gt;primer_3p\nGTACTCTGCGTTGATACCACTGCTT\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec isoseq.img lima m54086_170204_081430.ccs.bam primers.fasta demux.bam --isoseq --no-pbi --dump-clips \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003e$ ls demux*\ndemux.json demux.lima.counts demux.lima.report demux.lima.summary demux.primer_5p--primer_3p.bam demux.primer_5p--primer_3p.subreadset.xml\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-3-clustering-and-transcript-clean-up\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-3-clustering-and-transcript-clean-up\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 3: Clustering and transcript clean up\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e$ nohup singularity exec isoseq.img isoseq3 cluster demux.primer_5p--primer_3p.bam unpolished.bam --verbose \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003e$ ls unpolished*\nunpolished.bam unpolished.bam.pbi unpolished.cluster unpolished.fasta unpolished.flnc.bam unpolished.flnc.bam.pbi unpolished.flnc.consensusreadset.xml unpolished.transcriptset.xml\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-4-polishing\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-4-polishing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 4: Polishing\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e$ nohup singularity exec isoseq.img isoseq3 polish unpolished.bam m54086_170204_081430.subreads.bam polished.bam --verbose\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003e$ ls polished*\npolished.bam polished.bam.pbi polished.hq.fasta.gz polished.hq.fastq.gz polished.lq.fasta.gz polished.lq.fastq.gz polished.transcriptset.xml\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1597614799.0
+ "updated_at": 1533222076.0
},
{
"data_format": 2,
- "description": "Trying to get Slamdunk to work on CentOS 6",
+ "description": "A simple demo of singularity containers",
"filenames": [
"Singularity"
],
- "full_name": "FelixKrueger/SlamDunk_Shub",
+ "full_name": "colinsauze/singularity_example",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSlamDunk_Shub\u003c/h1\u003e\u003ca id=\"user-content-slamdunk_shub\" class=\"anchor\" aria-label=\"Permalink: SlamDunk_Shub\" href=\"#slamdunk_shub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTrying to get SlamDunk to work on our dev server and eventually on our cluster\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singualrity_example\" class=\"anchor\" aria-hidden=\"true\" href=\"#singualrity_example\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingualrity_example\u003c/h1\u003e\n\u003cp\u003eA simple demo of singularity containers\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1538406117.0
+ "updated_at": 1531999980.0
},
{
"data_format": 2,
- "description": "My repository for singularity hub containers.",
+ "description": null,
"filenames": [
- "miniconda3_mamba/Singularity.miniconda3mamba",
- "rinla/Singularity.rinla"
+ "Singularity"
],
- "full_name": "votti/singularity-builds",
+ "full_name": "colinsauze/Bovine_DNA_RNA",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1591370752.0
+ "updated_at": 1531844224.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity bootstrap which includes uboonecode, larcv3 and gallery-framework. ",
"filenames": [
- "Singularity_MCR.def",
- "Singularity.def"
+ "Singularity"
],
- "full_name": "Remi-Gau/cat12-container",
+ "full_name": "lmlepin9/Singularity-uboonecode-gallery",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCAT-12 container\u003c/h1\u003e\u003ca id=\"user-content-cat-12-container\" class=\"anchor\" aria-label=\"Permalink: CAT-12 container\" href=\"#cat-12-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDocker and Apptainer image for \u003ca href=\"https://neuro-jena.github.io/cat/\" rel=\"nofollow\"\u003eCAT12\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eCAT12 8.1 r2042\nSPM12, version 7771 (standalone)\nMATLAB, version 9.3.0.713579 (R2017b)\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage notes\u003c/h2\u003e\u003ca id=\"user-content-usage-notes\" class=\"anchor\" aria-label=\"Permalink: Usage notes\" href=\"#usage-notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eExample\u003c/h3\u003e\u003ca id=\"user-content-example\" class=\"anchor\" aria-label=\"Permalink: Example\" href=\"#example\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker build \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e --tag cat12\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run -v \u003cspan class=\"pl-smi\"\u003e${PWD}\u003c/span\u003e/tests/data/MoAEpilot:/data \\\n --rm -it cat12 \\\n /data/sub-01/anat/sub-01_T1w.nii \\\n -b cat_standalone_segment.m\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-uboonecode-gallery\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-uboonecode-gallery\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity-uboonecode-gallery\u003c/h1\u003e\n\u003cp\u003eSingularity bootstrap which includes uboonecode, larcv3 and gallery-framework.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1724126570.0
+ "updated_at": 1617376998.0
},
{
"data_format": 2,
- "description": "Software Engineering for HPC DevOps Project Part2",
+ "description": null,
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "supertramp277/DevOps-Project_Part2",
+ "full_name": "kristinebilgrav/Containers",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSE4HPCproject\u003c/h1\u003e\u003ca id=\"user-content-se4hpcproject\" class=\"anchor\" aria-label=\"Permalink: SE4HPCproject\" href=\"#se4hpcproject\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStep 2 -- From build to release and manual job execution\u003c/h2\u003e\u003ca id=\"user-content-step-2----from-build-to-release-and-manual-job-execution\" class=\"anchor\" aria-label=\"Permalink: Step 2 -- From build to release and manual job execution\" href=\"#step-2----from-build-to-release-and-manual-job-execution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFocus now on the correct implementation of the matrix multiplication you\nfind in \u003ca href=\"https://github.com/SimoneReale/SE4HPC_project_part2\"\u003ehttps://github.com/SimoneReale/SE4HPC_project_part2\u003c/a\u003e. This is a\nparallel implementation that uses MPI and reads the matrices to be\nmultiplied from two files, matrixA.txt and matrixB.txt. In these files\nthe first row contains the matrix dimensions (number of rows and\ncolumns), while the other rows contain the matrix itself.\u003c/p\u003e\n\u003cp\u003eYour task is to perform the following steps:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ePreparation\u003c/strong\u003e: Use the template available here\n\u003ca href=\"https://github.com/SimoneReale/SE4HPC_project_part2\"\u003ehttps://github.com/SimoneReale/SE4HPC_project_part2\u003c/a\u003e to create your own\ngithub repository. Add to this repository the tests you have created in\nStep1.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eAutomating the build, test and release processes\u003c/strong\u003e: Create a CI/CD\npipeline that, when someone pushes files in the repo, executes the\nbuilding and testing process.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eContainerizing the application\u003c/strong\u003e: Go through the following steps:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eDefine a Singularity container descriptor for the matrix\nmultiplication program and push it in your repo.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eExtend the created action to create a container image from your\ndescription.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eExecuting on the cluster\u003c/strong\u003e: Go through the following steps:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eCreate a job.sh file to run your containerized application. Make\nsure that the standard output and error are mapped to txt files.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eTransfer on Galileo100 your job script and the container.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSubmit your job to the cluster and check whether it works correctly.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ePush on your github repository your job.sh file and the files\nobtained from the execution of the matrix multiplication.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStep 3 -- Automating a job submission with containerization\u003c/h2\u003e\u003ca id=\"user-content-step-3----automating-a-job-submission-with-containerization\" class=\"anchor\" aria-label=\"Permalink: Step 3 -- Automating a job submission with containerization\" href=\"#step-3----automating-a-job-submission-with-containerization\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eExtend the action you have created at step 3 to automate completely the\nprocess from a push on the repository to the execution of the\ncontainerized software on SLURM. To do so, you will have to move your\ncontainer from the runner to the cluster. You can either use the scp\ncommand or you can publish your image on the Singularity registry and\nthen pull it from the cluster. Don\u0027t forget to handle your secrets\nproperly! You do not want to leave passwords and authentication tokens\nvisible to everybody, so you will use the \u003ca href=\"https://docs.github.com/en/actions/security-guides/using-secrets-in-github-actions?tool=cli\"\u003esecrets\nmechanism\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-jitter_container\" class=\"anchor\" aria-hidden=\"true\" href=\"#jitter_container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eJitter_container\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1717622843.0
+ "updated_at": 1623335528.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for badread (https://github.com/rrwick/Badread)",
"filenames": [
- "Singularity.def"
+ "Singularity",
+ "Singularity.0.2.0"
],
- "full_name": "FrancescoEgidioFaggion/SwEng",
+ "full_name": "powerPlant/badread-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSE4HPCproject\u003c/h1\u003e\u003ca id=\"user-content-se4hpcproject\" class=\"anchor\" aria-label=\"Permalink: SE4HPCproject\" href=\"#se4hpcproject\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStep 2 -- From build to release and manual job execution\u003c/h2\u003e\u003ca id=\"user-content-step-2----from-build-to-release-and-manual-job-execution\" class=\"anchor\" aria-label=\"Permalink: Step 2 -- From build to release and manual job execution\" href=\"#step-2----from-build-to-release-and-manual-job-execution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFocus now on the correct implementation of the matrix multiplication you\nfind in \u003ca href=\"https://github.com/SimoneReale/SE4HPC_project_part2\"\u003ehttps://github.com/SimoneReale/SE4HPC_project_part2\u003c/a\u003e. This is a\nparallel implementation that uses MPI and reads the matrices to be\nmultiplied from two files, matrixA.txt and matrixB.txt. In these files\nthe first row contains the matrix dimensions (number of rows and\ncolumns), while the other rows contain the matrix itself.\u003c/p\u003e\n\u003cp\u003eYour task is to perform the following steps:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ePreparation\u003c/strong\u003e: Use the template available here\n\u003ca href=\"https://github.com/SimoneReale/SE4HPC_project_part2\"\u003ehttps://github.com/SimoneReale/SE4HPC_project_part2\u003c/a\u003e to create your own\ngithub repository. Add to this repository the tests you have created in\nStep1.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eAutomating the build, test and release processes\u003c/strong\u003e: Create a CI/CD\npipeline that, when someone pushes files in the repo, executes the\nbuilding and testing process.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eContainerizing the application\u003c/strong\u003e: Go through the following steps:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eDefine a Singularity container descriptor for the matrix\nmultiplication program and push it in your repo.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eExtend the created action to create a container image from your\ndescription.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eExecuting on the cluster\u003c/strong\u003e: Go through the following steps:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eCreate a job.sh file to run your containerized application. Make\nsure that the standard output and error are mapped to txt files.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eTransfer on Galileo100 your job script and the container.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSubmit your job to the cluster and check whether it works correctly.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ePush on your github repository your job.sh file and the files\nobtained from the execution of the matrix multiplication.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStep 3 -- Automating a job submission with containerization\u003c/h2\u003e\u003ca id=\"user-content-step-3----automating-a-job-submission-with-containerization\" class=\"anchor\" aria-label=\"Permalink: Step 3 -- Automating a job submission with containerization\" href=\"#step-3----automating-a-job-submission-with-containerization\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eExtend the action you have created at step 3 to automate completely the\nprocess from a push on the repository to the execution of the\ncontainerized software on SLURM. To do so, you will have to move your\ncontainer from the runner to the cluster. You can either use the scp\ncommand or you can publish your image on the Singularity registry and\nthen pull it from the cluster. Don\u0027t forget to handle your secrets\nproperly! You do not want to leave passwords and authentication tokens\nvisible to everybody, so you will use the \u003ca href=\"https://docs.github.com/en/actions/security-guides/using-secrets-in-github-actions?tool=cli\"\u003esecrets\nmechanism\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for badread, a long read simulator that can imitate many types of read problems.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1717597291.0
+ "updated_at": 1613427062.0
},
{
"data_format": 2,
@@ -4767,653 +4367,721 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "ddbj/singularity-apache2-igvwebapp",
+ "full_name": "fcola000/test",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-apache2-igvwebapp\u003c/h1\u003e\u003ca id=\"user-content-singularity-apache2-igvwebapp\" class=\"anchor\" aria-label=\"Permalink: singularity-apache2-igvwebapp\" href=\"#singularity-apache2-igvwebapp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eigv-webapp\u3068apache2\u3092\u5b9f\u884c\u3059\u308bsingularity instance\u3092\u8d77\u52d5\u3059\u308b\u305f\u3081\u306e\u30d5\u30a1\u30a4\u30eb\u4e00\u5f0f\u3067\u3059\u3002\nsingularity image\u306f\u521d\u56de\u8d77\u52d5\u6642\u306bSylabs Cloud\u304b\u3089\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e\u521d\u671f\u8a2d\u5b9a\u003c/h2\u003e\u003ca id=\"user-content-\u521d\u671f\u8a2d\u5b9a\" class=\"anchor\" aria-label=\"Permalink: \u521d\u671f\u8a2d\u5b9a\" href=\"#\u521d\u671f\u8a2d\u5b9a\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ehttpd.conf\u003c/h3\u003e\u003ca id=\"user-content-httpdconf\" class=\"anchor\" aria-label=\"Permalink: httpd.conf\" href=\"#httpdconf\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003eServerRoot \"/usr/local/apache2\"\n\nListen 38080\nUser user1\nGroup group1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003euser1\u3092\u81ea\u5206\u306e\u30a2\u30ab\u30a6\u30f3\u30c8\u540d\u3001group1\u3092\u81ea\u5206\u306e\u30b0\u30eb\u30fc\u30d7\u540d\u300138080\u3092apache2\u304c\u4f7f\u7528\u3059\u308b\u30dd\u30fc\u30c8\u756a\u53f7\u306b\u4fee\u6b63\u3057\u307e\u3059\u3002\nnetstat\u30b3\u30de\u30f3\u30c9\u306738080\u304c\u672a\u4f7f\u7528\u306a\u3089\u5909\u66f4\u4e0d\u8981\u3067\u3059\u3002\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003epackage.json\u003c/h3\u003e\u003ca id=\"user-content-packagejson\" class=\"anchor\" aria-label=\"Permalink: package.json\" href=\"#packagejson\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e{\n \"name\": \"igv-webapp\",\n \"version\": \"1.5.5\",\n \"description\": \"igv web app\",\n \"keywords\": [],\n \"author\": \"Douglass Turner and Jim Robinson\",\n \"license\": \"MIT\",\n \"scripts\": {\n \"start\": \"npx http-server -p 38081 dist\",\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e38081\u3092igv-webapp\u304c\u4f7f\u7528\u3059\u308b\u30dd\u30fc\u30c8\u756a\u53f7\u306b\u4fee\u6b63\u3057\u307e\u3059\u3002\nnetstat\u30b3\u30de\u30f3\u30c9\u306738081\u304c\u672a\u4f7f\u7528\u306a\u3089\u5909\u66f4\u4e0d\u8981\u3067\u3059\u3002\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003esingularity instance\u306e\u8d77\u52d5\u003c/h2\u003e\u003ca id=\"user-content-singularity-instance\u306e\u8d77\u52d5\" class=\"anchor\" aria-label=\"Permalink: singularity instance\u306e\u8d77\u52d5\" href=\"#singularity-instance\u306e\u8d77\u52d5\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash start_container.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u521d\u56de\u5b9f\u884c\u6642\u306b\u3001ubuntu-18.04-apache-2.4.48-igv-webapp-1.5.5_latest.sif \u304c\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3055\u308c\u307e\u3059\u3002\n\u307e\u305f\u3001cgi-bin, htdocs, logs\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u304c\u4f5c\u6210\u3055\u308c\u307e\u3059\u3002\nhtdocs\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b\u3001igv-webapp\u3067\u8868\u793a\u3057\u305f\u3044bam\u30d5\u30a1\u30a4\u30eb\u3068\u30a4\u30f3\u30c7\u30c3\u30af\u30b9\u30d5\u30a1\u30a4\u30eb\u3092\u914d\u7f6e\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eigv-webapp\u3078\u306e\u30a2\u30af\u30bb\u30b9\u003c/h2\u003e\u003ca id=\"user-content-igv-webapp\u3078\u306e\u30a2\u30af\u30bb\u30b9\" class=\"anchor\" aria-label=\"Permalink: igv-webapp\u3078\u306e\u30a2\u30af\u30bb\u30b9\" href=\"#igv-webapp\u3078\u306e\u30a2\u30af\u30bb\u30b9\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u30a6\u30a7\u30d6\u30d6\u30e9\u30a6\u30b6\u3067 http://\u0026lt;\u30db\u30b9\u30c8\u306eIP\u30a2\u30c9\u30ec\u30b9\u0026gt;:\u0026lt;package.json\u306b\u8a2d\u5b9a\u3057\u305f\u30dd\u30fc\u30c8\u756a\u53f7\u0026gt; \u306b\u30a2\u30af\u30bb\u30b9\u3057\u3066\u304f\u3060\u3055\u3044\u3002\n\u30c8\u30e9\u30c3\u30af\u306e\u8ffd\u52a0\u306f\u3001Tracks\u30e1\u30cb\u30e5\u30fc\u304b\u3089URL\u3092\u9078\u3073\u3001\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ehttp://\u0026lt;\u30db\u30b9\u30c8\u306eID\u30a2\u30c9\u30ec\u30b9\u0026gt;:\u0026lt;httpd.conf\u306b\u8a2d\u5b9a\u3057\u305f\u30dd\u30fc\u30c8\u756a\u53f7\u0026gt;/\u0026lt;htdocs\u306b\u914d\u7f6e\u3057\u305fbam\u30d5\u30a1\u30a4\u30eb\u0026gt;\u003c/li\u003e\n\u003cli\u003ehttp://\u0026lt;\u30db\u30b9\u30c8\u306eID\u30a2\u30c9\u30ec\u30b9\u0026gt;:\u0026lt;httpd.conf\u306b\u8a2d\u5b9a\u3057\u305f\u30dd\u30fc\u30c8\u756a\u53f7\u0026gt;/\u0026lt;htdocs\u306b\u914d\u7f6e\u3057\u305f\u30a4\u30f3\u30c7\u30c3\u30af\u30b9\u30d5\u30a1\u30a4\u30eb\u0026gt;\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u3092\u958b\u3044\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-test\" class=\"anchor\" aria-hidden=\"true\" href=\"#test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etest\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1625812484.0
+ "updated_at": 1616500401.0
},
{
"data_format": 2,
- "description": "Eddy -- a tool for correcting eddy currents and movements in diffusion data",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "lalet/Eddy",
+ "full_name": "fcola000/shub_test",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eEddy\u003c/h1\u003e\u003ca id=\"user-content-eddy\" class=\"anchor\" aria-label=\"Permalink: Eddy\" href=\"#eddy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eEddy -- a tool for correcting eddy currents and movements in diffusion data\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-shub_test\" class=\"anchor\" aria-hidden=\"true\" href=\"#shub_test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eshub_test\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1533670576.0
+ "updated_at": 1616356054.0
},
{
"data_format": 2,
- "description": "Singularity container for meningotype",
+ "description": "Singularity Containers Developed for the University of Oslo",
"filenames": [
- "Singularity"
+ "trial/Singularity",
+ "conda/Singularity",
+ "conda/Singularity.conda",
+ "conda/Singularity.def"
],
- "full_name": "phgenomics-singularity/meningotype",
+ "full_name": "Economax/SingularityCo",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1553641042.0
+ "updated_at": 1616284321.0
},
{
"data_format": 2,
- "description": "This repo contains a simgularity recipe for setting-up and running Knet easily.",
+ "description": "Singularity recipe files for sniffles (https://github.com/fritzsedlazeck/Sniffles)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.1.0.12a"
],
- "full_name": "KnetML/singularity-images",
+ "full_name": "powerPlant/sniffles-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Image for Knet\u003c/h1\u003e\u003ca id=\"user-content-singularity-image-for-knet\" class=\"anchor\" aria-label=\"Permalink: Singularity Image for Knet\" href=\"#singularity-image-for-knet\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/686\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eUSAGE\u003c/h3\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: USAGE\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003ePull the base image\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name knet.simg shub://KnetML/singularity-images:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eNot to loose your changes, you should create an overlay image.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity image.create --size 2048 overlay.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eIf you need more space, you can expand this image later\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity image.expand overlay.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eConnect to the container with the overlay image.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --overlay overlay.simg Knet.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eIf you want to enable the gpu usage, you can bind your cuda and cudnn paths.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --bind \u0026lt;your cuda path\u0026gt;:/usr/local/cuda,\u0026lt;your cudnn path\u0026gt;:/opt/cudnn --overlay overlay.simg --nv Knet.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eBuild Knet\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003ejulia -e \u0027Pkg.build(\"Knet\")\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eNow you can work under the \u003cem\u003e/workdir\u003c/em\u003e folder\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning the image\u003c/h3\u003e\u003ca id=\"user-content-running-the-image\" class=\"anchor\" aria-label=\"Permalink: Running the image\" href=\"#running-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can also run the image directly. It starts an ipython notebook server. You can connect to this server on localhost:8888.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run --bind \u0026lt;your cuda path\u0026gt;:/usr/local/cuda,\u0026lt;your cudnn path\u0026gt;:/opt/cudnn --overlay overlay.simg --nv Knet.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eUsage on the kuacc cluster\u003c/h3\u003e\u003ca id=\"user-content-usage-on-the-kuacc-cluster\" class=\"anchor\" aria-label=\"Permalink: Usage on the kuacc cluster\" href=\"#usage-on-the-kuacc-cluster\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eLoad necessary modules\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003emodule load cuda/9.0\nmodule load cudnn/7.0.4/cuda-9.0\nmodule load singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSet SINGULARITY_CACHEDIR as your scratch\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003eexport SINGULARITY_CACHEDIR=/scratch/users/username\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eOn a compute node with gpu\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --bind /usr/local/cuda-9.0/:/usr/local/cuda,/kuacc/apps/cudnn/v7.0.4_CUDA_9.0:/opt/cudnn --overlay overlay.img --nv Knet.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDEPENDENCIES\u003c/h3\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-label=\"Permalink: DEPENDENCIES\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"singularity.lbl.gov\"\u003eSingularity\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003eCuda drivers and libraries (optional)\u003c/li\u003e\n\u003cli\u003eCudnn library (optinal)\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for Sniffles, a structural variation caller using third generation sequencing (PacBio or Oxford Nanopore).\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
- "topics": [
- "singularity",
- "knet",
- "julia"
- ],
- "updated_at": 1549274984.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1610677399.0
},
{
"data_format": 2,
- "description": "the definition of the singularity avogadro container",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.v2.0.0"
],
- "full_name": "mherkazandjian/singularity_avogadro",
+ "full_name": "baxpr/fsthalconnMNI-public",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-fsthalconnmni-public\" class=\"anchor\" aria-hidden=\"true\" href=\"#fsthalconnmni-public\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efsthalconnMNI-public\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eNOTE: For this public version of the repository, the ROI images are not included due to the restrictions on the Morel set, meaning the code will not actually run.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eInputs:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePreprocessed fMRI data from \u003ca href=\"https://github.com/baxpr/connprep\"\u003ehttps://github.com/baxpr/connprep\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eThalamus regions of interest from \u003ca href=\"https://github.com/baxpr/freesurfer-singularity\"\u003ehttps://github.com/baxpr/freesurfer-singularity\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIncluded ROIs:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\"Morel\" thalamic sub-regions from Krauth A, Blanc R, Poveda A, Jeanmonod D, Morel A, Sz\u00e9kely G. A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. Neuroimage. 2010;49(3):2053\u20132062. doi:10.1016/j.neuroimage.2009.10.042. These images are copyright University of Zurich and ETH Zurich, Axel Krauth, Re\u0301mi Blanc, Alejandra Poveda, Daniel Jeanmonod, Anne Morel, Ga\u0301bor Sze\u0301kely. They may not be redistributed, or used for other than research purposes in academic institutions (see src/rois/ACDMY/Agreement.pdf).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\"ABIDE\" regions from Woodward ND, Giraldo-Chica M, Rogers B, Cascio CJ. Thalamocortical dysconnectivity in autism spectrum disorder: An analysis of the Autism Brain Imaging Data Exchange. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(1):76\u201384. doi:10.1016/j.bpsc.2016.09.002\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eNetwork maps from Yeo et al 2011 (\u003ca href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174820/\" rel=\"nofollow\"\u003ehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174820/\u003c/a\u003e)\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOutputs:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSeed connectivity maps and matrices for all ROIs/networks specified in the roiinfo_csv file\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eProcess:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eROI resampling. Freesurfer ROIs (all .mgz in the roiinfo_csv file) are already in native space aligned with the subject T1 and fMRI, so are only converted to nifti format. MNI space ROIs (all .nii.gz in roiinfo_csv are assumed to be MNI space) are warped back to native space in the T1 geometry using the supplied warp invdef_niigz.\u003c/li\u003e\n\u003cli\u003eFor each native space ROI image, the native space fMRIs (removegm_niigz and keepgm_niigz) are resampled to the ROI image geometry, and mean ROI signals are extracted.\u003c/li\u003e\n\u003cli\u003eConnectivity matrices are computed for the mean ROI signals for both the removegm and keepgm data.\u003c/li\u003e\n\u003cli\u003eThe mean ROI signals are used with the four filtered fMRI image sets (removegm_niigz, keepgm_niigz, wremovegm_niigz, wkeepgm_niigz) to compute connectivity maps for each of the four.\u003c/li\u003e\n\u003cli\u003eThe connectivity maps are smoothed by the provided fwhm.\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1541811097.0
+ "updated_at": 1616091420.0
},
{
"data_format": 2,
- "description": "Mumax3 application",
+ "description": "Singularity recipe files for ora (https://github.com/pseudogene/ora)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.2.0.0"
],
- "full_name": "SupercomputingWales/scw_ood_mumax3",
+ "full_name": "powerPlant/ora-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eBatch Connect - Mumax3\u003c/h1\u003e\u003ca id=\"user-content-batch-connect---mumax3\" class=\"anchor\" aria-label=\"Permalink: Batch Connect - Mumax3\" href=\"#batch-connect---mumax3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eLaunch Mumax3 server.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for the Bio::ORA, a featherweight object for identifying mammalian olfactory receptor genes.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/pseudogene/ora\"\u003ehttps://github.com/pseudogene/ora\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1705933791.0
+ "updated_at": 1615862307.0
},
{
"data_format": 2,
- "description": "Python, R, Tensorflow, etc. Put a container on it!",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "greyspectrum/conda-tf",
+ "full_name": "pchengi/cmorfixer_env",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003econda-tf\u003c/h1\u003e\u003ca id=\"user-content-conda-tf\" class=\"anchor\" aria-label=\"Permalink: conda-tf\" href=\"#conda-tf\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis Dockerfile will build a containerized conda environment with Python, R, and Tensorflow, among other packages.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding\u003c/h2\u003e\u003ca id=\"user-content-building\" class=\"anchor\" aria-label=\"Permalink: Building\" href=\"#building\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run this container on a high performance computing cluster, you will need to build it locally, as a Singularity image.\u003c/p\u003e\n\u003cp\u003eFirst, \u003ca href=\"https://sylabs.io/guides/3.2/user-guide/installation.html\" rel=\"nofollow\"\u003einstall Singularity\u003c/a\u003e on a system where you have root privileges.\u003c/p\u003e\n\u003cp\u003eThen, install \u003ca href=\"https://docs.docker.com/install/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFinally, build a Singularity container from the Dockerfile in this repo using \u003ca href=\"https://github.com/singularityware/docker2singularity\"\u003edocker2singularity\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-environment-for-cmor-fixer\" class=\"anchor\" aria-hidden=\"true\" href=\"#environment-for-cmor-fixer\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEnvironment for cmor-fixer\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eA tool to create an environment to allow easy use of the \u003ca href=\"https://github.com/EC-Earth/cmor-fixer\"\u003ecmor-fixer tool\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ecmorfixer_env is a singularity container which comes with preinstalled miniconda3\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h1\u003e\n\u003cp\u003eYou need the singularity program installed. Follow the instructions here, to install singularity on your machine.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity.lbl.gov/install-linux\" rel=\"nofollow\"\u003ehttps://singularity.lbl.gov/install-linux\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-to-download-a-prebuilt-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-download-a-prebuilt-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo download a prebuilt singularity image:\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eIf you\u0027d like to use a prebuilt image, you could download from the link below; if you\u0027d rather build the container yourself, follow the build instructing in the To build section.\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://esg-dn2.nsc.liu.se/virtualtestbed/cmorfixerenv.simg\" rel=\"nofollow\"\u003eLink to prebuilt image\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-to-build\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build cmorfixerenv.simg Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-to-initialize-container-and-optionally-mount-external-filesystems\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-initialize-container-and-optionally-mount-external-filesystems\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo initialize container (and optionally mount external filesystems)\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eIf you don\u0027t have to mount any non-root filesystems, you could start the container like this:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e singularity shell cmorfixerenv.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eIf you don\u0027t see on the container the filesystem which is accessible on the host machine, you could try this, and once inside the container, you\u0027ll be able to see the filesystem mounted on /mnt.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e singularity shell --bind \u0026lt;path to filesystem you want mounted on the container\u0026gt;:/mnt cmorfixerenv.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eInside the container, do the following\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esource /etc/bashrc\nactivateminiconda3\nconda activate cmorfixer\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eExecute cmorfixer (present in /opt/cmor_fixer/cmor-fixer/cmor-fixer.py, in the container)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003ecd /root\nscript -c \u0027/opt/cmor_fixer/cmor-fixer/cmor-fixer.py --verbose --forceid --olist --npp 1 --dry /mnt/CMIP6/ScenarioMIP/EC-Earth-Consortium/EC-Earth3/ssp126/\u0027 scriptout_cmorfix_dryrun\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1562875154.0
+ "updated_at": 1611252471.0
},
{
"data_format": 2,
- "description": "Singularity",
+ "description": "GitHub repo for storing scripts related to simulation using JModelica. The initial focus is on simulation in HPC environments.",
"filenames": [
- "Singularity"
+ "Singularity_Recipes/Singularity_Recipe_Py2_Compilation_Simulation",
+ "Singularity_Recipes/Singularity_Recipe_Py3_Simulation"
],
- "full_name": "lalet/boutiques2singularity",
+ "full_name": "urbanopt/JModelica_simulation",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eboutiques2singularity\u003c/h1\u003e\u003ca id=\"user-content-boutiques2singularity\" class=\"anchor\" aria-label=\"Permalink: boutiques2singularity\" href=\"#boutiques2singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-jmodelica-simulation\" class=\"anchor\" aria-hidden=\"true\" href=\"#jmodelica-simulation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eJModelica Simulation\u003c/h1\u003e\n\u003cp\u003eGitHub repo for storing scripts related to simulation of Modelica models using JModelica. The initial focus is on simulation in HPC environments.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-recipes\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-recipes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Recipes\u003c/h1\u003e\n\u003cp\u003eRecipes for building Singularity containers for compilation and simulation of Modelica models using PyModelica and PyFMI. Note that the recipe that would support compilation and simulation is for use with Python2 only, while a separate recipe supports simulation in Python3.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1507997466.0
+ "updated_at": 1608681086.0
},
{
"data_format": 2,
- "description": "EL6/7 singularity images",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "khurtado/singularity-images",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-images\u003c/h1\u003e\u003ca id=\"user-content-singularity-images\" class=\"anchor\" aria-label=\"Permalink: singularity-images\" href=\"#singularity-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "full_name": "baxpr/makerois-PMAT",
+ "latest_release": "v1.0.13",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-create-study-specific-roi-image-in-mni-space\" class=\"anchor\" aria-hidden=\"true\" href=\"#create-study-specific-roi-image-in-mni-space\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreate study-specific ROI image in MNI space\u003c/h1\u003e\n\u003cp\u003ePMAT resting state connectivity study.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-inputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs:\u003c/h2\u003e\n\u003cp\u003eAll should be matched to the same T1 image.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eT1 image in atlas space (typically BIAS_NORM resource of cat12 assessor)\u003c/li\u003e\n\u003cli\u003eDeformation from T1 subject space to atlas space (typically DEF_FWD resource of cat12 assessor)\u003c/li\u003e\n\u003cli\u003eSUBJECT directory of Freesurfer output (typically SUBJECT resource of freesurfer_dev assessor)\u003c/li\u003e\n\u003cli\u003eTemporal lobe segmentation (typically SEG resource of Temporal_Lobe assessor)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003erois_PMAT.nii.gz Region of interest image\nrois_PMAT-labels.csv Region labels and volumes\nmakerois-PMAT.pdf Visual report of final ROI image\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-regions-of-interest\" class=\"anchor\" aria-hidden=\"true\" href=\"#regions-of-interest\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRegions of interest\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-spheres-atlas-space\" class=\"anchor\" aria-hidden=\"true\" href=\"#spheres-atlas-space\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpheres (atlas space)\u003c/h3\u003e\n\u003cp\u003eSource: \u003cem\u003eLibby LA, Ekstrom AD, Ragland JD, Ranganath C. Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. J Neurosci. 2012;32(19):6550-6560. doi:10.1523/JNEUROSCI.3711-11.2012\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eMethod: \u003cem\u003eSchr\u00f6der TN, Haak K V., Jimenez NIZ, et al. Functional topography of the human entorhinal cortex. Elife. 2015;4(October 2016):1-17. doi:10.7554/eLife.06738\u003c/em\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-entorhinal-cortex-atlas-space\" class=\"anchor\" aria-hidden=\"true\" href=\"#entorhinal-cortex-atlas-space\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEntorhinal cortex (atlas space)\u003c/h3\u003e\n\u003cp\u003eAnterior lateral and posterior medial sections. Source and method: \u003cem\u003eSchr\u00f6der TN, Haak K V., Jimenez NIZ, et al. Functional topography of the human entorhinal cortex. Elife. 2015;4(October 2016):1-17. doi:10.7554/eLife.06738\u003c/em\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-temporal-lobe-subject-space-warped\" class=\"anchor\" aria-hidden=\"true\" href=\"#temporal-lobe-subject-space-warped\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTemporal lobe (Subject space, warped)\u003c/h3\u003e\n\u003cp\u003eHead for anterior hippocampus; body and tail combined for posterior hippocampus. Method: \u003cem\u003ePlassard AJ, McHugo M, Heckers S, Landman BA. Multi-Scale Hippocampal Parcellation Improves Atlas-Based Segmentation Accuracy. Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10133:101332D. doi: 10.1117/12.2254425. Epub 2017 Feb 24. PMID: 28781411; PMCID: PMC5544133.\u003c/em\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-parahippocampal-perirhinal-subject-space-warped\" class=\"anchor\" aria-hidden=\"true\" href=\"#parahippocampal-perirhinal-subject-space-warped\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParahippocampal, perirhinal (Subject space, warped)\u003c/h3\u003e\n\u003cp\u003eGenerated by Freesurfer 6. Parahippocampal (1016,2016) and perirhinal (surface patch resampled to volume, overlap with parahippocampus was assigned to perirhinal). Method: \u003cem\u003eBruce Fischl, Andre van der Kouwe, Christophe Destrieux, Eric Halgren, Florent Segonne, David H. Salat, Evelina Busa, Larry J. Seidman, Jill Goldstein, David Kennedy, Verne Caviness, Nikos Makris, Bruce Rosen, and Anders M. Dale. Automatically Parcellating the Human Cerebral Cortex. Cerebral Cortex January 2004; 14:11-22.\u003c/em\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1528125811.0
+ "updated_at": 1607988459.0
},
{
"data_format": 2,
- "description": "Singularity container providing OpenBLAS with OpenMP support on Alpine Linux",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "twesterhout/openblas-singularity",
+ "full_name": "tpall/htseq-paper-singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eopenblas-singularity\u003c/h1\u003e\u003ca id=\"user-content-openblas-singularity\" class=\"anchor\" aria-label=\"Permalink: openblas-singularity\" href=\"#openblas-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity container providing OpenBLAS with OpenMP and 64-bit ints on Alpine\nLinux. Pre-built container is available for download from\n\u003ca href=\"https://cloud.sylabs.io/library/_container/6026ee4e1e573cd09be5c186\" rel=\"nofollow\"\u003eSingularity Container\nLibrary\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-htseq-paper-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#htseq-paper-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ehtseq-paper-singularity\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1616752652.0
+ "updated_at": 1604657436.0
},
{
"data_format": 2,
- "description": "Singularity image containing Freesurfer and HCP Connectome Workbench",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity",
+ "other_images/Singularity.custom_openspiel"
],
- "full_name": "chidiugonna/nklab-neuro-HCP",
+ "full_name": "buregab/openspiel_singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity image containing Freesurfer and HCP Conncectome Workbench\u003c/h1\u003e\u003ca id=\"user-content-singularity-image-containing-freesurfer-and-hcp-conncectome-workbench\" class=\"anchor\" aria-label=\"Permalink: Singularity image containing Freesurfer and HCP Conncectome Workbench\" href=\"#singularity-image-containing-freesurfer-and-hcp-conncectome-workbench\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis Singularity image will be about 6GB when built using Singularity 2.4.2. It installs the latest development version of freesurfer and HCP Connectome Workbench\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild Singularity Image\u003c/h2\u003e\u003ca id=\"user-content-build-singularity-image\" class=\"anchor\" aria-label=\"Permalink: Build Singularity Image\" href=\"#build-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eYou will need to have at least singularity 2.4 installed. Simply clone this repository to a convenient directory.\u003c/li\u003e\n\u003cli\u003eNavigate into the \u003ccode\u003enklab-neuro-HCP\u003c/code\u003edirectory and check that you have a Singularity definiton file \u003ccode\u003eSingularity\u003c/code\u003e and the directory \u003ccode\u003esrc\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eConfirm that \u003ccode\u003esrc\u003c/code\u003e folder and all the files in \u003ccode\u003esrc\u003c/code\u003e have full read and write privileges. if not then \u003ccode\u003esudo chmod -R 777 src\u003c/code\u003e should accomplish this.\u003c/li\u003e\n\u003cli\u003eNow simply build the image as \u003ccode\u003esudo singularity build nklab-neuro-HCP.simg Singularity\u003c/code\u003e - note that the image name is assumed to be \u003ccode\u003enklab-neuro-HCP.simg\u003c/code\u003e but this can be changed to a more convenient label.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun Singularity Image\u003c/h2\u003e\u003ca id=\"user-content-run-singularity-image\" class=\"anchor\" aria-label=\"Permalink: Run Singularity Image\" href=\"#run-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can now run commands by simply appending them to the end of \u003ccode\u003esingularity run nklab-neuro-HCP.simg\u003c/code\u003e So for example to run \u003ccode\u003ewb_command\u003c/code\u003e simply enter \u003ccode\u003esingularity run nklab-neuro-tools.HCP wb_command ....\u003c/code\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eFor building openspiel singularity containers.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1533339170.0
+ "updated_at": 1604380357.0
},
{
"data_format": 2,
- "description": "Singularity Hub test",
+ "description": "launch the C++ IDE Anjuta from a Singularity container",
"filenames": [
"Singularity"
],
- "full_name": "kav2k/fortune",
+ "full_name": "d-w-moore/anjuta_via_singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003efortune\u003c/h1\u003e\u003ca id=\"user-content-fortune\" class=\"anchor\" aria-label=\"Permalink: fortune\" href=\"#fortune\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity Hub test\u003c/p\u003e\n\u003cp\u003eFortune Teller\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-anjuta-ide-via-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#anjuta-ide-via-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAnjuta IDE via Singularity\u003c/h1\u003e\n\u003cp\u003eThe container includes libraries for building and debugging C++\nprograms with GCC 9, with C++17 support and Boost libraries. C/Xlib\napplications are also supported.\u003c/p\u003e\n\u003cp\u003eTo build the container under Singularity ~2.5.1 :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eget \u003ca href=\"http://sylabs.io\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e . If you\u0027re on Ubuntu/Debian,\nthe \u003ca href=\"https://neuro.debian.net\" rel=\"nofollow\"\u003eNeuroDebian\u003c/a\u003e repo can offer the\nmost up-to-date Singularity packages\u003c/li\u003e\n\u003cli\u003ein a local copy of this repo, use the build command:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity build anjuta.simg Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eThe IDE can be lauched by running anjuta.simg as an executable\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e$ ./anjuta.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor via the singularity application\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run anjuta.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo alter an existing image:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity build --sandbox anjuta anjuta.simg\n$ sudo singularity shell --writable anjuta\nSingularity\u0026gt; apt update; apt install {custom-packages...}\nSingularity\u0026gt; exit\n$ sudo singularity build anjuta_updated.simg anjuta\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1505266397.0
+ "updated_at": 1600000384.0
},
{
"data_format": 2,
- "description": "XCrySDen in a Singularity container",
+ "description": "An implementation for solving 3SAT (Exact Cover) using the Quantum Approximate Optimization Algorithm",
"filenames": [
- "Singularity.1.6.2",
- "Singularity"
+ "SingularityFile.def"
],
- "full_name": "OSC/sa_singularity_xcrysden",
+ "full_name": "vivekkatial/qaoa-three-sat",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity XCrySDen\u003c/h1\u003e\u003ca id=\"user-content-singularity-xcrysden\" class=\"anchor\" aria-label=\"Permalink: Singularity XCrySDen\" href=\"#singularity-xcrysden\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4445\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7edda6b40df66cdf6d87ee014ce8a73af8830d12f325162978d3b72836ea332d/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image for \u003ca href=\"http://www.xcrysden.org/Download.html\" rel=\"nofollow\"\u003eXCrysDen\u003c/a\u003e. It was built on top of the base Docker image \u003ca href=\"https://hub.docker.com/_/ubuntu\" rel=\"nofollow\"\u003eubuntu\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild\u003c/h2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-label=\"Permalink: Build\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can build a local Singularity image named \u003ccode\u003excrysden.sif\u003c/code\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build xcrysden.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDeploy\u003c/h2\u003e\u003ca id=\"user-content-deploy\" class=\"anchor\" aria-label=\"Permalink: Deploy\" href=\"#deploy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstead of building it yourself you can download the pre-built image from \u003ca href=\"https://www.singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull xcrysden.sif shub://OSC/sa_singularity_xcrysden\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun\u003c/h2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-label=\"Permalink: Run\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eStart XCrysDen\u003c/h3\u003e\u003ca id=\"user-content-start-xcrysden\" class=\"anchor\" aria-label=\"Permalink: Start XCrysDen\" href=\"#start-xcrysden\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eXCrysDen is started using the default run command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run xcrysden.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor as a native command\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./xcrysden.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe code is available as open source under the terms of the \u003ca href=\"http://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003eMIT License\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-qaoa-3sat--\" class=\"anchor\" aria-hidden=\"true\" href=\"#qaoa-3sat--\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQAOA 3SAT \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/4beb7225857c50a9391b71fbe998bc23c33b4d87ee15e3da9b7c1b7dfdc67a11/68747470733a2f2f7472617669732d63692e636f6d2f766976656b6b617469616c2f71616f612d74687265652d7361742e7376673f6272616e63683d6d6173746572\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4beb7225857c50a9391b71fbe998bc23c33b4d87ee15e3da9b7c1b7dfdc67a11/68747470733a2f2f7472617669732d63692e636f6d2f766976656b6b617469616c2f71616f612d74687265652d7361742e7376673f6272616e63683d6d6173746572\" alt=\"\" data-canonical-src=\"https://travis-ci.com/vivekkatial/qaoa-three-sat.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://qaoa-three-sat.readthedocs.io/en/latest/?badge=latest\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/253d508d956ec9315fd5509c8d9cb82640904ab96c15672f2c65c9ec5c2de390/68747470733a2f2f72656164746865646f63732e6f72672f70726f6a656374732f71616f612d74687265652d7361742f62616467652f3f76657273696f6e3d6c6174657374\" alt=\"Documentation Status\" data-canonical-src=\"https://readthedocs.org/projects/qaoa-three-sat/badge/?version=latest\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003eAn implementation for solving 3SAT (Exact Cover) using the Quantum Approximate Optimization Algorithm\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 8,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1592244254.0
+ "updated_at": 1607596883.0
},
{
"data_format": 2,
- "description": "Neuroglia-core (FSL,AFNI,ANTS) + minctools",
+ "description": "Singularity recipe files for aws-cli (https://github.com/aws/aws-cli)",
"filenames": [
- "Singularity.v1.0.1a",
"Singularity",
- "Singularity.v1.0.0",
- "Singularity.v1.0.1b"
+ "Singularity.2.0.43"
],
- "full_name": "khanlab/neuroglia-core-minc",
+ "full_name": "powerPlant/aws-cli-srf",
"latest_release": null,
+ "readme": "\u003cp\u003eSingularity recipe files for the AWS CLI v2 tool\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1541127620.0
+ "updated_at": 1598486009.0
},
{
"data_format": 2,
- "description": "Singularity image for the EEMT project",
+ "description": "Singularity recipe files for entrez-direct (https://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.13.8.20200819"
],
- "full_name": "rynge/eemt-singularity",
+ "full_name": "powerPlant/entrez-direct-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eeemt-singularity\u003c/h1\u003e\u003ca id=\"user-content-eemt-singularity\" class=\"anchor\" aria-label=\"Permalink: eemt-singularity\" href=\"#eemt-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity image for the EEMT project\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for Entrez Direct: E-utilities on the Unix Command Line to provide access to the NCBI\u0027s suite of interconnected databases\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1491087384.0
+ "updated_at": 1598244762.0
},
{
"data_format": 2,
- "description": null,
+ "description": "The purpose of this project is to map Oxford Nanopore Sequencing data down to the species level",
"filenames": [
- "Singularity"
+ "setup/Singularity"
],
- "full_name": "mmirko/singularitytest",
+ "full_name": "JoshLoecker/MAPT",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularitytest\u003c/h1\u003e\u003ca id=\"user-content-singularitytest\" class=\"anchor\" aria-label=\"Permalink: singularitytest\" href=\"#singularitytest\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-mapt\" class=\"anchor\" aria-hidden=\"true\" href=\"#mapt\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMAPT\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/JoshLoecker/MAPT/wiki\"\u003ePlease view the Wiki\u003c/a\u003e for more information.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-support\" class=\"anchor\" aria-hidden=\"true\" href=\"#support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSupport\u003c/h3\u003e\n\u003cp\u003eIf you need help, have questions, or have feature ideas please \u003ca href=\"https://github.com/JoshLoecker/MAPT/issues\"\u003eopen a new issue\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1605257877.0
+ "updated_at": 1649438683.0
},
{
"data_format": 2,
- "description": "Pipeline for miRNA alignment and quantification",
+ "description": "This contains the latest docker and singularity images",
"filenames": [
- "Singularity"
+ "Singularity_Ubuntu_18_04_Cuda_11_0",
+ "Singularity_Ubuntu_18_04_Cuda_11_1",
+ "Singularity_Ubuntu_18_04_Cuda_10_2",
+ "Singularity_Ubuntu_20_04_Cuda_11_1",
+ "Singularity_Ubuntu_16_04"
],
- "full_name": "marchoeppner/miRNApipe",
+ "full_name": "shreyaskamathkm/Cluster_Images",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/ikmb_bfx_logo.png\"\u003e\u003cimg src=\"images/ikmb_bfx_logo.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003emiRNApipe\u003c/h1\u003e\u003ca id=\"user-content-mirnapipe\" class=\"anchor\" aria-label=\"Permalink: miRNApipe\" href=\"#mirnapipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePipeline for miRNA alignment and quantification\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDocumentation\u003c/h2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-label=\"Permalink: Documentation\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDocumentation about the pipeline can be found in the \u003ccode\u003edocs/\u003c/code\u003e directory or under the links below:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/pipeline.md\"\u003eWhat happens in this pipeline?\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation and configuration\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1554805649.0
+ "updated_at": 1635787927.0
},
{
"data_format": 2,
- "description": "Singularity image for biocontainers bcftools",
+ "description": "Docker images",
"filenames": [
- "Singularity"
+ "images/sc_qc_cluster/Singularity.sc_qc_cluster"
],
- "full_name": "researchapps/bcftools",
+ "full_name": "letaylor/docker-letaylor-travis",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSamtools\u003c/h1\u003e\u003ca id=\"user-content-samtools\" class=\"anchor\" aria-label=\"Permalink: Samtools\" href=\"#samtools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is a singularity image to deploy samtools.\u003c/p\u003e\n\u003cp\u003eThis will produce a Singularity image (suitable for running in a cluster environment) using \u003ca href=\"https://hub.docker.com/r/broadinstitute/picard/\" rel=\"nofollow\"\u003ehttps://hub.docker.com/r/broadinstitute/picard/\u003c/a\u003e. We do this by way of a bootstrap file for the Docker image.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e1. Install Singularity\u003c/h2\u003e\u003ca id=\"user-content-1-install-singularity\" class=\"anchor\" aria-label=\"Permalink: 1. Install Singularity\" href=\"#1-install-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstructions can be found on the \u003ca href=\"https://singularityware.github.io\" rel=\"nofollow\"\u003esingularity site\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e2. Bootstrap the image\u003c/h2\u003e\u003ca id=\"user-content-2-bootstrap-the-image\" class=\"anchor\" aria-label=\"Permalink: 2. Bootstrap the image\" href=\"#2-bootstrap-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity create --size 4000 samtools.img\nsudo singularity bootstrap samtools.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e3. Run commands\u003c/h2\u003e\u003ca id=\"user-content-3-run-commands\" class=\"anchor\" aria-label=\"Permalink: 3. Run commands\" href=\"#3-run-commands\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHow to access the samtools runtime executable?\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e ./samtools.img\n\nProgram: samtools (Tools for alignments in the SAM format)\nVersion: 1.3.1 (using htslib 1.3.1)\n\nUsage: samtools \u0026lt;command\u0026gt; [options]\n\nCommands:\n -- Indexing\n dict create a sequence dictionary file\n faidx index/extract FASTA\n index index alignment\n\n -- Editing\n calmd recalculate MD/NM tags and \u0027=\u0027 bases\n fixmate fix mate information\n reheader replace BAM header\n rmdup remove PCR duplicates\n targetcut cut fosmid regions (for fosmid pool only)\n addreplacerg adds or replaces RG tags\n\n -- File operations\n collate shuffle and group alignments by name\n cat concatenate BAMs\n merge merge sorted alignments\n mpileup multi-way pileup\n sort sort alignment file\n split splits a file by read group\n quickcheck quickly check if SAM/BAM/CRAM file appears intact\n fastq converts a BAM to a FASTQ\n fasta converts a BAM to a FASTA\n\n -- Statistics\n bedcov read depth per BED region\n depth compute the depth\n flagstat simple stats\n idxstats BAM index stats\n phase phase heterozygotes\n stats generate stats (former bamcheck)\n\n -- Viewing\n flags explain BAM flags\n tview text alignment viewer\n view SAM\u0026lt;-\u0026gt;BAM\u0026lt;-\u0026gt;CRAM conversion\n depad convert padded BAM to unpadded BAM\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-docker-letaylor\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker-letaylor\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edocker-letaylor\u003c/h1\u003e\n\u003cp\u003eThis repo contains Docker images that are automatically built using Travis CI. It is not designed to scale to many images as each image is updated if any one image changes.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-automatically-push-images-to-docker-hub-using-travis-ci\" class=\"anchor\" aria-hidden=\"true\" href=\"#automatically-push-images-to-docker-hub-using-travis-ci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAutomatically push images to Docker Hub using Travis CI\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-1-edit-config-files\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-edit-config-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Edit config files\u003c/h2\u003e\n\u003cp\u003eEdit the following files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e.travis.yml\u003c/code\u003e : alter \u003ccode\u003e$IMAGE_NAME\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-2-give-travis-ci-access-to-upload-to-docker-hub\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-give-travis-ci-access-to-upload-to-docker-hub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Give Travis CI access to upload to Docker Hub\u003c/h2\u003e\n\u003cp\u003eStore both \u003ccode\u003e$DOCKER_PASSWORD\u003c/code\u003e and \u003ccode\u003e$DOCKER_USERNAME\u003c/code\u003e securely in on Travis CI. These are used for authentication.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eLogin to the account you want Travis to use to upload on \u003ca href=\"https://hub.docker.com/\" rel=\"nofollow\"\u003ehub.docker.com\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eClick on your username on the top left and go to \u0027Account Settings\u0027.\u003c/li\u003e\n\u003cli\u003eOn the left hand panel, go to \u0027Security\u0027 and enter your password as requested.\u003c/li\u003e\n\u003cli\u003eNow we\u0027ll create an API token. Name it Travis CI.\u003c/li\u003e\n\u003cli\u003eCreate the token and copy it.\u003c/li\u003e\n\u003cli\u003eLogin to your account on \u003ca href=\"https://travis-ci.org\" rel=\"nofollow\"\u003etravis-ci.org\u003c/a\u003e and go to the repository that you want to add this automatic functionality to.\u003c/li\u003e\n\u003cli\u003eOn the right next to \u0027More options\u0027 go to \u0027Settings\u0027 in the hamburger menu.\u003c/li\u003e\n\u003cli\u003eAdd an environment variable with the name \u003ccode\u003eDOCKER_PASSWORD\u003c/code\u003e and give it the value of the API token that you copied from \u003ca href=\"https://hub.docker.com/\" rel=\"nofollow\"\u003ehub.docker.com\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eAdd an environment variable with the name \u003ccode\u003eDOCKER_USERNAME\u003c/code\u003e and give it your \u003ca href=\"https://hub.docker.com/\" rel=\"nofollow\"\u003ehub.docker.com\u003c/a\u003e user name.\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [],
- "updated_at": 1484519232.0
+ "updated_at": 1653062770.0
},
{
"data_format": 2,
- "description": "official build specifications for nginx",
+ "description": "Singularity recipe files for Mandalorion-Episode-II (https://github.com/rvolden/Mandalorion-Episode-II)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.6219d58"
],
- "full_name": "singularityhub/nginx",
+ "full_name": "powerPlant/mandalorion-episode-ii-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eNginx\u003c/h1\u003e\u003ca id=\"user-content-nginx\" class=\"anchor\" aria-label=\"Permalink: Nginx\" href=\"#nginx\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis container is built using Circle CI, Google Storage, and Google Cloud Build, and \u003ca href=\"https://singularityhub.github.io/registry-org/singularityhub/nginx/\" rel=\"nofollow\"\u003ehosted on Singularity Static Registry\u003c/a\u003e. The following standard applies:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eeach \u003ccode\u003eSingularity\u003c/code\u003e file corresponds to a build\u003c/li\u003e\n\u003cli\u003etags are supported based on the extension of the Singularity file, with an extensionless file corresponding to \"latest\"\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIf you are interested in local usage, see \u003ca href=\"#local-usage\"\u003eLocal Usage\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eWhat can I find here?\u003c/h2\u003e\u003ca id=\"user-content-what-can-i-find-here\" class=\"anchor\" aria-label=\"Permalink: What can I find here?\" href=\"#what-can-i-find-here\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe repository here serves the container under the namespace \u003ccode\u003esingularityhub/nginx\u003c/code\u003e. Specifically,\nit provides an example of using CircleCI to build with Google Cloud Build and push a container to Google Storage,\nand then update manifests at \u003ca href=\"https://www.github.com/singularityhub/registry-org\"\u003esingularityhub/registry-org\u003c/a\u003e.\nIf you are interested in other container build templates, see \u003ca href=\"https://github.com/singularityhub/registry/wiki/build-templates\"\u003ethis page\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow does this work?\u003c/h2\u003e\u003ca id=\"user-content-how-does-this-work\" class=\"anchor\" aria-label=\"Permalink: How does this work?\" href=\"#how-does-this-work\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe will submit this container to the (organizational) registry at\n\u003ca href=\"https://www.github.com/singularityhub/registry-org\"\u003esingularityhub/registry-org\u003c/a\u003e\nfor a final container uri corresponding to \u003ccode\u003ehttps://singularityhub.github.io/registry-org/singularityhub/busybox\u003c/code\u003e. Specifically:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularityhub/registry-org --) the organization registry\nsingularityhub/nginx --) a container collection\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ethen on GitHub pages:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularityhub.github.io/registry-org --) the registry interface\nsingularityhub.github.io/registry-org/singularityhub/nginx --) the added container\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eInstructions\u003c/h1\u003e\u003ca id=\"user-content-instructions\" class=\"anchor\" aria-label=\"Permalink: Instructions\" href=\"#instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e0. Fork the Repository\u003c/h2\u003e\u003ca id=\"user-content-0-fork-the-repository\" class=\"anchor\" aria-label=\"Permalink: 0. Fork the Repository\" href=\"#0-fork-the-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor the repository here to your account, and make sure to add write permissions\nfor a machine user for the repository, and the machine user\u0027s key to CircleCI.\nThis means:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eadding the machine user as a collaborator to the repository (and accepting the invitation)\u003c/li\u003e\n\u003cli\u003econnecting the repository to CircleCI\u003c/li\u003e\n\u003cli\u003enavigating to the CircleCI project page logged in as the machine user to follow the project (button in upper right)\u003c/li\u003e\n\u003cli\u003egoing to the settings -\u0026gt; Checkout SSH keys to add the machine user key.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFull instructions are provided \u003ca href=\"https://github.com/singularityhub/registry/wiki/deploy-container-storage#2-creating-a-connected-repository\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e1. Setup your Organizational Registry\u003c/h2\u003e\u003ca id=\"user-content-1-setup-your-organizational-registry\" class=\"anchor\" aria-label=\"Permalink: 1. Setup your Organizational Registry\" href=\"#1-setup-your-organizational-registry\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you haven\u0027t done so, follow the instructions \u003ca href=\"https://github.com/singularityhub/registry/wiki/deploy-container-storage#organizational\"\u003ehere\u003c/a\u003e to create the organizational registry. You will need to\nupdate the environment variables in the top of the \u003ca href=\".circleci/config.yml\"\u003e.circleci/config.yml\u003c/a\u003e\nto reflect your repository:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e environment:\n\n # The GitHub username / reponame that the container will be submit to\n - REGISTRY_BASE: singularityhub/registry-org\n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou should only need to do this once. The example provided here uses\n\u003ca href=\"https://www.github.com/singularityhub/registry-org\"\u003esingularityhub/registry-org\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e2. Google Storage\u003c/h2\u003e\u003ca id=\"user-content-2-google-storage\" class=\"anchor\" aria-label=\"Permalink: 2. Google Storage\" href=\"#2-google-storage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe will be interacting with Google Storage via the \u003ca href=\"https://www.github.com/singularityhub/sregistry\"\u003esregistry\u003c/a\u003e\ncommand line client.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequired environment variables\u003c/h2\u003e\u003ca id=\"user-content-required-environment-variables\" class=\"anchor\" aria-label=\"Permalink: Required environment variables\" href=\"#required-environment-variables\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCreate a Google Project and \u003ca href=\"https://cloud.google.com/sdk/docs/authorizing#authorizing_with_a_service_account\" rel=\"nofollow\"\u003ea service account\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e1. Download the Service Account Key\u003c/h3\u003e\u003ca id=\"user-content-1-download-the-service-account-key\" class=\"anchor\" aria-label=\"Permalink: 1. Download the Service Account Key\" href=\"#1-download-the-service-account-key\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou should first download a service account key from the \u003ca href=\"https://console.cloud.google.com/iam-admin/serviceaccounts?_ga=2.213389911.-231410963.1512057989\" rel=\"nofollow\"\u003eservice accounts page\u003c/a\u003e. For the roles, add an admin for Google\nStorage (to store your container), along with Storage Object Admin and Google Build Admin.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/service-account.png\"\u003e\u003cimg src=\"img/service-account.png\" alt=\"img/service-account.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eOnce you add the roles, you \u003cem\u003edo not need to add users\u003c/em\u003e to the account. You can next download\nthe service account key to your local machine, and move it to the repository folder.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/create-key.png\"\u003e\u003cimg src=\"img/create-key.png\" alt=\"img/create-key.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eNote that the .gitignore includes *.json so it won\u0027t be added to your project!\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e2. Circle CI Secrets\u003c/h3\u003e\u003ca id=\"user-content-2-circle-ci-secrets\" class=\"anchor\" aria-label=\"Permalink: 2. Circle CI Secrets\" href=\"#2-circle-ci-secrets\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOnce you have the \u003ccode\u003e\u0026lt;project-id\u0026gt;-\u0026lt;number\u0026gt;.json\u003c/code\u003e in the present working directory,\nyou can add the entire thing to your project as an encrypted environment variable.\nHere is how to copy paste the string from your terminal:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ cat \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eproject-id\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e-\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003enumber\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e.json\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAdd the text output from the above to an environment variable\ncalled \u003ccode\u003eGOOGLE_APPLICATION_CREDENTIALS\u003c/code\u003e along with the following (all project secrets):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eGOOGLE_COMPUTE_ZONE: the zone you want your compute builder to run in.\u003c/li\u003e\n\u003cli\u003eSREGISTRY_GOOGLE_PROJECT: the id of your project, easiest to find in the Google Project console url.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOptionally, export a name for your bucket, \u003ccode\u003eSREGISTRY_GOOGLE_STORAGE_BUCKET\u003c/code\u003e\n(it will be created if it doesn\u0027t exist). It will default to your project id with sregistry- as a prefix.\nDon\u0027t forget to add the machine user to the repository, and then add its credential.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLocal Usage\u003c/h2\u003e\u003ca id=\"user-content-local-usage\" class=\"anchor\" aria-label=\"Permalink: Local Usage\" href=\"#local-usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you want to build the container locally:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e git clone https://www.github.com/singularityhub/nginx\n \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e nginx\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFirst, let\u0027s talk about how we would run this image:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e sudo singularity build nginx.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou will see the image buildin, including downloading of Docker layers, installation of nginx. Now let\u0027s run it, and we start a webserver:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./nginx.sif\nServing HTTP on 0.0.0.0 port 9999 ...\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"nginx-basic.png\"\u003e\u003cimg src=\"nginx-basic.png\" alt=\"nginx-basic.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWelp, that was easy!\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHow does it work?\u003c/h2\u003e\u003ca id=\"user-content-how-does-it-work\" class=\"anchor\" aria-label=\"Permalink: How does it work?\" href=\"#how-does-it-work\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHow is this working? Let\u0027s look at the spec file:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e Bootstrap: docker\n From: ubuntu:16.04\n\n %runscript\n\n cd /data\n exec python3 -m http.server 9999\n\n %post\n\n mkdir /data\n echo \"\u0026lt;h2\u0026gt;Hello World!\u0026lt;/h2\u0026gt;\" \u0026gt;\u0026gt; /data/index.html\n apt-get update\n apt-get -y install python3 \n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eThe Header\u003c/h3\u003e\u003ca id=\"user-content-the-header\" class=\"anchor\" aria-label=\"Permalink: The Header\" href=\"#the-header\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe First line \u003ccode\u003ebootstrap\u003c/code\u003e says that we are going to bootstrap a \u003ccode\u003edocker\u003c/code\u003e image, specifically using the (\u003ccode\u003eFrom\u003c/code\u003e field) \u003ccode\u003eubuntu:16.04\u003c/code\u003e. You couldn\u0027t choose another distribution that you like, I just happen to like Debian.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e%post\u003c/h3\u003e\u003ca id=\"user-content-post\" class=\"anchor\" aria-label=\"Permalink: %post\" href=\"#post\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePost is the section where you put commands you want to run once to create your image. This includes:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003einstallation of software\u003c/li\u003e\n\u003cli\u003ecreation of files or folders\u003c/li\u003e\n\u003cli\u003emoving data, files into the container image\u003c/li\u003e\n\u003cli\u003eanalysis things\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe list is pretty obvious, but what about the last one, analysis things? Yes, let\u0027s say that we had a script thing that we wanted to run just once to produce a result that would live in the container. In this case, we would have that thing run in %post, and then give some interactive access to the result via the \u003ccode\u003e%runscript\u003c/code\u003e. In the case that you want your image to be more like a function and run the analysis (for example, if you want your container to take input arguments, run something, and deliver a result), then this command should go in the \u003ccode\u003e%runscript\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eIn our case, since we are going to serve a simple web-based thing, we create a directory to work with (\u003ccode\u003e/data\u003c/code\u003e is easy to remember), write a terribly formatted \u003ccode\u003eindex.html\u003c/code\u003e there (for those that aren\u0027t web focused, a web server by default will render a file called \u003ccode\u003eindex.html\u003c/code\u003e from a root folder). We then install python, because it has a nice command for bringing up a quick web server.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e%runscript\u003c/h3\u003e\u003ca id=\"user-content-runscript\" class=\"anchor\" aria-label=\"Permalink: %runscript\" href=\"#runscript\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003e%runscript\u003c/code\u003e is the thing executed when we run our container. For this example, we basically change directories to data, and then use python to start up a little server on port 9999 to serve that folder. Anything in that folder will then be available to our local machine on port 9999, meaning the address \u003ccode\u003elocalhost:9999\u003c/code\u003e or \u003ccode\u003e127.0.0.1:9999\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eExample Use Cases\u003c/h2\u003e\u003ca id=\"user-content-example-use-cases\" class=\"anchor\" aria-label=\"Permalink: Example Use Cases\" href=\"#example-use-cases\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you have a folder locally with some static html files or other that you want to serve, you can map a directory to data when running the container. For example, let\u0027s map the $PWD to the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B .:/data nginx-basic.img \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003e.\u003c/code\u003e is a stand in for the present working directory, I could have also done:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B $PWD:/data nginx-basic.img \nsingularity run -B /path/to/singularity-web/nginx-basic:/data nginx-basic.img \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote that binding the directory at runtime WILL map your specified place to the directory (and not the file we saved there before) but it does NOT overwrite the file saved to the image. In other words, if we run the image again without binding, we see the original \"Hello World!\"\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for Mandalorion Episode II, Attack of the Isoforms\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularityhub",
- "registry-template",
- "static-registry",
- "singularity"
- ],
- "updated_at": 1698809323.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1583274107.0
},
{
"data_format": 2,
- "description": "Fork from https://github.com/dbolya/yolact",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.mash",
+ "Singularity.CAT_update",
+ "Singularity.art",
+ "Singularity.metawap_docker",
+ "Singularity.pasta",
+ "Singularity.cmseq_conda",
+ "Singularity.snakemake",
+ "Singularity.euk_decide",
+ "Singularity.dRep",
+ "Singularity.dbcan",
+ "Singularity.nanofilt",
+ "Singularity.metaeuk",
+ "Singularity.BUSCO4",
+ "Singularity.cmseq",
+ "Singularity.ploidyNGS",
+ "Singularity.metawrap",
+ "Singularity.sepp",
+ "Singularity.R",
+ "Singularity.VAMP",
+ "Singularity.puntseq",
+ "Singularity.VAMB_10.1",
+ "Singularity.VAMB",
+ "Singularity.mashmap",
+ "Singularity.comparem",
+ "Singularity.ncbi-downloader",
+ "Singularity.biopython",
+ "Singularity.spades",
+ "Singularity.minimap2",
+ "Singularity.BUSCO5",
+ "Singularity.bbmap",
+ "Singularity.sourmash",
+ "Singularity.raxml-ng",
+ "Singularity.nQuire",
+ "Singularity.fastani",
+ "Singularity.metabat2",
+ "Singularity.seqtk",
+ "Singularity.pysam",
+ "Singularity.krona",
+ "Singularity.kraken2",
+ "Singularity.bamm",
+ "Singularity.megahit",
+ "Singularity.ete3",
+ "Singularity.bioinfo",
+ "Singularity.trimal",
+ "Singularity.spades_3.13",
+ "Singularity.dRep3",
+ "Singularity.deeptools",
+ "Singularity.tree",
+ "Singularity.BUSCO414",
+ "Singularity.METAMVGL",
+ "Singularity.repeatmasker",
+ "Singularity.mummer",
+ "Singularity.iqtree",
+ "Singularity.eukcc_vanilla",
+ "Singularity.mafft",
+ "Singularity.bioconvert",
+ "Singularity.qiime2",
+ "Singularity.CAT",
+ "Singularity.bwa",
+ "Singularity.mmseq2",
+ "Singularity.famsa",
+ "Singularity.EukRep",
+ "Singularity.antismash_standalone",
+ "Singularity.spades_3.15"
],
- "full_name": "sokovninn/yolact-artwin",
+ "full_name": "hexmek/container",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003e\n\u003cstrong\u003eY\u003c/strong\u003eou \u003cstrong\u003eO\u003c/strong\u003enly \u003cstrong\u003eL\u003c/strong\u003eook \u003cstrong\u003eA\u003c/strong\u003et \u003cstrong\u003eC\u003c/strong\u003eoefficien\u003cstrong\u003eT\u003c/strong\u003es\u003c/h1\u003e\u003ca id=\"user-content-you-only-look-at-coefficients\" class=\"anchor\" aria-label=\"Permalink: You Only Look At CoefficienTs\" href=\"#you-only-look-at-coefficients\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e \u2588\u2588\u2557 \u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2588\u2557\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2557\n \u255a\u2588\u2588\u2557 \u2588\u2588\u2554\u255d\u2588\u2588\u2554\u2550\u2550\u2550\u2588\u2588\u2557\u2588\u2588\u2551 \u2588\u2588\u2554\u2550\u2550\u2588\u2588\u2557\u2588\u2588\u2554\u2550\u2550\u2550\u2550\u255d\u255a\u2550\u2550\u2588\u2588\u2554\u2550\u2550\u255d\n \u255a\u2588\u2588\u2588\u2588\u2554\u255d \u2588\u2588\u2551 \u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2551 \n \u255a\u2588\u2588\u2554\u255d \u2588\u2588\u2551 \u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2554\u2550\u2550\u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2551 \n \u2588\u2588\u2551 \u255a\u2588\u2588\u2588\u2588\u2588\u2588\u2554\u255d\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2557\u2588\u2588\u2551 \u2588\u2588\u2551\u255a\u2588\u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2551 \n \u255a\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u2550\u255d\u255a\u2550\u255d \u255a\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u255d \u255a\u2550\u255d \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA simple, fully convolutional model for real-time instance segmentation. This is the code for our papers:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://arxiv.org/abs/1904.02689\" rel=\"nofollow\"\u003eYOLACT: Real-time Instance Segmentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://arxiv.org/abs/1912.06218\" rel=\"nofollow\"\u003eYOLACT++: Better Real-time Instance Segmentation\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eYOLACT++ (v1.2) released! (\u003ca href=\"CHANGELOG.md\"\u003eChangelog\u003c/a\u003e)\u003c/h4\u003e\u003ca id=\"user-content-yolact-v12-released-changelog\" class=\"anchor\" aria-label=\"Permalink: YOLACT++ (v1.2) released! (Changelog)\" href=\"#yolact-v12-released-changelog\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYOLACT++\u0027s resnet50 model runs at 33.5 fps on a Titan Xp and achieves 34.1 mAP on COCO\u0027s \u003ccode\u003etest-dev\u003c/code\u003e (check out our journal paper \u003ca href=\"https://arxiv.org/abs/1912.06218\" rel=\"nofollow\"\u003ehere\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003eIn order to use YOLACT++, make sure you compile the DCNv2 code. (See \u003ca href=\"https://github.com/dbolya/yolact#installation\"\u003eInstallation\u003c/a\u003e)\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eFor a real-time demo, check out our ICCV video:\u003c/h4\u003e\u003ca id=\"user-content-for-a-real-time-demo-check-out-our-iccv-video\" class=\"anchor\" aria-label=\"Permalink: For a real-time demo, check out our ICCV video:\" href=\"#for-a-real-time-demo-check-out-our-iccv-video\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://www.youtube.com/watch?v=0pMfmo8qfpQ\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/70ee4ab932214f5d02c39f251a53743c6e0e8c964af4af267119e92691fb2f9c/68747470733a2f2f696d672e796f75747562652e636f6d2f76692f30704d666d6f38716670512f302e6a7067\" alt=\"IMAGE ALT TEXT HERE\" data-canonical-src=\"https://img.youtube.com/vi/0pMfmo8qfpQ/0.jpg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSome examples from our YOLACT base model (33.5 fps on a Titan Xp and 29.8 mAP on COCO\u0027s \u003ccode\u003etest-dev\u003c/code\u003e):\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/yolact_example_0.png\"\u003e\u003cimg src=\"data/yolact_example_0.png\" alt=\"Example 0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/yolact_example_1.png\"\u003e\u003cimg src=\"data/yolact_example_1.png\" alt=\"Example 1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/yolact_example_2.png\"\u003e\u003cimg src=\"data/yolact_example_2.png\" alt=\"Example 2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eInstallation\u003c/h1\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eClone this repository and enter it:\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/dbolya/yolact.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e yolact\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eSet up the environment using one of the following methods:\n\u003cul\u003e\n\u003cli\u003eUsing \u003ca href=\"https://www.anaconda.com/distribution/\" rel=\"nofollow\"\u003eAnaconda\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eRun \u003ccode\u003econda env create -f environment.yml\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eManually with pip\n\u003cul\u003e\n\u003cli\u003eSet up a Python3 environment (e.g., using virtenv).\u003c/li\u003e\n\u003cli\u003eInstall \u003ca href=\"http://pytorch.org/\" rel=\"nofollow\"\u003ePytorch\u003c/a\u003e 1.0.1 (or higher) and TorchVision.\u003c/li\u003e\n\u003cli\u003eInstall some other packages:\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Cython needs to be installed before pycocotools\u003c/span\u003e\npip install cython\npip install opencv-python pillow pycocotools matplotlib \u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you\u0027d like to train YOLACT, download the COCO dataset and the 2014/2017 annotations. Note that this script will take a while and dump 21gb of files into \u003ccode\u003e./data/coco\u003c/code\u003e.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esh data/scripts/COCO.sh\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you\u0027d like to evaluate YOLACT on \u003ccode\u003etest-dev\u003c/code\u003e, download \u003ccode\u003etest-dev\u003c/code\u003e with this script.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esh data/scripts/COCO_test.sh\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you want to use YOLACT++, compile deformable convolutional layers (from \u003ca href=\"https://github.com/CharlesShang/DCNv2/tree/pytorch_1.0\"\u003eDCNv2\u003c/a\u003e).\nMake sure you have the latest CUDA toolkit installed from \u003ca href=\"https://developer.nvidia.com/cuda-toolkit\" rel=\"nofollow\"\u003eNVidia\u0027s Website\u003c/a\u003e.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e external/DCNv2\npython setup.py build develop\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eEvaluation\u003c/h1\u003e\u003ca id=\"user-content-evaluation\" class=\"anchor\" aria-label=\"Permalink: Evaluation\" href=\"#evaluation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHere are our YOLACT models (released on April 5th, 2019) along with their FPS on a Titan Xp and mAP on \u003ccode\u003etest-dev\u003c/code\u003e:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eImage Size\u003c/th\u003e\n\u003cth align=\"center\"\u003eBackbone\u003c/th\u003e\n\u003cth align=\"center\"\u003eFPS\u003c/th\u003e\n\u003cth align=\"center\"\u003emAP\u003c/th\u003e\n\u003cth\u003eWeights\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet50-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e42.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e28.2\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1yp7ZbbDwvMiFJEq4ptVKTYTI2VeRDXl0/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_resnet50_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EUVpxoSXaqNIlssoLKOEoCcB1m0RpzGq_Khp5n1VX3zcUw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eDarknet53-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e40.0\u003c/td\u003e\n\u003ctd align=\"center\"\u003e28.7\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1dukLrTzZQEuhzitGkHaGjphlmRJOjVnP/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_darknet53_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/ERrao26c8llJn25dIyZPhwMBxUp2GdZTKIMUQA3t0djHLw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e33.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e29.8\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1UYy3dMapbH1BnmtZU4WH1zbYgOzzHHf_/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_base_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EYRWxBEoKU9DiblrWx2M89MBGFkVVB_drlRd_v5sdT3Hgg\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e700\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e23.6\u003c/td\u003e\n\u003ctd align=\"center\"\u003e31.2\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1lE4Lz5p25teiXV-6HdTiOJSnS7u7GBzg/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_im700_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/Eagg5RSc5hFEhp7sPtvLNyoBjhlf2feog7t8OQzHKKphjw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eYOLACT++ models (released on December 16th, 2019):\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eImage Size\u003c/th\u003e\n\u003cth align=\"center\"\u003eBackbone\u003c/th\u003e\n\u003cth align=\"center\"\u003eFPS\u003c/th\u003e\n\u003cth align=\"center\"\u003emAP\u003c/th\u003e\n\u003cth\u003eWeights\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet50-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e33.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e34.1\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1ZPu1YR2UzGHQD0o1rEqy-j5bmEm3lbyP/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_plus_resnet50_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EcJAtMiEFlhAnVsDf00yWRIBUC4m8iE9NEEiV05XwtEoGw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e27.3\u003c/td\u003e\n\u003ctd align=\"center\"\u003e34.6\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/15id0Qq5eqRbkD-N3ZjDZXdCvRyIaHpFB/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_plus_base_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EVQ62sF0SrJPrl_68onyHF8BpG7c05A8PavV4a849sZgEA\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eTo evalute the model, put the corresponding weights file in the \u003ccode\u003e./weights\u003c/code\u003e directory and run one of the following commands. The name of each config is everything before the numbers in the file name (e.g., \u003ccode\u003eyolact_base\u003c/code\u003e for \u003ccode\u003eyolact_base_54_800000.pth\u003c/code\u003e).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQuantitative Results on COCO\u003c/h2\u003e\u003ca id=\"user-content-quantitative-results-on-coco\" class=\"anchor\" aria-label=\"Permalink: Quantitative Results on COCO\" href=\"#quantitative-results-on-coco\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Quantitatively evaluate a trained model on the entire validation set. Make sure you have COCO downloaded as above.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e This should get 29.92 validation mask mAP last time I checked.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Output a COCOEval json to submit to the website or to use the run_coco_eval.py script.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e This command will create \u0027./results/bbox_detections.json\u0027 and \u0027./results/mask_detections.json\u0027 for detection and instance segmentation respectively.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --output_coco_json\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e You can run COCOEval on the files created in the previous command. The performance should match my implementation in eval.py.\u003c/span\u003e\npython run_coco_eval.py\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e To output a coco json file for test-dev, make sure you have test-dev downloaded from above and go\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --output_coco_json --dataset=coco2017_testdev_dataset\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQualitative Results on COCO\u003c/h2\u003e\u003ca id=\"user-content-qualitative-results-on-coco\" class=\"anchor\" aria-label=\"Permalink: Qualitative Results on COCO\" href=\"#qualitative-results-on-coco\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display qualitative results on COCO. From here on I\u0027ll use a confidence threshold of 0.15.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --display\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBenchmarking on COCO\u003c/h2\u003e\u003ca id=\"user-content-benchmarking-on-coco\" class=\"anchor\" aria-label=\"Permalink: Benchmarking on COCO\" href=\"#benchmarking-on-coco\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Run just the raw model on the first 1k images of the validation set\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --benchmark --max_images=1000\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eImages\u003c/h2\u003e\u003ca id=\"user-content-images\" class=\"anchor\" aria-label=\"Permalink: Images\" href=\"#images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display qualitative results on the specified image.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=my_image.png\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process an image and save it to another file.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=input_image.png:output_image.png\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process a whole folder of images.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --images=path/to/input/folder:path/to/output/folder\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eVideo\u003c/h2\u003e\u003ca id=\"user-content-video\" class=\"anchor\" aria-label=\"Permalink: Video\" href=\"#video\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display a video in real-time. \"--video_multiframe\" will process that many frames at once for improved performance.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e If you want, use \"--display_fps\" to draw the FPS directly on the frame.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=my_video.mp4\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display a webcam feed in real-time. If you have multiple webcams pass the index of the webcam you want instead of 0.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=0\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process a video and save it to another file. This uses the same pipeline as the ones above now, so it\u0027s fast!\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=input_video.mp4:output_video.mp4\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAs you can tell, \u003ccode\u003eeval.py\u003c/code\u003e can do a ton of stuff. Run the \u003ccode\u003e--help\u003c/code\u003e command to see everything it can do.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython eval.py --help\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTraining\u003c/h1\u003e\u003ca id=\"user-content-training\" class=\"anchor\" aria-label=\"Permalink: Training\" href=\"#training\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBy default, we train on COCO. Make sure to download the entire dataset using the commands above.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eTo train, grab an imagenet-pretrained model and put it in \u003ccode\u003e./weights\u003c/code\u003e.\n\u003cul\u003e\n\u003cli\u003eFor Resnet101, download \u003ccode\u003eresnet101_reducedfc.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/1tvqFPd4bJtakOlmn-uIA492g2qurRChj/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor Resnet50, download \u003ccode\u003eresnet50-19c8e357.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/1Jy3yCdbatgXa5YYIdTCRrSV0S9V5g1rn/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor Darknet53, download \u003ccode\u003edarknet53.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/17Y431j4sagFpSReuPNoFcj9h7azDTZFf/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eRun one of the training commands below.\n\u003cul\u003e\n\u003cli\u003eNote that you can press ctrl+c while training and it will save an \u003ccode\u003e*_interrupt.pth\u003c/code\u003e file at the current iteration.\u003c/li\u003e\n\u003cli\u003eAll weights are saved in the \u003ccode\u003e./weights\u003c/code\u003e directory by default with the file name \u003ccode\u003e\u0026lt;config\u0026gt;_\u0026lt;epoch\u0026gt;_\u0026lt;iter\u0026gt;.pth\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Trains using the base config with a batch size of 8 (the default).\u003c/span\u003e\npython train.py --config=yolact_base_config\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Trains yolact_base_config with a batch_size of 5. For the 550px models, 1 batch takes up around 1.5 gigs of VRAM, so specify accordingly.\u003c/span\u003e\npython train.py --config=yolact_base_config --batch_size=5\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Resume training yolact_base with a specific weight file and start from the iteration specified in the weight file\u0027s name.\u003c/span\u003e\npython train.py --config=yolact_base_config --resume=weights/yolact_base_10_32100.pth --start_iter=-1\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Use the help option to see a description of all available command line arguments\u003c/span\u003e\npython train.py --help\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eMulti-GPU Support\u003c/h2\u003e\u003ca id=\"user-content-multi-gpu-support\" class=\"anchor\" aria-label=\"Permalink: Multi-GPU Support\" href=\"#multi-gpu-support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYOLACT now supports multiple GPUs seamlessly during training:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBefore running any of the scripts, run: \u003ccode\u003eexport CUDA_VISIBLE_DEVICES=[gpus]\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eWhere you should replace [gpus] with a comma separated list of the index of each GPU you want to use (e.g., 0,1,2,3).\u003c/li\u003e\n\u003cli\u003eYou should still do this if only using 1 GPU.\u003c/li\u003e\n\u003cli\u003eYou can check the indices of your GPUs with \u003ccode\u003envidia-smi\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eThen, simply set the batch size to \u003ccode\u003e8*num_gpus\u003c/code\u003e with the training commands above. The training script will automatically scale the hyperparameters to the right values.\n\u003cul\u003e\n\u003cli\u003eIf you have memory to spare you can increase the batch size further, but keep it a multiple of the number of GPUs you\u0027re using.\u003c/li\u003e\n\u003cli\u003eIf you want to allocate the images per GPU specific for different GPUs, you can use \u003ccode\u003e--batch_alloc=[alloc]\u003c/code\u003e where [alloc] is a comma seprated list containing the number of images on each GPU. This must sum to \u003ccode\u003ebatch_size\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLogging\u003c/h2\u003e\u003ca id=\"user-content-logging\" class=\"anchor\" aria-label=\"Permalink: Logging\" href=\"#logging\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYOLACT now logs training and validation information by default. You can disable this with \u003ccode\u003e--no_log\u003c/code\u003e. A guide on how to visualize these logs is coming soon, but now you can look at \u003ccode\u003eLogVizualizer\u003c/code\u003e in \u003ccode\u003eutils/logger.py\u003c/code\u003e for help.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePascal SBD\u003c/h2\u003e\u003ca id=\"user-content-pascal-sbd\" class=\"anchor\" aria-label=\"Permalink: Pascal SBD\" href=\"#pascal-sbd\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe also include a config for training on Pascal SBD annotations (for rapid experimentation or comparing with other methods). To train on Pascal SBD, proceed with the following steps:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDownload the dataset from \u003ca href=\"http://home.bharathh.info/pubs/codes/SBD/download.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. It\u0027s the first link in the top \"Overview\" section (and the file is called \u003ccode\u003ebenchmark.tgz\u003c/code\u003e).\u003c/li\u003e\n\u003cli\u003eExtract the dataset somewhere. In the dataset there should be a folder called \u003ccode\u003edataset/img\u003c/code\u003e. Create the directory \u003ccode\u003e./data/sbd\u003c/code\u003e (where \u003ccode\u003e.\u003c/code\u003e is YOLACT\u0027s root) and copy \u003ccode\u003edataset/img\u003c/code\u003e to \u003ccode\u003e./data/sbd/img\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eDownload the COCO-style annotations from \u003ca href=\"https://drive.google.com/open?id=1ExrRSPVctHW8Nxrn0SofU1lVhK5Wn0_S\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eExtract the annotations into \u003ccode\u003e./data/sbd/\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eNow you can train using \u003ccode\u003e--config=yolact_resnet50_pascal_config\u003c/code\u003e. Check that config to see how to extend it to other models.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eI will automate this all with a script soon, don\u0027t worry. Also, if you want the script I used to convert the annotations, I put it in \u003ccode\u003e./scripts/convert_sbd.py\u003c/code\u003e, but you\u0027ll have to check how it works to be able to use it because I don\u0027t actually remember at this point.\u003c/p\u003e\n\u003cp\u003eIf you want to verify our results, you can download our \u003ccode\u003eyolact_resnet50_pascal_config\u003c/code\u003e weights from \u003ca href=\"https://drive.google.com/open?id=1yLVwtkRtNxyl0kxeMCtPXJsXFFyc_FHe\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. This model should get 72.3 mask AP_50 and 56.2 mask AP_70. Note that the \"all\" AP isn\u0027t the same as the \"vol\" AP reported in others papers for pascal (they use an averages of the thresholds from \u003ccode\u003e0.1 - 0.9\u003c/code\u003e in increments of \u003ccode\u003e0.1\u003c/code\u003e instead of what COCO uses).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCustom Datasets\u003c/h2\u003e\u003ca id=\"user-content-custom-datasets\" class=\"anchor\" aria-label=\"Permalink: Custom Datasets\" href=\"#custom-datasets\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can also train on your own dataset by following these steps:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCreate a COCO-style Object Detection JSON annotation file for your dataset. The specification for this can be found \u003ca href=\"http://cocodataset.org/#format-data\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. Note that we don\u0027t use some fields, so the following may be omitted:\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003einfo\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eliscense\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003eUnder \u003ccode\u003eimage\u003c/code\u003e: \u003ccode\u003elicense, flickr_url, coco_url, date_captured\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecategories\u003c/code\u003e (we use our own format for categories, see below)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eCreate a definition for your dataset under \u003ccode\u003edataset_base\u003c/code\u003e in \u003ccode\u003edata/config.py\u003c/code\u003e (see the comments in \u003ccode\u003edataset_base\u003c/code\u003e for an explanation of each field):\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s1\"\u003emy_custom_dataset\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003edataset_base\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003ecopy\u003c/span\u003e({\n \u003cspan class=\"pl-s\"\u003e\u0027name\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027My Dataset\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027train_images\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_training_images\u0027\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027train_info\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_training_annotation\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027valid_images\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_validation_images\u0027\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027valid_info\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_validation_annotation\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027has_gt\u0027\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027class_names\u0027\u003c/span\u003e: (\u003cspan class=\"pl-s\"\u003e\u0027my_class_id_1\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027my_class_id_2\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027my_class_id_3\u0027\u003c/span\u003e, ...)\n})\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eA couple things to note:\n\u003cul\u003e\n\u003cli\u003eClass IDs in the annotation file should start at 1 and increase sequentially on the order of \u003ccode\u003eclass_names\u003c/code\u003e. If this isn\u0027t the case for your annotation file (like in COCO), see the field \u003ccode\u003elabel_map\u003c/code\u003e in \u003ccode\u003edataset_base\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eIf you do not want to create a validation split, use the same image path and annotations file for validation. By default (see \u003ccode\u003epython train.py --help\u003c/code\u003e), \u003ccode\u003etrain.py\u003c/code\u003e will output validation mAP for the first 5000 images in the dataset every 2 epochs.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eFinally, in \u003ccode\u003eyolact_base_config\u003c/code\u003e in the same file, change the value for \u003ccode\u003e\u0027dataset\u0027\u003c/code\u003e to \u003ccode\u003e\u0027my_custom_dataset\u0027\u003c/code\u003e or whatever you named the config object above. Then you can use any of the training commands in the previous section.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eCreating a Custom Dataset from Scratch\u003c/h4\u003e\u003ca id=\"user-content-creating-a-custom-dataset-from-scratch\" class=\"anchor\" aria-label=\"Permalink: Creating a Custom Dataset from Scratch\" href=\"#creating-a-custom-dataset-from-scratch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/dbolya/yolact/issues/70#issuecomment-504283008\"\u003ethis nice post by @Amit12690\u003c/a\u003e for tips on how to annotate a custom dataset and prepare it for use with YOLACT.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCitation\u003c/h1\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-label=\"Permalink: Citation\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you use YOLACT or this code base in your work, please cite\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@inproceedings{yolact-iccv2019,\n author = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},\n title = {YOLACT: {Real-time} Instance Segmentation},\n booktitle = {ICCV},\n year = {2019},\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor YOLACT++, please cite\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@misc{yolact-plus-arxiv2019,\n title = {YOLACT++: Better Real-time Instance Segmentation},\n author = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},\n year = {2019},\n eprint = {1912.06218},\n archivePrefix = {arXiv},\n primaryClass = {cs.CV}\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eContact\u003c/h1\u003e\u003ca id=\"user-content-contact\" class=\"anchor\" aria-label=\"Permalink: Contact\" href=\"#contact\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor questions about our paper or code, please contact \u003ca href=\"mailto:dbolya@ucdavis.edu\"\u003eDaniel Bolya\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1635159103.0
+ "updated_at": 1619700602.0
},
{
"data_format": 2,
- "description": "Evaluation Framework and Amazon DSSTNE",
+ "description": "start with raw plink, end with standardized QCed plink",
"filenames": [
- "amazon-dsstne/Singularity"
+ "workflow/Singularity_defs.def"
],
- "full_name": "fnplus/project-recSys",
+ "full_name": "pmonnahan/DataPrep",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eRecSys\u003c/h1\u003e\u003ca id=\"user-content-recsys\" class=\"anchor\" aria-label=\"Permalink: RecSys\" href=\"#recsys\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eEvaluation Framwork and Amazon DSSTNE\u003c/h2\u003e\u003ca id=\"user-content-evaluation-framwork-and-amazon-dsstne\" class=\"anchor\" aria-label=\"Permalink: Evaluation Framwork and Amazon DSSTNE\" href=\"#evaluation-framwork-and-amazon-dsstne\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-pre-imputation-qc-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#pre-imputation-qc-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePre-imputation QC pipeline\u003c/h1\u003e\n\u003cp\u003eThe purpose of this pipeline is to perform the following for a set of input PLINK datasets:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ebasic QC (genotype/variant missingness, HWE, and minor allele frequency)\u003c/li\u003e\n\u003cli\u003eharmonize allele specifications with the GRCh37 reference genome\u003c/li\u003e\n\u003cli\u003eproduce a set of VCF files (separated by chromosome) for imputation\u003c/li\u003e\n\u003cli\u003emerge filtered datasets into a single dataset consisting only of overlapping sites.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eA companion pipeline, which performs post-imputation QC, will download alongside the pre-imputation pipeline. To use the post-imputation pipeline, see the README in the postImpute directory.\u003c/p\u003e\n\n\n\u003cp\u003e\u003cstrong\u003eTable of Contents\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"#requirements\"\u003eRequirements\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#snakemake\"\u003eSnakemake\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#singularity\"\u003eSingularity\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#running-the-workflow\"\u003eRunning the workflow\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#other-notes\"\u003eOther Notes\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#debugging-and-error-reports\"\u003eDebugging and error reports\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#pipeline-overview\"\u003ePipeline Overview\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#input-data\"\u003eInput Data\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#output\"\u003eOutput\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#dataset-harmonization\"\u003eData Harmonization\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#reference-allele-fixing\"\u003eReference allele fixing\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#basic-qc\"\u003eBasic QC\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#merging-inputs-optional\"\u003eMerging Inputs (Optional)\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#imputaton-preparation\"\u003eImputation Preparation\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pmonnahan/DataPrep/blob/master/Pipeline_DAG.png\"\u003e\u003cimg src=\"https://github.com/pmonnahan/DataPrep/raw/master/Pipeline_DAG.png\" alt=\"Pipeline DAG\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-hidden=\"true\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-snakemake\" class=\"anchor\" aria-hidden=\"true\" href=\"#snakemake\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSnakemake\u003c/h3\u003e\n\u003cp\u003eThe pipeline is coordinated and run on an HPC (or locally) using \u003cem\u003eSnakemake\u003c/em\u003e. To install snakemake, first create a virtual environment via:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emodule load python3/3.6.3_anaconda5.0.1\nconda install -c conda-forge mamba\nmamba create -c conda-forge -c bioconda -n \u0026lt;your_environment_name\u0026gt; snakemake\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will create a new virtual environment and install \u003ccode\u003esnakemake\u003c/code\u003e. Then, activate this environment and perform following installations:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda activate \u0026lt;your_environment_name\u0026gt;\nconda install numpy yaml pandas\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAnytime you need to run the pipeline, activate this environment beforehand via:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda activate \u0026lt;environment_name\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you choose not to create an environment, you must ensure that these packages are installed and available for your python installation.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h3\u003e\n\u003cp\u003eThe installation of the individual programs used throughout this pipeline can be completely avoid by utilizing a Singularity image. This image is too large to be hosted on Github, although you can find the definitions file used to create the image \u003ca href=\"https://github.com/pmonnahan/AncInf/blob/master/singularity/Singularity_defs.def\"\u003ehere\u003c/a\u003e. Building of images is still not currently supported at MSI, so I used a Vagrant virtual machine, which comes with Singularity pre-configured/installed (\u003ca href=\"https://app.vagrantup.com/singularityware/boxes/singularity-2.4/versions/2.4\" rel=\"nofollow\"\u003ehttps://app.vagrantup.com/singularityware/boxes/singularity-2.4/versions/2.4\u003c/a\u003e). I can also share the img file directly upon request.\u003c/p\u003e\n\u003cp\u003eHowever, in order to utilize the singularity image, \u003cem\u003eSingularity\u003c/em\u003e must be installed on the HPC. Currently, the pipeline assumes that \u003cem\u003eSingularity\u003c/em\u003e will be available as a module and can be loaded into the environment via the command specified in the config.yml file, where it says \u0027singularity_module\u0027. The default setting will work for MSI at UMN.\u003c/p\u003e\n\u003cp\u003eSingularity settings in config.yml\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity:\n use_singularity: \u0027true\u0027\n image: \u0027/home/pmonnaha/pmonnaha/singularity/AncestryInference.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-the-workflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-the-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the workflow\u003c/h2\u003e\n\u003cp\u003eFirst, activate the virtual environment into which snakemake was installed:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda activate \u0026lt;environment_name\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eClone the parent repository to the location where you want to store the output of the pipeline.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/pmonnahan/DataPrep.git preImputeQC\ncd preImputeQC\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe critical files responsible for executing the pipeline are contained in the \u003cem\u003e./workflow\u003c/em\u003e subdirectory contained within the cloned repo. They are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSnakefile\u003c/li\u003e\n\u003cli\u003econfig.yml\u003c/li\u003e\n\u003cli\u003ecluster.yaml\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe \u003cem\u003eSnakefile\u003c/em\u003e is the primary workhouse of snakemake, which specifies the dependencies of various parts of the pipeline and coordinates execution. No modifications to the \u003cem\u003eSnakefile\u003c/em\u003e are necessary.\u003c/p\u003e\n\u003cp\u003eIn order for the \u003cem\u003eSnakefile\u003c/em\u003e to locate all of the necessary input and correctly submit jobs to the cluster, \u003cstrong\u003eboth\u003c/strong\u003e the \u003cem\u003econfig.yaml\u003c/em\u003e and \u003cem\u003ecluster.yaml\u003c/em\u003e need to be modified. Open these files and change the required entries that are indicated with \u0027MODIFY\u0027. Other fields do not require modification, although this may be desired given the particulars of the run you wish to implement. Details on each entry in the config file (e.g. what the program expects in each entry as well as the purpose of the entry) are provided in the \u003cem\u003ePipeline Overview\u003c/em\u003e at the bottom. Note: Only use letters and numbers when naming output files or datasets as this may cause issues with the report creation.\u003c/p\u003e\n\u003cp\u003eThe entire pipeline can be executed on a local machine (not recommended) or on an HPC, and the \u003cem\u003ecluster.yaml\u003c/em\u003e file is required only for the latter. For a local run, change the \u003ccode\u003elocal_run\u003c/code\u003e entry to \u003ccode\u003etrue\u003c/code\u003e under the \u003ccode\u003erun_settings\u003c/code\u003e section of the config file, and launch snakemake from within the parent directory by the simple command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHowever, multiple steps in the pipeline have high resource demands, and so are unlikely to be able to be run locally. This option exists primarily for testing and troubleshooting, so the remainder of the documentation assumes that the pipeline will be executed on an HPC. In order to coordinate the use of the HPC, the following modifications to the snakemake command are required:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake --cluster \"sbatch --no-requeue --partition={cluster.p} --time={cluster.time} --mem={cluster.mem} --ntasks={threads} --nodes={cluster.nodes} --mail-user={cluster.mail-user} --mail-type={cluster.mail-type} -o {cluster.o} -e {cluster.e} -A {cluster.A}\" --cluster-config workflow/cluster_yale.yaml -j 32\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere -j specifies the number of jobs that can be submitted at once.\u003c/p\u003e\n\u003cp\u003eOne additional setting in the \u003cem\u003econfig.yml\u003c/em\u003e is needed in order to correctly submit jobs to the HPC. The relevant entries are under the \u003ccode\u003erun_settings\u003c/code\u003e section of the config file:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erun_settings:\n local_run: \u0027false\u0027\n cluster_config: \u0027workflow/cluster_slurm.yaml\u0027\n scheduler: \u0027slurm\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHere, it is necessary that the \u003ccode\u003ecluster_config\u003c/code\u003e entry is set to the path of the cluster_slurm.yaml file that will be used in the snakemake command. Also, the scheduler must correspond to the syntax used in the snakemake command and cluster.yaml file. I should point out that these additional changes are needed for responsibly using PLINK within a snakemake framework, and are not directly needed for snakemake. PLINK will attempt to auto-detect available resources upon running regardless of the resources that were requested when the job was submitted. Therefore, we have to read and parse the requested resources in the cluster config file in order for them to be communicated to PLINK from within the Snakefile.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-other-notes\" class=\"anchor\" aria-hidden=\"true\" href=\"#other-notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOther notes\u003c/h3\u003e\n\u003cp\u003eIt is recommended that \u003cem\u003esnakemake\u003c/em\u003e is run as an interactive session on an HPC. \u003cem\u003eSnakemake\u003c/em\u003e will launch the specified number (via the -j flag) of jobs, and then will hang and wait for them to finish. As jobs finish (and assuming no errors), \u003cem\u003esnakemake\u003c/em\u003e will launch additional jobs keeping the total running jobs at whatever -j is set for. Although \u003cem\u003esnakemake\u003c/em\u003e should not use a lot of memory, it could have long run times, which is generally not advisable on login nodes.\u003c/p\u003e\n\u003cp\u003eOne attractive feature of \u003cem\u003esnakemake\u003c/em\u003e is its ability to keep track of the progress and dependencies of the different stages of the pipeline. Specifically, if an error is encountered or the pipeline otherwise stops before the final step, \u003cem\u003esnakemake\u003c/em\u003e can resume the pipeline where it left off, avoiding redundant computation for previously completed tasks. To do so, simply resubmit the original \u003cem\u003esnakemake\u003c/em\u003e command.\u003c/p\u003e\n\u003cp\u003eTo run a specific part of the pipeline, do:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -R \u0026lt;rule_name\u0026gt; --cluster \"sbatch --no-requeue --partition={cluster.p} --time={cluster.time} --mem={cluster.mem} --ntasks={threads} --nodes={cluster.nodes} --mail-user={cluster.mail-user} --mail-type={cluster.mail-type} -o {cluster.o} -e {cluster.e} -A {cluster.A}\" --cluster-config workflow/cluster_yale.yaml -j 20 --rerun-incomplete\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere \u003cem\u003erule_name\u003c/em\u003e indicates the \u0027rule\u0027 (i.e. job) in the Snakefile that you wish to run. Or, you can request a specific file by providing the filename at the end of the command. You may need to include the -F (i.e. force) if the output file already exists and you want to overwrite it.\u003c/p\u003e\n\u003cp\u003eAlso, it is often very helpful to do a \u0027dry-run\u0027 of the pipeline in which the different steps and dependencies are printed to screen, but no actual jobs are executed. This can be helpful to ensure that config entries are correct, etc. To perform a dry-run, do:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -nrp\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNOTE: It is convenient to make an alias in your ~/.bashrc file to run snakemake on the cluster without having to type the --cluster... part of the command every time. For me, it looked like this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ealias snakeslurm=\"snakemake -k --cluster \u0027sbatch --no-requeue --partition={cluster.p} --time={cluster.time} --mem={cluster.mem} --ntasks={threads} --job-name={cluster.job-name} --nodes={cluster.nodes} --mail-user={cluster.mail-user} --mail-type={cluster.mail-type} -o {cluster.o} -e {cluster.e} -A {cluster.A}\u0027 --cluster-config workflow/cluster_slurm.yaml\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis way, I can just do:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakeslurm -j 25\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo launch snakemake on the cluster.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-debugging-and-error-reports\" class=\"anchor\" aria-hidden=\"true\" href=\"#debugging-and-error-reports\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDebugging and error reports\u003c/h4\u003e\n\u003cp\u003eShould an error be encountered in a job, snakemake will halt the pipeline and indicate in the terminal that an error has occurred. The offending job will also be printed in red in the terminal window. More information on why the job failed can be found in the \u0027stdout\u0027 and \u0027stderr\u0027 files that are output to the \u003cem\u003e\u0027OandE\u0027\u003c/em\u003e directory and will be labelled with the jobname.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pipeline-overview\" class=\"anchor\" aria-hidden=\"true\" href=\"#pipeline-overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline Overview\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-input-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#input-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput Data\u003c/h3\u003e\n\u003cp\u003eUnder the \u0027query\u0027 section, you can specify the inputs for one or more datasets. Each dataset should be uniquely named (Note: avoid using periods or underscores when naming output files or datasets as this may cause issues with the report creation.) with values specified for the following \"keys\":\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003edata\u003c/strong\u003e: path to the PLINK files (just the PLINK prefix).\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003echrom_key\u003c/strong\u003e: tab-delimited text file with 2 columns (no header). The first column contains the old chromosome names, and the second column contains the new names.\n\u003cul\u003e\n\u003cli\u003eUsed for converting to numeric names. e.g chr10 to 10.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eallele_key\u003c/strong\u003e: tab-delimited text file with 5 columns (no header). First column is snpID and following columns are: old_allele1 old_allele2 new_allele1 new_allele2.\n\u003cul\u003e\n\u003cli\u003eUsed for converting alleles with A/B specification to ACGT. Oftentimes provided in the dbGaP download. If alleles are already specified in ACGT format, this field can be set to \u0027none\u0027\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eID_key\u003c/strong\u003e: tab-delimited text file with 2 columns (no header). First column is old SNP ID and second column is new SNP ID.\n\u003cul\u003e\n\u003cli\u003eUsed for converting to rsID format. If SNP IDs are already in rs-format, this field can be set to \u0027none\u0027\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eflip_key\u003c/strong\u003e: text file with single column containing SNP rsIDs that need to be flipped in order to align strand to the hg19 reference genome.\n\u003cul\u003e\n\u003cli\u003eUsed to harmonize strand across datasets to the hg19 reference genome. Set this field to \u0027none\u0027 if all alleles are already on the same strand as the target reference genome.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eEach of these fields are optional and providing \u0027none\u0027 as the entry will disable the steps associated with each key. However, these fields should only be set to \u0027none\u0027 if you are sure that they are not necessary (e.g. you have already fixed any existing strand issues across datasets).\u003c/p\u003e\n\u003cp\u003eExample of input specifications in the config file:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003equery:\n \"dataset1\":\n data: \"PATH/TO/PLINK/PREFIX/FOR/DATASET1\"\n chrom_key: \"PATH/TO/PLINK/PREFIX/FOR/DATASET1\"\n allele_key: \"PATH/TO/PLINK/PREFIX/FOR/DATASET1\"\n ID_key: \"PATH/TO/PLINK/PREFIX/FOR/DATASET1\"\n flip_key: \"PATH/TO/PLINK/PREFIX/FOR/DATASET1\"\n \"dataset2\":\n data: \"PATH/TO/PLINK/PREFIX/FOR/DATASET2\"\n chrom_key: \"none\"\n allele_key: \"none\"\n ID_key: \"none\"\n flip_key: \"none\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePhenotypes of the samples must be specified by a tab-delimited text file where the first column contains the sample IDs (as they appear in the imputed VCF file) and the second column contains the phenotype. The path to this file can be provided in the field labelled \u0027phenotype_file\u0027 under the \u0027phenotype_data\u0027 field in the config.yml file.\u003c/p\u003e\n\u003cp\u003eSex of the samples must also be specified in a tab-delimited text file where the first column is sample ID and the second column is the sex specification according to PLINK. The path to this file can be provided in the field labelled \u0027sex_file\u0027 under the \u0027phenotype_data\u0027 field in the config.yml file.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ephenotype_data: \n pheno_file: \"none\"\n sex_file: \"/path/to/sex/file\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-output\" class=\"anchor\" aria-hidden=\"true\" href=\"#output\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput\u003c/h3\u003e\n\u003cp\u003eThe output is a set of PLINK files in the parent directory labelled with the value provided in the \u0027outname\u0027 entry of the config file. However, if \u0027merge\u0027 is set to \u0027false\u0027 in the config file, this final merge step is skipped, and the final output would be the set of QC\u0027ed plink files within each subdirectory labelled with the dataset names. Within each of these subdirectories, there will also be a set of VCF files, which are suitable for use in either the Michigan or TOPMed imputation servers.\u003c/p\u003e\n\u003cp\u003eThe other primary output is a PDF report containing a summary of various steps in the pipeline. It is \u003cstrong\u003ehighly recommended\u003c/strong\u003e that the user carefully review this report to confirm that everything seems in order. Particular attention should be paid to whether specific steps have resulted in major loss of markers as well as whether there is a positive correlation between allele frequencies in the 1000Genomes dataset and allele frequencies in each of the query datasets. These scatter plots are provided towards the end of the report, and if a substantial subset of the points exhibit an anti-correlation, this is indicative of a preponderance of strand errors that ought to be corrected (via the \u0027flip_key\u0027) prior to proceeding.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-dataset-harmonization\" class=\"anchor\" aria-hidden=\"true\" href=\"#dataset-harmonization\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDataset harmonization\u003c/h3\u003e\n\u003cp\u003eThe first step(s) in the pipeline aims to harmonize the naming of chromosomes, alleles, and variant IDs. This is accomplished via the 4 keys described above. While this pipeline generally attempts to simplify the QC process, it is extremely important that the user is acquainted well enough with each individual dataset to ensure that the appropriate keys are specified (or not specified).\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-reference-allele-fixing\" class=\"anchor\" aria-hidden=\"true\" href=\"#reference-allele-fixing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReference allele fixing\u003c/h3\u003e\n\u003cp\u003eIn contrast to a VCF, where alleles are specified with respect to a specified reference genome (reference versus alternative alleles), PLINK-formatted files often specify alleles as major/minor alleles based on the frequency in the dataset. Furthermore, many commonly used arrays will contain a mixture of SNPs genotyped on either the + or - strand. Lastly, the default behavior of PLINK is to automatically set the minor to A1 and the major allele to A2, which can unintentionally generate inconsistencies in allele specifications across datasets.\u003c/p\u003e\n\u003cp\u003eWith respect to a reference genome, two possible types of errors can occur:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFlipped strand: The genotype is specified with respect to the opposite strand relative to the reference genome.\u003c/li\u003e\n\u003cli\u003eSwapped allele: The genotype is specified on the same strand as the reference genome, but the A1 (minor) allele has been set to equal the \u0027reference\u0027 allele when it ought to be set to equal the non-reference/\u0027alternative\u0027 allele\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo identify these errors, we use the bcftools plugin \u0027+fixref\u0027, which requires not only the reference sequence (fasta) file, but also a VCF file containing variant sites that are used to identify mismatching alleles in the query dataset. Importantly, if the program determines that no strand issues exist and that the reference/alternative alleles have simply been swapped, then program will swap the major/minor alleles to match the reference. It will not perform any strand flipping, where it converts genotypes to be specified with respect to the nucleotide on the opposite strand. Although the program will attempt to identify these strand flips, it doesn\u0027t make the correction as the authors consider this a risky move that should not be handled in an automated fashion. Thus, flip-strand mismatches are ultimately removed. If there are a large number of these, the user should attempt to understand and resolve the source of the issue and rerun this pipeline.\u003c/p\u003e\n\u003cp\u003eBy default, the pipeline will download the following files for the hg19 reference genome:\u003c/p\u003e\n\u003cp\u003eReference fasta:\nftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/technical/reference/human_g1k_v37.fasta.gz\u003c/p\u003e\n\u003cp\u003eReference VCF (1000Genomes):\nftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b150_GRCh37p13/VCF/All_20170710.vcf.gz\u003c/p\u003e\n\u003cp\u003eAn indication of whether alleles are now specified correctly is to plot frequency of an allele in the query population against the frequency in the reference population and look for an obviously positive correlation. Such plots are automatically produced in the PDF report as the final step in the pipeline.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-basic-qc\" class=\"anchor\" aria-hidden=\"true\" href=\"#basic-qc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBasic QC\u003c/h3\u003e\n\u003cp\u003eAfter alleles have been fixed as described above, a series of basic QC steps are performed on each dataset by the script \u003cem\u003e\u0027scripts/QC.py\u0027\u003c/em\u003e, with the filtering thresholds specified in the config file (see below).\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eperform_QC: \u0027true\u0027\nQC:\n vm1: \"0.2\" # Initial variant missingness filter\n gm: \"0.1\" # Individual missingness filter\n vm2: \"0.05\" # Ultimate call rate for variants after removing low-callrate samples\n maf: \"0.01\" # mimimum Minor allele frequency\n hwe: \"0.0000001\" # p-value threshold for whether site follows hardy-weinberg\n mbs: \"0.0000001\" # p-value treshold for test of whether missingness varies by sex\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWe first wish to identify and remove individual samples that show high missingess across markers (specified by \u0027gm\u0027). However, to identify these individuals, we first need to remove variants that imputed poorly across all individuals (specified by \u0027vm1\u0027). After removing these individuals, we then remove variants with high missingness (specified by \u0027vm2\u0027). Since poor imputation will result in missing genotypes, this missingness filter indirectly filters for low quality imputation sites. Variants are also filtered based whether or not they show significant departures from Hardy-Weinberg Equilibrium (\u0027hwe\u0027 entry) and whether there is a significant association between missingness and sex (\u0027mbs\u0027 entry). We also remove rare variants based on the \u0027maf\u0027 value. Lastly, we remove indels, duplicate SNPs, and multi-allelic variants.\u003c/p\u003e\n\u003cp\u003eNote that testing for missigness by case/control status is generally recommended as well if the user wishes to proceed straight to SNP-based analyses such as GWAS. However, if the data is to be used for ancestry inference, it may make more sense to retain these SNPs.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-merging-inputs-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#merging-inputs-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMerging inputs (Optional)\u003c/h3\u003e\n\u003cp\u003eIf multiple input datasets were provided, an optional final step is to create a single merged dataset consisting of only the sites that overlap (i.e. passed filters) across all component datasets. This behavior is controlled by the \u0027merge\u0027 entry in the config file. To enable the merging behavior, set this to:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emerge: \u0027true\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-imputaton-preparation\" class=\"anchor\" aria-hidden=\"true\" href=\"#imputaton-preparation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImputaton preparation\u003c/h3\u003e\n\u003cp\u003eAnother optional, final feature is to create a set of of VCF files (parsed by chromosome) for each of the input datasets. These VCFs can be used directly as input into either the Michigan Imputation Server or the TOPMed Imputation Server. The output of the imputation servers can then be used as input into the post-imputation QC pipeline (see README.md in the \u0027postImpute\u0027 directory).\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [
- "machine-learning",
- "recommendation-engine"
- ],
- "updated_at": 1560613253.0
+ "topics": [],
+ "updated_at": 1617574369.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for getorganelle (https://github.com/Kinggerm/GetOrganelle)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.v1.6.2e"
],
- "full_name": "2lambda123/amazon-dsstne",
+ "full_name": "powerPlant/getorganelle-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAmazon DSSTNE: Deep Scalable Sparse Tensor Network Engine\u003c/h1\u003e\u003ca id=\"user-content-amazon-dsstne-deep-scalable-sparse-tensor-network-engine\" class=\"anchor\" aria-label=\"Permalink: Amazon DSSTNE: Deep Scalable Sparse Tensor Network Engine\" href=\"#amazon-dsstne-deep-scalable-sparse-tensor-network-engine\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDSSTNE (pronounced \"Destiny\") is an open source software library for training and deploying recommendation\nmodels with sparse inputs, fully connected hidden layers, and sparse outputs. Models with weight matrices\nthat are too large for a single GPU can still be trained on a single host. DSSTNE has been used at Amazon\nto generate personalized product recommendations for our customers at Amazon\u0027s scale. It is designed for\nproduction deployment of real-world applications which need to emphasize speed and scale over experimental\nflexibility.\u003c/p\u003e\n\u003cp\u003eDSSTNE was built with a number of features for production recommendation workloads:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eMulti-GPU Scale\u003c/strong\u003e: Training and prediction\nboth scale out to use multiple GPUs, spreading out computation\nand storage in a model-parallel fashion for each layer.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eLarge Layers\u003c/strong\u003e: Model-parallel scaling enables larger networks than\nare possible with a single GPU.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eSparse Data\u003c/strong\u003e: DSSTNE is optimized for fast performance on sparse datasets, common in recommendation\nproblems. Custom GPU kernels perform sparse computation on the GPU, without filling in lots of zeroes.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBenchmarks\u003c/h2\u003e\u003ca id=\"user-content-benchmarks\" class=\"anchor\" aria-label=\"Permalink: Benchmarks\" href=\"#benchmarks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003escottlegrand@ reported [near-linear scaling with multiple GPUs] on the MovieLens recommendation problem\n(\u003ca href=\"https://medium.com/@scottlegrand/first-dsstne-benchmarks-tldr-almost-15x-faster-than-tensorflow-393dbeb80c0f#.ghe74fu1q\" rel=\"nofollow\"\u003ehttps://medium.com/@scottlegrand/first-dsstne-benchmarks-tldr-almost-15x-faster-than-tensorflow-393dbeb80c0f#.ghe74fu1q\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eDirections on how to run a benchmark can be found in \u003ca href=\"benchmarks/Benchmark.md\"\u003ehere\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eScaling up\u003c/h2\u003e\u003ca id=\"user-content-scaling-up\" class=\"anchor\" aria-label=\"Permalink: Scaling up\" href=\"#scaling-up\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://blogs.aws.amazon.com/bigdata/post/TxGEL8IJ0CAXTK/Generating-Recommendations-at-Amazon-Scale-with-Apache-Spark-and-Amazon-DSSTNE\" rel=\"nofollow\"\u003eUsing Spark in AWS EMR and Dockers in AWS ECS \u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"LICENSE\"\u003eLicense\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSetup\u003c/h2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-label=\"Permalink: Setup\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eFollow \u003ca href=\"docs/getting_started/setup.md\"\u003eSetup\u003c/a\u003e for step by step instructions on installing and setting up DSSTNE\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUser Guide\u003c/h2\u003e\u003ca id=\"user-content-user-guide\" class=\"anchor\" aria-label=\"Permalink: User Guide\" href=\"#user-guide\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eCheck \u003ca href=\"docs/getting_started/userguide.md\"\u003eUser Guide\u003c/a\u003e for detailed information about the features in DSSTNE\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eExamples\u003c/h2\u003e\u003ca id=\"user-content-examples\" class=\"anchor\" aria-label=\"Permalink: Examples\" href=\"#examples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eCheck \u003ca href=\"docs/getting_started/examples.md\"\u003eExamples\u003c/a\u003e to start trying your first Neural Network Modeling using DSSTNE\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQ\u0026amp;A\u003c/h2\u003e\u003ca id=\"user-content-qa\" class=\"anchor\" aria-label=\"Permalink: Q\u0026amp;A\" href=\"#qa\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"FAQ.md\"\u003eFAQ\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for the GetOrganelle toolkit to assembly organelle genomes from genome skimming data\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1681407189.0
+ "updated_at": 1579837325.0
},
{
"data_format": 2,
- "description": "braker container generated by Nathan Weeks (USDA)",
+ "description": "Singularity recipe files for hapcol (https://github.com/AlgoLab/HapCol)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.97d4a5e"
],
- "full_name": "HuffordLab-Containers/braker",
+ "full_name": "powerPlant/hapcol-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ebraker\u003c/h1\u003e\u003ca id=\"user-content-braker\" class=\"anchor\" aria-label=\"Permalink: braker\" href=\"#braker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBraker container generated by \u003ca href=\"https://www.ars.usda.gov/people-locations/person?person-id=41062\" rel=\"nofollow\"\u003eNathan Weeks\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for the HapCol tool, a fast and memory-efficient method for haplotype assembly from long gapless reads\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1618511479.0
+ "updated_at": 1579837367.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for sga (https://github.com/jts/sga)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.0.10.15"
],
- "full_name": "baxpr/dticam",
+ "full_name": "powerPlant/sga-srf",
"latest_release": null,
- "readme": "\u003cp\u003edticam\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCamino\u003c/h2\u003e\u003ca id=\"user-content-camino\" class=\"anchor\" aria-label=\"Permalink: Camino\" href=\"#camino\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"http://camino.cs.ucl.ac.uk/\" rel=\"nofollow\"\u003ehttp://camino.cs.ucl.ac.uk/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eP. A. Cook, Y. Bai, S. Nedjati-Gilani, K. K. Seunarine, M. G. Hall, G. J. Parker, D. C. Alexander, \"Camino: Open-Source Diffusion-MRI Reconstruction and Processing\", International Society for Magnetic Resonance in Medicine, Seattle, WA, USA, p. 2759, May 2006\u003c/p\u003e\n\u003cp\u003eCiting Camino: \u003ca href=\"http://camino.cs.ucl.ac.uk/index.php?n=Main.Citations\" rel=\"nofollow\"\u003ehttp://camino.cs.ucl.ac.uk/index.php?n=Main.Citations\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3984\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the SGA tool, a de novo genome assembler based on the concept of string graphs\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1599669635.0
+ "updated_at": 1579231330.0
},
{
"data_format": 2,
- "description": "A pagit singularity container",
+ "description": "Singularity recipe files for MrBayes (http://nbisweden.github.io/MrBayes)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.3.2.7a",
+ "Singularity.3.2.7a-gpu"
],
- "full_name": "phgenomics-singularity/pagit",
+ "full_name": "powerPlant/mrbayes-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003epagit\u003c/h1\u003e\u003ca id=\"user-content-pagit\" class=\"anchor\" aria-label=\"Permalink: pagit\" href=\"#pagit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA pagit singularity container\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3808\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the MrBayes program for Bayesian inference and model choice across a wide range of phylogenetic and evolutionary models\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1521839990.0
+ "updated_at": 1574325488.0
},
{
"data_format": 2,
- "description": "sRNA phasing software singularity container",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.0.1.0"
],
- "full_name": "seb-mueller/singularity_srna_phasing",
+ "full_name": "arcsUVA/cryoCARE",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity_srna_phasing\u003c/h1\u003e\u003ca id=\"user-content-singularity_srna_phasing\" class=\"anchor\" aria-label=\"Permalink: singularity_srna_phasing\" href=\"#singularity_srna_phasing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003esRNA phasing software singularity container\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1577127401.0
+ "updated_at": 1574198978.0
},
{
"data_format": 2,
- "description": "Using deep plant phenomics on PlantIT",
+ "description": "Setups for various images used on the dgx.",
"filenames": [
- "Singularity"
+ "Singularity-PyTorch"
],
- "full_name": "ChenHsieh/deepplantphenomics-PlantIT",
+ "full_name": "uri-ai-lab/singularity-images",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003edeepplantphenomics-PlantIT\u003c/h1\u003e\u003ca id=\"user-content-deepplantphenomics-plantit\" class=\"anchor\" aria-label=\"Permalink: deepplantphenomics-PlantIT\" href=\"#deepplantphenomics-plantit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repo is used to serve as a flow on \u003ca href=\"http://portnoy.cyverse.org/\" rel=\"nofollow\"\u003ePlantIT\u003c/a\u003e that can conduct the semantic section pre-trained model on \u003ca href=\"https://www.plant-phenotyping.org/datasets-home\" rel=\"nofollow\"\u003eIPPN dataset\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eDeep plant phenomics is a python package developed and \u003ca href=\"https://www.frontiersin.org/articles/10.3389/fpls.2017.01190/full\" rel=\"nofollow\"\u003epublished by Ubbens and Stavness\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eA truncated version of deepplantphenomics python package is in the other_module dir for the usage of docker image building recipe.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eto do list\u003c/h2\u003e\u003ca id=\"user-content-to-do-list\" class=\"anchor\" aria-label=\"Permalink: to do list\" href=\"#to-do-list\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e[] check how to correctly save the output\n[] build singularity image\n[] prepare other scripts\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003esemantic section example USAGE\u003c/h2\u003e\u003ca id=\"user-content-semantic-section-example-usage\" class=\"anchor\" aria-label=\"Permalink: semantic section example USAGE\" href=\"#semantic-section-example-usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eAny image in the specified dir with suffix \u0027_rgb.png\u0027 can be read in the model.\u003c/li\u003e\n\u003cli\u003eUse -p to specify the input path dir. The -ft will be removed.\u003c/li\u003e\n\u003cli\u003eLocal testing command (script correctly run but cannot obtain output files):\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -v /path/to/image/:/home/ docker://bendjamin101001/plantit_dpp:v1 python3 semantic_section_example.py -p /home/ -ft jpg\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-images\u003c/h1\u003e\n\u003cp\u003eSetups for various images used on the dgx.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1604511244.0
+ "updated_at": 1573772605.0
},
{
"data_format": 2,
- "description": "Singularity image for pandoc",
+ "description": "Singularity container for https://github.com/revbayes/revbayes",
"filenames": [
"Singularity"
],
- "full_name": "golamshaifullah/SingularityPandoc",
+ "full_name": "ResearchIT/revbayes-singularity",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1569936107.0
+ "updated_at": 1589324901.0
},
{
"data_format": 2,
- "description": "Utility to prepare dicoms for conversion using BIDSKIT (https://github.com/jmtyszka/bidskit) ",
+ "description": "Singularity recipe files for plink2 (https://www.cog-genomics.org/plink/2.0/)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.v2.00a2LM"
],
- "full_name": "chidiugonna/nklab-neuro-utils",
+ "full_name": "powerPlant/plink2-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003enklab-neuro-utils\u003c/h1\u003e\u003ca id=\"user-content-nklab-neuro-utils\" class=\"anchor\" aria-label=\"Permalink: nklab-neuro-utils\" href=\"#nklab-neuro-utils\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA number of utilities for data management. Will be updated as time goes by.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e./src/nklab-bids-convert.py\u003c/code\u003e utility to stage dicoms for conversion by \u003ccode\u003ebidskit\u003c/code\u003e (\u003ca href=\"https://github.com/jmtyszka/bidskit\"\u003ehttps://github.com/jmtyszka/bidskit\u003c/a\u003e) into BIDS format.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003enklab-bids-convert.py\u003c/h2\u003e\u003ca id=\"user-content-nklab-bids-convertpy\" class=\"anchor\" aria-label=\"Permalink: nklab-bids-convert.py\" href=\"#nklab-bids-convertpy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis utility will walk down the hierarchy of dicom data (\u003ccode\u003edicomdir\u003c/code\u003e) and will copy it to a new directory (\u003ccode\u003estagedir\u003c/code\u003e) in the required format for Bidskit to convert into BIDS format. It is important that the dicom data is contained within one folder for each subject. If the data has been collected in multiple sessions then the parameter \u003ccode\u003e--sessions\u003c/code\u003e can be used to prompt the tool to cluster (K-means) the dicoms based on the acquired datetime. For example \u003ccode\u003e--sessions pre post\u003c/code\u003e would copy the dicom data into 2 sessions pre and post for bidskit. In some situations the acquired datetime may be incorrect and thus lead to incorrect clustering. An exceptions file \u003ccode\u003e--exceptionlist\u003c/code\u003e may then be provided to associate a misclassified dicom with one that has the correct datetime. See \u003ccode\u003e./example/exception.json\u003c/code\u003e for an example that associates the misclassified \u003ccode\u003e3SHELL_TENSOR\u003c/code\u003e with \u003ccode\u003e3SHELL_RPE\u003c/code\u003e . Note that the string values in the exception file are substrings of the actual dicom folder names that allow for unique identification. A frozen version of bidskit is also included with this repository which has been slightly adapted for our lab\u0027s needs. Please run the tool with the flag \u003ccode\u003e--stageonly\u003c/code\u003e to avoid running this version of bidskit and to just run the dicom preparation steps described above.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild Singularity Image\u003c/h2\u003e\u003ca id=\"user-content-build-singularity-image\" class=\"anchor\" aria-label=\"Permalink: Build Singularity Image\" href=\"#build-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eYou will need to have singularity 2.4 or greater installed. Simply clone this repository to a convenient directory.\u003c/li\u003e\n\u003cli\u003eNavigate into the \u003ccode\u003enklab-neuro-utils\u003c/code\u003edirectory and check that you have a Singularity definition file \u003ccode\u003eSingularity\u003c/code\u003e and the directory \u003ccode\u003esrc\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eConfirm that \u003ccode\u003esrc\u003c/code\u003e folder and all the files in \u003ccode\u003esrc\u003c/code\u003e have full read and write privileges. if not then \u003ccode\u003esudo chmod -R 777 src\u003c/code\u003e should accomplish this.\u003c/li\u003e\n\u003cli\u003eNow simply build the image as \u003ccode\u003esudo singularity build nklab-neuro-utils.simg Singularity\u003c/code\u003e - note that the image name is assumed to be \u003ccode\u003enklab-neuro-utils.simg\u003c/code\u003e but this can be changed to a more convenient label.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild local Docker Image\u003c/h2\u003e\u003ca id=\"user-content-build-local-docker-image\" class=\"anchor\" aria-label=\"Permalink: Build local Docker Image\" href=\"#build-local-docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eAt the moment the docker image is retrievable from docker hub using \u003ccode\u003edocker pull orbisys/nklab-neuro-utils\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild local Docker Image\u003c/h2\u003e\u003ca id=\"user-content-build-local-docker-image-1\" class=\"anchor\" aria-label=\"Permalink: Build local Docker Image\" href=\"#build-local-docker-image-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eSimply clone this repository to a convenient directory.\u003c/li\u003e\n\u003cli\u003eNavigate into the \u003ccode\u003enklab-neuro-utils\u003c/code\u003edirectory and check that you have the Docker definition file \u003ccode\u003eDocker\u003c/code\u003e and the directory \u003ccode\u003esrc\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eConfirm that \u003ccode\u003esrc\u003c/code\u003e folder and all the files in \u003ccode\u003esrc\u003c/code\u003e have full read and write privileges. if not then \u003ccode\u003esudo chmod -R 777 src\u003c/code\u003e should accomplish this.\u003c/li\u003e\n\u003cli\u003eNow simply build the image as \u003ccode\u003esudo docker build -t mylocaldockerimage Docker\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3722\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the PLINK association analysis toolset\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1545416478.0
+ "updated_at": 1572401216.0
},
{
"data_format": 2,
- "description": "This program computes the cross entropy for groups of sequences that have been assigned to groups on the basis of biochemical, physiological, or other biological property. ",
+ "description": "hackathon_intel_genci",
"filenames": [
- "1.0.0/Singularity"
+ "Sarek/Singularity",
+ "Sarek/ScLifeLab/Singularity"
],
- "full_name": "pscedu/singularity-gent",
- "latest_release": "v1.0.0",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-gent/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-gent/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/dcfd71e46b35d08572edfb976a2e1b7650a33efc6ac4d731076e5546b74f2717/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d67656e74\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/dcfd71e46b35d08572edfb976a2e1b7650a33efc6ac4d731076e5546b74f2717/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d67656e74\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-gent\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/2d09491d6d44288f5675b1f9f2d4b45e4bdb400503a96a60ff8ea2b2bc1301ca/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d67656e74\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2d09491d6d44288f5675b1f9f2d4b45e4bdb400503a96a60ff8ea2b2bc1301ca/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d67656e74\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-gent\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/29113b835989f2bb185f6bdc85ce7f7acc824ba4d828617552974c7afbe674ac/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d67656e74\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/29113b835989f2bb185f6bdc85ce7f7acc824ba4d828617552974c7afbe674ac/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d67656e74\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-gent\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f3dfac73d7955a4d00781ddc596da4ba22dd8ab32a636f6d31451b89188b4327/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d67656e74\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f3dfac73d7955a4d00781ddc596da4ba22dd8ab32a636f6d31451b89188b4327/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d67656e74\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-gent\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-gent\u003c/h1\u003e\u003ca id=\"user-content-singularity-gent\" class=\"anchor\" aria-label=\"Permalink: singularity-gent\" href=\"#singularity-gent\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/icaoberg/gent\"\u003eGeNT\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "larosap/hackathon_intel_genci",
+ "latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1703380680.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1573750055.0
},
{
"data_format": 2,
- "description": "Computes and tracks the accuracy of a mechanical watch",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.1.026"
],
- "full_name": "MatthewBonanni/Watch-Accuracy",
+ "full_name": "arcsUVA/patric",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eWatch-Accuracy\u003c/h1\u003e\u003ca id=\"user-content-watch-accuracy\" class=\"anchor\" aria-label=\"Permalink: Watch-Accuracy\" href=\"#watch-accuracy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eComputes and tracks the accuracy of a mechanical watch\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1720245772.0
+ "updated_at": 1570548606.0
},
{
"data_format": 2,
- "description": "Singularity Hub build recipe for a singularity container running R (based on https://github.com/nickjer/singularity-r).",
+ "description": "containers",
"filenames": [
- "Singularity",
- "Singularity.3.6.2"
+ "Singularity.py3_tfstable",
+ "Singularity.pyhon3"
],
- "full_name": "gparadis/singularity-r",
+ "full_name": "LuisBonillaR/singularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity R\u003c/h1\u003e\u003ca id=\"user-content-singularity-r\" class=\"anchor\" aria-label=\"Permalink: Singularity R\" href=\"#singularity-r\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nickjer/singularity-r\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3ac61eb7693a90c7386ae808085fe4f76602fa13f140b564dfc2ff5215deef9f/68747470733a2f2f7472617669732d63692e6f72672f6e69636b6a65722f73696e67756c61726974792d722e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nickjer/singularity-r.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/462\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"Singularity Hub\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7edda6b40df66cdf6d87ee014ce8a73af8830d12f325162978d3b72836ea332d/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image for \u003ca href=\"https://www.r-project.org/\" rel=\"nofollow\"\u003eR\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThis is still a work in progress.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild\u003c/h2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-label=\"Permalink: Build\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou can build a local Singularity image named \u003ccode\u003esingularity-r.simg\u003c/code\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build singularity-r.simg Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDeploy\u003c/h2\u003e\u003ca id=\"user-content-deploy\" class=\"anchor\" aria-label=\"Permalink: Deploy\" href=\"#deploy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstead of building it yourself you can download the pre-built image from\n\u003ca href=\"https://www.singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name singularity-r.simg shub://nickjer/singularity-r\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun\u003c/h2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-label=\"Permalink: Run\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eR\u003c/h3\u003e\u003ca id=\"user-content-r\" class=\"anchor\" aria-label=\"Permalink: R\" href=\"#r\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003eR\u003c/code\u003e command is launched using the default run command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run singularity-r.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor as an explicit app:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --app R singularity-r.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003esingularity run --app R singularity-r.simg --version\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eR version 3.4.3 (2017-11-30) -- \"Kite-Eating Tree\"\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eCopyright (C) 2017 The R Foundation for Statistical Computing\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ePlatform: x86_64-pc-linux-gnu (64-bit)\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eR is free software and comes with ABSOLUTELY NO WARRANTY.\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eYou are welcome to redistribute it under the terms of the\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eGNU General Public License versions 2 or 3.\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eFor more information about these matters see\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ehttp://www.gnu.org/licenses/.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRscript\u003c/h3\u003e\u003ca id=\"user-content-rscript\" class=\"anchor\" aria-label=\"Permalink: Rscript\" href=\"#rscript\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003eRscript\u003c/code\u003e command is launched as an explicit app:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --app Rscript singularity-r.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003esingularity run --app Rscript singularity-r.simg --version\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eR scripting front-end version 3.4.3 (2017-11-30)\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributing\u003c/h2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-label=\"Permalink: Contributing\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBug reports and pull requests are welcome on GitHub at\n\u003ca href=\"https://github.com/nickjer/singularity-r\"\u003ehttps://github.com/nickjer/singularity-r\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe code is available as open source under the terms of the \u003ca href=\"http://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003eMIT License\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1597276020.0
+ "updated_at": 1610738330.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for paml (http://abacus.gene.ucl.ac.uk/software/paml.html)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.4.9i"
],
- "full_name": "ikmb/assembly-bacteria",
+ "full_name": "powerPlant/paml-srf",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/ikmb_bfx_logo.png\"\u003e\u003cimg src=\"images/ikmb_bfx_logo.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eIKMB Genomes - Bacterial assembly and annotation from PE reads\u003c/h1\u003e\u003ca id=\"user-content-ikmb-genomes---bacterial-assembly-and-annotation-from-pe-reads\" class=\"anchor\" aria-label=\"Permalink: IKMB Genomes - Bacterial assembly and annotation from PE reads\" href=\"#ikmb-genomes---bacterial-assembly-and-annotation-from-pe-reads\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOverview\u003c/h2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-label=\"Permalink: Overview\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis pipeline takes PE genomic reads, performs trimming using trim_galore, assembles draft genomes using Spades and annotates the assembly using Dfast_core.\u003c/p\u003e\n\u003cp\u003eIn addition, reads will (optionally) be mapped back to the genome sequence to obtain stats about mapping rate, insert size, duplication rates, etc.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning the pipeline\u003c/h2\u003e\u003ca id=\"user-content-running-the-pipeline\" class=\"anchor\" aria-label=\"Permalink: Running the pipeline\" href=\"#running-the-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe pipeline is currently configured to run on RZCluster. Other execute environment may be added in the future.\u003c/p\u003e\n\u003cp\u003eTo run the pipeline, you first have to clone the repository from git:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003egit clone git@git.ikmb.uni-kiel.de:bfx-core/NF-genomes-bacteria.git\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eIf you already have a local copy, make sure it is up-to-date:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003egit pull\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eWith a local installation of the pipeline, you can next proceed to run it in a folder where you would like to generate the various result files:\u003c/p\u003e\n\u003cp\u003eLoad the environment modules for Nextflow:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003emodule load IKMB Java Nextflow\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eNext, move to the folder where the pipeline will be run from:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ecd /path/to/run_folder\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eFinally, run the pipeline by providing a path to the sample info:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003enextflow -c /path/to/nextflow.config run /path/to/main.nf --samples Samples.csv\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSample file\u003c/h2\u003e\u003ca id=\"user-content-sample-file\" class=\"anchor\" aria-label=\"Permalink: Sample file\" href=\"#sample-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe file Samples is a CSV formatted list of data sets to process. An example format is included in the template subfolder. Required information include:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSample name\u003c/li\u003e\n\u003cli\u003eLibrary name\u003c/li\u003e\n\u003cli\u003ePath to forward read\u003c/li\u003e\n\u003cli\u003epath to reverse read\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eResfinder\u003c/h2\u003e\u003ca id=\"user-content-resfinder\" class=\"anchor\" aria-label=\"Permalink: Resfinder\" href=\"#resfinder\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe Pipeline can optionally run the Resfinder program to detect the presence of typical resistance-confering genes. To enable the resfinder search, use the \u003ccode\u003e--resfinder\u003c/code\u003eflag.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOutputs\u003c/h2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-label=\"Permalink: Outputs\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe pipeline generates all outputs in the folder \"outputs\". For each PE data set (a library), a folder will be created containing the assembly, the annotation and the re-mapped reads for computing statistics on coverage etc.\u003c/p\u003e\n\u003cp\u003eFurthermore, trimmed reads will be jointly placed in the folder \"trimgalore\". A compilation of statistics for the various analysis is included in the older MultiQC - for library-level analytics (library_multiqc.html) and the assembly, annotation etc (sample_multiqc.html).\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3399\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the PAML tool for phylogenetic analyses of DNA or protein sequences using maximum likelihood.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1695285476.0
+ "updated_at": 1565742033.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity",
- "braker/Singularity.braker"
+ "Singularity.panoply"
],
- "full_name": "aseetharam/containers",
+ "full_name": "ternaustralia/coesra-singularity-panoply",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003econtainers\u003c/h1\u003e\u003ca id=\"user-content-containers\" class=\"anchor\" aria-label=\"Permalink: containers\" href=\"#containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-coesra-singularity-panoply\" class=\"anchor\" aria-hidden=\"true\" href=\"#coesra-singularity-panoply\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-panoply\u003c/h1\u003e\n\u003cp\u003eHoang Nguyen\n25 July 2019\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [],
- "updated_at": 1596396241.0
+ "topics": [
+ "coesra"
+ ],
+ "updated_at": 1610426866.0
},
{
"data_format": 2,
- "description": "Singularity recipe for hisat2",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.jupyter"
],
- "full_name": "ISU-HPC/hisat2",
+ "full_name": "ternaustralia/coesra-singularity-jupyter",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ehisat2\u003c/h1\u003e\u003ca id=\"user-content-hisat2\" class=\"anchor\" aria-label=\"Permalink: hisat2\" href=\"#hisat2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for hisat2\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-coesra-singularity-jupyter\" class=\"anchor\" aria-hidden=\"true\" href=\"#coesra-singularity-jupyter\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-jupyter\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1553692888.0
+ "updated_at": 1610425229.0
},
{
"data_format": 2,
- "description": "Repo for singularity development and test",
+ "description": "Example of deployment of a Galaxy Production Instance using CVMFS with Ansible",
"filenames": [
"Singularity"
],
- "full_name": "mobidic/Dev-Singularity",
+ "full_name": "MiguelJulia/GCC2019_GalaxyAnsibleDeplyoment_CVMFS",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDev-Singularity\u003c/h1\u003e\u003ca id=\"user-content-dev-singularity\" class=\"anchor\" aria-label=\"Permalink: Dev-Singularity\" href=\"#dev-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRepo for singularity development and test\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-gcc2019_galaxyansibledeplyoment_cvmfs\" class=\"anchor\" aria-hidden=\"true\" href=\"#gcc2019_galaxyansibledeplyoment_cvmfs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGCC2019_GalaxyAnsibleDeplyoment_CVMFS\u003c/h1\u003e\n\u003cp\u003eExample of deployment of a Galaxy Production Instance using CVMFS with Ansible.\nFor more info, look into \u003ca href=\"https://galaxyproject.github.io/training-material/topics/admin/\" rel=\"nofollow\"\u003egalaxy admin training materials\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-deploying-a-galaxy-stance\" class=\"anchor\" aria-hidden=\"true\" href=\"#deploying-a-galaxy-stance\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeploying a galaxy stance\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003eansible-playbook -i host cvmfs_playbook.yml\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-restart-galaxy\" class=\"anchor\" aria-hidden=\"true\" href=\"#restart-galaxy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRestart galaxy\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003esudo su - galaxy\nsupervisorctl restart galaxy\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-variables-to-modify-for-quick-deployment\" class=\"anchor\" aria-hidden=\"true\" href=\"#variables-to-modify-for-quick-deployment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVariables to modify for quick deployment\u003c/h4\u003e\n\u003cp\u003eAdmin user name. This user is not created, still has to be registered the first time and it will automatically get admin permissions:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egalaxy_config:\n galaxy:\n admin_users: admin@example.com\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBrand: Whatever appears on the banner\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egalaxy_config:\n galaxy:\n brand: \"Freiburg GCC\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-welcomehtml\" class=\"anchor\" aria-hidden=\"true\" href=\"#welcomehtml\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ewelcome.html\u003c/h4\u003e\n\u003cp\u003eFrontpage is not created by default. You can find the template inside \u003ccode\u003egalaxy_root: /srv/galaxy\u003c/code\u003e, in \u003ccode\u003eserver/static/welcome.html.sample\u003c/code\u003e. Just create a \u003ccode\u003ewelcome.html\u003c/code\u003e page from this template in that same location and restart galaxy.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-deploying-your-ansible-managed-galaxy-into-a-container-not-working-yet\" class=\"anchor\" aria-hidden=\"true\" href=\"#deploying-your-ansible-managed-galaxy-into-a-container-not-working-yet\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeploying your ansible-managed galaxy into a container (not working yet!)\u003c/h4\u003e\n\u003cp\u003eWe will use \u003ca href=\"https://github.com/ansible-community/ansible-bender\"\u003eansible-bender\u003c/a\u003e for this task. Your playbook will have to be adapted to this plugging standars as described in their documentation, or compare the differences between my cvmfs_playbook.yml and ansible-bender-test.yml to have a quick idea of how it has to be done.\u003c/p\u003e\n\u003cp\u003eMake sure you are running the right version of ansible, as ansible-bender only works with python3. Still, playbooks designed for python2 can still be used. You will also need to install \u003ca href=\"https://github.com/containers/buildah/blob/master/install.md\"\u003ebuildah\u003c/a\u003e and \u003ca href=\"https://github.com/containers/libpod/blob/master/install.md\"\u003epodman\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFinally, you will need to configurate podman repo config file \u003ccode\u003e/etc/containers/registries.conf\u003c/code\u003e to tell it where to look for your containers. For example, to search in dokerhub add \u003ccode\u003e\u0027docker.io\u0027\u003c/code\u003e inside\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e[registries.search]\nregistries = [\u0027docker.io\u0027]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe image is required to have python interpreter build in.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-building-galaxy-container-with-docker-idea---not-testet-yet\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-galaxy-container-with-docker-idea---not-testet-yet\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding galaxy container with Docker (idea - not testet yet)\u003c/h4\u003e\n\u003cp\u003eUse galaxy-container \u003ca href=\"https://github.com/bgruening/docker-galaxy-stable/blob/master/galaxy/Dockerfile\"\u003eDockerfile\u003c/a\u003e as template.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1528377792.0
+ "updated_at": 1562583598.0
},
{
"data_format": 2,
- "description": null,
+ "description": "demo pipeline for testing different data chunking methods for MuTect2",
"filenames": [
- "Singularity"
+ "containers/annovar-150617/Singularity.annovar-150617",
+ "containers/variant-calling-0.0.2/Singularity.variant-calling-0.0.2"
],
- "full_name": "oogasawa/singularity_ubuntu1804",
+ "full_name": "stevekm/MuTect2_target_chunking",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eUbuntu18 Singularity\u003c/h1\u003e\u003ca id=\"user-content-ubuntu18-singularity\" class=\"anchor\" aria-label=\"Permalink: Ubuntu18 Singularity\" href=\"#ubuntu18-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eUbuntu Linux 18.04 (Bionic) \u306eSingularity\u30b3\u30f3\u30c6\u30ca\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e\u524d\u63d0\u003c/h2\u003e\u003ca id=\"user-content-\u524d\u63d0\" class=\"anchor\" aria-label=\"Permalink: \u524d\u63d0\" href=\"#\u524d\u63d0\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eUbuntu Linux\u306bdebootstrap\u4ed6\u306e\u5fc5\u8981\u306a\u30bd\u30d5\u30c8\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3059\u308b\u5834\u5408\u306f\u4ee5\u4e0b\u306e\u901a\u308a\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo apt update\nsudo apt upgrade\nsudo apt install build-essential libtool automake libarchive-dev debootstrap git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSingularity\u306fversion 2.x\u7cfb\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3059\u308b\u3053\u3068\u3002\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.sylabs.io/guides/2.6/user-guide/installation.html\" rel=\"nofollow\"\u003eSingularity\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u65b9\u6cd5\uff08Official Document)\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e\u4f7f\u3044\u65b9\u003c/h2\u003e\u003ca id=\"user-content-\u4f7f\u3044\u65b9\" class=\"anchor\" aria-label=\"Permalink: \u4f7f\u3044\u65b9\" href=\"#\u4f7f\u3044\u65b9\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e# \u30b3\u30f3\u30c6\u30ca\u306e\u30d3\u30eb\u30c9\ngit clone http://gitlab.ddbj.nig.ac.jp/oogasawa/singularity-ubuntu18\ncd singularity-ubuntu18\nmkdir $HOME/singularity-images\nsudo singularity build --sandbox $HOME/singularity-images/ubuntu18 Singularity\n\n# \u30b3\u30f3\u30c6\u30ca\u5185\u3067\u306e\u4f5c\u696d\nsudo singularity shell --write $HOME/singularity-images/ubuntu18\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-mutect2-target-chunking\" class=\"anchor\" aria-hidden=\"true\" href=\"#mutect2-target-chunking\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMuTect2 Target Chunking\u003c/h1\u003e\n\u003cp\u003eDemo pipeline for testing different data chunking methods for MuTect2.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_cancer_m2_MuTect2.php\" rel=\"nofollow\"\u003eMuTect2\u003c/a\u003e is a common tool used for variant calling of tumor-normal pairs. However, it is limited to running only in single-threaded mode, which can lead to extremely long execution times.\u003c/p\u003e\n\u003cp\u003eThis demo pipeline uses different techniques to chunk the included list of target regions (\u003ccode\u003etargets.bed\u003c/code\u003e) into smaller segments to run in parallel, then aggregate all results for comparison to ensure that variant calls are the same across all chunking methods.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h1\u003e\n\u003cp\u003eThis pipeline comes pre-configured for usage on NYULMC\u0027s Big Purple HPC cluster using pre-built Singularity containers and pre-downloaded reference files.\u003c/p\u003e\n\u003cp\u003eIn order to use this pipeline on your system you will need to update the file paths saved in \u003ccode\u003enextflow.config\u003c/code\u003e for your system.\u003c/p\u003e\n\u003cp\u003eSingularity and Docker container recipes are included in the \u003ccode\u003econtainers\u003c/code\u003e directory.\u003c/p\u003e\n\u003cp\u003ePaths to input .bam files for tumor and normal samples are read from the file \u003ccode\u003esamples.analysis.tsv\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eOnce correctly configured, the pipeline can be run with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emake run\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1622297682.0
+ "subscribers_count": 1,
+ "topics": [
+ "nextflow",
+ "mutect2",
+ "variant-calling"
+ ],
+ "updated_at": 1562090008.0
},
{
"data_format": 2,
- "description": null,
+ "description": "singularity lc builds",
"filenames": [
"Singularity"
],
- "full_name": "oogasawa/singularity_ubuntu18_apache2",
+ "full_name": "iapalm/lc-builds",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eUbuntu18 - Apache2 Singularity\u003c/h1\u003e\u003ca id=\"user-content-ubuntu18---apache2-singularity\" class=\"anchor\" aria-label=\"Permalink: Ubuntu18 - Apache2 Singularity\" href=\"#ubuntu18---apache2-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eUbuntu Linux 18.04 (Bionic) \u306bApache2\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305fSingularity\u30b3\u30f3\u30c6\u30ca\u003c/p\u003e\n\u003cp\u003eApache2\u306f\u30bd\u30fc\u30b9\u30b3\u30fc\u30c9\u304b\u3089\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3059\u308b\u3002\u003c/p\u003e\n\u003cp\u003e\u30dd\u30a4\u30f3\u30c8\u306fhttpd.conf\u3067\u4ee5\u4e0b\u306e\u3088\u3046\u306b\u3059\u308b\u3053\u3068\u3067\u3001\u6700\u7d42\u7684\u306broot\u6a29\u9650\u306a\u3057\u3067Apache2\u3092singularity\u30b3\u30f3\u30c6\u30ca\u3067\u8d77\u52d5\u3067\u304d\u308b\u3068\u3044\u3046\u3053\u3068\u3002\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u30dd\u30fc\u30c8\u756a\u53f7\u30921024\u3088\u308a\u5927\u304d\u304f\u3059\u308b\u3002\u003c/li\u003e\n\u003cli\u003eerror_log, access_log\u3092\u30e6\u30fc\u30b6\u30fc\u306e\u30db\u30fc\u30e0\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b\u66f8\u304d\u51fa\u3059\u3002\u003c/li\u003e\n\u003cli\u003ePidFile\u3092\u30e6\u30fc\u30b6\u30fc\u306e\u30db\u30fc\u30e0\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b\u66f8\u304d\u51fa\u3059\u3002\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e\u524d\u63d0\u003c/h2\u003e\u003ca id=\"user-content-\u524d\u63d0\" class=\"anchor\" aria-label=\"Permalink: \u524d\u63d0\" href=\"#\u524d\u63d0\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e(1) Singularity version 2.x (2.6.0\u63a8\u5968)\u304c\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3055\u308c\u3066\u3044\u308b\u3053\u3068\u3002\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.sylabs.io/guides/2.6/user-guide/installation.html\" rel=\"nofollow\"\u003eSingularity\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u65b9\u6cd5\uff08Official Document)\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e(2) debootstrap\u3068git\u304c\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3055\u308c\u3066\u3044\u308b\u3053\u3068\u3002\u003c/p\u003e\n\u003cp\u003eUbuntu Linux\u306b\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3059\u308b\u5834\u5408\u3001\u4ee5\u4e0b\u306e\u3088\u3046\u306b\u3059\u308b\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo apt update\nsudo apt upgrade\nsudo apt install debootstrap git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eCentOS\u3067\u306f\u73fe\u6642\u70b9\u3067\u306f\u8a66\u3057\u3066\u3044\u306a\u3044\u304c\u3001\u4ee5\u4e0b\u306e\u3088\u3046\u306a\u8a18\u4e8b\u304c\u3042\u308b\u3002\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://linuxconfig.org/how-to-debootstrap-on-centos-linux\" rel=\"nofollow\"\u003ehttps://linuxconfig.org/how-to-debootstrap-on-centos-linux\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e\u4f7f\u3044\u65b9\u003c/h2\u003e\u003ca id=\"user-content-\u4f7f\u3044\u65b9\" class=\"anchor\" aria-label=\"Permalink: \u4f7f\u3044\u65b9\" href=\"#\u4f7f\u3044\u65b9\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e# sandbox\u30b3\u30f3\u30c6\u30ca\u306e\u30d3\u30eb\u30c9\ngit clone http://gitlab.ddbj.nig.ac.jp/oogasawa/singularity-ubuntu18-apache2\ncd singularity-ubuntu18-apache2\nmkdir -f ~/singularity-images\nsudo singularity build --sandbox ~/singularity-images/ubuntu18-apache2 Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u540d \u003ccode\u003e~/singularity-images/\u003c/code\u003e, \u30a4\u30e1\u30fc\u30b8\u540dubuntu18-apache2\u306f\u304a\u597d\u307f\u3067\u5909\u3048\u308b\u3053\u3068\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# sandbox\u30b3\u30f3\u30c6\u30ca\u5185\u3067\u306e\u4f5c\u696d\nsudo singularity shell --writable ~/singularity-images/ubuntu18-apache2\n\n# simg\u30d5\u30a1\u30a4\u30eb\u306b\u56fa\u3081\u308b\u3002\nsudo singularity build ~/singularity-images/ubuntu18-apache2.simg ~/singularity-images/ubuntu18-apache2\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eapache\u7528singularity\u30b3\u30f3\u30c6\u30ca\u306e\u8d77\u52d5\u3068\u505c\u6b62 (exec\u30b3\u30de\u30f3\u30c9\u306b\u3088\u308b)\u003c/h3\u003e\u003ca id=\"user-content-apache\u7528singularity\u30b3\u30f3\u30c6\u30ca\u306e\u8d77\u52d5\u3068\u505c\u6b62-exec\u30b3\u30de\u30f3\u30c9\u306b\u3088\u308b\" class=\"anchor\" aria-label=\"Permalink: apache\u7528singularity\u30b3\u30f3\u30c6\u30ca\u306e\u8d77\u52d5\u3068\u505c\u6b62 (exec\u30b3\u30de\u30f3\u30c9\u306b\u3088\u308b)\" href=\"#apache\u7528singularity\u30b3\u30f3\u30c6\u30ca\u306e\u8d77\u52d5\u3068\u505c\u6b62-exec\u30b3\u30de\u30f3\u30c9\u306b\u3088\u308b\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e# run your container as a service.\nsingularity instance.start ~/singulariy-images/ubuntu18-apache2.simg web1\n\n# start apache2 server\nsingularity exec instance://web1 apache_start.sh\n\n# stop apache2 server\nsingularity exec instance://web1 apache_stop.sh\n\n# instance.stop \nsingularity instance.start web1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eReferences\u003c/h2\u003e\u003ca id=\"user-content-references\" class=\"anchor\" aria-label=\"Permalink: References\" href=\"#references\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.sylabs.io/guides/2.6/user-guide/running_services.html\" rel=\"nofollow\"\u003ehttps://www.sylabs.io/guides/2.6/user-guide/running_services.html\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1622297768.0
+ "updated_at": 1560984106.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity images to run on the cluster",
"filenames": [
- "Singularity"
+ "Singularity.py3_tf112_plus",
+ "Singularity.py3_tf114_lls",
+ "Singularity.py3_astro",
+ "Singularity.py3_tf112",
+ "Singularity.py3_tf115",
+ "Singularity.py3_tf114",
+ "Singularity.py3_tf113"
],
- "full_name": "oogasawa/singularity_nodejs",
+ "full_name": "joaocaldeira/singularity_imgs",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_imgs\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity_imgs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_imgs\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2968\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity images to run on the cluster\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1622297603.0
+ "updated_at": 1590440777.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.v4.2.0"
],
- "full_name": "CrossR/meng_project",
+ "full_name": "baxpr/fmriqa",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eReinforcement Learning For Games\u003c/h1\u003e\u003ca id=\"user-content-reinforcement-learning-for-games\" class=\"anchor\" aria-label=\"Permalink: Reinforcement Learning For Games\" href=\"#reinforcement-learning-for-games\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstall Instructions\u003c/h2\u003e\u003ca id=\"user-content-install-instructions\" class=\"anchor\" aria-label=\"Permalink: Install Instructions\" href=\"#install-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSingularity\u003c/h3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: Singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe way used throughout the project was via Singularity.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eInstall Singularity - \u003ca href=\"https://singularity.lbl.gov/install-linux\" rel=\"nofollow\"\u003ehttps://singularity.lbl.gov/install-linux\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eThis must be done on a personal machine! Singularity needs \u003ccode\u003eroot\u003c/code\u003e\naccess for the initial build.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSwap to the repo folder.\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003esudo singularity build starcraft.simg Singularity\u003c/code\u003e.\n\u003cul\u003e\n\u003cli\u003eThis is going to install everything, so takes a while.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eCan be used either with:\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003esingularity shell -C starcraft.simg\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003esingularity exec starcraft.simg python run.py ${SCRIPT_ARGS}\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003eIf running on a machine that has a GPU + CUDA, ensure to pass \u003ccode\u003e--nv\u003c/code\u003e\nafter \u003ccode\u003eshell\u003c/code\u003e or \u003ccode\u003eexec\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePoetry\u003c/h3\u003e\u003ca id=\"user-content-poetry\" class=\"anchor\" aria-label=\"Permalink: Poetry\" href=\"#poetry\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOnly used initially, so may not be fully working.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eInstall SC2. If installed to a non-standard location set the \u003ccode\u003e$SC2PATH\u003c/code\u003e\nenvironment variable to point to the install location.\n\u003cul\u003e\n\u003cli\u003eAn example of the install and setting this variable is in the\n\u003ccode\u003eSingularity\u003c/code\u003e install file.\u003c/li\u003e\n\u003cli\u003eAlso install the maps, which are also listed in the \u003ccode\u003eSingularity\u003c/code\u003e file,\nalongside their password. They should be installed into \u003ccode\u003e$SC2PATH/Maps\u003c/code\u003e,\nwhere the maps folder may need making.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eInstall \u003ca href=\"https://github.com/sdispater/poetry\"\u003epoetry\u003c/a\u003e with \u003ccode\u003epip install poetry\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eOnce installed, use \u003ccode\u003epoetry install\u003c/code\u003e inside this repo. This will create a\nvirtualenv and install all needed packages into it.\u003c/li\u003e\n\u003cli\u003eThen you can call the scripts like so:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Basic example:\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Map names can be gotten from the map file names that you just downloaded.\u003c/span\u003e\npoetry run python CNN/run.py --map_name MAP_NAME --model_name MODEL_NAME --training=False\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e For example:\u003c/span\u003e\npoetry run python CNN/run.py --map_name MoveToBeacon --model_name TestModel --training=True\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e To load that model back at a later date and continue training:\u003c/span\u003e\npoetry run python CNN/run.py --map_name MoveToBeacon --model_name TestModel --training=True --if_output_exists=continue\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e To load that model back at a later date with no more training:\u003c/span\u003e\npoetry run python CNN/run.py --map_name MoveToBeacon --model_name TestModel --training=False\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e To use that model in a secondary training phase:\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e This has not been tested, so its possible you\u0027ll need to instead run the initial model\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e with curriculum_num=0, since I don\u0027t remember how that code works.\u003c/span\u003e\npoetry run python CNN/run.py --map_name MoveToBeacon --model_name TestModel2 --training=True --curriculum_num=1 --previous_model=_files/models/TestModel\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis way is meant for PC dev work, so the TensorFlow version does not need a GPU.\nIf this is needed, then call \u003ccode\u003epoetry remove tensorflow\u003c/code\u003e and \u003ccode\u003epoetry add tensorflow-gpu\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eYou can also enter the poetry shell like so\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epoetry shell\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAt that point, calling \u003ccode\u003epython\u003c/code\u003e will use the project venv.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstructions to Run\u003c/h2\u003e\u003ca id=\"user-content-instructions-to-run\" class=\"anchor\" aria-label=\"Permalink: Instructions to Run\" href=\"#instructions-to-run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAn example script of running the CNN can be found in \u003ccode\u003eCNN\\runPySC2.sh\u003c/code\u003e, which\nuses Singularity. The paths in this script will need updating for a different\nuser.\u003c/p\u003e\n\u003cp\u003eTo run a specific pretrained CNN model, the script should be called as follows,\nwhere \u003ccode\u003eMAP_NAME\u003c/code\u003e is the map or mini-game in question and \u003ccode\u003eMODEL_NAME\u003c/code\u003e is the\nexact name of the model, as stored in \u003ccode\u003eCNN\\_files\\\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython run.py --map_name MAP_NAME --model_name MODEL_NAME --training=False\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe folders for the models should look as follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eCNN/_files/\n\u251c\u2500\u2500 models\n\u2502\u00a0\u00a0 \u2514\u2500\u2500 test_model_20\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 checkpoint\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 model.ckpt-13000.data-00000-of-00001\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 model.ckpt-13000.index\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 model.ckpt-13000.meta\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 model.ckpt-13500.data-00000-of-00001\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 model.ckpt-13500.index\n\u2502\u00a0\u00a0 \u2514\u2500\u2500 model.ckpt-13500.meta\n\u2514\u2500\u2500 summaries\n \u2514\u2500\u2500 test_model_20\n \u2514\u2500\u2500 events.out.tfevents.1521839337.db12gpu1.arc3.leeds.ac.uk\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo train a new model, instead drop the \u003ccode\u003e--training=False\u003c/code\u003e. It is necessary to\nadd \u003ccode\u003e--if_output_exists=continue\u003c/code\u003e to continue training an already existing model.\nThe full set of runtime flags can be found in \u003ca href=\"CNN/run.py\"\u003erun.py\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFlags of interest are as follows:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003etraining\u003c/code\u003e - If the model should be trained or not.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003evisualize\u003c/code\u003e - If the PyGame GUI should be shown. Useful for local running during testing.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003en_envs\u003c/code\u003e - Number of games to run in parallel. \u003cstrong\u003eImportant\u003c/strong\u003e on a high powered machine to get the best performance.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003esave_replays_every\u003c/code\u003e - How often a game replay should be saved, such that the training progress can be seen.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003esave_permanently_every\u003c/code\u003e - Models are saved every few episodes, but are done in a rolling fashion. This flag is used to create models that will not be overwritten at any point\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ecurriculum_num\u003c/code\u003e - What is the current curriculum number? Should be set for curriculum learning such that multiple models are loaded.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eprevious_model\u003c/code\u003e - Path to the previous model file, for curriculum learning.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003enumber_episodes\u003c/code\u003e / \u003ccode\u003enumber_steps\u003c/code\u003e - The maximum episodes or steps to take before stopping. If either of these are met, will stop.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-functional-mri-qa-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#functional-mri-qa-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFunctional MRI QA pipeline\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building\" class=\"anchor\" aria-hidden=\"true\" href=\"#building\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eTest the matlab code before compiling: \u003ccode\u003esrc/testmatlab.m\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eCompile: \u003ccode\u003ecompile_matlab.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTest the compiled runtime: \u003ccode\u003ebin/test_compiled_matlab.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eBuild the Singularity container: \u003ccode\u003eSingularity.v4.2.0\u003c/code\u003e, \u003ca href=\"https://www.singularity-hub.org/collections/2945\" rel=\"nofollow\"\u003ehttps://www.singularity-hub.org/collections/2945\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eSee \u003ccode\u003etest_sing_container.sh\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-inputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs\u003c/h2\u003e\n\u003cp\u003eThe inputs must all be provided, in the correct order. Paths are with respect to the container root.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eName of the output directory\u003c/li\u003e\n\u003cli\u003eFilename of the T1 structural image (.nii.gz)\u003c/li\u003e\n\u003cli\u003eFilename of the segmented T1 image (.nii.gz), typically the SEG output of a MultiAtlas or SLANT pipeline\u003c/li\u003e\n\u003cli\u003eFilename of the 4D fMRI (.nii.gz)\u003c/li\u003e\n\u003cli\u003eXNAT project label\u003c/li\u003e\n\u003cli\u003eXNAT subject label\u003c/li\u003e\n\u003cli\u003eXNAT session label\u003c/li\u003e\n\u003cli\u003eXNAT scan label (of the fMRI)\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-processing\" class=\"anchor\" aria-hidden=\"true\" href=\"#processing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eProcessing\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eMotion realignment and creation of mean fMRI\u003c/li\u003e\n\u003cli\u003eCoregister T1 to mean fMRI\u003c/li\u003e\n\u003cli\u003eCompute SNR and quality metrics\u003c/li\u003e\n\u003cli\u003eCarpet plots, graphical report\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003efmriqa.pdf PDF report\nrp_fmri.txt Realignment parameters (SPM12 style)\nfmriqa_stats.csv Summary stats\nfmriqa_stats_wide.csv Summary stats in wide format (XNAT/REDCap compatible)\nFD.txt Framewise displacement time series\nDVARS.txt DVARS time series\nglobal.txt Global mean time series\nmeanfmri.nii.gz Mean fMRI image after realignment\nmedian_voxel_displacement_mm.txt Framewise displacement, median over voxels\ntemporal_snr.nii.gz Temporal signal-to-noise ratio image\nvoxel_displacement_mm_95prctile.nii.gz Framewise displacement image (95th percentile over time)\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 6,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1561411617.0
+ "updated_at": 1558037991.0
},
{
"data_format": 2,
- "description": "Singularity containers to run several python scripts",
+ "description": "Singularity recipe files for SqueezeMeta (https://github.com/jtamames/SqueezeMeta)",
"filenames": [
"Singularity",
- "Singularity.BladegeneratorQmethod",
- "Singularity.InteractiveCoolProp"
+ "Singularity.1.0.0-beta",
+ "Singularity.0.4.4"
],
- "full_name": "stephansmit/python_containers",
+ "full_name": "powerPlant/squeezemeta-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity container for Python scripts\u003c/h1\u003e\u003ca id=\"user-content-singularity-container-for-python-scripts\" class=\"anchor\" aria-label=\"Permalink: Singularity container for Python scripts\" href=\"#singularity-container-for-python-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild Container\u003c/h2\u003e\u003ca id=\"user-content-build-container\" class=\"anchor\" aria-label=\"Permalink: Build Container\" href=\"#build-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build python_containers.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePull Image\u003c/h2\u003e\u003ca id=\"user-content-pull-image\" class=\"anchor\" aria-label=\"Permalink: Pull Image\" href=\"#pull-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://stephansmit/python_containers\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRun Image\u003c/h3\u003e\u003ca id=\"user-content-run-image\" class=\"anchor\" aria-label=\"Permalink: Run Image\" href=\"#run-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run python_containers test.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHosted on Singularity Hub:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3414\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2930\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the SqueezeMeta fully automated metagenomics pipeline\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1569418419.0
+ "updated_at": 1557458055.0
},
{
"data_format": 2,
- "description": "ul-fri-nlp-course-project-nhk created by GitHub Classroom",
+ "description": "Docker and Singularity images for Scanpy",
"filenames": [
- "report/code/Singularity_py.def"
+ "Singularity"
],
- "full_name": "UL-FRI-NLP-2023-2024/ul-fri-nlp-course-project-nhk",
+ "full_name": "VIB-CBD/scanpy-images",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eNatural language processing course 2023/24: \u003ccode\u003eLLM Prompt Strategies for Commonsense-Reasoning Task\u003c/code\u003e\n\u003c/h1\u003e\u003ca id=\"user-content-natural-language-processing-course-202324-llm-prompt-strategies-for-commonsense-reasoning-task\" class=\"anchor\" aria-label=\"Permalink: Natural language processing course 2023/24: LLM Prompt Strategies for Commonsense-Reasoning Task\" href=\"#natural-language-processing-course-202324-llm-prompt-strategies-for-commonsense-reasoning-task\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAuthors:\u003c/h3\u003e\u003ca id=\"user-content-authors\" class=\"anchor\" aria-label=\"Permalink: Authors:\" href=\"#authors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eMatic Pristavnik Vre\u0161njak\u003c/li\u003e\n\u003cli\u003eMitja Kocjan\u010di\u010d\u003c/li\u003e\n\u003cli\u003eSongeun Hong\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eAdvisors:\u003c/h3\u003e\u003ca id=\"user-content-advisors\" class=\"anchor\" aria-label=\"Permalink: Advisors:\" href=\"#advisors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eSlavko \u017ditnik\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eProject File Structure\u003c/h3\u003e\u003ca id=\"user-content-project-file-structure\" class=\"anchor\" aria-label=\"Permalink: Project File Structure\" href=\"#project-file-structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003eroot/\n\u2502\n\u2514\u2500\u2500 report/\n \u251c\u2500\u2500 code/ # Directory containing project code\n \u2502 \u251c\u2500\u2500 promt_COT.py.py\n \u2502 \u251c\u2500\u2500 few_shot.py\n \u2502 \u2514\u2500\u2500 ... # You can see the more files in the folder\n \u2502\n \u2514\u2500\u2500 Reports_compiled_submission/ # Directory containing PDF reports\n \u251c\u2500\u2500 submisson1_report.pdf\n \u251c\u2500\u2500 submisson2_report.pdf\n \u2514\u2500\u2500 submisson3_report.pdf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eOverview\u003c/h3\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-label=\"Permalink: Overview\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis project explores various prompting strategies to enhance the performance of Large Language Models (LLMs) on commonsense reasoning tasks. With the increasing use of LLMs in personal and commercial domains, developing effective prompts is crucial for generating relevant and informative responses. This study provides a comprehensive comparison of different prompting strategies to determine their effectiveness and applicability.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eIntroduction\u003c/h3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe surge in popularity of LLMs like ChatGPT, PaLM, and Gemini has led to their widespread use. These models, often based on the transformer architecture, are capable of handling tasks that require commonsense reasoning\u2014using everyday knowledge to solve problems. Several prompting strategies have been developed to improve LLM performance on these tasks.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePrompting Strategies\u003c/h3\u003e\u003ca id=\"user-content-prompting-strategies\" class=\"anchor\" aria-label=\"Permalink: Prompting Strategies\" href=\"#prompting-strategies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eZero-shot\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eRelies on the model being sufficiently trained with minimal prompt modifications.\u003c/li\u003e\n\u003cli\u003e\n\u003cem\u003eExample:\u003c/em\u003e \"Classify the text into neutral, negative, or positive. Text: I think the vacation is okay. Sentiment:\"\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eFew-shot\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eEnhances the prompt by including examples of previously solved problems.\u003c/li\u003e\n\u003cli\u003e\n\u003cem\u003eExample:\u003c/em\u003e \"This is awesome! //Negative This is bad! //Positive Wow that movie was rad! //Positive What a horrible show! //\"\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eChain-of-thought\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCombines with few-shot, adding step-by-step reasoning to the examples.\u003c/li\u003e\n\u003cli\u003e\n\u003cem\u003eExample:\u003c/em\u003e \"The odd numbers in this group add up to an even number: 4, 8, 9, 15, 12, 2, 1. A: Adding all the odd numbers (9, 15, 1) gives 25. The answer is False.\"\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eMethodology\u003c/h3\u003e\u003ca id=\"user-content-methodology\" class=\"anchor\" aria-label=\"Permalink: Methodology\" href=\"#methodology\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eVarious models were evaluated, including Command (Cohere AI), Mistral (Mistral AI), LLAMA3 (Meta), and T5 (Google Research).\u003c/li\u003e\n\u003cli\u003ePerformance metrics included ROUGE, BLEU, and BERT Score.\u003c/li\u003e\n\u003cli\u003eDatasets used: Winograd Schema Challenge, MultiArith, SQuAD, among others.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eConclusion\u003c/h3\u003e\u003ca id=\"user-content-conclusion\" class=\"anchor\" aria-label=\"Permalink: Conclusion\" href=\"#conclusion\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis project offers valuable insights into the effectiveness of different prompting strategies for improving LLM performance on commonsense reasoning tasks. The comprehensive comparison highlights the potential benefits and limitations of each strategy, guiding future research and practical implementations.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eDependency full Scanpy Docker and Scanpy images based on Alpine.\u003c/p\u003e\n\u003cp\u003eIncludes:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eLoompy\u003c/li\u003e\n\u003cli\u003eLouvain\u003c/li\u003e\n\u003cli\u003eigraph\u003c/li\u003e\n\u003cli\u003eipython\u003c/li\u003e\n\u003cli\u003eJupyter\u003c/li\u003e\n\u003cli\u003eCython\u003c/li\u003e\n\u003cli\u003eMulticoreTSNE\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1716587895.0
+ "updated_at": 1556798801.0
},
{
"data_format": 2,
- "description": "Circos is a software package for visualizing data and information.",
+ "description": "Theano Singularity container scripts",
"filenames": [
- "0.69-9/Singularity"
+ "Singularity.1.0.4-py36"
],
- "full_name": "pscedu/singularity-circos",
- "latest_release": "v0.69-9",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-circos/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-circos/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-circos/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-circos/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/cdb759354edc534f7f5069578ef5dad67d8ec7d1242bf799e84570fd867204ce/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d636972636f73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cdb759354edc534f7f5069578ef5dad67d8ec7d1242bf799e84570fd867204ce/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d636972636f73\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-circos\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/c2ef2a0bed6acc8fe318bf27c8b6090c20d689daec5bb4dd2724224e5836357e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d636972636f73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c2ef2a0bed6acc8fe318bf27c8b6090c20d689daec5bb4dd2724224e5836357e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d636972636f73\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-circos\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/025587ed22e26a065fbd6f9dc8981ddbb40ee487cfac9e2104c2a47796a93957/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d636972636f73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/025587ed22e26a065fbd6f9dc8981ddbb40ee487cfac9e2104c2a47796a93957/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d636972636f73\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-circos\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5764b609b640af5998b1a3138590ba41649db0393f4be5b77cc884e7f45a962e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d636972636f73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5764b609b640af5998b1a3138590ba41649db0393f4be5b77cc884e7f45a962e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d636972636f73\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-circos\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-circos\u003c/h1\u003e\u003ca id=\"user-content-singularity-circos\" class=\"anchor\" aria-label=\"Permalink: singularity-circos\" href=\"#singularity-circos\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"http://circos.ca/\" rel=\"nofollow\"\u003ecircos\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstalling the container on Bridges 2\u003c/h2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-label=\"Permalink: Installing the container on Bridges 2\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ecircos\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/circos/0.69-9\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/circos\u003c/code\u003e as \u003ccode\u003e0.69-9.lua\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the image using the recipe\u003c/h2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-label=\"Permalink: Building the image using the recipe\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image locally\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-label=\"Permalink: To build the image locally\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTo build the image remotely\u003c/h3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-label=\"Permalink: To build the image remotely\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo run tests\u003c/h2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-label=\"Permalink: To run tests\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCopy the data to \u003ccode\u003e/ocean\u003c/code\u003e\n\u003c/h2\u003e\u003ca id=\"user-content-copy-the-data-to-ocean\" class=\"anchor\" aria-label=\"Permalink: Copy the data to /ocean\" href=\"#copy-the-data-to-ocean\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003ewget http://circos.ca/distribution/circos-current.tgz\nmkdir -p /ocean/datasets/community/genomics/circos\ntar -xvf circos-current.tgz \u0026amp;\u0026amp; rm -f circos-current.tgzmv -v circos-0.69-9/data /ocean/datasets/community/genomics/circos/\nrm -rfv circos-0.69-9\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2024 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "arcsUVA/theano",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-theano\" class=\"anchor\" aria-hidden=\"true\" href=\"#theano\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etheano\u003c/h1\u003e\n\u003cp\u003eTheano Singularity container scripts\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 5,
- "topics": [
- "singularity",
- "utlities"
- ],
- "updated_at": 1707362994.0
+ "topics": [],
+ "updated_at": 1554499739.0
},
{
"data_format": 2,
- "description": "Singularity container for STACKS",
+ "description": null,
"filenames": [
- "Singularity",
- "v2Beta9/Singularity.v2.0Beta9",
- "v2.0/Singularity.v2.0"
+ "Singularity"
],
- "full_name": "phgenomics-singularity/stacks",
+ "full_name": "andquintero/singularity_builds",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003estacks\u003c/h1\u003e\u003ca id=\"user-content-stacks\" class=\"anchor\" aria-label=\"Permalink: stacks\" href=\"#stacks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity container for STACKS\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_builds\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity_builds\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_builds\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1527118463.0
+ "updated_at": 1554218133.0
},
{
"data_format": 2,
- "description": "testing container for singularity hub",
+ "description": "Batch Connect - OSC RStudio Server - Pitzer",
"filenames": [
- "Singularity",
- "subfolder/Singularity.apps",
- "subfolder/Singularity.tacos"
+ "Singularity"
],
- "full_name": "singularityhub/hello-world",
- "latest_release": null,
+ "full_name": "OSC/bc_osc_rstudio_server_pitzer",
+ "latest_release": "v0.1.5",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-batch-connect---osc-rstudio-server\" class=\"anchor\" aria-hidden=\"true\" href=\"#batch-connect---osc-rstudio-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBatch Connect - OSC RStudio Server\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/bbf138f428dd98a7b779e572caebe1d8f6c369fb4f9ba270c27f4b29282e5530/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6f73635f7273747564696f5f7365727665725f7069747a65722e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bbf138f428dd98a7b779e572caebe1d8f6c369fb4f9ba270c27f4b29282e5530/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6f73635f7273747564696f5f7365727665725f7069747a65722e737667\" alt=\"GitHub Release\" data-canonical-src=\"https://img.shields.io/github/release/osc/bc_osc_rstudio_server_pitzer.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAn interactive app designed for OSC OnDemand that launches an RStudio Server\nwithin an Pitzer batch job.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-deprecated-application-warning\" class=\"anchor\" aria-hidden=\"true\" href=\"#deprecated-application-warning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeprecated application warning\u003c/h2\u003e\n\u003cp\u003eThis application no longer works. It raises an exception when users attempt to submit jobs.\nThis is because we now have functionality to submit to multiple clusters and\n\u003ca href=\"https://github.com/OSC/bc_osc_rstudio_server\"\u003ethe generic application\u003c/a\u003e now submits\nto pitzer rendering this application useless.\u003c/p\u003e\n\u003cp\u003eFor historic versions, see the last released you can still view\n\u003ca href=\"https://github.com/OSC/bc_osc_rstudio_server_pitzer/tree/v0.3.0\"\u003ev0.3.0\u003c/a\u003e as it was the last\nworking version of this application.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1560109788.0
+ "updated_at": 1673988953.0
},
{
"data_format": 2,
@@ -5421,333 +5089,362 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "oogasawa/singularity_latex",
+ "full_name": "chenhongluo/horovord",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-latex\u003c/h1\u003e\u003ca id=\"user-content-singularity-latex\" class=\"anchor\" aria-label=\"Permalink: singularity-latex\" href=\"#singularity-latex\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA singularity container of LaTeX typesetting system.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBuild the Singularity image as follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/oogasawa/singularity-latex\ncd singularity-latex\nsudo singularity build singularity-latex.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eCompile a LaTeX file. (a DVI file will be generated.)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec singularity-latex.sif platex doc.tex\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eGenerate a PDF file from a DVI file.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec singularity-latex.sif dvipdfmx doc.dvi\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1622296093.0
+ "updated_at": 1553181936.0
},
{
"data_format": 2,
- "description": "A Docker recipe for building a SNO+ environment for RAT. ",
+ "description": "Singularity recipe files for checkm (http://ecogenomics.github.io/CheckM)",
"filenames": [
"Singularity",
- "Singularity.old"
- ],
- "full_name": "snoplus/rat-container",
- "latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003erat-container\u003c/h1\u003e\u003ca id=\"user-content-rat-container\" class=\"anchor\" aria-label=\"Permalink: rat-container\" href=\"#rat-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://hub.docker.com/r/snoplus/rat-container\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/99f4d06cdd8e2f776dcff3a325ee95b8a490476dcc0b026dfcb7390b143580c6/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f686f737465642d646f636b65726875622d626c7565\" alt=\"https://img.shields.io/badge/hosted-dockerhub-blue\" data-canonical-src=\"https://img.shields.io/badge/hosted-dockerhub-blue\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity and Docker recipes to build a SNO+ environment for RAT.\u003c/p\u003e\n\u003cp\u003eFor regular usage, simply download the pre-built container with the following instructions for your container platform of choice. For advanced users, see the build instructions below.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eIF THE DOCKERHUB LINK STOPS WORKING, SOMEONE MAY HAVE TO BUILD AND REUPLOAD THE CONTAINER TO DOCKERHUB DUE TO A CHANGE IN THEIR POLICY\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eAs of \u003cem\u003e\u003cstrong\u003eNovember 1, 2020\u003c/strong\u003e\u003c/em\u003e Docker is implementing an inactive image removal policy, meaning in a free account (which is where this container is hosted) if the container is not \u003cem\u003e\u003cstrong\u003eupdated or pulled for 6 consecutive months\u003c/strong\u003e\u003c/em\u003e it will be \u003cem\u003e\u003cstrong\u003edeleted\u003c/strong\u003e\u003c/em\u003e. This isn\u0027t a huge issue, someone will just have to do the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBuild the container manually from the image file in this repository according to the instructions below\u003c/li\u003e\n\u003cli\u003eUpload it to another Dockerhub repository\u003c/li\u003e\n\u003cli\u003eUpdate the download links that reference the Dockerhub location with the new location\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eFEATURES\u003c/h1\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-label=\"Permalink: FEATURES\" href=\"#features\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eFull RAT-compatible environment, including ROOT5 (ROOT6 version now available), GEANT4 and scons\u003c/li\u003e\n\u003cli\u003eCan build any version of RAT\u003c/li\u003e\n\u003cli\u003eGUI output support on all operating systems\u003c/li\u003e\n\u003cli\u003eTensorFlow and CppFlow (CPU-only for the time being)\u003c/li\u003e\n\u003cli\u003eSingularity and Docker compatibility\u003c/li\u003e\n\u003cli\u003e*Cluster-compatible\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e*The image can be uploaded manually, pulled directly (if the cluster firewall permits) or run from /cvmfs; however, the cvmfs\nimage is not always up-to-date with the repo version. This has been \u003ca href=\"https://github.com/snoplus/rat-container/issues/8\"\u003eidentified as an issue\u003c/a\u003e with a possible solution posed.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003e[PLEASE READ]\u003c/h1\u003e\u003ca id=\"user-content-please-read\" class=\"anchor\" aria-label=\"Permalink: [PLEASE READ]\" href=\"#please-read\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity and Docker are similar tools but operate slightly differently. Singularity acts more like an overlay, where\nyou have access to your filesystem as you would \u003cstrong\u003eoutside\u003c/strong\u003e the container (with the same rights as you\u0027d have outside),\nwhereas Docker provides you with an isolated virtual filesystem (meaning you \u003cstrong\u003ecan\u0027t\u003c/strong\u003e access your files from outside\nthe container). In summary, it is best to \u003cstrong\u003emount\u003c/strong\u003e whatever directories you may need when running the container, whether\nin Docker or Singularity (see the section \"\u003cstrong\u003eTo write/execute files from directories outside of RAT/launch\ndirectory\u003c/strong\u003e\" below).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRegardless of whether you download or build the container, you can use and develop RAT as you see fit as it is external\nto the container.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInstructions to install Singularity can be found \u003ca href=\"https://github.com/sylabs/singularity/blob/master/INSTALL.md\"\u003ehere.\u003c/a\u003e For\nDocker, instructions for each platform can be found \u003ca href=\"https://docs.docker.com/install/#supported-platforms\" rel=\"nofollow\"\u003ehere.\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cstrong\u003eFor Singularity, version 3.2+ is required\u003c/strong\u003e\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003eFor Docker, version 19.0+ is required\u003c/strong\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003e\n\u003cp\u003eAs the DIRAC system no longer supports SL6, there is no longer a need to maintain an SL6 version when pushing new RAT releases to cvmfs. Therefore, the only image offered here is based on SL7.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eTo be clear, if you wish to use the prebuilt image, then you do NOT need to clone this repo; simply follow the\ninstructions below.\u003c/strong\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eNew Video Tutorial (slightly outdated - no longer necessary to source the setup-env.sh on startup)\u003c/h1\u003e\u003ca id=\"user-content-new-video-tutorial-slightly-outdated---no-longer-necessary-to-source-the-setup-envsh-on-startup\" class=\"anchor\" aria-label=\"Permalink: New Video Tutorial (slightly outdated - no longer necessary to source the setup-env.sh on startup)\" href=\"#new-video-tutorial-slightly-outdated---no-longer-necessary-to-source-the-setup-envsh-on-startup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.snolab.ca/snoplus/private/DocDB/0062/006281/001/RAT%20container%20tutorial.mp4\" rel=\"nofollow\"\u003eAvailable here (Requires SNO+ DocDB access)\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTo download the pre-built container\u003c/h1\u003e\u003ca id=\"user-content-to-download-the-pre-built-container\" class=\"anchor\" aria-label=\"Permalink: To download the pre-built container\" href=\"#to-download-the-pre-built-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eIf on a shared system/cluster\u003c/strong\u003e, Singularity should be available so use the following command to obtain the latest\nversion of the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name rat-container.sif docker://snoplus/rat-container:root5\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe tag (in the above command, \u003ccode\u003eroot5\u003c/code\u003e) can be replaced with the desired tag.\u003c/p\u003e\n\u003cp\u003eEnsure that the Singularity version you are using is \u003cstrong\u003e\u22653.2\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eAt the moment, certain clusters (like Cedar) have firewall rules preventing access to SingularityHub. There is a version of\nthe image located at \u003ccode\u003e/cvmfs/snoplus.egi.eu/sl7/sw/containers/rat-container.sif\u003c/code\u003e but keep in mind that it may not always be\nthe latest version (this shouldn\u0027t matter if you are simply building/running RAT).\u003c/p\u003e\n\u003chr\u003e\n\u003cp\u003e\u003cstrong\u003eIf on your own local machine\u003c/strong\u003e, Docker should be used as it is easier to install.\nThe command to obtain the latest version of the container for Docker is:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull snoplus/rat-container:root5\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe tag (in the above command, \u003ccode\u003eroot5\u003c/code\u003e) can be replaced with the desired tag.\u003c/p\u003e\n\u003cp\u003eDocker doesn\u0027t actually create a file in your working directory in the same way that Singularity does; rather, it\ndownloads the image layers and adds an entry to your local \u003cstrong\u003eDocker registry\u003c/strong\u003e which can be viewed by going:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker images\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis difference doesn\u0027t have an effect on how the container is actually used.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eInstructions on how to use the container with RAT\u003c/h1\u003e\u003ca id=\"user-content-instructions-on-how-to-use-the-container-with-rat\" class=\"anchor\" aria-label=\"Permalink: Instructions on how to use the container with RAT\" href=\"#instructions-on-how-to-use-the-container-with-rat\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eTo build RAT for the first time\u003c/strong\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eClone RAT from GitHub (\u003cstrong\u003eNOTE\u003c/strong\u003e - If on Windows, make sure you run \u003ccode\u003egit config --global core.autocrlf input\u003c/code\u003e prior to\ncloning or else Git will automatically change the Unix line-endings to Windows (which \u003cstrong\u003ewill break the next steps\u003c/strong\u003e)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eEnter the following command, filling in the path to RAT with your own.\nThis will mount your RAT repo to the directory \u003ccode\u003e/rat\u003c/code\u003e inside the container:\u003c/p\u003e\n\u003cp\u003eFor \u003cem\u003eSingularity\u003c/em\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell -B path/to/rat:/rat rat-container.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor \u003cem\u003eDocker\u003c/em\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -ti --init --rm -v /absolute/path/to/rat:/rat snoplus/rat-container\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cem\u003eNote\u003c/em\u003e - the \u003ccode\u003e-v\u003c/code\u003e flag operates the same as \u003ccode\u003e-B\u003c/code\u003e in Singularity BUT you \u003cstrong\u003emust\u003c/strong\u003e provide it with an absolute path (one starting at /);\nrelative paths (the path from where you are now) will \u003cstrong\u003enot\u003c/strong\u003e work.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eOnce in the container, Singularity users need to run the following:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esource /home/scripts/setup-env.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIn \u003cstrong\u003eDocker\u003c/strong\u003e this is \u003cstrong\u003eunnecessary\u003c/strong\u003e as Docker sources it automatically on launch.\nYou may see a message about how it could not find \u003ccode\u003e/rat/env.sh\u003c/code\u003e; this is expected as you have not built RAT yet.\nIf the build is successful, you shouldn\u0027t see this message next time.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFinally, run this command to build RAT:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esource /home/scripts/build-rat.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAlternatively, \u003ccode\u003escons\u003c/code\u003e can manually be called while in the \u003ccode\u003e/rat\u003c/code\u003e folder.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRAT is now ready to use! Look at the instructions below for how to run it\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cp\u003e\u003cstrong\u003eTo exit the container (Singularity and Docker)\u003c/strong\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexit\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003e\u003cstrong\u003eTo run RAT\u003c/strong\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eFirst, get a shell into the container with your RAT bound into it:\n(It is \u003cstrong\u003eimportant\u003c/strong\u003e to \u003cstrong\u003emount your rat directory to /rat\u003c/strong\u003e as the build scripts look there for it!)\u003c/p\u003e\n\u003cp\u003eFor \u003cem\u003eSingularity\u003c/em\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell -B path/to/rat:/rat rat-container.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor \u003cem\u003eDocker\u003c/em\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -ti --init --rm -v /absolute/path/to/rat:/rat snoplus/rat-container\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRAT is now ready for use, and you should be able to access the RAT repo itself at \u003ccode\u003e/rat\u003c/code\u003e. To use other\ndirectories, additional bind mounts are necessary (see below).\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cp\u003e\u003cstrong\u003eTo use GUI apps like ROOT\u0027s TBrowser\u003c/strong\u003e:\n(This is based on CERN\u0027s documentation for \u003ca href=\"https://hub.docker.com/r/rootproject/root-ubuntu16/\" rel=\"nofollow\"\u003erunning ROOT with graphics\u003c/a\u003e)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eThe process is different on each OS but I will outline steps here to make it work on each. Note that these instructions\nassume that since you are on your own machine, you are using \u003cstrong\u003eDocker\u003c/strong\u003e. Singularity may work with graphics as it is, but\nthese Docker solutions are the only ones that are tested and confirmed to be working.\u003c/p\u003e\n\u003cp\u003eFor \u003cstrong\u003eLinux\u003c/strong\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -ti --init --rm --user $(id -u) -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix -v /absolute/path/to/rat:/rat snoplus/rat-container\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAs you can see, the difference is a few extra options. As the command has gotten so large, you can \u003ca href=\"https://askubuntu.com/a/17538\" rel=\"nofollow\"\u003eset an alias in your .bashrc\u003c/a\u003e to something much shorter and more convenient.\u003c/p\u003e\n\u003cp\u003eFor \u003cstrong\u003eWindows 10\u003c/strong\u003e:\u003c/p\u003e\n\u003cp\u003eAs of the new May 2020 Windows update, the Windows Subsystem for Linux (WSL) version 2 is out. Docker desktop can be\nconfigured to use this which is the recommended way to run Docker on Windows. Ensure WSL2 is enabled in the Docker Desktop\nsettings, then follow these instructions:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDownload and install \u003ca href=\"https://sourceforge.net/projects/xming/\" rel=\"nofollow\"\u003eXming\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eWhen Windows prompts you to allow it in the firewall, do so.\u003c/li\u003e\n\u003cli\u003eFinally, restart Xming and now run the following command in Powershell or WSL2:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --init --rm -ti -e DISPLAY=host.docker.internal:0 -v /absolute/path/to/rat:/rat snoplus/rat-container\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor \u003cstrong\u003emacOS\u003c/strong\u003e:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eInstall \u003ca href=\"https://www.xquartz.org/\" rel=\"nofollow\"\u003eXQuartz\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eOpen XQuartz, and then go XQuartz -\u0026gt; Preferences -\u0026gt; Security, and tick the box \"Allow connections from network clients\"\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003exhost + 127.0.0.1\u003c/code\u003e which will whitelist your local IP\u003c/li\u003e\n\u003cli\u003eFinally, you can run the container with the following:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --rm --init -ti -v /tmp/.X11-unix:/tmp/.X11-unix -v /absolute/path/to/rat:/rat -e DISPLAY=host.docker.internal:0 snoplus/rat-container\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(The order \u003ccode\u003e-ti\u003c/code\u003e instead of \u003ccode\u003e-it\u003c/code\u003e seems to only matter for MacOS)\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cp\u003e\u003cstrong\u003eTo update RAT\u003c/strong\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eOutside of the container, \u003ccode\u003ecd\u003c/code\u003e into your RAT repo, and run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit pull origin master\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThen, run the container:\u003c/p\u003e\n\u003cp\u003eFor \u003cem\u003eSingularity\u003c/em\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell -B path/to/rat:/rat rat-container.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor \u003cem\u003eDocker\u003c/em\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -ti --init -v \"$(pwd)\"/rat:/rat snoplus/rat-container\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eNavigate to the RAT directory:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd /rat\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eFinally, run the build script (\u003ccode\u003e/home/scripts/build-rat.sh\u003c/code\u003e) or \u003ccode\u003escons\u003c/code\u003e directly to rebuild RAT:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003escons\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cp\u003e\u003cstrong\u003eTo write/execute files from directories outside of RAT/launch directory\u003c/strong\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eAdd additional bind mounts to your Singularity or Docker command\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003cp\u003eFor \u003cem\u003eSingularity\u003c/em\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell -B path/to/rat:/rat,/other/path:/stuff rat-container.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor \u003cem\u003eDocker\u003c/em\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --init --rm -ti -v /absolute/path/to/rat:/rat -v /other/path:/stuff snoplus/rat-container\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eNow in the container, you have access to /other/path at /stuff\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cp\u003e\u003cstrong\u003eTo use a specific branch of RAT\u003c/strong\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eEnsure you git checkout to the branch OUTSIDE the container to avoid issues, then run RAT like above\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cp\u003e\u003cstrong\u003eTo use TensorFlow/cppflow\u003c/strong\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe libraries are already installed (tensorflow at /usr/local/lib, cppflow repo is at /home/software) and\nthe environment variables are set in the setup-env.sh script, so you should be able to just use it after sourcing\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003e[ADVANCED]\u003c/h1\u003e\u003ca id=\"user-content-advanced\" class=\"anchor\" aria-label=\"Permalink: [ADVANCED]\" href=\"#advanced\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTo build the container\u003c/h1\u003e\u003ca id=\"user-content-to-build-the-container\" class=\"anchor\" aria-label=\"Permalink: To build the container\" href=\"#to-build-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo build, you must have \u003cstrong\u003eroot permissions\u003c/strong\u003e and \u003cstrong\u003eDocker installed on your machine\u003c/strong\u003e. Docker installation instructions can be found \u003ca href=\"https://docs.docker.com/get-docker/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e for each OS.\u003c/p\u003e\n\u003cp\u003eTo rebuild the container:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eClone this repository\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eNavigate into either \u003ccode\u003e/ROOT5\u003c/code\u003e or \u003ccode\u003e/ROOT6\u003c/code\u003e depending on which you would like to build off of\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eEdit \u003ccode\u003eDockerfile\u003c/code\u003e, which is the recipe on what you would like to put into your container\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eOnce you are happy with your changes, navigate back to the root of the repository and run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build -t YOUR_CONTAINER_TAG -f ROOT5/Dockerfile .\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere \u003ccode\u003eYOUR_CONTAINER_TAG\u003c/code\u003e is the name you would like to give to your container. Also, ensure you change \u003ccode\u003eROOT5\u003c/code\u003e to \u003ccode\u003eROOT6\u003c/code\u003e if using that version\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThis will build your container with your tag name, which you can then use in the same way as in the above guide, but instead of\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run ... snoplus/rat-container\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eyou will now run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run ... YOUR_TAG_NAME\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[OPTIONAL] If you would like to share or back up your container image, you can push it to Dockerhub. You can follow \u003ca href=\"https://docs.docker.com/docker-hub/repos/#pushing-a-docker-container-image-to-docker-hub\" rel=\"nofollow\"\u003ethe official documentation\u003c/a\u003e to learn how\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTo run multiple RAT instances\u003c/h1\u003e\u003ca id=\"user-content-to-run-multiple-rat-instances\" class=\"anchor\" aria-label=\"Permalink: To run multiple RAT instances\" href=\"#to-run-multiple-rat-instances\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you want to use multiple RAT instances simultaneously, then all you have to do is run an instance of this container\nwith each version of RAT that you want; do NOT try mounting multiple RATs to the SAME instance as the image was\nnot configured for this.\u003c/p\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTo modify Geant4\u003c/h1\u003e\u003ca id=\"user-content-to-modify-geant4\" class=\"anchor\" aria-label=\"Permalink: To modify Geant4\" href=\"#to-modify-geant4\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you need to edit Geant4 for any reason, you will have to modify the recipe file and make your changes accordingly, then\nrebuild the container.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eF.A.Q.\u003c/h1\u003e\u003ca id=\"user-content-faq\" class=\"anchor\" aria-label=\"Permalink: F.A.Q.\" href=\"#faq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eOn macOS I see \"docker: Error response from daemon: Mounts denied: The path ... is not shared from OS X and is not known to Docker.\"\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThis happens because Docker only allows mounting from 4 locations by default to follow Apple\u0027s sandbox guidelines; these locations are:\n\u003cpre\u003e\u003ccode\u003e/Users\n/tmp\n/private\n/Volumes\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003eEnsure your RAT repository is stored in one of these locations (the easiest would be simply under \u003ccode\u003e/Users/[your username]/rat\u003c/code\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eI\u0027m seeing \"/usr/bin/bash: /usr/bin/bash: cannot execute binary file\" when I try to run the container\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThis happens because you have \u003ccode\u003ebash\u003c/code\u003e at the end of your run command; in the new version, this is no longer necessary as it\nwill launch bash by itself.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eI\u0027m seeing \"Error getting image manifest using url...\" when I try to pull the container\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThis seems to happen on the clusters, most likely due to the firewall. Try pulling the container on your local machine,\nand transfer the image to your cluster with scp.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eI\u0027m seeing errors when running scons to rebuild RAT after updating to a new RAT release\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThis happens when you use the GUI-enabled docker command (not the standard command) when launching the container to rebuild\nRAT. Please review the instructions for how to update RAT above for the correct way to update.\u003c/li\u003e\n\u003cli\u003eThis can also happen if you don\u0027t run \u003ccode\u003escons\u003c/code\u003e within the \u003ccode\u003e/rat\u003c/code\u003e directory as it won\u0027t be able to find the correct files\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eWhen I try to open the TBrowser/another GUI app, it doesn\u0027t show\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThis is a known issue, and happens for two reasons. If you are trying to use the Docker version on your own machine, Docker\ndoes not have access to the display by default so there is some configuration required.\u003c/li\u003e\n\u003cli\u003eThe other issue is if you are trying to do this on a cluster with the Singularity version, you will notice the same thing.\nBecause you are remotely connected, the display is not configured by default to also connect.\u003c/li\u003e\n\u003cli\u003eKnown methods for getting a GUI working are listed in a section above for each OS under Docker.\u003c/li\u003e\n\u003c/ul\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 4,
- "topics": [],
- "updated_at": 1639774730.0
- },
- {
- "data_format": 2,
- "description": null,
- "filenames": [
- "Singularity"
+ "Singularity.1.0.12",
+ "Singularity.1.0.13",
+ "Singularity.1.0.10",
+ "Singularity.1.0.8",
+ "Singularity.1.1.3",
+ "Singularity.1.0.11",
+ "Singularity.1.0.7"
],
- "full_name": "photocyte/genometools_singularity",
+ "full_name": "powerPlant/checkm-srf",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity file for \u003ca href=\"https://github.com/genometools/genometools\"\u003egenometools\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eImage building handled by singularity-hub.org\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eUsage\u003c/h3\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://photocyte/genometools_singularity\nsingularity exec --cleanenv genometools_singularity_latest.sif gt -h\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2464\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the CheckM set of tools for assessing the quality of genomes recovered from isolates, single cells, or metagenomes\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1591204765.0
+ "updated_at": 1598504920.0
},
{
"data_format": 2,
- "description": "Singularity and Docker containers for day to day life",
+ "description": "Singularity recipe files for Pblat (http://icebert.github.io/pblat/)",
"filenames": [
"Singularity",
- "centos-from-sh/Singularity",
- "centos-from-dh/Singularity",
- "_xp/Singularity",
- "centos-from-me/Singularity"
+ "Singularity.2.0",
+ "Singularity.2.1"
],
- "full_name": "abhi18av/cli-tools",
+ "full_name": "powerPlant/pblat-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ecli-tools\u003c/h1\u003e\u003ca id=\"user-content-cli-tools\" class=\"anchor\" aria-label=\"Permalink: cli-tools\" href=\"#cli-tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/806\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity and Docker containers for day to day life\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://hub.docker.com/r/abhi18av/cli-tools/\" rel=\"nofollow\"\u003ehttps://hub.docker.com/r/abhi18av/cli-tools/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eInstall Datalad\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.singularity-hub.org/collections/667\" rel=\"nofollow\"\u003ehttps://www.singularity-hub.org/collections/667\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2380\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for Pblat, the parallelized blat with multi-threads support\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1522664549.0
+ "updated_at": 1550562816.0
},
{
"data_format": 2,
- "description": "BBTools is a suite of fast, multithreaded bioinformatics tools designed for analysis of DNA and RNA sequence data.",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.3.6.3"
],
- "full_name": "sghignone/BBTools",
+ "full_name": "tpall/singularity-stan",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eBBTools\u003c/h1\u003e\u003ca id=\"user-content-bbtools\" class=\"anchor\" aria-label=\"Permalink: BBTools\" href=\"#bbtools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4220\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eBBTools is a suite of fast, multithreaded bioinformatics tools designed for analysis of DNA and RNA sequence data.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRQCFilter2\u003c/h3\u003e\u003ca id=\"user-content-rqcfilter2\" class=\"anchor\" aria-label=\"Permalink: RQCFilter2\" href=\"#rqcfilter2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRQCFilter2 is a revised version of RQCFilter that uses a common path for all dependencies.\nThe dependencies are available at \u003ca href=\"http://portal.nersc.gov/dna/microbial/assembly/bushnell/RQCFilterData.tar\" rel=\"nofollow\"\u003ehttp://portal.nersc.gov/dna/microbial/assembly/bushnell/RQCFilterData.tar\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003ePerforms quality-trimming, artifact removal, linker-trimming, adapter trimming, and spike-in removal using BBDuk.\nPerforms human/cat/dog/mouse/microbe removal using BBMap.\nIt requires 40 GB RAM for mousecatdoghuman, but only 1GB or so without them.\u003c/p\u003e\n\u003cp\u003eUsage: rqcfilter2.sh in=\u0027\u0027 path=\u0027\u0027 rqcfilterdata=\u0027\u0027\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1616702144.0
+ "updated_at": 1603529584.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe for Deformetrica on Centos 7",
"filenames": [
"Singularity"
],
- "full_name": "darachm/singularity_dada2",
+ "full_name": "willgpaik/deformetrica_aci",
"latest_release": null,
- "readme": "\u003cp\u003eThis container is for providing \u003ccode\u003edada2\u003c/code\u003e for some bioinformatics pipelines.\u003c/p\u003e\n\u003cp\u003eThe primary reason for this is so that it flows nicely through SingularityHub\nfor Nextflow pipelines.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-deformetrica_aci\" class=\"anchor\" aria-hidden=\"true\" href=\"#deformetrica_aci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edeformetrica_aci\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for Deformetrica on Centos 7 for ACI-ICS clusters\u003c/p\u003e\n\u003cp\u003e2019/2/14\u003cbr\u003e\nAnaconda3 ver. 2018.12\u003cbr\u003e\nDeformetrica 4.1\u003cbr\u003e\nGUI can be used through EoD\u003c/p\u003e\n\u003cp\u003eCommands:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; source activate deformetrica \n\u0026gt; deformetrica \nOr, \n\u0026gt; deformetrica gui\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e2020/9/21\u003cbr\u003e\nGPU support is added\u003cbr\u003e\nAnaconda, Python, and Deformetrica are updated\u003c/p\u003e\n\u003cp\u003e2020/10/9\u003cbr\u003e\nPyTorch and PyKeOps are added\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1546750956.0
+ "updated_at": 1602342657.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity image running R tidyverse + some other libraries",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.3.6.3"
],
- "full_name": "cmaumet/nipype_tutorial",
+ "full_name": "tpall/singularity-tidyverse",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eNipype Tutorial Notebooks\u003c/h1\u003e\u003ca id=\"user-content-nipype-tutorial-notebooks\" class=\"anchor\" aria-label=\"Permalink: Nipype Tutorial Notebooks\" href=\"#nipype-tutorial-notebooks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://circleci.com/gh/miykael/nipype_tutorial/tree/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/56c6ab80fc1ecc6792d64bd85b8e69e8b5992d1defa85e34eded3ab11381af28/68747470733a2f2f636972636c6563692e636f6d2f67682f6d69796b61656c2f6e69707970655f7475746f7269616c2e7376673f7374796c653d736869656c64\" alt=\"CircleCi\" data-canonical-src=\"https://circleci.com/gh/miykael/nipype_tutorial.svg?style=shield\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/miykael/nipype_tutorial/issues/\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/51ab5247214bfa948735d8c78ac468a02aa35e06a4cc7382d3f1c5e57406a802/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6d69796b61656c2f6e69707970655f7475746f7269616c2e737667\" alt=\"GitHub issues\" data-canonical-src=\"https://img.shields.io/github/issues/miykael/nipype_tutorial.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/miykael/nipype_tutorial/pulls/\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ccc0801d4de090929a683cd8f409c9e9f73d71b8d6b26c744b2192308ab5d092/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732d70722f6d69796b61656c2f6e69707970655f7475746f7269616c2e737667\" alt=\"GitHub pull-requests\" data-canonical-src=\"https://img.shields.io/github/issues-pr/miykael/nipype_tutorial.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://GitHub.com/miykael/nipype_tutorial/graphs/contributors/\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f02cdc559a57384d13bb14ef068095850e66cfade8c0fa1acb2c454722106bb1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f636f6e7472696275746f72732f6d69796b61656c2f6e69707970655f7475746f7269616c2e737667\" alt=\"GitHub contributors\" data-canonical-src=\"https://img.shields.io/github/contributors/miykael/nipype_tutorial.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/miykael/nipype_tutorial/commits/master\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/df38a8439e58dc92bec26953fe15dbafbcae2edf29c51c8e054fc98eed3966ab/68747470733a2f2f6769746875622d62617369632d6261646765732e6865726f6b756170702e636f6d2f636f6d6d6974732f6d69796b61656c2f6e69707970655f7475746f7269616c2e737667\" alt=\"GitHub Commits\" data-canonical-src=\"https://github-basic-badges.herokuapp.com/commits/miykael/nipype_tutorial.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/miykael/nipype_tutorial/archive/master.zip\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2829b238d51781fa9e31df4b384ba49370c5229d509e5e26cd7a96ce7d9178d9/68747470733a2f2f6769746875622d73697a652d62616467652e6865726f6b756170702e636f6d2f6d69796b61656c2f6e69707970655f7475746f7269616c2e737667\" alt=\"GitHub size\" data-canonical-src=\"https://github-size-badge.herokuapp.com/miykael/nipype_tutorial.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/miykael/nipype_tutorial/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ad2f8b06984b0f1d27d678f47c1f11518aa015202885ef2b9e812daa5c84743b/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f70756c6c732f6d69796b61656c2f6e69707970655f7475746f7269616c2e7376673f6d61784167653d32353932303030\" alt=\"Docker Hub\" data-canonical-src=\"https://img.shields.io/docker/pulls/miykael/nipype_tutorial.svg?maxAge=2592000\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"http://hits.dwyl.io/miykael/nipype_tutorial\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5ab300fb01bfcec0b74484c2d85efe06524b363f0460c63fe55fe2e3c84bd9ae/687474703a2f2f686974732e6477796c2e696f2f6d69796b61656c2f6e69707970655f7475746f7269616c2e737667\" alt=\"GitHub HitCount\" data-canonical-src=\"http://hits.dwyl.io/miykael/nipype_tutorial.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis is the Nipype Tutorial in Jupyter Notebook format. You can access the tutorial in two ways:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ca href=\"https://miykael.github.io/nipype_tutorial/\" rel=\"nofollow\"\u003eNipype Tutorial Homepage\u003c/a\u003e: This website contains a static, read-only version of all the notebooks.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://miykael.github.io/nipype_tutorial/notebooks/introduction_docker.html\" rel=\"nofollow\"\u003eNipype Tutorial Docker Image\u003c/a\u003e: This guide explains how to use Docker to run the notebooks interactively on your own computer. The nipype tutorial docker image is the best interactive way to learn Nipype.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eFeedback, Help \u0026amp; Support\u003c/h1\u003e\u003ca id=\"user-content-feedback-help--support\" class=\"anchor\" aria-label=\"Permalink: Feedback, Help \u0026amp; Support\" href=\"#feedback-help--support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you want to help with this tutorial or have any questions, feel free to fork the repo of the \u003ca href=\"https://github.com/miykael/nipype_tutorial\"\u003eNotebooks\u003c/a\u003e or interact with other contributors on the slack channel \u003ca href=\"https://brainhack.slack.com/messages/nipype/\" rel=\"nofollow\"\u003ebrainhack.slack.com/messages/nipype/\u003c/a\u003e. If you have any questions or found a problem, open a new \u003ca href=\"https://github.com/miykael/nipype_tutorial/issues\"\u003eissue on github\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eThanks and Acknowledgment\u003c/h1\u003e\u003ca id=\"user-content-thanks-and-acknowledgment\" class=\"anchor\" aria-label=\"Permalink: Thanks and Acknowledgment\" href=\"#thanks-and-acknowledgment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA huge thanks to \u003ca href=\"https://github.com/mwaskom\"\u003eMichael Waskom\u003c/a\u003e, \u003ca href=\"https://github.com/oesteban\"\u003eOscar Esteban\u003c/a\u003e, \u003ca href=\"https://github.com/chrisfilo\"\u003eChris Gorgolewski\u003c/a\u003e and \u003ca href=\"https://github.com/satra\"\u003eSatrajit Ghosh\u003c/a\u003e for their input to this tutorial! And a huge thanks to \u003ca href=\"https://github.com/djarecka/\"\u003eDorota Jarecka\u003c/a\u003e who updated this tutorial to Python 3 and is helping me with keeping this tutorial updated and running!\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2366\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-singularity-tidyverse\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-tidyverse\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity tidyverse\u003c/h2\u003e\n\u003cp\u003eThis will run R tidyverse + some other packages, like \u003cem\u003ehere\u003c/em\u003e, \u003cem\u003ereadxl\u003c/em\u003e, \u003cem\u003elubridate\u003c/em\u003e, \u003cem\u003ebookdown\u003c/em\u003e, etc.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1538064645.0
+ "updated_at": 1608284812.0
},
{
"data_format": 2,
- "description": "transcritp assembly programs in one container",
+ "description": "Singularity recipe files for RaGOO (https://github.com/malonge/RaGOO)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.1.02",
+ "Singularity.1.01"
],
- "full_name": "aseetharam/transcript-assemblers",
+ "full_name": "powerPlant/ragoo-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDirect Evidence Pipeline Container \u003ca href=\"https://singularity-hub.org/collections/4893\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\u003ca id=\"user-content-direct-evidence-pipeline-container-\" class=\"anchor\" aria-label=\"Permalink: Direct Evidence Pipeline Container \" href=\"#direct-evidence-pipeline-container-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis image contains all the tools required to run the direct evidence pipeline. For the complete pipeline workflow, see this \u003ca href=\"\"\u003epaste some link here\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGetting Started\u003c/h2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-label=\"Permalink: Getting Started\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo get the container:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull evidence.sif shub://aseetharam/transcript-assemblers\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis will create a \u003ccode\u003eevidence.sif\u003c/code\u003e image, with the required programs pre-installed. All the programs required for evidence-based gene prediction are installed in this image and you can either run the pipeline by hand or use the Snakemake/Nextflow workflows to run them.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePrerequisities\u003c/h3\u003e\u003ca id=\"user-content-prerequisities\" class=\"anchor\" aria-label=\"Permalink: Prerequisities\" href=\"#prerequisities\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn order to run this container you\u0027ll need \u003ca href=\"https://sylabs.io/guides/3.0/user-guide/installation.html\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e installed.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eUsage\u003c/h3\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eEach tool has their own usage, so please check individual tools and their requirements if you are running them by hand.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Transcript assemblers:\nsingularity run --cleanenv evidence.sif Trinity\nsingularity run --cleanenv evidence.sif class\nsingularity run --cleanenv evidence.sif strawberry\nsingularity run --cleanenv evidence.sif stringtie\nsingularity run --cleanenv evidence.sif cufflinks\n\n# ORF predictor\nsingularity run --cleanenv evidence.sif TransDecoder.LongOrfs\nsingularity run --cleanenv evidence.sif orfipy\n\n# Mikado-related\nsingularity run --cleanenv evidence.sif mikado\nsingularity run --cleanenv evidence.sif diamond\nsingularity run --cleanenv evidence.sif portcullis\nsingularity run --cleanenv evidence.sif samtools\nsingularity run --cleanenv evidence.sif prodigal\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eEnvironment Variables\u003c/h3\u003e\u003ca id=\"user-content-environment-variables\" class=\"anchor\" aria-label=\"Permalink: Environment Variables\" href=\"#environment-variables\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ePATH\u003c/code\u003e Location for all the installed tools\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ePYTHONDONTWRITEBYTECODE\u003c/code\u003e set to true\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eTRINITY_HOME\u003c/code\u003e to utlilites to work\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eExample run\u003c/h2\u003e\u003ca id=\"user-content-example-run\" class=\"anchor\" aria-label=\"Permalink: Example run\" href=\"#example-run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor running on your data:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ewill update this section later\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eToDo\u003c/h2\u003e\u003ca id=\"user-content-todo\" class=\"anchor\" aria-label=\"Permalink: ToDo\" href=\"#todo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eAdd \u003ca href=\"https://github.com/NBISweden/AGAT\"\u003eAGAT\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eAdd \u003ca href=\"\"\u003e\u003ccode\u003ephylostratR\u003c/code\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eAdd \u003ca href=\"\"\u003eTESorter\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eAdd \u003ca href=\"\"\u003eOrthoFinder\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eAdd \u003ca href=\"\"\u003eBioAwk\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAuthors\u003c/h2\u003e\u003ca id=\"user-content-authors\" class=\"anchor\" aria-label=\"Permalink: Authors\" href=\"#authors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eArun Seetharam\u003c/strong\u003e - \u003cem\u003eauthor \u0026amp; maintainer\u003c/em\u003e - \u003ca href=\"\"\u003eWebPage\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSee also the list of \u003ca href=\"https://github.com/your/repository/contributors\"\u003econtributors\u003c/a\u003e who\nparticipated in this project.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2341\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the RaGOO tool to order and orient genome assembly contigs via Minimap2 alignments to a reference genome\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1618590617.0
+ "updated_at": 1550774761.0
},
{
"data_format": 2,
- "description": "This is a read-only mirror of the git repos at https://bioconductor.org",
+ "description": "Singularity recipe files for NovoGraph (https://github.com/NCBI-Hackathons/NovoGraph)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.1.0.0"
],
- "full_name": "bioc/TSRchitect",
+ "full_name": "powerPlant/novograph-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTSRchitect: Promoter identification from diverse types of large-scale TSS profiling data\u003c/h1\u003e\u003ca id=\"user-content-tsrchitect-promoter-identification-from-diverse-types-of-large-scale-tss-profiling-data\" class=\"anchor\" aria-label=\"Permalink: TSRchitect: Promoter identification from diverse types of large-scale TSS profiling data\" href=\"#tsrchitect-promoter-identification-from-diverse-types-of-large-scale-tss-profiling-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe TSRchitect repository encompasses an \u003ca href=\"https://www.r-project.org/\" rel=\"nofollow\"\u003eR\u003c/a\u003e\npackage developed in the \u003ca href=\"http://brendelgroup.org/\" rel=\"nofollow\"\u003eBrendel Group\u003c/a\u003e for analyses\nof transcription start site data.\nThe code conforms to our \u003ca href=\"https://brendelgroup.github.io/\" rel=\"nofollow\"\u003eRAMOSE\u003c/a\u003e\nphilosophy: it generates \u003cstrong\u003ereproducible\u003c/strong\u003e, \u003cstrong\u003eaccurate\u003c/strong\u003e, and \u003cstrong\u003emeaningful\u003c/strong\u003e\nresults; it is \u003cstrong\u003eopen\u003c/strong\u003e (source) and designed to be \u003cstrong\u003escalable\u003c/strong\u003e and\n\u003cstrong\u003eeasy\u003c/strong\u003e to use.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQuick Start \u003ca href=\"https://singularity-hub.org/collections/1204\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\u003ca id=\"user-content-quick-start-\" class=\"anchor\" aria-label=\"Permalink: Quick Start \" href=\"#quick-start-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInput to TSRchitect will be transcription profiling read alignment data in \u003ccode\u003ebam\u003c/code\u003e\nor \u003ccode\u003ebed\u003c/code\u003e format as well as the appropriate genome annotation (if\navailable).\nOutput consists of predicted Transcription Start Sites (TSS) and Transcription\nStart Regions (TSR) as well as statistics summarizing the distribution and\ncharacteristics of identified TSSs and TSRs.\u003c/p\u003e\n\u003cp\u003eAll the TSRchitect dependencies are encapsulated in a\n\u003ca href=\"https://www.sylabs.io/docs/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e container available from\n\u003ca href=\"https://singularity-hub.org/\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e.\nThus, once you know what you are doing, execution could be as simple as\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name tsr.simg shub://BrendelGroup/TSRchitect\nsingularity exec tsr.simg R\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhich will bring up an \u003ca href=\"https://www.r-project.org/\" rel=\"nofollow\"\u003eR\u003c/a\u003e console with the\nTSRchitect library and all its prerequisites available.\nFor example, in that console, you should see\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eR version 3.5.3 (2019-03-11) -- \"Great Truth\"\n...\n\u0026gt; packageVersion(\"TSRchitect\")\n[1] \u00271.13.5\u0027\n\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRealistic Start\u003c/h2\u003e\u003ca id=\"user-content-realistic-start\" class=\"anchor\" aria-label=\"Permalink: Realistic Start\" href=\"#realistic-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePlease find detailed installation instructions and options in the\n\u003ca href=\"./INSTALL.md\"\u003eINSTALL\u003c/a\u003e document.\nOnce all preparatory steps are taken care of, see the \u003ca href=\"./demo/HOWTO.md\"\u003eHOWTO\u003c/a\u003e\ndocument for examples of how to load data into TSRchitect and predict and\ncharacterize promoters.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eFAQ and References\u003c/h2\u003e\u003ca id=\"user-content-faq-and-references\" class=\"anchor\" aria-label=\"Permalink: FAQ and References\" href=\"#faq-and-references\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePlease see\n\u003ca href=\"https://github.com/vpbrendel/TSRchitect/wiki/FAQ\"\u003eV. Brendel\u0027s TSRchitect FAQ\u003c/a\u003e\nfor usage examples and suggestions.\u003c/p\u003e\n\u003cp\u003eIf you find \u003cem\u003eTSRchitect\u003c/em\u003e useful, you may cite:\u003c/p\u003e\n\u003cp\u003eRaborn RT, Sridharan K, Brendel VP (2017)\n\u003cem\u003eTSRchitect: Promoter identification from large-scale TSS profiling data.\u003c/em\u003e\ndoi: 10.18129/B9.bioc.TSRchitect, \u003ca href=\"https://doi.org/doi:10.18129/B9.bioc.TSRchitect\" rel=\"nofollow\"\u003ehttps://doi.org/doi:10.18129/B9.bioc.TSRchitect\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eOur own publications will be linked here in due course.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContact\u003c/h2\u003e\u003ca id=\"user-content-contact\" class=\"anchor\" aria-label=\"Permalink: Contact\" href=\"#contact\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePlease direct all comments and suggestions to\n\u003ca href=\"mailto:vbrendel@indiana.edu\"\u003eVolker Brendel\u003c/a\u003e\nat \u003ca href=\"http://brendelgroup.org/\" rel=\"nofollow\"\u003eIndiana University\u003c/a\u003e and\n\u003ca href=\"mailto:rtraborn@asu.edu\"\u003eTaylor Raborn\u003c/a\u003e at his current address.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2342\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the NovoGraph tool to construct a genome graph representation of long-read-based de novo sequence assemblies\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1689261643.0
+ "updated_at": 1550014659.0
},
{
"data_format": 2,
- "description": "Creates graphs from problem instance pddl inputs",
+ "description": "Singularity recipe files for SWAN (http://bitbucket.org/charade/swan)",
"filenames": [
- "Singularity"
+ "Singularity.3516c2f"
],
- "full_name": "JesseBrouw/GraphCreate",
+ "full_name": "powerPlant/swan-srf",
"latest_release": null,
- "readme": "\u003cp\u003eFast Downward is a domain-independent planning system.\u003c/p\u003e\n\u003cp\u003eFor documentation and contact information see \u003ca href=\"http://www.fast-downward.org/\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org/\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe following directories are not part of Fast Downward as covered by this\nlicense:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify it under\nthe terms of the GNU General Public License as published by the Free Software\nFoundation, either version 3 of the License, or (at your option) any later\nversion.\n\nFast Downward is distributed in the hope that it will be useful, but WITHOUT ANY\nWARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A\nPARTICULAR PURPOSE. See the GNU General Public License for more details.\n\nYou should have received a copy of the GNU General Public License along with\nthis program. If not, see \u0026lt;http://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2354\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the SWAN tool for SV detection\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1671531108.0
+ "updated_at": 1550114140.0
},
{
"data_format": 2,
- "description": "SE4HPC @POLIMI",
+ "description": "A thin Singularity image used as an alternative to Proot to wrap applications in an arbitrary file system.",
"filenames": [
"Singularity"
],
- "full_name": "fdallac/HPC-DevOps-exercise-part2",
+ "full_name": "OSC/centos7-launcher",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eBrief description of CI/CD Github Actions Workflows\u003c/h1\u003e\u003ca id=\"user-content-brief-description-of-cicd-github-actions-workflows\" class=\"anchor\" aria-label=\"Permalink: Brief description of CI/CD Github Actions Workflows\" href=\"#brief-description-of-cicd-github-actions-workflows\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eauto-test.yaml\u003c/strong\u003e: Simple CI/CD workflow for building the executable (using CMake) and running the Unit Tests defined in \"test\\test_matrix_multiplication.cpp\"\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eauto-test-in-container.yaml\u003c/strong\u003e: CI/CD workflow for building a Docker image (from the Dockerfile in the repo) and push the image in Github Container Registry, generating a package and the artifact attestation. Then the Docker image is runned in order to launch Unit Tests, which are written in a test.log artifact (see an example in \"outputs\" folder)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eauto-test-container-on-cineca-cluster.yaml\u003c/strong\u003e: CI/CD workflow for building a Singularity container (from the Singularity file in the repo), deploy it into the CINECA cluster (Galileo100) and run the container. Output and error logs are then upload as artifacts (see examples in \"outputs\" folder)\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSE4HPCproject\u003c/h1\u003e\u003ca id=\"user-content-se4hpcproject\" class=\"anchor\" aria-label=\"Permalink: SE4HPCproject\" href=\"#se4hpcproject\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStep 2 -- From build to release and manual job execution\u003c/h2\u003e\u003ca id=\"user-content-step-2----from-build-to-release-and-manual-job-execution\" class=\"anchor\" aria-label=\"Permalink: Step 2 -- From build to release and manual job execution\" href=\"#step-2----from-build-to-release-and-manual-job-execution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFocus now on the correct implementation of the matrix multiplication you\nfind in \u003ca href=\"https://github.com/SimoneReale/SE4HPC_project_part2\"\u003ehttps://github.com/SimoneReale/SE4HPC_project_part2\u003c/a\u003e. This is a\nparallel implementation that uses MPI and reads the matrices to be\nmultiplied from two files, matrixA.txt and matrixB.txt. In these files\nthe first row contains the matrix dimensions (number of rows and\ncolumns), while the other rows contain the matrix itself.\u003c/p\u003e\n\u003cp\u003eYour task is to perform the following steps:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ePreparation\u003c/strong\u003e: Use the template available here\n\u003ca href=\"https://github.com/SimoneReale/SE4HPC_project_part2\"\u003ehttps://github.com/SimoneReale/SE4HPC_project_part2\u003c/a\u003e to create your own\ngithub repository. Add to this repository the tests you have created in\nStep1.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eAutomating the build, test and release processes\u003c/strong\u003e: Create a CI/CD\npipeline that, when someone pushes files in the repo, executes the\nbuilding and testing process.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eContainerizing the application\u003c/strong\u003e: Go through the following steps:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eDefine a Singularity container descriptor for the matrix\nmultiplication program and push it in your repo.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eExtend the created action to create a container image from your\ndescription.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eExecuting on the cluster\u003c/strong\u003e: Go through the following steps:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eCreate a job.sh file to run your containerized application. Make\nsure that the standard output and error are mapped to txt files.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eTransfer on Galileo100 your job script and the container.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSubmit your job to the cluster and check whether it works correctly.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ePush on your github repository your job.sh file and the files\nobtained from the execution of the matrix multiplication.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eStep 3 -- Automating a job submission with containerization\u003c/h2\u003e\u003ca id=\"user-content-step-3----automating-a-job-submission-with-containerization\" class=\"anchor\" aria-label=\"Permalink: Step 3 -- Automating a job submission with containerization\" href=\"#step-3----automating-a-job-submission-with-containerization\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eExtend the action you have created at step 3 to automate completely the\nprocess from a push on the repository to the execution of the\ncontainerized software on SLURM. To do so, you will have to move your\ncontainer from the runner to the cluster. You can either use the scp\ncommand or you can publish your image on the Singularity registry and\nthen pull it from the cluster. Don\u0027t forget to handle your secrets\nproperly! You do not want to leave passwords and authentication tokens\nvisible to everybody, so you will use the \u003ca href=\"https://docs.github.com/en/actions/security-guides/using-secrets-in-github-actions?tool=cli\"\u003esecrets\nmechanism\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-centos7-launcher\" class=\"anchor\" aria-hidden=\"true\" href=\"#centos7-launcher\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecentos7-launcher\u003c/h1\u003e\n\u003cp\u003eA Singularity image used wrap applications RStudio \u003ccode\u003erserver\u003c/code\u003e instances in an arbitrary file system for use with \u003ca href=\"http://openondemand.org/\" rel=\"nofollow\"\u003eOnDemand\u003c/a\u003e. Tested as compatible with Singularity 2.x and 3.x.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage:\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity-2x\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-2x\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity 2.x\u003c/h3\u003e\n\u003cp\u003eTODO...\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity-3x\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-3x\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity 3.x\u003c/h3\u003e\n\u003cp\u003eTODO...\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1717595406.0
+ "updated_at": 1550176998.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for MAPGD (https://github.com/LynchLab/MAPGD)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.0.4.38-d3edee2"
],
- "full_name": "kavonrtep/cenh3_chip_seq_pipeline",
- "latest_release": "0.1.1",
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCHIP seq analysis pipeline\u003c/h1\u003e\u003ca id=\"user-content-chip-seq-analysis-pipeline\" class=\"anchor\" aria-label=\"Permalink: CHIP seq analysis pipeline\" href=\"#chip-seq-analysis-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis pipeline is designed to analyze ChIP-seq data using a series of tools like epic2, Macs3 and deeptools. The pipeline is intended to be used for detection of broad peaks. The pipeline is encapsulated in a Singularity container.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequirements\u003c/h2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity is required to use the container. Singularity can be installed using conda environment.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda create -n singularity3 -c conda-forge \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003esingularity\u0026gt;=3.6\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\nconda activate singularity3\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eQuick Start\u003c/h2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-label=\"Permalink: Quick Start\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity image (.sif file) can be downloaded from \u003ca href=\"https://github.com/kavonrtep/cenh3_chip_seq_pipeline/releases\"\u003ehttps://github.com/kavonrtep/cenh3_chip_seq_pipeline/releases\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eInput files for the pipeline are provided in \u003ccode\u003econfig.yaml\u003c/code\u003e file. The file contains the following fields:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003egenome_fasta\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e/path/to/genome.fasta\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003esamples\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003einput\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e/path/to/input.fastq.gz\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003echip\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e/path/to/chip.fastq.gz\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003eoutput_dir\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e/path/to/output\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eInput and ChIP could be \u003ccode\u003efastq\u003c/code\u003e or \u003ccode\u003efastq.gz\u003c/code\u003e files. To run the pipeline, execute the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run -B /path/to/ -B \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e chipseq_pipeline.sif -c config.yaml -t 20\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eParameter \u003ccode\u003e-t\u003c/code\u003e specifies the number of threads to use. Singularity parameter \u003ccode\u003e-B\u003c/code\u003e is used to bind the input and output directories to the container. Without this parameter, the container will not be able to access the input and output files. File \u003ccode\u003econfig.yaml\u003c/code\u003e must be also in directory which is accessible to the container. In the example above this is the current directory \u003ccode\u003e$PWD\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eIf you have files in different directories, you can specify multiple \u003ccode\u003e-B\u003c/code\u003e parameters. For example if your \u003ccode\u003econfig.yaml\u003c/code\u003e is:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003egenome_fasta\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e/mnt/data/genomes/genome.fasta\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003esamples\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003einput\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e/mnt/data/fastq_reads/input.fastq.gz\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003echip\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e/mnt/data/fastq_reads/chip.fastq.gz\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003eoutput_dir\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e/mnt/data/outputs/output\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen you can use:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run -B /mnt/data/genomes \\\n-B /mnt/data/fastq_reads -B /mnt/data/outputs \\\n-B \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e chipseq_pipeline.sif -c config.yaml -t 20\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eOr you can use the following command to bind the whole directory \u003ccode\u003e/mnt/data\u003c/code\u003e to the container\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run -B /mnt/data -B \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e chipseq_pipeline.sif -c config.yaml -t 20\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOutput structure\u003c/h2\u003e\u003ca id=\"user-content-output-structure\" class=\"anchor\" aria-label=\"Permalink: Output structure\" href=\"#output-structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe pipeline will create the following files and folders in the output directory:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eoutput/\n\u251c\u2500\u2500 epic2/\n\u2502 \u251c\u2500\u2500 epic2_all.bs2000.csv\n\u2502 \u251c\u2500\u2500 epic2_all.default.csv\n\u2502 \u251c\u2500\u2500 epic2_unique.bs2000.csv\n\u2502 \u2514\u2500\u2500 epic2_unique.default.csv\n\u251c\u2500\u2500 macs3/\n\u2502 \u251c\u2500\u2500 macs3_all_peaks.broadPeak\n\u2502 \u251c\u2500\u2500 macs3_all_peaks.gappedPeak\n\u2502 \u251c\u2500\u2500 macs3_all_peaks.xls\n\u2502 \u251c\u2500\u2500 macs3_unique_peaks.broadPeak\n\u2502 \u251c\u2500\u2500 macs3_unique_peaks.gappedPeak\n\u2502 \u2514\u2500\u2500 macs3_unique_peaks.xls\n\u251c\u2500\u2500 mapped_reads/\n\u2502 \u251c\u2500\u2500 chip.all.bam\n\u2502 \u251c\u2500\u2500 chip.all.sorted.bam\n\u2502 \u251c\u2500\u2500 chip.all.sorted.bam.csi\n\u2502 \u251c\u2500\u2500 chip.unique.sorted.bam\n\u2502 \u251c\u2500\u2500 chip.unique.sorted.bam.csi\n\u2502 \u251c\u2500\u2500 input.all.bam\n\u2502 \u251c\u2500\u2500 input.all.sorted.bam\n\u2502 \u251c\u2500\u2500 input.all.sorted.bam.csi\n\u2502 \u251c\u2500\u2500 input.unique.sorted.bam\n\u2502 \u2514\u2500\u2500 input.unique.sorted.bam.csi\n\u251c\u2500\u2500 chip_vs_input_all.bs2000.bw \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e output from bamCompare, bin witdh 2000bp\u003c/span\u003e\n\u251c\u2500\u2500 chip_vs_input_all.bs200.bw \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e output from bamCompare, bin witdh 200bp\u003c/span\u003e\n\u251c\u2500\u2500 chip_vs_input_unique.bs2000.bw \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e output from bamCompare on uniquely mapped reads, bin with 2000bp\u003c/span\u003e\n\u251c\u2500\u2500 chip_vs_input_unique.bs200.bw \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e output from bamCompare on uniquely mapped reads, bin with 200bp\u003c/span\u003e\n\u251c\u2500\u2500 epic2_all.bs2000.bedgraph \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e output from epic2, bin width 2000bp\u003c/span\u003e\n\u251c\u2500\u2500 epic2_all.default.bedgraph \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e output from epic2, default bin width (200bp)\u003c/span\u003e\n\u251c\u2500\u2500 epic2_unique.bs2000.bedgraph \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e output from epic2 on uniquely mapped reads, bin width 2000bp\u003c/span\u003e\n\u251c\u2500\u2500 epic2_unique.default.bedgraph \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e output from epic2 on uniquely mapped reads, default bin width (200bp)\u003c/span\u003e\n\u251c\u2500\u2500 macs3_all_peaks.bedgraph \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e output from macs3, broadPeaks as bedgraph\u003c/span\u003e\n\u2514\u2500\u2500 macs3_unique_peaks.bedgraph \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e output from macs3 on uniquely mapped reads, broadPeaks as bedgraph\u003c/span\u003e\n\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild the container\u003c/h2\u003e\u003ca id=\"user-content-build-the-container\" class=\"anchor\" aria-label=\"Permalink: Build the container\" href=\"#build-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo build the container, run the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eSINGULARITY=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e`\u003c/span\u003ewhich singularity\u003cspan class=\"pl-pds\"\u003e`\u003c/span\u003e\u003c/span\u003e\nsudo \u003cspan class=\"pl-smi\"\u003e$SINGULARITY\u003c/span\u003e build chipseq_pipeline.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n",
+ "full_name": "powerPlant/mapgd-srf",
+ "latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2319\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the MAPGD series of related programs for the analysis of low coverage population genomic data or for the analysis of pooled data\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1719908278.0
+ "updated_at": 1549853299.0
},
{
"data_format": 2,
- "description": "Nextflow pipeline to analyse gene expression in plants",
+ "description": "Singularity recipe files for DIAMOND (https://github.com/bbuchfink/diamond)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.v0.9.15",
+ "Singularity.v0.9.18",
+ "Singularity.v0.9.22",
+ "Singularity.v0.9.16",
+ "Singularity.v0.9.19",
+ "Singularity.v0.9.21",
+ "Singularity.v0.9.20",
+ "Singularity.v0.9.23",
+ "Singularity.v0.9.24",
+ "Singularity.v0.9.17"
],
- "full_name": "lifebit-ai/Plant-RNASeq",
+ "full_name": "powerPlant/diamond-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003enf-core/plant-rnaseq\u003c/h1\u003e\u003ca id=\"user-content-nf-coreplant-rnaseq\" class=\"anchor\" aria-label=\"Permalink: nf-core/plant-rnaseq\" href=\"#nf-coreplant-rnaseq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eNextflow pipeline to analyse gene expression in plants\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nf-core/plant-rnaseq\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/08cebaf367d11339b060cd29e866226fea535bdb77cd3c6ea6d27626115e8723/68747470733a2f2f7472617669732d63692e6f72672f6e662d636f72652f706c616e742d726e617365712e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nf-core/plant-rnaseq.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b9d943c6da4bb0a73fe6bc476304001a1e93cbc8ccadf264da8fe47716ab6c53/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33322e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.32.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/00ceea296d710222922f0f50135c1c5453f5da6e106d89c3af96072c6dcc6d8a/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/plant-rnaseq\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/076f241f2cae896efc7d9ebd3bd36558690eeb6574cb81c81410fc61a47d4d9c/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f706c616e742d726e617365712e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/plant-rnaseq.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/3f0c745c9a388bc1b2b56ea29cd21a301b7736d98bcfea6cdb5a2c5ee2129f11/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3f0c745c9a388bc1b2b56ea29cd21a301b7736d98bcfea6cdb5a2c5ee2129f11/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eIntroduction\u003c/h3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDocumentation\u003c/h3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-label=\"Permalink: Documentation\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe nf-core/plant-rnaseq pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/local.md\"\u003eLocal installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eAdding your own system\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2322\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the DIAMOND Accelerated BLAST compatible local sequence aligner\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1550739422.0
+ "updated_at": 1549857110.0
},
{
"data_format": 2,
- "description": "Utilities and models for Arabic Natural Language Processing.",
+ "description": "Singularity recipe files for pcl (https://github.com/PointCloudLibrary/pcl)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.1.9.1",
+ "Singularity.1.9.0",
+ "Singularity.1.8.1"
],
- "full_name": "clu-ling/wanlp-2021",
+ "full_name": "powerPlant/pcl-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003earabic-nlp\u003c/h1\u003e\u003ca id=\"user-content-arabic-nlp\" class=\"anchor\" aria-label=\"Permalink: arabic-nlp\" href=\"#arabic-nlp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eModels and utilities for Arabic NLP.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDevelopment\u003c/h1\u003e\u003ca id=\"user-content-development\" class=\"anchor\" aria-label=\"Permalink: Development\" href=\"#development\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe code is organized as a Python module. We recommend using \u003ca href=\"https://docs.docker.com/get-docker/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e for development.\u003c/p\u003e\n\u003cp\u003ePlease note if you need to install additional dependencies, you\u0027ll need to alter the \u003ccode\u003erequirements.txt\u003c/code\u003e and rebuild the docker image:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker build -f Dockerfile -t \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eparsertongue/arabic-nlp:latest\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf you\u0027re only using the existing dependencies, you can simply download the published Docker image:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker pull \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eparsertongue/arabic-nlp:latest\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTo run code interactively in the iPython interpreter:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run -it -v \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e:/app parsertongue/arabic-nlp:latest ipython\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTo run code interactively in a Jupyter notebook, run the following command and open your browser to \u003ca href=\"http://localhost:8889\" rel=\"nofollow\"\u003elocalhost:8889\u003c/a\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run -it -v \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e:/app -p 8889:9999 parsertongue/arabic-nlp:latest launch-notebook\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTest\u003c/h2\u003e\u003ca id=\"user-content-test\" class=\"anchor\" aria-label=\"Permalink: Test\" href=\"#test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTests are written by \u003ca href=\"https://docs.python.org/3.8/library/unittest.html#unittest.TestCase\" rel=\"nofollow\"\u003eextending the \u003ccode\u003eTestCase\u003c/code\u003e class\u003c/a\u003e from the \u003ccode\u003eunittest\u003c/code\u003e module in the Python standard library. All tests can be found in the \u003ca href=\"./tests\"\u003e\u003ccode\u003etests\u003c/code\u003e\u003c/a\u003e directory.\u003c/p\u003e\n\u003cp\u003eAll tests can be run using the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run -it -v \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e:/app \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eparsertongue/arabic-nlp:latest\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e test-all\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTest\u003c/h2\u003e\u003ca id=\"user-content-test-1\" class=\"anchor\" aria-label=\"Permalink: Test\" href=\"#test-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTests are written by \u003ca href=\"https://docs.python.org/3.8/library/unittest.html#unittest.TestCase\" rel=\"nofollow\"\u003eextending the \u003ccode\u003eTestCase\u003c/code\u003e class\u003c/a\u003e from the \u003ccode\u003eunittest\u003c/code\u003e module in the Python standard library. All tests can be foun\nd in the \u003ca href=\"./tests\"\u003e\u003ccode\u003etests\u003c/code\u003e\u003c/a\u003e directory.\u003c/p\u003e\n\u003cp\u003eAll tests can be run using the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run -it -v \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e:/app \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eparsertongue/arabic-nlp:latest\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e test-all\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eUnit tests\u003c/h3\u003e\u003ca id=\"user-content-unit-tests\" class=\"anchor\" aria-label=\"Permalink: Unit tests\" href=\"#unit-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo run just the unit tests, run the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run -it -v \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e:/app \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eparsertongue/arabic-nlp:latest\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e green -vvv\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eType hints\u003c/h3\u003e\u003ca id=\"user-content-type-hints\" class=\"anchor\" aria-label=\"Permalink: Type hints\" href=\"#type-hints\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe code makes use of Python type hints. To perform type checking, run the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run -it -v \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e:/app \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eparsertongue/arabic-nlp:latest\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e mypy --ignore-missing-imports --follow-imports=skip --strict-optional /app\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning an experiment\u003c/h3\u003e\u003ca id=\"user-content-running-an-experiment\" class=\"anchor\" aria-label=\"Permalink: Running an experiment\" href=\"#running-an-experiment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe snippet below will run an experiment using \u003ca href=\"./tests/toy-data\"\u003etoy data\u003c/a\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run -it -v \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e:/app parsertongue/arabic-nlp:latest cdd-base-model --config /app/tests/toy-data/test-experiment-config.yml\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity\u003c/h1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: Singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo build a Singularity image from a published Docker image, run the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull cdd.sif docker://parsertongue/arabic-nlp:latest\n\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e# HPC\u003c/span\u003e\n\nTo \u003cspan class=\"pl-c1\"\u003etest\u003c/span\u003e the image on the UA HPC with GPU acceleration, first request an interactive session:\n\n\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e`\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e`\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e`\u003c/span\u003ebash\u003c/span\u003e\n\u003cspan class=\"pl-s\"\u003eqsub -I \\\u003c/span\u003e\n\u003cspan class=\"pl-s\"\u003e-N interactive-gpu \\\u003c/span\u003e\n\u003cspan class=\"pl-s\"\u003e-W group_list=mygroupnamehere \\\u003c/span\u003e\n\u003cspan class=\"pl-s\"\u003e-q standard \\\u003c/span\u003e\n\u003cspan class=\"pl-s\"\u003e-l select=1:ncpus=2:mem=16gb:ngpus=1 \\\u003c/span\u003e\n\u003cspan class=\"pl-s\"\u003e-l cput=3:0:0 \\\u003c/span\u003e\n\u003cspan class=\"pl-s\"\u003e-l walltime=1:0:0\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe following modules are necessary:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emodule load singularity\nmodule load cuda11\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNOTE: not all clusters have the \u003ccode\u003ecuda11\u003c/code\u003e module installed.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity shell --nv --no-home /path/to/your.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTo check that the GPU is found, run the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003envidia-smi\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFinally, confirm that PyTorch can locate the GPU:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s1\"\u003epython\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e-\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003ec\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\"import torch;print(f\u0027CUDA?:\u003cspan class=\"pl-cce\"\u003e\\t\u003c/span\u003e{torch.cuda.is_available()}\u0027);print(f\u0027GPU:\u003cspan class=\"pl-cce\"\u003e\\t\u003c/span\u003e{torch.cuda.get_device_name(0)}\u0027)\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eLocal Singularity build\u003c/h1\u003e\u003ca id=\"user-content-local-singularity-build\" class=\"anchor\" aria-label=\"Permalink: Local Singularity build\" href=\"#local-singularity-build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eNOTE: These instructions assume you\u0027ve already installed Singularity (\u0026gt;= v3.7.0) locally on a Linux system.\u003c/p\u003e\n\u003cp\u003eFirst, we\u0027ll build a docker image:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker build -f Dockerfile -t \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eparsertongue/arabic-nlp:latest\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNext, we\u0027ll use the \u003ca href=\"https://sylabs.io/guides/3.7/user-guide/appendix.html#docker-daemon-archive\" rel=\"nofollow\"\u003e\u003ccode\u003edocker-daemon\u003c/code\u003e bootstrap agent\u003c/a\u003e to build a Singularity image from this docker image:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build arabic-nlp.sif docker-daemon://parsertongue/arabic-nlp:latest\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFinally, we\u0027ll test that image works:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e --nv arabic-nlp.sif train-arabert --help\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2329\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the pcl Point Cloud Library\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [
- "arabic-nlp"
- ],
- "updated_at": 1697769625.0
+ "topics": [],
+ "updated_at": 1550093426.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for crema (https://github.com/gbgolding/crema)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.fe4cf7a"
],
- "full_name": "marchoeppner/wgs-calling",
+ "full_name": "powerPlant/crema-srf",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/ikmb_bfx_logo.png\"\u003e\u003cimg src=\"images/ikmb_bfx_logo.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eIKMB WGS variant calling pipeline\u003c/h1\u003e\u003ca id=\"user-content-ikmb-wgs-variant-calling--pipeline\" class=\"anchor\" aria-label=\"Permalink: IKMB WGS variant calling pipeline\" href=\"#ikmb-wgs-variant-calling--pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis pipeline generates human whole-genome variant calls from short read files.\u003c/p\u003e\n\u003cp\u003ePlease not that this code is not yet final!\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDocumentation\u003c/h3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-label=\"Permalink: Documentation\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDocumentation about the pipeline can be found in the \u003ccode\u003edocs/\u003c/code\u003e directory or under the links below:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/pipeline.md\"\u003eWhat happens in this pipeline?\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/recommendations.md\"\u003eRecommendations\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation and configuration\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2320\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the crema tool to classify RNAs by Ensemble Machine learning Algorithms\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1564730498.0
+ "updated_at": 1550200930.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for OpenDroneMap (https://www.opendronemap.org/)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.0.4.1",
+ "Singularity.0.4.0"
],
- "full_name": "vrothenbergUCSD/Salk_LSD",
+ "full_name": "powerPlant/opendronemap-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCOGS 185 Advanced Machine Learning - Final Project\u003c/h1\u003e\u003ca id=\"user-content-cogs-185-advanced-machine-learning---final-project\" class=\"anchor\" aria-label=\"Permalink: COGS 185 Advanced Machine Learning - Final Project\" href=\"#cogs-185-advanced-machine-learning---final-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eLocal Shape Descriptors\nNeuron segmentation task\u003c/p\u003e\n\u003cp\u003eThis is a forked repository of \u003ca href=\"https://github.com/funkelab/lsd_nm_experiments\"\u003ehttps://github.com/funkelab/lsd_nm_experiments\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eLSD NM experiments tutorial\u003c/h1\u003e\u003ca id=\"user-content-lsd-nm-experiments-tutorial\" class=\"anchor\" aria-label=\"Permalink: LSD NM experiments tutorial\" href=\"#lsd-nm-experiments-tutorial\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGeneral notes\u003c/h2\u003e\u003ca id=\"user-content-general-notes\" class=\"anchor\" aria-label=\"Permalink: General notes\" href=\"#general-notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eA tutorial for running training/inference of networks used for paper (in\nsingularity containers).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eTested on Ubuntu 18.04 with Quadro P6000 (24gb gpu ram)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eAssuming \u003ccode\u003esingularity\u003c/code\u003e is installed and setup\n(some tutorials \u003ca href=\"https://docs.sylabs.io/guides/3.5/user-guide/quick_start.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e and\n\u003ca href=\"https://singularity-tutorial.github.io/01-installation/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eAssuming conda is installed and setup (helpful \u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003einstructions\u003c/a\u003e if needed)\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGetting started\u003c/h2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-label=\"Permalink: Getting started\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eClone this repo:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/funkelab/lsd_nm_experiments.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eCreate simple environment for fetching containers:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003econda create -n test_env python=3.8\nconda activate test_env\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you just need \u003ca href=\"https://boto3.amazonaws.com/v1/documentation/api/latest/index.html\" rel=\"nofollow\"\u003eboto3\u003c/a\u003e for fetching containers:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip install boto3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you also want to view data with \u003ca href=\"https://github.com/google/neuroglancer\"\u003eneuroglancer\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip install boto3 neuroglancer h5py zarr\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDownloading container(s)\u003c/h2\u003e\u003ca id=\"user-content-downloading-containers\" class=\"anchor\" aria-label=\"Permalink: Downloading container(s)\" href=\"#downloading-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003edownload_imgs.py\u003c/code\u003e will download the singularity container used in the paper (\u003ccode\u003elsd:v0.8.img\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eWe found that sometimes this singularity container throws errors because of deprecated cuda versions that don\u0027t play well with updated drivers\u003c/li\u003e\n\u003cli\u003eWe made another image (\u003ccode\u003elsd_legacy.img\u003c/code\u003e) that should handle this. If running into \u003ccode\u003elibcublas\u003c/code\u003e or \u003ccode\u003egcc\u003c/code\u003e errors with the original container, consider using the newer one\u003c/li\u003e\n\u003cli\u003eTo download (uncomment legacy img if desired):\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003epython download_imgs.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOr building legacy container from source:\u003c/h2\u003e\u003ca id=\"user-content-or-building-legacy-container-from-source\" class=\"anchor\" aria-label=\"Permalink: Or building legacy container from source:\" href=\"#or-building-legacy-container-from-source\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eNvidia has deprecated the conda packages of the cudnn / cudatoolkit versions used in the original singularity container (6.0/8.0)\u003c/li\u003e\n\u003cli\u003eThis sometimes causes problems with updated drivers (even though the point of containerization is to solve this...)\u003c/li\u003e\n\u003cli\u003eCan get around by installing these from tars, specifically these:\n\u003cpre\u003e\u003ccode\u003ehttps://anaconda.org/numba/cudatoolkit/8.0/download/osx-64/cudatoolkit-8.0-3.tar.bz2\nhttps://repo.anaconda.com/pkgs/free/linux-64/cudnn-6.0.21-cuda8.0_0.tar.bz2\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esetup.sh\u003c/code\u003e will fetch these packages and use them to install directly into the conda environment when creating the Singularity container\u003c/li\u003e\n\u003cli\u003eThe other packages are just specified in the \u003ccode\u003elsd_legacy.yml\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTo build legacy image locally:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e./setup.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eNote - the original container runs fine with \u003ccode\u003eexec\u003c/code\u003e, the legacy one uses \u003ccode\u003erun\u003c/code\u003e. To be honest, not sure what the problem is here\u003c/li\u003e\n\u003cli\u003eSo \u003ccode\u003esingularity exec --nv lsd:v0.8.img python -c \"import tensorflow\"\u003c/code\u003e will work, and\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esingularity run --nv lsd_legacy.img python -c \"import tensorflow\"\u003c/code\u003e will work, but\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esingularity exec --nv lsd_legacy.img python -c \"import tensorflow\"\u003c/code\u003e will cause import errors\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eFetching data\u003c/h2\u003e\u003ca id=\"user-content-fetching-data\" class=\"anchor\" aria-label=\"Permalink: Fetching data\" href=\"#fetching-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eNavigate to 01_data directory (\u003ccode\u003ecd 01_data\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003efetch_data.py\u003c/code\u003e will download training data from the aws bucket using a json file (\u003ccode\u003edatasets.json\u003c/code\u003e) specifying the training volumes for each dataset\u003c/li\u003e\n\u003cli\u003eThe script defaults to just downloading the first volume for each dataset (one for each of zebrafinch, fib25, hemi, or three total)\u003c/li\u003e\n\u003cli\u003edownload data:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003epython fetch_data.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eyou could also use the singularity container to download the data, but we already have boto3 in the basic env we created anyway\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCreating masks\u003c/h2\u003e\u003ca id=\"user-content-creating-masks\" class=\"anchor\" aria-label=\"Permalink: Creating masks\" href=\"#creating-masks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ecreate_masks.py\u003c/code\u003e will create a \u003ccode\u003elabels_mask\u003c/code\u003e that we use for training to constrain random locations\u003c/li\u003e\n\u003cli\u003eIf you installed zarr into the conda environment, you can just run with:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003epython create_masks.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eotherwise, using the singularity container:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv ../lsd:v0.8.img python create_masks.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eor \u003ccode\u003esingularity run...\u003c/code\u003e if using legacy container\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eViewing the data\u003c/h2\u003e\u003ca id=\"user-content-viewing-the-data\" class=\"anchor\" aria-label=\"Permalink: Viewing the data\" href=\"#viewing-the-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eIf you installed neuroglancer into your environment, you can view the data with \u003ccode\u003eview_data.py\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003ee.g \u003ccode\u003epython -i view_data.py -d funke/fib25/training/tstvol-520-1.zarr\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you are viewing remotely, you could also set the bind address with -b (defaults to localhost)\u003c/li\u003e\n\u003cli\u003eThere are some good little packages \u0026amp; tutorials for using neuroglancer differently. Examples\n\u003ca href=\"https://github.com/funkelab/funlib.show.neuroglancer\"\u003ehere\u003c/a\u003e, \u003ca href=\"https://connectomics.readthedocs.io/en/latest/external/neuroglancer.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e\nand \u003ca href=\"https://github.com/google/neuroglancer/tree/master/python/examples\"\u003ehere\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eExample fib25 training data:\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/funkelab/lsd_nm_experiments/blob/master/static/fib25_training_data.png\"\u003e\u003cimg src=\"https://github.com/funkelab/lsd_nm_experiments/raw/master/static/fib25_training_data.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDownloading network checkpoints\u003c/h2\u003e\u003ca id=\"user-content-downloading-network-checkpoints\" class=\"anchor\" aria-label=\"Permalink: Downloading network checkpoints\" href=\"#downloading-network-checkpoints\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003efetch_checkpoint.py\u003c/code\u003e will download a specified network checkpoint for a given dataset to the target folder in \u003ccode\u003e02_train\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eWe can start with the baseline affinities for the zebrafinch dataset just using conda boto3 (or use singularity if desired):\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003epython fetch_checkpoint.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTraining a network\u003c/h2\u003e\u003ca id=\"user-content-training-a-network\" class=\"anchor\" aria-label=\"Permalink: Training a network\" href=\"#training-a-network\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eNavigate to the zebrafinch baseline directory (\u003ccode\u003ecd ../02_train/zebrafinch/baseline\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eWe start by creating our network in \u003ccode\u003emknet.py\u003c/code\u003e (e.g placeholders to match to the trained graphs):\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv ../../../lsd:v0.8.img python mknet.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eIt should print a bunch of layer names and tensor shapes (that looks like a sideways U-Net) to the command line\u003c/li\u003e\n\u003cli\u003eCheck the files in the directory (e.g \u003ccode\u003etree .\u003c/code\u003e), it should now look like:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e.\n\u251c\u2500\u2500 checkpoint\n\u251c\u2500\u2500 config.json\n\u251c\u2500\u2500 config.meta\n\u251c\u2500\u2500 mknet.py\n\u251c\u2500\u2500 predict.py\n\u251c\u2500\u2500 predict_scan.py\n\u251c\u2500\u2500 train_net_checkpoint_400000.data-00000-of-00001\n\u251c\u2500\u2500 train_net_checkpoint_400000.index\n\u251c\u2500\u2500 train_net_checkpoint_400000.meta\n\u251c\u2500\u2500 train_net.json\n\u251c\u2500\u2500 train_net.meta\n\u251c\u2500\u2500 train.py\n\u2514\u2500\u2500 view_batch.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eTrain for 1 iteration:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv ../../../lsd:v0.8.img python train.py 1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eYou\u0027ll see that gunpowder will print \u003ccode\u003eERROR:tensorflow:Couldn\u0027t match files for checkpoint ./train_net_checkpoint_500000\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThis is because it checks the \u003ccode\u003echeckpoint\u003c/code\u003e file which specifies iteration 500000 (since this network was trained for longer than the optimal checkpoint)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eIf we view the batch, we\u0027ll see that the predictions are all grey, since it really only trained for a single iteration and didn\u0027t use the checkpoint (\u003ccode\u003epython -i view_batch.py -f snapshots/batch_1.hdf\u003c/code\u003e):\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/funkelab/lsd_nm_experiments/blob/master/static/baseline_zfinch_batch_1.png\"\u003e\u003cimg src=\"https://github.com/funkelab/lsd_nm_experiments/raw/master/static/baseline_zfinch_batch_1.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eTo fix, simply edit this \u003ccode\u003echeckpoint\u003c/code\u003e file to point to the downloaded checkpoint iteration instead (e.g 500000 -\u0026gt; 400000)\u003c/li\u003e\n\u003cli\u003eNow running the above won\u0027t do anything, because of line 27 in \u003ccode\u003etrain.py\u003c/code\u003e:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eif\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003etrained_until\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e\u0026gt;=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003emax_iteration\u003c/span\u003e:\n \u003cspan class=\"pl-k\"\u003ereturn\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eSo just make sure to train to the checkpoint + n, eg for 1 extra iteration:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv ../../../lsd:v0.8.img python train.py 400001\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eWe can then view the saved batch, e.g:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003epython -i view_batch.py -f snapshots/batch_400001.hdf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/funkelab/lsd_nm_experiments/blob/master/static/baseline_zfinch_batch_400k.png\"\u003e\u003cimg src=\"https://github.com/funkelab/lsd_nm_experiments/raw/master/static/baseline_zfinch_batch_400k.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning Inference\u003c/h2\u003e\u003ca id=\"user-content-running-inference\" class=\"anchor\" aria-label=\"Permalink: Running Inference\" href=\"#running-inference\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eFor the lsds experiments, we ran everything from inference through evaluation in a blockwise fashion using \u003ca href=\"https://github.com/funkelab/daisy\"\u003edaisy\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFor inference, this meant having a blockwise prediction script that called a gunpowder predict pipeline inside each process\u003c/li\u003e\n\u003cli\u003eFor example, this \u003ca href=\"https://github.com/funkelab/lsd/blob/master/lsd/tutorial/scripts/01_predict_blockwise.py\"\u003escript\u003c/a\u003e would distribute this \u003ca href=\"https://github.com/funkelab/lsd_nm_experiments/blob/master/02_train/zebrafinch/baseline/predict.py\"\u003escript\u003c/a\u003e by using a \u003ca href=\"http://funkey.science/gunpowder/api.html?highlight=daisy#gunpowder.DaisyRequestBlocks\" rel=\"nofollow\"\u003eDaisyRequestBlocks\u003c/a\u003e gunpowder node\u003c/li\u003e\n\u003cli\u003eIf you just want to run inference on a small volume (in memory), you can instead use a \u003ca href=\"http://funkey.science/gunpowder/api.html?highlight=scan#gunpowder.Scan\" rel=\"nofollow\"\u003eScan\u003c/a\u003e node\u003c/li\u003e\n\u003cli\u003eWe added adapted all blockwise inference scripts to also use scan nodes (e.g \u003ccode\u003epredict_scan.py\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eExample run on zfinch training data:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv ../../../lsd:v0.8.img python predict_scan.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eResulting affinities:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/funkelab/lsd_nm_experiments/blob/master/static/baseline_zfinch_preds.png\"\u003e\u003cimg src=\"https://github.com/funkelab/lsd_nm_experiments/raw/master/static/baseline_zfinch_preds.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eMultitask (MTLSD)\u003c/h2\u003e\u003ca id=\"user-content-multitask-mtlsd\" class=\"anchor\" aria-label=\"Permalink: Multitask (MTLSD)\" href=\"#multitask-mtlsd\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eThis can be run exactly the same as the baseline above.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInside \u003ccode\u003e01_data/fetch_checkpoint.py\u003c/code\u003e, uncomment \u003ccode\u003emtlsd\u003c/code\u003e and run.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eNavigate to \u003ccode\u003e02_train/zebrafinch/mtlsd\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCreate network (\u003ccode\u003e... python mknet.py\u003c/code\u003e)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eChange \u003ccode\u003echeckpoint\u003c/code\u003e file iteration to match downloaded checkpoint (500000 -\u0026gt; 400000)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eTrain (\u003ccode\u003e... python train.py 400001\u003c/code\u003e)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eView batch (\u003ccode\u003e... python -i view_batch.py ...\u003c/code\u003e) -\u0026gt; will also show LSDs\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ePredict (\u003ccode\u003e... python predict_scan.py\u003c/code\u003e) -\u0026gt; will write out LSDs and Affs\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThis will also give us LSDs:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/funkelab/lsd_nm_experiments/blob/master/static/mtlsd_zfinch_preds_lsds.png\"\u003e\u003cimg src=\"https://github.com/funkelab/lsd_nm_experiments/raw/master/static/mtlsd_zfinch_preds_lsds.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eTip - you can view the different components of the LSDs by adjusting the shader in neuroglancer, e.g changing \u003ccode\u003e0,1,2\u003c/code\u003e to \u003ccode\u003e3,4,5\u003c/code\u003e will show the diagonal entries of the covariance component (or the direction the processes move):\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003evoid main() {\n emitRGB(\n vec3(\n toNormalized(getDataValue(3)),\n toNormalized(getDataValue(4)),\n toNormalized(getDataValue(5)))\n );\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eOr to view a single channel of the 10d lsds, (e.g channel 6):\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003evoid main() {\n float v = toNormalized(getDataValue(6));\n vec4 rgba = vec4(0,0,0,0);\n if (v != 0.0) {\n rgba = vec4(colormapJet(v), 1.0);\n }\n emitRGBA(rgba);\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAutocontext (ACLSD and ACRLSD)\u003c/h2\u003e\u003ca id=\"user-content-autocontext-aclsd-and-acrlsd\" class=\"anchor\" aria-label=\"Permalink: Autocontext (ACLSD and ACRLSD)\" href=\"#autocontext-aclsd-and-acrlsd\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eThese networks rely on a pretrained LSD (raw -\u0026gt; LSDs) network, eg:\u003c/li\u003e\n\u003cli\u003eACLSD: \u003ccode\u003eRaw -\u0026gt; LSDs -\u0026gt; Affs\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eACRLSD: \u003ccode\u003eRaw -\u0026gt; LSDs + cropped Raw -\u0026gt; Affs\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eBecause of this, they are more computationally expensive (since training requires extra context to first predict the lsds)\u003c/li\u003e\n\u003cli\u003eThey ran using 23.5 GB of available 24 GB GPU RAM when testing on quadro p6000. If you have less than that you will likely run into cuda OOM errors\u003c/li\u003e\n\u003cli\u003eIf you have access to sufficient gpu memory, to start navigate to \u003ccode\u003e01_data\u003c/code\u003e and uncomment \u003ccode\u003elsd\u003c/code\u003e + run script to get the pretrained lsd checkpoint\u003c/li\u003e\n\u003cli\u003eGo to lsd directory (\u003ccode\u003ecd ../02_train/zebrafinch/lsd\u003c/code\u003e) and follow same instructions as baseline and mtlsd nets above\u003c/li\u003e\n\u003cli\u003eOnce you have the lsd checkpoints (and \u003ccode\u003etest_prediction.zarr\u003c/code\u003e with \u003ccode\u003epred_lsds\u003c/code\u003e following prediction), start with a basic autocontext network (aclsd).\u003c/li\u003e\n\u003cli\u003eGet the aclsd checkpoint, navigate to appropriate directory, change checkpoint file as before and train network.\u003c/li\u003e\n\u003cli\u003eVisualizing the resulting batch shows us the larger raw context needed for predicting the lsds to ensure that the output affinities remain the same size:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/funkelab/lsd_nm_experiments/blob/master/static/aclsd_training_batch.png\"\u003e\u003cimg src=\"https://github.com/funkelab/lsd_nm_experiments/raw/master/static/aclsd_training_batch.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eRun prediction as before - note, will not run if lsds have not been predicted first. This script could be adapted to predict the lsds on-the-fly using just the lsds and affs checkpoints\u003c/li\u003e\n\u003cli\u003eThe same can be done for the ACRLSD network (note, requires a merge provider during prediction as this network takes both lsds and raw data as input)\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTodos: add consolidated fib25/hemi nets to tutorial\u003c/h2\u003e\u003ca id=\"user-content-todos-add-consolidated-fib25hemi-nets-to-tutorial\" class=\"anchor\" aria-label=\"Permalink: Todos: add consolidated fib25/hemi nets to tutorial\" href=\"#todos-add-consolidated-fib25hemi-nets-to-tutorial\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2266\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the OpenDroneMap Drone Mapping Software\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1716585661.0
+ "updated_at": 1549336324.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for Racon (https://github.com/isovic/racon/)",
"filenames": [
"Singularity",
- "Singularity1"
+ "Singularity.1.3.2",
+ "Singularity.1.3.1",
+ "Singularity.1.4.3",
+ "Singularity.1.4.2",
+ "Singularity.1.3.3",
+ "Singularity.1.4.7",
+ "Singularity.1.3.0",
+ "Singularity.1.4.0"
],
- "full_name": "DoaneAS/RforSingularity",
+ "full_name": "powerPlant/racon-srf",
"latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2269\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the Racon consensus module for raw de novo DNA assembly of long uncorrected reads\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1496472410.0
+ "updated_at": 1590711591.0
},
{
"data_format": 2,
- "description": "Building a singularity container for PHCpack",
+ "description": "Singularity recipe files for EddyPro Engine (https://github.com/LI-COR/eddypro-engine)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.6.2.1",
+ "Singularity.5.2.1",
+ "Singularity.6.0.0",
+ "Singularity.5.2.0",
+ "Singularity.6.1.0",
+ "Singularity.5.1.1",
+ "Singularity.6.2.0"
],
- "full_name": "ARCLeeds/PHCpack_sing",
+ "full_name": "powerPlant/eddypro-engine-srf",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4512\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7469733561e035f80445de1299989fe45296536c720fd668020063d0e8b66355/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eA singularity container for PHCpack\u003c/h1\u003e\u003ca id=\"user-content-a-singularity-container-for-phcpack\" class=\"anchor\" aria-label=\"Permalink: A singularity container for PHCpack\" href=\"#a-singularity-container-for-phcpack\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA repo containing the Singularity recipe file for build \u003ca href=\"https://github.com/janverschelde/PHCpack/\"\u003ePHCpack\u003c/a\u003e. Also builds\nthe \u003ca href=\"https://github.com/Macaulay2/M2\"\u003eMacaulay2 language\u003c/a\u003e from source.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDetails:\u003c/h2\u003e\u003ca id=\"user-content-details\" class=\"anchor\" aria-label=\"Permalink: Details:\" href=\"#details\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAuthor: Alex Coleman \u003ca href=\"mailto:a.coleman1@leeds.ac.uk\"\u003ea.coleman1@leeds.ac.uk\u003c/a\u003e\u003cbr\u003e\nDate: 2020-06-29\u003cbr\u003e\nOriginating request: REQTSK0356325\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTODO:\u003c/h2\u003e\u003ca id=\"user-content-todo\" class=\"anchor\" aria-label=\"Permalink: TODO:\" href=\"#todo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e[x] get Macauley2 built\u003c/li\u003e\n\u003cli\u003e[x] get PHCpack built\u003c/li\u003e\n\u003cli\u003e[x] create acceptable interface for user\u003c/li\u003e\n\u003cli\u003e[x] write documentation for use\u003c/li\u003e\n\u003cli\u003e[x] upload to Singularity Hub (optional)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsing the container\u003c/h2\u003e\u003ca id=\"user-content-using-the-container\" class=\"anchor\" aria-label=\"Permalink: Using the container\" href=\"#using-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdetails\u003e\n \u003csummary\u003eFor University of Leeds users!\u003c/summary\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIf you want to use this container on ARC3 or ARC4\u003c/h2\u003e\u003ca id=\"user-content-if-you-want-to-use-this-container-on-arc3-or-arc4\" class=\"anchor\" aria-label=\"Permalink: If you want to use this container on ARC3 or ARC4\" href=\"#if-you-want-to-use-this-container-on-arc3-or-arc4\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eYou\u0027ll need to load the singularity module first before running the following commands:\u003c/p\u003e\n\u003cpre lang=\"{bash}\"\u003e\u003ccode\u003e$ module load singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/details\u003e\n\u003cp\u003eTo download this container from Singularity Hub:\u003c/p\u003e\n\u003cpre lang=\"{bash}\"\u003e\u003ccode\u003e$ singularity build PHCpack_sing shub://ARCLeeds/PHCpack_sing\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis should download a file called PHCpack_sing to your current directory which you can use in the following way:\u003c/p\u003e\n\u003cpre lang=\"{bash}\"\u003e\u003ccode\u003e\n# open a Macaulay2 interactive development environment\n$ singularity run PHCpack_sing\n\n# You can also run an existing .m2 script file by doing the following:\n$ singularity exec PHCpack_sing --script name_of_script.m2\n\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2272\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the EddyPro eddy covariance data processing software\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "macaulay2",
- "phcpack",
- "singularity-container",
- "singularity-hub"
- ],
- "updated_at": 1593596546.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1549923689.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for cdo (https://www.mpimet.mpg.de/cdo/)",
"filenames": [
- "Singularity.spid"
+ "Singularity",
+ "Singularity.1.9.3",
+ "Singularity.1.9.5",
+ "Singularity.1.7.0"
],
- "full_name": "romxero/spid_singularity",
+ "full_name": "powerPlant/cdo-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eApptainer Definition file for SPID.\u003c/h1\u003e\u003ca id=\"user-content-apptainer-definition-file-for-spid\" class=\"anchor\" aria-label=\"Permalink: Apptainer Definition file for SPID.\" href=\"#apptainer-definition-file-for-spid\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2262\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the Climate Data Operators toolset\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1710191251.0
+ "updated_at": 1549335527.0
},
{
"data_format": 2,
- "description": "Singularity Bootstrap File for CERN ROOT6 built on Ubuntu 16.10",
+ "description": "sparkle planning challenge",
"filenames": [
"Singularity"
],
- "full_name": "twongjirad/singularity-cern-root6-yakkety",
+ "full_name": "hejm37/sysu-planner",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003esingularity-cern-root6-yakkety\u003c/h1\u003e\u003ca id=\"user-content-singularity-cern-root6-yakkety\" class=\"anchor\" aria-label=\"Permalink: singularity-cern-root6-yakkety\" href=\"#singularity-cern-root6-yakkety\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eContains Bootstrap file to build singularity image\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-sysu-planner\" class=\"anchor\" aria-hidden=\"true\" href=\"#sysu-planner\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esysu-planner\u003c/h1\u003e\n\u003cp\u003eThe SYSU-Planner is a two-stage planner designed to solve classical planning problems. It first performs the 1-BFWS (\u003ca href=\"https://people.eng.unimelb.edu.au/nlipovetzky/papers/aaai17-BFWS-novelty-exploration.pdf\" rel=\"nofollow\"\u003eNir and Hector 2017\u003c/a\u003e) with very fast speed. If it fails to find a solution, it will then perform a modified online refinement algorithm named \u003ca href=\"http://ada.liacs.nl/events/sparkle-planning-19/documents/solver_description/SYSU-planner-description.pdf\" rel=\"nofollow\"\u003eForward-RHC\u003c/a\u003e (see also \u003ca href=\"https://ipc2018-classical.bitbucket.io/planner-abstracts/team8.pdf\" rel=\"nofollow\"\u003eMaximilian and Jorg 2018\u003c/a\u003e).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-and-run-with-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-and-run-with-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild and run with container\u003c/h2\u003e\n\u003cp\u003eUsing the planner with \u003ca href=\"https://sylabs.io/docs/#singularity\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e is rather simple. First install Singularity following \u003ca href=\"https://sylabs.io/guides/3.3/user-guide/quick_start.html#quick-installation-steps\" rel=\"nofollow\"\u003ethis guide\u003c/a\u003e. Then run the following script in CLI and you will have the plan file \u003cem\u003esas_plan\u003c/em\u003e under \u003cem\u003e$RUNDIR\u003c/em\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build planner.img sysu-planner/Singularity\nmkdir rundir\ncp path/to/domain.pddl rundir\ncp path/to/problem.pddl rundir\nRUNDIR=\"$(pwd)/rundir\"\nDOMAIN=\"$RUNDIR/domain.pddl\"\nPROBLEM=\"$RUNDIR/problem.pddl\"\nPLANFILE=\"$RUNDIR/sas_plan\"\nsingularity run -C -H $RUNDIR planner.img $DOMAIN $PROBLEM $PLANFILE $COSTBOUND\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-supported-problems\" class=\"anchor\" aria-hidden=\"true\" href=\"#supported-problems\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSupported problems\u003c/h3\u003e\n\u003cp\u003eThe formulation of supported problems is the same as \u003ca href=\"https://ipc2018-classical.bitbucket.io/#pddl\" rel=\"nofollow\"\u003eIPC 2018\u003c/a\u003e. We also provide a set of supported domains and problems in \u003ca href=\"https://github.com/hejm37/benchmark-domains\"\u003ebenchmark-domains\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-notes-on-playing-with-the-source-code\" class=\"anchor\" aria-hidden=\"true\" href=\"#notes-on-playing-with-the-source-code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes on playing with the source code\u003c/h2\u003e\n\u003cp\u003eThe source code of the planner contains two part:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBFWS-public and its dependency, LAPKT-public\u003c/li\u003e\n\u003cli\u003efast-downward-conjunctions\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThen planner should be invoked in the fast-downward-conjunctions part (using --dual option and it will call BFWS-public/fd-version/bfws.py to perform 1-BFWS, see \u003ca href=\"https://github.com/hejm37/sysu-planner/blob/master/Singularity\"\u003ethe Singularity script\u003c/a\u003e for more details).\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-potential-failures\" class=\"anchor\" aria-hidden=\"true\" href=\"#potential-failures\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePotential Failures\u003c/h3\u003e\n\u003cp\u003eIf the above build has failed, it may appears to be a cmake cache fail. In this case, remove the \u003cem\u003ebuilds\u003c/em\u003e (if it exists) directory under fast-downward-conjunctions and rerun the singularity command shall solve the problem.\u003c/p\u003e\n\u003cp\u003eOr it may appears to be a scons build fail. In this case, remove all the \u003cem\u003e.sconsign.dblite\u003c/em\u003e files under the directory shall solve the problem.\u003c/p\u003e\n\u003cp\u003eBoth cases would occur if the planner was built outside a container.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1496270730.0
+ "updated_at": 1563536767.0
},
{
"data_format": 2,
- "description": "Singualrity recipe for BamM, GroopM and CheckM on Conda",
+ "description": "Omero client Singularity recipes.",
"filenames": [
- "Singularity"
+ "Singularity.5.4.0",
+ "Singularity.5.4.10"
],
- "full_name": "ISU-HPC/bamm-groopm-checkm",
+ "full_name": "arcsUVA/omero-client",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ebamm-groopm-checkm\u003c/h1\u003e\u003ca id=\"user-content-bamm-groopm-checkm\" class=\"anchor\" aria-label=\"Permalink: bamm-groopm-checkm\" href=\"#bamm-groopm-checkm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingualrity recipe for BamM, GroopM, CheckM and RefineM on Conda\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-omero-client\" class=\"anchor\" aria-hidden=\"true\" href=\"#omero-client\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eomero-client\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2227\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003cbr\u003e\nOmero client Singularity recipes\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1535561436.0
+ "updated_at": 1557760203.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe for Qt5 on Centos 7 and Ubuntu 16.04",
"filenames": [
- "Singularity.def"
+ "Singularity",
+ "Singularity.ubuntu",
+ "Singularity.qt5",
+ "dsistudio_mrtrix3/Singularity.dsi_mrtrix3",
+ "dsistudio_mrtrix3/Singularity.dsi_mrtrix3_ants_fsl_fmriprep",
+ "dsistudio_mrtrix3/Singularity.dsi_mrtrix3_fsl",
+ "dsistudio_mrtrix3/Singularity.dsi_mrtrix3_centos8",
+ "dsistudio_mrtrix3/Singularity.dsi_mrtrix3_ants"
],
- "full_name": "FrancescoPesce/SE4HPC_project_part2",
+ "full_name": "willgpaik/qt5_aci",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSE4HPCproject - part 2\u003c/h1\u003e\u003ca id=\"user-content-se4hpcproject---part-2\" class=\"anchor\" aria-label=\"Permalink: SE4HPCproject - part 2\" href=\"#se4hpcproject---part-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eRepository for the second part of the second project of SE4HPC by Miotti Michele and Francesco Pesce.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContents\u003c/h2\u003e\u003ca id=\"user-content-contents\" class=\"anchor\" aria-label=\"Permalink: Contents\" href=\"#contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eThe file \u003ccode\u003etest/test_matrix_multiplication.cpp\u003c/code\u003e contains the tests from part 1 that are passed by the\nnew implementation of the matrix multiplication function.\u003c/li\u003e\n\u003cli\u003eThe file \u003ccode\u003eSingularity.def\u003c/code\u003e contains a container descriptor for the program.\u003c/li\u003e\n\u003cli\u003eThe file \u003ccode\u003ejob.sh\u003c/code\u003e is used to run the containerized application using SLURM and MPI. It is supposed to be executed using sbatch, as using srun may result in issues.\u003c/li\u003e\n\u003cli\u003eThe file \u003ccode\u003e.github/workflows/ci.yml\u003c/code\u003e contains the Github actions used to execute the pipeline. At the moment of the last commit, the workflow runs with no errors.\u003c/li\u003e\n\u003cli\u003eThe files \u003ccode\u003eoutput.txt\u003c/code\u003e and \u003ccode\u003eerror.txt\u003c/code\u003e contain the expected output and error from the execution of the application. We verified that they match with the ones obtained on the cluster.\u003c/li\u003e\n\u003cli\u003eWe made minor changes to the rest of the repository to be able to use the file \u003ccode\u003esrc/matrix_mult.cpp\u003c/code\u003e in the tests.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-qt5_aci\" class=\"anchor\" aria-hidden=\"true\" href=\"#qt5_aci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eqt5_aci\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for Qt5 on Centos 7 and Ubuntu 16.04 For ICS\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNOTE: DO NOT rebuild \"Singularity.dsi_mrtrix3\" image.\u003c/strong\u003e\u003cbr\u003e\n(Last successful build was Mar 12 2019)\u003c/p\u003e\n\u003cp\u003eSingularity recipe for DSI Studio and MRtrix3 is updated on \u003cstrong\u003edsistudio_mrtrix3\u003c/strong\u003e folder\u003c/p\u003e\n\u003cp\u003eIf you want to install DSI Studio and MRtrix3 on Basic Qt5 Container,\u003cbr\u003e\ndownlaod \"dsistudio_mrtrix3_install.sh\" to preferred location\nand follow commands inside Singularity environment:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; chmod +x dsistudio_mrtrix3_install.sh \n\u0026gt; ./dsistudio_mrtrix3_install.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e2019/2/21\u003cbr\u003e\nUnable to use \u003cstrong\u003eGCC 8.2.1\u003c/strong\u003e due to build failure =\u0026gt; Going back to \u003cstrong\u003eGCC 7.3.1\u003c/strong\u003e\u003cbr\u003e\n(Failed to resolve the issue at this moment)\u003c/p\u003e\n\u003cp\u003e\u003cdel\u003e2019/5/13\u003cbr\u003e\nUpdated dsistudio_mrtrix3_install.sh due to Qt version issue\u003cbr\u003e\n(Requires Qt 5.12.2 or above: \u003ca href=\"https://github.com/frankyeh/DSI-Studio/issues/34\"\u003ehttps://github.com/frankyeh/DSI-Studio/issues/34\u003c/a\u003e)\u003c/del\u003e\u003c/p\u003e\n\u003cp\u003e2019/5/24\u003cbr\u003e\nReverted changes made on 2019/5/13\u003c/p\u003e\n\u003cp\u003e2019/6/24\u003cbr\u003e\n\u003cdel\u003eNewer version qt5 installation recipe added (in progress)\u003c/del\u003e\u003c/p\u003e\n\u003cp\u003e2019/7/22\u003cbr\u003e\nQt is updated to 5.12 with Qt Charts (for DSI Studio)\u003c/p\u003e\n\u003cp\u003e2019/7/24\u003cbr\u003e\nQt SVG is added (for MRtrix 3)\u003cbr\u003e\n32-bit EoD graphics libraries are disable (to aviod warnings)\u003c/p\u003e\n\u003cp\u003e2019/7/29\u003cbr\u003e\nNVIDIA driver is added to DSI Studio MRtrix3 container\u003c/p\u003e\n\u003cp\u003e2019/11/10\u003cbr\u003e\nQt version 5.12.5 is used\u003c/p\u003e\n\u003cp\u003e2020/4/24\u003cbr\u003e\nUbuntu 16.04 version added with Qt 5.14.2\u003c/p\u003e\n\u003cp\u003e2020/6/20\u003cbr\u003e\nQt5 container is updated to have nvidia driver\u003c/p\u003e\n\u003cp\u003e2020/7/27\u003cbr\u003e\nUbuntu container is updated to have NVIDIA driver (Ubuntu 16.04 based)\u003c/p\u003e\n\u003cp\u003e2020/9/28\u003cbr\u003e\nQt5 container is updated to use CUDA 9.1 version (for FSL with CUDA)\u003cbr\u003e\n(Reference: \u003ca href=\"https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GPU\" rel=\"nofollow\"\u003ehttps://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GPU\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e2020/10/20\u003cbr\u003e\nQt5X11Extras is added to the Qt5 recipe\u003cbr\u003e\n(Ubuntu container will not be updated unless necessary)\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1717606364.0
+ "updated_at": 1618004326.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Container to run various Game AI workloads",
"filenames": [
"Singularity"
],
- "full_name": "rynge/osgvo-ubuntu-18.04-testing",
+ "full_name": "sbutcher/minigym-container",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eosgvo-ubuntu-18.04-testing\u003c/h1\u003e\u003ca id=\"user-content-osgvo-ubuntu-1804-testing\" class=\"anchor\" aria-label=\"Permalink: osgvo-ubuntu-18.04-testing\" href=\"#osgvo-ubuntu-1804-testing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eOSG VO\u0027s Ubuntu 18.04 base image - testing\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-minigym-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#minigym-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eminigym-container\u003c/h1\u003e\n\u003cp\u003eContainer to run various Game AI workloads\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1543883829.0
+ "updated_at": 1548062559.0
},
{
"data_format": 2,
@@ -5755,53 +5452,56 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "suouyang/linved",
+ "full_name": "djarecka/tmp_nipype_tut",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eLineVD\u003c/h1\u003e\u003ca id=\"user-content-linevd\" class=\"anchor\" aria-label=\"Permalink: LineVD\" href=\"#linevd\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository provides the code for \u003ca href=\"https://arxiv.org/pdf/2203.05181.pdf\" rel=\"nofollow\"\u003eLineVD: Statement-level Vulnerability Detection using Graph Neural Networks\u003c/a\u003e. The environment can be built using \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e, or by following / following the commands in the Singularity file. To start, clone the repository and navigate to the root directory.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDirectory Structure\u003c/h2\u003e\u003ca id=\"user-content-directory-structure\" class=\"anchor\" aria-label=\"Permalink: Directory Structure\" href=\"#directory-structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre lang=\"dir\"\u003e\u003ccode\u003e(main module) \u251c\u2500\u2500 sastvd\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 codebert\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 helpers\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 ivdetect\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 linevd\n \u2502\u00a0\u00a0 \u2514\u2500\u2500 scripts\n \u251c\u2500\u2500 storage\n(memoization) \u2502\u00a0\u00a0 \u251c\u2500\u2500 cache\n(raw data) \u2502\u00a0\u00a0 \u251c\u2500\u2500 external\n(csvs) \u2502\u00a0\u00a0 \u251c\u2500\u2500 outputs\n(models) \u2502\u00a0\u00a0 \u2514\u2500\u2500 processed\n(tests) \u2514\u2500\u2500 tests\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTraining LineVD from scratch\u003c/h2\u003e\u003ca id=\"user-content-training-linevd-from-scratch\" class=\"anchor\" aria-label=\"Permalink: Training LineVD from scratch\" href=\"#training-linevd-from-scratch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eBuild and initialise environment and download dataset\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build main.sif Singularity\nsingularity run main.sif -p initialise\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFeature extraction (Increase NUM_JOBS if running on HPC for speed up)\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e main.sif python sastvd/scripts/prepare.py\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e main.sif python sastvd/scripts/getgraphs.py\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTrain model (Training takes around 1-2 hours using GTX 3060)\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e --nv main.sif python sastvd/scripts/train_best.py\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-nipype-tutorial-notebooks\" class=\"anchor\" aria-hidden=\"true\" href=\"#nipype-tutorial-notebooks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNipype Tutorial Notebooks\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://circleci.com/gh/miykael/nipype_tutorial/tree/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/669c934f828c73340c0d591ed4b423ef3fa0193e787bfe385915e82dae5ed8fc/68747470733a2f2f636972636c6563692e636f6d2f67682f6d69796b61656c2f6e69707970655f7475746f7269616c2e7376673f7374796c653d736869656c64\" alt=\"CircleCi\" data-canonical-src=\"https://circleci.com/gh/miykael/nipype_tutorial.svg?style=shield\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/miykael/nipype_tutorial/issues/\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ea29b9a6350d6278064569a97945097dcdeedf9e93740b62ef46df808891fd37/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6d69796b61656c2f6e69707970655f7475746f7269616c2e737667\" alt=\"GitHub issues\" data-canonical-src=\"https://img.shields.io/github/issues/miykael/nipype_tutorial.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/miykael/nipype_tutorial/pulls/\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/eb7044b2c212e415ec4669de3bb9767f22bfed317ade3070bac8d41ea2a71529/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732d70722f6d69796b61656c2f6e69707970655f7475746f7269616c2e737667\" alt=\"GitHub pull-requests\" data-canonical-src=\"https://img.shields.io/github/issues-pr/miykael/nipype_tutorial.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://GitHub.com/miykael/nipype_tutorial/graphs/contributors/\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7702816785d6120ca455fda7995bccb5bbdde3e3a92f859f27f866ad34bc55f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f636f6e7472696275746f72732f6d69796b61656c2f6e69707970655f7475746f7269616c2e737667\" alt=\"GitHub contributors\" data-canonical-src=\"https://img.shields.io/github/contributors/miykael/nipype_tutorial.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/miykael/nipype_tutorial/commits/master\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fdcae12a957784eff34edadd6ded9a9a8cdf6354ce4d5c5b9d16727d838ecc23/68747470733a2f2f6769746875622d62617369632d6261646765732e6865726f6b756170702e636f6d2f636f6d6d6974732f6d69796b61656c2f6e69707970655f7475746f7269616c2e737667\" alt=\"GitHub Commits\" data-canonical-src=\"https://github-basic-badges.herokuapp.com/commits/miykael/nipype_tutorial.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/miykael/nipype_tutorial/archive/master.zip\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fb9081bb8ee87986aea94736dd73ee86c56308df8e0b21ee9803cbe6976e3fab/68747470733a2f2f6769746875622d73697a652d62616467652e6865726f6b756170702e636f6d2f6d69796b61656c2f6e69707970655f7475746f7269616c2e737667\" alt=\"GitHub size\" data-canonical-src=\"https://github-size-badge.herokuapp.com/miykael/nipype_tutorial.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/miykael/nipype_tutorial/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3658dcdcaf69e757f1454f83966a15fcdf8b7bcb1d3b4427ffb4226668659eb6/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f70756c6c732f6d69796b61656c2f6e69707970655f7475746f7269616c2e7376673f6d61784167653d32353932303030\" alt=\"Docker Hub\" data-canonical-src=\"https://img.shields.io/docker/pulls/miykael/nipype_tutorial.svg?maxAge=2592000\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"http://hits.dwyl.io/miykael/nipype_tutorial\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c19a46ac2503dae747aeea217a7a854e711a4c95b5814a8c85c59aa5c9920a61/687474703a2f2f686974732e6477796c2e696f2f6d69796b61656c2f6e69707970655f7475746f7269616c2e737667\" alt=\"GitHub HitCount\" data-canonical-src=\"http://hits.dwyl.io/miykael/nipype_tutorial.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis is the Nipype Tutorial in Jupyter Notebook format. You can access the tutorial in two ways:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ca href=\"https://miykael.github.io/nipype_tutorial/\" rel=\"nofollow\"\u003eNipype Tutorial Homepage\u003c/a\u003e: This website contains a static, read-only version of all the notebooks.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://miykael.github.io/nipype_tutorial/notebooks/introduction_docker.html\" rel=\"nofollow\"\u003eNipype Tutorial Docker Image\u003c/a\u003e: This guide explains how to use Docker to run the notebooks interactively on your own computer. The nipype tutorial docker image is the best interactive way to learn Nipype.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch1\u003e\u003ca id=\"user-content-feedback-help--support\" class=\"anchor\" aria-hidden=\"true\" href=\"#feedback-help--support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFeedback, Help \u0026amp; Support\u003c/h1\u003e\n\u003cp\u003eIf you want to help with this tutorial or have any questions, feel free to fork the repo of the \u003ca href=\"https://github.com/miykael/nipype_tutorial\"\u003eNotebooks\u003c/a\u003e or interact with other contributors on the slack channel \u003ca href=\"https://brainhack.slack.com/messages/nipype/\" rel=\"nofollow\"\u003ebrainhack.slack.com/messages/nipype/\u003c/a\u003e. If you have any questions or found a problem, open a new \u003ca href=\"https://github.com/miykael/nipype_tutorial/issues\"\u003eissue on github\u003c/a\u003e.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-thanks-and-acknowledgment\" class=\"anchor\" aria-hidden=\"true\" href=\"#thanks-and-acknowledgment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThanks and Acknowledgment\u003c/h1\u003e\n\u003cp\u003eA huge thanks to \u003ca href=\"https://github.com/mwaskom\"\u003eMichael Waskom\u003c/a\u003e, \u003ca href=\"https://github.com/oesteban\"\u003eOscar Esteban\u003c/a\u003e, \u003ca href=\"https://github.com/chrisfilo\"\u003eChris Gorgolewski\u003c/a\u003e and \u003ca href=\"https://github.com/satra\"\u003eSatrajit Ghosh\u003c/a\u003e for their input to this tutorial! And a huge thanks to \u003ca href=\"https://github.com/djarecka/\"\u003eDorota Jarecka\u003c/a\u003e who updated this tutorial to Python 3 and is helping me with keeping this tutorial updated and running!\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1687515622.0
+ "updated_at": 1547566090.0
},
{
"data_format": 2,
- "description": "Singularity recipes for Docker image gedet-base",
+ "description": "Bioinformatic tools in a singularity container",
"filenames": [
- "Singularity.julia06-avx2"
+ "containers/Singularity",
+ "containers/Singularity.etoki",
+ "containers/Singularity.lyveset"
],
- "full_name": "mppmu/gedet-base-singularity",
+ "full_name": "EnriqueDoster/sing_biotools",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-sing_biotools\" class=\"anchor\" aria-hidden=\"true\" href=\"#sing_biotools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esing_biotools\u003c/h1\u003e\n\u003cp\u003eBioinformatic tools in a singularity container\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1516277260.0
+ "updated_at": 1606287922.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity container for Scanfold",
"filenames": [
"Singularity"
],
- "full_name": "callaghanmt-containers/evolinc",
+ "full_name": "ResearchIT/Scanfold",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eevolinc\u003c/h1\u003e\u003ca id=\"user-content-evolinc\" class=\"anchor\" aria-label=\"Permalink: evolinc\" href=\"#evolinc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1556291432.0
+ "updated_at": 1570729149.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "containers/Singularity"
],
- "full_name": "tschoonj/singularity-centos6",
+ "full_name": "stevekm/bwa-bench",
"latest_release": null,
+ "readme": "",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1563792023.0
+ "updated_at": 1549319905.0
},
{
"data_format": 2,
@@ -5809,259 +5509,269 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "eugtsa/tf_pytorch_singularity",
+ "full_name": "dfornika/nf-core-cpo",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003etf_pytorch_singularity\u003c/h1\u003e\u003ca id=\"user-content-tf_pytorch_singularity\" class=\"anchor\" aria-label=\"Permalink: tf_pytorch_singularity\" href=\"#tf_pytorch_singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-nf-corecpo\" class=\"anchor\" aria-hidden=\"true\" href=\"#nf-corecpo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enf-core/cpo\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eGenomic Analysis of Carbapenem Resistant Organisms\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nf-core/cpo\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6b4a4d26450e93f9c13ce85f059bb61ebe27051414d40e4f4ba81966ca0029a4/68747470733a2f2f7472617669732d63692e6f72672f6e662d636f72652f63706f2e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nf-core/cpo.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/67e0b26cefcc362513a5e2e7613f4638251b0ab5f029eba762be3d49a716c325/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33322e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.32.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/cpo\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4bc4e99ea4ca2a2f9b15fda9e4d3855153c0fd74431b920ed885080d46e0cc73/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f63706f2e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/cpo.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eThe nf-core/cpo pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/local.md\"\u003eLocal installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eAdding your own system\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\n\u003ch3\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h3\u003e\n\u003cp\u003enf-core/cpo was originally written by Dan Fornika.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1621430186.0
+ "updated_at": 1544054866.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "singularity/Singularity.petibm0.5-xenial",
+ "singularity/Singularity.petibm0.5.1-xenial",
+ "singularity/Singularity.petibm0.4.2-xenial"
],
- "full_name": "ldynia/singularity-analyzer",
+ "full_name": "mesnardo/petibm-decoupledibpm",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-decoupled-immersed-boundary-projection-method-with-petibm\" class=\"anchor\" aria-hidden=\"true\" href=\"#decoupled-immersed-boundary-projection-method-with-petibm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDecoupled Immersed Boundary Projection Method with PetIBM\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/mesnardo/petibm-decoupledibpm/raw/master/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8ccf186e7288af6d88a1f6a930c0fcc4e7a8a9936b34e07629d815d1eab4d977/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d425344253230332d2d436c617573652d626c75652e737667\" alt=\"License\" data-canonical-src=\"https://img.shields.io/badge/License-BSD%203--Clause-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://cloud.docker.com/u/mesnardo/repository/docker/mesnardo/petibm-decoupledibpm\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b8d9674ae17bb539afa71ecc4169a1ee5a6a9242d8f9e12a10f4583093ba57c3/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f686f737465642d646f636b65722d2d6875622d696e666f726d6174696f6e616c2e737667\" alt=\"Docker Hub\" data-canonical-src=\"https://img.shields.io/badge/hosted-docker--hub-informational.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/3171\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"Singularity Hub\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-flow-over-a-stationary-circular-cylinder-re40-and-100\" class=\"anchor\" aria-hidden=\"true\" href=\"#flow-over-a-stationary-circular-cylinder-re40-and-100\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFlow over a stationary circular cylinder ($Re=40$ and $100$)\u003c/h2\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/cylinder2dRe40/189_markers/figures/wz_0005000.png\"\u003e\u003cimg src=\"runs/cylinder2dRe40/189_markers/figures/wz_0005000.png\" alt=\"cylinderRe40_vorticity\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e Vorticity contours around the cylinder at Reynolds number $40$. (Contour levels between $-3D/U_\\infty$ and $3D/U_\\infty$ with increments of $0.4$.)\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/cylinder2dRe100/189_markers/figures/wz_0020000.png\"\u003e\u003cimg src=\"runs/cylinder2dRe100/189_markers/figures/wz_0020000.png\" alt=\"cylinderRe100_vorticity\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e Vorticity contours around the cylinder at Reynolds number $100$ after $200$ time units of flow simulation. (Contour levels between $-3D/U_\\infty$ and $3D/U_\\infty$ with increments of $0.4$.)\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/cylinder2dRe40/189_markers/figures/cp_0005000.png\"\u003e\u003cimg src=\"runs/cylinder2dRe40/189_markers/figures/cp_0005000.png\" alt=\"cylinderRe40_pressure_coefficient\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e Pressure coefficient along the upper and lower surfaces of the cylinder at Reynolds number $40$. We compare with the results from Li et al. (2016).\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/cylinder2dRe100/189_markers/figures/pressure_coefficient.png\"\u003e\u003cimg src=\"runs/cylinder2dRe100/189_markers/figures/pressure_coefficient.png\" alt=\"cylinderRe100_pressure_coefficient\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e Pressure coefficient along the upper and lower surfaces of the cylinder at Reynolds number $100$. We compare with the results from Li et al. (2016).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-flow-around-an-inline-oscillating-circular-cylinder-re100\" class=\"anchor\" aria-hidden=\"true\" href=\"#flow-around-an-inline-oscillating-circular-cylinder-re100\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFlow around an inline oscillating circular cylinder ($Re=100$)\u003c/h2\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/oscillatingcylinderRe100/algo1/figures/vorticity.png\"\u003e\u003cimg src=\"runs/oscillatingcylinderRe100/algo1/figures/vorticity.png\" alt=\"oscillatingcylinderRe100_vorticity\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e Contours of the vorticity field around an inline oscillating cylinder at different phase angles ($\\phi = 2 \\pi f t$): $\\phi = 0^o$ (left) and $\\phi = 288^o$ (right). (Contour levels between $-20 U_m / D$ and $20 U_m / D$ using $30$ increments.)\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/oscillatingcylinderRe100/algo1/figures/pressure.png\"\u003e\u003cimg src=\"runs/oscillatingcylinderRe100/algo1/figures/pressure.png\" alt=\"oscillatingcylinderRe100_pressure\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e Contours of the pressure field around an inline oscillating cylinder at different phase angles ($\\phi = 2 \\pi f t$): $\\phi = 0^o$ (left) and $\\phi = 288^o$ (right). (Contour levels between $-1 \\rho U_m^2$ and $1 \\rho U_m^2$ using $50$ increments.)\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/oscillatingcylinderRe100/algo1/figures/velocity_profiles.png\"\u003e\u003cimg src=\"runs/oscillatingcylinderRe100/algo1/figures/velocity_profiles.png\" alt=\"oscillatingcylinderRe100_velocity\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e Profile of the velocity components ($u$: left, $v$: right) at four locations along the centerline for various phase angles $\\phi$.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/oscillatingcylinderRe100/figures/drag_coefficient.png\"\u003e\u003cimg src=\"runs/oscillatingcylinderRe100/figures/drag_coefficient.png\" alt=\"oscillatingcylinderRe100_drag_coefficient\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e History of the drag coefficient of the inline oscillating cylinder obtained using different algorithms. We also show zooms at early and developed stages.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/oscillatingcylinderRe100/figures/drag_coefficient_dt.png\"\u003e\u003cimg src=\"runs/oscillatingcylinderRe100/figures/drag_coefficient_dt.png\" alt=\"oscillatingcylinderRe100_drag_coefficient_dt\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/oscillatingcylinderRe100/figures/drag_coefficient_dx.png\"\u003e\u003cimg src=\"runs/oscillatingcylinderRe100/figures/drag_coefficient_dx.png\" alt=\"oscillatingcylinderRe100_drag_coefficient_dx\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e History of the drag coefficient obtained with Algorithm 1 for different time-step sizes and different grid sizes.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/oscillatingcylinderRe100/figures/temporal_error.png\"\u003e\u003cimg src=\"runs/oscillatingcylinderRe100/figures/temporal_error.png\" alt=\"oscillatingcylinderRe100_temporal_error\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e Variations of the $L_\\infty$ and $L_2$ norm errors of the streamwise velocity as a function of the computational time-step size.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/oscillatingcylinderRe100/figures/spatial_error.png\"\u003e\u003cimg src=\"runs/oscillatingcylinderRe100/figures/spatial_error.png\" alt=\"oscillatingcylinderRe100_temporal_error\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e Variations of the $L_\\infty$ and $L_2$ norm errors of the streamwise velocity as a function of the computational grid spacing.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/oscillatingcylinderRe100/figures/drag_coefficient_lag.png\"\u003e\u003cimg src=\"runs/oscillatingcylinderRe100/figures/drag_coefficient_lag.png\" alt=\"oscillatingcylinderRe100_cd_lag\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e History of the drag coefficient using Algorithm 3 with force-prediction scheme 3. We compared the history obtained with different Lagrangian mesh resolutions: $N_b = 500$ Lagrangian markers on the boundary and $N_b = 202$ markers (the latter one corresponding to the same resolution as the Eulerian background grid).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-flow-around-an-impulsively-started-circular-cylinder-re40\" class=\"anchor\" aria-hidden=\"true\" href=\"#flow-around-an-impulsively-started-circular-cylinder-re40\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFlow around an impulsively started circular cylinder (Re=40)\u003c/h2\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/translatingcylinder2dRe40/figures/drag_coefficients.png\"\u003e\u003cimg src=\"runs/translatingcylinder2dRe40/figures/drag_coefficients.png\" alt=\"translatingcylinder2dRe40_cd\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e History of the drag coefficient of the impulsively started cylinder. Comparison with the analytical solution of Bar-Lev \u0026amp; Yang (1997) and the numerical results from Taira \u0026amp; Colonius (2007).\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/translatingcylinder2dRe40/dt=0.0005/figures/vorticity.png\"\u003e\u003cimg src=\"runs/translatingcylinder2dRe40/dt=0.0005/figures/vorticity.png\" alt=\"translatingcylinder2dRe40_wz\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e Vorticity contours around the impulsively started circular cylinder at $t=1.0$ (left) and $t=3.5$ (right). Contour levels between $-3 \\omega_z D / U_o$ and $3 \\omega_z D / U_o$ with increments of $0.4$.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/translatingcylinder2dRe40/figures/recirculation_lengths.png\"\u003e\u003cimg src=\"runs/translatingcylinder2dRe40/figures/recirculation_lengths.png\" alt=\"translatingcylinder2dRe40_lw\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e History of the recirculation length measured in the reference frame of the impulsively start cylinder at Reynolds number 40 and for different time-step sizes.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-three-dimensional-flow-around-an-inline-oscillating-sphere-re7854\" class=\"anchor\" aria-hidden=\"true\" href=\"#three-dimensional-flow-around-an-inline-oscillating-sphere-re7854\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThree-dimensional flow around an inline oscillating sphere ($Re=78.54$)\u003c/h2\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"runs/oscillatingsphere/figures/pressure.png\"\u003e\u003cimg src=\"runs/oscillatingsphere/figures/pressure.png\" alt=\"sphere_pressure\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003cstrong\u003eFigure:\u003c/strong\u003e Contours of the pressure field in the $x$/$y$ at $z=0$ at three phase angles. Contour levels between $-2 p / \\rho U_m^2$ and $2 p / \\rho U_m^2$ with $30$ increments.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1509974976.0
+ "updated_at": 1581529613.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.v2.0.0"
],
- "full_name": "adswa/nilearn-container",
+ "full_name": "baxpr/fmri_modularity",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1616512270.0
+ "updated_at": 1550158474.0
},
{
"data_format": 2,
- "description": "A sample for Singularity container providing pynwb with h5py build with mpi support",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.v1.0.0"
],
- "full_name": "dandi-containers/pynwb-mpi",
- "latest_release": null,
+ "full_name": "baxpr/fmri_conncalc",
+ "latest_release": "v1.0.0-rc0",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-fmri_conncalc\" class=\"anchor\" aria-hidden=\"true\" href=\"#fmri_conncalc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efmri_conncalc\u003c/h1\u003e\n\u003cp\u003ePreprocessing and functional connectivity computation for fMRI\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-quickstart\" class=\"anchor\" aria-hidden=\"true\" href=\"#quickstart\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuickstart\u003c/h2\u003e\n\u003cp\u003eHere is an example for the \"jsins\" version of the processor, as described in\n\u003ca href=\"conncalc_jsins_v1.0.0.yaml\"\u003econncalc_jsins_v1.0.0.yaml\u003c/a\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity\n run\n --bind \u0026lt;INDIR\u0026gt;:/INPUTS\n --bind \u0026lt;OUTDIR\u0026gt;:/OUTPUTS\n baxpr-fmri_conncalc-master-v1.0.0.simg\n magick_path /usr/bin\n param_file params_JSins.csv\n wroi_file rois_JSins.nii.gz\n roi_file \u0027\u0027\n roiinfo_file rois_JSins.csv\n coregmat_file /INPUTS/coreg_mat.txt \\\n deffwd_file /INPUTS/y_deffwd.nii.gz \\\n ct1_file /INPUTS/ct1.nii.gz \\\n wgm_file /INPUTS/wgm.nii.gz \\\n wcseg_file /INPUTS/wcseg.nii.gz \\\n func_file /INPUTS/fmri.nii.gz \\\n project PROJECT_LABEL \\\n subject SUBJECT_LABEL \\\n session SESSION_LABEL \\\n scan SCAN_LABEL \\\n out_dir /OUTPUTS\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe inputs \u003ccode\u003ecoregmat_file\u003c/code\u003e, \u003ccode\u003edeffwd_file\u003c/code\u003e, \u003ccode\u003ect1_file\u003c/code\u003e, \u003ccode\u003ewgm_file\u003c/code\u003e, \u003ccode\u003ewcseg_file\u003c/code\u003e would typically be obtained from the outputs of the \u003ccode\u003eMAGM_Coreg_Normalize_v2\u003c/code\u003e spider.\u003c/p\u003e\n\u003cp\u003eThe outputs are:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003efmri_conncalc.pdf Report\nparams.csv Parameters used in the analysis\nFD.txt Framewise displacement time series\nDVARS.txt Framewise variance time series\nbadvols.txt Scrubbed volumes indicator time series\nrp_adfunc.txt Realignment (motion) values\nwmeanadfunc.nii.gz Mean functional image in standard space\nwadfunc.nii.gz Slice time corrected and realigned functional images in standard space\nrroi_labels.nii.gz Region of interest label image\nroi_snr.nii.gz ROI SNR image\nroi_info.csv ROI info\nroi_labels.csv ROI names (if available)\n\nSeries of results repeated for each of the four processing streams\n(keep or remove mean gray matter; scrub or no scrub):\n\n confounds_removegm_noscrub.txt Confound (filter) matrix\n connectivity_matrix_R_removegm_noscrub.csv Connectivity matrix\n filtered_removegm_noscrub.nii.gz Filtered functional images\n roi_timeseries_removegm_noscrub.csv Filtered ROI time series\n stats_removegm_noscrub.txt Various statistics\n Zmap_removegm_noscrub.nii.gz Unsmoothed ROI connectivity maps\n sZmap_removegm_noscrub.nii.gz Smoothed ROI connectivity maps\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eThe built singularity container \u003ccode\u003ebaxpr-fmri_conncalc-master-v1.0.0.simg\u003c/code\u003e (URL is shub://baxpr/fmri_conncalc:v1.0.0) is stand-alone with no external dependencies. The compiled matlab \u003ca href=\"bin/run_fmri_conncalc.sh\"\u003erun_fmri_conncalc.sh\u003c/a\u003e requires only the appropriate MATLAB Runtime to execute. To build these there are two stages:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eCompile the MATLAB code into a stand-alone executable, using \u003ca href=\"compile_matlab.sh\"\u003ecompile_matlab.sh\u003c/a\u003e. This requires a full MATLAB installation (R2017a, v92) and SPM12 (\u003ca href=\"https://www.fil.ion.ucl.ac.uk/spm/\" rel=\"nofollow\"\u003ehttps://www.fil.ion.ucl.ac.uk/spm/\u003c/a\u003e).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBuild the singularity container. In addition to a few specific OS packages, this requires the MATLAB Compiled Runtime. All are specified to be downloaded during the build in the singularity recipe \u003ca href=\"Singularity.v1.0.0\"\u003eSingularity.v1.0.0\u003c/a\u003e. The container help text gives build instructions. Alternatively the built container can be obtained from singularity-hub:\n\u003ccode\u003esingularity pull shub://baxpr/fmri_conncalc:v1.0.0\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-peculiarities-of-specific-pipelines\" class=\"anchor\" aria-hidden=\"true\" href=\"#peculiarities-of-specific-pipelines\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePeculiarities of specific pipelines\u003c/h2\u003e\n\u003cp\u003eSome critical analysis parameters are specified in the \u003ccode\u003eparam_file\u003c/code\u003e, e.g. \u003ccode\u003eparams_JSins.csv\u003c/code\u003e. This is a reference to a file that\u0027s in the built container, but these can also be viewed in the code repository e.g. \u003ca href=\"src/params/params_JSins.csv\"\u003esrc/params/params_JSins.csv\u003c/a\u003e. The parameters get as detailed as the repetition time of the fMRI scans. If the needed parameter file is not in the container already:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAdd the new parameter file in \u003ccode\u003esrc/params\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eUpdate the matlab compilation code to include it with \u003ccode\u003e-a\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRecompile the matlab\u003c/li\u003e\n\u003cli\u003eCommit to github. Note that the compiled matlab executable is stored using LFS\u003c/li\u003e\n\u003cli\u003eRebuild the container (increment the patch number, e.g. 1.0.0 to 1.0.1)\u003c/li\u003e\n\u003cli\u003eCreate an updated YAML file appropriate for the parameter set\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-jsins-version\" class=\"anchor\" aria-hidden=\"true\" href=\"#jsins-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ejsins version\u003c/h3\u003e\n\u003cp\u003e\u003ca href=\"conncalc_jsins_v1.0.0.yaml\"\u003econncalc_jsins_v1.0.0.yaml\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eStandard space regions of interest are used, \u003ca href=\"src/params/JS_insula/rois_JSins.nii.gz\"\u003erois_JSins.nii.gz\u003c/a\u003e, identical for every subject.\u003c/p\u003e\n\u003cp\u003eConnectivity matrix is computed (Pearson bivariate correlation R). A connectivity map is computed for each ROI (Fisher Z transform applied to Pearson bivariate correlation). Spatial smoothing is applied to the connectivity maps only.\u003c/p\u003e\n\u003cp\u003eParameter settings in \u003ca href=\"src/params/params_JSins.csv\"\u003eparams_JSins.csv\u003c/a\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFMRI repetition time (TR) is assumed to be 2.000 sec\u003c/li\u003e\n\u003cli\u003eUse all fMRI volumes (none dropped)\u003c/li\u003e\n\u003cli\u003eNo slice timing correction\u003c/li\u003e\n\u003cli\u003e6mm FWHM Gaussian spatial smoothing applied to connectivity maps\u003c/li\u003e\n\u003cli\u003eFilter settings (confound regressor matrix):\n\u003cul\u003e\n\u003cli\u003e0.01 Hz - 0.10 Hz bandpass filter (Fourier basis)\u003c/li\u003e\n\u003cli\u003e6 motion parameters (translation and rotation)\u003c/li\u003e\n\u003cli\u003e6 first differences of motion parameters\u003c/li\u003e\n\u003cli\u003eFirst 6 principal components of voxel time series from the eroded white matter/CSF compartment\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eFor scrubbed results, volumes before and after an excursion of FD \u0026gt; 0.5 are removed. DVARS is not used for scrubbing.\u003c/li\u003e\n\u003cli\u003eConnectivity maps are saved for each ROI.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-szhab-version\" class=\"anchor\" aria-hidden=\"true\" href=\"#szhab-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eszhab version\u003c/h3\u003e\n\u003cp\u003eNo YAML available yet.\u003c/p\u003e\n\u003cp\u003eSubject-specific regions of interest are used, as described in the native space ROI image supplied as input. This image must be in the same space as the subject\u0027s native space structural.\u003c/p\u003e\n\u003cp\u003eConnectivity matrix is computed (Pearson bivariate correlation R of filtered time series). Spatial smoothing is not used.\u003c/p\u003e\n\u003cp\u003eParameter settings in \u003ccode\u003eparams_SZhab.csv\u003c/code\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFMRI repetition time (TR) is assumed to be 2.000 sec\u003c/li\u003e\n\u003cli\u003e5 initial volumes are dropped, and the following 60 volumes are used for the analysis\u003c/li\u003e\n\u003cli\u003eNo slice timing correction\u003c/li\u003e\n\u003cli\u003eFilter settings (confound regressor matrix):\n\u003cul\u003e\n\u003cli\u003e0.01 Hz - 0.15 Hz bandpass filter (Fourier basis)\u003c/li\u003e\n\u003cli\u003e6 motion parameters (translation and rotation)\u003c/li\u003e\n\u003cli\u003eFirst 3 principal components of voxel time series from the eroded white matter/CSF compartment\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eFor scrubbed results, volumes before and after an excursion of FD \u0026gt; 0.5 are removed. DVARS is not used for scrubbing.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-general-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#general-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGeneral pipeline\u003c/h2\u003e\n\u003cp\u003eOther than the above, processing proceeds as follows.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eDrop functional volumes as specified.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ePerform slice timing correction as specified. (SPM12 slice timing correction)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ePerform motion realignment: two-stage alignment to mean image. (SPM12 realignment)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCoregister the mean functional image to the T1 weighted structural using a rigid body transform. The structural is first skull-stripped by zeroing all voxels that were not labeled by the multiatlas segmentation. The transformation is then applied to all functional volumes. (SPM12 coregistration)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eQuality parameters are computed: framewise displacement FD and framewise signal variance DVARS. Volumes exceeding scrubbing criteria are marked (\"badvols\").\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThe functional and structural images are warped to standard space using the supplied nonlinear transform (forward deformation image). (SPM12 deformation tools)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThe supplied standard space ROI image file is resampled to match the standard space fMRI geometry. (SPM12 reslice)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eConnectivity computation. All filtering is done in a single step: a design matrix of confounds is created (see lists above), it is fit to each voxel time series, and the residuals are extracted. Then bivariate Pearson correlation is computed between ROI residual time series to produce the connectivity matrix. Fisher transformed correlation between ROIs/voxel residual time series is used to produce connectivity maps if that option is selected.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1571608712.0
+ "updated_at": 1543615331.0
},
{
"data_format": 2,
- "description": "PySecDec base-OS Linux Containers",
+ "description": "This is singularity 2.6.0 image for PHEnix -1.4a",
"filenames": [
- "Singularity"
+ "Singularity-2.6.0"
],
- "full_name": "mppmu/mppmu_pysecdec-base_img",
+ "full_name": "Amjadhpc/PHEnix",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1538140519.0
+ "updated_at": 1539686949.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe for freesurfer",
"filenames": [
"Singularity"
],
- "full_name": "currymj/singularity-vm-kpdmetric",
+ "full_name": "ResearchIT/singularity-freesurfer",
"latest_release": null,
- "readme": "\u003cp\u003eThis repository is what I used to build a Singularity image in order to run KPDMetric with all its dependencies on HPC Clusters.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eVagrantfile\u003c/h1\u003e\u003ca id=\"user-content-vagrantfile\" class=\"anchor\" aria-label=\"Permalink: Vagrantfile\" href=\"#vagrantfile\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you are on a Linux system, you don\u0027t need to worry about the Vagrantfile. Singularity can only be run on Linux, so on macOS or Windows we need to set up a Linux VM to build the container in. This Vagrantfile does that. It expects the VMware provider, which is not free; you\u0027ll have to change that if you want to use VirtualBox.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity\u003c/h1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-label=\"Permalink: Singularity\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis file gives the recipe to build the Singularity container. It requires a couple things:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003esingscript.sh\u003c/code\u003e which does some python-related stuff (needs to be called from bash)\u003c/li\u003e\n\u003cli\u003eyou must download CPLEX for Linux and use the installer to install to the directory \u003ccode\u003e./opt\u003c/code\u003e in the same directory as this repository.\u003c/li\u003e\n\u003cli\u003eyou must build the driver code from KPDMetric as a jar and save it as Simulation1.jar -- easiest to do this once by hand in Eclipse by exporting an executable jar.\u003c/li\u003e\n\u003cli\u003eyou must have an internet connection as the build script will clone a github repository.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1509658881.0
+ "updated_at": 1603915556.0
},
{
"data_format": 2,
- "description": "Singularity repo to package docker artifacts:base:latest container for running GobyWeb plugins with Singularity.",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "CampagneLaboratory/GobyWeb-Singularity",
+ "full_name": "mosoriob/pegasus_montage-workflow-v2",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eGobyWeb-Singularity\u003c/h1\u003e\u003ca id=\"user-content-gobyweb-singularity\" class=\"anchor\" aria-label=\"Permalink: GobyWeb-Singularity\" href=\"#gobyweb-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity repo to package docker artifacts:base:latest container for running GobyWeb plugins with Singularity\u003c/p\u003e\n\u003cp\u003eTo build the image:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eInstall singularity (Mac: \u003ca href=\"http://singularity.lbl.gov/install-mac\" rel=\"nofollow\"\u003ehttp://singularity.lbl.gov/install-mac\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eActivate the vagrant VM\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003evagrant init singularityware/singularity-2.4\nvagrant up\nvagrant ssh\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eInside the VM\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003ecd /vagrant\ngit clone git@github.com:CampagneLaboratory/GobyWeb-Singularity.git\ncd GobyWeb-Singularity/\nsudo singularity build --writable CampagneLaboratory-GobyWeb-Singularity-master-latest.img shub://CampagneLaboratory/GobyWeb-Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eAt this point, we can exit the VM and copy the image file: CampagneLaboratory-GobyWeb-Singularity-master-latest.img\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-montage-workflow-v2\" class=\"anchor\" aria-hidden=\"true\" href=\"#montage-workflow-v2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emontage-workflow-v2\u003c/h1\u003e\n\u003cp\u003eA new Python DAX generator version of the classic Montage workflow. This workflow uses the \u003ca href=\"http://montage.ipac.caltech.edu\" rel=\"nofollow\"\u003eMontage\ntoolkit\u003c/a\u003e to re-project, background correct and add astronomical\nimages into custom mosaics.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"http://montage.ipac.caltech.edu\" rel=\"nofollow\"\u003eMontage\u003c/a\u003e - version 4.0 or later\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://www.astropy.org/\" rel=\"nofollow\"\u003eAstroPy\u003c/a\u003e - version 1.0 or later\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-plan-a-montage-workflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#plan-a-montage-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePlan a Montage Workflow\u003c/h2\u003e\n\u003cp\u003eThe \u003cem\u003e./montage-workflow.py\u003c/em\u003e Python script sets up a \u003cem\u003edata/\u003c/em\u003e directory with a Pegasus DAX,\nimage tables and region headers. For example:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./montage-workflow.py --center \"56.7 24.0\" --degrees 2.0 \\\n --band dss:DSS2B:blue --band dss:DSS2R:green --band dss:DSS2IR:red\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will create a 2x2 degree mosaic centered on 56.7 24.0, with 3 bands making up the\nred, green, and blue channels for the final JPEG output. A 2 degree workflow has a lot\nof input images and thus the workflow becomes wide. I simplified version of the workflow\nlooks like:\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/images/dax1.png?raw=true\"\u003e\u003cimg src=\"docs/images/dax1.png?raw=true\" alt=\"DAX 1\" title=\"DAX 1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-examples\" class=\"anchor\" aria-hidden=\"true\" href=\"#examples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExamples\u003c/h2\u003e\n\u003cp\u003eThe quickest way to get started is to use the \u003cem\u003e./example-dss.sh\u003c/em\u003e\nscript. It shows how to use the \u003cem\u003emontage-workflow.py\u003c/em\u003e DAX generator to set up and plan\n2 degree workflows as described above. Example:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ./example-dss.sh \n\nAdding band 1 (dss DSS2B -\u0026gt; blue)\nRunning sub command: mArchiveList dss DSS2B \"56.7 24.00\" 2.2 2.2 data/1-images.tbl\n[struct stat=\"OK\", count=\"16\"]\nRunning sub command: cd data \u0026amp;\u0026amp; mDAGTbls 1-images.tbl region-oversized.hdr 1-raw.tbl 1-projected.tbl 1-corrected.tbl\n[struct stat=\"OK\", count=\"16\", total=\"16\"]\nRunning sub command: cd data \u0026amp;\u0026amp; mOverlaps 1-raw.tbl 1-diffs.tbl\n[struct stat=\"OK\", count=120]\n\nAdding band 2 (dss DSS2R -\u0026gt; green)\nRunning sub command: mArchiveList dss DSS2R \"56.7 24.00\" 2.2 2.2 data/2-images.tbl\n[struct stat=\"OK\", count=\"16\"]\nRunning sub command: cd data \u0026amp;\u0026amp; mDAGTbls 2-images.tbl region-oversized.hdr 2-raw.tbl 2-projected.tbl 2-corrected.tbl\n[struct stat=\"OK\", count=\"16\", total=\"16\"]\nRunning sub command: cd data \u0026amp;\u0026amp; mOverlaps 2-raw.tbl 2-diffs.tbl\n[struct stat=\"OK\", count=120]\n\nAdding band 3 (dss DSS2IR -\u0026gt; red)\nRunning sub command: mArchiveList dss DSS2IR \"56.7 24.00\" 2.2 2.2 data/3-images.tbl\n[struct stat=\"OK\", count=\"16\"]\nRunning sub command: cd data \u0026amp;\u0026amp; mDAGTbls 3-images.tbl region-oversized.hdr 3-raw.tbl 3-projected.tbl 3-corrected.tbl\n[struct stat=\"OK\", count=\"16\", total=\"16\"]\nRunning sub command: cd data \u0026amp;\u0026amp; mOverlaps 3-raw.tbl 3-diffs.tbl\n[struct stat=\"OK\", count=120]\n2016.06.02 21:46:32.455 PDT: \n2016.06.02 21:46:32.461 PDT: ----------------------------------------------------------------------- \n2016.06.02 21:46:32.466 PDT: File for submitting this DAG to HTCondor : montage-0.dag.condor.sub \n2016.06.02 21:46:32.471 PDT: Log of DAGMan debugging messages : montage-0.dag.dagman.out \n2016.06.02 21:46:32.476 PDT: Log of HTCondor library output : montage-0.dag.lib.out \n2016.06.02 21:46:32.481 PDT: Log of HTCondor library error messages : montage-0.dag.lib.err \n2016.06.02 21:46:32.487 PDT: Log of the life of condor_dagman itself : montage-0.dag.dagman.log \n2016.06.02 21:46:32.492 PDT: \n2016.06.02 21:46:32.497 PDT: -no_submit given, not submitting DAG to HTCondor. You can do this with: \n2016.06.02 21:46:32.507 PDT: ----------------------------------------------------------------------- \n2016.06.02 21:46:33.387 PDT: Your database is compatible with Pegasus version: 4.6.1 \n2016.06.02 21:46:33.392 PDT: \n\nI have concretized your abstract workflow. The workflow has been entered \ninto the workflow database with a state of \"planned\". The next step is \nto start or execute your workflow. The invocation required is\n\npegasus-run /data/scratch/rynge/montage2/montage-workflow-v2/work/1464929190\n\n2016.06.02 21:46:33.419 PDT: Time taken to execute is 2.961 seconds \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning the workflow produces fits and jpeg mosaics for each band, as well as a combined color one:\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/images/pleiades.jpg?raw=true\"\u003e\u003cimg src=\"docs/images/pleiades.jpg?raw=true\" alt=\"Pleiades\" title=\"Pleiades\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1516396334.0
+ "updated_at": 1535257330.0
},
{
"data_format": 2,
- "description": "testing running clair with a singularity image",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "vsoch/singularity-clair",
+ "full_name": "weatherlab/metview",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity Clair\u003c/h1\u003e\u003ca id=\"user-content-singularity-clair\" class=\"anchor\" aria-label=\"Permalink: Singularity Clair\" href=\"#singularity-clair\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is a test for running clair with Singularity. I haven\u0027t figured out exactly how this works yet :)\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild with Makefile\u003c/h2\u003e\u003ca id=\"user-content-build-with-makefile\" class=\"anchor\" aria-label=\"Permalink: Build with Makefile\" href=\"#build-with-makefile\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003emake build\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuild with Singularity\u003c/h2\u003e\u003ca id=\"user-content-build-with-singularity\" class=\"anchor\" aria-label=\"Permalink: Build with Singularity\" href=\"#build-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity create clair.img\nsudo singularity bootstrap clair.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run the server?\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run clair.img\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-metview\" class=\"anchor\" aria-hidden=\"true\" href=\"#metview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emetview\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
- "topics": [
- "singularity",
- "singularity-container",
- "clair",
- "coreos",
- "container",
- "security",
- "vulnerability"
- ],
- "updated_at": 1545323610.0
+ "topics": [],
+ "updated_at": 1523286570.0
},
{
"data_format": 2,
- "description": null,
+ "description": "PreFreeSurfer-Converting Docker to Singularity (centos7-reprozip.fslbuild-centos5)",
"filenames": [
"Singularity"
],
- "full_name": "kfox1111/p8compute",
+ "full_name": "soudabeh19/centos7-reprozip.fslbuild-centos5",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-centos7-reprozipfslbuild-centos5\" class=\"anchor\" aria-hidden=\"true\" href=\"#centos7-reprozipfslbuild-centos5\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecentos7-reprozip.fslbuild-centos5\u003c/h1\u003e\n\u003cp\u003ePreFreeSurfer-Converting Docker to Singularity (centos7-reprozip.fslbuild-centos5)\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1539124833.0
+ "updated_at": 1521572666.0
},
{
"data_format": 2,
- "description": "Singularity recipe for LaTeX.",
+ "description": "Nextflow + Singularity/Docker demo for CentOS 6.8 without OverlayFS",
"filenames": [
- "Singularity"
+ "containers/demo1/Singularity.demo1",
+ "containers/base/Singularity.base"
],
- "full_name": "robertodr/latex",
+ "full_name": "stevekm/NYU-phoenix-docker-singularity-nextflow-demo",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity recipe for LaTeX\u003c/h1\u003e\u003ca id=\"user-content-singularity-recipe-for-latex\" class=\"anchor\" aria-label=\"Permalink: Singularity recipe for LaTeX\" href=\"#singularity-recipe-for-latex\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4518\" rel=\"nofollow\"\u003ehttps://singularity-hub.org/collections/4518\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity pull --name latex.sif shub://bast/latex\n$ singularity run latex.sif example.tex\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-nyu-phoenix-hpc-dockersingularity-nextflow-demo\" class=\"anchor\" aria-hidden=\"true\" href=\"#nyu-phoenix-hpc-dockersingularity-nextflow-demo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNYU phoenix HPC Docker/Singularity Nextflow Demo\u003c/h1\u003e\n\u003cp\u003eDemo on how to run a Nextflow pipeline on the HPC using Singularity containers built from Docker.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h1\u003e\n\u003cp\u003eClone this repository\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/stevekm/NYU-phoenix-docker-singularity-nextflow-demo.git\ncd NYU-phoenix-docker-singularity-nextflow-demo\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-remote-hpc-phoenix\" class=\"anchor\" aria-hidden=\"true\" href=\"#remote-hpc-phoenix\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRemote HPC (phoenix)\u003c/h2\u003e\n\u003cp\u003eTo run this workflow on the NYU phoenix HPC system, use the following command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emake run-p\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003einstall Nextflow to the current directory\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eextract a pre-built demo Singularity image from this repository\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003erun the Nextflow pipeline using the Singularity image\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-local\" class=\"anchor\" aria-hidden=\"true\" href=\"#local\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLocal\u003c/h2\u003e\n\u003cp\u003eTo run this workflow on your local computer (Docker required), use the following command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emake run-l\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003einstall Nextflow to the current directory\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ebuild the Docker containers included in this repository\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003erun the Nextflow pipeline using the Docker containers\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-contents\" class=\"anchor\" aria-hidden=\"true\" href=\"#contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContents\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eMakefile\u003c/code\u003e: shortcuts to common actions used in the demo\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003emain.nf\u003c/code\u003e: main Nextflow pipeline file\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003enextflow.config\u003c/code\u003e: Nextflow configuration file\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ebin\u003c/code\u003e: directory for scripts to use inside the Nextflow pipeline; its contents will be prepended to your \u003ccode\u003ePATH\u003c/code\u003e when pipeline tasks are executed\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003econtainers\u003c/code\u003e: directory containing Docker and Singularity container files, along with documentation on their setup \u0026amp; usage\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-software-requirements\" class=\"anchor\" aria-hidden=\"true\" href=\"#software-requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSoftware Requirements\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-local--remote-hpc-server\" class=\"anchor\" aria-hidden=\"true\" href=\"#local--remote-hpc-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003elocal \u0026amp; remote HPC server\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eJava 8 (for Nextflow)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGraphViz Dot (to compile flowchart)\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-local-only\" class=\"anchor\" aria-hidden=\"true\" href=\"#local-only\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003elocal only\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eDocker version 17.12.0-ce, build c97c6d6\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eVagrant version 2.0.1 (for tesing Singularity containers)\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-remote-hpc-server-only\" class=\"anchor\" aria-hidden=\"true\" href=\"#remote-hpc-server-only\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eremote HPC server only\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity version 2.4.2\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1620251806.0
+ "updated_at": 1521145930.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "singularity/Singularity"
+ "Singularity_recipev1.0",
+ "Singularity_recipe_R.3.4.1",
+ "Singularity_add.R_packages",
+ "Singularity_hicpro_v1",
+ "Singularity.add_python_packages",
+ "Singularity_recipe0_part1",
+ "Singularity.add_g2gtools",
+ "Singularity_recipev1.0_addR.3.4.3",
+ "Singularity_recipev1.R-3-4-3",
+ "Singularity_recipe_MMARGE"
],
- "full_name": "pnnlhep/p8compute",
+ "full_name": "pranithavangala/singularity",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 6,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1539125493.0
+ "updated_at": 1609299433.0
},
{
"data_format": 2,
- "description": "Singularity container for PRIMME (PReconditioned Iterative MultiMethod Eigensolver) library",
+ "description": "Singularity Recipe for GEOS-Chem",
"filenames": [
"Singularity"
],
- "full_name": "twesterhout/primme-singularity",
+ "full_name": "geoschem/Singularity_GC",
"latest_release": null,
+ "readme": "\u003ch2\u003e\u003ca id=\"user-content-note-this-repository-is-obsolete-and-has-been-archived\" class=\"anchor\" aria-hidden=\"true\" href=\"#note-this-repository-is-obsolete-and-has-been-archived\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNOTE: THIS REPOSITORY IS OBSOLETE AND HAS BEEN ARCHIVED\u003c/h2\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 4,
"topics": [
- "singularity-containers",
- "exact-diagonalization",
- "svd",
- "c"
+ "geos-chem",
+ "singularity-container",
+ "docker-image"
],
- "updated_at": 1597061752.0
+ "updated_at": 1674873388.0
},
{
"data_format": 2,
- "description": "Singularity recipe for CRISPR-DAV",
+ "description": " Build for docker and singularity containers for Multi Atlas",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.2.1.0"
],
- "full_name": "ISU-HPC/crispr-dav",
+ "full_name": "VUIIS/Multi_Atlas_app",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ecrispr-dav\u003c/h1\u003e\u003ca id=\"user-content-crispr-dav\" class=\"anchor\" aria-label=\"Permalink: crispr-dav\" href=\"#crispr-dav\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for CRISPR-DAV\u003c/p\u003e\n\u003cp\u003eAdapted form the original Docker recipe \u003ca href=\"https://github.com/pinetree1/crispr-dav\"\u003ehttps://github.com/pinetree1/crispr-dav\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-multi_atlas_app\" class=\"anchor\" aria-hidden=\"true\" href=\"#multi_atlas_app\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMulti_Atlas_app\u003c/h1\u003e\n\u003cp\u003eThis includes everything required (except for the \"full-multi-atlas\" directory) to build a docker and corresponding singularity container for the Multi Atlas pipeline.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://hub.docker.com/r/vuiiscci/multi_atlas/tags/\" rel=\"nofollow\"\u003eDocker Hub\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/734\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-build-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild Instructions:\u003c/h1\u003e\n\u003cp\u003eJust clone and run \u003ccode\u003ebuild.sh\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/vuiiscci/Multi_Atlas_app.git\ncd Multi_Atlas_app/\n./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNOTE that you must have full-multi-atlas directory which contains atlases.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Instructions:\u003c/h1\u003e\n\u003cp\u003eFor docker:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo docker run --rm \\\n-v $(pwd)/INPUTS/:/INPUTS/ \\\n-v $(pwd)/OUTPUTS:/OUTPUTS/ \\\n--user $(id -u):$(id -g) \\\nvuiiscci/multi_atlas\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor singularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -e \\\n-B INPUTS/:/INPUTS \\\n-B OUTPUTS/:/OUTPUTS \\\nshub://vuiiscci/Multi_Atlas_app\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1524505816.0
+ "updated_at": 1674914637.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Virtual Research Environment for Sara Server - container build scripts",
"filenames": [
"Singularity"
],
- "full_name": "phgenomics-singularity/mash_kmc",
+ "full_name": "54r4/sara-server-vre",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-sara-server-vre\" class=\"anchor\" aria-hidden=\"true\" href=\"#sara-server-vre\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esara-server-vre\u003c/h1\u003e\n\u003cp\u003eVirtual Research Environment for Sara Server - container build scripts\u003c/p\u003e\n\u003cp\u003eThis is the VRE main spec containing a Java Runtime Environment plus Eclipse\nused for the development of the SARA service.\nA local postgres database is integrated, too. The source is a docker repo\nwhich is being pulled on build time and used to locally run a postgresql\nserver using udocker.\nThis VRE has no external requirements whatsoever once the image has been built.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-use-prebuild-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#use-prebuild-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUse prebuild image\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e cd /tmp\n singularity pull --name \"sara-server-vre.img\" shub://c1t4r/sara-server-vre\n ./sara-server-vre.img\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-local-image-singularity-23\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-local-image-singularity-23\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild local image (Singularity 2.3)\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003ecd /tmp\nsingularity create -s 2048 sara-server-vre.img\nsingularity bootstrap sara-server-vre.img ./Singularity\n./sara-server-vre.img\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-local-image-singularity-24\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-local-image-singularity-24\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild local image (Singularity 2.4)\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build sara-server-vre.simg ./Singularity\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1576562938.0
+ "updated_at": 1546985098.0
},
{
"data_format": 2,
- "description": "The Singularity file to create an image with nvBowtie and nvBWT. Available on Singularity Hub",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "KevinSayers/nvBowtie_Singularity",
+ "full_name": "markxiao/freesurfer",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003envBowtie_Singularity\u003c/h1\u003e\u003ca id=\"user-content-nvbowtie_singularity\" class=\"anchor\" aria-label=\"Permalink: nvBowtie_Singularity\" href=\"#nvbowtie_singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe Singularity file to create an image with nvBowtie and nvBWT. Available on Singularity Hub\u003c/p\u003e\n\u003cp\u003eThe Singularity file can be used to bootstrap a container with nvBowtie. This is a GPU enabled Bowtie2 implementation developed by NVIDIA.\u003c/p\u003e\n\u003cp\u003eMore information: \u003ca href=\"https://developer.nvidia.com/nvbio\" rel=\"nofollow\"\u003ehttps://developer.nvidia.com/nvbio\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-freesurfer\" class=\"anchor\" aria-hidden=\"true\" href=\"#freesurfer\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efreesurfer\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1503243479.0
+ "updated_at": 1618603672.0
},
{
"data_format": 2,
- "description": "Singularity recipe for Pandoc.",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "robertodr/pandoc",
+ "full_name": "markxiao/fsl",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eSingularity recipe for Pandoc\u003c/h1\u003e\u003ca id=\"user-content-singularity-recipe-for-pandoc\" class=\"anchor\" aria-label=\"Permalink: Singularity recipe for Pandoc\" href=\"#singularity-recipe-for-pandoc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4516\" rel=\"nofollow\"\u003ehttps://singularity-hub.org/collections/4516\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity pull --name pandoc.sif shub://bast/pandoc\n$ singularity run pandoc.sif --from=markdown --to=rst --output=README.rst README.md\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-fsl\" class=\"anchor\" aria-hidden=\"true\" href=\"#fsl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efsl\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1620331522.0
+ "updated_at": 1618603672.0
},
{
"data_format": 2,
- "description": "Docker image for Lattice Element Method",
+ "description": "R wrapper for bamdb",
"filenames": [
- "Singularity"
+ "src/bamdb/Singularity.bamdb"
],
- "full_name": "cb-geo/lem-container",
+ "full_name": "D-Lo/bambi",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDocker image for Lattice Element Method\u003c/h1\u003e\u003ca id=\"user-content-docker-image-for-lattice-element-method\" class=\"anchor\" aria-label=\"Permalink: Docker image for Lattice Element Method\" href=\"#docker-image-for-lattice-element-method\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003eKrishna Kumar\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003e\u003ca href=\"https://quay.io/repository/cbgeo/lem\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a191f0a1b6c4e1b41f032c2dd99bc4a5cabbc62a875f08e24da458d24bc4fc6a/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f717561792d2d696d6167652d636267656f2d2d6c656d2d6666363962342e737667\" alt=\"Quay image\" data-canonical-src=\"https://img.shields.io/badge/quay--image-cbgeo--lem-ff69b4.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/cbgeo/lem\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9982af777dc0e058b77b89824b8290f275c85fe153068c0cc68132431d64dabe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d2d6875622d636267656f2d2d6c656d2d6666363962342e737667\" alt=\"Docker hub\" data-canonical-src=\"https://img.shields.io/badge/docker--hub-cbgeo--lem-ff69b4.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://circleci.com/gh/cb-geo/lem-container\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/72966832e29d839ef2277b9d204355a9ff8c427bc681c73ce96b4fd1a443ec92/68747470733a2f2f636972636c6563692e636f6d2f67682f63622d67656f2f6c656d2d636f6e7461696e65722e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/cb-geo/lem-container.svg?style=svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://travis-ci.org/cb-geo/docker-lem\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9ba1a6181039c2f5cabd4a0f4b027382a31a54459e71aeacf82a64a07bea37a4/68747470733a2f2f6170692e7472617669732d63692e6f72672f63622d67656f2f646f636b65722d6c656d2e737667\" alt=\"Build status\" data-canonical-src=\"https://api.travis-ci.org/cb-geo/docker-lem.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"http://microbadger.com/images/cbgeo/lem\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/98e02b5982223671602e697fff2687b7c71a4ba023a12a4fb37767334a36e39e/68747470733a2f2f696d616765732e6d6963726f6261646765722e636f6d2f6261646765732f696d6167652f636267656f2f6c656d2e737667\" alt=\"\" data-canonical-src=\"https://images.microbadger.com/badges/image/cbgeo/lem.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTools\u003c/h2\u003e\u003ca id=\"user-content-tools\" class=\"anchor\" aria-label=\"Permalink: Tools\" href=\"#tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eClang 4.0\u003c/li\u003e\n\u003cli\u003eCMake\u003c/li\u003e\n\u003cli\u003eCUDA\u003c/li\u003e\n\u003cli\u003eEigen3\u003c/li\u003e\n\u003cli\u003eGCC 7\u003c/li\u003e\n\u003cli\u003eIntel TBB\u003c/li\u003e\n\u003cli\u003eIntel MKL\u003c/li\u003e\n\u003cli\u003eVim\u003c/li\u003e\n\u003cli\u003eVoro++\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eUsing the docker image\u003c/h1\u003e\u003ca id=\"user-content-using-the-docker-image\" class=\"anchor\" aria-label=\"Permalink: Using the docker image\" href=\"#using-the-docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eThe docker image can be used directly from Quay.io or Docker Hub\u003c/li\u003e\n\u003cli\u003ePull the docker image \u003ccode\u003edocker pull quay.io/cbgeo/lem\u003c/code\u003e or \u003ccode\u003edocker pull cbgeo/lem\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTo launch the \u003ccode\u003ecbgeo/ca-abm\u003c/code\u003e docker container, run \u003ccode\u003edocker run -ti cbgeo/lem:latest /bin/bash\u003c/code\u003e or \u003ccode\u003edocker run -ti quay.io/cbgeo/lem:latest /bin/bash\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTo login as root\u003c/h1\u003e\u003ca id=\"user-content-to-login-as-root\" class=\"anchor\" aria-label=\"Permalink: To login as root\" href=\"#to-login-as-root\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eLaunching docker as root user: \u003ccode\u003edocker exec -u 0 -ti \u0026lt;containerid\u0026gt; /bin/bash\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCreating an image from the docker file\u003c/h1\u003e\u003ca id=\"user-content-creating-an-image-from-the-docker-file\" class=\"anchor\" aria-label=\"Permalink: Creating an image from the docker file\" href=\"#creating-an-image-from-the-docker-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eTo build an image from docker file run as root \u003ccode\u003edocker build -t \"cbgeo/lem\" /path/to/Dockerfile\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003edocker history\u003c/code\u003e will show you the effect of each command has on the overall size of the file.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://travis-ci.org/mskilab/bambi\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/47c82ab2d405aa684f3a5004ed8fc79887c025105127effda9ce1d35b5568974/68747470733a2f2f7472617669732d63692e6f72672f6d736b696c61622f62616d62692e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/mskilab/bambi.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://codecov.io/github/mskilab/bambi?branch=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ccb3814df2f3f1c65e518dd49a10732518ba754f251e50546a0d42ec9fd9cdab/68747470733a2f2f696d672e736869656c64732e696f2f636f6465636f762f632f6769746875622f6d736b696c61622f62616d62692e737667\" alt=\"codecov.io\" data-canonical-src=\"https://img.shields.io/codecov/c/github/mskilab/bambi.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-bambi\" class=\"anchor\" aria-hidden=\"true\" href=\"#bambi\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebambi\u003c/h1\u003e\n\u003cp\u003eR package for querying 10x WGS and single-cell BAMs\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cpre lang=\"{r}\"\u003e\u003ccode\u003edevtools::install_github(\u0027mskilab/gUtils\u0027)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre lang=\"{r}\"\u003e\u003ccode\u003edevtools::install_github(\u0027mskilab/bamUtils\u0027)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-bambi-commands\" class=\"anchor\" aria-hidden=\"true\" href=\"#bambi-commands\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebambi commands\u003c/h2\u003e\n\u003cp\u003eInstantiate a bambi object:\u003c/p\u003e\n\u003cp\u003eMethods:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003egrab_bx()\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003egrab_bx(barcodes, query=NULL, data.table = FALSE, verbose = FALSE, mc.cores = 1)\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003egrab_cb()\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003egrab_cb(barcodes, query=NULL, data.table = FALSE, verbose = FALSE, mc.cores = 1)\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003egrab_ub()\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003egrab_ub(barcodes, query=NULL, data.table = FALSE, verbose = FALSE, mc.cores = 1)\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003efetch_by_tag()\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003efetch_by_tag(tag, tag_queries, query=NULL, data.table = FALSE, verbose = FALSE, mc.cores = 1)\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-demo\" class=\"anchor\" aria-hidden=\"true\" href=\"#demo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDemo\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eInstantiate a \u003ccode\u003ebambi\u003c/code\u003e object\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre lang=\"{r}\"\u003e\u003ccode\u003elibrary(bambi)\n\n\u0026gt; hcc1143_subset = bambi$new(bam_file = \"subsetHCC1143_phased_possorted0001.bam\", bamdb_path=\"subsetHCC1143_phased_possorted0001_lmdb\")\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eCall methods\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre lang=\"{r}\"\u003e\u003ccode\u003e\u0026gt; hcc1143_subset$grab_bx(\u0027CGACGTGTCCTCTAGC-1\u0027)\nGRanges object with 2 ranges and 11 metadata columns:\n seqnames ranges strand |\n \u0026lt;Rle\u0026gt; \u0026lt;IRanges\u0026gt; \u0026lt;Rle\u0026gt; |\n [1] chr1 [147975454, 147975580] + |\n [2] chr1 [147975675, 147975824] - |\n qname flag mapq cigar\n \u0026lt;character\u0026gt; \u0026lt;numeric\u0026gt; \u0026lt;numeric\u0026gt; \u0026lt;character\u0026gt;\n [1] ST-K00126:3:H5TL3BBXX:2:2109:25926:37800 99 16 127M\n [2] ST-K00126:3:H5TL3BBXX:2:2109:25926:37800 147 16 150M\n rnext pnext tlen\n \u0026lt;character\u0026gt; \u0026lt;numeric\u0026gt; \u0026lt;numeric\u0026gt;\n [1] = 147975676 371\n [2] = 147975455 -371\n seq\n \u0026lt;character\u0026gt;\n [1] ATGTCTTCTTCCTCATTATCTGGCACTGGTTAGGAAGCACTCATCTCCATGAAGTCATCTTTTGTTAATTCCTCTGGTGTGGTGTGTATTAGCTCTTAAATTCCTCCAAGATCCATATCTTGCAACC\n [2] ATCTGGACACAAATTGTACTTTTGTCCAGCACGAATTTATTGTTTTGAGTTTCATGGTTTTCTATATCAACTGATGACATCTTGAAAGGTGTAAGCCTTCCAGACTTCCATGATGTTCTCTCTATTGGGTTTCTCTTTTGCAATGTTGAC\n qual\n \u0026lt;character\u0026gt;\n [1] JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJFJJJJJJJJJJJAJFJJJJJJJJJFJJJJJJJJJJFJJJJFFFJJJFJJJJJJAAJFJJJFAFAFFFJAA\u0026lt;7F\u0026lt;\n [2] A\u0026lt;7FFFJFFFAJJAAAJJF\u0026lt;F\u0026lt;7A-\u0026lt;AA-\u0026lt;\u0026lt;\u0026lt;AFFJJJJJJJJFFJAFFAAFJFJJJAFFJJJJJJJJJJFJFAJJJJJJFJJJJJJ\u0026lt;FFJJJFJJJFJJJJJJJJJJJJJFJJJJFFJ7JJJJF\u0026lt;JJJJJJJJJJJJJJJJJJJFFAA\u0026lt;\n BX qwidth\n \u0026lt;character\u0026gt; \u0026lt;integer\u0026gt;\n [1] CGACGTGTCCTCTAGC-1 127\n [2] CGACGTGTCCTCTAGC-1 150\n -------\n seqinfo: 1 sequence from an unspecified genome; no seqlengths\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "lem",
- "container"
- ],
- "updated_at": 1518214261.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1531085438.0
},
{
"data_format": 2,
- "description": "Singularity Image for NLPipe",
+ "description": "Singularity Recipe for Tofu2",
"filenames": [
+ "Singularity.v17",
"Singularity"
],
- "full_name": "vanatteveldt/nlpipe-singularity",
+ "full_name": "ResearchIT/tofu2",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003enlpipe-singularity\u003c/h1\u003e\u003ca id=\"user-content-nlpipe-singularity\" class=\"anchor\" aria-label=\"Permalink: nlpipe-singularity\" href=\"#nlpipe-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSingularity Image for NLPipe\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eBuild the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre lang=\"{sh}\"\u003e\u003ccode\u003esudo singularity build nlpipe.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eRun the alpino service:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre lang=\"{sh}\"\u003e\u003ccode\u003esingularity instance.start nlpipe.img nlpipe\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eRun the worker:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre lang=\"{sh}\"\u003e\u003ccode\u003esingularity run --app worker instance://nlpipe /tmp/nlpipedata alpinocoref\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eTo test, run (in a separate shell) the client:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre lang=\"{sh}\"\u003e\u003ccode\u003esingularity run --app client instance://nlpipe /tmp/nlpipedata alpinocoref process_inline \"dit is een test\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhich should print an XML file after about 10 seconds.\u003c/p\u003e\n\u003cp\u003e(Note: these are my very first steps into singularity-land, so all feedback is appreciated!)\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-recipe-for-tofu2\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-recipe-for-tofu2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Recipe for Tofu2\u003c/h1\u003e\n\u003cp\u003eThis repo contains recipes to run \u003ca href=\"https://github.com/PacificBiosciences/IsoSeq_SA3nUP/wiki/%5BBeta%5D-ToFU2:-running-and-installing-ToFU2#install\"\u003eTofu2\u003c/a\u003e\nwithin a \u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e container, which can be built\nusing \u003ca href=\"https://singularity-hub.org/\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eVersions:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ev17 - Tofu2 installed on Ubuntu\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-use\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to Use:\u003c/h2\u003e\n\u003cp\u003eRun example:\u003c/p\u003e\n\u003cp\u003esingularity run shub://ResearchIT/tofu2 run_preCluster.py --cpus=4\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-alternative-method\" class=\"anchor\" aria-hidden=\"true\" href=\"#alternative-method\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAlternative method:\u003c/h2\u003e\n\u003cp\u003euse the provided bash wrapper and module file to use the tofu2 singularity container like a standard module\n(this assumes you have a singularity/2.4 module)\u003c/p\u003e\n\u003cp\u003ee.g.\u003c/p\u003e\n\u003cp\u003emodule load tofu2/v17\ntofu2 run_preCluster.py --cpus=4\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1515629557.0
+ "subscribers_count": 6,
+ "topics": [
+ "tofu",
+ "pacbio",
+ "singularity"
+ ],
+ "updated_at": 1522255502.0
},
{
"data_format": 2,
@@ -6069,822 +5779,803 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "singularityhub/redis",
+ "full_name": "tanhnhn/singularityhub-sregistry",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eRedis\u003c/h1\u003e\u003ca id=\"user-content-redis\" class=\"anchor\" aria-label=\"Permalink: Redis\" href=\"#redis\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is the official library of redis builds for Singularity images hosted on Singularity Hub. The following standard applies:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eeach \u003ccode\u003eSingularity\u003c/code\u003e file corresponds to a build\u003c/li\u003e\n\u003cli\u003eeach branch corresponds with a different verison, or tag.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity create redis.img\nsudo singularity bootstrap redis.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-registry\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-registry\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Registry\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"http://joss.theoj.org/papers/050362b7e7691d2a5d0ebed8251bc01e\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4cb65855144c475cbe5584c579404a17e3e6984f958da24427dbe46b6202eb3c/687474703a2f2f6a6f73732e7468656f6a2e6f72672f7061706572732f30353033363262376537363931643261356430656265643832353162633031652f7374617475732e737667\" alt=\"status\" data-canonical-src=\"http://joss.theoj.org/papers/050362b7e7691d2a5d0ebed8251bc01e/status.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://doi.org/10.5281/zenodo.1012531\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/411f713db9ba01edfcb60386aaa1dff3e4ed4464707b95d889900a88d8f54936/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e313031323533312e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.1012531.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://singularityhub.github.io/sregistry\" rel=\"nofollow\"\u003eDocumentation\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-what-is-singularity-registry\" class=\"anchor\" aria-hidden=\"true\" href=\"#what-is-singularity-registry\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is Singularity Registry\u003c/h2\u003e\n\u003cp\u003eSingularity Registry is a management and storage of Singularity images for an institution or user to deploy locally. It does not manage building, but serves endpoints to obtain and save containers. The Registry is expected to be available for use in the Fall.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-images-included\" class=\"anchor\" aria-hidden=\"true\" href=\"#images-included\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImages Included\u003c/h2\u003e\n\u003cp\u003eSingularity Registry consists of several Docker images, and they are integrated to work together using \u003ca href=\"docker-compose.yml\"\u003edocker-compose.yml\u003c/a\u003e. The images are the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003evanessa/sregistry\u003c/strong\u003e: is the main uwsgi application, which serves a Django (python-based) application.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003enginx\u003c/strong\u003e: pronounced (engine-X) is the webserver. The starter application is configured for http, however you should follow the instructions to set up https properly.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eworker\u003c/strong\u003e: is the same uwsgi image, but with a running command that is specialized to perform tasks. The tasks are run via \u003ca href=\"http://www.celeryproject.org/\" rel=\"nofollow\"\u003ecelery\u003c/a\u003e, a distributed job queue that fits nicely into Django. The celery worker uses a\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eredis\u003c/strong\u003e: database to organize the jobs themselves.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor more information about Singularity Registry, please reference the \u003ca href=\"https://singularityhub.github.io/sregistry\" rel=\"nofollow\"\u003edocs\u003c/a\u003e. If you have any issues, please \u003ca href=\"https://github.com/singularityhub/sregistry/issues\"\u003elet me know\u003c/a\u003e!\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThis code is licensed under the Affero GPL, version 3.0 or later \u003ca href=\"LICENSE\"\u003eLICENSE\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1484275274.0
+ "updated_at": 1513562903.0
},
{
"data_format": 2,
- "description": "official build specifications for picard tools",
+ "description": "Singularity container for samtools ",
"filenames": [
- "Singularity"
+ "Singularity",
+ "old/Singularity.v1.6"
],
- "full_name": "researchapps/picard",
+ "full_name": "stevekm/singularity-samtools-demo",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePicard\u003c/h1\u003e\u003ca id=\"user-content-picard\" class=\"anchor\" aria-label=\"Permalink: Picard\" href=\"#picard\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis is the official build file repository for the Picard software for Singularity Hub.\u003c/p\u003e\n\u003cp\u003eThis will produce a Singularity image (suitable for running in a cluster environment) using \u003ca href=\"https://hub.docker.com/r/broadinstitute/picard/\" rel=\"nofollow\"\u003ehttps://hub.docker.com/r/broadinstitute/picard/\u003c/a\u003e. We do this by way of a bootstrap file for the Docker image.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e1. Install Singularity\u003c/h2\u003e\u003ca id=\"user-content-1-install-singularity\" class=\"anchor\" aria-label=\"Permalink: 1. Install Singularity\" href=\"#1-install-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstructions can be found on the \u003ca href=\"https://singularityware.github.io\" rel=\"nofollow\"\u003esingularity site\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e2. Bootstrap the image\u003c/h2\u003e\u003ca id=\"user-content-2-bootstrap-the-image\" class=\"anchor\" aria-label=\"Permalink: 2. Bootstrap the image\" href=\"#2-bootstrap-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity create --size 4000 picard.img\nsudo singularity bootstrap picard.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e3. Run commands\u003c/h2\u003e\u003ca id=\"user-content-3-run-commands\" class=\"anchor\" aria-label=\"Permalink: 3. Run commands\" href=\"#3-run-commands\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eHow to access the picard runtime executable?\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e ./picard.img [args] ...\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h1\u003e\n\u003cp\u003eThis assumes you are building a Singularity container locally on a Mac\u003c/p\u003e\n\u003cp\u003eMake sure you\u0027ve already installed Vagrant, since its needed to run Singularity on a Mac\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebrew cask install virtualbox\nbrew cask install vagrant\nbrew cask install vagrant-manager\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you have trouble install Vagrant with homebrew, try using \u003ca href=\"https://releases.hashicorp.com/vagrant/2.0.1/vagrant_2.0.1_x86_64.dmg\" rel=\"nofollow\"\u003ethis\u003c/a\u003e.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-creating-the-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#creating-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreating the Container\u003c/h1\u003e\n\u003cp\u003eThe workflow for creating a Singularity container on a Mac through Vagrant is saved in the included \u003ccode\u003eMakefile\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eMake the container by running:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emake container\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAnd run a test on the created container with\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emake \u003cspan class=\"pl-c1\"\u003etest\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-output\" class=\"anchor\" aria-hidden=\"true\" href=\"#output\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput\u003c/h2\u003e\n\u003cp\u003eIf everything worked, the following files should be created:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003esingularity-vm/image/singularity-container-samtools\u003c/code\u003e: the Singularity container file for samtools\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003esingularity-vm/image/samtools-version.txt\u003c/code\u003e: the output from running samtools inside the container, should look like this:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esamtools 1.6\nUsing htslib 1.6\nCopyright (C) 2017 Genome Research Ltd.\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-resources\" class=\"anchor\" aria-hidden=\"true\" href=\"#resources\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResources\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"http://singularity.lbl.gov/install-mac\" rel=\"nofollow\"\u003ehttp://singularity.lbl.gov/install-mac\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://app.vagrantup.com/singularityware/boxes/singularity-2.4\" rel=\"nofollow\"\u003ehttps://app.vagrantup.com/singularityware/boxes/singularity-2.4\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://releases.hashicorp.com/vagrant/2.0.1/vagrant_2.0.1_x86_64.dmg\" rel=\"nofollow\"\u003ehttps://releases.hashicorp.com/vagrant/2.0.1/vagrant_2.0.1_x86_64.dmg\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://singularity.lbl.gov/docs-build-container\" rel=\"nofollow\"\u003ehttp://singularity.lbl.gov/docs-build-container\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://singularity.lbl.gov/docs-recipes\" rel=\"nofollow\"\u003ehttp://singularity.lbl.gov/docs-recipes\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/qbicsoftware/qbic-singularity-samtools\"\u003ehttps://github.com/qbicsoftware/qbic-singularity-samtools\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [],
- "updated_at": 1484507753.0
+ "subscribers_count": 2,
+ "topics": [
+ "singularity",
+ "singularity-container"
+ ],
+ "updated_at": 1521728818.0
},
{
"data_format": 2,
- "description": "Gym Environment to simulate the Layout Problem as a Markov Decision Process to be solved by Reinforcement Learning",
+ "description": "FEniCS containers for CARC systems",
"filenames": [
- "Singularity.def"
+ "Singularity.docker",
+ "Singularity.ubuntu"
],
- "full_name": "hendrikunger/factorySim",
+ "full_name": "UNM-CARC/FEniCS",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003efactorySim\u003c/h1\u003e\u003ca id=\"user-content-factorysim\" class=\"anchor\" aria-label=\"Permalink: factorySim\" href=\"#factorysim\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eGym Environment to simulate the Layout Problem as a Markov Decision Process to be solved by Reinforcement Learning\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning instructions\u003c/h2\u003e\u003ca id=\"user-content-running-instructions\" class=\"anchor\" aria-label=\"Permalink: Running instructions\" href=\"#running-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eUse Docker host with Nvidia drivers installed.\nClone repository to Docker host.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/hendrikunger/factorySim.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e factorySim\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBuild the Docker image using\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker build -t factorysim \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eRun image with appropriate command e.g.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run --rm -it --gpus all --shm-size=12gb factorysim:latest\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eshm-size needs to be greater than 30% of RAM of Docker host\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAll files from github repository are located in the default location /home/ray/factorySim. Training scripts can be run from this location as well.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDeveloping instructions\u003c/h2\u003e\u003ca id=\"user-content-developing-instructions\" class=\"anchor\" aria-label=\"Permalink: Developing instructions\" href=\"#developing-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eClone Repository to your local machine or use Docker container from above\nNavigate to the factorySim/env directory\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/hendrikunger/factorySim.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e factorySim\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf you are not using docker you need to install dependecies using:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eapt-get update\napt-get install build-essential ibcairo2-dev pkg-config python3-dev\npip install -r requirements_factorySim.txt\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIFC Open Shell is not in the index and needs to be installed manually.\nDownload appropriate version from \u003ca href=\"http://ifcopenshell.org/python\" rel=\"nofollow\"\u003ehttp://ifcopenshell.org/python\u003c/a\u003e and unpack into site packages directory of your Python installation.\ne.g.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ewget https://s3.amazonaws.com/ifcopenshell-builds/ifcopenshell-python-37-v0.6.0-517b819-linux64.zip\nunzip -q ifcopenshell-python-37-v0.6.0-517b819-linux64.zip -d \u003cspan class=\"pl-smi\"\u003e$HOME\u003c/span\u003e/anaconda3/lib/python3.7/site-packages\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNavigate to the factorySim/env directory\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e env\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBuild a local package of factorySim using\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython -m pip install -e \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-fenics\" class=\"anchor\" aria-hidden=\"true\" href=\"#fenics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFEniCS\u003c/h1\u003e\n\u003cp\u003eThis repository contains a FEniCS container for UNM CARC high performance systems\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity.docker - Singularity container built from the standard FEniCS docker container\u003c/li\u003e\n\u003cli\u003eSingularity.ubuntu - Singularity container built from the FEniCS ubuntu packages\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1716906355.0
+ "updated_at": 1511832970.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipes for CARC systems",
"filenames": [
- "misc/releases/19.06/Singularity.19.06",
- "misc/releases/22.06/Singularity.22.06",
- "misc/releases/latest/Singularity",
- "misc/releases/22.12/Singularity.22.12",
- "misc/releases/21.12/Singularity.21.12",
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/20.06/Singularity.20.06"
+ "Singularity.centos",
+ "Singularity.ubuntu-ompi",
+ "Singularity.ubuntu-mpich"
],
- "full_name": "ipc2023-classical/planner1",
+ "full_name": "UNM-CARC/singularity-test",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eScorpion\u003c/h1\u003e\u003ca id=\"user-content-scorpion\" class=\"anchor\" aria-label=\"Permalink: Scorpion\" href=\"#scorpion\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eScorpion is a classical planning system that extends \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003eFast\nDownward\u003c/a\u003e. The main extensions are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003enovel state-of-the-art algorithms for optimal classical planning\u003c/li\u003e\n\u003cli\u003eadditional search algorithms\u003c/li\u003e\n\u003cli\u003eseveral new plugin options and utilities\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSee \u003ca href=\"#differences-between-scorpion-and-fast-downward\"\u003ebelow\u003c/a\u003e for a detailed list\nof extensions. We regularly port the latest changes from Fast Downward to\nScorpion and also integrate some features from Scorpion back into Fast Downward.\u003c/p\u003e\n\u003cp\u003ePlease use the following reference when citing Scorpion:\nJendrik Seipp, Thomas Keller and Malte Helmert.\n\u003ca href=\"https://www.jair.org/index.php/jair/article/view/11673\" rel=\"nofollow\"\u003eSaturated Cost Partitioning for Optimal Classical Planning\u003c/a\u003e.\nJournal of Artificial Intelligence Research 67, pp. 129-167. 2020.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstructions\u003c/h2\u003e\u003ca id=\"user-content-instructions\" class=\"anchor\" aria-label=\"Permalink: Instructions\" href=\"#instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstall the dependencies (the table below lists which versions are tested):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo apt install cmake g++ git make python3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor plugins based on linear programming (e.g., \u003ccode\u003eocp()\u003c/code\u003e, \u003ccode\u003epho()\u003c/code\u003e) you need\nto \u003ca href=\"https://www.fast-downward.org/LPBuildInstructions\" rel=\"nofollow\"\u003eadd an LP solver\u003c/a\u003e. Then\ncompile the planner with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./build.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand see the available options with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./fast-downward.py --help # driver\n./fast-downward.py --search -- --help # search component\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor more details (including build instructions for macOS and Windows), see the\ndocumentation about\n\u003ca href=\"https://www.fast-downward.org/ObtainingAndRunningFastDownward\" rel=\"nofollow\"\u003ecompiling\u003c/a\u003e\nand \u003ca href=\"https://www.fast-downward.org/PlannerUsage\" rel=\"nofollow\"\u003erunning\u003c/a\u003e the planner. The\n\u003ca href=\"https://jendrikseipp.github.io/scorpion\" rel=\"nofollow\"\u003eplugin documentation\u003c/a\u003e shows\nwhich plugins are available (heuristics, search algorithms, etc.) and how\nto use them.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRecommended configuration\u003c/h3\u003e\u003ca id=\"user-content-recommended-configuration\" class=\"anchor\" aria-label=\"Permalink: Recommended configuration\" href=\"#recommended-configuration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe recommend using the following configuration:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./fast-downward.py \\\n --transform-task preprocess-h2 \\\n ../benchmarks/gripper/prob01.pddl \\\n --search \"astar(scp_online([\n projections(sys_scp(max_time=100, max_time_per_restart=10)),\n cartesian()],\n saturator=perimstar, max_time=1000, interval=10K, orders=greedy_orders()),\n pruning=limited_pruning(pruning=atom_centric_stubborn_sets(), min_required_pruning_ratio=0.2))\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003epreprocess-h2\u003c/code\u003e call prunes irrelevant operators in a preprocessing\nstep. The search configuration uses \u003ca href=\"https://ojs.aaai.org/index.php/SOCS/article/view/18535\" rel=\"nofollow\"\u003epartial order\nreduction\u003c/a\u003e and\nmaximizes over\n\u003ca href=\"https://www.jair.org/index.php/jair/article/view/11673\" rel=\"nofollow\"\u003ediverse\u003c/a\u003e,\n\u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/3503\" rel=\"nofollow\"\u003esubset-saturated\u003c/a\u003e\ncost partitioning heuristics computed\n\u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/15976/\" rel=\"nofollow\"\u003eonline\u003c/a\u003e during\nthe search. The underlying abstractions are \u003ca href=\"https://www.ijcai.org/proceedings/2019/780\" rel=\"nofollow\"\u003eSys-SCP pattern\ndatabases\u003c/a\u003e and \u003ca href=\"https://jair.org/index.php/jair/article/view/11217\" rel=\"nofollow\"\u003eCartesian\nabstractions\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e(In \u003ca href=\"https://lab.readthedocs.io/\" rel=\"nofollow\"\u003eDownward Lab\u003c/a\u003e you can use\n\u003ccode\u003eadd_algorithm(name=\"scorpion\", repo=\"path/to/repo\", rev=\"scorpion\", component_options=[], driver_options=[\"--transform-task\", \"preprocess-h2\", \"--alias\", \"scorpion\"]\u003c/code\u003e to run the recommended Scorpion configuration.)\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eApptainer image\u003c/h4\u003e\u003ca id=\"user-content-apptainer-image\" class=\"anchor\" aria-label=\"Permalink: Apptainer image\" href=\"#apptainer-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo simplify the installation process, we provide an executable\n\u003ca href=\"https://apptainer.org/\" rel=\"nofollow\"\u003eApptainer\u003c/a\u003e container (formerly known as Singularity).\nIt accepts the same arguments as the \u003ccode\u003efast-downward.py\u003c/code\u003e script (see above).\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Download the image,\napptainer pull scorpion.sif oras://ghcr.io/jendrikseipp/scorpion:latest\n\n# or build it yourself.\napptainer build scorpion.sif Apptainer\n\n# Then run recommended configuration (available via \"scorpion\" alias).\n./scorpion.sif --transform-task preprocess-h2 --alias scorpion PROBLEM_FILE\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eIPC 2018 version\u003c/h3\u003e\u003ca id=\"user-content-ipc-2018-version\" class=\"anchor\" aria-label=\"Permalink: IPC 2018 version\" href=\"#ipc-2018-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you prefer to run the Scorpion version from IPC 2018 (which uses an\nolder Fast Downward version and different abstractions), we recommend\nusing the \u003ca href=\"https://bitbucket.org/ipc2018-classical/team44/src/ipc-2018-seq-opt/\" rel=\"nofollow\"\u003eScorpion IPC\nrepo\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDifferences between Scorpion and Fast Downward\u003c/h2\u003e\u003ca id=\"user-content-differences-between-scorpion-and-fast-downward\" class=\"anchor\" aria-label=\"Permalink: Differences between Scorpion and Fast Downward\" href=\"#differences-between-scorpion-and-fast-downward\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDiff between the latest merged version of Fast Downward and Scorpion:\n\u003ca href=\"https://github.com/jendrikseipp/scorpion/compare/main...scorpion\"\u003ehttps://github.com/jendrikseipp/scorpion/compare/main...scorpion\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eScorpion comes with the\n\u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/13708\" rel=\"nofollow\"\u003eh\u00b2-preprocessor\u003c/a\u003e\nby Vidal Alc\u00e1zar and \u00c1lvaro Torralba that prunes irrelevant operators.\nPass \u003ccode\u003e--transform-task preprocess-h2\u003c/code\u003e to use it.\u003c/li\u003e\n\u003cli\u003eThe \u003ccode\u003e--transform-task\u003c/code\u003e command allows you to run arbitrary preprocessing\ncommands that transform the SAS+ output from the translator before\npassing it to the search.\u003c/li\u003e\n\u003cli\u003eScorpion uses a\n\u003ca href=\"https://github.com/greg7mdp/parallel-hashmap\"\u003ephmap::flat_hash_set\u003c/a\u003e to check\nfor duplicate states, which often drastically reduces the peak memory usage,\ncompared to Fast Downward\u0027s \u003ccode\u003eIntHashSet\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eIf \u003ca href=\"https://ccache.dev/\" rel=\"nofollow\"\u003eccache\u003c/a\u003e is installed (recommended), Scorpion\nuses it to cache compilation files.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eNew translator options\u003c/h3\u003e\u003ca id=\"user-content-new-translator-options\" class=\"anchor\" aria-label=\"Permalink: New translator options\" href=\"#new-translator-options\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eUse \u003ccode\u003e--dump-predicates\u003c/code\u003e and \u003ccode\u003e--dump-static-atoms\u003c/code\u003e to write files with\ninformation that\u0027s useful for learning domain control knowledge.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eNew plugin options\u003c/h3\u003e\u003ca id=\"user-content-new-plugin-options\" class=\"anchor\" aria-label=\"Permalink: New plugin options\" href=\"#new-plugin-options\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e{cegar/cartesian}(..., search_strategy=incremental)\u003c/code\u003e: use \u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/6667\" rel=\"nofollow\"\u003eincremental search for\nCartesian abstraction\nrefinement\u003c/a\u003e\n(default).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e{cegar/cartesian}(..., pick_flawed_abstract_state={batch_min_h, ...})\u003c/code\u003e:\nfind all current flaws, then iteratively repair the flaw that\u0027s closest to the goal\n(\u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/19819\" rel=\"nofollow\"\u003epaper\u003c/a\u003e, default=\u003ccode\u003ebatch_min_h\u003c/code\u003e).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e{cegar/cartesian}(..., pick_split={max_cover, ...}, tiebreak_split={max_refined, ...})\u003c/code\u003e:\nsmarter strategies for splitting a flawed abstract state\n(\u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/19819\" rel=\"nofollow\"\u003epaper\u003c/a\u003e, default=\u003ccode\u003emax_cover\u003c/code\u003e\nand \u003ccode\u003emax_refined\u003c/code\u003e for tiebreaking).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e{cegar,cartesian}(..., dot_graph_verbosity={silent, write_to_console, write_to_file})\u003c/code\u003e:\nwrite intermediate abstractions as Graphviz dot files to stdout or to files (default=\u003ccode\u003esilent\u003c/code\u003e).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ehillclimbing(..., max_generated_patterns=200)\u003c/code\u003e: limit the number of\npatterns generated by hill climbing.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003esystematic(..., pattern_type=interesting_general)\u003c/code\u003e: compute interesting\npatterns for general cost partitioning.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eNew cost partitioning algorithms for abstraction heuristics\u003c/h3\u003e\u003ca id=\"user-content-new-cost-partitioning-algorithms-for-abstraction-heuristics\" class=\"anchor\" aria-label=\"Permalink: New cost partitioning algorithms for abstraction heuristics\" href=\"#new-cost-partitioning-algorithms-for-abstraction-heuristics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe use Cartesian abstractions in the example configurations below\n(\u003ccode\u003e[cartesian()]\u003c/code\u003e). You can also use pattern database heuristics, e.g.,\n\u003ccode\u003e[projections(systematic(2))]\u003c/code\u003e, or mix abstractions, e.g.,\n\u003ccode\u003e[projections(systematic(3)), cartesian()]\u003c/code\u003e. Some of the algorithms below\nare also part of vanilla Fast Downward, but are only implemented for PDB\nheuristics.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOptimal cost partitioning:\n\u003ccode\u003eocp([cartesian()])\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eCanonical heuristic:\n\u003ccode\u003ecanonical_heuristic([cartesian()])\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eUniform cost partitioning:\n\u003ccode\u003eucp([cartesian()], opportunistic=false)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eOpportunistic uniform cost partitioning:\n\u003ccode\u003eucp([cartesian()], ..., opportunistic=true)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eGreedy zero-one cost partitioning:\n\u003ccode\u003egzocp([cartesian()], ...)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eSaturated cost partitioning:\n\u003ccode\u003escp([cartesian()], ...)\u003c/code\u003e (offline), \u003ccode\u003escp_online([cartesian()], ...)\u003c/code\u003e (online)\u003c/li\u003e\n\u003cli\u003e(Saturated) post-hoc optimization:\n\u003ccode\u003epho([cartesian()], ..., saturated={false,true})\u003c/code\u003e (offline),\n\u003ccode\u003eoperatorcounting([pho_abstraction_constraints([cartesian()], saturated={false,true})])\u003c/code\u003e (online)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou can also compute the maximum over abstraction heuristics:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003emaximize([cartesian()])\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe plugin documentation shows all options for \u003ca href=\"https://jendrikseipp.github.io/scorpion/Evaluator/#cost_partitioning_heuristics\" rel=\"nofollow\"\u003ecost partitioning\nheuristics\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eNew pattern collection generators\u003c/h2\u003e\u003ca id=\"user-content-new-pattern-collection-generators\" class=\"anchor\" aria-label=\"Permalink: New pattern collection generators\" href=\"#new-pattern-collection-generators\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eSystematic patterns with size limits:\n\u003ccode\u003esys_scp(max_pattern_size=X, max_pdb_size=Y, max_collection_size=Z, ..., saturate=false)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eSys-SCP patterns:\n\u003ccode\u003esys_scp(...)\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eNew cost partitioning algorithms for landmark heuristics\u003c/h3\u003e\u003ca id=\"user-content-new-cost-partitioning-algorithms-for-landmark-heuristics\" class=\"anchor\" aria-label=\"Permalink: New cost partitioning algorithms for landmark heuristics\" href=\"#new-cost-partitioning-algorithms-for-landmark-heuristics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eExample using A* search and saturated cost partitioning over BJOLP\nlandmarks:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e--evaluator\n \"lmc=lmcount(lm_merged([lm_rhw(), lm_hm(m=1)]),\n admissible=true, cost_partitioning=suboptimal, greedy=true,\n reuse_costs=true, scoring_function=max_heuristic_per_stolen_costs)\"\n--search\n \"astar(lmc, lazy_evaluator=lmc)\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDifferent cost partitioning algorithms (all need \u003ccode\u003eadmissible=true\u003c/code\u003e):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOptimal cost partitioning (part of vanilla Fast Downward):\n\u003ccode\u003elmcount(..., cost_partitioning=optimal)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eCanonical heuristic:\n\u003ccode\u003elmcount(..., cost_partitioning=canonical)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003ePost-hoc optimization:\n\u003ccode\u003elmcount(..., cost_partitioning=pho)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eUniform cost partitioning:\n\u003ccode\u003elmcount(..., cost_partitioning=suboptimal, greedy=false, reuse_costs=false)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eOpportunistic uniform cost partitioning (part of vanilla Fast Downward):\n\u003ccode\u003elmcount(..., cost_partitioning=suboptimal, greedy=false, reuse_costs=true, scoring_function=min_stolen_costs)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eGreedy zero-one cost partitioning:\n\u003ccode\u003elmcount(..., cost_partitioning=suboptimal, greedy=true, reuse_costs=false, scoring_function=max_heuristic)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eSaturated cost partitioning:\n\u003ccode\u003elmcount(..., cost_partitioning=suboptimal, greedy=true, reuse_costs=true, scoring_function=max_heuristic_per_stolen_costs)\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eNew search engines\u003c/h2\u003e\u003ca id=\"user-content-new-search-engines\" class=\"anchor\" aria-label=\"Permalink: New search engines\" href=\"#new-search-engines\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eBreadth-first search (without overhead of the more general \u003ccode\u003eeager()\u003c/code\u003e search):\n\u003ccode\u003ebrfs()\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eDepth-first search:\n\u003ccode\u003edfs()\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eExhaustive search (useful for dumping the reachable state space of small input tasks):\n\u003ccode\u003edump_reachable_search_space()\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eIDA* search:\n\u003ccode\u003eidastar(cegar(cache_estimates=false))\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eIterative width search:\n\u003ccode\u003eiw(width=2)\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTested software versions\u003c/h2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-label=\"Permalink: Tested software versions\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 22.04\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eGCC 11, GCC 12, Clang 14\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 12\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eAppleClang 14\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 11\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eAppleClang 13\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributors\u003c/h2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-label=\"Permalink: Contributors\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2015, 2021-2022 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHistory\u003c/h2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-label=\"Permalink: History\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Tests\u003c/h1\u003e\n\u003cp\u003eThis repository contains test singularity recipes for Ubuntu and CentOS repository builds for\nHPC systems at the UNM Center for Advanced Research Computing. These recipes are generally built\nusing Singularity Hub, which links to this repository, and are meant for debugging basic\ncontainer setups that are then used to develop other more complex recipes.\u003c/p\u003e\n\u003cp\u003eNote that these containers pull the CARC modules //into// the containers when they run so that\ncode compiled outside the container can run inside the container. That\u0027s rarely something you want to\ndo, as one of the main point of containers is that they\u0027re stable and reproducible.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1688990534.0
+ "updated_at": 1536783389.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Repository used to build Singularity containers of HD software",
"filenames": [
- "misc/releases/19.06/Singularity.19.06",
- "misc/releases/22.06/Singularity.22.06",
- "misc/releases/22.12/Singularity.22.12",
- "misc/releases/21.12/Singularity.21.12",
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/20.06/Singularity.20.06"
+ "Singularity"
],
- "full_name": "fai-saarland/fd-action-policy-testing",
+ "full_name": "faustus123/hdsingularity",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eAutomatic Metamorphic Test Oracles for Action-Policy Testing\u003c/h1\u003e\u003ca id=\"user-content-automatic-metamorphic-test-oracles-for-action-policy-testing\" class=\"anchor\" aria-label=\"Permalink: Automatic Metamorphic Test Oracles for Action-Policy Testing\" href=\"#automatic-metamorphic-test-oracles-for-action-policy-testing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository contains the source code for action-policy testing based on the paper \"Automatic Metamorphic Test Oracles for Action-Policy Testing\".\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@InProceedings{eisenhut-et-al-icaps23, \n title = {Automatic Metamorphic Test Oracles for Action-Policy Testing},\n author = {Eisenhut, Jan and Torralba, \u00c1lvaro and Christakis, Maria and Hoffmann, J\u00f6rg},\n booktitle = {Proceedings of the 33rd International Conference on Automated Planning and Scheduling ({ICAPS}\u002723), 2023},\n year = {2023}\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWe build on the Fast Downward fuzzing extension by Steinmetz and others (whose source code can be accessed \u003ca href=\"https://doi.org/10.5281/zenodo.6323289\" rel=\"nofollow\"\u003ehere\u003c/a\u003e).\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@InProceedings{steinmetz-et-al-icaps22, \n title = {Debugging a Policy: Automatic Action-Policy Testing in AI Planning},\n author = {Steinmetz, Marcel and Fi\u0161er, Daniel and Eniser, Hasan Ferit and Ferber, Patrick and Gros, Timo P. and Heim, Philippe and H\u00f6ller, Daniel and Schuler, Xandra and W\u00fcstholz, Valentin and Christakis, Maria and Hoffmann, J\u00f6rg},\n booktitle = {Proceedings of the 32nd International Conference on Automated Planning and Scheduling ({ICAPS}\u002722), 2022},\n doi = {10.1609/icaps.v32i1.19820}, \n url = {https://ojs.aaai.org/index.php/ICAPS/article/view/19820}, \n year = {2022}\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe computation of dominance functions is based on:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@InProceedings{torralba-ijcai2017,\n author = {Torralba, \u00c1lvaro},\n title = {From Qualitative to Quantitative Dominance Pruning for Optimal Planning},\n booktitle = {Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, {IJCAI-17}},\n pages = {4426--4432},\n doi = {10.24963/ijcai.2017/618},\n url = {https://doi.org/10.24963/ijcai.2017/618},\n year = {2017},\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eBuilding the Project\u003c/h2\u003e\u003ca id=\"user-content-building-the-project\" class=\"anchor\" aria-label=\"Permalink: Building the Project\" href=\"#building-the-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePlease build the project as a part of the \u003ca href=\"https://github.com/fai-saarland/bughive/\"\u003ethe bughive framework\u003c/a\u003e using the Makefile provided there. The Makefile target is \u003ccode\u003efd-action-policy-testing\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eYou need to have \u003ca href=\"https://www.boost.org/\" rel=\"nofollow\"\u003eboost\u003c/a\u003e installed. The minimum required version is \u003ccode\u003e1.74\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCode\u003c/h2\u003e\u003ca id=\"user-content-code\" class=\"anchor\" aria-label=\"Permalink: Code\" href=\"#code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe related to policy testing is primarily located in \u003ccode\u003esrc/search/policy_testing/\u003c/code\u003e.\nThe source code for the computation of dominance functions can be found in \u003ccode\u003esrc/search/policy_testing/simulations/\u003c/code\u003e.\nWe made slight modifications to the code base since we ran the experiments for the paper, e.g., to make sure one can compile the source code using more recent compilers.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eCheck out the test drivers in \u003ca href=\"https://github.com/fai-saarland/bughive/tree/master/test_drivers\"\u003ethe bughive repository\u003c/a\u003e to learn how to easily invoke the tool.\u003c/p\u003e\n\u003cp\u003eA possible search configuration could be \u003ccode\u003epool_fuzzer(testing_method=\u0026lt;oracle\u0026gt;)\u003c/code\u003e, where \u003ccode\u003e\u0026lt;oracle\u0026gt;\u003c/code\u003e is one of the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003earas(...)\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eatomic_unrelaxation_oracle(...)\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003ebounded_lookahead_oracle(...)\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003ecomposite_oracle(...)\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003edummy_oracle(...)\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eestimator_based_oracle(...)\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eiterative_improvement_oracle(...)\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eunrelaxation_oracle(...)\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ccode\u003eiterative_improvement_oracle\u003c/code\u003e implements the bound maintenance oracles (BMOs), while \u003ccode\u003eatomic_unrelaxation_oracle\u003c/code\u003e and \u003ccode\u003eunrelaxation_oracle\u003c/code\u003e implement state morphing oracles (SMOs).\u003c/p\u003e\n\u003cp\u003eYou can learn about the options supported by an oracle (say \u003ccode\u003eunrelaxation_oracle\u003c/code\u003e) by calling \u003ccode\u003e./fast-downward.py --search -- --help unrelaxation_oracle\u003c/code\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-hdsingularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#hdsingularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ehdsingularity\u003c/h1\u003e\n\u003cp\u003eRepository used to build Singularity containers of HD software\u003c/p\u003e\n\u003cp\u003eCheckout singularity-hub.org for details\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1708951067.0
+ "updated_at": 1501591637.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Python from source for use with singularity",
"filenames": [
- "misc/releases/19.06/Singularity.19.06",
- "misc/releases/22.06/Singularity.22.06",
- "misc/releases/latest/Singularity",
- "misc/releases/22.12/Singularity.22.12",
- "misc/releases/21.12/Singularity.21.12",
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/20.06/Singularity.20.06"
+ "Singularity"
],
- "full_name": "ipc2023-classical/planner4",
+ "full_name": "sbutcher/container-python",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIPC 2023 Apptainer Recipes\u003c/h2\u003e\u003ca id=\"user-content-ipc-2023-apptainer-recipes\" class=\"anchor\" aria-label=\"Permalink: IPC 2023 Apptainer Recipes\" href=\"#ipc-2023-apptainer-recipes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe optimal configuration of our planner requires LP support. To build\nthe Apptainer recipe, you need an installer for CPLEX at a location\navailable under $IPC_THIRD_PARTY. We use version 22.1.1 for the\ncompetition, but in theory any version of CPLEX should be fine. For the\nApptainer recipe to work out of the box, the installer needs to be\nnamed as follows: cplex_studio2211.linux_x86_64.bin\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTested software versions\u003c/h2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-label=\"Permalink: Tested software versions\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 22.04\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eGCC 11, GCC 12, Clang 14\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 10, Clang 12\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 12\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eAppleClang 14\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 11\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eAppleClang 13\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributors\u003c/h2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-label=\"Permalink: Contributors\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2015, 2021-2022 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHistory\u003c/h2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-label=\"Permalink: History\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\nThe third party software OSI shipped within this repository is\nlicensed under the Eclipse Public License version 2.0 (EPL 2.0).\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-container-python\" class=\"anchor\" aria-hidden=\"true\" href=\"#container-python\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainer-python\u003c/h1\u003e\n\u003cp\u003ePython from source for use with singularity\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1688990844.0
+ "updated_at": 1525427896.0
},
{
"data_format": 2,
- "description": null,
+ "description": "singularity container for use with singularity hub",
"filenames": [
- "misc/releases/19.06/Singularity.19.06",
- "misc/releases/22.06/Singularity.22.06",
- "misc/releases/latest/Singularity",
- "misc/releases/22.12/Singularity.22.12",
- "misc/releases/21.12/Singularity.21.12",
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/20.06/Singularity.20.06"
+ "Singularity"
],
- "full_name": "ipc2023-classical/planner28",
+ "full_name": "sbutcher/container-R",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eIPC 2023 Apptainer Recipes\u003c/h2\u003e\u003ca id=\"user-content-ipc-2023-apptainer-recipes\" class=\"anchor\" aria-label=\"Permalink: IPC 2023 Apptainer Recipes\" href=\"#ipc-2023-apptainer-recipes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe optimal configurations of our planner require LP support. To build\nthe Apptainer recipes, you need an installer for CPLEX at a location\navailable under $IPC_THIRD_PARTY. We use version 22.1.1 for the\ncompetition, but in theory any version of CPLEX is fine. For the\nApptainer recipe to work out of the box, the installer needst to be\nnamed as follows: cplex_studio2211.linux_x86_64.bin\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTested software versions\u003c/h2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-label=\"Permalink: Tested software versions\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 22.04\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eGCC 11, GCC 12, Clang 14\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 10, Clang 12\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 12\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eAppleClang 14\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 11\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eAppleClang 13\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributors\u003c/h2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-label=\"Permalink: Contributors\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2015, 2021-2022 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHistory\u003c/h2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-label=\"Permalink: History\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\nThe third party software OSI shipped within this repository is\nlicensed under the Eclipse Public License version 2.0 (EPL 2.0).\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-container-r\" class=\"anchor\" aria-hidden=\"true\" href=\"#container-r\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainer-R\u003c/h1\u003e\n\u003cp\u003esingularity container for use with singularity hub\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1688990783.0
+ "updated_at": 1525440620.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "samples/Singularity/filenames/Singularity"
+ "Singularity"
],
- "full_name": "0xahu/mywork",
+ "full_name": "touala/rce_tools",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eLinguist\u003c/h1\u003e\u003ca id=\"user-content-linguist\" class=\"anchor\" aria-label=\"Permalink: Linguist\" href=\"#linguist\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/github/linguist/actions\"\u003e\u003cimg src=\"https://github.com/github/linguist/workflows/Run%20Tests/badge.svg\" alt=\"Actions Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://codespaces.new/github-linguist/linguist\" rel=\"nofollow\"\u003e\u003cimg src=\"https://github.com/codespaces/badge.svg\" alt=\"Open in GitHub Codespaces\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis library is used on GitHub.com to detect blob languages, ignore binary or vendored files, suppress generated files in diffs, and generate language breakdown graphs.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDocumentation\u003c/h2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-label=\"Permalink: Documentation\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"/docs/how-linguist-works.md\"\u003eHow Linguist works\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"/docs/overrides.md\"\u003eChange Linguist\u0027s behaviour with overrides\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"/docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"CONTRIBUTING.md\"\u003eContributing guidelines\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation\u003c/h2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eInstall the gem:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egem install github-linguist\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDependencies\u003c/h3\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-label=\"Permalink: Dependencies\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eLinguist is a Ruby library so you will need a recent version of Ruby installed.\nThere are known problems with the macOS/Xcode supplied version of Ruby that causes problems installing some of the dependencies.\nAccordingly, we highly recommend you install a version of Ruby using Homebrew, \u003ccode\u003erbenv\u003c/code\u003e, \u003ccode\u003ervm\u003c/code\u003e, \u003ccode\u003eruby-build\u003c/code\u003e, \u003ccode\u003easdf\u003c/code\u003e or other packaging system, before attempting to install Linguist and the dependencies.\u003c/p\u003e\n\u003cp\u003eLinguist uses \u003ca href=\"https://github.com/brianmario/charlock_holmes\"\u003e\u003ccode\u003echarlock_holmes\u003c/code\u003e\u003c/a\u003e for character encoding and \u003ca href=\"https://github.com/libgit2/rugged\"\u003e\u003ccode\u003erugged\u003c/code\u003e\u003c/a\u003e for libgit2 bindings for Ruby.\nThese components have their own dependencies.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003echarlock_holmes\n\u003cul\u003e\n\u003cli\u003ecmake\u003c/li\u003e\n\u003cli\u003epkg-config\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://site.icu-project.org/\" rel=\"nofollow\"\u003eICU\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://zlib.net/\" rel=\"nofollow\"\u003ezlib\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003erugged\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://curl.haxx.se/libcurl/\" rel=\"nofollow\"\u003elibcurl\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.openssl.org\" rel=\"nofollow\"\u003eOpenSSL\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eYou may need to install missing dependencies before you can install Linguist.\nFor example, on macOS with \u003ca href=\"http://brew.sh/\" rel=\"nofollow\"\u003eHomebrew\u003c/a\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ebrew install cmake pkg-config icu4c\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eOn Ubuntu:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo apt-get install build-essential cmake pkg-config libicu-dev zlib1g-dev libcurl4-openssl-dev libssl-dev ruby-dev\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eUsage\u003c/h2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-label=\"Permalink: Usage\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eApplication usage\u003c/h3\u003e\u003ca id=\"user-content-application-usage\" class=\"anchor\" aria-label=\"Permalink: Application usage\" href=\"#application-usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eLinguist can be used in your application as follows:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-ruby\"\u003e\u003cpre\u003e\u003cspan class=\"pl-en\"\u003erequire\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u0027rugged\u0027\u003c/span\u003e\n\u003cspan class=\"pl-en\"\u003erequire\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u0027linguist\u0027\u003c/span\u003e\n\n\u003cspan class=\"pl-s1\"\u003erepo\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eRugged\u003c/span\u003e::\u003cspan class=\"pl-v\"\u003eRepository\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e.\u003c/span\u003e\u003cspan class=\"pl-en\"\u003enew\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e(\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u0027.\u0027\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e)\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eproject\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eLinguist\u003c/span\u003e::\u003cspan class=\"pl-v\"\u003eRepository\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e.\u003c/span\u003e\u003cspan class=\"pl-en\"\u003enew\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e(\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003erepo\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e,\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003erepo\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e.\u003c/span\u003e\u003cspan class=\"pl-en\"\u003ehead\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e.\u003c/span\u003e\u003cspan class=\"pl-en\"\u003etarget_id\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e)\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eproject\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e.\u003c/span\u003e\u003cspan class=\"pl-en\"\u003elanguage\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e#=\u0026gt; \"Ruby\"\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eproject\u003c/span\u003e\u003cspan class=\"pl-kos\"\u003e.\u003c/span\u003e\u003cspan class=\"pl-en\"\u003elanguages\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e#=\u0026gt; { \"Ruby\" =\u0026gt; 119387 }\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCommand line usage\u003c/h3\u003e\u003ca id=\"user-content-command-line-usage\" class=\"anchor\" aria-label=\"Permalink: Command line usage\" href=\"#command-line-usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eGit Repository\u003c/h4\u003e\u003ca id=\"user-content-git-repository\" class=\"anchor\" aria-label=\"Permalink: Git Repository\" href=\"#git-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA repository\u0027s languages stats can also be assessed from the command line using the \u003ccode\u003egithub-linguist\u003c/code\u003e executable.\nWithout any options, \u003ccode\u003egithub-linguist\u003c/code\u003e will output the language breakdown by percentage and file size.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e /path-to-repository\ngithub-linguist\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can try running \u003ccode\u003egithub-linguist\u003c/code\u003e on the root directory in this repository itself:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003egithub-linguist\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e66.84% 264519 Ruby\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e24.68% 97685 C\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e6.57% 25999 Go\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e1.29% 5098 Lex\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.32% 1257 Shell\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.31% 1212 Dockerfile\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eAdditional options\u003c/h4\u003e\u003ca id=\"user-content-additional-options\" class=\"anchor\" aria-label=\"Permalink: Additional options\" href=\"#additional-options\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003e\u003ccode\u003e--rev REV\u003c/code\u003e\u003c/h5\u003e\u003ca id=\"user-content---rev-rev\" class=\"anchor\" aria-label=\"Permalink: --rev REV\" href=\"#--rev-rev\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003e--rev REV\u003c/code\u003e flag will change the git revision being analyzed to any \u003ca href=\"https://git-scm.com/docs/gitrevisions#_specifying_revisions\" rel=\"nofollow\"\u003egitrevisions(1)\u003c/a\u003e compatible revision you specify.\u003c/p\u003e\n\u003cp\u003eThis is useful to analyze the makeup of a repo as of a certain tag, or in a certain branch.\u003c/p\u003e\n\u003cp\u003eFor example, here is the popular \u003ca href=\"https://github.com/jekyll/jekyll\"\u003eJekyll open source project\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003egithub-linguist jekyll\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003e70.64% 709959 Ruby\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e23.04% 231555 Gherkin\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e3.80% 38178 JavaScript\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e1.19% 11943 HTML\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.79% 7900 Shell\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.23% 2279 Dockerfile\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.13% 1344 Earthly\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.10% 1019 CSS\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.06% 606 SCSS\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.02% 234 CoffeeScript\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.01% 90 Hack\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAnd here is Jekyll\u0027s published website, from the gh-pages branch inside their repository.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003egithub-linguist jekyll --rev origin/gh-pages\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e100.00% 2568354 HTML\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003e\u003ccode\u003e--breakdown\u003c/code\u003e\u003c/h5\u003e\u003ca id=\"user-content---breakdown\" class=\"anchor\" aria-label=\"Permalink: --breakdown\" href=\"#--breakdown\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003e--breakdown\u003c/code\u003e or \u003ccode\u003e-b\u003c/code\u003e flag will additionally show the breakdown of files by language.\u003c/p\u003e\n\u003cp\u003eYou can try running \u003ccode\u003egithub-linguist\u003c/code\u003e on the root directory in this repository itself:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003egithub-linguist --breakdown\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e66.84% 264519 Ruby\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e24.68% 97685 C\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e6.57% 25999 Go\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e1.29% 5098 Lex\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.32% 1257 Shell\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.31% 1212 Dockerfile\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eRuby:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eGemfile\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eRakefile\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ebin/git-linguist\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ebin/github-linguist\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eext/linguist/extconf.rb\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003egithub-linguist.gemspec\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003elib/linguist.rb\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e\u2026\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch5 class=\"heading-element\"\u003e\u003ccode\u003e--json\u003c/code\u003e\u003c/h5\u003e\u003ca id=\"user-content---json\" class=\"anchor\" aria-label=\"Permalink: --json\" href=\"#--json\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003e--json\u003c/code\u003e or \u003ccode\u003e-j\u003c/code\u003e flag output the data into JSON format.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003egithub-linguist --json\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e{\"Dockerfile\":{\"size\":1212,\"percentage\":\"0.31\"},\"Ruby\":{\"size\":264519,\"percentage\":\"66.84\"},\"C\":{\"size\":97685,\"percentage\":\"24.68\"},\"Lex\":{\"size\":5098,\"percentage\":\"1.29\"},\"Shell\":{\"size\":1257,\"percentage\":\"0.32\"},\"Go\":{\"size\":25999,\"percentage\":\"6.57\"}}\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis option can be used in conjunction with \u003ccode\u003e--breakdown\u003c/code\u003e to get a full list of files along with the size and percentage data.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003egithub-linguist --breakdown --json\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e{\"Dockerfile\":{\"size\":1212,\"percentage\":\"0.31\",\"files\":[\"Dockerfile\",\"tools/grammars/Dockerfile\"]},\"Ruby\":{\"size\":264519,\"percentage\":\"66.84\",\"files\":[\"Gemfile\",\"Rakefile\",\"bin/git-linguist\",\"bin/github-linguist\",\"ext/linguist/extconf.rb\",\"github-linguist.gemspec\",\"lib/linguist.rb\",...]}}\u003c/span\u003e\n\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eSingle file\u003c/h4\u003e\u003ca id=\"user-content-single-file\" class=\"anchor\" aria-label=\"Permalink: Single file\" href=\"#single-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAlternatively you can find stats for a single file using the \u003ccode\u003egithub-linguist\u003c/code\u003e executable.\u003c/p\u003e\n\u003cp\u003eYou can try running \u003ccode\u003egithub-linguist\u003c/code\u003e on files in this repository itself:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003egithub-linguist grammars.yml\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003egrammars.yml: 884 lines (884 sloc)\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e type: Text\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e mime type: text/x-yaml\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e language: YAML\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eDocker\u003c/h4\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-label=\"Permalink: Docker\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you have Docker installed you can build an image and run Linguist within a container:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003edocker build -t linguist \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/span\u003e\n$ \u003cspan class=\"pl-s1\"\u003edocker run --rm -v \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003epwd\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e:\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003epwd\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e -w \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003epwd\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e -t linguist\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e66.84% 264519 Ruby\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e24.68% 97685 C\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e6.57% 25999 Go\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e1.29% 5098 Lex\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.32% 1257 Shell\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.31% 1212 Dockerfile\u003c/span\u003e\n$ \u003cspan class=\"pl-s1\"\u003edocker run --rm -v \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003epwd\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e:\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003epwd\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e -w \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003epwd\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e -t linguist github-linguist --breakdown\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e66.84% 264519 Ruby\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e24.68% 97685 C\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e6.57% 25999 Go\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e1.29% 5098 Lex\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.32% 1257 Shell\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e0.31% 1212 Dockerfile\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eRuby:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eGemfile\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eRakefile\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ebin/git-linguist\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ebin/github-linguist\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eext/linguist/extconf.rb\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003egithub-linguist.gemspec\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003elib/linguist.rb\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e\u2026\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributing\u003c/h2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-label=\"Permalink: Contributing\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003ePlease check out our \u003ca href=\"CONTRIBUTING.md\"\u003econtributing guidelines\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe language grammars included in this gem are covered by their repositories\u0027 respective licenses.\n\u003ca href=\"/vendor/README.md\"\u003e\u003ccode\u003evendor/README.md\u003c/code\u003e\u003c/a\u003e lists the repository for each grammar.\u003c/p\u003e\n\u003cp\u003eAll other files are covered by the MIT license, see \u003ca href=\"./LICENSE\"\u003e\u003ccode\u003eLICENSE\u003c/code\u003e\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-rce_tools\" class=\"anchor\" aria-hidden=\"true\" href=\"#rce_tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003erce_tools\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1710228788.0
+ "updated_at": 1665495879.0
},
{
"data_format": 2,
- "description": "Singularity image with CharGer and R libraries for germline small variants workflow.",
+ "description": "singularity image for gmx 2019",
"filenames": [
"Singularity"
],
- "full_name": "NagaComBio/singularity_gSmVs",
+ "full_name": "jmhays/singularity-gromacs",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSingularity image with CharGer and R libraries for germline small variants workflow.\u003c/h3\u003e\u003ca id=\"user-content-singularity-image-with-charger-and-r-libraries-for-germline-small-variants-workflow\" class=\"anchor\" aria-label=\"Permalink: Singularity image with CharGer and R libraries for germline small variants workflow.\" href=\"#singularity-image-with-charger-and-r-libraries-for-germline-small-variants-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo build the singularity image in a cloud instance\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# In a CentOS\n# If the CentOS 8.\nsudo dnf --disablerepo \u0027*\u0027 --enablerepo=extras swap centos-linux-repos centos-stream-repos\nsudo yum update\nsudo yum install git singularity\n\n# Clone the repo \ngit clone https://github.com/NagaComBio/singularity_gSmVs.git\ncd singularity_gSmVs/ \n\n#Build the image\nsudo singularity build gSmVs_${version}.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-gromacs\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-gromacs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-gromacs\u003c/h1\u003e\n\u003cp\u003esingularity image for gmx 2019\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1638799534.0
+ "updated_at": 1562360506.0
},
{
"data_format": 2,
- "description": "Study interactions hosts and microorganisms at metabolic level.",
+ "description": null,
"filenames": [
- "recipes/Singularity"
+ "Singularity.def",
+ "Singularity-test.def"
],
- "full_name": "AuReMe/HoloInteract",
+ "full_name": "lalilalalalu/fuchs-container",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9aad17786c19226289cd84f82f2faf5eb0f1adc91c3e70780e7991c2a3298b60/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f707974686f6e2d332e392d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/python-3.9-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ba71cd0e231da422d29505443b30ee08fd26a9a935c2211fb4488ded3a7a0a2f/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f707974686f6e2d332e31302d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/python-3.10-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e8279d3fba19d512de9201aa06a134661bb4283ef557ab58803fc41de8f0f479/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f707974686f6e2d332e31312d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/python-3.11-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a98887fbf555547fa3ddd96ce41fc24b99e450f80fcb4a45416698ef0f8499f6/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f63756d656e746174696f6e2d756e66696e69736865642d6f72616e67652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/documentation-unfinished-orange.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ae131aa8ea6fc913efeff23640a7aebbe070e256be101f082c5cd0f4a68d2dd5/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f77696b692d6e6f6e6578697374656e742d7265642e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/wiki-nonexistent-red.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003e\n\u003cstrong\u003eHoloInteract\u003c/strong\u003e - Metabolic Interaction in Holobionts\u003c/h1\u003e\u003ca id=\"user-content-holointeract---metabolic-interaction-in-holobionts\" class=\"anchor\" aria-label=\"Permalink: HoloInteract - Metabolic Interaction in Holobionts\" href=\"#holointeract---metabolic-interaction-in-holobionts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eUses the \u003ca href=\"\"\u003eMetage2Metabo library\u003c/a\u003e to generate and manipulate metabolic networks.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation\u003c/h2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRequirements\u003c/h3\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-label=\"Permalink: Requirements\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003ePiPy \u003ccode\u003erequirements.txt\u003c/code\u003e\n\u003c/h4\u003e\u003ca id=\"user-content-pipy-requirementstxt\" class=\"anchor\" aria-label=\"Permalink: PiPy requirements.txt\" href=\"#pipy-requirementstxt\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003epython \u0026gt;=3.9\u003c/li\u003e\n\u003cli\u003esetuptools\u0026gt;=65.5.1\u003c/li\u003e\n\u003cli\u003erich\u0026gt;=13.5.3\u003c/li\u003e\n\u003cli\u003ematplotlib\u0026gt;=3.8.0\u003c/li\u003e\n\u003cli\u003epandas\u0026gt;=1.5.3\u003c/li\u003e\n\u003cli\u003eplotly\u0026gt;=5.17.0\u003c/li\u003e\n\u003cli\u003eseaborn\u0026gt;=0.12.2\u003c/li\u003e\n\u003cli\u003eMetage2Metabo\u0026gt;=1.5.4\u003c/li\u003e\n\u003cli\u003escipy\u0026gt;=1.11.2\u003c/li\u003e\n\u003cli\u003epadmet\u0026gt;=5.0.1\u003c/li\u003e\n\u003cli\u003eete3\u0026gt;=3.1.3\u003c/li\u003e\n\u003cli\u003enumpy\u0026gt;=1.26.0\u003c/li\u003e\n\u003cli\u003estatsmodels\u0026gt;=0.14.0\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eLocal\u003c/h4\u003e\u003ca id=\"user-content-local\" class=\"anchor\" aria-label=\"Permalink: Local\" href=\"#local\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eontosunburst : \u003ca href=\"https://github.com/PaulineGHG/Ontology_sunburst.git\"\u003ehttps://github.com/PaulineGHG/Ontology_sunburst.git\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eQuick install\u003c/h3\u003e\u003ca id=\"user-content-quick-install\" class=\"anchor\" aria-label=\"Permalink: Quick install\" href=\"#quick-install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn HoloInteract directory :\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ebash install_dependencies.sh\npip install -e \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eCommands\u003c/h2\u003e\u003ca id=\"user-content-commands\" class=\"anchor\" aria-label=\"Permalink: Commands\" href=\"#commands\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSubcommands available through \u003ccode\u003eholointeract\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eMetabolic Analysis : \u003ccode\u003eholointeract metabolic_analysis\u003c/code\u003e\n\u003c/h3\u003e\u003ca id=\"user-content-metabolic-analysis--holointeract-metabolic_analysis\" class=\"anchor\" aria-label=\"Permalink: Metabolic Analysis : holointeract metabolic_analysis\" href=\"#metabolic-analysis--holointeract-metabolic_analysis\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eArguments :\u003c/h4\u003e\u003ca id=\"user-content-arguments-\" class=\"anchor\" aria-label=\"Permalink: Arguments :\" href=\"#arguments-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--comm\u003c/code\u003e, \u003ccode\u003e--community_networks\u003c/code\u003e : path to community networks in SBML\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--host\u003c/code\u003e, \u003ccode\u003e--host_networks\u003c/code\u003e : path to hosts networks in SBML\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-o\u003c/code\u003e, \u003ccode\u003e--output\u003c/code\u003e : path to output directory\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-s\u003c/code\u003e, \u003ccode\u003e--seeds\u003c/code\u003e : path to seeds SBML file\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-n\u003c/code\u003e, \u003ccode\u003e--name\u003c/code\u003e : output files name (default=run)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-m\u003c/code\u003e, \u003ccode\u003e--scopes_method\u003c/code\u003e : method of scopes generation\n\u003ccode\u003e[\u0027solo\u0027, \u0027coop\u0027, \u0027full\u0027]\u003c/code\u003e (default=\u003ccode\u003e\u0027coop\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--cm\u003c/code\u003e, \u003ccode\u003e--clustering_method\u003c/code\u003e : method for linkage in clustering (default=\u003ccode\u003e\u0027ward\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--max_clust\u003c/code\u003e : maximal number of cluster for the dendrogram division (default=\u003ccode\u003e10\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--cpu\u003c/code\u003e : number of cpu to use (default=\u003ccode\u003e1\u003c/code\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eTest example :\u003c/h4\u003e\u003ca id=\"user-content-test-example-\" class=\"anchor\" aria-label=\"Permalink: Test example :\" href=\"#test-example-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre lang=\"commandline\"\u003e\u003ccode\u003eholointeract metabolic_analysis --comm small_example/inputs/community/ --host small_example/inputs/hosts/ -o small_example/outputs/ -s small_example/inputs/seeds/seeds_seawater_artefact.sbml -n test -m coop \n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCoevolution Analysis : \u003ccode\u003eholointeract coevolution\u003c/code\u003e\n\u003c/h3\u003e\u003ca id=\"user-content-coevolution-analysis--holointeract-coevolution\" class=\"anchor\" aria-label=\"Permalink: Coevolution Analysis : holointeract coevolution\" href=\"#coevolution-analysis--holointeract-coevolution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eArguments :\u003c/h4\u003e\u003ca id=\"user-content-arguments--1\" class=\"anchor\" aria-label=\"Permalink: Arguments :\" href=\"#arguments--1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--comm\u003c/code\u003e, \u003ccode\u003e--community_networks\u003c/code\u003e : path to community networks in SBML\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--host\u003c/code\u003e, \u003ccode\u003e--host_networks\u003c/code\u003e : path to hosts networks in SBML\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-o\u003c/code\u003e, \u003ccode\u003e--output\u003c/code\u003e : path to output directory\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-s\u003c/code\u003e, \u003ccode\u003e--seeds\u003c/code\u003e : path to seeds SBML file\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-n\u003c/code\u003e, \u003ccode\u003e--name\u003c/code\u003e : output files name (default=run)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--cm\u003c/code\u003e, \u003ccode\u003e--clustering_method\u003c/code\u003e : method for linkage in clustering (default=\u003ccode\u003e\u0027ward\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--max_clust\u003c/code\u003e : maximal number of cluster for the dendrogram division (default=\u003ccode\u003e10\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-p\u003c/code\u003e, \u003ccode\u003e--phylo_tree\u003c/code\u003e : path to phylogenetic tree (Newick format) (default=\u003ccode\u003eNone\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--cor\u003c/code\u003e, \u003ccode\u003e--correction\u003c/code\u003e : correction to apply to p-values\n\u003ccode\u003e[\u0027bonferroni\u0027, \u0027benjamini\u0027, None]\u003c/code\u003e (default=\u003ccode\u003eNone\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--cpu\u003c/code\u003e : number of cpu to use (default=\u003ccode\u003e1\u003c/code\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eTest example :\u003c/h4\u003e\u003ca id=\"user-content-test-example--1\" class=\"anchor\" aria-label=\"Permalink: Test example :\" href=\"#test-example--1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre lang=\"commandline\"\u003e\u003ccode\u003eholointeract coevolution --comm small_example/inputs/community/ --host small_example/inputs/hosts/ -o small_example/outputs/ -s small_example/inputs/seeds/seeds_seawater_artefact.sbml -n test -p small_example/inputs/SpeciesTree_rooted.txt \n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eHelp available\u003c/h3\u003e\u003ca id=\"user-content-help-available\" class=\"anchor\" aria-label=\"Permalink: Help available\" href=\"#help-available\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eholointeract -h\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eholointeract \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003esubcommand\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e -h\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRequired Inputs\u003c/h2\u003e\u003ca id=\"user-content-required-inputs\" class=\"anchor\" aria-label=\"Permalink: Required Inputs\" href=\"#required-inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eCommunity Networks (\u003ccode\u003e--comm\u003c/code\u003e, \u003ccode\u003e--community_networks\u003c/code\u003e)\u003c/h3\u003e\u003ca id=\"user-content-community-networks---comm---community_networks\" class=\"anchor\" aria-label=\"Permalink: Community Networks (--comm, --community_networks)\" href=\"#community-networks---comm---community_networks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDirectory containing SBML networks files for each community organism.\u003c/p\u003e\n\u003cp\u003eEach organism must be placed in the directory named after its natural host.\u003c/p\u003e\n\u003cp\u003eHost names in community networks directory and host networks directory must coincide.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eExample :\u003c/h4\u003e\u003ca id=\"user-content-example-\" class=\"anchor\" aria-label=\"Permalink: Example :\" href=\"#example-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e\u251c\u2500\u2500 Community_networks\n\u2502 \u251c\u2500\u2500 Host_1\n\u2502 \u2502 \u251c\u2500\u2500 Microorganism_1.sbml \n\u2502 \u2502 \u251c\u2500\u2500 Microorganism_2.sbml \n\u2502 \u251c\u2500\u2500 Host_2\n\u2502 \u2502 \u251c\u2500\u2500 Microorganism_3.sbml \n\u2502 \u2502 \u251c\u2500\u2500 Microorganism_4.sbml\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eHost Networks (\u003ccode\u003e--host\u003c/code\u003e, \u003ccode\u003e--host_networks\u003c/code\u003e)\u003c/h3\u003e\u003ca id=\"user-content-host-networks---host---host_networks\" class=\"anchor\" aria-label=\"Permalink: Host Networks (--host, --host_networks)\" href=\"#host-networks---host---host_networks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDirectory containing SBML networks files for each host.\u003c/p\u003e\n\u003cp\u003eHost names in community networks directory and host networks directory must coincide.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eExample :\u003c/h4\u003e\u003ca id=\"user-content-example--1\" class=\"anchor\" aria-label=\"Permalink: Example :\" href=\"#example--1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e\u251c\u2500\u2500 Host_networks\n\u2502 \u251c\u2500\u2500 Host_1.sbml \n\u2502 \u251c\u2500\u2500 Host_2.sbml\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSeeds (\u003ccode\u003e-s\u003c/code\u003e, \u003ccode\u003e--seeds\u003c/code\u003e)\u003c/h3\u003e\u003ca id=\"user-content-seeds--s---seeds\" class=\"anchor\" aria-label=\"Permalink: Seeds (-s, --seeds)\" href=\"#seeds--s---seeds\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eSeeds are list of compounds corresponding to a common growth medium shared between all hosts.\u003c/p\u003e\n\u003cp\u003eArtefacts compounds should be added to seeds to avoid cycles + cofactors.\u003c/p\u003e\n\u003cp\u003eThe seeds file must be given at SBML format.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ePhylogenetic Tree (\u003ccode\u003e-p\u003c/code\u003e, \u003ccode\u003e--phylo_tree\u003c/code\u003e)\u003c/h3\u003e\u003ca id=\"user-content-phylogenetic-tree--p---phylo_tree\" class=\"anchor\" aria-label=\"Permalink: Phylogenetic Tree (-p, --phylo_tree)\" href=\"#phylogenetic-tree--p---phylo_tree\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe phylogenetic tree is used to calculate phylogenetic distance between each pair of hosts.\u003c/p\u003e\n\u003cp\u003eThe file must be given at Newick format.\u003c/p\u003e\n\u003cp\u003eAll the hosts must be present in the tree.\u003c/p\u003e\n\u003cp\u003eAll the host names must coincide to the names in community networks directory\nand host networks directory.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1696949006.0
+ "updated_at": 1667472176.0
},
{
"data_format": 2,
- "description": "Modified version of AMR++ ",
+ "description": null,
"filenames": [
- "envs/containers/Singularity"
+ "Singularity.def"
],
- "full_name": "passdan/AMR-local-mod",
+ "full_name": "annaLtyler/CAPE_transcripts",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eOverview\u003c/h2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-label=\"Permalink: Overview\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis repository is a modified version of the \u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus\"\u003eAMR++ core repository\u003c/a\u003e with some notable modifications, changes, and parameterised for running on Cardiff University Biosciences compute cluster (Trinity). For usage and tutorials refer to the core AMR++ documentation.\u003c/p\u003e\n\u003cp\u003eNotable changes to original pipeline:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eIntegrated fastp \u0026amp; bowtie2 as QC and alignment packages\n\u003cul\u003e\n\u003cli\u003eNote: Default alignment for megares is kept as BWA consistent with original AMR++ and can be changed by parameter. Bowtie2 alignment against megaresDB has significant change on alignment rate.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eBased upon modified docker image (passdan/amrplusplus-update)\u003c/li\u003e\n\u003cli\u003eSome code tweaks and fixes to work with singularity-slurm submission and repair nextflow channel bugs\u003c/li\u003e\n\u003cli\u003eBespoke job submission and result caputre to fit our specific requirements\u003c/li\u003e\n\u003cli\u003eAdded Bracken processing with new results\n\u003cul\u003e\n\u003cli\u003eNote: Two new workflow parameters: \u0027standard_AMR_wKraken_and_bracken\u0027 and \u0027kraken_and_braken\u0027 (for already filtered/host removed input)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eCodebase is provided as-is and is hyper-locally modified for our infrastructure. If you are not concerned about bracken output or fastp \u0026amp; bowtie2 you probably want to work from the original AMR++ repository.\u003c/p\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePreparing the install\u003c/h1\u003e\u003ca id=\"user-content-preparing-the-install\" class=\"anchor\" aria-label=\"Permalink: Preparing the install\" href=\"#preparing-the-install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003eDownload the github repository with git clone and the url above\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning with singularity\u003c/h2\u003e\u003ca id=\"user-content-running-with-singularity\" class=\"anchor\" aria-label=\"Permalink: Running with singularity\" href=\"#running-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eThe pipeline is designed and configured to run with singularity \u0026amp; slurm. If you are using these then no further installation preparation is required.\nYou may choose to pre-build the singulariy images in advance if wanted. Note: config/singularity_slurm.conf is where singularity images can be defined.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eDownload bowtie2 index files to remove contamination/host DNA\u003c/h2\u003e\u003ca id=\"user-content-download-bowtie2-index-files-to-remove-contaminationhost-dna\" class=\"anchor\" aria-label=\"Permalink: Download bowtie2 index files to remove contamination/host DNA\" href=\"#download-bowtie2-index-files-to-remove-contaminationhost-dna\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eEither download directly, or build your indexes to be filtered against from user supplied fasta files.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e[Recommended] download human genome indexes directly from: \u003ca href=\"https://bowtie-bio.sourceforge.net/bowtie2/index.shtml\" rel=\"nofollow\"\u003ehttps://bowtie-bio.sourceforge.net/bowtie2/index.shtml\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eEdit Slurm submission scripts\u003c/h2\u003e\u003ca id=\"user-content-edit-slurm-submission-scripts\" class=\"anchor\" aria-label=\"Permalink: Edit Slurm submission scripts\" href=\"#edit-slurm-submission-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eAn example slurm script defines these parameters:\n\u003cul\u003e\n\u003cli\u003eworkdir: Location where processing will be performed (advice: use high speed location on your processing node i.e. /tmp)\u003c/li\u003e\n\u003cli\u003einstalldir: Location of this github repo on your system\u003c/li\u003e\n\u003cli\u003eresultsdir: Where do you want the main outputs to be transfered to (not the full working folders \u0026amp; outputs)\u003c/li\u003e\n\u003cli\u003erun: Name of the run for annotation and folder where the fastq files are\nDefault input read location is: \u003ccode\u003e$workdir/$run/fastq\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003chr\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eRunning the pipeline\u003c/h1\u003e\u003ca id=\"user-content-running-the-pipeline\" class=\"anchor\" aria-label=\"Permalink: Running the pipeline\" href=\"#running-the-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDefault pipeline is \u003ccode\u003estandard_AMR_wKraken_and_bracken\u003c/code\u003e which will run from raw fastqs to the endpoint. Alternatives are to use mid-process data, kraken only etc. by modifying the --pipeline parameter\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eAvailable pipelines:\n - demo: Run a demonstration of AMR++\n - standard_AMR: Run the standard AMR++ pipeline\n - fast_AMR: Run the fast AMR++ pipeline without host removal.\n - standard_AMR_wKraken: Run the standard AMR++ pipeline with Kraken\n - **NEW** standard_AMR_wKraken_and_bracken: Run the standard AMR++ pipeline with Kraken AND Bracken\n\nAvailable subworkflows:\n - eval_qc: Run FastQC analysis\n - trim_qc: Run trimming and quality control\n - rm_host: Remove host reads\n - resistome: Perform resistome analysis\n - align: Perform alignment to MEGARes database\n - kraken: Perform Kraken analysis\n - **NEW** kraken_and_bracken: Perform Kraken and Bracken analysis\n - qiime2: Perform QIIME 2 analysis\n - bam_resistome: Perform resistome analysis on BAM files\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSubmit as a slurm \u0026amp; singularity job with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esbatch AMRplusplus_full.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou\u0027re finished!\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1693998493.0
+ "updated_at": 1641489227.0
},
{
"data_format": 2,
- "description": "Code for snATAC + snRNA analyses",
+ "description": "Updated dockers for FEniCS 2019 (legacy FEniCS)",
"filenames": [
- "eqtl/scan/scripts/Singularity",
- "eqtl/susie/scripts/Singularity",
- "sn_processing/rna/scripts/Singularity",
- "sn_processing/atac/scripts/Singularity",
- "directionality/smr/scripts/Singularity"
+ "dockerfiles/stable/Singularity",
+ "dockerfiles/dev-env/Singularity"
],
- "full_name": "ParkerLab/sn_muscle_2023",
+ "full_name": "terjekv/fenics-docker",
"latest_release": null,
- "readme": "\u003cp\u003eCode for key analyses in the manuscript Single-nucleus chromatin and gene expression profiling across hundreds of skeletal muscle samples reveals context-specific regulation. Annotations in hg38.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eTo run workflow:\u003c/h1\u003e\u003ca id=\"user-content-to-run-workflow\" class=\"anchor\" aria-label=\"Permalink: To run workflow:\" href=\"#to-run-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eSpecify all paths in config.yaml\u003c/h2\u003e\u003ca id=\"user-content-specify-all-paths-in-configyaml\" class=\"anchor\" aria-label=\"Permalink: Specify all paths in config.yaml\" href=\"#specify-all-paths-in-configyaml\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eModify scripts/nextflow.config accordingly. It currently provides configuration to run on the slurm scheduler.\u003c/h2\u003e\u003ca id=\"user-content-modify-scriptsnextflowconfig-accordingly-it-currently-provides-configuration-to-run-on-the-slurm-scheduler\" class=\"anchor\" aria-label=\"Permalink: Modify scripts/nextflow.config accordingly. It currently provides configuration to run on the slurm scheduler.\" href=\"#modify-scriptsnextflowconfig-accordingly-it-currently-provides-configuration-to-run-on-the-slurm-scheduler\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTo generate the sigularity container, use the \u003ccode\u003eSingularity\u003c/code\u003e file in the scripts directory to generate one as:\u003c/h2\u003e\u003ca id=\"user-content-to-generate-the-sigularity-container-use-the-singularity-file-in-the-scripts-directory-to-generate-one-as\" class=\"anchor\" aria-label=\"Permalink: To generate the sigularity container, use the Singularity file in the scripts directory to generate one as:\" href=\"#to-generate-the-sigularity-container-use-the-singularity-file-in-the-scripts-directory-to-generate-one-as\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build --remote container_name.sig scripts/Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRun the Nextflow workflow as:\u003c/h2\u003e\u003ca id=\"user-content-run-the-nextflow-workflow-as\" class=\"anchor\" aria-label=\"Permalink: Run the Nextflow workflow as:\" href=\"#run-the-nextflow-workflow-as\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003enextflow -C scripts/nextflow.config run scripts/main.nf -params-file config.yaml -resume -with-trace trace.txt\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-docker-for-fenics\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker-for-fenics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker for FEniCS\u003c/h1\u003e\n\u003cp\u003eThis repository contains the scripts for building various Docker\nimages for \u003ca href=\"http://fenicsproject.org\" rel=\"nofollow\"\u003eFEniCS\u003c/a\u003e. The built images\nare available on \u003ca href=\"https://quay.io/organization/fenicsproject/\" rel=\"nofollow\"\u003equay.io\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://fenics.readthedocs.org/projects/containers/en/latest/?badge=latest\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/216da3db9027c7d6a1857be2a6ef086a77ed5dca0de68a1be21b21a464f1c7ca/68747470733a2f2f72656164746865646f63732e6f72672f70726f6a656374732f66656e6963732d636f6e7461696e6572732f62616467652f3f76657273696f6e3d6c6174657374\" alt=\"Documentation Status\" data-canonical-src=\"https://readthedocs.org/projects/fenics-containers/badge/?version=latest\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003eTo install Docker for your platform (Windows, macOS, Linux, cloud\nplatforms, etc.), follow the instructions at\n\u003ca href=\"https://docs.docker.com/engine/getstarted/step_one/\" rel=\"nofollow\"\u003edocker.com\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eOnce you have Docker installed, you can run any of the images below\nusing the following command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -ti quay.io/fenicsproject/\u0026lt;image-name\u0026gt;:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo start with you probably want to try the \u003ccode\u003estable:current\u003c/code\u003e image\nwhich includes a full stable version of FEniCS with PETSc, SLEPc,\npetsc4py and slepc4py already compiled. This image has been checked by\nthe FEniCS Project team:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -ti quay.io/fenicsproject/stable:current\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you want to share your current working directory into the container\nuse the following command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -ti -v $(pwd):/home/fenics/shared quay.io/fenicsproject/\u0026lt;image-name\u0026gt;:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you want to be able to view the plots in your web browser, use the following\ncommand:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -ti -p 127.0.0.1:8000:8000 -v $(pwd):/home/fenics/shared quay.io/fenicsproject/\u0026lt;image-name\u0026gt;:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUsers with SELinux-enabled Linux distributions (Redhat, Fedora, CentOS, and others)\nwill need to add the \u003ccode\u003e:z\u003c/code\u003e flag to the volume mount, e.g.:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -ti -v $(pwd):/home/fenics/shared:z quay.io/fenicsproject/\u0026lt;image-name\u0026gt;:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-experimental-singularity-support\" class=\"anchor\" aria-hidden=\"true\" href=\"#experimental-singularity-support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExperimental: Singularity support\u003c/h2\u003e\n\u003cp\u003eThis repository contains a script to build \u003ccode\u003edev-env\u003c/code\u003e and \u003ccode\u003estable\u003c/code\u003e\nimages that are compatible with the Singularity container runtime\n\u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003ehttp://singularity.lbl.gov/\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd dockerfiles\n./build-singularity-images.sh\ncd stable\nsingularity run -e stable.img\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePlease report any problems in the issue tracker.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eMore extensive documentation, including suggested workflows, is\navailable at \u003ca href=\"https://fenics-containers.readthedocs.org/\" rel=\"nofollow\"\u003ehttps://fenics-containers.readthedocs.org/\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImages\u003c/h2\u003e\n\u003cp\u003eWe currently offer following end-user images. A full description of\nthe images can be found at \u003ca href=\"https://fenics-containers.readthedocs.org/\" rel=\"nofollow\"\u003ehttps://fenics-containers.readthedocs.org/\u003c/a\u003e.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eImage name\u003c/th\u003e\n\u003cth\u003eBuild status\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003estable\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://quay.io/repository/fenicsproject/stable\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/244f27cc8397f31b11cbc2e780751c02b5e6be4fbc35b65fb734720b77f799b8/68747470733a2f2f717561792e696f2f7265706f7369746f72792f66656e69637370726f6a6563742f737461626c652f737461747573\" alt=\"Docker Repository on Quay\" title=\"Docker Repository on Quay\" data-canonical-src=\"https://quay.io/repository/fenicsproject/stable/status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eStable release, with PETSc and SLEPc.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003edev\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\n\u003ccode\u003emaster\u003c/code\u003e version\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003edev-env\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://quay.io/repository/fenicsproject/dev-env\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9f60a447cec97d984a5e6d237ecb10b88e9a81054a289c509e46bd0e794561c3/68747470733a2f2f717561792e696f2f7265706f7369746f72792f66656e69637370726f6a6563742f6465762d656e762f737461747573\" alt=\"Docker Repository on Quay\" title=\"Docker Repository on Quay\" data-canonical-src=\"https://quay.io/repository/fenicsproject/dev-env/status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eDevelopment environment with PETSc and SLEPc.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ebase\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://quay.io/repository/fenicsproject/base\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a89219955af8c2e29e3b80191c6b09fbcd0a4aec08fd3c6a796b2194eb459231/68747470733a2f2f717561792e696f2f7265706f7369746f72792f66656e69637370726f6a6563742f626173652f737461747573\" alt=\"Docker Repository on Quay\" title=\"Docker Repository on Quay\" data-canonical-src=\"https://quay.io/repository/fenicsproject/base/status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eBase image, not for end users.\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cblockquote\u003e\n\u003cp\u003eNote: The \u003cem\u003eBuild status\u003c/em\u003e column refers to the latest \u003cem\u003eattempted\u003c/em\u003e\nbuild. Even if a build is marked as failed, there will still be a\nworking image available on the \u003ccode\u003elatest\u003c/code\u003e tag that you can use.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tagging-policies\" class=\"anchor\" aria-hidden=\"true\" href=\"#tagging-policies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTagging policies\u003c/h2\u003e\n\u003cp\u003eWe currently maintain tags on the \u003ccode\u003estable\u003c/code\u003e and \u003ccode\u003edev-env\u003c/code\u003e images.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-stable\" class=\"anchor\" aria-hidden=\"true\" href=\"#stable\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ccode\u003estable\u003c/code\u003e\u003c/h3\u003e\n\u003cp\u003eYou can view the tags on the \u003ccode\u003estable\u003c/code\u003e image here:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://quay.io/repository/fenicsproject/stable?tab=tags\" rel=\"nofollow\"\u003ehttps://quay.io/repository/fenicsproject/stable?tab=tags\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe tagging policy for \u003ccode\u003estable\u003c/code\u003e image is as follows:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe \u003ccode\u003e:latest\u003c/code\u003e (default) tag refers to the latest image built by\nquay.io. The prior \u003ccode\u003e:latest\u003c/code\u003e image is automatically deleted by\nquay.io, unless it has been assigned another tag.\u003c/li\u003e\n\u003cli\u003eWe maintain a set of rolling release tags, e.g. \u003ccode\u003e:2016.1.0.r1\u003c/code\u003e,\n\u003ccode\u003e2016.1.0.r2\u003c/code\u003e that contain the \u003ccode\u003exxxx.x.x\u003c/code\u003e version of FEniCS, but\ncontain minor updates \u003ccode\u003e.rx\u003c/code\u003e to underlying dependencies (e.g. PETSc)\nand the container environment. These images have been checked\nthoroughly by the FEniCS project team.\u003c/li\u003e\n\u003cli\u003eThe latest rolling release is tagged with a \u003cem\u003emoving\u003c/em\u003e tag \u003ccode\u003e:current\u003c/code\u003e.\nThis tag is the default tag used by the \u003ccode\u003ebin/fenicsproject\u003c/code\u003e script\nwhen the user specifies \u003ccode\u003estable\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eWhen we release a new stable version of FEniCS the last rolling release\n\u003ccode\u003exxxx.x.x.rx\u003c/code\u003e of the image for the previous version will be tagged \u003ccode\u003exxxx.x.x\u003c/code\u003e for\npermanent archival. We will endeavour to keep all \u003ccode\u003exxxx.x.x.rx\u003c/code\u003e tags\nas well, but this is not guaranteed. We will always keep the last rolling\nrelease \u003ccode\u003exxxx.x.x\u003c/code\u003e tag.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-dev-env\" class=\"anchor\" aria-hidden=\"true\" href=\"#dev-env\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ccode\u003edev-env\u003c/code\u003e\u003c/h3\u003e\n\u003cp\u003eYou can view the tags on the \u003ccode\u003edev-env\u003c/code\u003e image here:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://quay.io/repository/fenicsproject/dev-env?tab=tags\" rel=\"nofollow\"\u003ehttps://quay.io/repository/fenicsproject/dev-env?tab=tags\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe tagging policy for the \u003ccode\u003edev-env\u003c/code\u003e image is as follows:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe \u003ccode\u003e:latest\u003c/code\u003e (default) tag refers to the latest image build by\nquay.io. The prior \u003ccode\u003e:latest\u003c/code\u003e image is automatically deleted by\nquay.io, unless it has been assigned another tag.\u003c/li\u003e\n\u003cli\u003eWhen we release a new stable version of FEniCS the last \u003ccode\u003e:latest\u003c/code\u003e image is\ntagged \u003ccode\u003exxxx.x.x\u003c/code\u003e for permanent archival. This could be useful if you\nwant to compile an old version of FEniCS.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-development-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#development-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopment images\u003c/h2\u003e\n\u003cp\u003eDue to the shutdown of our Bamboo build service, \u003ccode\u003edev\u003c/code\u003e images\nare no longer produced automatically.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-process\" class=\"anchor\" aria-hidden=\"true\" href=\"#process\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eProcess\u003c/h2\u003e\n\u003cp\u003eThe \u003ccode\u003eDockerfile\u003c/code\u003es in this repository are built and distributed as\nDocker images by quay.io. For this to happen automatically on a change\nin a \u003ccode\u003eDockerfile\u003c/code\u003e we have setup a \u003ca href=\"https://docs.quay.io/guides/building.html\" rel=\"nofollow\"\u003ebuild\ntrigger\u003c/a\u003e on quay.io for\neach image (e.g. \u003ccode\u003estable\u003c/code\u003e). Setting up a trigger requires\nadministrator access on this bitbucket repository and the\n\u003ccode\u003efenicsproject\u003c/code\u003e quay.io team.\u003c/p\u003e\n\u003cp\u003eThe tagging policy is described in the section \u0027Tagging policies\u0027. To\ncreate tags you need to be an administrator on the \u003ccode\u003efenicsproject\u003c/code\u003e\nquay.io team. The procedure is described\n\u003ca href=\"https://docs.quay.io/guides/tag-operations.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. Currently all\ntags are created manually via the web interface.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-authors\" class=\"anchor\" aria-hidden=\"true\" href=\"#authors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eJack S. Hale (\u003ca href=\"mailto:jack.hale@uni.lu\"\u003ejack.hale@uni.lu\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eLizao Li (\u003ca href=\"mailto:lzlarryli@gmail.com\"\u003elzlarryli@gmail.com\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eGarth N. Wells (\u003ca href=\"mailto:gnw20@cam.ac.uk\"\u003egnw20@cam.ac.uk\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1699458196.0
+ "updated_at": 1668124636.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Learning how to use the workflow called nextflow",
"filenames": [
- "singularity/Singularity.minimac4"
+ "nf-training/Singularity"
],
- "full_name": "h3abionet/chipimputation_evaluate_chips",
+ "full_name": "ayoraind/nf-training",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eChip imputation evaluation Workflow h3abionet/chipimputation_evaluate_chips\u003c/h1\u003e\u003ca id=\"user-content-chip-imputation-evaluation-workflow-h3abionetchipimputation_evaluate_chips\" class=\"anchor\" aria-label=\"Permalink: Chip imputation evaluation Workflow h3abionet/chipimputation_evaluate_chips\" href=\"#chip-imputation-evaluation-workflow-h3abionetchipimputation_evaluate_chips\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/h3abionet/chipimputation\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/613f3026f3cde9349d4ad1ff0e6842e170600d7473949e030192e71b08edaabc/68747470733a2f2f7472617669732d63692e6f72672f68336162696f6e65742f63686970696d7075746174696f6e2e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/h3abionet/chipimputation.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/780f0e426d3a9fd5f3f54407686be63867cb8093d09e36c9bcbad58b728a111d/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33302e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.30.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/00ceea296d710222922f0f50135c1c5453f5da6e106d89c3af96072c6dcc6d8a/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/h3abionet/chipimputation\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a9dd183a714011418b2104dcad694fcdbbfbf66fdca3c46b96018a56edf79026/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f63686970696d7075746174696f6e2e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/chipimputation.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/3f0c745c9a388bc1b2b56ea29cd21a301b7736d98bcfea6cdb5a2c5ee2129f11/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3f0c745c9a388bc1b2b56ea29cd21a301b7736d98bcfea6cdb5a2c5ee2129f11/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eIntroduction\u003c/h3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-label=\"Permalink: Introduction\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe pipeline is to evaluate the imputation performance and accuracy of different arrays starting from sequence data.\nIt masks non tag variants for each array, and then impute to a reference panel using Minimac.\u003cbr\u003e\nIt is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner.\u003cbr\u003e\nIt comes with singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eDocumentation\u003c/h3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-label=\"Permalink: Documentation\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe evaluate_chips pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation and Configuration\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eConfiguration for other clusters\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eSetup (native cluster)\u003c/h3\u003e\u003ca id=\"user-content-setup-native-cluster\" class=\"anchor\" aria-label=\"Permalink: Setup (native cluster)\" href=\"#setup-native-cluster\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eHeadnode\u003c/h4\u003e\u003ca id=\"user-content-headnode\" class=\"anchor\" aria-label=\"Permalink: Headnode\" href=\"#headnode\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e (can be installed as local user)\u003c/li\u003e\n\u003cli\u003eNXF_HOME needs to be set, and must be in the PATH\u003c/li\u003e\n\u003cli\u003eNote that we\u0027ve experienced problems running Nextflow when NXF_HOME is on an NFS mount.\u003c/li\u003e\n\u003cli\u003eThe Nextflow script also needs to be invoked in a non-NFS folder\u003c/li\u003e\n\u003cli\u003eJava 1.8+\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eCompute nodes\u003c/h4\u003e\u003ca id=\"user-content-compute-nodes\" class=\"anchor\" aria-label=\"Permalink: Compute nodes\" href=\"#compute-nodes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eThe compute nodes need to have singularity installed.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThe compute nodes need access to shared storage for input, references, output\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThe following commands need to be available in PATH on the compute nodes, in case of unavailabitity of singularity.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eminimac4\u003c/code\u003e from \u003ca href=\"http://mathgen.stats.ox.ac.uk/impute/impute_v2.html\" rel=\"nofollow\"\u003eMINIMAC4\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003evcftools\u003c/code\u003e from \u003ca href=\"https://vcftools.github.io/index.html\" rel=\"nofollow\"\u003eVCFtools\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ebcftools\u003c/code\u003efrom \u003ca href=\"https://samtools.github.io/bcftools/bcftools.html\" rel=\"nofollow\"\u003ebcftools\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ebgzip\u003c/code\u003e from \u003ca href=\"http://www.htslib.org\" rel=\"nofollow\"\u003ehtslib\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eeagle\u003c/code\u003e from \u003ca href=\"https://data.broadinstitute.org/alkesgroup/Eagle/\" rel=\"nofollow\"\u003eEagle\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003epython2.7\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eR\u003c/code\u003e with the following packages ...\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-nextflow-training-guide\" class=\"anchor\" aria-hidden=\"true\" href=\"#nextflow-training-guide\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNextflow Training Guide.\u003c/h1\u003e\n\u003cp\u003eWelcome to the Nextflow training repo. We are excited to have you on the path to writing reproducible and scalable scientific workflows using Nextflow. This guide complements the full Nextflow documentation - if you ever have any doubts, head over to the docs located \u003ca href=\"https://www.nextflow.io/docs/latest/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThere are two main ways to get started with Seqera\u0027s Nextflow training course.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eInstall Locally - best if you are already confident with Git and Docker, or working offline. Follow the instructions \u003ca href=\"https://training.seqera.io/#_local_installation\" rel=\"nofollow\"\u003ehere\u003c/a\u003e, section 1.1.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGitpod - (recommended), is a containerized environment with all the programs and data pre-installed. Simply click the link and login via a GitHub account to start the tutorial. The full instructions are below.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-gitpod-requirements\" class=\"anchor\" aria-hidden=\"true\" href=\"#gitpod-requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGitpod requirements:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eA GitHub account\u003c/li\u003e\n\u003cli\u003eWeb browser (Google Chrome, Firefox)\u003c/li\u003e\n\u003cli\u003eInternet connection\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-gitpod-quick-start\" class=\"anchor\" aria-hidden=\"true\" href=\"#gitpod-quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGitpod quick start\u003c/h2\u003e\n\u003cp\u003eTo run Gitpod:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eClick the following URL:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca href=\"https://gitpod.io/#https://github.com/seqeralabs/nf-training-public\" rel=\"nofollow\"\u003ehttps://gitpod.io/#https://github.com/seqeralabs/nf-training-public\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e(which is our Github repository URL, prefixed with \u003ca href=\"https://gitpod.io/#\" rel=\"nofollow\"\u003ehttps://gitpod.io/#\u003c/a\u003e).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eLog in to your Github account (and allow authorization).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOnce you have signed in, Gitpod should load (skip prebuild if asked).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-explore-your-gitpod-ide\" class=\"anchor\" aria-hidden=\"true\" href=\"#explore-your-gitpod-ide\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExplore your Gitpod IDE\u003c/h2\u003e\n\u003cp\u003eYou should now see something similar to the following:\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"/asciidocs/img/gitpod.welcome.png\"\u003e\u003cimg src=\"/asciidocs/img/gitpod.welcome.png\" alt=\"PNG\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThe sidebar\u003c/strong\u003e allows you to customize your Gitpod environment and perform basic tasks (copy, paste, open files, search, git, etc.). Click the Explorer button to see which files are in this repository.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThe terminal\u003c/strong\u003e allows you to run all the programs in the repository. For example, both \u003ccode\u003enextflow\u003c/code\u003e and \u003ccode\u003edocker\u003c/code\u003e are installed and can be executed.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThe main window\u003c/strong\u003e allows you to view and edit files. Clicking on a file in the explorer will open it within the main window. You should also see the nf-training material browser (\u003ca href=\"https://training.seqera.io/\" rel=\"nofollow\"\u003ehttps://training.seqera.io/\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003eTo test that the environment is working correctly, type the following into the terminal:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow info\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis should come up with the Nextflow version and runtime information:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eVersion: 22.04.2 build 5701\nCreated: 16-05-2022 17:52 UTC\nSystem: Linux 5.16.20-051620-generic\nRuntime: Groovy 3.0.10 on OpenJDK 64-Bit Server VM 11.0.13+8-LTS\nEncoding: UTF-8 (UTF-8)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-gitpod-resources\" class=\"anchor\" aria-hidden=\"true\" href=\"#gitpod-resources\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGitpod resources\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eGitpod gives you up to 50 hours per month to run the environment for free.\u003c/li\u003e\n\u003cli\u003eIt includes up to 16 cpus and 30GB of workspace.\u003c/li\u003e\n\u003cli\u003eGitpod will timeout after 30 minutes. However any changes are saved for up to two week (see next section for reopening a timed out session).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSee \u003ca href=\"http://www.gitpod.io\" rel=\"nofollow\"\u003ewww.gitpod.io\u003c/a\u003e for more details.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-reopening-a-gitpod-session\" class=\"anchor\" aria-hidden=\"true\" href=\"#reopening-a-gitpod-session\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReopening a Gitpod session\u003c/h3\u003e\n\u003cp\u003eYou can reopen an environment by going to \u003ca href=\"https://gitpod.io/workspaces\" rel=\"nofollow\"\u003ehttps://gitpod.io/workspaces\u003c/a\u003e and finding your previous environment, then clicking the button with three dots and selecting Open.\u003c/p\u003e\n\u003cp\u003eIf you save the URL from your previous Gitpod environment, you can just paste this into your browser to open the previous environment.\u003c/p\u003e\n\u003cp\u003eAlternatively, you can start a new workspace by following the Gitpod URL:\n\u003ca href=\"https://gitpod.io/#https://github.com/seqeralabs/nf-training-public\" rel=\"nofollow\"\u003ehttps://gitpod.io/#https://github.com/seqeralabs/nf-training-public\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis tutorial provides all the scripts, so don\u0027t worry if you have lost your environment. In the \u003ccode\u003enf-training\u003c/code\u003e directory, you can find the main scripts used in the tutorial.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-saving-files-from-gitpod-to-your-local-machine\" class=\"anchor\" aria-hidden=\"true\" href=\"#saving-files-from-gitpod-to-your-local-machine\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSaving files from Gitpod to your local machine.\u003c/h3\u003e\n\u003cp\u003eTo save your files, select your file of interest from the explorer panel, then right click the file to click \u003ccode\u003eDownload\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-copyright\" class=\"anchor\" aria-hidden=\"true\" href=\"#copyright\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCopyright\u003c/h3\u003e\n\u003cp\u003e\u003ca href=\"http://creativecommons.org/licenses/by-nc-nd/4.0/\" rel=\"nofollow\"\u003e\u003cimg alt=\"Creative Commons License\" src=\"https://camo.githubusercontent.com/3f6af33ec372f6eb8a74152e311d8f3ba281cbfb44b003d825de68bcbcffbe9d/68747470733a2f2f692e6372656174697665636f6d6d6f6e732e6f72672f6c2f62792d6e632d6e642f342e302f38387833312e706e67\" data-canonical-src=\"https://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eCopyright 2020-2022, Seqera Labs. All examples and descriptions are licensed under the \u003ca href=\"http://creativecommons.org/licenses/by-nc-nd/4.0/\" rel=\"nofollow\"\u003eCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1630671596.0
+ "updated_at": 1667983606.0
},
{
"data_format": 2,
- "description": null,
+ "description": "\u522b\u4eba\u7684",
"filenames": [
- "singularity/Singularity.example_recipe",
- "singularity/Singularity.plotting",
- "singularity/Singularity.align"
+ "W-Unet/Wave-U-Net-Pytorch-master/Wave-U-Net-Pytorch-master/Singularity"
],
- "full_name": "liluacrobat/Shotgun_inStrain",
+ "full_name": "fxd98/W-Unet",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eBhattlab workflows\u003c/h1\u003e\u003ca id=\"user-content-bhattlab-workflows\" class=\"anchor\" aria-label=\"Permalink: Bhattlab workflows\" href=\"#bhattlab-workflows\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eComputational workflows for metagenomics tasks, packaged with Snakemake, Singularity and Conda.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eTable of contents\u003c/h3\u003e\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" aria-label=\"Permalink: Table of contents\" href=\"#table-of-contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"manual/setup.md\"\u003eSetup\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"manual/running.md\"\u003eRunning a workflow\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003eAvailable workflows\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"manual/preprocessing.md\"\u003e\u003cstrong\u003ePreprocessing\u003c/strong\u003e metagenomic data\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"manual/assembly.md\"\u003eMetagenomic \u003cstrong\u003eAssembly\u003c/strong\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"manual/binning.md\"\u003eMetagenomic \u003cstrong\u003eBinning\u003c/strong\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"manual/dRep.md\"\u003e\u003cstrong\u003eDeReplication\u003c/strong\u003e of binned genomes\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"manual/inStrain.md\"\u003e\u003cstrong\u003einStrain\u003c/strong\u003e strain-diversity aware comparison of samples\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/bhattlab/kraken2_classification\"\u003eMetagenomic classification with \u003cstrong\u003eKraken2\u003c/strong\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"manual/sourmash.md\"\u003e\u003cstrong\u003eSourmash\u003c/strong\u003e read comparison\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"manual/download_sra.md\"\u003e\u003cstrong\u003eDownload SRA\u003c/strong\u003e data\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"manual/arg.md\"\u003e\u003cstrong\u003eARG detection\u003c/strong\u003e with RGI\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"manual/viral.md\"\u003e\u003cstrong\u003eViral\u003c/strong\u003e contig prediction\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"manual/comparative_genomics.md\"\u003eComparative microbial genomics pipelines\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eQuickstart\u003c/h3\u003e\u003ca id=\"user-content-quickstart\" class=\"anchor\" aria-label=\"Permalink: Quickstart\" href=\"#quickstart\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you\u0027re in the Bhatt lab and working on SCG, this command is an example of how to run the workflows. Other users will need to change these options (see \u003ca href=\"manual/running.md\"\u003eRunning a workflow\u003c/a\u003e)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake --configfile config_preprocessing.yaml \\\n--snakefile ~/projects/bhattlab_workflows/preprocessing/preprocessing.snakefile \\\n--profile scg --jobs 100 --use-singularity \\\n--singularity-args \u0027--bind /labs/,/oak/,/home/\u0027\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-w-unet\" class=\"anchor\" aria-hidden=\"true\" href=\"#w-unet\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eW-Unet\u003c/h1\u003e\n\u003cp\u003e\u522b\u4eba\u7684\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1629397031.0
+ "updated_at": 1668261473.0
},
{
"data_format": 2,
- "description": "collection of performance tools in centos (iperf3, perf, htop, etc)",
+ "description": "Glances is a cross-platform system monitoring tool written in Python.",
"filenames": [
- "Singularity"
+ "3.2.3.1/Singularity",
+ "3.3.1/Singularity",
+ "3.3.0.4/Singularity"
],
- "full_name": "tin6150/perf_tools",
- "latest_release": null,
+ "full_name": "pscedu/singularity-glances",
+ "latest_release": "v3.3.1",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-glances/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-glances/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-glances/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-glances/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/43ec72356b9caba3c3acfed806b0652e417e6059a5b6f51dea1f5dda0835d137/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d676c616e636573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/43ec72356b9caba3c3acfed806b0652e417e6059a5b6f51dea1f5dda0835d137/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d676c616e636573\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-glances\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/95213954ba87ff8602673ef562afff42953930ec138ce96d3683c4a4536d2d84/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d676c616e636573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/95213954ba87ff8602673ef562afff42953930ec138ce96d3683c4a4536d2d84/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d676c616e636573\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-glances\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/2d14c85860042ad12ca8177c832aba51fcbe93fc1b6fb018b78e3f4cde7022ec/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d676c616e636573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2d14c85860042ad12ca8177c832aba51fcbe93fc1b6fb018b78e3f4cde7022ec/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d676c616e636573\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-glances\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/0d7e4849ce048818bdf2750b8463028635aa22f5a5797b1d02e5c3a24d979db0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d676c616e636573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0d7e4849ce048818bdf2750b8463028635aa22f5a5797b1d02e5c3a24d979db0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d676c616e636573\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-glances\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-glances\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-glances\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-glances\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/829c005628a650de0afbef7aa42f2aae5916381323380abb38aa97edf74873ef/68747470733a2f2f6e69636f6c6172676f2e6769746875622e696f2f676c616e6365732f7075626c69632f696d616765732f73637265656e73686f742d776964652e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/829c005628a650de0afbef7aa42f2aae5916381323380abb38aa97edf74873ef/68747470733a2f2f6e69636f6c6172676f2e6769746875622e696f2f676c616e6365732f7075626c69632f696d616765732f73637265656e73686f742d776964652e706e67\" width=\"50%\" data-canonical-src=\"https://nicolargo.github.io/glances/public/images/screenshot-wide.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://nicolargo.github.io/glances/\" rel=\"nofollow\"\u003eglances\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eglances\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/glances/3.3.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/glances\u003c/code\u003e as \u003ccode\u003e3.3.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2023 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1670404321.0
+ },
+ {
+ "data_format": 2,
+ "description": "Denovo Assembly from FASTQ files",
+ "filenames": [
+ "singularity/Singularity"
+ ],
+ "full_name": "sequana/denovo",
+ "latest_release": null,
+ "stargazers_count": 0,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1705619466.0
+ "updated_at": 1668763760.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Recenta de container singularity para rodar o VASP",
"filenames": [
"Singularity"
],
- "full_name": "darachm/singularity_grinder",
+ "full_name": "natanmr/vasp-container",
"latest_release": null,
- "readme": "\u003cp\u003eThis container is for providing \u003ccode\u003egrinder\u003c/code\u003e for some bioinformatics pipelines.\u003c/p\u003e\n\u003cp\u003eThe primary reason for this is so that it flows nicely through SingularityHub\nfor Nextflow pipelines.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-vasp-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#vasp-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003evasp-container\u003c/h1\u003e\n\u003cp\u003eReceita de container singularity para rodar o VASP\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1546565343.0
+ "updated_at": 1668887511.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "docker/Singularity.nvidia.def"
+ "Singularity"
],
- "full_name": "GeoSymCodes/devito",
+ "full_name": "JesseBrouw/Thesis",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDevito: Fast Stencil Computation from Symbolic Specification\u003c/h1\u003e\u003ca id=\"user-content-devito-fast-stencil-computation-from-symbolic-specification\" class=\"anchor\" aria-label=\"Permalink: Devito: Fast Stencil Computation from Symbolic Specification\" href=\"#devito-fast-stencil-computation-from-symbolic-specification\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/devitocodes/devito/actions?query=workflow%3ACI-core\"\u003e\u003cimg src=\"https://github.com/devitocodes/devito/workflows/CI-core/badge.svg\" alt=\"Build Status for the Core backend\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/devitocodes/devito/actions?query=workflow%3ACI-mpi\"\u003e\u003cimg src=\"https://github.com/devitocodes/devito/workflows/CI-mpi/badge.svg\" alt=\"Build Status with MPI\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/devitocodes/devito/actions?query=workflow%3ACI-gpu\"\u003e\u003cimg src=\"https://github.com/devitocodes/devito/workflows/CI-gpu/badge.svg\" alt=\"Build Status on GPU\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://codecov.io/gh/devitocodes/devito\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3341c4237b01c40446dbf572166724d26ed6e3ce3b371353f8a932b9ae54f396/68747470733a2f2f636f6465636f762e696f2f67682f64657669746f636f6465732f64657669746f2f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"Code Coverage\" data-canonical-src=\"https://codecov.io/gh/devitocodes/devito/branch/master/graph/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://join.slack.com/t/devitocodes/shared_invite/zt-gtd2yxj9-Y31YKk_7lr9AwfXeL2iMFg\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/71e4f5a15e2e4dd4c87f9f57a0c6661196ed4542f236eb982803dbd090bd99e4/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f636861742d6f6e253230736c61636b2d253233333643354630\" alt=\"Slack Status\" data-canonical-src=\"https://img.shields.io/badge/chat-on%20slack-%2336C5F0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://devitocodes.github.io/devito-performance\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/75162422b65fe2f61b15722be747fa13ebc1d80ecfeeccbee2462ab769c89da3/687474703a2f2f696d672e736869656c64732e696f2f62616467652f62656e63686d61726b656425323062792d6173762d626c75652e7376673f7374796c653d666c6174\" alt=\"asv\" data-canonical-src=\"http://img.shields.io/badge/benchmarked%20by-asv-blue.svg?style=flat\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://badge.fury.io/py/devito\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5d6895be18a87329c268ffb103d3a4541dea612dd39066dc7f6f0ec0ff0400c2/68747470733a2f2f62616467652e667572792e696f2f70792f64657669746f2e737667\" alt=\"PyPI version\" data-canonical-src=\"https://badge.fury.io/py/devito.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://mybinder.org/v2/gh/devitocodes/devito/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e91e1d353a8b6acf0b42547ac3901f2c30138a3abaaa3d3c242da30b5b4f8426/68747470733a2f2f6d7962696e6465722e6f72672f62616467655f6c6f676f2e737667\" alt=\"Binder\" data-canonical-src=\"https://mybinder.org/badge_logo.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/devitocodes/devito\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fd36e0228b4c25e857e9ac2cf81d9b88dc56b5c50e75e39586fcbaa1c1a1007c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65726875622d696d616765732d696d706f7274616e742e7376673f6c6f676f3d446f636b65723f636f6c6f723d626c756576696f6c6574266c6162656c3d646f636b657226736f72743d73656d766572\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker?color=blueviolet\u0026amp;label=docker\u0026amp;sort=semver\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.devitoproject.org\" rel=\"nofollow\"\u003eDevito\u003c/a\u003e is a Python package to implement\noptimized stencil computation (e.g., finite differences, image processing,\nmachine learning) from high-level symbolic problem definitions. Devito builds\non \u003ca href=\"http://www.sympy.org/en/index.html\" rel=\"nofollow\"\u003eSymPy\u003c/a\u003e and employs automated code\ngeneration and just-in-time compilation to execute optimized computational\nkernels on several computer platforms, including CPUs, GPUs, and clusters\nthereof.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#about-devito\"\u003eAbout Devito\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#installation\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#resources\"\u003eResources\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/devitocodes/devito/blob/master/FAQ.md\"\u003eFAQs\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#performance\"\u003ePerformance\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#get-in-touch\"\u003eGet in touch\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#interactive-jupyter-notebooks\"\u003eInteractive jupyter notebooks\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eAbout Devito\u003c/h2\u003e\u003ca id=\"user-content-about-devito\" class=\"anchor\" aria-label=\"Permalink: About Devito\" href=\"#about-devito\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eDevito provides a functional language to implement sophisticated operators that\ncan be made up of multiple stencil computations, boundary conditions, sparse\noperations (e.g., interpolation), and much more. A typical use case is\nexplicit finite difference methods for approximating partial differential\nequations. For example, a 2D diffusion operator may be implemented with Devito\nas follows\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003egrid\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eGrid\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003eshape\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e(\u003cspan class=\"pl-c1\"\u003e10\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e10\u003c/span\u003e))\n\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ef\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eTimeFunction\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ename\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u0027f\u0027\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003egrid\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003egrid\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003espace_order\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e2\u003c/span\u003e)\n\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eeqn\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eEq\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ef\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003edt\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e0.5\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e*\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ef\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003elaplace\u003c/span\u003e)\n\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eop\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eOperator\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eEq\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ef\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eforward\u003c/span\u003e, \u003cspan class=\"pl-en\"\u003esolve\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003eeqn\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ef\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eforward\u003c/span\u003e)))\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAn \u003ccode\u003eOperator\u003c/code\u003e generates low-level code from an ordered collection of \u003ccode\u003eEq\u003c/code\u003e (the\nexample above being for a single equation). This code may also be compiled and\nexecuted\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-en\"\u003eop\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003et\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003etimesteps\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThere is virtually no limit to the complexity of an \u003ccode\u003eOperator\u003c/code\u003e -- the Devito\ncompiler will automatically analyze the input, detect and apply optimizations\n(including single- and multi-node parallelism), and eventually generate code\nwith suitable loops and expressions.\u003c/p\u003e\n\u003cp\u003eKey features include:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eA functional language to express finite difference operators.\u003c/li\u003e\n\u003cli\u003eStraightforward mechanisms to adjust the discretization.\u003c/li\u003e\n\u003cli\u003eConstructs to express sparse operators (e.g., interpolation), classic linear\noperators (e.g., convolutions), and tensor contractions.\u003c/li\u003e\n\u003cli\u003eSeamless support for boundary conditions and adjoint operators.\u003c/li\u003e\n\u003cli\u003eA flexible API to define custom stencils, sub-domains, sub-sampling,\nand staggered grids.\u003c/li\u003e\n\u003cli\u003eGeneration of highly optimized parallel code (SIMD vectorization, CPU and\nGPU parallelism via OpenMP and OpenACC, multi-node parallelism via MPI,\nblocking, aggressive symbolic transformations for FLOP reduction, etc.).\u003c/li\u003e\n\u003cli\u003eDistributed NumPy arrays over multi-node (MPI) domain decompositions.\u003c/li\u003e\n\u003cli\u003eInspection and customization of the generated code.\u003c/li\u003e\n\u003cli\u003eAutotuning framework to ease performance tuning.\u003c/li\u003e\n\u003cli\u003eSmooth integration with popular Python packages such as NumPy, SymPy, Dask,\nand SciPy, as well as machine learning frameworks such as TensorFlow and\nPyTorch.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInstallation\u003c/h2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe easiest way to try Devito is through Docker using the following commands:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# get the code\ngit clone https://github.com/devitocodes/devito.git\ncd devito\n\n# start a jupyter notebook server on port 8888\ndocker-compose up devito\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAfter running the last command above, the terminal will display a URL such as\n\u003ccode\u003ehttps://127.0.0.1:8888/?token=XXX\u003c/code\u003e. Copy-paste this URL into a browser window\nto start a \u003ca href=\"https://jupyter.org/\" rel=\"nofollow\"\u003eJupyter\u003c/a\u003e notebook session where you can go\nthrough the \u003ca href=\"https://github.com/devitocodes/devito/tree/master/examples\"\u003etutorials\u003c/a\u003e\nprovided with Devito or create your own notebooks.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://devitocodes.github.io/devito/download.html\" rel=\"nofollow\"\u003eSee here\u003c/a\u003e for detailed installation\ninstructions and other options. If you encounter a problem during installation, please\nsee the\n\u003ca href=\"https://github.com/devitocodes/devito/wiki/Installation-Issues\"\u003einstallation issues\u003c/a\u003e we\nhave seen in the past.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eResources\u003c/h2\u003e\u003ca id=\"user-content-resources\" class=\"anchor\" aria-label=\"Permalink: Resources\" href=\"#resources\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eTo learn how to use Devito,\n\u003ca href=\"https://github.com/devitocodes/devito/blob/master/examples\"\u003ehere\u003c/a\u003e is a good\nplace to start, with lots of examples and tutorials.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.devitoproject.org/\" rel=\"nofollow\"\u003ewebsite\u003c/a\u003e also provides access to other\ninformation, including documentation and instructions for citing us.\u003c/p\u003e\n\u003cp\u003eSome FAQs are discussed \u003ca href=\"FAQ.md\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePerformance\u003c/h2\u003e\u003ca id=\"user-content-performance\" class=\"anchor\" aria-label=\"Permalink: Performance\" href=\"#performance\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you are interested in any of the following\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eGeneration of parallel code (CPU, GPU, multi-node via MPI);\u003c/li\u003e\n\u003cli\u003ePerformance tuning;\u003c/li\u003e\n\u003cli\u003eBenchmarking operators;\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ethen you should take a look at this\n\u003ca href=\"https://github.com/devitocodes/devito/blob/master/benchmarks/user\"\u003eREADME\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eYou may also be interested in\n\u003ca href=\"https://www.devitocodes.com/blog/thematrix\" rel=\"nofollow\"\u003eTheMatrix\u003c/a\u003e -- a cross-architecture\nbenchmarking framework showing the performance of several production-grade\nseismic operators implemented with Devito.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eGet in touch\u003c/h2\u003e\u003ca id=\"user-content-get-in-touch\" class=\"anchor\" aria-label=\"Permalink: Get in touch\" href=\"#get-in-touch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you\u0027re using Devito, we would like to hear from you. Whether you\nare facing issues or just trying it out, join the\n\u003ca href=\"https://join.slack.com/t/devitocodes/shared_invite/zt-gtd2yxj9-Y31YKk_7lr9AwfXeL2iMFg\" rel=\"nofollow\"\u003econversation\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eInteractive jupyter notebooks\u003c/h2\u003e\u003ca id=\"user-content-interactive-jupyter-notebooks\" class=\"anchor\" aria-label=\"Permalink: Interactive jupyter notebooks\" href=\"#interactive-jupyter-notebooks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe tutorial jupyter notebook are available interactively at the public \u003ca href=\"https://mybinder.org/v2/gh/devitocodes/devito/master\" rel=\"nofollow\"\u003ebinder\u003c/a\u003e jupyterhub.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eFast Downward is a domain-independent planning system.\u003c/p\u003e\n\u003cp\u003eFor documentation and contact information see \u003ca href=\"http://www.fast-downward.org/\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org/\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe following directories are not part of Fast Downward as covered by this\nlicense:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify it under\nthe terms of the GNU General Public License as published by the Free Software\nFoundation, either version 3 of the License, or (at your option) any later\nversion.\n\nFast Downward is distributed in the hope that it will be useful, but WITHOUT ANY\nWARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A\nPARTICULAR PURPOSE. See the GNU General Public License for more details.\n\nYou should have received a copy of the GNU General Public License along with\nthis program. If not, see \u0026lt;http://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1693333728.0
+ "updated_at": 1668694985.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for 3D DNA (https://github.com/theaidenlab/3d-dna)",
"filenames": [
- "core_libraries/subtrees/PreQual/Singularity",
- "core_libraries/subtrees/MRtrix3/Singularity"
+ "Singularity",
+ "Singularity.180922"
],
- "full_name": "Saurabh1826/CNT_Research_Template",
+ "full_name": "powerPlant/3d-dna-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eCNT Research Repository Template\u003c/h1\u003e\u003ca id=\"user-content-cnt-research-repository-template\" class=\"anchor\" aria-label=\"Permalink: CNT Research Repository Template\" href=\"#cnt-research-repository-template\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/ff9fd36258ece5b69dde5c086c71002d1ced07b38936b8d845c96c1531c1a0d2/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f76657273696f6e2d302e322e312d626c7565\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ff9fd36258ece5b69dde5c086c71002d1ced07b38936b8d845c96c1531c1a0d2/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f76657273696f6e2d302e322e312d626c7565\" alt=\"version\" data-canonical-src=\"https://img.shields.io/badge/version-0.2.1-blue\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/e3e94e150cc0334e54f7f11dadcb26c15b6661f36e71dccfeeebe76dbe7a8488/68747470733a2f2f696d672e736869656c64732e696f2f707970692f762f7069702e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e3e94e150cc0334e54f7f11dadcb26c15b6661f36e71dccfeeebe76dbe7a8488/68747470733a2f2f696d672e736869656c64732e696f2f707970692f762f7069702e737667\" alt=\"pip\" data-canonical-src=\"https://img.shields.io/pypi/v/pip.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/51cd8eed7edeb654616449db2a9bcf24c72762a19e4e9771980375413e5f4224/68747470733a2f2f696d672e736869656c64732e696f2f707970692f707976657273696f6e732f34\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/51cd8eed7edeb654616449db2a9bcf24c72762a19e4e9771980375413e5f4224/68747470733a2f2f696d672e736869656c64732e696f2f707970692f707976657273696f6e732f34\" alt=\"https://img.shields.io/pypi/pyversions/\" data-canonical-src=\"https://img.shields.io/pypi/pyversions/4\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe purpose of this template is to consolidate shared libraries and enable consistent workflows and tests for most projects in the CNT lab. Users will be able to quickly load code from tested common libraries, or load their own personal code, in an object oriented manner.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ePrerequisites\u003c/h1\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-label=\"Permalink: Prerequisites\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn order to use this repository, you must have access to either Python or Matlab.\u003c/p\u003e\n\u003cp\u003eWe also highly recommend the use of a virtual environment, conda environment, or similar software to manage distributions. Examples for their use can be found in the documentation.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eInstallation\u003c/h1\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-label=\"Permalink: Installation\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIn order to install any of the common library code, we provide instructions for both Python and Matlab below.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePython\u003c/h2\u003e\u003ca id=\"user-content-python\" class=\"anchor\" aria-label=\"Permalink: Python\" href=\"#python\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor python packages, python wheels and tarballs can be found in: CNT_Development/core_libraries/python/.\u003c/p\u003e\n\u003cp\u003eTo install, run:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003epip install foo.whl\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003e\u003cstrong\u003eor\u003c/strong\u003e\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003epip install foo.tar.gz\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003ewhere foo is the name of the library of interest.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eMatlab\u003c/h2\u003e\u003ca id=\"user-content-matlab\" class=\"anchor\" aria-label=\"Permalink: Matlab\" href=\"#matlab\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\ud83e\udd37\u200d\u2640\ufe0f In development.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eDocumentation\u003c/h1\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-label=\"Permalink: Documentation\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis template is intended to be used as both an environment and a simple wrapper for research code. Before beginning, we highly recommend that a virtual environment (or equivalent) is created for each\nproject to ensure your dependencies and code are properly referenced. Examples for creating virtual environments is provided below.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRepository Structure\u003c/h2\u003e\u003ca id=\"user-content-repository-structure\" class=\"anchor\" aria-label=\"Permalink: Repository Structure\" href=\"#repository-structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eA hyperlink enabled repository tree is available within the \u003ca href=\"./repository_structure.md\"\u003erepository_structure\u003c/a\u003e markdown file. We demonstrate the use of git-ginored files and folders by displaying those\nentries with a \u003cg-emoji class=\"g-emoji\" alias=\"warning\"\u003e\u26a0\ufe0f\u003c/g-emoji\u003e symbol.\u003c/p\u003e\n\u003cp\u003eA short description of some of the top-level directories and files are as follows:\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ecore_libraries\u003c/h3\u003e\u003ca id=\"user-content-core_libraries\" class=\"anchor\" aria-label=\"Permalink: core_libraries\" href=\"#core_libraries\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis folder contains the submodules and build files that make up the core libraries used for lab-wide projects.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003edata_pointers\u003c/h3\u003e\u003ca id=\"user-content-data_pointers\" class=\"anchor\" aria-label=\"Permalink: data_pointers\" href=\"#data_pointers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis folder contains pointers to data contained on Borel and Lief. Data requests should reference these data pointers to prevent duplication before downloading new data.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003edocuments\u003c/h3\u003e\u003ca id=\"user-content-documents\" class=\"anchor\" aria-label=\"Permalink: documents\" href=\"#documents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis folder contains various research documents associated with a project (i.e. SoPs, Pipeline diagrams, etc.) as well as code documentation (e.g.document strings) for the various libraries.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eexamples\u003c/h3\u003e\u003ca id=\"user-content-examples\" class=\"anchor\" aria-label=\"Permalink: examples\" href=\"#examples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis folder contains example python and matlab scripts for various research tasks as well as how to use common libraries and environments.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003ereference_data\u003c/h3\u003e\u003ca id=\"user-content-reference_data\" class=\"anchor\" aria-label=\"Permalink: reference_data\" href=\"#reference_data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis folder contains data that can be used for building targets or conducting unit tests.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003esample_data\u003c/h3\u003e\u003ca id=\"user-content-sample_data\" class=\"anchor\" aria-label=\"Permalink: sample_data\" href=\"#sample_data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis folder contains sample data that might be used in any of the lab-wide projects.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003escripts\u003c/h3\u003e\u003ca id=\"user-content-scripts\" class=\"anchor\" aria-label=\"Permalink: scripts\" href=\"#scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis folder contains user-defined scripts.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eunit_tests\u003c/h3\u003e\u003ca id=\"user-content-unit_tests\" class=\"anchor\" aria-label=\"Permalink: unit_tests\" href=\"#unit_tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis folder contains unit tests for validating new/altered code at both the machine level and model level.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003euser_data\u003c/h3\u003e\u003ca id=\"user-content-user_data\" class=\"anchor\" aria-label=\"Permalink: user_data\" href=\"#user_data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis folder is meant to store user data. Data in this repository is private by default and will not be uploaded to public repositories.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003e.gitignore\u003c/h3\u003e\u003ca id=\"user-content-gitignore\" class=\"anchor\" aria-label=\"Permalink: .gitignore\" href=\"#gitignore\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis file helps prevent certain files from being uploaded to the public repository. This can be to avoid excess data volumes, or to protect sensitive information. By default, the ignored files and\nfolders are designed for the development of a lab-wide template, and users should adjust the settings to match their own needs.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eVirtual Environments\u003c/h1\u003e\u003ca id=\"user-content-virtual-environments\" class=\"anchor\" aria-label=\"Permalink: Virtual Environments\" href=\"#virtual-environments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003ePython\u003c/h2\u003e\u003ca id=\"user-content-python-1\" class=\"anchor\" aria-label=\"Permalink: Python\" href=\"#python-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eConda\u003c/h3\u003e\u003ca id=\"user-content-conda\" class=\"anchor\" aria-label=\"Permalink: Conda\" href=\"#conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eWe recommend using the pre-built environment files provided to start your project. These files can be found in the following subfolders: core_libraries/python/*/*yml and can be installed using the following command:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003econda env create -f foo.yml\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003ewhere foo is the name of the environment.\u003c/p\u003e\n\u003cp\u003eFor those who wish to create their own environment, we introduced some of the basics below.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eCreation\u003c/h4\u003e\u003ca id=\"user-content-creation\" class=\"anchor\" aria-label=\"Permalink: Creation\" href=\"#creation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003econda create --name myenv\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003ewhere myenv is the name of the environment you wish to create.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eListing environments\u003c/h4\u003e\u003ca id=\"user-content-listing-environments\" class=\"anchor\" aria-label=\"Permalink: Listing environments\" href=\"#listing-environments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003econda env list\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eActivating Environment\u003c/h4\u003e\u003ca id=\"user-content-activating-environment\" class=\"anchor\" aria-label=\"Permalink: Activating Environment\" href=\"#activating-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003econda activate myenv\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003ewhere myenv is the name of the environment you wish to activate.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eDeactivating an environment\u003c/h4\u003e\u003ca id=\"user-content-deactivating-an-environment\" class=\"anchor\" aria-label=\"Permalink: Deactivating an environment\" href=\"#deactivating-an-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003econda deactivate\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eMore information\u003c/h4\u003e\u003ca id=\"user-content-more-information\" class=\"anchor\" aria-label=\"Permalink: More information\" href=\"#more-information\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor more information, please read: \u003ca href=\"https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#activating-an-environment\" rel=\"nofollow\"\u003ehttps://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#activating-an-environment\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eVirtual Environment\u003c/h3\u003e\u003ca id=\"user-content-virtual-environment\" class=\"anchor\" aria-label=\"Permalink: Virtual Environment\" href=\"#virtual-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFirst make sure you have venv installed. If not, you can pip install it as follows: pip install venv\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eCreation\u003c/h4\u003e\u003ca id=\"user-content-creation-1\" class=\"anchor\" aria-label=\"Permalink: Creation\" href=\"#creation-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003epython3 -m venv /path/to/new/virtual/environment\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eListing environments\u003c/h4\u003e\u003ca id=\"user-content-listing-environments-1\" class=\"anchor\" aria-label=\"Permalink: Listing environments\" href=\"#listing-environments-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003elsvirtualenv\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eYou may need to install virutalenvwrapper to use this command. ( pip install virtualenvwrapper. ) If it doesn\u0027t populate to your path, check the package directory for the executable.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eActivating Environment\u003c/h4\u003e\u003ca id=\"user-content-activating-environment-1\" class=\"anchor\" aria-label=\"Permalink: Activating Environment\" href=\"#activating-environment-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003esource /path/to/venv/bin/activate\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch4 class=\"heading-element\"\u003eDeactivating an environment\u003c/h4\u003e\u003ca id=\"user-content-deactivating-an-environment-1\" class=\"anchor\" aria-label=\"Permalink: Deactivating an environment\" href=\"#deactivating-an-environment-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003edeactivate\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003e(Type this command in your shell.)\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eMatlab\u003c/h2\u003e\u003ca id=\"user-content-matlab-1\" class=\"anchor\" aria-label=\"Permalink: Matlab\" href=\"#matlab-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\ud83e\udd37\u200d\u2642\ufe0f\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eLicense\u003c/h1\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eContact Us\u003c/h1\u003e\u003ca id=\"user-content-contact-us\" class=\"anchor\" aria-label=\"Permalink: Contact Us\" href=\"#contact-us\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eAny questions should be directed to the data science team. Contact information is provided below:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"mailto:bjprager@seas.upenn.edu\"\u003eBrian Prager\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"mailto:asuncion@seas.upenn.edu\"\u003eJoshua Asuncion\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2286\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the 3D de novo assembly (3D DNA) pipeline\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1686633899.0
+ "updated_at": 1669167969.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for ImageMagick (imagemagick.org)",
"filenames": [
- "llava-container-train/Singularity",
- "llava-container/Singularity"
+ "Singularity.7.1.0.52",
+ "Singularity"
],
- "full_name": "uw-psych/llava-container",
+ "full_name": "powerPlant/imagemagick-srf",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003ellava-container\u003c/h1\u003e\u003ca id=\"user-content-llava-container\" class=\"anchor\" aria-label=\"Permalink: llava-container\" href=\"#llava-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis container provides a convenient way to run \u003ca href=\"https://github.com/haotian-liu/LLaVA\"\u003eLLaVA\u003c/a\u003e on Hyak.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eRunning LLaVA on Hyak \ud83c\udf47\u003c/h2\u003e\u003ca id=\"user-content-running-llava-on-hyak-\" class=\"anchor\" aria-label=\"Permalink: Running LLaVA on Hyak \ud83c\udf47\" href=\"#running-llava-on-hyak-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFirst, you\u0027ll need to log in to Hyak. If you\u0027ve never set this up, go \u003ca href=\"https://uw-psych.github.io/compute_docs\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003essh your-uw-netid@klone.hyak.uw.edu\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen, you\u0027ll need to request a compute node. You can do this with the \u003ccode\u003esalloc\u003c/code\u003e command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Request a GPU node with 8 CPUs, 2 GPUs, 64GB of RAM, and 1 hour of runtime:\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e (Note: you may need to change the account and partition)\u003c/span\u003e\nsalloc --account escience --partition gpu-a40 --mem 64G -c 8 --time 1:00:00 --gpus 2\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eOne you\u0027re logged in to the compute node, you should set up your cache directories and Apptainer settings.\u003c/p\u003e\n\u003cp\u003e\ud83d\udc49 \u003cem\u003eIf you\u0027re following this tutorial, \u003cstrong\u003eyou should do this every time you\u0027re running LLaVA on Hyak!\u003c/strong\u003e This is because the default settings for Apptainer will use your home directory for caching, which will quickly fill up your home directory and cause your jobs to fail.\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Do this in every session where you\u0027re running LLaVA on Hyak!\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Set up cache directories:\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e APPTAINER_CACHEDIR=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/gscratch/scrubbed/\u003cspan class=\"pl-smi\"\u003e${USER}\u003c/span\u003e/.cache/apptainer\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e HUGGINGFACE_HUB_CACHE=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/gscratch/scrubbed/\u003cspan class=\"pl-smi\"\u003e${USER}\u003c/span\u003e/.cache/huggingface\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\nmkdir -p \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e${APPTAINER_CACHEDIR}\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e${HUGGINGFACE_HUB_CACHE}\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Set up Apptainer:\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e APPTAINER_BIND=/gscratch APPTAINER_WRITABLE_TMPFS=1 APPTAINER_NV=1\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen, you can run LLaVA. Let\u0027s try with the sample image on LLaVA\u0027s repository:\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/046162f35e7e2d7d7ca3f2a1cde03e4be84890fb656cbeb3babc584ba669c310/68747470733a2f2f6c6c6176612d766c2e6769746875622e696f2f7374617469632f696d616765732f766965772e6a7067\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/046162f35e7e2d7d7ca3f2a1cde03e4be84890fb656cbeb3babc584ba669c310/68747470733a2f2f6c6c6176612d766c2e6769746875622e696f2f7374617469632f696d616765732f766965772e6a7067\" alt=\"Sample image\" data-canonical-src=\"https://llava-vl.github.io/static/images/view.jpg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Run LLaVA:\u003c/span\u003e\napptainer run \\\n oras://ghcr.io/uw-psych/llava-container/llava-container:latest \\\n llava-run \\\n --model-path liuhaotian/llava-v1.5-7b \\\n --image-file \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003ehttps://llava-vl.github.io/static/images/view.jpg\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \\\n --query \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eWhat\u0027s going on here?\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Description of the arguments:\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e llava-run: the command to run in the container\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e --model-path: the name of the model to use\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e --image-file: the URL of the image to use\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e --query: what to ask the model\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf it\u0027s working, you should see output that looks something like this:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eThe image features a pier extending out into a large body of water, possibly a lake or a river. The pier is made of wood and has a few benches placed on it, providing a place for people to sit and enjoy the view. The water appears calm and serene, making it an ideal spot for relaxation and contemplation.\u003c/p\u003e\n\u003cp\u003eIn the background, there are mountains visible, adding to the picturesque scenery. The pier is situated in front of a forest, creating a peaceful and natural atmosphere.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eWhen you\u0027re done, you can exit the compute node with the command \u003ccode\u003eexit\u003c/code\u003e or \u003ccode\u003eCtrl-D\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eChat mode \ud83d\udde3\ufe0f\u003c/h3\u003e\u003ca id=\"user-content-chat-mode-\ufe0f\" class=\"anchor\" aria-label=\"Permalink: Chat mode \ud83d\udde3\ufe0f\" href=\"#chat-mode-\ufe0f\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eFor chat, just pass \u003ccode\u003e--chat\u003c/code\u003e instead of \u003ccode\u003e--query\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eapptainer run \\\n oras://ghcr.io/uw-psych/llava-container/llava-container:latest \\\n llava-run \\\n --model-path liuhaotian/llava-v1.5-7b \\\n --image-file \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003ehttps://llava-vl.github.io/static/images/view.jpg\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \\\n --chat\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning other commands \ud83c\udfc3\u003c/h3\u003e\u003ca id=\"user-content-running-other-commands-\" class=\"anchor\" aria-label=\"Permalink: Running other commands \ud83c\udfc3\" href=\"#running-other-commands-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you want to a different command, such as one of the commands that comes with LLaVA, you can pass it after the image name:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eapptainer run \\\n oras://ghcr.io/uw-psych/llava-container/llava-container:latest \\\n python -m llava.serve.cli\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eImproving startup time \ud83d\ude80\u003c/h3\u003e\u003ca id=\"user-content-improving-startup-time-\" class=\"anchor\" aria-label=\"Permalink: Improving startup time \ud83d\ude80\" href=\"#improving-startup-time-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIf you notice slowness when launching the container, you can try extracting the container image to a sandbox directory:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Set up a sandbox directory:\u003c/span\u003e\nSANDBOX=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/tmp/\u003cspan class=\"pl-smi\"\u003e${USER}\u003c/span\u003e/sandbox/llava\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e mkdir -p \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003edirname \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e${SANDBOX}\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Extract the container image to the sandbox:\u003c/span\u003e\napptainer build --sandbox \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e${SANDBOX}\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e oras://ghcr.io/uw-psych/llava-container/llava-container:latest\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Run LLaVA by passing the sandbox directory instead of the image URL:\u003c/span\u003e\napptainer run \\\n \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e${SANDBOX}\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \\\n llava-run \\\n --model-path liuhaotian/llava-v1.5-7b \\\n --image-file \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003ehttps://llava-vl.github.io/static/images/view.jpg\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \\\n --query \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eWhat\u0027s going on here?\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch3 class=\"heading-element\"\u003eRunning the web interface \ud83d\udd78\ufe0f\u003c/h3\u003e\u003ca id=\"user-content-running-the-web-interface-\ufe0f\" class=\"anchor\" aria-label=\"Permalink: Running the web interface \ud83d\udd78\ufe0f\" href=\"#running-the-web-interface-\ufe0f\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eIncluded in the container is a wrapper script for the LLaVA web interface. To run it, you can use the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eapptainer run \\\n oras://ghcr.io/uw-psych/llava-container/llava-container:latest \\\n hyak-llava-web\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis script will print out a command to set up an SSH tunnel to the web interface. You can then open the web interface by visiting \u003ccode\u003ehttp://localhost:8000\u003c/code\u003e in your browser. The output should look something like this:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e To access the gradio web server, run the following command on your local machine: \u003c/span\u003e\nssh -o StrictHostKeyChecking=no -N -L 8000:localhost:53641 -J altan@klone.hyak.uw.edu altan@g3021\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou should be able to copy and paste this command into your terminal to set up the SSH tunnel. Then, you can open \u003ccode\u003ehttp://localhost:8000\u003c/code\u003e in your browser to access the web interface.\u003c/p\u003e\n\u003cp\u003eTo configure the web interface, you can set the following environment variables:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eMODEL_PATHS\u003c/code\u003e: a list of model paths, quoted and separated by space (default: \"liuhaotian/llava-v1.5-7b\")\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAvailable models include, but are not limited to:\n\u003cul\u003e\n\u003cli\u003eliuhaotian/llava-v1.5-7b\u003c/li\u003e\n\u003cli\u003eliuhaotian/llava-v1.5-13b\u003c/li\u003e\n\u003cli\u003eliuhaotian/llava-v1.5-7b-lora\u003c/li\u003e\n\u003cli\u003eliuhaotian/llava-v1.5-13b-lora\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md\"\u003ehttps://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md\u003c/a\u003e for more details.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eGRADIO_CONTROLLER_PORT\u003c/code\u003e: the port number for the gradio controller (or leave it empty to use a random port)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eLOCAL_HTTP_PORT\u003c/code\u003e: the port number to print for the local HTTP server SSH tunnel command (default: 8000)\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor example:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e MODEL_PATHS=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eliuhaotian/llava-v1.5-13b\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Use the 13b model instead of the 7b model\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LOCAL_HTTP_PORT=9000 \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Use port 9000 instead of 8000\u003c/span\u003e\napptainer run \\\n oras://ghcr.io/uw-psych/llava-container/llava-container:latest \\\n hyak-llava-web\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\ud83d\udc49 \u003cem\u003eYou need to select the model from the dropdown to start. If the model doesn\u0027t appear in the dropdown, wait a few seconds and refresh the page.\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003e\u003ccode\u003ellava-run\u003c/code\u003e\u003c/h2\u003e\u003ca id=\"user-content-llava-run\" class=\"anchor\" aria-label=\"Permalink: llava-run\" href=\"#llava-run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003ellava-run.py\u003c/code\u003e script is a modification of \u003ca href=\"https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/run_llava.py\"\u003e\u003ccode\u003eLLaVA/lava/eval/run_llava.py\u003c/code\u003e\u003c/a\u003e that adds support for loading 4- and 8-bit models as found in \u003ca href=\"https://github.com/haotian-liu/LLaVA/blob/main/llava/serve/cli.py\"\u003e\u003ccode\u003eLaVA/llava/serve/cli.py\u003c/code\u003e\u003c/a\u003e, as well as a chat mode that allows you to have a conversation with the model.\u003c/p\u003e\n\u003cp\u003eThe following describes the usage of \u003ccode\u003ellava-run\u003c/code\u003e:\u003c/p\u003e\n\u003cpre lang=\"plain\"\u003e\u003ccode\u003eThis container provides a convenient way to run LLaVA. In addition to the LLaVA\nmodule, it includes the commands:\n - `llava-run`, a command-line wrapper for LLaVA inference\n - `hyak-llava-web`, a wrapper to launch the gradio web interface and issue an\n SSH connection string you can copy to open a tunnel to your own computer.\n \nTo run LLaVA with the `llava-run` script, use the following command:\n apptainer run --nv --writable-tmpfs \\\n oras://ghcr.io/uw-psych/llava-container/llava-container:latest \\\n llava-run [llava-run arguments]\n\nYou must pass the \"--nv\" flag to enable GPU support.\n\nDepending on your intended use, you may also want to pass the \"--bind\" flag\nto mount a directory from the host system into the container.\n\nTo specify a directory to use for the HuggingFace model cache and enable access\nto /gscratch, use the following command:\n apptainer run --nv --writable-tmpfs \\\n --env HUGGINGFACE_HUB_CACHE=/path/to/cache \\\n --bind /gscratch \\\n oras://ghcr.io/uw-psych/llava-container/llava-container:latest \\\n llava-run [llava-run arguments]\n\n\nThe following describes the usage of this script:\n\nllava-run [-h] [--model-path PATH] [--model-base PATH] --image-file\n\tIMAGE [IMAGE ...] (--query QUERY [QUERY ...] | --chat)\n\t[--json]\n\t[--conv-mode {v0,v1,vicuna_v1,llama_2,plain,v0_plain,llava_v0,v0_mmtag,llava_v1,v1_mmtag,llava_llama_2,mpt}]\n\t[--stack-sep SEP] [--temperature FLOAT] [--top_p FLOAT]\n\t[--num_beams N] [--max_new_tokens N]\n\t[--load-8bit | --load-4bit] [--device {cuda,cpu}]\n\t[--hf-cache-dir DIR]\n\noptions:\n -h, --help show this help message and exit\n --model-path PATH Model path\n --model-base PATH Model base (required for \u0027lora\u0027 models)\n --image-file IMAGE [IMAGE ...]\n Path or URL to image (provide multiple to process in\n batch; use --sep delimiter within paths to stack image\n inputs )\n --query QUERY [QUERY ...]\n Query (can be specified multiple times, e.g. --query a\n --query b)\n --chat Use chat instead of query\n --json Produce JSON output\n --conv-mode {v0,v1,vicuna_v1,llama_2,plain,v0_plain,llava_v0,v0_mmtag,llava_v1,v1_mmtag,llava_llama_2,mpt}\n Conversation mode\n --stack-sep SEP Internal separator for stacked image files (default:\n \",\")\n --temperature FLOAT Temperature (default: 0.2)\n --top_p FLOAT Top p (default: 1.0)\n --num_beams N Number of beams (default: 1)\n --max_new_tokens N Max new tokens (default: 512)\n --load-8bit Load 8bit model\n --load-4bit Load 4bit model\n --device {cuda,cpu} Device to use\n --hf-cache-dir DIR HuggingFace cache directory\n \n For details on the arguments, see the LLaVA documentation and the usage infor-\n mation for llava.eval.run_llava and llava.serve.cli.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee the \u003ca href=\"https://github.com/haotian-liu/LLaVA/blob/main/README.md\"\u003edocumentation\u003c/a\u003e for LLaVA or the source code for \u003ca href=\"https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/run_llava.py\"\u003e\u003ccode\u003ellava/eval/run_llava.py\u003c/code\u003e\u003c/a\u003e and \u003ca href=\"https://github.com/haotian-liu/LLaVA/blob/main/llava/serve/cli.py\"\u003e\u003ccode\u003ellava/serve/cli.py\u003c/code\u003e\u003c/a\u003e for more information on the arguments.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for ImageMagick \u003ca href=\"https://imagemagick.org/\" rel=\"nofollow\"\u003ehttps://imagemagick.org/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eGenerate symlinks like:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec imagemagick-7.1.0.52.sif ls -1 /opt/imagemagick/bin | xargs -L1 ln -s imagemagick-7.1.0.52.sif\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1706071611.0
+ "updated_at": 1667792525.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "misc/releases/22.12/Singularity.22.12",
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/21.12/Singularity.21.12",
- "misc/releases/20.06/Singularity.20.06",
- "misc/releases/19.06/Singularity.19.06",
- "misc/releases/22.06/Singularity.22.06",
- "misc/releases/latest/Singularity"
+ "Singularity.v0.4",
+ "Singularity"
],
- "full_name": "silvansievers/pddl-symmetries",
+ "full_name": "cschu/nevermore",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eTested software versions\u003c/h2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-label=\"Permalink: Tested software versions\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 22.04\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eGCC 11, GCC 12, Clang 14\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 10, Clang 12\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 12\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eAppleClang 14\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 11\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eAppleClang 13\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eContributors\u003c/h2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-label=\"Permalink: Contributors\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2015, 2021-2022 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eHistory\u003c/h2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-label=\"Permalink: History\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003cdiv class=\"markdown-heading\"\u003e\u003ch2 class=\"heading-element\"\u003eLicense\u003c/h2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-label=\"Permalink: License\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1659431272.0
+ "updated_at": 1639441314.0
},
{
"data_format": 2,
- "description": "R containers",
+ "description": "This repository provides a series of Singularity recipe files used to easily deploy numerous bioinformatics softwares through containers.All these Singularity recipes are ready to be used by the bioinformatics community and have been developed to be integrated into the workflow manager TOGGLe http://toggle.southgreen.fr.",
"filenames": [
- "Singularity.3.6.0"
+ "Singularity.sRNA_pipeline.def"
],
- "full_name": "arcsUVA/R",
+ "full_name": "SouthGreenPlatform/singularityRecipeFiles",
"latest_release": null,
- "readme": "\u003cdiv class=\"markdown-heading\"\u003e\u003ch1 class=\"heading-element\"\u003eR\u003c/h1\u003e\u003ca id=\"user-content-r\" class=\"anchor\" aria-label=\"Permalink: R\" href=\"#r\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003eR containers\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/514ee51de8b3543f550d8ab786b179568b58039afa34f1f55c753c4e8045b1db/687474703a2f2f7777772e736f757468677265656e2e66722f73697465732f736f757468677265656e2e66722f7468656d65732f736f757468677265656e2f6c6f676f2e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/514ee51de8b3543f550d8ab786b179568b58039afa34f1f55c753c4e8045b1db/687474703a2f2f7777772e736f757468677265656e2e66722f73697465732f736f757468677265656e2e66722f7468656d65732f736f757468677265656e2f6c6f676f2e706e67\" alt=\"\" data-canonical-src=\"http://www.southgreen.fr/sites/southgreen.fr/themes/southgreen/logo.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-recipe-files\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-recipe-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Recipe Files\u003c/h1\u003e\n\u003cp\u003eThis repository provides a series of \u003ca href=\"https://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e recipe files used to easily deploy numerous bioinformatics containers.\u003cbr\u003e\nAll the singularity containers are ready to be used by the bioinformatics community and to be integrated into the \u003ca href=\"http://toggle.southgreen.fr\" rel=\"nofollow\"\u003eTOGGLe\u003c/a\u003e workflow manager.\u003c/p\u003e\n\u003cp\u003eThe images are based on either 16.04 or 18.04 Ubuntu versions. All compiled images can be found at \u003ca href=\"http://bioinfo-storage.ird.fr/SingularityImages\" rel=\"nofollow\"\u003ehttp://bioinfo-storage.ird.fr/SingularityImages\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eContact : Ndomassi Tando (\u003ca href=\"mailto:ndomassi.tando@ird.fr\"\u003endomassi.tando@ird.fr\u003c/a\u003e)\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eSoftware\u003c/th\u003e\n\u003cth\u003eVersion\u003c/th\u003e\n\u003cth\u003eMaintainer\u003c/th\u003e\n\u003cth\u003etested and deployed on\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ca href=\"http://www.bcgsc.ca/platform/bioinfo/software/abyss\" rel=\"nofollow\"\u003eAbyss\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e1.9\u003c/td\u003e\n\u003ctd\u003eVal\u00e9rie NOEL (UMR MIVEGEC)\u003c/td\u003e\n\u003ctd\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/SouthGreenPlatform/trainings/blob/gh-pages/images/logo_ird.png\"\u003e\u003cimg src=\"https://github.com/SouthGreenPlatform/trainings/raw/gh-pages/images/logo_ird.png\" height=\"20\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e (i-trop cluster)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ca href=\"https://github.com/jdidion/atropos\"\u003eatropos\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e1.1.14\u003c/td\u003e\n\u003ctd\u003eNdomassi TANDO (UMR DIADE)\u003c/td\u003e\n\u003ctd\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/SouthGreenPlatform/trainings/blob/gh-pages/images/logo_ird.png\"\u003e\u003cimg src=\"https://github.com/SouthGreenPlatform/trainings/raw/gh-pages/images/logo_ird.png\" height=\"20\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e (i-trop cluster)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ca href=\"https://bedtools.readthedocs.io/en/latest/index.html\" rel=\"nofollow\"\u003ebedtools\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e2.27.1\u003c/td\u003e\n\u003ctd\u003eValentin KLEIN (UMR DIADE)\u003c/td\u003e\n\u003ctd\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/SouthGreenPlatform/trainings/blob/gh-pages/images/logo_ird.png\"\u003e\u003cimg src=\"https://github.com/SouthGreenPlatform/trainings/raw/gh-pages/images/logo_ird.png\" height=\"20\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e (i-trop cluster)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ca href=\"http://hannonlab.cshl.edu/fastx_toolkit/\" rel=\"nofollow\"\u003eFASTX-Toolkit\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e0.0.13\u003c/td\u003e\n\u003ctd\u003eVal\u00e9rie NOEL (UMR MIVEGEC)\u003c/td\u003e\n\u003ctd\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/SouthGreenPlatform/trainings/blob/gh-pages/images/logo_ird.png\"\u003e\u003cimg src=\"https://github.com/SouthGreenPlatform/trainings/raw/gh-pages/images/logo_ird.png\" height=\"20\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e (i-trop cluster)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
- "topics": [],
- "updated_at": 1573410996.0
+ "subscribers_count": 13,
+ "topics": [
+ "recipe-files",
+ "singularity-containers"
+ ],
+ "updated_at": 1580131447.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "docker/Singularity.def"
+ "docker/Singularity.nvidia.def"
],
- "full_name": "mandarc64/RA",
+ "full_name": "guaacoelho/elastic_UMA",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-mlcommons-algoperf-training-algorithms-benchmark\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#mlcommons-algoperf-training-algorithms-benchmark\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMLCommons\u2122 AlgoPerf: Training Algorithms Benchmark\u003c/h1\u003e\n\u003cbr\u003e\n\u003cp align=\"center\"\u003e\n\u003ca href=\"#\"\u003e\u003cimg width=\"600\" src=\".assets/mlc_logo.png\" alt=\"MLCommons Logo\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca href=\"https://arxiv.org/abs/2306.07179\" rel=\"nofollow\"\u003ePaper (arXiv)\u003c/a\u003e \u2022\n \u003ca href=\"/CALL_FOR_SUBMISSIONS.md\"\u003eCall for Submissions\u003c/a\u003e \u2022\n \u003ca href=\"/GETTING_STARTED.md\"\u003eGetting Started\u003c/a\u003e \u2022\n \u003ca href=\"/COMPETITION_RULES.md\"\u003eCompetition Rules\u003c/a\u003e \u2022\n \u003ca href=\"/DOCUMENTATION.md\"\u003eDocumentation\u003c/a\u003e \u2022\n \u003ca href=\"/CONTRIBUTING.md\"\u003eContributing\u003c/a\u003e\n\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/mlcommons/algorithmic-efficiency/actions/workflows/CI.yml\"\u003e\u003cimg src=\"https://github.com/mlcommons/algorithmic-efficiency/actions/workflows/CI.yml/badge.svg\" alt=\"CI\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/mlcommons/algorithmic-efficiency/actions/workflows/linting.yml\"\u003e\u003cimg src=\"https://github.com/mlcommons/algorithmic-efficiency/actions/workflows/linting.yml/badge.svg\" alt=\"Lint\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/mlcommons/algorithmic-efficiency/blob/main/LICENSE.md\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/44bc63cdf9bc4b15dcf019006fc6e19bc712fc031f39fab78c0c4595b2967e93/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d4170616368655f322e302d626c75652e737667\" alt=\"License: Apache 2.0\" data-canonical-src=\"https://img.shields.io/badge/License-Apache_2.0-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/google/yapf\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c8bb70b59f8586325e23af2a66f72b16f21e0d8acf8cee54d403bf376e54ede6/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f636f64652532307374796c652d796170662d6f72616e6765\" alt=\"Code style: yapf\" data-canonical-src=\"https://img.shields.io/badge/code%20style-yapf-orange\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003chr\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cem\u003eAlgoPerf\u003c/em\u003e is a suite of benchmarks and competitions to measure neural network training speedups due to algorithmic improvements in both training algorithms and models. This is the repository for the \u003cem\u003eAlgoPerf: Training Algorithms benchmark\u003c/em\u003e and its associated competition. It is developed by the \u003ca href=\"https://mlcommons.org/en/groups/research-algorithms/\" rel=\"nofollow\"\u003eMLCommons Algorithms Working Group\u003c/a\u003e. This repository holds the \u003ca href=\"/COMPETITION_RULES.md\"\u003e\u003cstrong\u003ecompetition rules\u003c/strong\u003e\u003c/a\u003e, the \u003ca href=\"/DOCUMENTATION.md\"\u003e\u003cstrong\u003etechnical documentation\u003c/strong\u003e\u003c/a\u003e of the benchmark, \u003ca href=\"/GETTING_STARTED.md\"\u003e\u003cstrong\u003egetting started guides\u003c/strong\u003e\u003c/a\u003e, and the benchmark code. For a detailed description of the benchmark design, see our \u003ca href=\"https://arxiv.org/abs/2306.07179\" rel=\"nofollow\"\u003e\u003cstrong\u003epaper\u003c/strong\u003e\u003c/a\u003e.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003chr\u003e\n\u003cblockquote\u003e\n\u003cp\u003e[!IMPORTANT]\nUpcoming Deadline:\nRegistration deadline to express non-binding intent to submit: \u003cstrong\u003eJanuary 28th, 2024\u003c/strong\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch2\u003e\u003ca id=\"user-content-table-of-contents-\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#table-of-contents-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTable of Contents \n\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#installation\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#getting-started\"\u003eGetting Started\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#call-for-submissions\"\u003eCall for Submissions\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#competition-rules\"\u003eCompetition Rules\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#technical-documentation-of-the-benchmark--faqs\"\u003eTechnical Documentation of the Benchmark \u0026amp; FAQs\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#contributing\"\u003eContributing\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#license\"\u003eLicense\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#paper-and-citing-the-algoperf-benchmark\"\u003ePaper and Citing the AlgoPerf Benchmark\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eYou can install this package and dependencies in a \u003ca href=\"/GETTING_STARTED.md#python-virtual-environment\"\u003ePython virtual environment\u003c/a\u003e or use a \u003ca href=\"/GETTING_STARTED.md#docker\"\u003eDocker/Singularity/Apptainer container\u003c/a\u003e (recommended).\nWe recommend using a Docker container (or alternatively, a Singularity/Apptainer container) to ensure a similar environment to our scoring and testing environments.\nBoth options are described in detail in the \u003ca href=\"/GETTING_STARTED.md\"\u003e\u003cstrong\u003eGetting Started\u003c/strong\u003e\u003c/a\u003e document.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eTL;DR to install the Jax version for GPU run:\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip3 install -e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e.[pytorch_cpu]\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\npip3 install -e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e.[jax_gpu]\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e -f \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehttps://storage.googleapis.com/jax-releases/jax_cuda_releases.html\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\npip3 install -e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e.[full]\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cem\u003eTL;DR to install the PyTorch version for GPU run:\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip3 install -e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e.[jax_cpu]\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\npip3 install -e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e.[pytorch_gpu]\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e -f \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehttps://download.pytorch.org/whl/torch_stable.html\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\npip3 install -e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e.[full]\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003cp\u003eFor detailed instructions on developing and scoring your own algorithm in the benchmark see the \u003ca href=\"/GETTING_STARTED.md\"\u003eGetting Started\u003c/a\u003e document.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eTL;DR running a JAX workload:\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 submission_runner.py \\\n --framework=jax \\\n --workload=mnist \\\n --experiment_dir=\u003cspan class=\"pl-smi\"\u003e$HOME\u003c/span\u003e/experiments \\\n --experiment_name=my_first_experiment \\\n --submission_path=baselines/adamw/jax/submission.py \\\n --tuning_search_space=baselines/adamw/tuning_search_space.json\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cem\u003eTL;DR running a PyTorch workload:\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 submission_runner.py \\\n --framework=pytorch \\\n --workload=mnist \\\n --experiment_dir=\u003cspan class=\"pl-smi\"\u003e$HOME\u003c/span\u003e/experiments \\\n --experiment_name=my_first_experiment \\\n --submission_path=baselines/adamw/jax/submission.py \\\n --tuning_search_space=baselines/adamw/tuning_search_space.json\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-call-for-submissions\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#call-for-submissions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCall for Submissions\u003c/h2\u003e\n\u003cp\u003eThe \u003ca href=\"/CALL_FOR_SUBMISSIONS.md\"\u003eCall for Submissions\u003c/a\u003e announces the first iteration of the AlgoPerf: Training Algorithms competition based on the benchmark by the same name.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-competition-rules\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#competition-rules\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompetition Rules\u003c/h3\u003e\n\u003cp\u003eThe competition rules for the \u003cem\u003eAlgoPerf: Training Algorithms\u003c/em\u003e competition can be found in the separate \u003ca href=\"/COMPETITION_RULES.md\"\u003e\u003cstrong\u003eCompetition Rules\u003c/strong\u003e\u003c/a\u003e document.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-technical-documentation-of-the-benchmark--faqs\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#technical-documentation-of-the-benchmark--faqs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTechnical Documentation of the Benchmark \u0026amp; FAQs\u003c/h3\u003e\n\u003cp\u003eWe provide additional technical documentation of the benchmark and answer frequently asked questions in a separate \u003ca href=\"/DOCUMENTATION.md\"\u003e\u003cstrong\u003eDocumentation\u003c/strong\u003e\u003c/a\u003e page. Suggestions, clarifications and questions can be raised via pull requests, creating an issue, or by sending an email to the \u003ca href=\"mailto:algorithms@mlcommons.org\"\u003eworking group\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003cp\u003eWe invite everyone to look through our rules, documentation, and codebase and submit issues and pull requests, e.g. for rules changes, clarifications, or any bugs you might encounter. If you are interested in contributing to the work of the working group and influence the benchmark\u0027s design decisions, please \u003ca href=\"https://mlcommons.org/en/groups/research-algorithms/\" rel=\"nofollow\"\u003ejoin the weekly meetings\u003c/a\u003e and consider becoming a member of the working group.\u003c/p\u003e\n\u003cp\u003eOur \u003ca href=\"/CONTRIBUTING.md\"\u003e\u003cstrong\u003eContributing\u003c/strong\u003e\u003c/a\u003e document provides further MLCommons contributing guidelines and additional setup and workflow instructions.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe \u003cem\u003eAlgoPerf\u003c/em\u003e codebase is licensed under the \u003ca href=\"/LICENSE.md\"\u003eApache License 2.0\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-paper-and-citing-the-algoperf-benchmark\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#paper-and-citing-the-algoperf-benchmark\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePaper and Citing the AlgoPerf Benchmark\u003c/h2\u003e\n\u003cp\u003eIn our paper \u003ca href=\"http://arxiv.org/abs/2306.07179\" rel=\"nofollow\"\u003e\"Benchmarking Neural Network Training Algorithms\"\u003c/a\u003e we motivate, describe, and justify the \u003cem\u003eAlgoPerf: Training Algorithms\u003c/em\u003e benchmark.\u003c/p\u003e\n\u003cp\u003eIf you are using the \u003cem\u003eAlgoPerf benchmark\u003c/em\u003e, its codebase, baselines, or workloads, please consider citing our paper:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003ca href=\"http://arxiv.org/abs/2306.07179\" rel=\"nofollow\"\u003eDahl, Schneider, Nado, et al.\u003cbr\u003e\n\u003cstrong\u003eBenchmarking Neural Network Training Algorithms\u003c/strong\u003e\u003cbr\u003e\n\u003cem\u003earXiv 2306.07179\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cdiv class=\"highlight highlight-text-bibtex\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003e@Misc\u003c/span\u003e{\u003cspan class=\"pl-en\"\u003eDahl2023AlgoPerf\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003etitle\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003e{Benchmarking Neural Network Training Algorithms}\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003eauthor\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eDahl, George E. and Schneider, Frank and Nado, Zachary and Agarwal, Naman and Sastry, Chandramouli Shama and Hennig, Philipp and Medapati, Sourabh and Eschenhagen, Runa and Kasimbeg, Priya and Suo, Daniel and Bae, Juhan and Gilmer, Justin and Peirson, Abel L. and Khan, Bilal and Anil, Rohan and Rabbat, Mike and Krishnan, Shankar and Snider, Daniel and Amid, Ehsan and Chen, Kongtao and Maddison, Chris J. and Vasudev, Rakshith and Badura, Michal and Garg, Ankush and Mattson, Peter\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003eyear\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003e2023\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003earchiveprefix\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003earXiv\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003eeprint\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003e2306.07179\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n}\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-devito-fast-stencil-computation-from-symbolic-specification\" class=\"anchor\" aria-hidden=\"true\" href=\"#devito-fast-stencil-computation-from-symbolic-specification\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevito: Fast Stencil Computation from Symbolic Specification\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/devitocodes/devito/actions?query=workflow%3ACI-core\"\u003e\u003cimg src=\"https://github.com/devitocodes/devito/workflows/CI-core/badge.svg\" alt=\"Build Status for the Core backend\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/devitocodes/devito/actions?query=workflow%3ACI-mpi\"\u003e\u003cimg src=\"https://github.com/devitocodes/devito/workflows/CI-mpi/badge.svg\" alt=\"Build Status with MPI\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/devitocodes/devito/actions?query=workflow%3ACI-gpu\"\u003e\u003cimg src=\"https://github.com/devitocodes/devito/workflows/CI-gpu/badge.svg\" alt=\"Build Status on GPU\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://codecov.io/gh/devitocodes/devito\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3371fe5bdd570d040c748fb93a3e18ce00797c85315f2d05364781a1e5b9aa53/68747470733a2f2f636f6465636f762e696f2f67682f64657669746f636f6465732f64657669746f2f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"Code Coverage\" data-canonical-src=\"https://codecov.io/gh/devitocodes/devito/branch/master/graph/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://join.slack.com/t/devitocodes/shared_invite/zt-gtd2yxj9-Y31YKk_7lr9AwfXeL2iMFg\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f0d0a8f3b06c0808c75575af15a74159d9d34f2bc02997c0f262dd916e0bf948/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f636861742d6f6e253230736c61636b2d253233333643354630\" alt=\"Slack Status\" data-canonical-src=\"https://img.shields.io/badge/chat-on%20slack-%2336C5F0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://devitocodes.github.io/devito-performance\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3015b96f702ce7bd0e41f18aa7d7dfb69af77789127d64634a2223f829dbcee1/687474703a2f2f696d672e736869656c64732e696f2f62616467652f62656e63686d61726b656425323062792d6173762d626c75652e7376673f7374796c653d666c6174\" alt=\"asv\" data-canonical-src=\"http://img.shields.io/badge/benchmarked%20by-asv-blue.svg?style=flat\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://badge.fury.io/py/devito\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/249b65986b967e7268f743fa8e3face99c98762feaa8d1417d07769b1d3385bf/68747470733a2f2f62616467652e667572792e696f2f70792f64657669746f2e737667\" alt=\"PyPI version\" data-canonical-src=\"https://badge.fury.io/py/devito.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://mybinder.org/v2/gh/devitocodes/devito/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/581c077bdbc6ca6899c86d0acc6145ae85e9d80e6f805a1071793dbe48917982/68747470733a2f2f6d7962696e6465722e6f72672f62616467655f6c6f676f2e737667\" alt=\"Binder\" data-canonical-src=\"https://mybinder.org/badge_logo.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.devitoproject.org\" rel=\"nofollow\"\u003eDevito\u003c/a\u003e is a Python package to implement\noptimized stencil computation (e.g., finite differences, image processing,\nmachine learning) from high-level symbolic problem definitions. Devito builds\non \u003ca href=\"http://www.sympy.org/en/index.html\" rel=\"nofollow\"\u003eSymPy\u003c/a\u003e and employs automated code\ngeneration and just-in-time compilation to execute optimized computational\nkernels on several computer platforms, including CPUs, GPUs, and clusters\nthereof.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#about-devito\"\u003eAbout Devito\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#installation\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#resources\"\u003eResources\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#performance\"\u003ePerformance\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#get-in-touch\"\u003eGet in touch\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#interactive-jupyter-notebooks\"\u003eInteractive jupyter notebooks\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-about-devito\" class=\"anchor\" aria-hidden=\"true\" href=\"#about-devito\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAbout Devito\u003c/h2\u003e\n\u003cp\u003eDevito provides a functional language to implement sophisticated operators that\ncan be made up of multiple stencil computations, boundary conditions, sparse\noperations (e.g., interpolation), and much more. A typical use case is\nexplicit finite difference methods for approximating partial differential\nequations. For example, a 2D diffusion operator may be implemented with Devito\nas follows\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003egrid\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eGrid\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003eshape\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e(\u003cspan class=\"pl-c1\"\u003e10\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e10\u003c/span\u003e))\n\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ef\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eTimeFunction\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ename\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u0027f\u0027\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003egrid\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003egrid\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003espace_order\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e2\u003c/span\u003e)\n\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eeqn\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eEq\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ef\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003edt\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e0.5\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e*\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ef\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003elaplace\u003c/span\u003e)\n\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eop\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eOperator\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eEq\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ef\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eforward\u003c/span\u003e, \u003cspan class=\"pl-en\"\u003esolve\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003eeqn\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ef\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eforward\u003c/span\u003e)))\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAn \u003ccode\u003eOperator\u003c/code\u003e generates low-level code from an ordered collection of \u003ccode\u003eEq\u003c/code\u003e (the\nexample above being for a single equation). This code may also be compiled and\nexecuted\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-en\"\u003eop\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003et\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003etimesteps\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThere is virtually no limit to the complexity of an \u003ccode\u003eOperator\u003c/code\u003e -- the Devito\ncompiler will automatically analyze the input, detect and apply optimizations\n(including single- and multi-node parallelism), and eventually generate code\nwith suitable loops and expressions.\u003c/p\u003e\n\u003cp\u003eKey features include:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eA functional language to express finite difference operators.\u003c/li\u003e\n\u003cli\u003eStraightforward mechanisms to adjust the discretization.\u003c/li\u003e\n\u003cli\u003eConstructs to express sparse operators (e.g., interpolation), classic linear\noperators (e.g., convolutions), and tensor contractions.\u003c/li\u003e\n\u003cli\u003eSeamless support for boundary conditions and adjoint operators.\u003c/li\u003e\n\u003cli\u003eA flexible API to define custom stencils, sub-domains, sub-sampling,\nand staggered grids.\u003c/li\u003e\n\u003cli\u003eGeneration of highly optimized parallel code (SIMD vectorization, CPU and\nGPU parallelism via OpenMP and OpenACC, multi-node parallelism via MPI,\nblocking, aggressive symbolic transformations for FLOP reduction, etc.).\u003c/li\u003e\n\u003cli\u003eDistributed NumPy arrays over multi-node (MPI) domain decompositions.\u003c/li\u003e\n\u003cli\u003eInspection and customization of the generated code.\u003c/li\u003e\n\u003cli\u003eAutotuning framework to ease performance tuning.\u003c/li\u003e\n\u003cli\u003eSmooth integration with popular Python packages such as NumPy, SymPy, Dask,\nand SciPy, as well as machine learning frameworks such as TensorFlow and\nPyTorch.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eThe easiest way to try Devito is through Docker using the following commands:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# get the code\ngit clone https://github.com/devitocodes/devito.git\ncd devito\n\n# start a jupyter notebook server on port 8888\ndocker-compose up devito\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAfter running the last command above, the terminal will display a URL such as\n\u003ccode\u003ehttps://127.0.0.1:8888/?token=XXX\u003c/code\u003e. Copy-paste this URL into a browser window\nto start a \u003ca href=\"https://jupyter.org/\" rel=\"nofollow\"\u003eJupyter\u003c/a\u003e notebook session where you can go\nthrough the \u003ca href=\"https://github.com/devitocodes/devito/tree/master/examples\"\u003etutorials\u003c/a\u003e\nprovided with Devito or create your own notebooks.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://devitocodes.github.io/devito/download.html\" rel=\"nofollow\"\u003eSee here\u003c/a\u003e for detailed installation\ninstructions and other options. If you encounter a problem during installation, please\nsee the\n\u003ca href=\"https://github.com/devitocodes/devito/wiki/Installation-Issues\"\u003einstallation issues\u003c/a\u003e we\nhave seen in the past.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-resources\" class=\"anchor\" aria-hidden=\"true\" href=\"#resources\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResources\u003c/h2\u003e\n\u003cp\u003eTo learn how to use Devito,\n\u003ca href=\"https://github.com/devitocodes/devito/blob/master/examples\"\u003ehere\u003c/a\u003e is a good\nplace to start, with lots of examples and tutorials.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.devitoproject.org/\" rel=\"nofollow\"\u003ewebsite\u003c/a\u003e also provides access to other\ninformation, including documentation and instructions for citing us.\u003c/p\u003e\n\u003cp\u003eSome FAQs are discussed \u003ca href=\"https://github.com/devitocodes/devito/wiki/FAQ\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-performance\" class=\"anchor\" aria-hidden=\"true\" href=\"#performance\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePerformance\u003c/h2\u003e\n\u003cp\u003eIf you are interested in any of the following\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eGeneration of parallel code (CPU, GPU, multi-node via MPI);\u003c/li\u003e\n\u003cli\u003ePerformance tuning;\u003c/li\u003e\n\u003cli\u003eBenchmarking operators;\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ethen you should take a look at this\n\u003ca href=\"https://github.com/devitocodes/devito/blob/master/benchmarks/user\"\u003eREADME\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eYou may also be interested in\n\u003ca href=\"https://www.devitocodes.com/blog/thematrix\" rel=\"nofollow\"\u003eTheMatrix\u003c/a\u003e -- a cross-architecture\nbenchmarking framework showing the performance of several production-grade\nseismic operators implemented with Devito.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-get-in-touch\" class=\"anchor\" aria-hidden=\"true\" href=\"#get-in-touch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGet in touch\u003c/h2\u003e\n\u003cp\u003eIf you\u0027re using Devito, we would like to hear from you. Whether you\nare facing issues or just trying it out, join the\n\u003ca href=\"https://join.slack.com/t/devitocodes/shared_invite/zt-gtd2yxj9-Y31YKk_7lr9AwfXeL2iMFg\" rel=\"nofollow\"\u003econversation\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-interactive-jupyter-notebooks\" class=\"anchor\" aria-hidden=\"true\" href=\"#interactive-jupyter-notebooks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInteractive jupyter notebooks\u003c/h2\u003e\n\u003cp\u003eThe tutorial jupyter notebook are available interactively at the public \u003ca href=\"https://mybinder.org/v2/gh/devitocodes/devito/master\" rel=\"nofollow\"\u003ebinder\u003c/a\u003e jupyterhub.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1704437124.0
+ "updated_at": 1669732936.0
},
{
"data_format": 2,
- "description": "Demo recipe ",
+ "description": "https://github.com/pygments/pygments.git",
"filenames": [
- "Singularity",
- "Singularity.3.8.6"
+ "tests/examplefiles/singularity/Singularity"
],
- "full_name": "ISU-HPC/singularity_demo",
+ "full_name": "sailfishos-mirror/pygments",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_demo\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#singularity_demo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_demo\u003c/h1\u003e\n\u003cp\u003eDemo recipe\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1546982676.0
+ "updated_at": 1641488312.0
},
{
"data_format": 2,
- "description": "Graphviz is a package of open-source tools initiated by AT\u0026T Labs Research for drawing graphs specified in DOT language scripts.",
+ "description": "christmas-devcontainers-talk",
"filenames": [
- "3.0.0/Singularity",
- "2.38.0/Singularity",
- "2.48.0/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-graphviz",
- "latest_release": "v2.44.0",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-graphviz/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-graphviz/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-graphviz/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-graphviz/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/4f27d7f7ac7b9a86a1f0f6c45d19b90496b7c8ce89d5004d3fe96d163fe99e73/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d677261706876697a\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4f27d7f7ac7b9a86a1f0f6c45d19b90496b7c8ce89d5004d3fe96d163fe99e73/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d677261706876697a\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-graphviz\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/e6789d316f02fdfe74574853fb2870a7e4b7b6cccca76d201ff81cb1ac2adfbe/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d677261706876697a\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e6789d316f02fdfe74574853fb2870a7e4b7b6cccca76d201ff81cb1ac2adfbe/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d677261706876697a\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-graphviz\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/b71cbcc295d522b3323d66e9141fdec85461c9d128011383fac4956c54d95d73/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d677261706876697a\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b71cbcc295d522b3323d66e9141fdec85461c9d128011383fac4956c54d95d73/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d677261706876697a\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-graphviz\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5227dbb6ba22ff0c43933a4284a416f0f8d311e9972bf97e5383fe334f545102/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d677261706876697a\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5227dbb6ba22ff0c43933a4284a416f0f8d311e9972bf97e5383fe334f545102/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d677261706876697a\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-graphviz\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-graphviz\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#singularity-graphviz\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-graphviz\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/960789693fa68a8f442f9c6cc7d6a117639f1a792ec84c96648ad4764c385fcf/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f656e2f342f34382f477261706876697a4c6f676f2e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/960789693fa68a8f442f9c6cc7d6a117639f1a792ec84c96648ad4764c385fcf/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f656e2f342f34382f477261706876697a4c6f676f2e706e67\" width=\"25%\" data-canonical-src=\"https://upload.wikimedia.org/wikipedia/en/4/48/GraphvizLogo.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://graphviz.org/\" rel=\"nofollow\"\u003egraphviz\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003egraphviz\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/graphviz/2.44.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/graphviz\u003c/code\u003e as \u003ccode\u003e 2.44.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-docker-image\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#to-build-docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build Docker image\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003edbuild.sh\u003c/code\u003e to build the Docker image.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./dbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-the-cwl-workflow\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#to-run-the-cwl-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run the CWL workflow\u003c/h2\u003e\n\u003cp\u003eTo run the workflow, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emodule load anaconda3\npip install --user cwl-runner cwltool udocker\ncwl-runner --singularity dot.cwl example.yml\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "ARCLeeds/christmas-devcontainers-talk",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-devcontainers-talk-for-christmas-conference-2022\" class=\"anchor\" aria-hidden=\"true\" href=\"#devcontainers-talk-for-christmas-conference-2022\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevcontainers talk for Christmas Conference 2022\u003c/h1\u003e\n\u003cp\u003eThis is a toy repository that includes some MPI-enabled Markov chain random walks to search a 2D space for Santa \u003cg-emoji class=\"g-emoji\" alias=\"santa\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f385.png\"\u003e\ud83c\udf85\u003c/g-emoji\u003e!\u003c/p\u003e\n\u003cp\u003eIt\u0027s intention is to showcase using containers to enable portable and scalable code reuse.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h3\u003e\n\u003cp\u003eThis repository contains a Dockerfile for creating a container image and running locally.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker build \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e -t find-santa:latest\n\n$ mkdir santa-search-outputs\n\n$ docker run -v \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003epwd\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e/santa-search-outputs:/app/figures find-santa:latest\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can then check inside \u003ccode\u003esanta-search-outputs\u003c/code\u003e directory to find the data visualisation plot.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-apptainer\" class=\"anchor\" aria-hidden=\"true\" href=\"#apptainer\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eApptainer\u003c/h3\u003e\n\u003cp\u003eThis repository includes an \u003ca href=\"https://apptainer.org/\" rel=\"nofollow\"\u003eApptainer\u003c/a\u003e definition file that can be built using Apptainer.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ apptainer build find-santa.sif Singularity.def\n\n$ mpiexec -np 4 apptainer \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e find-santa.sif conda run -n devcontainers python /app/src/random_walk.py\n\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1670011770.0
+ },
+ {
+ "data_format": 2,
+ "description": "A small collection of programs for converting non-TIFF format images to TIFF and for manipulating and interogating the contents of TIFF images.",
+ "filenames": [
+ "4.2.0/Singularity"
+ ],
+ "full_name": "pscedu/singularity-libtiff-tools",
+ "latest_release": "v4.2.0",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-libtiff-tools/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-libtiff-tools/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-libtiff-tools/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-libtiff-tools/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/274bd4774f9c09a10655a9b440ba3c1171dc46ed6817776efaf7c5579311ba9b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6c6962746966662d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/274bd4774f9c09a10655a9b440ba3c1171dc46ed6817776efaf7c5579311ba9b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6c6962746966662d746f6f6c73\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-libtiff-tools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/2cdb477414e2bc11157f8ac70f0f08f6aca89f9a77440f50e1dba8e8105dca92/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6c6962746966662d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2cdb477414e2bc11157f8ac70f0f08f6aca89f9a77440f50e1dba8e8105dca92/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6c6962746966662d746f6f6c73\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-libtiff-tools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/ac7590eb9a5062fa43ca709328ec101fb9dfe119dbe72eb8825d7d9b56ce2440/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6c6962746966662d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ac7590eb9a5062fa43ca709328ec101fb9dfe119dbe72eb8825d7d9b56ce2440/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6c6962746966662d746f6f6c73\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-libtiff-tools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/8ccb90532f566ba1f408e14595e4b820b5f0bfce3dbdb8ba092c5a1a937dbe4b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6c6962746966662d746f6f6c73\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8ccb90532f566ba1f408e14595e4b820b5f0bfce3dbdb8ba092c5a1a937dbe4b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6c6962746966662d746f6f6c73\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-libtiff-tools\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-libtiff-tools\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-libtiff-tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-libtiff-tools\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f630a7ca0123289ce19e2c391cf329e94cb29966ba21c84444284358d998749d/687474703a2f2f7777772e6c6962746966662e6f72672f696d616765732f717561642e6a7067\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f630a7ca0123289ce19e2c391cf329e94cb29966ba21c84444284358d998749d/687474703a2f2f7777772e6c6962746966662e6f72672f696d616765732f717561642e6a7067\" data-canonical-src=\"http://www.libtiff.org/images/quad.jpg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"http://www.libtiff.org/tools.html\" rel=\"nofollow\"\u003elibtiff-tools\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/libtiff-tools/4.2.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/libtiff-tools\u003c/code\u003e as \u003ccode\u003e4.2.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/tigers/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 3,
"topics": [
"singularity",
"utilities"
],
- "updated_at": 1649134093.0
+ "updated_at": 1670379411.0
},
{
"data_format": 2,
- "description": "A Singularity Recipe to create a base CentOS container image",
+ "description": "fastq quality assessment and filtering tool",
"filenames": [
- "Singularity",
- "cuda7.5-devel/Singularity.cu75",
- "cuda-8.0-cudnn7/Singularity.cu80dnn7",
- "cuda-9.1-devel/Singularity.cu91",
- "cuda-8.0-devel/Singularity.cu80dnn6",
- "cuda-9.0-devel/Singularity.cu90"
+ "Singularity-Test",
+ "Singularity"
],
- "full_name": "ISU-HPC/ml-base",
+ "full_name": "PaulaAlessio/FastqArazketa",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-ml-base\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#ml-base\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eml-base\u003c/h1\u003e\n\u003cp\u003eA Singularity Recipe to create a base CentOS container image\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-fastqpuri-an-fq-quality-control-and-filter-tool\" class=\"anchor\" aria-hidden=\"true\" href=\"#fastqpuri-an-fq-quality-control-and-filter-tool\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFastqPuri, an fq quality control and filter tool\u003c/h1\u003e\n\u003cp\u003eSoftware and source code of \u003ccode\u003eFastqPuri\u003c/code\u003e. It creates quality reports of\n\u003ccode\u003efastq\u003c/code\u003e files and filters them removing low quality reads, reads\ncontaining too many N\u0027s or contamination reads (unwanted rRNA reads,\nimpurities coming from another organism, ...).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eClone the repository, or download the source. Make sure that\nyour system supplies the following dependencies for FastqPuri.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOS: Linux (clang, gcc), Mac OS (clang, gcc), OpenBSD (clang)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecmake\u003c/code\u003e (at least version 2.8),\u003c/li\u003e\n\u003cli\u003ea \u003ccode\u003eC\u003c/code\u003e compiler supporting the \u003ccode\u003ec11\u003c/code\u003e standard\n(change the compiler flags otherwise),\u003c/li\u003e\n\u003cli\u003epandoc (optional, see documentation in \u003ccode\u003ePANDOC.md\u003c/code\u003e),\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eRscript\u003c/code\u003e (optional),\u003c/li\u003e\n\u003cli\u003eFollowing \u003ccode\u003eR\u003c/code\u003e packages installed (optional):\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003epheatmap\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eknitr\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003ermarkdown\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eNOTE:\u003c/strong\u003e FastqPuri will work without the optional dependencies\nbut will skip creating html reports if they are not available.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cmake -H. -Bbuild/ [-DRSCRIPT=/path/to/my/R/bin/Rscript] [-DCMAKE_INSTALL_PREFIX=/path/to/my/root] ... \n$ cd build \n$ make \n$ sudo make install \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhen running \u003ccode\u003ecmake\u003c/code\u003e, there are some variables you can set\nusing the option -D followed by the variable name. These variables are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eCMAKE_C_COMPILER\u003c/code\u003e: \u003ccode\u003eC\u003c/code\u003e compiler (default \u003ccode\u003egcc\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eCMAKE_C_FLAGS\u003c/code\u003e: compiler flags (default \u003ccode\u003e-Wall -O3 -march=native -std=c11\u003c/code\u003e).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eCMAKE_INSTALL_PREFIX\u003c/code\u003e: root path for \u003ccode\u003emake install\u003c/code\u003e, e.g. to\nredirect to a directory with user access (default /usr/local),\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ePANDOC\u003c/code\u003e: \u003ccode\u003epandoc\u003c/code\u003e executable (default \u003ccode\u003epandoc\u003c/code\u003e),\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eRSCRIPT\u003c/code\u003e: \u003ccode\u003eRscript\u003c/code\u003e executable (default \u003ccode\u003eRscript\u003c/code\u003e),\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eREAD_MAXLEN\u003c/code\u003e: Maximum Illumina read length\u003c/li\u003e\n\u003cli\u003e(default 400),\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe executables will be created in the folder \u003ccode\u003ebin\u003c/code\u003e and installed in \u003ccode\u003e/usr/local/bin\u003c/code\u003e.\n\u003ccode\u003eR\u003c/code\u003e scripts will be installed in \u003ccode\u003e/usr/local/share/FastqPuri/R\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eWARNING:\u003c/strong\u003e do not move the executables that depend on \u003ccode\u003eR\u003c/code\u003e scripts,\nanywhere else, unless you also move the corresponding \u003ccode\u003eR\u003c/code\u003e scripts respecting\nthe local folder structure.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-executables\" class=\"anchor\" aria-hidden=\"true\" href=\"#executables\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExecutables\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eQreport\u003c/code\u003e: creates a quality report in html format (see \u003ccode\u003eREADME_Qreport.md\u003c/code\u003e),\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eSreport\u003c/code\u003e: creates a summary report in html format on a set of samples,\nregarding either the original files or the filtering process\n(see \u003ccode\u003eREADME_Sreport.md\u003c/code\u003e),\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emakeBloom\u003c/code\u003e: creates a bloom filter from a fasta file of a certain size,\nand stores it in a file (see \u003ccode\u003eREADME_makeBloom.md\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emakeTree\u003c/code\u003e: creates a tree of a certain depth from a fasta file and stores\nit in a file (see \u003ccode\u003eREADME_makeTree.md\u003c/code\u003e),\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003etrimFilter\u003c/code\u003e: performs the filtering process for single-end data\n(see \u003ccode\u003eREADME_trimFilter.md\u003c/code\u003e).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003etrimFilterPE\u003c/code\u003e: performs the filtering process for double stranded data\n(see \u003ccode\u003eREADME_trimFilterPE.md\u003c/code\u003e).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAn exemplar work flow could be:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003eQreport\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eSreport\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003emakeBloom\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003etrimFilter\u003c/code\u003e or \u003ccode\u003etrimFilterPE\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eQreport\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eSreport\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-documentation-of-the-code\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation-of-the-code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation of the code\u003c/h2\u003e\n\u003cp\u003eA Doxygen documentation of the code is available:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ehtml\u003c/code\u003e version under the folder \u003ccode\u003ehtml\u003c/code\u003e (open \u003ccode\u003eindex.html\u003c/code\u003e with a browser).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003epdf\u003c/code\u003e version: \u003ccode\u003elatex/refman.pdf\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-use-a-docker-container-to-run-fastqpuri\" class=\"anchor\" aria-hidden=\"true\" href=\"#use-a-docker-container-to-run-fastqpuri\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUse a docker container to run FastqPuri\u003c/h2\u003e\n\u003cp\u003eThe file \u0027Dockerfile\u0027 documents the exact linux installation we used\nfor testing. If you have a docker installation ready on your machine,\nyou may want to use a docker container for easy installation and\ncapsulated usage of FastqPuri. After cloning this project from github\nand change to its main directory, you may install a docker container\nas follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ docker build -t fastqpuri .\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will create a container based on the debian linux distribution\ncovering all dependencies including R and pandoc. As soon as such a\ncontainer is installed, you can use it either interactively:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ docker run -v $PWD:/tmp -it fastqpuri\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor by running a pipeline implemented in an executable bash script:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ docker run -v $PWD:/tmp fastqpuri ./pipeline.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote that this call generates results in the docker container\ndirectory \u003ccode\u003e/tmp\u003c/code\u003e but also keeps them after closing the docker container\nlocally where the container was started.\u003c/p\u003e\n\u003cp\u003eInstead of generating the docker container yourself with \u0027docker\nbuild\u0027, you can also pull a pre-built image from the docker hub as\nfollows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ docker pull clottaz/fastqpuri\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can run such a pre-built image with \u0027docker run\u0027 by indicating the\nimages as \u0027clottaz/fastqpuri\u0027.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-use-a-singularity-container-to-run-fastqpuri\" class=\"anchor\" aria-hidden=\"true\" href=\"#use-a-singularity-container-to-run-fastqpuri\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUse a singularity container to run FastqPuri\u003c/h2\u003e\n\u003cp\u003eAlternativly, if you have singularity installed on your machine, you\ncan call our docker container for FastqPuri as follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity shell --bind .:/tmp docker://clottaz/fastqpuri\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis call opens a shell within the container.\nWith \u003ccode\u003e--bind\u003c/code\u003e we mount the current directory also in the container.\nThe syntax is as follows: --bind src:dest; src is the source path on\nthe host and dest is the destination path in the container, i.e. where\nyou would like to make the source path available in your container.\nNote that this destination path in your container should be an existing\ndirectory, the operation will fail if you do not create the directory first.\nHence, when we call \u003ccode\u003esingularity shell\u003c/code\u003e like this, the working directory\nin the container is \u003ccode\u003e/tmp\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eAlternatively, in order to execute a script from the current\ndirectory, call singularity as follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run --bind .:/tmp docker://clottaz/fastqpuri /tmp/pipeline.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote that \u003ccode\u003e/tmp/pipeline.sh\u003c/code\u003e relates to the call within the\ncontainer. Thus, \u003ccode\u003epipeline.sh\u003c/code\u003e is located in the directory where singularity\nrun is executed, but will be made available to the container via the \u003ccode\u003e--bind\u003c/code\u003e\nparameter.\u003c/p\u003e\n\u003cp\u003eIf you want to invoke a function of FastqPuri, you can use the \u0027exec\u0027\ncommand like so:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec docker://clottaz/fastqpuri Qreport -h\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor invoke a script located in your home directory (assuming that\nrun_ex_TREE.sh is located in your home directory):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec docker://clottaz/fastqpuri $HOME/run_ex_TREE.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSingularity documentation can be found here: \u003ca href=\"https://www.sylabs.io/docs/\" rel=\"nofollow\"\u003ehttps://www.sylabs.io/docs/\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation-via-bioconda--under-construction\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation-via-bioconda--under-construction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation via bioconda \u003cstrong\u003e-under construction\u003c/strong\u003e.\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003eWe are currently working on a bioconda environment for FastqPuri.\nIf you follow the instructions below, it is quite likely that\nFastqPuri will not yet properly run from the bioconda environment.\nSorry about that and please stay tuned!\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eBioconda is a channel for the conda package manager specializing in\nbioinformatics software. Have a look at the reference:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBjoern Gruening, Ryan Dale, Andreas Sjoedin, Brad A. Chapman, Jillian\nRowe, Christopher H. Tomkins-Tinch, Renan Valieris, the Bioconda\nTeam, and Johannes Koester. 2018. Bioconda: Sustainable and\nComprehensive Software Distribution for the Life Sciences. Nature\nMethods, 2018.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo find out how to use bioconda, see \u003ca href=\"https://bioconda.github.io\" rel=\"nofollow\"\u003ehttps://bioconda.github.io\u003c/a\u003e.\nFor installing FastqPuri in a bioconda environment, you have to install\neither \u003ccode\u003eminiconda\u003c/code\u003e or \u003ccode\u003eanaconda\u003c/code\u003e and register channels as follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ conda config --add channels defaults\n$ conda config --add channels bioconda\n$ conda config --add channels conda-forge\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen you can install \u003ccode\u003efastqpuri\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ conda install fastqpuri\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eActually, you may also want to use a specific environment for the\nsequencing quality control:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ conda create -n qc fastqpuri\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis call installs \u003ccode\u003eFastqPuri\u003c/code\u003e directly in a separate environment.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003ePaula P\u00e9rez Rubio,\nClaudio Lottaz,\nJulia Engelmann\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eGPL v3 (see LICENSE.txt)\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1533063693.0
+ "updated_at": 1670411214.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.harp",
+ "Singularity.utils"
],
- "full_name": "Shadowphax/bc_icts_rstudio_server",
+ "full_name": "BerglandLab/HS-reconstruction-gwas",
"latest_release": null,
- "readme": "\u003ch1 id=\"user-content-batch-connect---osc-rstudio-server\"\u003e\u003ca class=\"heading-link\" href=\"#batch-connect---osc-rstudio-server\"\u003eBatch Connect - OSC RStudio Server\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a1b9af067a60a648ea0b5068b19ea4a14b09e232574dac90c50903719ef5cc5b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6f73635f7273747564696f5f7365727665722e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a1b9af067a60a648ea0b5068b19ea4a14b09e232574dac90c50903719ef5cc5b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6f73635f7273747564696f5f7365727665722e737667\" alt=\"GitHub Release\" data-canonical-src=\"https://img.shields.io/github/release/osc/bc_osc_rstudio_server.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAn interactive app designed for OSC OnDemand that launches an RStudio Server\nwithin an Owens batch job.\u003c/p\u003e\n\u003ch2 id=\"user-content-prerequisites\"\u003e\u003ca class=\"heading-link\" href=\"#prerequisites\"\u003ePrerequisites\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThis Batch Connect app requires the following software be installed on the\n\u003cstrong\u003ecompute nodes\u003c/strong\u003e that the batch job is intended to run on (\u003cstrong\u003eNOT\u003c/strong\u003e the\nOnDemand node):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.tacc.utexas.edu/research-development/tacc-projects/lmod\" rel=\"nofollow\"\u003eLmod\u003c/a\u003e 6.0.1+ or any other \u003ccode\u003emodule restore\u003c/code\u003e and \u003ccode\u003emodule load \u0026lt;modules\u0026gt;\u003c/code\u003e based\nCLI used to load appropriate environments within the batch job before\nlaunching the RStudio Server.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003ewithout Singularity\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.r-project.org/\" rel=\"nofollow\"\u003eR\u003c/a\u003e 3.3.2+ (earlier versions are untested but may work for you)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.rstudio.com/products/rstudio-server/\" rel=\"nofollow\"\u003eRStudio Server\u003c/a\u003e 1.0.136+ (earlier versions are untested by may work for you)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://proot-me.github.io/\" rel=\"nofollow\"\u003ePRoot\u003c/a\u003e 5.1.0+ (used to setup fake bind mount)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eor with Singularity\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e 2.4.2+\u003c/li\u003e\n\u003cli\u003eA Singularity image similar to \u003ca href=\"https://www.singularity-hub.org/collections/463\" rel=\"nofollow\"\u003enickjer/singularity-rstudio\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eCorresponding module to launch the above Singularity image (see\n\u003ca href=\"https://github.com/nickjer/singularity-rstudio/blob/master/example_module/\"\u003eexample_module\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2 id=\"user-content-install\"\u003e\u003ca class=\"heading-link\" href=\"#install\"\u003eInstall\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eUse git to clone this app and checkout the desired branch/version you want to\nuse:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003escl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git clone \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003erepo\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git checkout \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etag/branch\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou will not need to do anything beyond this as all necessary assets are\ninstalled. You will also not need to restart this app as it isn\u0027t a Passenger\napp.\u003c/p\u003e\n\u003cp\u003eTo update the app you would:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git fetch\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git checkout \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etag/branch\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAgain, you do not need to restart the app as it isn\u0027t a Passenger app.\u003c/p\u003e\n\u003ch2 id=\"user-content-contributing\"\u003e\u003ca class=\"heading-link\" href=\"#contributing\"\u003eContributing\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eFork it ( \u003ca href=\"https://github.com/OSC/bc_osc_rstudio_server/fork\"\u003ehttps://github.com/OSC/bc_osc_rstudio_server/fork\u003c/a\u003e )\u003c/li\u003e\n\u003cli\u003eCreate your feature branch (\u003ccode\u003egit checkout -b my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCommit your changes (\u003ccode\u003egit commit -am \u0027Add some feature\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003ePush to the branch (\u003ccode\u003egit push origin my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a new Pull Request\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2 id=\"user-content-license\"\u003e\u003ca class=\"heading-link\" href=\"#license\"\u003eLicense\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocumentation, website content, and logo is licensed under\n\u003ca href=\"https://creativecommons.org/licenses/by/4.0/\" rel=\"nofollow\"\u003eCC-BY-4.0\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eCode is licensed under MIT (see LICENSE.txt)o\u003c/li\u003e\n\u003cli\u003eRStudio, Shiny and the RStudio logo are all registered trademarks of RStudio.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2 id=\"user-content-rserver-command-line-arguements\"\u003e\u003ca class=\"heading-link\" href=\"#rserver-command-line-arguements\"\u003eRServer command line arguements\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThis was the output of \u003ccode\u003e--help\u003c/code\u003e from version \u003ccode\u003e2021.09.1\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecommand-line options:\n\nverify:\n --verify-installation arg (=0) Runs verification mode to verify the \n current installation.\n\nserver:\n --server-working-dir arg (=/) The default working directory of the \n rserver process.\n --server-user arg (=rstudio-server) The user account of the rserver \n process.\n --server-daemonize arg (=0) Indicates whether or not the rserver \n process should run as a daemon.\n --server-pid-file arg (=/var/run/rstudio-server.pid)\n The path to a file where the rserver \n daemon\u0027s pid is written.\n --server-app-armor-enabled arg (=0) Indicates whether or not to enable \n AppArmor profiles for the rserver \n process.\n --server-set-umask arg (=1) If enabled, sets the rserver process \n umask to 022 on startup, which causes \n new files to have rw-r-r permissions.\n --secure-cookie-key-file arg If set, overrides the default path of \n the secure-cookie-key file used for \n encrypting cookies.\n --server-data-dir arg (=/var/run/rstudio-server)\n Path to the data directory where \n RStudio Server will write run-time \n state.\n --server-add-header arg Adds a header to all responses from \n RStudio Server. This option can be \n specified multiple times to add \n multiple headers.\n\nwww:\n --www-address arg (=0.0.0.0) The network address that RStudio Server\n will listen on for incoming \n connections.\n --www-port arg The port that RStudio Server will bind \n to while listening for incoming \n connections. If left empty, the port \n will be automatically determined based \n on your SSL settings (443 for SSL, 80 \n for no SSL).\n --www-root-path arg (=/) The path prefix added by a proxy to the\n incoming RStudio URL. This setting is \n used so RStudio Server knows what path \n it is being served from. If running \n RStudio Server behind a path-modifying \n proxy, this should be changed to match \n the base RStudio Server URL.\n --www-local-path arg (=www) The relative path from the RStudio \n installation directory, or absolute \n path where web assets are stored.\n --www-symbol-maps-path arg (=www-symbolmaps)\n The relative path from the RStudio \n installation directory, or absolute \n path, where symbol maps are stored.\n --www-use-emulated-stack arg (=0) Indicates whether or not to use GWT\u0027s \n emulated stack.\n --www-thread-pool-size arg (=2) The size of the threadpool from which \n requests will be serviced. This may be \n increased to enable more concurrency, \n but should only be done if the \n underlying hardware has more than 2 \n cores. It is recommended to use a value\n that is \u0026lt;= to the number of hardware \n cores, or \u0026lt;= to two times the number of\n hardware cores if the hardware utilizes\n hyperthreading.\n --www-proxy-localhost arg (=1) Indicates whether or not to proxy \n requests to localhost ports over the \n main server port. This should generally\n be enabled, and is used to proxy HTTP \n traffic within a session that belongs \n to code running within the session \n (e.g. Shiny or Plumber APIs)\n --www-verify-user-agent arg (=1) Indicates whether or not to verify \n connecting browser user agents to \n ensure they are compatible with RStudio\n Server.\n --www-same-site arg The value of the \u0027SameSite\u0027 attribute \n on the cookies issued by RStudio \n Server. Accepted values are \u0027none\u0027 or \n \u0027lax\u0027. The value \u0027none\u0027 should be used \n only when RStudio is hosted into an \n iFrame. For compatibility with some \n browsers (i.e. Safari 12), duplicate \n cookies will be issued by RStudio \n Server when \u0027none\u0027 is used.\n --www-frame-origin arg (=none) Specifies the allowed origin for the \n iFrame hosting RStudio if iFrame \n embedding is enabled.\n --www-enable-origin-check arg (=0) If enabled, cause RStudio to enforce \n that incoming request origins are from \n the host domain. This can be added for \n additional security. See \n https://cheatsheetseries.owasp.org/chea\n tsheets/Cross-Site_Request_Forgery_Prev\n ention_Cheat_Sheet.html#verifying-origi\n n-with-standard-headers\n --www-allow-origin arg Specifies an additional origin that \n requests are allowed from, even if it \n does not match the host domain. Used if\n origin checking is enabled. May be \n specified multiple times for multiple \n origins.\n\nrsession:\n --rsession-which-r arg The path to the main R program (e.g. \n /usr/bin/R). This should be set if no \n versions are specified in \n /etc/rstudio/r-versions and the default\n R installation is not available on the \n system path.\n --rsession-path arg (=rsession) The relative path from the RStudio \n installation directory, or absolute \n path to the rsession executable.\n --rldpath-path arg (=r-ldpath) The path to the r-ldpath script which \n specifies extra library paths for R \n versions.\n --rsession-ld-library-path arg Specifies additional LD_LIBRARY_PATHs \n to use for R sessions.\n --rsession-config-file arg If set, overrides the path to the \n /etc/rstudio/rsession.conf \n configuration file. The specified path \n may be a relative path from the RStudio\n installation directory, or an absolute \n path.\n --rsession-proxy-max-wait-secs arg (=10)\n The maximum time to wait in seconds for\n a successful response when proxying \n requests to rsession.\n --rsession-memory-limit-mb arg (=0) The limit in MB that an rsession \n process may consume.\n --rsession-stack-limit-mb arg (=0) The limit in MB that an rsession \n process may consume for its stack.\n --rsession-process-limit arg (=0) The maximum number of allowable \n rsession processes.\n\ndatabase:\n --database-config-file arg If set, overrides the path to the \n /etc/rstudio/database.conf \n configuration file.\n --db-command arg Executes the shell command specified \n injecting the current database \n configuration in the command.\n\nauth:\n --auth-none arg (=1) If set, disables multi-user \n authentication. Workbench/Pro features \n may not work in this mode.\n --auth-validate-users arg (=0) Indicates whether or not to validate \n that authenticated users exist on the \n target system. Disabling this option \n may cause issues to start or to run a \n session.\n --auth-stay-signed-in-days arg (=30) The number of days to keep a user \n signed in when using the \"Stay Signed \n In\" option. Will only take affect when \n auth-timeout-minutes is 0 (disabled).\n --auth-timeout-minutes arg (=60) The number of minutes a user will stay \n logged in while idle before required to\n sign in again. Set this to 0 (disabled)\n to enable legacy timeout \n auth-stay-signed-in-days.\n --auth-encrypt-password arg (=1) Indicates whether or not to encrypt the\n password sent from the login form. For \n security purposes, we strongly \n recommend you leave this enabled.\n --auth-login-page-html arg (=/etc/rstudio/login.html)\n The path to a file containing \n additional HTML customization for the \n login page.\n --auth-rdp-login-page-html arg (=/etc/rstudio/rdplogin.html)\n The path to a file containing \n additional HTML customization for the \n login page, as seen by RDP users.\n --auth-required-user-group arg Specifies a group that users must be in\n to be able to use RStudio.\n --auth-minimum-user-id arg (=auto) Specifies a minimum user id value. \n Users with a uid lower than this value \n may not use RStudio.\n --auth-pam-helper-path arg (=rserver-pam)\n The relative path from the RStudio \n installation directory, or absolute \n path where the PAM helper binary \n resides.\n --auth-pam-require-password-prompt arg (=1)\n Indicates whether or not to require the\n \"Password: \" prompt before sending the \n password via PAM. In most cases, this \n should be enabled. If using a custom \n PAM password prompt, you may need to \n disable this setting if PAM logins do \n not work correctly.\n --auth-pam-requires-priv arg (=1) Deprecated - will always be true.\n --auth-sign-in-throttle-seconds arg (=5)\n The minimum amount of time a user must \n wait before attempting to sign in again\n after signing out.\n --auth-revocation-list-dir arg If set, overrides the path to the \n directory which contains the revocation\n list to be used for storing expired \n tokens. As of RStudio Server 1.4, this \n has been moved to database storage, and\n so this setting is deprecated, but will\n be used to port over any existing \n file-based expired tokens.\n --auth-cookies-force-secure arg (=0) Indicates whether or not auth cookies \n should be forcefully marked as secure. \n This should be enabled if running an \n SSL terminator infront of RStudio \n Server. Otherwise, cookies will be \n marked secure if SSL is configured.\n\nmonitor:\n --monitor-interval-seconds arg (=60) The interval in seconds at which the \n monitor is probed for new data.\n\ngeneral:\n --help print help message\n --test-config test to ensure the config file is valid\n --config-file arg configuration file\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-hs-reconstruction-gwas\" class=\"anchor\" aria-hidden=\"true\" href=\"#hs-reconstruction-gwas\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHS-reconstruction-gwas\u003c/h1\u003e\n\u003cp\u003eThis repository contains the scripts used to generate and process data, as well as generate figures, for the manuscript:\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eAccurate, ultra-low coverage genome reconstruction and association studies in Hybrid Swarm mapping populations\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eCory A. Weller (\u003ca href=\"mailto:caw5cv@virginia.edu\"\u003ecaw5cv@virginia.edu\u003c/a\u003e) \u0026amp; Alan O. Bergland (\u003ca href=\"mailto:aob2x@virginia.edu\"\u003eaob2x@virginia.edu\u003c/a\u003e)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h2\u003e\n\u003cp\u003eThis workflow allows for Singularity containers to process data in a reproducible manner without installing required programs and libraries. You will first need to install singularity on your system, if it is not already available. Many HPC systems already have pre-loaded \u003ccode\u003esingularity\u003c/code\u003e that can be loaded as a module.\u003c/p\u003e\n\u003cp\u003eOtherwise, install singularity 3.x following the instructions from \u003ca href=\"https://sylabs.io/guides/3.6/user-guide/quick_start.html#quick-installation-steps\" rel=\"nofollow\"\u003esylabs.io\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThen, you can retrieve the pre-built singularity image files from Singularity Hub.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name harp.sif shub://cory-weller/HS-reconstruction-gwas:harp\nsingularity pull --name utils.sif shub://cory-weller/HS-reconstruction-gwas:utils\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1646833582.0
+ "updated_at": 1670518878.0
},
{
"data_format": 2,
- "description": "[read-only mirror]",
+ "description": "Nextflow workflow to run DPclust on a series of samples",
"filenames": [
"Singularity"
],
- "full_name": "unlhcc/bc-hcc-rstudio-server",
+ "full_name": "IARCbioinfo/DPclust-nf",
"latest_release": null,
- "readme": "\u003ch1 id=\"user-content-batch-connect---hcc-rstudio-server\"\u003e\u003ca class=\"heading-link\" href=\"#batch-connect---hcc-rstudio-server\"\u003eBatch Connect - HCC RStudio Server\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://git.unl.edu/hcc/bc-hcc-rstudio-server/-/commits/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/eed68de7ee579cda26a799a79e6376b967f69b7e355d2eca9b2a46e88e54c904/68747470733a2f2f6769742e756e6c2e6564752f6863632f62632d6863632d7273747564696f2d7365727665722f6261646765732f6d61737465722f706970656c696e652e737667\" alt=\"pipeline status\" data-canonical-src=\"https://git.unl.edu/hcc/bc-hcc-rstudio-server/badges/master/pipeline.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAn interactive app designed for OSC OnDemand that launches an \u003ca href=\"https://www.rstudio.com/products/rstudio-server/\" rel=\"nofollow\"\u003eRStudio Server\u003c/a\u003e\nwithin a SLURM batch job.\u003c/p\u003e\n\u003cp\u003eBased off of \u003ca href=\"https://github.com/OSC/bc_osc_rstudio_server\"\u003ehttps://github.com/OSC/bc_osc_rstudio_server\u003c/a\u003e.\u003c/p\u003e\n\u003ch2 id=\"user-content-prerequisites\"\u003e\u003ca class=\"heading-link\" href=\"#prerequisites\"\u003ePrerequisites\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThis Batch Connect app requires the following software be installed on the\n\u003cstrong\u003ecompute nodes\u003c/strong\u003e that the batch job is intended to run on (\u003cstrong\u003eNOT\u003c/strong\u003e the\nOnDemand node):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.tacc.utexas.edu/research-development/tacc-projects/lmod\" rel=\"nofollow\"\u003eLmod\u003c/a\u003e 6.0.1+ or any other \u003ccode\u003emodule restore\u003c/code\u003e and \u003ccode\u003emodule load \u0026lt;modules\u0026gt;\u003c/code\u003e based\nCLI used to load appropriate environments within the batch job before\nlaunching the RStudio Server.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://apptainer.org\" rel=\"nofollow\"\u003eApptainer\u003c/a\u003e 2.4.2+\u003c/li\u003e\n\u003cli\u003eAn Apptainer image similar to \u003ca href=\"https://hub.docker.com/r/rocker/rstudio\" rel=\"nofollow\"\u003erocker/rstudio\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2 id=\"user-content-buildinstall\"\u003e\u003ca class=\"heading-link\" href=\"#buildinstall\"\u003eBuild/Install\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eGitlab CI will automatically build both CentOS 7 and 8 RPMs.\nThey can be installed directly via \u003ccode\u003eyum\u003c/code\u003e for testing.\u003c/p\u003e\n\u003cp\u003eFor production, add to the per-cluster common repos and require via puppet.\u003c/p\u003e\n\u003ch2 id=\"user-content-contributing\"\u003e\u003ca class=\"heading-link\" href=\"#contributing\"\u003eContributing\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eFork it ( \u003ca href=\"https://git.unl.edu/hcc/bc-hcc-rstudio-server/-/forks/new\" rel=\"nofollow\"\u003ehttps://git.unl.edu/hcc/bc-hcc-rstudio-server/-/forks/new\u003c/a\u003e )\u003c/li\u003e\n\u003cli\u003eCreate your feature branch (\u003ccode\u003egit checkout -b my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCommit your changes (\u003ccode\u003egit commit -am \u0027Add some feature\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003ePush to the branch (\u003ccode\u003egit push origin my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a new Pull Request\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2 id=\"user-content-license\"\u003e\u003ca class=\"heading-link\" href=\"#license\"\u003eLicense\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocumentation, website content, and logo is licensed under\n\u003ca href=\"https://creativecommons.org/licenses/by/4.0/\" rel=\"nofollow\"\u003eCC-BY-4.0\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eCode is licensed under MIT (see LICENSE.txt)\u003c/li\u003e\n\u003cli\u003eRStudio, Shiny and the RStudio logo are all registered trademarks of RStudio.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-name\" class=\"anchor\" aria-hidden=\"true\" href=\"#name\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eName\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-empty-template-for-nextflow-pipelines-short-description\" class=\"anchor\" aria-hidden=\"true\" href=\"#empty-template-for-nextflow-pipelines-short-description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEmpty template for nextflow pipelines (short description)\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://circleci.com/gh/IARCbioinfo/template-nf\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e3a0e94b24410397271294a485f985c85941b292ba2c7cbf3fefb26bf1e0c76b/68747470733a2f2f636972636c6563692e636f6d2f67682f4941524362696f696e666f2f74656d706c6174652d6e662e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/IARCbioinfo/template-nf.svg?style=svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/iarcbioinfo/template-nf/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c5d5383ee3d6248c7d31b5fcaa21fc7d689b53ecb330dbfe628cd1fae38c853/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d72656164792d626c75652e737667\" alt=\"Docker Hub\" data-canonical-src=\"https://img.shields.io/badge/docker-ready-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/1404\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://zenodo.org/badge/latestdoi/94193130\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5decad826d7116b1c950b6b48c06052496f141e803525b088ce3cdcaaa4d7b88/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f39343139333133302e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/94193130.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"template-nf.png\"\u003e\u003cimg src=\"template-nf.png\" alt=\"Workflow representation\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-description\" class=\"anchor\" aria-hidden=\"true\" href=\"#description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h2\u003e\n\u003cp\u003e...\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eThis pipeline is based on \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003enextflow\u003c/a\u003e. As we have several nextflow pipelines, we have centralized the common information in the \u003ca href=\"https://github.com/IARCbioinfo/IARC-nf\"\u003eIARC-nf\u003c/a\u003e repository. Please read it carefully as it contains essential information for the installation, basic usage and configuration of nextflow and our pipelines.\u003c/li\u003e\n\u003cli\u003eExternal software:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e...\u003c/li\u003e\n\u003cli\u003e...\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou can avoid installing all the external software by only installing Docker. See the \u003ca href=\"https://github.com/IARCbioinfo/IARC-nf\"\u003eIARC-nf\u003c/a\u003e repository for more information.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-input\" class=\"anchor\" aria-hidden=\"true\" href=\"#input\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eType\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003einput1\u003c/td\u003e\n\u003ctd\u003e......\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003einput2\u003c/td\u003e\n\u003ctd\u003e......\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eSpecify the test files location\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-parameters\" class=\"anchor\" aria-hidden=\"true\" href=\"#parameters\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParameters\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ch4\u003e\u003ca id=\"user-content-mandatory\" class=\"anchor\" aria-hidden=\"true\" href=\"#mandatory\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMandatory\u003c/h4\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eExample value\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--param1\u003c/td\u003e\n\u003ctd\u003exx\u003c/td\u003e\n\u003ctd\u003e......\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--param2\u003c/td\u003e\n\u003ctd\u003exx\u003c/td\u003e\n\u003ctd\u003e......\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ch4\u003e\u003ca id=\"user-content-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOptional\u003c/h4\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eDefault value\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--param3\u003c/td\u003e\n\u003ctd\u003exx\u003c/td\u003e\n\u003ctd\u003e......\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--param4\u003c/td\u003e\n\u003ctd\u003exx\u003c/td\u003e\n\u003ctd\u003e......\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ch4\u003e\u003ca id=\"user-content-flags\" class=\"anchor\" aria-hidden=\"true\" href=\"#flags\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFlags\u003c/h4\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFlags are special parameters without value.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--help\u003c/td\u003e\n\u003ctd\u003eDisplay help\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--flag2\u003c/td\u003e\n\u003ctd\u003e....\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e...\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-output\" class=\"anchor\" aria-hidden=\"true\" href=\"#output\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eType\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eoutput1\u003c/td\u003e\n\u003ctd\u003e......\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eoutput2\u003c/td\u003e\n\u003ctd\u003e......\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\u003ca id=\"user-content-detailed-description-optional-section\" class=\"anchor\" aria-hidden=\"true\" href=\"#detailed-description-optional-section\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDetailed description (optional section)\u003c/h2\u003e\n\u003cp\u003e...\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-directed-acyclic-graph\" class=\"anchor\" aria-hidden=\"true\" href=\"#directed-acyclic-graph\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDirected Acyclic Graph\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"http://htmlpreview.github.io/?https://github.com/IARCbioinfo/template-nf/blob/master/dag.html\" rel=\"nofollow\"\u003e\u003cimg src=\"dag.png\" alt=\"DAG\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributions\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributions\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eEmail\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003econtrib1*\u003c/td\u003e\n\u003ctd\u003exx\u003c/td\u003e\n\u003ctd\u003eDeveloper to contact for support (link to specific gitter chatroom)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003econtrib2\u003c/td\u003e\n\u003ctd\u003exx\u003c/td\u003e\n\u003ctd\u003eDeveloper\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003econtrib3\u003c/td\u003e\n\u003ctd\u003exx\u003c/td\u003e\n\u003ctd\u003eTester\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\u003ca id=\"user-content-references-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#references-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences (optional)\u003c/h2\u003e\n\u003ch2\u003e\u003ca id=\"user-content-faq-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#faq-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFAQ (optional)\u003c/h2\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 9,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1646361327.0
+ "updated_at": 1670593101.0
},
{
"data_format": 2,
- "description": null,
+ "description": "The singularity definition file of curp container and the workflow to build and upload sif file to GHCR.",
"filenames": [
"Singularity"
],
- "full_name": "OSC/bc_osc_rstudio_server_quick",
+ "full_name": "passive-radio/curp-singularity",
"latest_release": "v0.0.1",
- "readme": "\u003ch1 id=\"user-content-batch-connect---osc-rstudio-server\"\u003e\u003ca class=\"heading-link\" href=\"#batch-connect---osc-rstudio-server\"\u003eBatch Connect - OSC RStudio Server\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a1b9af067a60a648ea0b5068b19ea4a14b09e232574dac90c50903719ef5cc5b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6f73635f7273747564696f5f7365727665722e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a1b9af067a60a648ea0b5068b19ea4a14b09e232574dac90c50903719ef5cc5b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6f73635f7273747564696f5f7365727665722e737667\" alt=\"GitHub Release\" data-canonical-src=\"https://img.shields.io/github/release/osc/bc_osc_rstudio_server.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAn interactive app designed for OSC OnDemand that launches an RStudio Server\nwithin an Owens batch job.\u003c/p\u003e\n\u003ch2 id=\"user-content-prerequisites\"\u003e\u003ca class=\"heading-link\" href=\"#prerequisites\"\u003ePrerequisites\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eThis Batch Connect app requires the following software be installed on the\n\u003cstrong\u003ecompute nodes\u003c/strong\u003e that the batch job is intended to run on (\u003cstrong\u003eNOT\u003c/strong\u003e the\nOnDemand node):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.tacc.utexas.edu/research-development/tacc-projects/lmod\" rel=\"nofollow\"\u003eLmod\u003c/a\u003e 6.0.1+ or any other \u003ccode\u003emodule restore\u003c/code\u003e and \u003ccode\u003emodule load \u0026lt;modules\u0026gt;\u003c/code\u003e based\nCLI used to load appropriate environments within the batch job before\nlaunching the RStudio Server.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003ewithout Singularity\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.r-project.org/\" rel=\"nofollow\"\u003eR\u003c/a\u003e 3.3.2+ (earlier versions are untested but may work for you)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.rstudio.com/products/rstudio-server/\" rel=\"nofollow\"\u003eRStudio Server\u003c/a\u003e 1.0.136+ (earlier versions are untested by may work for you)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://proot-me.github.io/\" rel=\"nofollow\"\u003ePRoot\u003c/a\u003e 5.1.0+ (used to setup fake bind mount)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eor with Singularity\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e 2.4.2+\u003c/li\u003e\n\u003cli\u003eA Singularity image similar to \u003ca href=\"https://www.singularity-hub.org/collections/463\" rel=\"nofollow\"\u003enickjer/singularity-rstudio\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eCorresponding module to launch the above Singularity image (see\n\u003ca href=\"https://github.com/nickjer/singularity-rstudio/blob/master/example_module/\"\u003eexample_module\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2 id=\"user-content-install\"\u003e\u003ca class=\"heading-link\" href=\"#install\"\u003eInstall\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003cp\u003eUse git to clone this app and checkout the desired branch/version you want to\nuse:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003escl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git clone \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003erepo\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git checkout \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etag/branch\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou will not need to do anything beyond this as all necessary assets are\ninstalled. You will also not need to restart this app as it isn\u0027t a Passenger\napp.\u003c/p\u003e\n\u003cp\u003eTo update the app you would:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git fetch\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git checkout \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etag/branch\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAgain, you do not need to restart the app as it isn\u0027t a Passenger app.\u003c/p\u003e\n\u003ch2 id=\"user-content-contributing\"\u003e\u003ca class=\"heading-link\" href=\"#contributing\"\u003eContributing\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eFork it ( \u003ca href=\"https://github.com/OSC/bc_osc_rstudio_server/fork\"\u003ehttps://github.com/OSC/bc_osc_rstudio_server/fork\u003c/a\u003e )\u003c/li\u003e\n\u003cli\u003eCreate your feature branch (\u003ccode\u003egit checkout -b my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCommit your changes (\u003ccode\u003egit commit -am \u0027Add some feature\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003ePush to the branch (\u003ccode\u003egit push origin my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a new Pull Request\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-curp-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#curp-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecurp-singularity\u003c/h1\u003e\n\u003cp\u003eThe singularity definition file of curp container and the workflow to build and upload sif file to GHCR.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-pull-and-use-pre-built-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-pull-and-use-pre-built-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to pull and use pre-built image\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull curp_singularity.sif oras://ghcr.io/passive-radio/curp-singularity:latest\nsingularity \u003cspan class=\"pl-c1\"\u003etest\u003c/span\u003e curp_singularity.sif\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 11,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1570733859.0
+ "updated_at": 1670898005.0
},
{
"data_format": 2,
- "description": "A singularity recipe for SALSA: A tool to scaffold long read assemblies with Hi-C data ",
+ "description": "Slurm Docker and Apptainer commands",
"filenames": [
- "Singularity"
+ "singularity/Singularity.recipe"
],
- "full_name": "ISU-HPC/SALSA",
+ "full_name": "Yessense/slurm_ml_pipeline",
"latest_release": null,
- "readme": "\u003ch1 id=\"user-content-salsa\"\u003e\u003ca class=\"heading-link\" href=\"#salsa\"\u003eSALSA\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003c/h1\u003e\n\u003cp\u003eA singularity recipe for SALSA: A tool to scaffold long read assemblies with Hi-C data\u003c/p\u003e\n\u003cp\u003eThe executables are located in /SALSA/*.py\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1526316679.0
+ "updated_at": 1671531473.0
},
{
"data_format": 2,
- "description": "Heavy quark evolution framework in heavy-ion collisions",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "Yingru/hic_HQ",
+ "full_name": "CNCLgithub/eeg-psiturk",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-hic_hq\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#hic_hq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ehic_HQ\u003c/h1\u003e\n\u003cp\u003eA framework of heavy quark evolution in heavy-ion collisions\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#0-work-locally--make-sure-you-have-root-right-\"\u003e0. Work locally (make sure you have root right)\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#1-work-with-cloud-computing-system\"\u003e1. Work with cloud computing system\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#11-install--docker--in-chameleon-instance\"\u003e1.1 Install \u003ccode\u003eDocker\u003c/code\u003e in Chameleon instance\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#12a-build-a--docker--container-from--dockerfile-\"\u003e1.2a Build a \u003ccode\u003eDocker\u003c/code\u003e container from \u003cem\u003eDockerfile\u003c/em\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#12b-instead-of-12a--pull-a--docker--image-from--dockerhub-\"\u003e1.2b Instead of 1.2a, pull a \u003ccode\u003eDocker\u003c/code\u003e image from \u003cem\u003edockerhub\u003c/em\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#13-install--singularity--in-chameleon-instance\"\u003e1.3 Install \u003ccode\u003esingularity\u003c/code\u003e in Chameleon instance\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#13a-pull--singularity--container-from--dockerhub-\"\u003e1.3a Pull \u003ccode\u003esingularity\u003c/code\u003e container from \u003ccode\u003edockerhub\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#13b-or-instead-13a--build--singularity--image-from-recipe\"\u003e1.3b Or instead 1.3a, build \u003ccode\u003esingularity\u003c/code\u003e image from recipe\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#2-remaining-issue--to-be-done-\"\u003e2 Remaining issue (to be done)\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-0-work-locally-make-sure-you-have-root-right-or-have-the-all-the-dependencies\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#0-work-locally-make-sure-you-have-root-right-or-have-the-all-the-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e0. Work locally (make sure you have root right, or have the all the dependencies)\u003c/h2\u003e\n\u003cp\u003eprerequisites:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003epython3, numpy, scipy, hdf5, pip\u003c/li\u003e\n\u003cli\u003eC/C++/Fortran compilers ==\u0026gt; tested: GNU gcc/g++/gfortran 4.8.4 version\u003c/li\u003e\n\u003cli\u003ecmake (2.8+), boost (1.54+), HDF5 (1.8.11)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eor you can install all the dependencies using \u003ccode\u003einstall_software.sh\u003c/code\u003e (on a ubunut14.04 OS)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/Yingru/hic_HQ.git\n\ncd hic_HQ/\nbash install_software.sh # returns a tar.gz file where contains all the modules\n\n\nmkdir test\ncp hic_HQ-osg/hic_HQ-osg.tar.gz test/\ncd test/\ntar -xzf hic_HQ-osg.tar.gz\ncp -r ../workdir/ hic_HQ-osg\ncd hic_HQ-osg/workdir\n\n\npython3 python3 run-events_cD.py args.conf 0\n# args.conf set up parameters ($\\alpha_s, \\hat{q}_{min}, \\hat{q}_{slope}, \\gamma$)\n# parameter_df.dat are diffusion parameters (particle_ID, hydro_ID, HQ list ...)\n# parameter_hd.dat are hadronization parameters (particle_ID ...)\n# HQ_sample.conf are initially sample HQ list parameters\n# vishnew.conf are hydro parameters (shear, bulk, edensity ...)\n# 0 is jobID, useful when you run parallel jobs\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-1-work-with-cloud-computing-system\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#1-work-with-cloud-computing-system\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Work with cloud computing system\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://www.chameleoncloud.org/\" rel=\"nofollow\"\u003e\u003cstrong\u003eChameleon\u003c/strong\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[tutorial, get started]((\u003ca href=\"https://chameleoncloud.readthedocs.io/en/latest/getting-started/index.html\" rel=\"nofollow\"\u003ehttps://chameleoncloud.readthedocs.io/en/latest/getting-started/index.html\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eCreate an account, join/create a project\u003c/li\u003e\n\u003cli\u003eLoggin in through \u003ca href=\"https://chi.uc.chameleoncloud.org/\" rel=\"nofollow\"\u003eUChicago\u003c/a\u003e or \u003ca href=\"https://chi.tacc.chameleoncloud.org/\" rel=\"nofollow\"\u003eTACC\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReserve a node, launch instance (I choosed \u003cstrong\u003eUbuntu14.04\u003c/strong\u003e), create a key pair, associate IP address\u003c/li\u003e\n\u003cli\u003eaccess your instance\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e# download the .pem key pair\nchmod 600 yx59chameleonkey.pem\nssh-add yx59chameleonkey.pem\nssh cc@ip_address\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-11-install-docker-in-chameleon-instance\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#11-install-docker-in-chameleon-instance\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1.1 Install \u003ccode\u003eDocker\u003c/code\u003e in Chameleon instance\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003essh cc@192.5.87.178\n\n# check OS version\nlsb_release -a\n\n# install docker and its dependencies\n# 1. you can use the default installation, such as apt-get to install from OS repository\n# 2. install from source (17.03.2 version)\n\nmkdir Install \u0026amp;\u0026amp; cd Install\nsudo apt-get install libsystemd-journal0\nwget https://download.docker.com/linux/ubuntu/dists/trusty/pool/stable/amd64/docker-ce_17.03.2~ce-0~ubuntu-trusty_amd64.deb\nsudo dpkg -i docker-ce_17.03.2~ce-0~ubuntu-trusty_amd64.deb\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-12a-build-a-docker-container-from-dockerfile\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#12a-build-a-docker-container-from-dockerfile\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1.2a Build a \u003ccode\u003eDocker\u003c/code\u003e container from \u003cem\u003eDockerfile\u003c/em\u003e\n\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e# build the docker image\ngit clone https://github.com/Yingru/hic_HQ.git\ncd hic_HQ/\nsudo docker build -t hic_hq:v1 .\n\n# check docker images\nsudo docker images\ncd workdir/\n\n# to run the executable\n# run-events_cD.py is the pipeline script\n# args.conf changes the parameters ($alpha_s, \\hat{q}_{min}, \\hat{q}_{slope}, \\gamma$\n# 0 is the jobID (useful to run parallel events)\nsudo docker run -v `pwd`:/var/hic_HQ-osg/results hic_hq:v1 python3 run-events_cD.py args.conf 0\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-12b-instead-of-12a-pull-a-docker-image-from-dockerhub\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#12b-instead-of-12a-pull-a-docker-image-from-dockerhub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1.2b Instead of 1.2a, pull a \u003ccode\u003eDocker\u003c/code\u003e image from \u003cem\u003edockerhub\u003c/em\u003e\n\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e# distinguish from previous case, dockerhub autimatically assign tag as latest\nsudo docker pull yingruxu/hic_hq:latest\nsudo docker images\ncd workdir/\nsudo docker run -v `pwd`:/var/hic_HQ-osg/results yingruxu/hic_hq:latest python3 run-events_cD.py args.conf 1\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-13-install-singularity-in-chameleon-instance\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#13-install-singularity-in-chameleon-instance\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1.3 Install \u003ccode\u003esingularity\u003c/code\u003e in Chameleon instance\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e#singularity dependencies\nsudo apt-get update\nsudo apt-get install libarchive-dev python dh-autoreconf build-essential\n\n# install the maste branch\ngit clone https://github.com/singularityware/singularity.git\ncd singularity\n\n# ERRRR, their master branch is not consistent with tutorial!\ngit checkout vault/release-2.5\n\n./autogen.sh\n./configure --prefix=/usr/local\nmake\nsudo make install\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-13a-pull-singularity-container-from-dockerhub\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#13a-pull-singularity-container-from-dockerhub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1.3a Pull \u003ccode\u003esingularity\u003c/code\u003e container from \u003ccode\u003edockerhub\u003c/code\u003e\n\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e# check version, better use 2.5.2 (for some reason, the older version 2.3 doesn\u0027t pull)\nsingularity --version\n\ncd workdir/\nsudo apt-get update \u0026amp;\u0026amp; sudo apt-get install squashfs-tools \nsingularity pull docker://yingruxu/hic_hq\n\n# convert this to a writable container\nsingularity build --writable hic_hq_write.img hic_hq.simg\n\n# or build from dockerhub (not sure what is the difference)\nsingularity build --writable hic_hq_write.img docker://yingruxu/hic_hq\n\n\n# doesn\u0027t work? read-only filesystem? I am not able to write? -- fixed\n# now the second question, not enough space\nsudo singularity shell --writable -B $PWD:/var/hic_HQ-osg/results hic_hq_write.img\ncd /var/hic_HQ-osg/results/\n# for some reason need to set locale?\necho \"LC_ALL=en_US.UTF-8\" \u0026gt;\u0026gt; /etc/environment\necho \"en_US.UTF-8 UTF-8\" \u0026gt;\u0026gt; /etc/locale.gen\necho \"LANG=en_US.UTF-8\" \u0026gt; /etc/locale.conf\nlocale-gen en_US.UTF-8\n\npython3 run-events_cD.py args.conf 0\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-13b-or-instead-13a-build-singularity-image-from-recipe\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#13b-or-instead-13a-build-singularity-image-from-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1.3b Or instead 1.3a, build \u003ccode\u003esingularity\u003c/code\u003e image from recipe\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e# remember to build writable image\nsudo singularity build --writable hic_hq.img Singularity\n\n# to test singularity container interactively\nsudo singularity shell --writable -B $PWD:/var/hic_HQ-osg/results hic_hq.img\n\n\u0026lt;\u0026lt;\u0026lt;\u0026lt;\u0026lt;\u0026lt;\u0026lt; HEAD\n# to run trento events\nsudo singularity exec --writable -B $PWD:/var/hic_HQ-osg/results hic_hq.img /var/hic_HQ-osg/bin/trento Pb Pb 10 --output initial.hdf5\n\n# to run full events\nsudo singularity exec --writable -B $PWD:/var/hic_HQ-osg/results hic_hq.img python3 /var/hic_HQ-osg/results/run-events_cD.py /var/hic_HQ-osg/results/args.conf 0\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-2-remaining-issue-to-be-done\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#2-remaining-issue-to-be-done\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2 Remaining issue (to be done)\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eChange the \u003cem\u003eDockerfile\u003c/em\u003e to add the \u003ccode\u003elocale\u003c/code\u003e information (it is fine with \u003ccode\u003eDocker\u003c/code\u003e container, but cause trouble when using \u003ccode\u003esingularity pull/build\u003c/code\u003e from \u003cem\u003eDockerhub\u003c/em\u003e\n\u003c/li\u003e\n\u003cli\u003eRight now I still need \u003ccode\u003eroot\u003c/code\u003e privilege to be able to write in a singularity container filesystem (even though I already choose the \u003ccode\u003e--writable\u003c/code\u003e option, need to fix that\u003c/li\u003e\n\u003cli\u003eWhile running in a \u003ccode\u003esingularity\u003c/code\u003e container, the space limit is reached? (use \u003ccode\u003e--sandbox\u003c/code\u003e instead of \u003ccode\u003e--writable\u003c/code\u003e?)\n=======\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt;\u0026gt;\u0026gt;\u0026gt;\u0026gt;\u0026gt;\u0026gt; 6c170142da31ead53fd2857f8755f37b4a68a8be\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-psiturk-experiment\" class=\"anchor\" aria-hidden=\"true\" href=\"#psiturk-experiment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePsiturk Experiment\u003c/h1\u003e\n\u003cp\u003ePsiturk experiment used in Galileo (response slider) style experiments.\u003c/p\u003e\n\u003cp\u003eBased off of \u003ca href=\"https://github.com/CNCLgithub/rooms-psiturk\"\u003eCNCLgithub/rooms-psiturk\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-setup-linux\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-linux\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup Linux\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edependencies\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003esingularity\u003c/li\u003e\n\u003cli\u003ewget\u003c/li\u003e\n\u003cli\u003etar\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esetup\u003c/h3\u003e\n\u003cp\u003esee help\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003echmod +x setup.sh\n./setup.sh --help\n./setup.sh cont data\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis setup file will, by default, pull a container and data files from box.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-setup-mac\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-mac\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup Mac\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-dependencies-1\" class=\"anchor\" aria-hidden=\"true\" href=\"#dependencies-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edependencies\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003econda\u003c/li\u003e\n\u003cli\u003etar\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-setup-1\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esetup\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003echmod +x setup.sh\n./setup.sh --help\n./setup.sh data env\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-psiturk\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-psiturk\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning psiturk\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda activate eeg-psiturk-env\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e psiturk/\npsiturk server on\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-api\" class=\"anchor\" aria-hidden=\"true\" href=\"#api\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAPI\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-taskjs\" class=\"anchor\" aria-hidden=\"true\" href=\"#taskjs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etask.js\u003c/h3\u003e\n\u003cp\u003eThe majority of the experiment\u0027s functionality is described in \u003ccode\u003epsiturk/static/js/task.js\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe main class used to setup pages for both the experiment and instructions is defined as \u003ccode\u003ePage\u003c/code\u003e.\n\u003ccode\u003ePage\u003c/code\u003e handles both media presentation and scale setup. See the docstrings for more info.\u003c/p\u003e\n\u003cp\u003eThere are three other main elements, \u003ccode\u003eInstructionRunner\u003c/code\u003e, \u003ccode\u003eQuiz\u003c/code\u003e, and \u003ccode\u003eExperiment\u003c/code\u003e.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-css-and-html\" class=\"anchor\" aria-hidden=\"true\" href=\"#css-and-html\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecss and html\u003c/h3\u003e\n\u003cp\u003eThe main html files are located under \u003ccode\u003epsiturk/templates/\u003c/code\u003e and css is under \u003ccode\u003epsiturk/static/css\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eNotabley, \u003ccode\u003estage.html\u003c/code\u003e describes the pages for experimental trials and \u003ccode\u003eslider.css\u003c/code\u003e describes some of the elements found in the scale.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1534526792.0
+ "updated_at": 1670977729.0
},
{
"data_format": 2,
- "description": "Provides Visidata using Debian Stretch as Singularity Image",
+ "description": null,
"filenames": [
- "Singularity"
+ "test/core/044-singularity-nonsharedfs-minimal/image/Singularity"
],
- "full_name": "paulklemm/visidata-singularity",
+ "full_name": "Jtg003/https-github.com-pegasus-isi-pegasus",
"latest_release": null,
+ "readme": "\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"doc/sphinx/images/pegasusfront-black-reduced.png\"\u003e\u003cimg src=\"doc/sphinx/images/pegasusfront-black-reduced.png\" width=\"200\" alt=\"Pegasus WMS\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pegasus-workflow-management-system\" class=\"anchor\" aria-hidden=\"true\" href=\"#pegasus-workflow-management-system\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePegasus Workflow Management System\u003c/h2\u003e\n\u003cp align=\"left\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/d86f06b102fe2b21a15c2fe7b335a1fa19d1a8e67a2086236348bcf6e2bc83b8/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f706567617375732d6973692f706567617375733f636f6c6f723d626c7565266c6162656c3d4c6963656e6365\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d86f06b102fe2b21a15c2fe7b335a1fa19d1a8e67a2086236348bcf6e2bc83b8/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f706567617375732d6973692f706567617375733f636f6c6f723d626c7565266c6162656c3d4c6963656e6365\" data-canonical-src=\"https://img.shields.io/github/license/pegasus-isi/pegasus?color=blue\u0026amp;label=Licence\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/eb3de5004fcc489334124e42bd6c5141eac62cd9bd5a0ac8abdc70b3abf70041/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f762f7461672f706567617375732d6973692f706567617375733f6c6162656c3d4c6174657374\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/eb3de5004fcc489334124e42bd6c5141eac62cd9bd5a0ac8abdc70b3abf70041/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f762f7461672f706567617375732d6973692f706567617375733f6c6162656c3d4c6174657374\" data-canonical-src=\"https://img.shields.io/github/v/tag/pegasus-isi/pegasus?label=Latest\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/defd5997fcf06cfa5e84a7b31da92ac209152dd742f4a0f4d1ca47d7e649fc3f/68747470733a2f2f696d672e736869656c64732e696f2f707970692f646d2f706567617375732d776d733f636f6c6f723d677265656e266c6162656c3d50795049253230446f776e6c6f616473\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/defd5997fcf06cfa5e84a7b31da92ac209152dd742f4a0f4d1ca47d7e649fc3f/68747470733a2f2f696d672e736869656c64732e696f2f707970692f646d2f706567617375732d776d733f636f6c6f723d677265656e266c6162656c3d50795049253230446f776e6c6f616473\" data-canonical-src=\"https://img.shields.io/pypi/dm/pegasus-wms?color=green\u0026amp;label=PyPI%20Downloads\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/6dd2629a781aaaf2b5f44f4adb568746dfc3d9601a4f93a55a752a436140e3ba/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f636f6e7472696275746f72732d616e6f6e2f706567617375732d6973692f706567617375733f636f6c6f723d677265656e266c6162656c3d436f6e7472696275746f7273\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6dd2629a781aaaf2b5f44f4adb568746dfc3d9601a4f93a55a752a436140e3ba/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f636f6e7472696275746f72732d616e6f6e2f706567617375732d6973692f706567617375733f636f6c6f723d677265656e266c6162656c3d436f6e7472696275746f7273\" data-canonical-src=\"https://img.shields.io/github/contributors-anon/pegasus-isi/pegasus?color=green\u0026amp;label=Contributors\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp\u003ePegasus WMS is a configurable system for mapping and executing scientific\nworkflows over a wide range of computational infrastructures including laptops,\ncampus clusters, supercomputers, grids, and commercial and academic clouds.\nPegasus has been used to run workflows with up to 1 million tasks that process\ntens of terabytes of data at a time.\u003c/p\u003e\n\u003cp\u003ePegasus WMS bridges the scientific domain and the execution environment by\nautomatically mapping high-level workflow descriptions onto distributed\nresources. It automatically locates the necessary input data and computational\nresources required by a workflow, and plans out all of the required data\ntransfer and job submission operations required to execute the workflow.\nPegasus enables scientists to construct workflows in abstract terms without\nworrying about the details of the underlying execution environment or the\nparticulars of the low-level specifications required by the middleware (Condor,\nGlobus, Amazon EC2, etc.). In the process, Pegasus can $ ant dist and optimize the\nworkflow to enable efficient, high-performance execution of large\nworkflows on complex, distributed infrastructures.\u003c/p\u003e\n\u003cp\u003ePegasus has a number of features that contribute to its usability and\neffectiveness:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePortability / Reuse \u2013 User created workflows can easily be run in different\nenvironments without alteration. Pegasus currently runs workflows on top of\nCondor pools, Grid infrastructures such as Open Science Grid and XSEDE,\nAmazon EC2, Google Cloud, and HPC clusters. The same workflow can run on a\nsingle system or across a heterogeneous set of resources.\u003c/li\u003e\n\u003cli\u003ePerformance \u2013 The Pegasus mapper can reorder, group, and prioritize tasks in\norder to increase overall workflow performance.\u003c/li\u003e\n\u003cli\u003eScalability \u2013 Pegasus can easily scale both the size of the workflow, and\nthe resources that the workflow is distributed over. Pegasus runs workflows\nranging from just a few computational tasks up to 1 million. The number of\nresources involved in executing a workflow can scale as needed without any\nimpediments to performance.\u003c/li\u003e\n\u003cli\u003eProvenance \u2013 By default, all jobs in Pegasus are launched using the\nKickstart wrapper that captures runtime provenance of the job and helps in\ndebugging. Provenance data is collected in a database, and the data can be\nqueried with tools such as pegasus-statistics, pegasus-plots, or directly\nusing SQL.\u003c/li\u003e\n\u003cli\u003eData Management \u2013 Pegasus handles replica selection, data transfers and\noutput registration in data catalogs. These tasks are added to a workflow as\nauxilliary jobs by the Pegasus planner.\u003c/li\u003e\n\u003cli\u003eReliability \u2013 Jobs and data transfers are automatically retried in case of\nfailures. Debugging tools such as pegasus-analyzer help the user to debug the\nworkflow in case of non-recoverable failures.\u003c/li\u003e\n\u003cli\u003eError Recovery \u2013 When errors occur, Pegasus tries to recover when possible\nby retrying tasks, by retrying the entire workflow, by providing workflow-level\ncheckpointing, by re-mapping portions of the workflow, by trying alternative\ndata sources for staging data, and, when all else fails, by providing a rescue\nworkflow containing a description of only the work that remains to be done.\nIt cleans up storage as the workflow is executed so that data-intensive\nworkflows have enough space to execute on storage-constrained resources.\nPegasus keeps track of what has been done (provenance) including the locations\nof data used and produced, and which software was used with which parameters.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-hidden=\"true\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003cp\u003eYou can find more information about Pegasus on the \u003ca href=\"http://pegasus.isi.edu\" rel=\"nofollow\"\u003ePegasus Website\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003ePegasus has an extensive \u003ca href=\"http://pegasus.isi.edu/documentation/\" rel=\"nofollow\"\u003eUser Guide\u003c/a\u003e\nthat documents how to create, plan, and monitor workflows.\u003c/p\u003e\n\u003cp\u003eWe recommend you start by completing the Pegasus Tutorial from \u003ca href=\"https://pegasus.isi.edu/documentation/user-guide/tutorial.html\" rel=\"nofollow\"\u003eChapter 3 of the\nPegasus User Guide\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe easiest way to install Pegasus is to use one of the binary packages\navailable on the \u003ca href=\"http://pegasus.isi.edu/downloads\" rel=\"nofollow\"\u003ePegasus downloads page\u003c/a\u003e.\nConsult \u003ca href=\"https://pegasus.isi.edu/documentation/user-guide/installation.html\" rel=\"nofollow\"\u003eChapter 2 of the Pegasus User Guide\u003c/a\u003e\nfor more information about installing Pegasus from binary packages.\u003c/p\u003e\n\u003cp\u003eThere is documentation on the Pegasus website for the Python, Java and R\n\u003ca href=\"https://pegasus.isi.edu/documentation/reference-guide/api-reference.html\" rel=\"nofollow\"\u003eAbstract Workflow Generator APIs\u003c/a\u003e.\nWe strongly recommend using the Python API which is feature complete, and also\nallows you to invoke all the pegasus command line tools.\u003c/p\u003e\n\u003cp\u003eYou can use \u003cem\u003epegasus-init\u003c/em\u003e command line tool to run several examples\non your local machine. Consult \u003ca href=\"https://pegasus.isi.edu/documentation/user-guide/example-workflows.html\" rel=\"nofollow\"\u003eChapter 4 of the Pegasus\nUser Guide\u003c/a\u003e\nfor more information.\u003c/p\u003e\n\u003cp\u003eThere are also examples of how to \u003ca href=\"https://pegasus.isi.edu/documentation/user-guide/execution-environments.html\" rel=\"nofollow\"\u003eConfigure Pegasus for Different Execution\nEnvironments\u003c/a\u003e\nin the Pegasus User Guide.\u003c/p\u003e\n\u003cp\u003eIf you need help using Pegasus, please contact us. See the [contact page]\n(\u003ca href=\"http://pegasus.isi.edu/contact\" rel=\"nofollow\"\u003ehttp://pegasus.isi.edu/contact\u003c/a\u003e) on the Pegasus website for more information.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-from-source\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-from-source\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding from Source\u003c/h2\u003e\n\u003cp\u003ePegasus can be compiled on any recent Linux or Mac OS X system.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-source-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#source-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSource Dependencies\u003c/h3\u003e\n\u003cp\u003eIn order to build Pegasus from source, make sure you have the following installed:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eGit\u003c/li\u003e\n\u003cli\u003eJava 8 or higher\u003c/li\u003e\n\u003cli\u003ePython 3.5 or higher\u003c/li\u003e\n\u003cli\u003eR\u003c/li\u003e\n\u003cli\u003eAnt\u003c/li\u003e\n\u003cli\u003egcc\u003c/li\u003e\n\u003cli\u003eg++\u003c/li\u003e\n\u003cli\u003emake\u003c/li\u003e\n\u003cli\u003etox 3.14.5 or higher\u003c/li\u003e\n\u003cli\u003emysql (optional, required to access MySQL databases)\u003c/li\u003e\n\u003cli\u003epostgresql (optional, required to access PostgreSQL databases)\u003c/li\u003e\n\u003cli\u003ePython pyyaml\u003c/li\u003e\n\u003cli\u003ePython GitPython\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOther packages may be required to run unit tests, and build MPI tools.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-compiling\" class=\"anchor\" aria-hidden=\"true\" href=\"#compiling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompiling\u003c/h3\u003e\n\u003cp\u003eAnt is used to compile Pegasus.\u003c/p\u003e\n\u003cp\u003eTo get a list of build targets run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ant -p\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe targets that begin with \"dist\" are what you want to use.\u003c/p\u003e\n\u003cp\u003eTo build a basic binary tarball (excluding documentation), run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ant dist\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo build the release tarball (including documentation), run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ant dist-release\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe resulting packages will be created in the \u003ccode\u003edist\u003c/code\u003e subdirectory.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1545049200.0
+ "updated_at": 1671659562.0
},
{
"data_format": 2,
- "description": "Run IGV in a XFCE-based Singularity container",
+ "description": "pydocbrowser website",
"filenames": [
- "Singularity"
+ "build/sources/pygments-2.12.0/tests/examplefiles/singularity/Singularity",
+ "build/sources/pygments-2.14.0/tests/examplefiles/singularity/Singularity",
+ "build/sources/pygments-2.11.2/tests/examplefiles/singularity/Singularity",
+ "build/sources/pygments-2.13.0/tests/examplefiles/singularity/Singularity"
],
- "full_name": "bihealth/singularity-igv",
+ "full_name": "pydocbrowser/pydocbrowser.github.io",
"latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pydocbrowser/pydocbrowser\"\u003epydocbrowser\u003c/a\u003e website\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pydocbrowser/pydocbrowser.github.io/actions/workflows/build.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pydocbrowser/pydocbrowser.github.io/actions/workflows/build.yml/badge.svg\" alt=\"build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1612971331.0
+ "updated_at": 1650700618.0
},
{
"data_format": 2,
- "description": null,
+ "description": "repository for running scripts on Orion",
"filenames": [
- "Singularity.centos7-cuda-tf1.11.0-torch0.4.1",
- "Singularity.centos7-tensorflow-cpu"
+ "Singularity"
],
- "full_name": "apphys/hpsim_rl_singularity",
+ "full_name": "LingoNMBU/DAT300-CA2-Orion",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-recipe\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#singularity-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity recipe\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1542320831.0
+ "updated_at": 1667572209.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Run assembler (Canu, flye, hifiasm) on a set of long read files",
"filenames": [
- "Singularity.v2.1.0"
+ "singularity/Singularity"
],
- "full_name": "baxpr/mp2rage",
+ "full_name": "sequana/lora",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-mp2rage\" class=\"anchor\" aria-hidden=\"true\" tabindex=\"-1\" href=\"#mp2rage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emp2rage\u003c/h1\u003e\n\u003cp\u003eReconstructs a T1-weighted image from images at multiple inversion times following Marques et al. 2009. The robust adjustment (beta factor) of O\u0027Brien 2014 is also implemented.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eMarques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PF, Gruetter R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage. 2010 Jan 15;49(2):1271-81. doi:10.1016/j.neuroimage.2009.10.002. PMID: 19819338.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.ncbi.nlm.nih.gov/pubmed/19819338\" rel=\"nofollow\"\u003ehttps://www.ncbi.nlm.nih.gov/pubmed/19819338\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe large spatial inhomogeneity in transmit B(1) field (B(1)(+)) observable in human MR images at high static magnetic fields (B(0)) severely impairs image quality. To overcome this effect in brain T(1)-weighted images, the MPRAGE sequence was modified to generate two different images at different inversion times, MP2RAGE. By combining the two images in a novel fashion, it was possible to create T(1)-weighted images where the result image was free of proton density contrast, T(2) contrast, reception bias field, and, to first order, transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B(1)(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T(1)-weighted images, acquired within 12 min, high-resolution 3D T(1) maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T(1) maps were validated in phantom experiments. In humans, the T(1) values obtained at 7 T were 1.15+/-0.06 s for white matter (WM) and 1.92+/-0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min, the T(1) values obtained (0.81+/-0.03 s for WM and 1.35+/-0.05 for GM) were once again found to be in very good agreement with values in the literature.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eO\u0027Brien KR, Kober T, Hagmann P, et al. Robust T1-weighted Structural Brain Imaging and Morphometry at 7T Using MP2RAGE PLoS One. 2014;9(6):e99676. Published 2014 Jun 16. doi:10.1371/journal.pone.0099676\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://pubmed.ncbi.nlm.nih.gov/24932514/\" rel=\"nofollow\"\u003ehttps://pubmed.ncbi.nlm.nih.gov/24932514/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003ePurpose: To suppress the noise, by sacrificing some of the signal homogeneity for numerical stability, in uniform T1 weighted (T1w) images obtained with the magnetization prepared 2 rapid gradient echoes sequence (MP2RAGE) and to compare the clinical utility of these robust T1w images against the uniform T1w images.\u003c/p\u003e\n\u003cp\u003eMaterials and methods: 8 healthy subjects (29.0 \u00b1 4.1 years; 6 Male), who provided written consent, underwent two scan sessions within a 24 hour period on a 7T head-only scanner. The uniform and robust T1w image volumes were calculated inline on the scanner. Two experienced radiologists qualitatively rated the images for: general image quality; 7T specific artefacts; and, local structure definition. Voxel-based and volume-based morphometry packages were used to compare the segmentation quality between the uniform and robust images. Statistical differences were evaluated by using a positive sided Wilcoxon rank test.\u003c/p\u003e\n\u003cp\u003eResults: The robust image suppresses background noise inside and outside the skull. The inhomogeneity introduced was ranked as mild. The robust image was significantly ranked higher than the uniform image for both observers (observer 1/2, p-value = 0.0006/0.0004). In particular, an improved delineation of the pituitary gland, cerebellar lobes was observed in the robust versus uniform T1w image. The reproducibility of the segmentation results between repeat scans improved (p-value = 0.0004) from an average volumetric difference across structures of \u2248 6.6% to \u2248 2.4% for the uniform image and robust T1w image respectively.\u003c/p\u003e\n\u003cp\u003eConclusions: The robust T1w image enables MP2RAGE to produce, clinically familiar T1w images, in addition to T1 maps, which can be readily used in uniform morphometry packages.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1595274818.0
+ "updated_at": 1673268784.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for dvc (https://github.com/iterative/dvc)",
"filenames": [
- "Singularity.v1.0.0"
+ "Singularity.2.40.0",
+ "Singularity.1.11.16",
+ "Singularity.1.6.1",
+ "Singularity.2.8.2",
+ "Singularity",
+ "Singularity.2.1.0",
+ "Singularity.2.8.1"
],
- "full_name": "baxpr/dwi-reorder",
+ "full_name": "powerPlant/dvc-srf",
"latest_release": null,
+ "readme": "\u003cp\u003eSingularity recipe files for the DVC tool for Data Version Control\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1574202643.0
+ "updated_at": 1665710810.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Code for blog Reproducibility in Tensorflow/PyTorch/JAX",
"filenames": [
- "Singularity",
- "spades.v3.7/Singularity",
- "spades.v3.11/Singularity",
- "shovill.v.1.9/Singularity"
+ "Singularity.recipe"
],
- "full_name": "kristyhoran/multi_assembler_singularity",
+ "full_name": "WolodjaZ/reproduc-ml-tutorial",
"latest_release": null,
- "readme": "\u003cp\u003eA singulairty recipe which incorporates shovill and skesa\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-reproducibility-in-tensorflowpytorchjax\" class=\"anchor\" aria-hidden=\"true\" href=\"#reproducibility-in-tensorflowpytorchjax\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReproducibility in Tensorflow/PyTorch/JAX\u003c/h1\u003e\n\u003cp\u003eThis is an example repository from my blog on \u003ca href=\"https://wolodjaz.github.io/blogs/\" rel=\"nofollow\"\u003eReproducibility in Tensorflow/PyTorch/JAX\u003c/a\u003e, so please read it first.\u003c/p\u003e\n\u003cp\u003eThe structure of this repository differs from the one in the blog due to the addition of \u003ca href=\"https://mybinder.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003eBinder\u003c/a\u003e settings. The repository structure is as follows:\u003c/p\u003e\n\u003cpre lang=\"text\"\u003e\u003ccode\u003ereproduc-ml-tutorial/\n workspace/ # Default location for data sets, logs, models, parameter files.\n train.yaml # Train hyper-parameters.\n .dockerignore # Docker ignore file that prevents workspace directory to be sent to docker server.\n DockerBuildfile # Docker recipe.\n environment.yml # Conda environment config file for mybinder\n index.ipynb # Example notebook from Reproducibility in Tensorflow/PyTorch/JAX part 2\n mlcube.yaml # MLCube definition file.\n train_jax.py # Python source code training simple neural network using MNIST data set with JAX.\n train_pytorch.py # Python source code training simple neural network using MNIST data set with PyTorch.\n train_tensorflow.py # Python source code training simple neural network using MNIST data set with Tensorflow.\n requirements.txt # Python project dependencies.\n run.sh # Main bash script that lunches python script based on passed argument\n Singularity.recipe # Singularity recipe.\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-the-reproducibility-in-tensorflowpytorchjax-part-22--notebook\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-the-reproducibility-in-tensorflowpytorchjax-part-22--notebook\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the \"Reproducibility in Tensorflow/PyTorch/JAX Part 2/2\" Notebook\u003c/h2\u003e\n\u003cp\u003eTo run the notebook, you can pull this repository and launch \u003ccode\u003eindex.ipynb\u003c/code\u003e locally, but you can also click on the badge below to test running it on BinderHub without pulling the repository \u003cg-emoji class=\"g-emoji\" alias=\"sunglasses\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f60e.png\"\u003e\ud83d\ude0e\u003c/g-emoji\u003e:\n\u003ca href=\"https://mybinder.org/v2/gh/WolodjaZ/reproduc-ml-tutorial/HEAD?labpath=index.ipynb\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/581c077bdbc6ca6899c86d0acc6145ae85e9d80e6f805a1071793dbe48917982/68747470733a2f2f6d7962696e6465722e6f72672f62616467655f6c6f676f2e737667\" alt=\"Binder\" data-canonical-src=\"https://mybinder.org/badge_logo.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-main-project\" class=\"anchor\" aria-hidden=\"true\" href=\"#main-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMain Project\u003c/h2\u003e\n\u003cp\u003eIn addition to running the notebook, you can also run the main application where you can train MNIST datasets on a basic neural network made in Pytorch/Jax/Tensorflow. You will build a docker image or a singularity image and launch it to run the training. Everything, including logs and data, will be saved under the \u003ccode\u003eworkspace\u003c/code\u003e directory. There is also a \u003ccode\u003etrain.yaml\u003c/code\u003e file where I have defined all the parameters used for the scripts. You can check and change them if you want to.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-the-project\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-the-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the Project\u003c/h2\u003e\n\u003cp\u003eTo run the project, we are using \u003ca href=\"https://github.com/mlcommons/mlcube\"\u003eMLCube\u003c/a\u003e, which provides the contract for our pipeline, as defined in the file \u003ccode\u003emlcube.yaml\u003c/code\u003e. Based on this file and the framework, you will need to first configure our environment by building our images. Before doing so, please install mlcube:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip install mlcube\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNext, create our images:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Prepare docker image\u003c/span\u003e\nmlcube configure --mlcube=. --platform=docker\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Prepare singularity image\u003c/span\u003e\nmlcube configure --mlcube=. --platform=singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can now run our pipelines by choosing which platform and framework to use:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Docker\u003c/span\u003e\nmlcube run --mlcube=. --platform=docker --task=pytorch\nmlcube run --mlcube=. --platform=docker --task=tensorflow\nmlcube run --mlcube=. --platform=docker --task=jax\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Singularity\u003c/span\u003e\nmlcube run --mlcube=. --platform=singularity --task=pytorch\nmlcube run --mlcube=. --platform=singularity --task=tensorflow\nmlcube run --mlcube=. --platform=singularity --task=jax\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAfter running the commands, pipeline will start the training process and the log and models will be saved under the \u003ccode\u003eworkspace\u003c/code\u003e folder.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-additional-resources\" class=\"anchor\" aria-hidden=\"true\" href=\"#additional-resources\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAdditional Resources:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eCheck out my blog \u003ca href=\"https://wolodjaz.github.io/blogs/\" rel=\"nofollow\"\u003eReproducibility in Tensorflow/PyTorch/JAX\u003c/a\u003e for more information on the topic.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://mybinder.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003eBinder\u003c/a\u003e is a great tool for creating and sharing custom computing environments with others.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/mlcommons/mlcube\"\u003eMLCube\u003c/a\u003e is a useful tool that provides a consistent interface for machine learning models in containers like Docker.\u003c/li\u003e\n\u003cli\u003eFor more guidance on reproducible research, check out \u003ca href=\"https://the-turing-way.netlify.app/reproducible-research/reproducible-research.html\" rel=\"nofollow\"\u003eThe Turing Way\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-and-grand-finally\" class=\"anchor\" aria-hidden=\"true\" href=\"#and-grand-finally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAnd Grand Finally\u003c/h2\u003e\n\u003cp\u003eClosing comment offered by chatGPT \u003cg-emoji class=\"g-emoji\" alias=\"robot\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f916.png\"\u003e\ud83e\udd16\u003c/g-emoji\u003e\u003c/p\u003e\n\u003cp\u003eWe\u0027re so glad you\u0027ve given our project a try! Your feedback is incredibly valuable to us as we continue to improve and update the project. Whether you have questions, comments, or suggestions, please don\u0027t hesitate to reach out to us by emailing us at \u003ca href=\"mailto:vladimirzaigrajew@gmail.com\"\u003evladimirzaigrajew@gmail.com\u003c/a\u003e or by opening an issue on the GitHub repository. Thank you for your support!\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1543190575.0
+ "updated_at": 1673392331.0
},
{
"data_format": 2,
- "description": "lowcharts is meant to be used in those scenarios where we have numerical data in text files that we want to display in the terminal to do a basic analysis.",
+ "description": null,
"filenames": [
- "0.4.2/Singularity",
- "0.5.8/Singularity",
- "0.5.7/Singularity"
+ "TFD/Singularity.0.4",
+ "TFD/Singularity"
],
- "full_name": "pscedu/singularity-lowcharts",
- "latest_release": "v0.5.8",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-lowcharts/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-lowcharts/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-lowcharts/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-lowcharts/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f7fc9ce8a0f943ba64af6c034355a9c31eecd12def757563ede07b3784c8f519/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6c6f77636861727473\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f7fc9ce8a0f943ba64af6c034355a9c31eecd12def757563ede07b3784c8f519/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6c6f77636861727473\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-lowcharts\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/27f2b611017dfb8fe06ab47f3a4d377ddd91d667f50f8135fc669a8abfc43a45/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6c6f77636861727473\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/27f2b611017dfb8fe06ab47f3a4d377ddd91d667f50f8135fc669a8abfc43a45/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6c6f77636861727473\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-lowcharts\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/619a942430a532ae89a0d9c2000a895ea8603989c6dba951ed43664c22cebb96/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6c6f77636861727473\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/619a942430a532ae89a0d9c2000a895ea8603989c6dba951ed43664c22cebb96/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6c6f77636861727473\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-lowcharts\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/ebc83f1df7b32d114034b8d95b0d270b8512149b150348054f1be74c202b63d2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6c6f77636861727473\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ebc83f1df7b32d114034b8d95b0d270b8512149b150348054f1be74c202b63d2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6c6f77636861727473\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-lowcharts\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-lowcharts\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-lowcharts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-lowcharts\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://raw.githubusercontent.com/juan-leon/lowcharts/main/resources/histogram-example.png\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/juan-leon/lowcharts/main/resources/histogram-example.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/juan-leon/lowcharts\"\u003elowcharts\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003elowcharts\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/lowcharts/0.4.2\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/lowcharts\u003c/code\u003e as \u003ccode\u003e0.4.2.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "fromstar/Project_ASA_2022",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-project_asa_2022\" class=\"anchor\" aria-hidden=\"true\" href=\"#project_asa_2022\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eProject_ASA_2022\u003c/h1\u003e\n\u003cp\u003eIn this project a smart house environment is simulated. In the scenario presented, the presence of people in the various rooms, the production of electricity by photovoltaic panels, the cleanliness and temperature of the rooms\nare monitored. Thanks to this information a main smart agent (HouseAgent)\nknows everything that happens in the house and is able to manage the agents\nin charge of cleaning the various rooms. Two other agents (LightAgent and\nShutterAgent) are in charge of lighting a room if a person is present. Depending on the natural brightness, it is decided whether the shutters must be opened\nor the lights must be switched on, so as to guarantee energy savings. Two last\nrobots agents are tasked with cleaning the floors of the house and are the sole\nplanning agents. The various agents can exchange information each other in\norder to perform tasks in different places.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-hidden=\"true\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements\u003c/h2\u003e\n\u003cp\u003eJavascript, Node.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h2\u003e\n\u003cp\u003eTo install the module use this command in the main folder:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enpm install\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run the code use:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enpm run test\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enode ./src/houseworld/HouseWorld.js\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-asa_assignment_3\" class=\"anchor\" aria-hidden=\"true\" href=\"#asa_assignment_3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eASA_assignment_3\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-domain\" class=\"anchor\" aria-hidden=\"true\" href=\"#domain\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDomain\u003c/h3\u003e\n\u003cp\u003eThis sample domain file uses the key-in extension which cannot be used in simulation. In the simulation, therefore, the problem is circumvented through the use of predicates with characteristics that still allow to distinguish different types.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e;; domain file: domain-robot1.pddl\n(define (domain robot1)\n (:requirements :strips :typing)\n (:types\n robot\n room \n base_station \n )\n \n (:predicates\n (is_in_room ?robot - robot ?room1 - room)\n (is_adjacent ?room1 - room ?room2 - room)\n (is_in_bs ?base_station - base_station ?robot - room)\n (is_dirty ?room - room)\n (bs_in_room ?base_station - base_station ?room - room) \n )\n \n (:action Move\n :parameters (?robot ?room1 ?room2 ?base_station)\n :precondition (and\n (is_in_room ?robot ?room1)\n (is_adjacent ?room1 ?room2)\n )\n :effect (and\n (not (is_in_room ?robot ?room1))\n (is_in_room ?robot ?room2)\n (not (is_in_bs ?base_station ?robot))\n )\n )\n \n (:action Clean\n :parameters (?room ?robot)\n :precondition (and\n (is_in_room ?robot ?room)\n (is_dirty ?room)\n )\n :effect (and\n (not (is_dirty ?room))\n )\n )\n \n (:action Charge\n :parameters (?robot ?base_station ?room)\n :precondition (and\n (is_in_room ?robot ?room)\n (bs_in_room ?base_station ?room)\n (not (is_in_bs ?base_station ?robot))\n )\n :effect (and\n (is_in_bs ?base_station ?robot)\n )\n )\n)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-problem\" class=\"anchor\" aria-hidden=\"true\" href=\"#problem\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eProblem\u003c/h3\u003e\n\u003cp\u003eThis sample problem file contains all the information about the environment that the agent knows.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e;; problem file: problem-robot1.pddl\n(define (problem robot1)\n (:domain robot1)\n (:objects\n office - room\n tavern - room\n basement_bathroom - room\n base_station1 - base_station\n robot1 - robot\n )\n (:init\n (is_adjacent office tavern)\n (is_adjacent tavern office)\n (is_adjacent tavern basement_bathroom)\n (is_adjacent basement_bathroom tavern)\n (bs_in_room base_station1 tavern)\n (is_in_room robot1 tavern)\n (is_in_bs base_station1 robot1)\n (is_dirty tavern)\n (is_dirty office)\n )\n (:goal\n (and (not (is_dirty tavern)) (not (is_dirty basement_bathroom)) (not (is_dirty office)) (is_in_bs base_station1 robot1))\n )\n)\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1635967869.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1674056102.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "misc/releases/19.06/Singularity.19.06",
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/20.06/Singularity.20.06",
- "misc/releases/22.06/Singularity.22.06",
- "misc/releases/latest/Singularity",
- "misc/releases/22.12/Singularity.22.12",
- "misc/releases/21.12/Singularity.21.12"
+ "Singularity"
],
- "full_name": "ipc2023-classical/planner25",
+ "full_name": "DanKaptijn/souporcellCopy",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-scorpion\" class=\"anchor\" aria-hidden=\"true\" href=\"#scorpion\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eScorpion\u003c/h1\u003e\n\u003cp\u003eScorpion is a classical planning system that extends \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003eFast\nDownward\u003c/a\u003e. The main extensions are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003enovel state-of-the-art algorithms for optimal classical planning\u003c/li\u003e\n\u003cli\u003eadditional search algorithms\u003c/li\u003e\n\u003cli\u003eseveral new plugin options and utilities\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSee \u003ca href=\"#differences-between-scorpion-and-fast-downward\"\u003ebelow\u003c/a\u003e for a detailed list\nof extensions. We regularly port the latest changes from Fast Downward to\nScorpion and also integrate some features from Scorpion back into Fast Downward.\u003c/p\u003e\n\u003cp\u003ePlease use the following reference when citing Scorpion:\nJendrik Seipp, Thomas Keller and Malte Helmert.\n\u003ca href=\"https://www.jair.org/index.php/jair/article/view/11673\" rel=\"nofollow\"\u003eSaturated Cost Partitioning for Optimal Classical Planning\u003c/a\u003e.\nJournal of Artificial Intelligence Research 67, pp. 129-167. 2020.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstructions\u003c/h2\u003e\n\u003cp\u003eInstall the dependencies (the table below lists which versions are tested):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo apt install cmake g++ git make python3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor plugins based on linear programming (e.g., \u003ccode\u003eocp()\u003c/code\u003e, \u003ccode\u003epho()\u003c/code\u003e) you need\nto \u003ca href=\"https://www.fast-downward.org/LPBuildInstructions\" rel=\"nofollow\"\u003eadd an LP solver\u003c/a\u003e. Then\ncompile the planner with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./build.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand see the available options with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./fast-downward.py --help # driver\n./fast-downward.py --search -- --help # search component\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor more details (including build instructions for macOS and Windows), see the\ndocumentation about\n\u003ca href=\"https://www.fast-downward.org/ObtainingAndRunningFastDownward\" rel=\"nofollow\"\u003ecompiling\u003c/a\u003e\nand \u003ca href=\"https://www.fast-downward.org/PlannerUsage\" rel=\"nofollow\"\u003erunning\u003c/a\u003e the planner. The\n\u003ca href=\"https://jendrikseipp.github.io/scorpion\" rel=\"nofollow\"\u003eplugin documentation\u003c/a\u003e shows\nwhich plugins are available (heuristics, search algorithms, etc.) and how\nto use them.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-recommended-configuration\" class=\"anchor\" aria-hidden=\"true\" href=\"#recommended-configuration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRecommended configuration\u003c/h3\u003e\n\u003cp\u003eWe recommend using the following configuration:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./fast-downward.py \\\n --transform-task preprocess-h2 \\\n ../benchmarks/gripper/prob01.pddl \\\n --search \"astar(scp_online([\n projections(sys_scp(max_time=100, max_time_per_restart=10)),\n cartesian()],\n saturator=perimstar, max_time=1000, interval=10K, orders=greedy_orders()),\n pruning=limited_pruning(pruning=atom_centric_stubborn_sets(), min_required_pruning_ratio=0.2))\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003epreprocess-h2\u003c/code\u003e call prunes irrelevant operators in a preprocessing\nstep. The search configuration uses \u003ca href=\"https://ojs.aaai.org/index.php/SOCS/article/view/18535\" rel=\"nofollow\"\u003epartial order\nreduction\u003c/a\u003e and\nmaximizes over\n\u003ca href=\"https://www.jair.org/index.php/jair/article/view/11673\" rel=\"nofollow\"\u003ediverse\u003c/a\u003e,\n\u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/3503\" rel=\"nofollow\"\u003esubset-saturated\u003c/a\u003e\ncost partitioning heuristics computed\n\u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/15976/\" rel=\"nofollow\"\u003eonline\u003c/a\u003e during\nthe search. The underlying abstractions are \u003ca href=\"https://www.ijcai.org/proceedings/2019/780\" rel=\"nofollow\"\u003eSys-SCP pattern\ndatabases\u003c/a\u003e and \u003ca href=\"https://jair.org/index.php/jair/article/view/11217\" rel=\"nofollow\"\u003eCartesian\nabstractions\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e(In \u003ca href=\"https://lab.readthedocs.io/\" rel=\"nofollow\"\u003eDownward Lab\u003c/a\u003e you can use\n\u003ccode\u003eadd_algorithm(name=\"scorpion\", repo=\"path/to/repo\", rev=\"scorpion\", component_options=[], driver_options=[\"--transform-task\", \"preprocess-h2\", \"--alias\", \"scorpion\"]\u003c/code\u003e to run the recommended Scorpion configuration.)\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-apptainer-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#apptainer-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eApptainer image\u003c/h4\u003e\n\u003cp\u003eTo simplify the installation process, we provide an executable\n\u003ca href=\"https://apptainer.org/\" rel=\"nofollow\"\u003eApptainer\u003c/a\u003e container (formerly known as Singularity).\nIt accepts the same arguments as the \u003ccode\u003efast-downward.py\u003c/code\u003e script (see above).\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Download the image,\napptainer pull scorpion.sif oras://ghcr.io/jendrikseipp/scorpion:latest\n\n# or build it yourself.\napptainer build scorpion.sif Apptainer\n\n# Then run recommended configuration (available via \"scorpion\" alias).\n./scorpion.sif --transform-task preprocess-h2 --alias scorpion PROBLEM_FILE\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-ipc-2018-version\" class=\"anchor\" aria-hidden=\"true\" href=\"#ipc-2018-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIPC 2018 version\u003c/h3\u003e\n\u003cp\u003eIf you prefer to run the Scorpion version from IPC 2018 (which uses an\nolder Fast Downward version and different abstractions), we recommend\nusing the \u003ca href=\"https://bitbucket.org/ipc2018-classical/team44/src/ipc-2018-seq-opt/\" rel=\"nofollow\"\u003eScorpion IPC\nrepo\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-differences-between-scorpion-and-fast-downward\" class=\"anchor\" aria-hidden=\"true\" href=\"#differences-between-scorpion-and-fast-downward\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDifferences between Scorpion and Fast Downward\u003c/h2\u003e\n\u003cp\u003eDiff between the latest merged version of Fast Downward and Scorpion:\n\u003ca href=\"https://github.com/jendrikseipp/scorpion/compare/main...scorpion\"\u003ehttps://github.com/jendrikseipp/scorpion/compare/main...scorpion\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eScorpion comes with the\n\u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/13708\" rel=\"nofollow\"\u003eh\u00b2-preprocessor\u003c/a\u003e\nby Vidal Alc\u00e1zar and \u00c1lvaro Torralba that prunes irrelevant operators.\nPass \u003ccode\u003e--transform-task preprocess-h2\u003c/code\u003e to use it.\u003c/li\u003e\n\u003cli\u003eThe \u003ccode\u003e--transform-task\u003c/code\u003e command allows you to run arbitrary preprocessing\ncommands that transform the SAS+ output from the translator before\npassing it to the search.\u003c/li\u003e\n\u003cli\u003eScorpion uses a\n\u003ca href=\"https://github.com/greg7mdp/parallel-hashmap\"\u003ephmap::flat_hash_set\u003c/a\u003e to check\nfor duplicate states, which often drastically reduces the peak memory usage,\ncompared to Fast Downward\u0027s \u003ccode\u003eIntHashSet\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eIf \u003ca href=\"https://ccache.dev/\" rel=\"nofollow\"\u003eccache\u003c/a\u003e is installed (recommended), Scorpion\nuses it to cache compilation files.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-new-translator-options\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-translator-options\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew translator options\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eUse \u003ccode\u003e--dump-predicates\u003c/code\u003e and \u003ccode\u003e--dump-static-atoms\u003c/code\u003e to write files with\ninformation that\u0027s useful for learning domain control knowledge.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-new-plugin-options\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-plugin-options\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew plugin options\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e{cegar/cartesian}(..., search_strategy=incremental)\u003c/code\u003e: use \u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/6667\" rel=\"nofollow\"\u003eincremental search for\nCartesian abstraction\nrefinement\u003c/a\u003e\n(default).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e{cegar/cartesian}(..., pick_flawed_abstract_state={batch_min_h, ...})\u003c/code\u003e:\nfind all current flaws, then iteratively repair the flaw that\u0027s closest to the goal\n(\u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/19819\" rel=\"nofollow\"\u003epaper\u003c/a\u003e, default=\u003ccode\u003ebatch_min_h\u003c/code\u003e).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e{cegar/cartesian}(..., pick_split={max_cover, ...}, tiebreak_split={max_refined, ...})\u003c/code\u003e:\nsmarter strategies for splitting a flawed abstract state\n(\u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/19819\" rel=\"nofollow\"\u003epaper\u003c/a\u003e, default=\u003ccode\u003emax_cover\u003c/code\u003e\nand \u003ccode\u003emax_refined\u003c/code\u003e for tiebreaking).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e{cegar,cartesian}(..., dot_graph_verbosity={silent, write_to_console, write_to_file})\u003c/code\u003e:\nwrite intermediate abstractions as Graphviz dot files to stdout or to files (default=\u003ccode\u003esilent\u003c/code\u003e).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ehillclimbing(..., max_generated_patterns=200)\u003c/code\u003e: limit the number of\npatterns generated by hill climbing.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003esystematic(..., pattern_type=interesting_general)\u003c/code\u003e: compute interesting\npatterns for general cost partitioning.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-new-cost-partitioning-algorithms-for-abstraction-heuristics\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-cost-partitioning-algorithms-for-abstraction-heuristics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew cost partitioning algorithms for abstraction heuristics\u003c/h3\u003e\n\u003cp\u003eWe use Cartesian abstractions in the example configurations below\n(\u003ccode\u003e[cartesian()]\u003c/code\u003e). You can also use pattern database heuristics, e.g.,\n\u003ccode\u003e[projections(systematic(2))]\u003c/code\u003e, or mix abstractions, e.g.,\n\u003ccode\u003e[projections(systematic(3)), cartesian()]\u003c/code\u003e. Some of the algorithms below\nare also part of vanilla Fast Downward, but are only implemented for PDB\nheuristics.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOptimal cost partitioning:\n\u003ccode\u003eocp([cartesian()])\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eCanonical heuristic:\n\u003ccode\u003ecanonical_heuristic([cartesian()])\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eUniform cost partitioning:\n\u003ccode\u003eucp([cartesian()], opportunistic=false)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eOpportunistic uniform cost partitioning:\n\u003ccode\u003eucp([cartesian()], ..., opportunistic=true)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eGreedy zero-one cost partitioning:\n\u003ccode\u003egzocp([cartesian()], ...)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eSaturated cost partitioning:\n\u003ccode\u003escp([cartesian()], ...)\u003c/code\u003e (offline), \u003ccode\u003escp_online([cartesian()], ...)\u003c/code\u003e (online)\u003c/li\u003e\n\u003cli\u003e(Saturated) post-hoc optimization:\n\u003ccode\u003epho([cartesian()], ..., saturated={false,true})\u003c/code\u003e (offline),\n\u003ccode\u003eoperatorcounting([pho_abstraction_constraints([cartesian()], saturated={false,true})])\u003c/code\u003e (online)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou can also compute the maximum over abstraction heuristics:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003emaximize([cartesian()])\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe plugin documentation shows all options for \u003ca href=\"https://jendrikseipp.github.io/scorpion/Evaluator/#cost_partitioning_heuristics\" rel=\"nofollow\"\u003ecost partitioning\nheuristics\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-new-pattern-collection-generators\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-pattern-collection-generators\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew pattern collection generators\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eSystematic patterns with size limits:\n\u003ccode\u003esys_scp(max_pattern_size=X, max_pdb_size=Y, max_collection_size=Z, ..., saturate=false)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eSys-SCP patterns:\n\u003ccode\u003esys_scp(...)\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-new-cost-partitioning-algorithms-for-landmark-heuristics\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-cost-partitioning-algorithms-for-landmark-heuristics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew cost partitioning algorithms for landmark heuristics\u003c/h3\u003e\n\u003cp\u003eExample using A* search and saturated cost partitioning over BJOLP\nlandmarks:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e--evaluator\n \"lmc=lmcount(lm_merged([lm_rhw(), lm_hm(m=1)]),\n admissible=true, cost_partitioning=suboptimal, greedy=true,\n reuse_costs=true, scoring_function=max_heuristic_per_stolen_costs)\"\n--search\n \"astar(lmc, lazy_evaluator=lmc)\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDifferent cost partitioning algorithms (all need \u003ccode\u003eadmissible=true\u003c/code\u003e):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOptimal cost partitioning (part of vanilla Fast Downward):\n\u003ccode\u003elmcount(..., cost_partitioning=optimal)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eCanonical heuristic:\n\u003ccode\u003elmcount(..., cost_partitioning=canonical)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003ePost-hoc optimization:\n\u003ccode\u003elmcount(..., cost_partitioning=pho)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eUniform cost partitioning:\n\u003ccode\u003elmcount(..., cost_partitioning=suboptimal, greedy=false, reuse_costs=false)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eOpportunistic uniform cost partitioning (part of vanilla Fast Downward):\n\u003ccode\u003elmcount(..., cost_partitioning=suboptimal, greedy=false, reuse_costs=true, scoring_function=min_stolen_costs)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eGreedy zero-one cost partitioning:\n\u003ccode\u003elmcount(..., cost_partitioning=suboptimal, greedy=true, reuse_costs=false, scoring_function=max_heuristic)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eSaturated cost partitioning:\n\u003ccode\u003elmcount(..., cost_partitioning=suboptimal, greedy=true, reuse_costs=true, scoring_function=max_heuristic_per_stolen_costs)\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-new-search-engines\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-search-engines\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew search engines\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eBreadth-first search (without overhead of the more general \u003ccode\u003eeager()\u003c/code\u003e search):\n\u003ccode\u003ebrfs()\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eDepth-first search:\n\u003ccode\u003edfs()\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eExhaustive search (useful for dumping the reachable state space of small input tasks):\n\u003ccode\u003edump_reachable_search_space()\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eIDA* search:\n\u003ccode\u003eidastar(cegar(cache_estimates=false))\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eIterative width search:\n\u003ccode\u003eiw(width=2)\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-hidden=\"true\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 22.04\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eGCC 11, GCC 12, Clang 14\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 12\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eAppleClang 14\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 11\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eAppleClang 13\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2015, 2021-2022 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-hidden=\"true\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-souporcell\" class=\"anchor\" aria-hidden=\"true\" href=\"#souporcell\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esouporcell\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/wheaton5/souporcell/blob/master/souporcell_star.png\"\u003e\u003cimg src=\"https://github.com/wheaton5/souporcell/raw/master/souporcell_star.png\" width=\"100\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003ePreprint manuscript of this method available at \u003ca href=\"https://www.biorxiv.org/content/10.1101/699637v1\" rel=\"nofollow\"\u003ehttps://www.biorxiv.org/content/10.1101/699637v1\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003esouporcell is a method for clustering mixed-genotype scRNAseq experiments by individual.\u003c/p\u003e\n\u003cp\u003eThe inputs are just the possorted_genome_bam.bam, and barcodes.tsv as output from \u003ca href=\"https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger\" rel=\"nofollow\"\u003ecellranger\u003c/a\u003e.\nsouporcell is comprised of 6 steps with the first 3 using external tools and the final using the code provided here.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eRemapping (\u003ca href=\"https://github.com/lh3/minimap2\"\u003eminimap2\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eCalling candidate variants (\u003ca href=\"https://github.com/ekg/freebayes\"\u003efreebayes\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eCell allele counting (\u003ca href=\"https://github.com/10XGenomics/vartrix\"\u003evartrix\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eClustering cells by genotype (souporcell.py)\u003c/li\u003e\n\u003cli\u003eCalling doublets (troublet)\u003c/li\u003e\n\u003cli\u003eCalling cluster genotypes and inferring amount of ambient RNA (consensus.py)\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-easy-installation-linux-recommended\" class=\"anchor\" aria-hidden=\"true\" href=\"#easy-installation-linux-recommended\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEasy Installation (Linux) (recommended)\u003c/h2\u003e\n\u003cp\u003eDownload singularity image (1.3gb) (singularity is similar to docker but safe for clusters)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://wheaton5/souporcell\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you are running on a scientific cluster, they will likely have singularity, contact your sysadmin for more details.\nIf you are running on your own linux box you may need to install \u003ca href=\"https://www.sylabs.io/guides/3.2/user-guide/quick_start.html#quick-installation-steps\" rel=\"nofollow\"\u003esingularity\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003erequires singularity \u0026gt;= 3.0\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewhich singularity\nsingularity --version\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou should now be able to run souporcell_pipeline.py through the singularity container. Singularity automatically mounts the current working directory and directories downstream from where you run it, otherwise you would need to manually mount those directories. Therefor you can run it from a directory that is upstream of all of the inputs. Input files are the cellranger bam, cellranger barcodes file, and a reference fasta. The cellranger bam is located in the cellranger outs directory and is called possorted_genome_bam.bam. The barcodes file is located in the cellranger outs/filtered_gene_bc_matrices/\u0026lt;ref_name\u0026gt;/barcodes.tsv. The reference fasta should be of the same species but does not necessarily need to be the exact cellranger reference.\u003c/p\u003e\n\u003cp\u003eThe options for using souporcell are:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec souporcell_latest.sif souporcell_pipeline.py -h\nusage: souporcell_pipeline.py [-h] -i BAM -b BARCODES -f FASTA -t THREADS -o\n OUT_DIR -k CLUSTERS [-p PLOIDY]\n [--min_alt MIN_ALT] [--min_ref MIN_REF]\n [--max_loci MAX_LOCI] [--restarts RESTARTS]\n [--common_variants COMMON_VARIANTS]\n [--known_genotypes KNOWN_GENOTYPES]\n [--known_genotypes_sample_names KNOWN_GENOTYPES_SAMPLE_NAMES [KNOWN_GENOTYPES_SAMPLE_NAMES ...]]\n [--skip_remap SKIP_REMAP] [--ignore IGNORE]\n\nsingle cell RNAseq mixed genotype clustering using sparse mixture model\nclustering with tensorflow.\n\noptional arguments:\n -h, --help show this help message and exit\n -i BAM, --bam BAM cellranger bam\n -b BARCODES, --barcodes BARCODES\n barcodes.tsv from cellranger\n -f FASTA, --fasta FASTA\n reference fasta file\n -t THREADS, --threads THREADS\n max threads to use\n -o OUT_DIR, --out_dir OUT_DIR\n name of directory to place souporcell files\n -k CLUSTERS, --clusters CLUSTERS\n number cluster, tbd add easy way to run on a range of\n k\n -p PLOIDY, --ploidy PLOIDY\n ploidy, must be 1 or 2, default = 2\n --min_alt MIN_ALT min alt to use locus, default = 10.\n --min_ref MIN_REF min ref to use locus, default = 10.\n --max_loci MAX_LOCI max loci per cell, affects speed, default = 2048.\n --restarts RESTARTS number of restarts in clustering, when there are \u0026gt; 12\n clusters we recommend increasing this to avoid local\n minima\n --common_variants COMMON_VARIANTS\n common variant loci or known variant loci vcf, must be\n vs same reference fasta\n --known_genotypes KNOWN_GENOTYPES\n known variants per clone in population vcf mode, must\n be .vcf right now we dont accept gzip or bcf sorry\n --known_genotypes_sample_names KNOWN_GENOTYPES_SAMPLE_NAMES [KNOWN_GENOTYPES_SAMPLE_NAMES ...]\n which samples in population vcf from known genotypes\n option represent the donors in your sample\n --skip_remap SKIP_REMAP\n don\u0027t remap with minimap2 (not recommended unless in\n conjunction with --common_variants\n --ignore IGNORE set to True to ignore data error assertions\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA typical command looks like\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec /path/to/souporcell_latest.sif souporcell_pipeline.py -i /path/to/possorted_genome_bam.bam -b /path/to/barcodes.tsv -f /path/to/reference.fasta -t num_threads_to_use -o output_dir_name -k num_clusters\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe above command will run all six steps of the pipeline and it will require up to 24gb of ram for human (minimap2 bam index is high water mark for memory). For smaller genomes, fewer clusters, lower --max-loci will require less memory. Note that souporcell will require roughly 2x the amount of diskspace that the input bam file takes up. This dataset should take several hours to run on 8 threads mostly due to read processing, remapping, and variant calling.\u003c/p\u003e\n\u003cp\u003eIf you have a common snps file you may want to use the --common_variants option with or without the --skip_remap option. This option will skip conversion to fastq, remapping with minimap2, and reattaching barcodes, and the --common_variants will remove the freebayes step. Each which will save a significant amount of time, but --skip-remap isn\u0027t recommended without --common_variants.\u003c/p\u003e\n\u003cp\u003eCommon variant files from 1k genomes filtered to variants \u0026gt;= 2% allele frequency in the population and limited to SNPs can be found here for GRCh38\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewget --load-cookies /tmp/cookies.txt \"https://docs.google.com/uc?export=download\u0026amp;confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate \u0027https://docs.google.com/uc?export=download\u0026amp;id=13aebUpEKrtjliyT9rYzRijtkNJVUk5F_\u0027 -O- | sed -rn \u0027s/.*confirm=([0-9A-Za-z_]+).*/\\1\\n/p\u0027)\u0026amp;id=13aebUpEKrtjliyT9rYzRijtkNJVUk5F_\" -O common_variants_grch38.vcf \u0026amp;\u0026amp; rm -rf /tmp/cookies.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor for hg19 here\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewget --load-cookies /tmp/cookies.txt \"https://docs.google.com/uc?export=download\u0026amp;confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate \u0027https://docs.google.com/uc?export=download\u0026amp;id=1lw4T6d7uXsm9dt39ZtEwpuB2VTY3wK1y\u0027 -O- | sed -rn \u0027s/.*confirm=([0-9A-Za-z_]+).*/\\1\\n/p\u0027)\u0026amp;id=1lw4T6d7uXsm9dt39ZtEwpuB2VTY3wK1y\" -O common_variants_hg19.vcf \u0026amp;\u0026amp; rm -rf /tmp/cookies.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-practicetesting-data-set-demuxlet-paper-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#practicetesting-data-set-demuxlet-paper-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePractice/Testing data set: Demuxlet paper data\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003ewget https://sra-pub-src-1.s3.amazonaws.com/SRR5398235/A.merged.bam.1 -O A.merged.bam\nwget ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM2560nnn/GSM2560245/suppl/GSM2560245_barcodes.tsv.gz\ngunzip GSM2560245_barcodes.tsv.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAnd if you don\u0027t have a human reference sitting around, grab one here\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewget http://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-GRCh38-3.0.0.tar.gz\ntar -xzvf refdata-cellranger-GRCh38-3.0.0.tar.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNow you should be ready to test it out\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec /path/to/souporcell_latest.sif souporcell_pipeline.py -i A.merged.bam -b GSM2560245_barcodes.tsv -f refdata-cellranger-GRCh38-3.0.0/fasta/genome.fa -t 8 -o demux_data_test -k 4\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis should require about 20gb of ram mostly because of the minimap2 indexing step. I might soon host an index and reference for human to make this less painful.\u003c/p\u003e\n\u003cp\u003eThe important files are\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eclusters.tsv\u003c/li\u003e\n\u003cli\u003ecluster_genotypes.vcf\u003c/li\u003e\n\u003cli\u003eambient_rna.txt\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eclusters.tsv will look like\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebarcode status assignment log_loss_singleton log_loss_doublet cluster0 cluster1\nAAACCTGAGATCCGAG-1 singlet 0 -152.7778890920112 -190.5463095948822 -43.95302689281067 -101.63377524087669\nAAACCTGAGCACCGTC-1 singlet 0 -78.56014177554212 -96.66255440088581 -20.949294849836267 -52.57478083591962\nAAACCTGAGTACGATA-1 singlet 0 -216.0188863327174 -281.3888392065457 -63.059016939362536 -159.5450834682198\nAAACCTGGTACATGTC-1 singlet 1 -47.189434469216565 -96.30865717225866 -62.652900832546955 -15.284168900754413\nAAACCTGTCTACTCAT-1 singlet 0 -129.30104434183454 -167.87811467946756 -41.09158213888751 -106.3201962010145\nAAACCTGTCTTGTCAT-1 singlet 0 -85.99781433701455 -110.81701038967158 -24.518165091815554 -60.05279033826837\nAAACGGGCACTGTTAG-1 singlet 0 -154.26595878718032 -191.05465308213363 -31.356408693487197 -81.61186496254497\nAAACGGGCATCATCCC-1 singlet 1 -46.33205678267174 -80.24152434540565 -50.78221280006256 -14.615983876840312\nAAACGGGGTAGGGTAC-1 singlet 0 -240.5237900569412 -302.91575436035924 -71.79370547349878 -154.08594135029728\nAAACGGGTCGGCATCG-1 singlet 0 -166.66827966974532 -226.56795157885028 -51.08790637893961 -148.04625123166286\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWith the cell barcode, singlet/doublet status, cluster, log_loss_singleton, log_loss_doublet, followed by log loss for each cluster.\u003c/p\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003ecluster_genotypes.vcf is a vcf with genotypes for each cluster for each variant in the input vcf from freebayes\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eand\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eambient_rna.txt just contains the ambient RNA percentage detected\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-hard-install\" class=\"anchor\" aria-hidden=\"true\" href=\"#hard-install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHard install\u003c/h2\u003e\n\u003cp\u003eInstead of using singularity you can install everything independently (not recommended, but shouldn\u0027t be too bad)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/wheaton5/souporcell.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eput souporcell directory on your PATH\nrequires samtools, bcftools, htslib, python3, freebayes, vartrix, minimap2 all on your PATH\nI suggest you use the conda env I have set up by using the following command if you have conda or miniconda\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f /path/to/souporcell/souporcell_env.yaml\nconda activate souporcell\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou will also need Rust and to compile the two rust binaries\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecurl --proto \u0027=https\u0027 --tlsv1.2 -sSf https://sh.rustup.rs | sh\ncd /path/to/souporcell/souporcell \u0026amp;\u0026amp; cargo build --release\ncd /path/to/souporcell/troublet \u0026amp;\u0026amp; cargo build --release\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eotherwise python packages tensorflow, pyvcf, pystan, pyfaidx, numpy, scipy are required, but as the versions change, I do recommend using the presetup env.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-through-the-pipeline-script\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-through-the-pipeline-script\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run through the pipeline script\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esouporcell_pipeline.py -i /path/to/possorted_genome_bam.bam -b /path/to/barcodes.tsv -f /path/to/reference.fasta -t num_threads_to_use -o output_dir_name -k num_clusters\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-things-step-by-step-not-through-the-pipeline-script\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-things-step-by-step-not-through-the-pipeline-script\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run things step by step not through the pipeline script\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-remapping\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-remapping\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Remapping\u003c/h3\u003e\n\u003cp\u003eWe discuss the need for remapping in our manuscript. We need to keep track of cell barcodes and and UMIs, so we first create a fastq with those items encoded in the readname.\nRequires python 3.0, modules pysam, argparse (pip install/conda install depending on environment)\nEasiest to first add the souporcell directory to your PATH variable with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport PATH=/path/to/souporcell:$PATH\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen run the renamer.py script to put some of the quality information in the read name. For human data this step will typically take several hours and the output fq file will be somewhat larger than the input bam\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython renamer.py --bam possorted_genome_bam.bam --barcodes barcodes.tsv --out fq.fq\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen we must remap these reads using minimap2 (similar results have been seen with hisat2)\nRequires \u003ca href=\"https://github.com/lh3/minimap2\"\u003eminimap2\u003c/a\u003e\nand add /path/to/minimap2 to your PATH. For human data the remapping will typically require more than 12 Gb memory and may take a few hours to run.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eminimap2 -ax splice -t 8 -G50k -k 21 -w 11 --sr -A2 -B8 -O12,32 -E2,1 -r200 -p.5 -N20 -f1000,5000 -n2 -m20 -s40 -g2000 -2K50m --secondary=no \u0026lt;reference_fasta_file\u0026gt; \u0026lt;fastq_file\u0026gt; \u0026gt; minimap.sam\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(note the -t 8 as the number of threads, change this as needed)\nNow we must retag the reads with their cell barcodes and UMIs\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython retag.py --sam minimap.sam --out minitagged.bam\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen we must sort and index our bam.\nRequires \u003ca href=\"http://www.htslib.org/\" rel=\"nofollow\"\u003esamtools\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esamtools sort minitagged.bam minitagged_sorted.bam\nsamtools index minitagged_sorted.bam\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-2-calling-candidate-variants\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-calling-candidate-variants\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Calling candidate variants\u003c/h3\u003e\n\u003cp\u003eYou may wish to break this into multiple jobs such as 1 job per chromosome and merge after but the basic command is the following.\nRequires \u003ca href=\"https://github.com/ekg/freebayes\"\u003efreebayes\u003c/a\u003e and add /path/to/freebayes/bin to your PATH\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003efreebayes -f \u0026lt;reference_fasta\u0026gt; -iXu -C 2 -q 20 -n 3 -E 1 -m 30 --min-coverage 6 --max-coverage 100000 minitagged_sorted.bam\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-3-cell-allele-counting\" class=\"anchor\" aria-hidden=\"true\" href=\"#3-cell-allele-counting\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. Cell allele counting\u003c/h3\u003e\n\u003cp\u003eRequires \u003ca href=\"https://github.com/10XGenomics/vartrix\"\u003evartrix\u003c/a\u003e\nand add /path/to/vartrix to your PATH\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003evartrix --umi --mapq 30 -b \u0026lt;bam file\u0026gt; -c \u0026lt;barcode tsv\u0026gt; --scoring-method coverage --threads 8 --ref-matrix ref.mtx --out-matrix alt.mtx -v \u0026lt;freebayes vcf\u0026gt; --fasta \u0026lt;fasta file used for remapping\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003enote the --threads argument and use an appropriate number of threads for your system.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-4-clustering-cells-by-genotype\" class=\"anchor\" aria-hidden=\"true\" href=\"#4-clustering-cells-by-genotype\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. Clustering cells by genotype\u003c/h3\u003e\n\u003cp\u003eRust required. To install rust:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecurl https://sh.rustup.rs -sSf | sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand to build souporcell clustering\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd /path/to/souporcell/souporcell\ncargo build --release\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAnd add /path/to/souporcell/souporcell/target/release to your path\nusage\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esouporcell -h\nsouporcell 2.4\nHaynes Heaton \u0026lt;whheaton@gmail.com\u0026gt;\nclustering scRNAseq cells by genotype\n\nUSAGE:\n souporcell [OPTIONS] --alt_matrix \u0026lt;alt_matrix\u0026gt; --barcodes \u0026lt;barcodes\u0026gt; --num_clusters \u0026lt;num_clusters\u0026gt; --ref_matrix \u0026lt;ref_matrix\u0026gt;\n\nFLAGS:\n -h, --help Prints help information\n -V, --version Prints version information\n\nOPTIONS:\n -a, --alt_matrix \u0026lt;alt_matrix\u0026gt; alt matrix from vartrix\n -b, --barcodes \u0026lt;barcodes\u0026gt; cell barcodes\n --initialization_strategy \u0026lt;initialization_strategy\u0026gt;\n cluster initialization strategy, defaults to kmeans++, valid values are kmeans++, random_uniform,\n middle_variance, random_cell_assignment\n --known_cell_assignments \u0026lt;known_cell_assignments\u0026gt;\n tsv with barcodes and their known assignments\n\n -g, --known_genotypes \u0026lt;known_genotypes\u0026gt;\n NOT YET IMPLEMENTED population vcf/bcf of known genotypes if available.\n \n --known_genotypes_sample_names \u0026lt;known_genotypes_sample_names\u0026gt;...\n NOT YET IMPLEMENTED sample names, must be samples from the known_genotypes vcf\n\n --min_alt \u0026lt;min_alt\u0026gt;\n minimum number of cells containing the alt allele for the variant to be used for clustering\n\n --min_alt_umis \u0026lt;min_alt_umis\u0026gt; min alt umis to use locus for clustering\n --min_ref \u0026lt;min_ref\u0026gt;\n minimum number of cells containing the ref allele for the variant to be used for clustering\n\n --min_ref_umis \u0026lt;min_ref_umis\u0026gt; min ref umis to use locus for clustering\n -k, --num_clusters \u0026lt;num_clusters\u0026gt; number of clusters\n -r, --ref_matrix \u0026lt;ref_matrix\u0026gt; ref matrix from vartrix\n -r, --restarts \u0026lt;restarts\u0026gt; number of random seedings\n --seed \u0026lt;seed\u0026gt; optional random seed\n -t, --threads \u0026lt;threads\u0026gt; number of threads to use\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSo generally something along the lines of\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esouporcell -a alt.mtx -r ref.mtx -b barcodes.tsv -k \u0026lt;num_clusters\u0026gt; -t 8 \u0026gt; clusters_tmp.tsv\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(note clusters_tmp.tsv output as the doublet caller outputs the final clusters file)\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-5-calling-doublets\" class=\"anchor\" aria-hidden=\"true\" href=\"#5-calling-doublets\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e5. Calling doublets\u003c/h3\u003e\n\u003cp\u003eRust required.\nBuild troublet:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd /path/to/souporcell/troublet\ncargo build --release\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAnd add /path/to/souporcell/troublet/target/release to your path\nThe usage is\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003etroublet -h\ntroublet 2.4\nHaynes Heaton \u0026lt;whheaton@gmail.com\u0026gt;\nIntergenotypic doublet detection given cluster assignments and cell allele counts\n\nUSAGE:\n troublet [OPTIONS] --alts \u0026lt;alts\u0026gt; --clusters \u0026lt;clusters\u0026gt;\n\nFLAGS:\n -h, --help Prints help information\n -V, --version Prints version information\n\nOPTIONS:\n -a, --alts \u0026lt;alts\u0026gt; alt allele counts per cell in sparse matrix format out of vartrix\n -c, --clusters \u0026lt;clusters\u0026gt; cluster file output from schism\n -b, --debug \u0026lt;debug\u0026gt;... print debug info for index of cells listed\n -d, --doublet_prior \u0026lt;doublet_prior\u0026gt; prior on doublets. Defaults to 0.5\n --doublet_threshold \u0026lt;doublet_threshold\u0026gt; doublet posterior threshold, defaults to 0.90\n -r, --refs \u0026lt;refs\u0026gt; ref allele counts per cell in sparse matrix format out of vartrix\n --singlet_threshold \u0026lt;singlet_threshold\u0026gt; singlet posterior threshold, defaults to 0.90\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSo generally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003etroublet -a alt.mtx -r ref.mtx --clusters clusters_tmp.tsv \u0026gt; clusters.tsv\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-6-genotype-and-ambient-rna-coinference\" class=\"anchor\" aria-hidden=\"true\" href=\"#6-genotype-and-ambient-rna-coinference\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e6. Genotype and ambient RNA coinference\u003c/h3\u003e\n\u003cp\u003ePython3 required with modules pystan, pyvcf, pickle, math, scipy, gzip (pip install should work for each)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econsensus.py -h\nusage: consensus.py [-h] -c CLUSTERS -a ALT_MATRIX -r REF_MATRIX [-p PLOIDY]\n --soup_out SOUP_OUT --vcf_out VCF_OUT --output_dir\n OUTPUT_DIR -v VCF\n\nconsensus genotype calling and ambient RNA estimation\n\noptional arguments:\n -h, --help show this help message and exit\n -c CLUSTERS, --clusters CLUSTERS\n tsv cluster file from the troublet output\n -a ALT_MATRIX, --alt_matrix ALT_MATRIX\n alt matrix file\n -r REF_MATRIX, --ref_matrix REF_MATRIX\n ref matrix file\n -p PLOIDY, --ploidy PLOIDY\n ploidy, must be 1 or 2, defaults to 2\n --soup_out SOUP_OUT soup output\n --vcf_out VCF_OUT vcf output\n --output_dir OUTPUT_DIR\n output directory\n -v VCF, --vcf VCF vcf file from which alt and ref matrix were created\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSo generally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econsensus.py -c clusters.tsv -a alt.mtx -r ref.mtx --soup_out soup.txt -v \u0026lt;freebayes vcf\u0026gt; --vcf_out cluster_genotypes.vcf --output_dir .\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1688990761.0
+ "updated_at": 1674048314.0
},
{
"data_format": 2,
- "description": null,
+ "description": "HTCondor execution point setup and configuration for using HTCondor file transfer to synchronize a directory between two hosts",
"filenames": [
- "Singularity",
- "misc/releases/19.06/Singularity.19.06",
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/20.06/Singularity.20.06",
- "misc/releases/22.06/Singularity.22.06",
- "misc/releases/latest/Singularity",
- "misc/releases/22.12/Singularity.22.12",
- "misc/releases/21.12/Singularity.21.12"
+ "Singularity.def"
],
- "full_name": "ipc2023-classical/planner8",
+ "full_name": "htcondor/htcondor-file-transfer",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-scorpion\" class=\"anchor\" aria-hidden=\"true\" href=\"#scorpion\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eScorpion\u003c/h1\u003e\n\u003cp\u003eScorpion is an optimal classical planner that uses saturated cost\npartitioning to combine multiple abstraction heuristics. It also contains\nimplementations of many other cost partitioning algorithms over\nabstraction and landmark heuristics. Scorpion is based on the \u003ca href=\"https://github.com/aibasel/downward\"\u003eFast\nDownward planning system\u003c/a\u003e (version 22.06),\nwhich is described below. We regularly port the latest changes from Fast Downward\nto Scorpion and also try to port Scorpion features back to Fast Downward.\u003c/p\u003e\n\u003cp\u003ePlease use the following reference when citing Scorpion:\nJendrik Seipp, Thomas Keller and Malte Helmert.\n\u003ca href=\"https://www.jair.org/index.php/jair/article/view/11673\" rel=\"nofollow\"\u003eSaturated Cost Partitioning for Optimal Classical Planning\u003c/a\u003e.\nJournal of Artificial Intelligence Research 67, pp. 129-167. 2020.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstructions\u003c/h2\u003e\n\u003cp\u003eAfter installing the requirements (see below), compile the planner with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./build.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand see the available options with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./fast-downward.py --help # driver\n./fast-downward.py --search -- --help # search component\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor more details (including build instructions for Windows), see the\ndocumentation about\n\u003ca href=\"https://www.fast-downward.org/ObtainingAndRunningFastDownward\" rel=\"nofollow\"\u003ecompiling\u003c/a\u003e\nand \u003ca href=\"https://www.fast-downward.org/PlannerUsage\" rel=\"nofollow\"\u003erunning\u003c/a\u003e the planner. The\n\u003ca href=\"https://jendrikseipp.github.io/scorpion\" rel=\"nofollow\"\u003eplugin documentation\u003c/a\u003e shows\nwhich plugins are available (heuristics, search algorithms, etc.) and how\nto use them.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-recommended-configuration\" class=\"anchor\" aria-hidden=\"true\" href=\"#recommended-configuration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRecommended configuration\u003c/h3\u003e\n\u003cp\u003eWe recommend using the following configuration:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./fast-downward.py \\\n --transform-task preprocess-h2 \\\n ../benchmarks/gripper/prob01.pddl \\\n --search \"astar(scp_online([\n projections(sys_scp(max_time=100, max_time_per_restart=10)),\n cartesian()],\n saturator=perimstar, max_time=1000, interval=10K, orders=greedy_orders()),\n pruning=limited_pruning(pruning=atom_centric_stubborn_sets(), min_required_pruning_ratio=0.2))\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003epreprocess-h2\u003c/code\u003e call prunes irrelevant operators in a preprocessing\nstep. The search configuration uses \u003ca href=\"https://ojs.aaai.org/index.php/SOCS/article/view/18535\" rel=\"nofollow\"\u003epartial order\nreduction\u003c/a\u003e and\nmaximizes over\n\u003ca href=\"https://www.jair.org/index.php/jair/article/view/11673\" rel=\"nofollow\"\u003ediverse\u003c/a\u003e,\n\u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/3503\" rel=\"nofollow\"\u003esubset-saturated\u003c/a\u003e\ncost partitioning heuristics computed\n\u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/15976/\" rel=\"nofollow\"\u003eonline\u003c/a\u003e during\nthe search. The underlying abstractions are \u003ca href=\"https://www.ijcai.org/proceedings/2019/780\" rel=\"nofollow\"\u003eSys-SCP pattern\ndatabases\u003c/a\u003e and \u003ca href=\"https://jair.org/index.php/jair/article/view/11217\" rel=\"nofollow\"\u003eCartesian\nabstractions\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e(In \u003ca href=\"https://lab.readthedocs.io/\" rel=\"nofollow\"\u003eDownward Lab\u003c/a\u003e you can use\n\u003ccode\u003eadd_algorithm(name=\"scorpion\", repo=\"path/to/repo\", rev=\"scorpion\", component_options=[], driver_options=[\"--transform-task\", \"preprocess-h2\", \"--alias\", \"scorpion\"]\u003c/code\u003e to run the recommended Scorpion configuration.)\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-singularity-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity container\u003c/h4\u003e\n\u003cp\u003eTo simplify the installation process, we provide an executable\n\u003ca href=\"https://github.com/hpcng/singularity\"\u003eSingularity\u003c/a\u003e container for\nScorpion. It accepts the same arguments as the \u003ccode\u003efast-downward.py\u003c/code\u003e script\n(see above).\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Download the container (tested with Singularity 3.5),\nsingularity pull scorpion.sif library://jendrikseipp/default/scorpion:latest\n\n# or build the container yourself.\nsudo singularity build scorpion.sif Singularity\n\n# Then run recommended configuration (available via \"scorpion\" alias).\n./scorpion.sif --transform-task preprocess-h2 --alias scorpion PROBLEM_FILE\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-ipc-2018-version\" class=\"anchor\" aria-hidden=\"true\" href=\"#ipc-2018-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIPC 2018 version\u003c/h3\u003e\n\u003cp\u003eIf you prefer to run the Scorpion version from IPC 2018 (which uses an\nolder Fast Downward version and different abstractions), we recommend\nusing the \u003ca href=\"https://bitbucket.org/ipc2018-classical/team44/src/ipc-2018-seq-opt/\" rel=\"nofollow\"\u003eScorpion IPC\nrepo\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-differences-between-scorpion-and-fast-downward\" class=\"anchor\" aria-hidden=\"true\" href=\"#differences-between-scorpion-and-fast-downward\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDifferences between Scorpion and Fast Downward\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eScorpion comes with the\n\u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/13708\" rel=\"nofollow\"\u003eh\u00b2-preprocessor\u003c/a\u003e\nby Vidal Alc\u00e1zar and \u00c1lvaro Torralba that prunes irrelevant operators.\nPass \u003ccode\u003e--transform-task preprocess-h2\u003c/code\u003e to use it.\u003c/li\u003e\n\u003cli\u003eThe \u003ccode\u003e--transform-task\u003c/code\u003e command allows you to run arbitrary preprocessing\ncommands that transform the SAS+ output from the translator before\npassing it to the search.\u003c/li\u003e\n\u003cli\u003eScorpion uses a\n\u003ca href=\"https://github.com/greg7mdp/parallel-hashmap\"\u003ephmap::flat_hash_set\u003c/a\u003e to check\nfor duplicate states, which often drastically reduces the peak memory usage,\ncompared to Fast Downward\u0027s \u003ccode\u003eIntHashSet\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eIf \u003ca href=\"https://ccache.dev/\" rel=\"nofollow\"\u003eccache\u003c/a\u003e is installed (recommended), Scorpion\nuses it to cache compilation files.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-new-translator-options\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-translator-options\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew translator options\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eUse \u003ccode\u003e--dump-predicates\u003c/code\u003e and \u003ccode\u003e--dump-static-atoms\u003c/code\u003e to write files with\ninformation that\u0027s useful for learning domain control knowledge.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-new-plugin-options\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-plugin-options\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew plugin options\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ecegar(..., search_strategy=incremental)\u003c/code\u003e: use \u003ca href=\"https://ojs.aaai.org/index.php/ICAPS/article/view/6667\" rel=\"nofollow\"\u003eincremental search for\nCartesian abstraction\nrefinement\u003c/a\u003e\n(default).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ehillclimbing(..., max_generated_patterns=200)\u003c/code\u003e: limit the number of\npatterns generated by hill climbing.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003esystematic(..., pattern_type=interesting_general)\u003c/code\u003e: compute interesting\npatterns for general cost partitioning.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-new-cost-partitioning-algorithms-for-abstraction-heuristics\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-cost-partitioning-algorithms-for-abstraction-heuristics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew cost partitioning algorithms for abstraction heuristics\u003c/h3\u003e\n\u003cp\u003eWe use Cartesian abstractions in the example configurations below\n(\u003ccode\u003e[cartesian()]\u003c/code\u003e). You can also use pattern database heuristics, e.g.,\n\u003ccode\u003e[projections(systematic(2))]\u003c/code\u003e, or mix abstractions, e.g.,\n\u003ccode\u003e[projections(systematic(3)), cartesian()]\u003c/code\u003e. Some of the algorithms below\nare also part of vanilla Fast Downward, but are only implemented for PDB\nheuristics.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOptimal cost partitioning:\n\u003ccode\u003eocp([cartesian()])\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eCanonical heuristic:\n\u003ccode\u003ecanonical_heuristic([cartesian()])\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eUniform cost partitioning:\n\u003ccode\u003eucp([cartesian()], opportunistic=false)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eOpportunistic uniform cost partitioning:\n\u003ccode\u003eucp([cartesian()], ..., opportunistic=true)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eGreedy zero-one cost partitioning:\n\u003ccode\u003egzocp([cartesian()], ...)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eSaturated cost partitioning:\n\u003ccode\u003escp([cartesian()], ...)\u003c/code\u003e (offline), \u003ccode\u003escp_online([cartesian()], ...)\u003c/code\u003e (online)\u003c/li\u003e\n\u003cli\u003e(Saturated) post-hoc optimization:\n\u003ccode\u003epho([cartesian()], ..., saturated={false,true})\u003c/code\u003e (offline),\n\u003ccode\u003eoperatorcounting([pho_abstraction_constraints([cartesian()], saturated={false,true})])\u003c/code\u003e (online)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou can also compute the maximum over abstraction heuristics:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003emaximize([cartesian()])\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe plugin documentation shows all options for \u003ca href=\"https://jendrikseipp.github.io/scorpion/Evaluator/#cost_partitioning_heuristics\" rel=\"nofollow\"\u003ecost partitioning\nheuristics\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-new-pattern-collection-generators\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-pattern-collection-generators\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew pattern collection generators\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eSystematic patterns with size limits:\n\u003ccode\u003esys_scp(max_pattern_size=X, max_pdb_size=Y, max_collection_size=Z, ..., saturate=false)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eSys-SCP patterns:\n\u003ccode\u003esys_scp(...)\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-new-cost-partitioning-algorithms-for-landmark-heuristics\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-cost-partitioning-algorithms-for-landmark-heuristics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew cost partitioning algorithms for landmark heuristics\u003c/h3\u003e\n\u003cp\u003eExample using A* search and saturated cost partitioning over BJOLP\nlandmarks:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e--evaluator\n \"lmc=lmcount(lm_merged([lm_rhw(), lm_hm(m=1)]),\n admissible=true, cost_partitioning=suboptimal, greedy=true,\n reuse_costs=true, scoring_function=max_heuristic_per_stolen_costs)\"\n--search\n \"astar(lmc, lazy_evaluator=lmc)\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDifferent cost partitioning algorithms (all need \u003ccode\u003eadmissible=true\u003c/code\u003e):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOptimal cost partitioning (part of vanilla Fast Downward):\n\u003ccode\u003elmcount(..., cost_partitioning=optimal)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eCanonical heuristic:\n\u003ccode\u003elmcount(..., cost_partitioning=canonical)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003ePost-hoc optimization:\n\u003ccode\u003elmcount(..., cost_partitioning=pho)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eUniform cost partitioning:\n\u003ccode\u003elmcount(..., cost_partitioning=suboptimal, greedy=false, reuse_costs=false)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eOpportunistic uniform cost partitioning (part of vanilla Fast Downward):\n\u003ccode\u003elmcount(..., cost_partitioning=suboptimal, greedy=false, reuse_costs=true, scoring_function=min_stolen_costs)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eGreedy zero-one cost partitioning:\n\u003ccode\u003elmcount(..., cost_partitioning=suboptimal, greedy=true, reuse_costs=false, scoring_function=max_heuristic)\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eSaturated cost partitioning:\n\u003ccode\u003elmcount(..., cost_partitioning=suboptimal, greedy=true, reuse_costs=true, scoring_function=max_heuristic_per_stolen_costs)\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-new-search-engines\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-search-engines\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew search engines\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eBreadth-first search (without overhead of the more general \u003ccode\u003eeager()\u003c/code\u003e search):\n\u003ccode\u003ebrfs()\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eDepth-first search:\n\u003ccode\u003edfs()\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eExhaustive search (useful for dumping the reachable state space of small input tasks):\n\u003ccode\u003edump_reachable_search_space()\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eIDA* search:\n\u003ccode\u003eidastar(cegar(cache_estimates=false))\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eIterative width search:\n\u003ccode\u003eiw(width=2)\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-hidden=\"true\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 22.04\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eGCC 11, GCC 12, Clang 14\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 12\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003ctd\u003eAppleClang 14\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 11\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eAppleClang 13\u003c/td\u003e\n\u003ctd\u003e3.24\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2015, 2021-2022 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-hidden=\"true\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1688990870.0
+ "updated_at": 1674233118.0
},
{
"data_format": 2,
- "description": "Use Docker as a shell to store a Singularity image",
+ "description": "Container recipes for OpenVINO",
"filenames": [
- "Singularity"
+ "ubuntu18/2019/singularity/Singularity.2019_R3_c_omp-py36-gcc75-ubuntu18",
+ "ubuntu18/2019/singularity/Singularity.2019_R3.1_cg_omp-py36-gcc75-ubuntu18",
+ "ubuntu18/2019/singularity/Singularity.2019_pre-release-1_c_omp-py36-gcc75-ubuntu18",
+ "ubuntu18/2019/singularity/Singularity.2019_R3.1_c_omp-py36-gcc75-ubuntu18",
+ "ubuntu18/2019/singularity/Singularity.2019_R3.1_c_tbb-py36-gcc75-ubuntu18",
+ "ubuntu18/2019/singularity/Singularity.2019_R3.1_cg_tbb-py36-gcc75-ubuntu18"
],
- "full_name": "singularityhub/singularity-in-docker",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-in-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-in-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity in Docker\u003c/h1\u003e\n\u003cp\u003eThis is a proof of concept for packaging a Singularity container in a Docker\nimage, only with purpose to store it in a Docker Registry for pulling later.\nOf course you\u0027d need Docker or a tool like \u003ca href=\"https://github.com/deislabs/oras\"\u003eoras\u003c/a\u003e to handle the pull.\nUse at your own risk! I don\u0027t know if there are rules against this sort of thing.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/poopies.png\"\u003e\u003cimg src=\"img/poopies.png\" alt=\"img/poopies.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-hidden=\"true\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild\u003c/h2\u003e\n\u003cp\u003eBuild the Singularity container.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo singularity build busybox.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen test it:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ ./busybox.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ethen build the docker container, giving the Singularity container as a build arg.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker build -t vanessa/singularity-in-docker --build-arg container=busybox.sif \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eMake sure it\u0027s there:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker run -it vanessa/singularity-in-docker \n/ \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e ls /\u003c/span\u003e\nbin dev home root tmp var\nbusybox.sif etc proc sys usr\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen push to wherever you like! When it\u0027s time to pull and use:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker pull vanessa/singularity-in-docker\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can run with a different entrypoint, detached, to keep it running:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker run -d --rm --name squiggles vanessa/singularity-in-docker tail -f /dev/null\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen copy the Singularity container:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker cp squiggles:/busybox.sif exported-busybox.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTada!\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ ./exported-busybox.sif \nRun run run run runnnnn\u003cspan class=\"pl-k\"\u003e!\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAnd stop your squiggles.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker stop squiggles\u003c/pre\u003e\u003c/div\u003e\n",
+ "full_name": "fenz-org/OpenVino",
+ "latest_release": "0.0.4",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-openvino\" class=\"anchor\" aria-hidden=\"true\" href=\"#openvino\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOpenVino\u003c/h1\u003e\n\u003cp\u003eContainer recipes for OpenVINO\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1567362681.0
+ "updated_at": 1675191249.0
},
{
"data_format": 2,
- "description": "This repository is an AI Bootcamp material that consist of a workflow for NLP",
+ "description": "Bin for holding recipe files",
"filenames": [
- "Singularity_riva_speech",
- "Singularity_tao"
+ "bullseye_minio/Singularity",
+ "apache_gunicorn_flask/Singularity",
+ "nginx_gunicorn_flask/Singularity"
],
- "full_name": "openhackathons-org/End-to-End-NLP",
+ "full_name": "hamrhein/containers",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-end-to-end-nlp-bootcamp\" class=\"anchor\" aria-hidden=\"true\" href=\"#end-to-end-nlp-bootcamp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEnd-to-End NLP Bootcamp\u003c/h1\u003e\n\u003cp\u003eThis repository contains the material for the \u003cstrong\u003eEnd-To-End NLP\u003c/strong\u003e bootcamp, the goal of which is to build a complete end-to-end NLP pipeline for Question Answering application. This bootcamp will introduce participants to multiple NVIDIA\u00ae SDKs, most notably NVIDIA TAO Toolkit, NVIDIA TensorRT\u2122, and NVIDIA RIVA. Participants will also have hands-on experience in data preprocessing, model training, optimization, and deployment at scale.\u003c/p\u003e\n\u003cp\u003eThe content is structured in 3 modules, plus an introductory notebook and two challenge notebooks:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOverview of \u003cstrong\u003eEnd-To-End NLP\u003c/strong\u003e bootcamp\u003c/li\u003e\n\u003cli\u003eLab 1: Data preprocessing\u003c/li\u003e\n\u003cli\u003eLab 2: Transfer learning with NVIDIA TAO (QA training)\u003c/li\u003e\n\u003cli\u003eLab 3: Custom model deployment on RIVA\u003c/li\u003e\n\u003cli\u003eChallenge 1: building SQuAD dataset\u003c/li\u003e\n\u003cli\u003eChallenge 2: deploying custom dataset on RIVA\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tutorial-duration\" class=\"anchor\" aria-hidden=\"true\" href=\"#tutorial-duration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTutorial duration\u003c/h2\u003e\n\u003cp\u003eThe total bootcamp material would take approximately 8 hours. It is recommended to divide the teaching of the material into two days, covering Lab 1 in one session and Lab 2 \u0026amp; 3 in the next session.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-using-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-using-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning using Singularity\u003c/h2\u003e\n\u003cp\u003eUpdate coming soon\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-using-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-using-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning using Docker\u003c/h2\u003e\n\u003cp\u003eRun the material via a python virtual environment and Docker containers. Root privileges are required using \u003ccode\u003esudo\u003c/code\u003e. If you don\u0027t have root privileges on your local system, please follow the above instructions on how to run the lab using Singularity.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-installing-the-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the prerequisites\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eInstall \u003ccode\u003edocker-ce\u003c/code\u003e by following the \u003ca href=\"https://docs.docker.com/engine/install/\" rel=\"nofollow\"\u003eofficial instructions\u003c/a\u003e. Once you have installed docker-ce, follow the \u003ca href=\"https://docs.docker.com/engine/install/linux-postinstall/\" rel=\"nofollow\"\u003epost-installation steps\u003c/a\u003e to ensure that docker can be run without \u003ccode\u003esudo\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInstall \u003ccode\u003envidia-container-toolkit\u003c/code\u003e by following the \u003ca href=\"https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html\" rel=\"nofollow\"\u003einstall-guide\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGet an NGC account and API key:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eGo to the \u003ca href=\"https://ngc.nvidia.com/\" rel=\"nofollow\"\u003eNGC\u003c/a\u003e website and click on \u003ccode\u003eRegister for NGC\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eClick on the \u003ccode\u003eContinue\u003c/code\u003e button where \u003ccode\u003eNVIDIA Account (Use existing or create a new NVIDIA account)\u003c/code\u003e is written.\u003c/li\u003e\n\u003cli\u003eFill in the required information and register, then proceed to log in with your new account credentials.\u003c/li\u003e\n\u003cli\u003eIn the top right corner, click on your username and select \u003ccode\u003eSetup\u003c/code\u003e in the dropdown menu.\u003c/li\u003e\n\u003cli\u003eProceed and click on the \u003ccode\u003eGet API Key\u003c/code\u003e button.\u003c/li\u003e\n\u003cli\u003eNext, you will find a \u003ccode\u003eGenerate API Key\u003c/code\u003e button in the upper right corner. After clicking on this button, a dialog box should appear and you have to click on the \u003ccode\u003eConfirm\u003c/code\u003e button.\u003c/li\u003e\n\u003cli\u003eFinally, copy the generated API key and username and save them somewhere on your local system.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInstall NGC CLI\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eLog in with your account credentials at \u003ca href=\"https://ngc.nvidia.com/\" rel=\"nofollow\"\u003eNGC\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eIn the top right corner, click on your username and select \u003ccode\u003eSetup\u003c/code\u003e in the dropdown menu.\u003c/li\u003e\n\u003cli\u003eProceed and click on the \u003ccode\u003eDownloads\u003c/code\u003e button in the CLI panel.\u003c/li\u003e\n\u003cli\u003eSelect \u003ccode\u003eAMD64 Linux\u003c/code\u003e and follow the instructions.\u003c/li\u003e\n\u003cli\u003eOpen the terminal on your local system and log in to the NGC docker registry (\u003ccode\u003envcr.io\u003c/code\u003e) using the command \u003ccode\u003edocker login nvcr.io\u003c/code\u003e and enter \u003ccode\u003e$oauthtoken\u003c/code\u003e as Username and your \u003ccode\u003eAPI Key\u003c/code\u003e as Password.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\u003ca id=\"user-content-install-tao-toolkit-and-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-tao-toolkit-and-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall TAO Toolkit and dependencies\u003c/h3\u003e\n\u003cp\u003eTAO Toolkit is a Python pip package that is hosted on the NVIDIA PyIndex. The package uses the docker restAPI under the hood to interact with the NGC Docker registry to pull and instantiate the underlying docker containers. You must have an NGC account and an API key associated with your account.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-virtualvenwrapper-approach\" class=\"anchor\" aria-hidden=\"true\" href=\"#virtualvenwrapper-approach\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVirtualvenwrapper approach\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eInstall \u003ccode\u003envidia-container-toolkit \u0026gt; 1.3.0-1\u003c/code\u003e from \u003ca href=\"https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun docker without root\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esudo groupadd docker\u003c/li\u003e\n\u003cli\u003esudo usermod -aG docker $USER\u003c/li\u003e\n\u003cli\u003enewgrp docker\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003epip3 install python=3.6.9\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCreate virtualvenwrapper launcher\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esudo apt update\nsudo apt install python-pip python3-pip unzip\npip3 install --upgrade pip\n\npip3 install virtualenvwrapper\n\nexport VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3\nexport WORKON_HOME=/home/user/.virtualenvs\nexport PATH=/home/user/.local/bin:$PATH\nsource /home/user/.local/bin/virtualenvwrapper.sh\n\nmkvirtualenv -p /usr/bin/python3 launcher\n\nworkon launcher\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote that \u003ccode\u003euser\u003c/code\u003e should be replaced with the local machine user\u003c/p\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003e\n\u003cp\u003eTAO and Jupyter notebook installation\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003epip3 install jupyterlab\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003epip3 install nvidia-tao\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInvoke the entrypoints using the this command \u003ccode\u003etao -h\u003c/code\u003e. You should see the following output:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eusage: tao \n {list,stop,info,augment,bpnet,classification,detectnet_v2,dssd,emotionnet,faster_rcnn,fpenet,gazenet,gesturenet,\n heartratenet,intent_slot_classification,lprnet,mask_rcnn,punctuation_and_capitalization,question_answering,\n retinanet,speech_to_text,ssd,text_classification,converter,token_classification,unet,yolo_v3,yolo_v4,yolo_v4_tiny}\n ...\n\nLauncher for TAO\n\noptional arguments:\n-h, --help show this help message and exit\n\ntasks:\n {list,stop,info,augment,bpnet,classification,detectnet_v2,dssd,emotionnet,faster_rcnn,fpenet,gazenet,gesturenet,heartratenet\n ,intent_slot_classification,lprnet,mask_rcnn,punctuation_and_capitalization,question_answering,retinanet,speech_to_text,\n ssd,text_classification,converter,token_classification,unet,yolo_v3,yolo_v4,yolo_v4_tiny}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor more info, visit the \u003ca href=\"https://docs.nvidia.com/tao/tao-toolkit/text/tao_toolkit_quick_start_guide.html\" rel=\"nofollow\"\u003eTAO Toolkit documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-install-other-dependencies-to-run-the-lab\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-other-dependencies-to-run-the-lab\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall other dependencies to run the lab:\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003e pip3 install spacy-langdetect\n pip3 install -U spacy[cuda114]\n python3 -m spacy download en_core_web_sm \n pip3 install pyspellchecker\n pip3 install openpyxl\n pip3 install -U transformers==3.0.0\n pip3 install nltk\n #python3 -m nltk.downloader punkt\n #pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116\n #pip3 install Cython \n pip3 install jupyterlab\n pip3 install ipywidgets\n pip3 install gdown\n pip3 install soundfile\n \n #nemo installation\n pip install Cython\n pip install nemo_toolkit[all]\n pip3 install pynini\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-run-all-notebooks\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-all-notebooks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun All Notebooks\u003c/h3\u003e\n\u003cp\u003eActivate virtualvenwrapper launcher \u003ccode\u003eworkon launcher\u003c/code\u003e (you may be required to export path as executed in 4. above)\u003c/p\u003e\n\u003cp\u003eYou are to run the ALL notebooks in the \u003ccode\u003elauncher\u003c/code\u003e environment.\u003c/p\u003e\n\u003cp\u003eLaunch the jupyter lab with:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ejupyter-lab --no-browser --allow-root --ip=0.0.0.0 --port=8888 --NotebookApp.token=\"\" --notebook-dir=~/End-to-End-NLP/workspace\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eRemember to set the \u003ccode\u003e--notebook-dir\u003c/code\u003e to the location where the \u003ccode\u003eproject folder\u003c/code\u003e where this material is located.\u003c/p\u003e\n\u003cp\u003eThen, open jupyter lab in the browser at \u003ca href=\"http://localhost:8888\" rel=\"nofollow\"\u003ehttp://localhost:8888\u003c/a\u003e and start working on the lab by clicking on the \u003ccode\u003eStart_here.ipynb\u003c/code\u003e notebook.\u003c/p\u003e\n\u003cp\u003eCongratulations, you\u0027ve successfully built and deployed an end-to-end computer vision pipeline!\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-known-issues\" class=\"anchor\" aria-hidden=\"true\" href=\"#known-issues\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eKnown issues\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-tao\" class=\"anchor\" aria-hidden=\"true\" href=\"#tao\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTAO\u003c/h3\u003e\n\u003cp\u003ea. When installing the TAO Toolkit Launcher to your host machine\u2019s native python3 as opposed to the recommended route of using a virtual environment, you may get an error saying that \u003ccode\u003etao binary wasn\u2019t found\u003c/code\u003e. This is because the path to your \u003ccode\u003etao\u003c/code\u003e binary installed by pip wasn\u2019t added to the \u003ccode\u003ePATH\u003c/code\u003e environment variable in your local machine. In this case, please run the following command:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eexport PATH=$PATH:~/.local/bin\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eb. When training, you can see an error message stating:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eResource exhausted: OOM when allocating tensor...\nERROR: Ran out of GPU memory, please lower the batch size, use a smaller input resolution, use a smaller backbone, or enable model parallelism for supported TLT architectures (see TLT documentation).\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAs the error says, you ran out of GPU memory. Try playing with batch size to reduce the memory footprint.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-ngc\" class=\"anchor\" aria-hidden=\"true\" href=\"#ngc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNGC\u003c/h3\u003e\n\u003cp\u003eYou can see an error message stating:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003engc: command not found ...\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eYou can resolve this by setting the path to ngc within the conda launcher environment as:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eecho \"export PATH=\\\"\\$PATH:$(pwd)/ngc-cli\\\"\" \u0026gt;\u0026gt; ~/.bash_profile \u0026amp;\u0026amp; source ~/.bash_profile\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-riva-speech-server\" class=\"anchor\" aria-hidden=\"true\" href=\"#riva-speech-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRiva Speech Server\u003c/h3\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainers\u003c/h1\u003e\n\u003cp\u003eBin for holding recipe files\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1683562054.0
+ "updated_at": 1674604619.0
},
{
"data_format": 2,
- "description": null,
+ "description": "stable-diffusion-webui(AUTOMATIC1111\u7248) \u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305fsingularity image\u3092\u4f5c\u6210\u30fb\u5b9f\u884c\u3059\u308b\u305f\u3081\u306esingularity\u5b9a\u7fa9\u30d5\u30a1\u30a4\u30eb\u3068\u30b7\u30a7\u30eb\u30b9\u30af\u30ea\u30d7\u30c8",
"filenames": [
- "Singularity"
+ "Singularity.sdwebui",
+ "Singularity.repositories",
+ "Singularity.base"
],
- "full_name": "UMMS-Biocore/trinitiySing",
+ "full_name": "oct1971/singularity_stable_diffusion_webui",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity\u003c/h1\u003e\n\u003cp\u003eExecutables\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_stable_diffusion_webui\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity_stable_diffusion_webui\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_stable_diffusion_webui\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui\"\u003estable-diffusion-webui(AUTOMATIC1111\u7248)\u003c/a\u003e \u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305fsingularity image\u3092\u4f5c\u6210\u30fb\u5b9f\u884c\u3059\u308b\u305f\u3081\u306esingularity\u5b9a\u7fa9\u30d5\u30a1\u30a4\u30eb\u3068\u30b7\u30a7\u30eb\u30b9\u30af\u30ea\u30d7\u30c8\u3067\u3059\u3002\u003c/p\u003e\n\u003cp\u003e\u203binstall.py\u3092\u542b\u3080extension\u306fWebUI\u304b\u3089\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3067\u304d\u307e\u305b\u3093\u3002\u305d\u306e\u3088\u3046\u306aextension\u306b\u3064\u3044\u3066\u306f\u3001Singularity.sdwebui\u30d5\u30a1\u30a4\u30eb\u306binstall.py\u4e2d\u3067\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u3066\u3044\u308b\u30e9\u30a4\u30d6\u30e9\u30ea\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u30b3\u30de\u30f3\u30c9\u3092\u8ffd\u52a0\u3057\u3066\u30a4\u30e1\u30fc\u30b8\u3092\u518d\u751f\u6210\u3057\u3001extensions\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306bextension\u306e\u30ea\u30dd\u30b8\u30c8\u30ea\u3092git clone\u3059\u308b\u3053\u3068\u3067\u4f7f\u7528\u306f\u53ef\u80fd\u3067\u3059\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-wsl2-ubuntu2004-singularity-39\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\" class=\"anchor\" aria-hidden=\"true\" href=\"#wsl2-ubuntu2004-singularity-39\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWSL2, ubuntu20.04, singularity 3.9\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u003c/h2\u003e\n\u003cp\u003e\u4ee5\u4e0b\u306e\u30da\u30fc\u30b8\u306e\u624b\u9806\u306b\u5f93\u3063\u3066Windows10/11\u306bWSL2, ubuntu20.04, NVIDIA driver, libnvidia-container-tools, singularity3.9\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003eLinux\u3067\u4f7f\u7528\u3059\u308b\u5834\u5408\u306fNVIDIA driver, singularity3.9\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3092\u884c\u3063\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://sylabs.io/2022/03/wsl2-gpu/\" rel=\"nofollow\"\u003ehttps://sylabs.io/2022/03/wsl2-gpu/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u307e\u305f\u3001\u30b3\u30de\u30f3\u30c9\u30e9\u30a4\u30f3\u306e\u5b9f\u884c\u7528\u306bMicrosoft Store\u304b\u3089Windows Termnal\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u3066\u304a\u304f\u3053\u3068\u3092\u304a\u52e7\u3081\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003e\u4ee5\u4e0b\u306e\u30b3\u30de\u30f3\u30c9\u306fWSL2\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u6642\u306b\u540c\u6642\u306b\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3055\u308c\u305fUbuntu on Windows\u3084Windows Terminal\u3067\u958b\u3044\u305fubuntu\u306e\u30b7\u30a7\u30eb\u3067\u5b9f\u884c\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u672c\u30ea\u30dd\u30b8\u30c8\u30ea\u306eclone\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u672c\u30ea\u30dd\u30b8\u30c8\u30ea\u306eclone\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u672c\u30ea\u30dd\u30b8\u30c8\u30ea\u306eclone\u003c/h2\u003e\n\u003cp\u003eclone\u3059\u308b\u5834\u6240\u306f\u3069\u3053\u3067\u3082\u69cb\u3044\u307e\u305b\u3093\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone https://github.com/oct1971/singularity_stable_diffusion_webui\n$ cd singularity_stable_diffusion_webui\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-singularity-image\u306ebuild\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-image\u306ebuild\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity image\u306ebuild\u003c/h2\u003e\n\u003cp\u003esingularity image\u306ebuild\u306f\u7ba1\u7406\u8005\u6a29\u9650\u304c\u5fc5\u8981\u306a\u305f\u3081\u3001sudo\u3092\u4ed8\u3051\u3066\u5b9f\u884c\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cp\u003e\u203bcudnn\u5c0e\u5165\u306e\u305f\u3081\u3001\u30d9\u30fc\u30b9\u30a4\u30e1\u30fc\u30b8\u3092 nvidia/cuda:11.3.0-cudnn8-devel-ubuntu20.04 \u306b\u5909\u66f4\u3057\u307e\u3057\u305f\u3002\u6539\u3081\u3066 base image\u306ebuild \u304b\u3089\u5b9f\u884c\u3057\u3066\u304f\u3060\u3055\u3044\uff082022-10-12\uff09\u3002\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-base-image\u306ebuild\" class=\"anchor\" aria-hidden=\"true\" href=\"#base-image\u306ebuild\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebase image\u306ebuild\u003c/h3\u003e\n\u003cp\u003eubuntu 20.04\u306bpython3.10, cuda11.3, cudnn8 \u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u3092\u4f5c\u6210\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo bash build_base_image.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-repositories-image\u306ebuild\" class=\"anchor\" aria-hidden=\"true\" href=\"#repositories-image\u306ebuild\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003erepositories image\u306ebuild\u003c/h3\u003e\n\u003cp\u003ebase image\u306bstable-diffusion-webui\u3067\u4f7f\u7528\u3059\u308b\u30ea\u30dd\u30b8\u30c8\u30ea\u7b49\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u3092\u4f5c\u6210\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo bash build_repositories_image.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-sdwebui-image\u306ebuild\" class=\"anchor\" aria-hidden=\"true\" href=\"#sdwebui-image\u306ebuild\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esdwebui image\u306ebuild\u003c/h3\u003e\n\u003cp\u003estable-diffusion-webui(AUTOMATIC1111\u7248) \u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u3092\u4f5c\u6210\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo bash build_sdwebui_image.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u66f4\u65b0\u983b\u5ea6\u306e\u9ad8\u3044stable-diffusion-webui\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3092\u5206\u96e2\u3057\u3066\u3044\u307e\u3059\u306e\u3067\u3001\u66f4\u65b0\u304c\u3042\u3063\u305f\u5834\u5408\u306f\u901a\u5e38sdwebui image\u306ebuild\u306e\u307f\u518d\u5b9f\u884c\u3057\u307e\u3059\u3002\nstable-diffusion-webui\u304c\u5185\u90e8\u3067\u4f7f\u7528\u3057\u3066\u3044\u308b\u30ea\u30dd\u30b8\u30c8\u30ea\u306e\u8ffd\u52a0\u7b49\u304c\u3042\u3063\u305f\u5834\u5408\u306f\u003ca href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs#manual-installation\"\u003eManual Installation\u003c/a\u003e\u306e\u5185\u5bb9\u3092\u53c2\u8003\u306bSingularity.repositories\u3092\u4fee\u6b63\u3057\u3001repositories.sif\u3092\u518dbuild\u3059\u308b\u5fc5\u8981\u304c\u3042\u308a\u307e\u3059\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u521d\u671f\u8a2d\u5b9a\u306e\u5b9f\u884c\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u521d\u671f\u8a2d\u5b9a\u306e\u5b9f\u884c\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u521d\u671f\u8a2d\u5b9a\u306e\u5b9f\u884c\u003c/h2\u003e\n\u003cp\u003esingularity\u3067\u5b9f\u884c\u3055\u308c\u308b\u30b3\u30f3\u30c6\u30ca\u5185\u306f\u4e00\u90e8\u3092\u9664\u3044\u3066\u66f8\u304d\u8fbc\u307f\u7981\u6b62\u3067\u3042\u308b\u305f\u3081\u3001stable-diffusion-webui\u306e\u5b9f\u884c\u5f8c\u306b\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3055\u308c\u308b\u30d5\u30a1\u30a4\u30eb\u306e\u4fdd\u5b58\u5834\u6240\u306f\u30b3\u30f3\u30c6\u30ca\u5b9f\u884c\u6642\u306b\u30b3\u30f3\u30c6\u30ca\u5185\u306b\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u3092\u30d0\u30a4\u30f3\u30c9\u3057\u307e\u3059\u3002\u307e\u305f\u3001\u30d5\u30a1\u30a4\u30eb\u30b5\u30a4\u30ba\u306e\u5927\u304d\u3044model\u30d5\u30a1\u30a4\u30eb\u3082\u30a4\u30e1\u30fc\u30b8\u5185\u306b\u5165\u308c\u306a\u3044\u3088\u3046\u306b\u3057\u3066\u3044\u307e\u3059\u3002\u305d\u308c\u3089\u306e\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u30fb\u30d5\u30a1\u30a4\u30eb\u306e\u6e96\u5099\u3092\u884c\u3044\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003e\u203bdata_dir\u4ee5\u5916\u306b ~/.cache \u4ee5\u4e0b\u306b\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3055\u308c\u308b\u30d5\u30a1\u30a4\u30eb\u3082\u3042\u308a\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003e\u203blattent-diffusion\u304c\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3059\u308b\u30d5\u30a1\u30a4\u30eb\u306f\u3001\u30b3\u30f3\u30c6\u30ca\u3092\u8d77\u52d5\u3057\u305f\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306brepositories\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u304c\u4f5c\u6210\u3055\u308c\u3001\u305d\u306e\u4e2d\u306b\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3055\u308c\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003estable-diffusion-webui(AUTOMATIC1111\u7248) \u306b\u3066\u753b\u50cf\u51fa\u529b\u5148\u306bmodel\u306ehash\u5024\u306e\u30b5\u30d6\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u3092\u4f7f\u3048\u308b\u3088\u3046\u306b\u306a\u3063\u305f\u305f\u3081\u3001model\u3054\u3068\u306e\u51fa\u529b\u5148\u306e\u4f5c\u6210\u304c\u4e0d\u8981\u306b\u306a\u308a\u307e\u3057\u305f\u3002init_model_integration.sh \u306fmodel\u5225\u306e\u51fa\u529b\u5148\u3092\u751f\u6210\u3057\u307e\u305b\u3093\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash init_model_integration.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-model\u306e\u914d\u7f6e\" class=\"anchor\" aria-hidden=\"true\" href=\"#model\u306e\u914d\u7f6e\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emodel\u306e\u914d\u7f6e\u003c/h2\u003e\n\u003cp\u003emodel\u30d5\u30a1\u30a4\u30eb\u306f\u5225\u9014\u7528\u610f\u3057\u3001data_dir/models/Stable-diffusion/ \u306b\u30ea\u30cd\u30fc\u30e0\u305b\u305a\u306b\u914d\u7f6e\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://huggingface.co/CompVis/stable-diffusion-v-1-4-original\" rel=\"nofollow\"\u003e\u672c\u5bb6model\u003c/a\u003e: sd-v1-4.ckpt\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://huggingface.co/hakurei/waifu-diffusion\" rel=\"nofollow\"\u003ewaifu-diffuion model\u003c/a\u003e: wd-v1-2-full-ema.ckpt\n\u003cul\u003e\n\u003cli\u003eOriginal PyTorch Model Download Link \u3088\u308a\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://huggingface.co/naclbit/trinart_stable_diffusion_v2\" rel=\"nofollow\"\u003etrinart2 model\u003c/a\u003e: trinart2_step60000.ckpt, trinart2_step95000.ckpt, trinart2_step115000.ckpt\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-esrgan\u306emodel\u306e\u914d\u7f6e\u30aa\u30d7\u30b7\u30e7\u30f3\" class=\"anchor\" aria-hidden=\"true\" href=\"#esrgan\u306emodel\u306e\u914d\u7f6e\u30aa\u30d7\u30b7\u30e7\u30f3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eESRGAN\u306emodel\u306e\u914d\u7f6e\uff08\u30aa\u30d7\u30b7\u30e7\u30f3\uff09\u003c/h2\u003e\n\u003cp\u003eESRGAN\u306emodel\u306f data_dir/models/ESRGAN/ \u306b\u914d\u7f6e\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-swinir\u306emodel\u306e\u914d\u7f6e\u30aa\u30d7\u30b7\u30e7\u30f3\" class=\"anchor\" aria-hidden=\"true\" href=\"#swinir\u306emodel\u306e\u914d\u7f6e\u30aa\u30d7\u30b7\u30e7\u30f3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSwinIR\u306emodel\u306e\u914d\u7f6e\uff08\u30aa\u30d7\u30b7\u30e7\u30f3\uff09\u003c/h2\u003e\n\u003cp\u003eSwinIR\u306emodel\u306f data_dir/models/SwinIR/ \u306b\u914d\u7f6e\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u30c8\u30ec\u30fc\u30cb\u30f3\u30b0\u6e08\u307fembedding\u306e\u914d\u7f6e\u30aa\u30d7\u30b7\u30e7\u30f3\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u30c8\u30ec\u30fc\u30cb\u30f3\u30b0\u6e08\u307fembedding\u306e\u914d\u7f6e\u30aa\u30d7\u30b7\u30e7\u30f3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u30c8\u30ec\u30fc\u30cb\u30f3\u30b0\u6e08\u307fembedding\u306e\u914d\u7f6e\uff08\u30aa\u30d7\u30b7\u30e7\u30f3\uff09\u003c/h2\u003e\n\u003cp\u003etextual inversion\u306e\u30c8\u30ec\u30fc\u30cb\u30f3\u30b0\u6e08\u307fembedding\u306f data_dir/embeddings/ \u306b\u914d\u7f6e\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-stable-diffusion-webui\u306e\u8d77\u52d5\" class=\"anchor\" aria-hidden=\"true\" href=\"#stable-diffusion-webui\u306e\u8d77\u52d5\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003estable-diffusion-webui\u306e\u8d77\u52d5\u003c/h2\u003e\n\u003cp\u003e\u751f\u6210\u3055\u308c\u305f\u753b\u50cf\u306foutputs\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b\u3001\u30bb\u30fc\u30d6\u3057\u305f\u753b\u50cf\u306flog\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b\u4fdd\u5b58\u3055\u308c\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003e\u203b\u3053\u306e\u5f8c\u306estable-diffusion-webui\u306e\u521d\u671f\u8a2d\u5b9a\u3067 \u0027Save images to a subdirectory\u0027, \u0027Save grids to subdirectory\u0027 \u306b\u30c1\u30a7\u30c3\u30af\u3092\u5165\u308c\u3001 \u0027Directory name pattern\u0027 \u3092 \u0027[model_hash]\u0027 \u3068\u3059\u308b\u3068\u4f7f\u7528\u3057\u3066\u3044\u308bmodel\u3054\u3068\u306b\u30b5\u30d6\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u304c\u4f5c\u6210\u3055\u308c\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash start_instance.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-stable-diffusion-webui\u306e\u521d\u671f\u8a2d\u5b9a\" class=\"anchor\" aria-hidden=\"true\" href=\"#stable-diffusion-webui\u306e\u521d\u671f\u8a2d\u5b9a\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003estable-diffusion-webui\u306e\u521d\u671f\u8a2d\u5b9a\u003c/h2\u003e\n\u003cp\u003eSettings\u30bf\u30d6\u3067\u4ee5\u4e0b\u306e\u8a2d\u5b9a\u3092\u884c\u3044\u3001Apply settings\u3092\u30af\u30ea\u30c3\u30af\u3057\u3066\u8a2d\u5b9a\u3092\u4fdd\u5b58\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOutput directory for txt2img images: /outputs/txt2img-images\u003c/li\u003e\n\u003cli\u003eOutput directory for img2img images: /outputs/img2img-images\u003c/li\u003e\n\u003cli\u003eOutput directory for images from extras tab: /outputs/extras-images\u003c/li\u003e\n\u003cli\u003eOutput directory for txt2img grids: /outputs/txt2img-grids\u003c/li\u003e\n\u003cli\u003eOutput directory for img2img grids: /outputs/img2img-grids\u003c/li\u003e\n\u003cli\u003eDirectory for saving images using the Save button: /log/images\u003c/li\u003e\n\u003cli\u003eFont for image grids that have text: /usr/share/fonts/truetype/dejavu/DejaVuSans.ttf\u003c/li\u003e\n\u003cli\u003eSave images to a subdirectory: \u30c1\u30a7\u30c3\u30af\u003c/li\u003e\n\u003cli\u003eSave grids to subdirectory: \u30c1\u30a7\u30c3\u30af\u003c/li\u003e\n\u003cli\u003eDirectory name pattern: [model_hash]\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u8a2d\u5b9a\u5185\u5bb9\u306f data_dir/ui-config.json, data_dir/config.json \u306b\u66f8\u304d\u8fbc\u307e\u308c\u307e\u3059\u306e\u3067\u3001Batch count\u306e\u4e0a\u9650\u5909\u66f4\u7b49\u306f\u3053\u3061\u3089\u306e\u30d5\u30a1\u30a4\u30eb\u3092\u4fee\u6b63\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cp\u003e\u203b\u5f53\u74b0\u5883\u3067\u306f\u3001\"Apply color correction to img2img results to match original colors.\" \u306b\u30c1\u30a7\u30c3\u30af\u304c\u5165\u3063\u3066\u3044\u308b\u3068SD upscale\u3067\u306e\u51fa\u529b\u6642\u306b\u9ed2\u305a\u3093\u3060\u8272\u306b\u306a\u3063\u3066\u3057\u307e\u3044\u307e\u3057\u305f\u3002\u305d\u306e\u5834\u5408\u306f\u3053\u3061\u3089\u306e\u30c1\u30a7\u30c3\u30af\u3092\u5916\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-textual-inversion\u3067\u4f7f\u7528\u3059\u308b\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b\u3064\u3044\u3066\" class=\"anchor\" aria-hidden=\"true\" href=\"#textual-inversion\u3067\u4f7f\u7528\u3059\u308b\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b\u3064\u3044\u3066\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etextual inversion\u3067\u4f7f\u7528\u3059\u308b\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b\u3064\u3044\u3066\u003c/h2\u003e\n\u003cp\u003einit_model_integration.sh \u306e\u5b9f\u884c\u3067\u3001inputs \u3068 preprocessed_inputs \u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u3092\u4f5c\u6210\u3057\u3066\u3042\u308a\u307e\u3059\u3002textual inversion \u306e\u753b\u9762\u3067\u3001Source directory \u306b inputs/, Destination directory \u306b preprocessed_inputs/, Dataset directory \u306b preprocessed_inputs/ \u3092\u5165\u529b\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-stable-diffusion-webui\u306e\u505c\u6b62\" class=\"anchor\" aria-hidden=\"true\" href=\"#stable-diffusion-webui\u306e\u505c\u6b62\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003estable-diffusion-webui\u306e\u505c\u6b62\u003c/h2\u003e\n\u003cp\u003e\u4ee5\u4e0b\u306e\u30b3\u30de\u30f3\u30c9\u3067\u505c\u6b62\u3055\u305b\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity instance stop sdwebui\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-windows\u306e\u30a8\u30af\u30b9\u30d7\u30ed\u30fc\u30e9\u304b\u3089stable-diffusion-webui\u3067\u751f\u6210\u3057\u305f\u753b\u50cf\u3078\u306e\u30a2\u30af\u30bb\u30b9\" class=\"anchor\" aria-hidden=\"true\" href=\"#windows\u306e\u30a8\u30af\u30b9\u30d7\u30ed\u30fc\u30e9\u304b\u3089stable-diffusion-webui\u3067\u751f\u6210\u3057\u305f\u753b\u50cf\u3078\u306e\u30a2\u30af\u30bb\u30b9\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWindows\u306e\u30a8\u30af\u30b9\u30d7\u30ed\u30fc\u30e9\u304b\u3089stable-diffusion-webui\u3067\u751f\u6210\u3057\u305f\u753b\u50cf\u3078\u306e\u30a2\u30af\u30bb\u30b9\u003c/h2\u003e\n\u003cp\u003e\u30a8\u30af\u30b9\u30d7\u30ed\u30fc\u30e9\u306e\u30a2\u30c9\u30ec\u30b9\u30d0\u30fc\u306b \u003ccode\u003e\\\\wsl\\Ubuntu\\home\\\u0026lt;\u3042\u306a\u305f\u306e\u30a2\u30ab\u30a6\u30f3\u30c8\u540d\u0026gt;\\\u0026lt;\u672c\u30ea\u30dd\u30b8\u30c8\u30ea\u3092clone\u3057\u305f\u5834\u6240\u0026gt;\u003c/code\u003e\u3092\u5165\u529b\u3057\u3066\u958b\u3044\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1519685222.0
+ "updated_at": 1674777883.0
},
{
"data_format": 2,
- "description": "A base Singularity container for PRESTO, including dependencies and environment, converted from docker-PRESTO",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "federatedcloud/singularity-PRESTO",
+ "full_name": "ionut94/IPC-23-CPC",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-presto\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-presto\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-PRESTO\u003c/h1\u003e\n\u003cp\u003eA base Singularity container for PRESTO, including dependencies and environment, converted from docker-PRESTO\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4510\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eFast Downward is a domain-independent planning system.\u003c/p\u003e\n\u003cp\u003eFor documentation and contact information see \u003ca href=\"http://www.fast-downward.org/\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org/\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe following directories are not part of Fast Downward as covered by this\nlicense:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eCopyright (C) 2003-2016 Malte Helmert\nCopyright (C) 2008-2016 Gabriele Roeger\nCopyright (C) 2010-2016 Jendrik Seipp\nCopyright (C) 2010, 2011, 2013-2016 Silvan Sievers\nCopyright (C) 2012-2016 Florian Pommerening\nCopyright (C) 2016 Martin Wehrle\nCopyright (C) 2013, 2015 Salome Simon\nCopyright (C) 2014, 2015 Patrick von Reth\nCopyright (C) 2015 Manuel Heusner, Thomas Keller\nCopyright (C) 2009-2014 Erez Karpas\nCopyright (C) 2014 Robert P. Goldman\nCopyright (C) 2010-2012 Andrew Coles\nCopyright (C) 2010, 2012 Patrik Haslum\nCopyright (C) 2003-2011 Silvia Richter\nCopyright (C) 2009-2011 Emil Keyder\nCopyright (C) 2010, 2011 Moritz Gronbach, Manuela Ortlieb\nCopyright (C) 2011 Vidal Alc\u00e1zar Saiz, Michael Katz, Raz Nissim\nCopyright (C) 2010 Moritz Goebelbecker\nCopyright (C) 2007-2009 Matthias Westphal\nCopyright (C) 2009 Christian Muise\n\nFast Downward is free software: you can redistribute it and/or modify it under\nthe terms of the GNU General Public License as published by the Free Software\nFoundation, either version 3 of the License, or (at your option) any later\nversion.\n\nFast Downward is distributed in the hope that it will be useful, but WITHOUT ANY\nWARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A\nPARTICULAR PURPOSE. See the GNU General Public License for more details.\n\nYou should have received a copy of the GNU General Public License along with\nthis program. If not, see \u0026lt;http://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 6,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1622819998.0
+ "updated_at": 1674825486.0
},
{
"data_format": 2,
- "description": "Novel genomes can be analyzed by GeneMark-ES, an algorithm utilizing models parameterized by unsupervised training. Notably, GeneMark-ES has a special option for fungal genomes to account for fungal-specific intron organization. ",
+ "description": null,
"filenames": [
- "4.65/Singularity"
+ "Singularity.def"
],
- "full_name": "pscedu/singularity-genemark-es",
+ "full_name": "mysteryresearcher/sampling-in-optimal-sgd",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-genemark-es/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-genemark-es/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-genemark-es/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-genemark-es/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/268bf28da5aff3f043cd0714535301fca5138222750e4a5728a5c25e2e832847/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/268bf28da5aff3f043cd0714535301fca5138222750e4a5728a5c25e2e832847/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-genemark-es\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/23ee7cd28d76bd5cef900d9662da76f2c280c918c273ee7fc6998621242d6e5b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/23ee7cd28d76bd5cef900d9662da76f2c280c918c273ee7fc6998621242d6e5b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-genemark-es\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a38b44e2f6b70d1fd02cecabb5e1e98970228f7141ff2c262872ebd57619e047/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a38b44e2f6b70d1fd02cecabb5e1e98970228f7141ff2c262872ebd57619e047/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-genemark-es\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/74af0a874b012a1b673b1febc99b28067b350741dc8da571c81f4e6231b52442/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/74af0a874b012a1b673b1febc99b28067b350741dc8da571c81f4e6231b52442/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-genemark-es\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-genemark-es\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-genemark-es\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-genemark-es\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for GeneMark-ES.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ecountFullySupportedTranscripts.py\u003c/code\u003e, \u003ccode\u003eflag_anchored_elements.py\u003c/code\u003e, \u003ccode\u003egenerateReport.py\u003c/code\u003e, \u003ccode\u003epredictionAnalysis.py\u003c/code\u003e, \u003ccode\u003eselectSupportedSubsets.py\u003c/code\u003e, \u003ccode\u003ebed_to_gff.pl\u003c/code\u003e, \u003ccode\u003ebp_seq_select.pl\u003c/code\u003e, \u003ccode\u003ebuild_mod.pl\u003c/code\u003e, \u003ccode\u003ecalc_introns_from_gtf.pl\u003c/code\u003e, \u003ccode\u003echange_path_in_perl_scripts.pl\u003c/code\u003e, \u003ccode\u003ecompare_intervals_exact.pl\u003c/code\u003e, \u003ccode\u003egc_distr.pl\u003c/code\u003e, \u003ccode\u003eget_below_gc.pl\u003c/code\u003e, \u003ccode\u003eget_sequence_from_GTF.pl\u003c/code\u003e, \u003ccode\u003egmes_petap.pl\u003c/code\u003e, \u003ccode\u003ehc_exons2hints.pl\u003c/code\u003e, \u003ccode\u003ehistogram.pl\u003c/code\u003e, \u003ccode\u003emake_nt_freq_mat.pl\u003c/code\u003e, \u003ccode\u003eparse_ET.pl\u003c/code\u003e, \u003ccode\u003eparse_by_introns.pl\u003c/code\u003e, \u003ccode\u003eparse_gibbs.pl\u003c/code\u003e, \u003ccode\u003eparse_set.pl\u003c/code\u003e, \u003ccode\u003epredict_genes.pl\u003c/code\u003e, \u003ccode\u003ereformat_gff.pl\u003c/code\u003e, \u003ccode\u003erescale_gff.pl\u003c/code\u003e, \u003ccode\u003ernaseq_introns_to_gff.pl\u003c/code\u003e, \u003ccode\u003erun_es.pl\u003c/code\u003e, \u003ccode\u003erun_hmm_pbs.pl\u003c/code\u003e, \u003ccode\u003escan_for_bp.pl\u003c/code\u003e, \u003ccode\u003estar_to_gff.pl\u003c/code\u003e and \u003ccode\u003everify_evidence_gmhmm.pl\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/GeneMark-ES/4.8.25\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/Genemark-ES\u003c/code\u003e as \u003ccode\u003e4.8.25.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/genemark-ess/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-sharper-rates-and-flexible-framework-for-nonconvex-sgd-with-client-and-data-sampling\" class=\"anchor\" aria-hidden=\"true\" href=\"#sharper-rates-and-flexible-framework-for-nonconvex-sgd-with-client-and-data-sampling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSharper Rates and Flexible Framework for Nonconvex SGD with Client and Data Sampling\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-hidden=\"true\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-install-singularity-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-install-singularity-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Install \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/introduction.html\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e (optional)\u003c/h3\u003e\n\u003cp\u003eIf you don\u0027t want to install Singularity, make sure that you have all dependecies from Singularity.def (python3, numpy, pytorch, etc.)\u003c/p\u003e\n\u003cp\u003ea. Pull an image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull library://k3nfalt/default/python_ml:sha256.efcd1fc038228cb7eb0f6f1942dfbaa439cd95d6463015b83ceb2dbaad9e1e98\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eb. Open a shell console of the image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv ~/python_ml_sha256.efcd1fc038228cb7eb0f6f1942dfbaa439cd95d6463015b83ceb2dbaad9e1e98.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-2-prepare-scripts-for-experiments\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-prepare-scripts-for-experiments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Prepare scripts for experiments\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003ePYTHONPATH=./code python3 ./code/distributed_optimization_library/experiments/page_ab/config_quadratic.py \n--experiments_name EXPERIMENT_NAME --num_nodes_list 1000 \n--theretical_step_size --step_size_range -8 10 --number_of_iterations 10000 --cpus_per_task 1 \n--noise_lambdas 0.0 0.1 0.5 1.0 10.0 --dim 10 --samplings \u0027original_page\u0027 \u0027uniform_with_replacement\u0027 \u0027importance\u0027 \n--strongly_convex_constant 0.001 --generate_type worst_case --batch_size 1 10 25 50 100 500 1000 \n--dumps_path SOME_PATH --dataset_path PATH_TO_FOLDER_WITH_DATASET\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-3-execute-scripts\" class=\"anchor\" aria-hidden=\"true\" href=\"#3-execute-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. Execute scripts\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esh SOME_PATH/EXPERIMENT_NAME/singularity_*.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-4-plot-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#4-plot-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. Plot results\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003epython3 code/distributed_optimization_library/experiments/plots/page_ab/quad_prog_plot.py \n--dumps_paths SOME_PATH/EXPERIMENT_NAME\n--output_path SOME_OUTPUT_PATH --filter_sampling importance original_page --filter_noise_lambda 0.1 --batch_experiment\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOne can find all other scripts \u003ca href=\"code/distributed_optimization_library/experiments/plots/page_ab/scripts.txt\"\u003ehere\u003c/a\u003e that generate experiments from the paper.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1631406552.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1652883626.0
},
{
"data_format": 2,
- "description": "NextFlow pipeline: fastq -\u003e SNV CNV -\u003e loqusdb",
+ "description": null,
"filenames": [
- "resources/Singularity"
+ "Singularity.def"
],
- "full_name": "Clinical-Genomics-Lund/ffpe-nextflow",
+ "full_name": "mysteryresearcher/dasha-partial-participation",
"latest_release": null,
- "readme": "\u003ch3\u003e\u003ca id=\"user-content-nextflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#nextflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNextFlow\u003c/h3\u003e\n",
+ "readme": "\u003ch2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-hidden=\"true\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-install-singularity-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-install-singularity-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Install \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/introduction.html\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e (optional)\u003c/h3\u003e\n\u003cp\u003eIf you don\u0027t want to install Singularity, make sure that you have all dependecies from Singularity.def (python3, numpy, pytorch, etc.)\u003c/p\u003e\n\u003cp\u003ea. Pull an image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull library://k3nfalt/default/python_ml:sha256.efcd1fc038228cb7eb0f6f1942dfbaa439cd95d6463015b83ceb2dbaad9e1e98\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eb. Open a shell console of the image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv ~/python_ml_sha256.efcd1fc038228cb7eb0f6f1942dfbaa439cd95d6463015b83ceb2dbaad9e1e98.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-2-prepare-scripts-for-experiments\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-prepare-scripts-for-experiments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Prepare scripts for experiments\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003ePYTHONPATH=./code python3 ./code/distributed_optimization_library/experiments/dasha_partial_participation/config_libsvm_dasha_partial_particiaption.py \n--dumps_path SOME_PATH --dataset_path PATH_TO_FOLDER_WITH_DATASET --dataset real-sim \n--experiments_name EXPERIMENT_NAME \n--num_nodes_list 100 --step_size_range -10 0 --number_of_seeds 1 --number_of_iterations 5000000 \n--algorithm_names zero_marina_sync_stochastic zero_marina_partial_participation_stochastic --cpus_per_task 11 \n--number_of_processes 10 --time 10 --parallel --compressors rand_k --number_of_coordinates 200 --quality_check_rate 1000 \n--oracle stochastic --mega_batch 10000 --batch_size 1 --function stochastic_logistic_regression --logistic_regression_nonconvex 0.001 \n--partial_participation_probabilities 1.0 0.5 0.1 0.01\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-3-execute-scripts\" class=\"anchor\" aria-hidden=\"true\" href=\"#3-execute-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. Execute scripts\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esh SOME_PATH/EXPERIMENT_NAME/singularity_*.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-4-plot-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#4-plot-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. Plot results\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003ePYTHONPATH=./code python3 ./code/distributed_optimization_library/experiments/plots/dasha_partial_participation/plot_vr-marina_real-sim_stochastic.py \n--dumps_paths SOME_PATH/EXPERIMENT_NAME \n--output_path SOME_PATH_FOR_PLOTS \n--ignore_methods \"VR-MARINA (online)\" \"DASHA-MVR\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOne can find all other scripts \u003ca href=\"https://github.com/mysteryresearcher/dasha-partial-participation/blob/submission_neurips2022/code/distributed_optimization_library/experiments/plots/dasha_partial_participation/script.txt\"\u003ehere\u003c/a\u003e that generate experiments from the paper.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1559647892.0
+ "updated_at": 1650602862.0
},
{
"data_format": 2,
- "description": "Singularity recipe for vg and toil-vg",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "ISU-HPC/vg-toil-vg",
+ "full_name": "CshlSiepelLab/SimPol",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-vg-toil-vg\" class=\"anchor\" aria-hidden=\"true\" href=\"#vg-toil-vg\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003evg-toil-vg\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for vg and toil-vg\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-simpol--simulating-the-dynamics-of-rna-polymerase-rnap-on-dna-template\" class=\"anchor\" aria-hidden=\"true\" href=\"#simpol--simulating-the-dynamics-of-rna-polymerase-rnap-on-dna-template\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSimPol \u2014 Simulating the dynamics of RNA Polymerase (RNAP) on DNA template\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-hidden=\"true\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOverview\u003c/h2\u003e\n\u003cp\u003eSimPol tracks the independent movement of RNAPs along the DNA templates of a large\nnumber of cells. It accepts several key\nuser-specified parameters, including the initiation rate, pause-escape rate,\na constant or variable elongation rate, the mean and variance of pause sites across cells,\nas well as the center-to-center spacing constraint between RNAPs,\nthe number of cells being simulated, the gene length, and the total time of transcription.\nThe simulator simply allows each RNAP to move forward or not,\nin time slices of $10^{-4}$ minutes, according to the specified position-specific\nrate parameters. It assumes that at most one movement of each RNAP can occur per\ntime slice. The simulator monitors for collisions between adjacent RNAPs, prohibiting\none RNAP to advance if it is at the boundary of the allowable distance from the next.\nAfter running for the specified time, SimPol outputs either a file in HDF5 format or files in CSV format that records all RNAP position for the last specified number of steps. See more options and details about parameters and outputs below.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"figures/simulator.png\"\u003e\u003cimg src=\"figures/simulator.png\" alt=\"simulator\" width=\"600\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n\tFig.1 Design of SimPol (\u201cSimulator of Polymerases\u201d)\n\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-setup-environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup Environment\u003c/h2\u003e\n\u003cp\u003eWe provide two different approaches to set up the environment for SimPol, one with\n\u003ca href=\"https://docs.conda.io/projects/conda/en/stable/user-guide/getting-started.html\" rel=\"nofollow\"\u003eConda\u003c/a\u003e\nand the other with \u003ca href=\"https://docs.sylabs.io/guides/latest/user-guide/quick_start.html#\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e.\nPre-built debug and release executables can be found in the bin folder\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-conda\" class=\"anchor\" aria-hidden=\"true\" href=\"#conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConda\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml\n\nconda activate simpol\n\nbin/simPol_Release --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build --fakeroot simPol.sif Singularity\n\nsingularity shell simPol.sif\n\nbin/simPol_Release --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-from-source\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-from-source\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild from source\u003c/h2\u003e\n\u003cp\u003eThere is the option to build in either debug mode with debug symbols or release mode with compiler optimizations (e.g. -O2).\u003c/p\u003e\n\u003cp\u003eTo create a build directory in release mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecmake -S . -B Release/ -D CMAKE_BUILD_TYPE=Release\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo clean the release mode build directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecmake --build Release/ --target clean\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo build in release mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecmake --build Release/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote: Replace all instances of \u0027Release\u0027 with \u0027Debug\u0027 to build in Debug mode\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Locally\u003c/h2\u003e\n\u003cp\u003eSet Number of Threads [By default uses all available threads]\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport OMP_NUM_THREADS=\u0026lt;number of threads to use\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun in Release Mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./Release/simPol [options]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun in Debug Mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./Debug/simPol [options]\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun program with file containing command line arguments\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e ./Release/simPol $(\u0026lt;simPol_arguments.dat)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-with-uge-workload-manager-within-cshl\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-with-uge-workload-manager-within-cshl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun with UGE Workload Manager (within CSHL)\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eqsub -pe OpenMP 5 -cwd -b y ./Release/simPol -n 100 --csv 10\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eNote: This allocates 5 threads for the program in the OpenMP parallel environment\u003c/li\u003e\n\u003cli\u003eCheck available parallel environments: qconf -spl\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eOptions:\n\t-h, --help\n\t\tShow this help message and exit\n\n\t-k INTEGER, --tssLen=INTEGER\n\t\tdefine the mean of pause sites across cells [default 50bp]\n\n\t--kSd=DOUBLE\n\t\tdefine the standard deviation of pause sites across cells [default 0]\n\n\t--kMin=INTEGER\n\t\tupper bound of pause site allowed [default 17bp]\n\n\t--kMax=INTEGER\n\t\tlower bound of pause site allowed [default 200bp]\n\n\t--geneLen=INTEGER\n\t\tdefine the length of the whole gene [default 2000bp]\n\n\t-a DOUBLE, --alpha=DOUBLE\n\t\tinitiation rate [default 1 event per min]\n\n\t-b DOUBLE, --beta=DOUBLE\n\t\tpause release rate [default 1 event per min]\n\n\t-z DOUBLE, --zeta=DOUBLE\n\t\tthe mean of elongation rates across sites [default 2000bp per min]\n\n\t--zetaSd=DOUBLE\n\t\tthe standard deviation of elongation rates across sites [default 1000]\n\n\t--zetaMax=DOUBLE\n\t\tthe maximum of elongation rates allowed [default 2500bp per min]\n\n\t--zetaMin=DOUBLE\n\t\tthe minimum of elongation rates allowed [default 1500bp per min]\n\n\t--zetaVec=CHARACTER\n\t\ta file contains vector to scale elongation rates. All cells share the same set of parameters [default \"\"]\n\n\t-n INTEGER, --cellNum=INTEGER\n\t\tNumber of cells being simulated [default 10]\n\n\t-s INTEGER, --polSize=INTEGER\n\t\tPolymerase II size [default 33bp]\n\n\t--addSpace=INTEGER\n\t\tAdditional space in addition to RNAP size [default 17bp]\n\n\t-t DOUBLE, --time=DOUBLE\n\t\tTotal time of simulating data in a cell [default 0.1 min]\n\n\t--hdf5=INTEGER\n\t\tRecord position matrix to HDF5 file for remaining number of steps specified [default: 0 steps]\n\n\t--csv=INTEGER\n\t\tRecord position matrix to csv file for remaining number of steps specified [default: 1 step]\n\n\t-d CHARACTER, --outputDir=CHARACTER\n\t\tDirectory for saving results [default: \u0027results\u0027]\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cp\u003eAfter simulation, SimPol produces multiple output files:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eprobability_vector.csv\u003c/li\u003e\n\u003cli\u003epause_sites.csv\u003c/li\u003e\n\u003cli\u003ecombined_cell_data.csv: Stores the total # of polymerase at each site across all cells\u003c/li\u003e\n\u003cli\u003eposition_matrices.h5: An HDF5 file containing a group of position matrices for the last number of specified steps. The file can be viewed by importing it into the HDFView app. Download Here: \u003ca href=\"https://www.hdfgroup.org/downloads/hdfview/#download\" rel=\"nofollow\"\u003ehttps://www.hdfgroup.org/downloads/hdfview/#download\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eUsing HighFive interface to generate HDF5 file \u003ca href=\"https://github.com/BlueBrain/HighFive\"\u003ehttps://github.com/BlueBrain/HighFive\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eUses chunking and ZLIB (deflate) compression at level 9\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003epositions/position_matrix_#.csv: CSV files containing the position matrix at a specified step\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-sampling-nascent-rna-sequencing-read-counts\" class=\"anchor\" aria-hidden=\"true\" href=\"#sampling-nascent-rna-sequencing-read-counts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSampling nascent RNA sequencing read counts\u003c/h2\u003e\n\u003cp\u003eIf you prefer to simulate nascent RNA sequencing read counts in addition to the RNAP positions,\nyou can also follow the tutorial in \u003ccode\u003escripts/sample_read_counts.Rmd\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\u003cp\u003eZhao, Y., Liu, L. \u0026amp; Siepel, A. Model-based characterization of the equilibrium dynamics of transcription initiation and promoter-proximal pausing in human cells. 2022.10.19.512929 Preprint at \u003ca href=\"https://doi.org/10.1101/2022.10.19.512929\" rel=\"nofollow\"\u003ebioRxiv\u003c/a\u003e (2022).\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1567801955.0
+ "updated_at": 1675094116.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Symbolic Bidirectional A* with Error",
"filenames": [
"Singularity"
],
- "full_name": "stephansmit/inkscape_containers",
+ "full_name": "valcazar/SymBAE",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-inkscape-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#inkscape-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInkscape containers\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-the-container-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-the-container-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild the container locally\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build inkscape_containers_latest.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pull-the-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#pull-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePull the container\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://stephansmit/inkscape_containers:latest \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHosted on Singularity Hub:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3588\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eFast Downward is a domain-independent planning system.\u003c/p\u003e\n\u003cp\u003eFor documentation and contact information see \u003ca href=\"http://www.fast-downward.org/\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org/\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe following directories are not part of Fast Downward as covered by this\nlicense:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eCopyright (C) 2003-2016 Malte Helmert\nCopyright (C) 2008-2016 Gabriele Roeger\nCopyright (C) 2010-2016 Jendrik Seipp\nCopyright (C) 2010, 2011, 2013-2016 Silvan Sievers\nCopyright (C) 2012-2016 Florian Pommerening\nCopyright (C) 2016 Martin Wehrle\nCopyright (C) 2013, 2015 Salome Simon\nCopyright (C) 2014, 2015 Patrick von Reth\nCopyright (C) 2015 Manuel Heusner, Thomas Keller\nCopyright (C) 2009-2014 Erez Karpas\nCopyright (C) 2014 Robert P. Goldman\nCopyright (C) 2010-2012 Andrew Coles\nCopyright (C) 2010, 2012 Patrik Haslum\nCopyright (C) 2003-2011 Silvia Richter\nCopyright (C) 2009-2011 Emil Keyder\nCopyright (C) 2010, 2011 Moritz Gronbach, Manuela Ortlieb\nCopyright (C) 2011 Vidal Alc\u00e1zar Saiz, Michael Katz, Raz Nissim\nCopyright (C) 2010 Moritz Goebelbecker\nCopyright (C) 2007-2009 Matthias Westphal\nCopyright (C) 2009 Christian Muise\n\nFast Downward is free software: you can redistribute it and/or modify it under\nthe terms of the GNU General Public License as published by the Free Software\nFoundation, either version 3 of the License, or (at your option) any later\nversion.\n\nFast Downward is distributed in the hope that it will be useful, but WITHOUT ANY\nWARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A\nPARTICULAR PURPOSE. See the GNU General Public License for more details.\n\nYou should have received a copy of the GNU General Public License along with\nthis program. If not, see \u0026lt;http://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1569690911.0
+ "updated_at": 1675605071.0
},
{
"data_format": 2,
- "description": "official build specifications for busybox",
+ "description": "Singularity container for Python and Keras",
"filenames": [
"Singularity"
],
- "full_name": "singularityhub/busybox",
+ "full_name": "JasonKChow/singPyKeras",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-busybox\" class=\"anchor\" aria-hidden=\"true\" href=\"#busybox\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBusyBox\u003c/h1\u003e\n\u003cp\u003eThis is a library of busybox builds for Singularity images \u003ca href=\"https://singularityhub.github.io/registry-org/singularityhub/busybox/\" rel=\"nofollow\"\u003ehosted on Singularity Static Registry\u003c/a\u003e. The following standard applies:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eeach \u003ccode\u003eSingularity\u003c/code\u003e file corresponds to a build\u003c/li\u003e\n\u003cli\u003etags are supported based on the extension of the Singularity file, with an extensionless file corresponding to \"latest\"\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-what-can-i-find-here\" class=\"anchor\" aria-hidden=\"true\" href=\"#what-can-i-find-here\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat can I find here?\u003c/h2\u003e\n\u003cp\u003eThe repository here serves the container under the namespace \u003ccode\u003esingularityhub/busybox\u003c/code\u003e. Specifically,\nit provides an example of using CircleCI to build and push a container to Google Storage,\nand then update manifests at \u003ca href=\"https://www.github.com/singularityhub/registry-org\"\u003esingularityhub/registry-org\u003c/a\u003e.\nIf you are interested in other container build templates, see \u003ca href=\"https://github.com/singularityhub/registry/wiki/build-templates\"\u003ethis page\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-does-this-work\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-does-this-work\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow does this work?\u003c/h2\u003e\n\u003cp\u003eWe will submit this container to the (organizational) registry at\n\u003ca href=\"https://www.github.com/singularityhub/registry-org\"\u003esingularityhub/registry-org\u003c/a\u003e\nfor a final container uri corresponding to \u003ccode\u003ehttps://singularityhub.github.io/registry-org/singularityhub/busybox\u003c/code\u003e. Specifically:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularityhub/registry-org --) the organization registry\nsingularityhub/busybox --) a container collection\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ethen on GitHub pages:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularityhub.github.io/registry-org --) the registry interface\nsingularityhub.github.io/registry-org/singularityhub/busybox --) the added container\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstructions\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-0-fork-the-repository\" class=\"anchor\" aria-hidden=\"true\" href=\"#0-fork-the-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e0. Fork the Repository\u003c/h2\u003e\n\u003cp\u003eFor the repository here to your account, and make sure to add write permissions\nfor a machine user for the repository, and the machine user\u0027s key to CircleCI.\nThis means:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eadding the machine user as a collaborator to the repository (and accepting the invitation)\u003c/li\u003e\n\u003cli\u003econnecting the repository to CircleCI\u003c/li\u003e\n\u003cli\u003enavigating to the CircleCI project page logged in as the machine user to follow the project (button in upper right)\u003c/li\u003e\n\u003cli\u003egoing to the settings -\u0026gt; Checkout SSH keys to add the machine user key.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFull instructions are provided \u003ca href=\"https://github.com/singularityhub/registry/wiki/deploy-container-storage#2-creating-a-connected-repository\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-1-setup-your-organizational-registry\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-setup-your-organizational-registry\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Setup your Organizational Registry\u003c/h2\u003e\n\u003cp\u003eIf you haven\u0027t done so, follow the instructions \u003ca href=\"https://github.com/singularityhub/registry/wiki/deploy-container-storage#organizational\"\u003ehere\u003c/a\u003e to create the organizational registry. You will need to\nupdate the environment variables in the top of the \u003ca href=\".circleci/config.yml\"\u003e.circleci/config.yml\u003c/a\u003e\nto reflect your repository:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e environment:\n\n # The GitHub username / reponame that the container will be submit to\n - REGISTRY_BASE: singularityhub/registry-org\n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou should only need to do this once. The example provided here uses\n\u003ca href=\"https://www.github.com/singularityhub/registry-org\"\u003esingularityhub/registry-org\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-2-google-storage\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-google-storage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Google Storage\u003c/h2\u003e\n\u003cp\u003eWe will be interacting with Google Storage via the \u003ca href=\"https://www.github.com/singularityhub/sregistry\"\u003esregistry\u003c/a\u003e\ncommand line client.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-required-environment-variables\" class=\"anchor\" aria-hidden=\"true\" href=\"#required-environment-variables\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequired environment variables\u003c/h2\u003e\n\u003cp\u003eCreate a Google Project and \u003ca href=\"https://cloud.google.com/sdk/docs/authorizing#authorizing_with_a_service_account\" rel=\"nofollow\"\u003ea service account\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-download-the-service-account-key\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-download-the-service-account-key\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Download the Service Account Key\u003c/h3\u003e\n\u003cp\u003eYou should first download a service account key from the \u003ca href=\"https://console.cloud.google.com/iam-admin/serviceaccounts?_ga=2.213389911.-231410963.1512057989\" rel=\"nofollow\"\u003eservice accounts page\u003c/a\u003e. For the roles, add an admin for Google\nStorage (to store your container). If you want to use the Google Cloud Builder (a similar\nconfiguration, example at \u003ca href=\"https://www.github.com/singularityhub/nginx\"\u003enginx\u003c/a\u003e) then you can also add Google Build.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/service-account.png\"\u003e\u003cimg src=\"img/service-account.png\" alt=\"img/service-account.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eOnce you add the roles, you \u003cem\u003edo not need to add users\u003c/em\u003e to the account. You can next download\nthe service account key to your local machine, and move it to the repository folder.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/create-key.png\"\u003e\u003cimg src=\"img/create-key.png\" alt=\"img/create-key.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eNote that the .gitignore includes *.json so it won\u0027t be added to your project!\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-2-circle-ci-secrets\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-circle-ci-secrets\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Circle CI Secrets\u003c/h3\u003e\n\u003cp\u003eOnce you have the \u003ccode\u003e\u0026lt;project-id\u0026gt;-\u0026lt;number\u0026gt;.json\u003c/code\u003e in the present working directory,\nyou can add the entire thing to your project as an encrypted environment variable.\nHere is how to copy paste the string from your terminal:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ cat \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eproject-id\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e-\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003enumber\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e.json\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAdd the text output from the above to an environment variable\ncalled \u003ccode\u003eGOOGLE_APPLICATION_CREDENTIALS\u003c/code\u003e along with the following (all project secrets):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eGOOGLE_COMPUTE_ZONE: the zone you want your compute builder to run in.\u003c/li\u003e\n\u003cli\u003eSREGISTRY_GOOGLE_PROJECT: the id of your project, easiest to find in the Google Project console url.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOptionally, export a name for your bucket, \u003ccode\u003eSREGISTRY_GOOGLE_STORAGE_BUCKET\u003c/code\u003e\n(it will be created if it doesn\u0027t exist). It will default to your project id with sregistry- as a prefix.\nDon\u0027t forget to add the machine user to the repository, and then add its credential.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singpykeras\" class=\"anchor\" aria-hidden=\"true\" href=\"#singpykeras\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingPyKeras\u003c/h1\u003e\n\u003cp\u003eSingularity container for Python and Keras. Check releases for built images.\u003c/p\u003e\n\u003cp\u003eTo build:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build pyTF.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo use/test:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv pyTF.sif python kerasTest.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo get into environment\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv pyTF.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo get just an interactive python\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv pyTF.sif python\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [
- "singularityhub",
- "singularity",
- "sregistry-org",
- "static-registry",
- "registry",
- "registry-template"
- ],
- "updated_at": 1549553036.0
+ "topics": [],
+ "updated_at": 1676527668.0
},
{
"data_format": 2,
- "description": "R container with baySeq and riboseq libraries",
+ "description": "pipeline for imputing snps on 1000g hg38 reference. repurposed from sceQTL-Gen for specific lab use",
"filenames": [
- "Singularity"
+ "Singularity.Imputation"
],
- "full_name": "callaghanmt-containers/riboseqbayseq",
- "latest_release": null,
- "readme": "\u003ch2\u003e\u003ca id=\"user-content-singularity-container-build-script-for-riboseqr-and-bayseq\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-container-build-script-for-riboseqr-and-bayseq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity container build script for riboSeqR and baySeq\u003c/h2\u003e\n\u003cp\u003eBoth packages are obtained from Bioconductor and require RCurl as a prerequisite.\u003c/p\u003e\n\u003cp\u003eRCurl needs the Ubuntu \u003ccode\u003elibcurl-dev\u003c/code\u003e package which is also installed\u003c/p\u003e\n\u003cp\u003eTo build:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esudo singularity build riboseqbayseq.simg Singularity\u003c/code\u003e\u003c/p\u003e\n",
+ "full_name": "powellgenomicslab/SNP_imputation_1000g_hg38",
+ "latest_release": "v0.0.2",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-powell-lab-imputation-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#powell-lab-imputation-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePowell Lab Imputation Pipeline\u003c/h1\u003e\n\u003cp\u003eRepurposed pipeline from Urmo for the sceQTL-Gen Consortium. Update requirements so more suitable for more general use\u003c/p\u003e\n\u003cp\u003ePlease see the \u003ca href=\"https://github.com/powellgenomicslab/SNP_imputation_1000g_hg38/wiki/SNP-Genotype-Imputation-Using-1000G-hg38-Reference\"\u003eWiki\u003c/a\u003e for information on running the SNP imputation pipeline.\u003c/p\u003e\n\u003cp\u003eThese documents were put together by Drew Neavin on 16 November, 2021.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1536747304.0
+ "updated_at": 1648702994.0
},
{
"data_format": 2,
- "description": "seqtk singulairty container",
+ "description": null,
"filenames": [
- "Singularity"
+ "devops_pipeline/Singularity",
+ "devops_base/Singularity"
],
- "full_name": "phgenomics-singularity/seqtk",
+ "full_name": "ninamiolane/connect",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1576530783.0
+ "updated_at": 1582874207.0
},
{
"data_format": 2,
- "description": "A Docker/Singularity container for packaging pulsar searching software",
+ "description": "This material contains content on how to profile and optimize simple Pytorch mnist code using NVIDIA Nsight Systems and Pytorch Profiler ",
"filenames": [
"Singularity"
],
- "full_name": "federatedcloud/pulsar-pipeline-container",
+ "full_name": "openhackathons-org/AI-Profiler",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-docker-pulsar-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker-pulsar-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edocker-pulsar-pipeline\u003c/h1\u003e\n\u003cp\u003eA Docker/Singularity container for packaging pulsar searching software\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4541\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-optimizing-a-deep-neural-network-dnn-training-program\" class=\"anchor\" aria-hidden=\"true\" href=\"#optimizing-a-deep-neural-network-dnn-training-program\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOptimizing a Deep Neural Network (DNN) training program\u003c/h1\u003e\n\u003cp\u003eThis folder contains contents for AI training program profiling.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNVIDIA Nsight Systems\u003c/li\u003e\n\u003cli\u003ePyTorch Profiler with TensorBoard Plugin\u003c/li\u003e\n\u003cli\u003eTensorBoard Visualization\u003c/li\u003e\n\u003cli\u003eOptimization Techniques\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eTo run this tutorial you will need a machine with NVIDIA GPU.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eInstall the latest \u003ca href=\"https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e or \u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eTo be able to see the profiler output, please download NVIDIA Nsight Systems\u0027 latest version from \u003ca href=\"https://developer.nvidia.com/nsight-systems\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eLinux ubuntu OS\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-on-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-on-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning on containers\u003c/h2\u003e\n\u003cp\u003eTo start with, you will have to build a Docker or Singularity container.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-docker-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker Container\u003c/h3\u003e\n\u003cp\u003eTo build a docker container, run:\n\u003ccode\u003esudo docker build --network=host -t \u0026lt;imagename\u0026gt;:\u0026lt;tagnumber\u0026gt; .\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eFor instance:\n\u003ccode\u003esudo docker build -t pytorch:1.0 .\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe code labs have been written using Jupyter notebooks and a Dockerfile has been built to simplify deployment. In order to serve the docker instance for a student, it is necessary to expose port 8888 from the container, for instance, the following command would expose port 8888 inside the container as port 8888 on the lab machine:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esudo docker run --gpus all --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 -it --rm --network=host -v ~/ai_profiler/workspace:/workspace pytorch:1.0 jupyter-lab --no-browser --allow-root --ip=0.0.0.0 --port=8888 --NotebookApp.token=\"\" --notebook-dir=/workspace\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003e--gpus\u003c/code\u003e flag is used to enable \u003ccode\u003eall\u003c/code\u003e NVIDIA GPUs during container runtime. The \u003ccode\u003e--rm\u003c/code\u003e flag is used to clean an temporary images created during the running of the container. The \u003ccode\u003e-it\u003c/code\u003e flag enables killing the jupyter server with ctrl-c.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003e--ipc=host --ulimit memlock=-1 --ulimit stack=67108864\u003c/code\u003e enable sufficient memory allocation to run pytorch within the docker environment.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003ejupyter-lab --no-browser --allow-root --ip=0.0.0.0 --port=8888 --NotebookApp.token=\"\" --notebook-dir=/workspace\u003c/code\u003e command launch the jupyter notebook inside the container. The flag \u003ccode\u003e-v\u003c/code\u003e allows the mapping of working directory on your local machine \u003ccode\u003e~/ai_profiler/profiler/workspace:/workspace\u003c/code\u003e to \u003ccode\u003eworspace\u003c/code\u003e directory inside the container.\u003c/p\u003e\n\u003cp\u003eThen, open the jupyter notebook in browser: \u003ca href=\"http://localhost:8888\" rel=\"nofollow\"\u003ehttp://localhost:8888\u003c/a\u003e\nStart working on the lab by clicking on the \u003ccode\u003estart_here.ipynb\u003c/code\u003e notebook.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Container\u003c/h3\u003e\n\u003cp\u003eTo build the singularity container, run:\n\u003ccode\u003esudo singularity build --fakeroot \u0026lt;image_name\u0026gt;.simg Singularity\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eFore example:\n\u003ccode\u003esingularity build --fakeroot pytorch.simg Singularity\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThen, run the container:\n\u003ccode\u003esingularity run --nv --bind ~/ai_profiler/workspace:/workspace pytorch.simg jupyter-lab --no-browser --allow-root --ip=0.0.0.0 --port=8888 --NotebookApp.token=\"\" --notebook-dir=/workspace\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003e--nv\u003c/code\u003e flag is used to enable \u003ccode\u003eall\u003c/code\u003e NVIDIA GPUs during container runtime. The \u003ccode\u003e--bind\u003c/code\u003e allows the mapping of working directory on your local machine \u003ccode\u003e~/ai_profiler/profiler/workspace:/workspace\u003c/code\u003e to \u003ccode\u003eworspace\u003c/code\u003e directory inside the container.\u003c/p\u003e\n\u003cp\u003eThen, open the jupyter notebook in browser: \u003ca href=\"http://localhost:8888\" rel=\"nofollow\"\u003ehttp://localhost:8888\u003c/a\u003e\nStart working on the lab by clicking on the \u003ccode\u003eStart_Here.ipynb\u003c/code\u003e notebook.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-on-local-machine\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-on-local-machine\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning on Local Machine\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eInstall PyTorch \u003ca href=\"https://pytorch.org/get-started/locally/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eInstall essentials:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e pip3 install jupyterlab\n pip3 install ipywidgets\n pip3 install torch_tb_profiler\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eInstall NVIDIA Nsight Systems version 2022.1.1 from \u003ca href=\"https://developer.nvidia.com/nsight-systems\" rel=\"nofollow\"\u003ehere\u003c/a\u003e and set path. Please run \u003ccode\u003ensys --version\u003c/code\u003e from the terminal to ensure you are using the version 2022.1.1 or above\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e#Tutorial Duration\nThe total bootcamp material would take 2 hours.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1622819898.0
+ "updated_at": 1675267909.0
},
{
"data_format": 2,
- "description": "Singularity image with a selection of neuro processing packages and tools",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.def"
],
- "full_name": "chidiugonna/nklab-neuro-tools",
+ "full_name": "manasi-sharma/language-OG-diffuser",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-image-containing-neuroimaging-software\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-image-containing-neuroimaging-software\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity image containing Neuroimaging software\u003c/h1\u003e\n\u003cp\u003eThis Singularity image will be about 20GB when built using Singularity 2.4.2. It comes with FSL 5.10 including eddy_cuda8.0, Mrtrix 3RC2, Freesurfer 6.0.0, Afni 18.0.21, ANTS 2.2.0, MRIQC v0.1, Julia v0.6.1 and The Duke Resting State fMRI pipeline. It also has CUDA 8.0 toolkit libraries installed.\u003c/p\u003e\n\u003cp\u003eThe image can be built using Singularity build in singularity2.4.2\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild Singularity Image\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eYou will need to have singularity 2.4 installed. Simply clone this repository to a convenient directory.\u003c/li\u003e\n\u003cli\u003eNavigate into the \u003ccode\u003enklab-neuro-tools\u003c/code\u003edirectory and check that you have a Singularity definiton file \u003ccode\u003eSingularity\u003c/code\u003e and the directory \u003ccode\u003esrc\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eConfirm that \u003ccode\u003esrc\u003c/code\u003e folder and all the files in \u003ccode\u003esrc\u003c/code\u003e have full read and write privileges. if not then \u003ccode\u003esudo chmod -R 777 src\u003c/code\u003e should accomplish this.\u003c/li\u003e\n\u003cli\u003eNow simply build the image as \u003ccode\u003esudo singularity build nklab-neuro-tools.simg Singularity\u003c/code\u003e - note that the image name is assumed to be \u003ccode\u003enklab-neuro-tools.simg\u003c/code\u003e but this can be changed to a more convenient label.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Singularity Image\u003c/h2\u003e\n\u003cp\u003eYou can now run commands by simply appending them to the end of \u003ccode\u003esingularity run nklab-neuro-tools.simg\u003c/code\u003e So for example to run an FSL command like flirt directly the following would be entered: \u003ccode\u003esingularity run nklab-neuro-tools.simg flirt ....\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-cuda-compatibility\" class=\"anchor\" aria-hidden=\"true\" href=\"#cuda-compatibility\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCuda Compatibility\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eYou can run Cuda-8.0 compatible executables by using the \u003ccode\u003e--nv\u003c/code\u003e parameter. The example provided next shows how to accomplish this with \u003ccode\u003eeddy-cuda8.0\u003c/code\u003e:\n\u003ccode\u003esingularity run --nv rsfmri.img /opt/fsl/bin/eddy_cuda8.0 --imain=G1_1_OFF_28271_cgm --mask=G1_1_OFF_28271_cgm0_brain_mask --acqp=acqparams.txt --index=index.txt --bvecs=bvecs --bvals=bvals --out=G1_1_OFF_28271_cgm_eddy\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-shell-into-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#shell-into-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eShell into Singularity Image\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eYou can also shell into the singularity image using: \u003ccode\u003esingularity shell nklab-neuro-tools.simg\u003c/code\u003e and then run commands at the command line within the container.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eProvided below are notes on specific aspects of the container that may be useful.\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-resting-state-fmri-pipeline-nan-kuei-chenduke-university\" class=\"anchor\" aria-hidden=\"true\" href=\"#resting-state-fmri-pipeline-nan-kuei-chenduke-university\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResting State FMRI pipeline (Nan-kuei Chen/Duke University)\u003c/h2\u003e\n\u003cp\u003ePlease refer to \u003ca href=\"https://wiki.biac.duke.edu/biac:analysis:resting_pipeline\" rel=\"nofollow\"\u003ehttps://wiki.biac.duke.edu/biac:analysis:resting_pipeline\u003c/a\u003e for details of use.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThe original python source \u003ccode\u003eresting_pipeline.py\u003c/code\u003e available at at [\u003ca href=\"https://wiki.biac.duke.edu/biac:analysis:resting_pipeline\" rel=\"nofollow\"\u003ehttps://wiki.biac.duke.edu/biac:analysis:resting_pipeline\u003c/a\u003e] has been slightly amended and is included in this repository in the folder \u003ccode\u003esrc\u003c/code\u003e. These changes are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003edata1\u003c/code\u003e has been selectively converted to dtype \u003ccode\u003enumpy.float64\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eslice indices have been cast as longs in certain instances.\u003c/li\u003e\n\u003cli\u003eBXH functionality is ignored. To explicitly use BXH info pass the flag --ignorebxh=N\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-sliding-window-functionality\" class=\"anchor\" aria-hidden=\"true\" href=\"#sliding-window-functionality\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSliding window functionality\u003c/h3\u003e\n\u003cp\u003eA new step has been added \u003ccode\u003e-7sw\u003c/code\u003e to enable sliding window functionality. In order to use this step you will need to use the \u003ccode\u003e--slidewin\u003c/code\u003e parameter which takes 2 numbers seperated by a comma. The 1st number is the window size in seconds and the second number is the shift in seconds between sequential windows. So for example \u003ccode\u003e--slidewin=60,3\u003c/code\u003e will use a window size of \u003ccode\u003e60\u003c/code\u003e seconds shifted by \u003ccode\u003e3\u003c/code\u003e seconds for each subsequent window. Keep in mind that the \u003ccode\u003e--tr\u003c/code\u003e (in milliseconds) parameter is required to calculate the number of volumes to use for each sliding window correlation. If you do not specify the --slidwin parameter and run step \u003ccode\u003e7sw\u003c/code\u003e then default values of \u003ccode\u003e30,3\u003c/code\u003e will be used. Sliding window files are exported to a new directory \u003ccode\u003eSlidingWindow_W_S\u003c/code\u003e and image files are consolidated into 4D volumes for viewing in FSL as a movie\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-extensions-to-slice-correction-functionality\" class=\"anchor\" aria-hidden=\"true\" href=\"#extensions-to-slice-correction-functionality\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExtensions to Slice Correction functionality\u003c/h3\u003e\n\u003cp\u003eThe pipeline has been extended to accept custom slice correction timing files. A python script make_fsl_stc.py has been bundled in this container which can take .json files created by dcm2niix. This python program will create a slice correction file with timing values and one with slices in order of acquisition. It can be called as follows:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003e/opt/rsfmri_python/bin/make_fsl_stc.py fmri.json\u003c/code\u003e where fmri.json is the json output from dcm2niix. custom names for the slice order and slice time files can be provided as parameters as follows:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003emake_fsl_stc.py fmri.json --slicenum=/path/num.txt --slicetime=/path/time.txt\u003c/code\u003e otherwise these files default to \u003ccode\u003esliceorder.txt\u003c/code\u003e and \u003ccode\u003eslicetimes.txt\u003c/code\u003e in the current directory.\u003c/p\u003e\n\u003cp\u003eOnce these custom files have been created then they can be provided to the resting state pipeline using the full path as input to the \u003ccode\u003e--sliceorder\u003c/code\u003e parameter\n\u003ccode\u003e--sliceorder=/path/num.txt\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eplease note that the default custom slice file expected uses slice order. If you pass a text file with slice times then you will need to use another parameter \u003ccode\u003e--slicetimings=time\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-example-commands\" class=\"anchor\" aria-hidden=\"true\" href=\"#example-commands\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample Commands\u003c/h3\u003e\n\u003ch4\u003e\u003ca id=\"user-content-create-slice-timing-files-from-json\" class=\"anchor\" aria-hidden=\"true\" href=\"#create-slice-timing-files-from-json\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreate Slice Timing files from json\u003c/h4\u003e\n\u003cp\u003e\u003ccode\u003esingularity run -B $PWD:/opt/data nklab-neuro-tools.simg /opt/rsfmri_python/bin/make_fsl_stc.py /opt/data/fmri.json\u003c/code\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-run-pipeline-also-runs-sliding-window-with-window-30s-shift3s-using-custom-slice-timing-file\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-pipeline-also-runs-sliding-window-with-window-30s-shift3s-using-custom-slice-timing-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun pipeline (also runs sliding window with window-30s, shift=3s) using custom slice timing file\u003c/h4\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --rm -B $PWD:/opt/data nklab-neuro-tools.simg /opt/rsfmri_python/bin/resting_pipeline.py --func /opt/data/fmri-std-pre.nii.gz -o restoutput --steps=1,2,3,4,5,6,7,8 --slidewin=30,3 --sliceorder=/opt/data/slicetimes.txt --slicetiming=time --tr=3000\u003c/code\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-planning-with-diffusion--\" class=\"anchor\" aria-hidden=\"true\" href=\"#planning-with-diffusion--\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePlanning with Diffusion \u00a0\u00a0 \u003ca href=\"https://colab.research.google.com/drive/1YajKhu-CUIGBJeQPehjVPJcK_b38a8Nc?usp=sharing\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667\" alt=\"Open In Colab\" data-canonical-src=\"https://colab.research.google.com/assets/colab-badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003eTraining and visualizing of diffusion models from \u003ca href=\"https://diffusion-planning.github.io/\" rel=\"nofollow\"\u003ePlanning with Diffusion for Flexible Behavior Synthesis\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://github.com/jannerm/diffuser/tree/main\"\u003emain branch\u003c/a\u003e contains code for training diffusion models and planning via value-function guided sampling on the D4RL locomotion environments.\nThe \u003ca href=\"https://github.com/jannerm/diffuser/tree/kuka\"\u003ekuka branch\u003c/a\u003e contains block-stacking experiments.\nThe \u003ca href=\"https://github.com/jannerm/diffuser/tree/maze2d\"\u003emaze2d branch\u003c/a\u003e contains goal-reaching via inpainting in the Maze2D environments.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/184a6bb0418c60d778dcfa9f81dfddfdea0c0a3238b1d0cc4aa8666dd32ad3ca/68747470733a2f2f646966667573696f6e2d706c616e6e696e672e6769746875622e696f2f696d616765732f64696666757365722d636172642e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/184a6bb0418c60d778dcfa9f81dfddfdea0c0a3238b1d0cc4aa8666dd32ad3ca/68747470733a2f2f646966667573696f6e2d706c616e6e696e672e6769746875622e696f2f696d616765732f64696666757365722d636172642e706e67\" width=\"60%\" title=\"Diffuser model\" data-canonical-src=\"https://diffusion-planning.github.io/images/diffuser-card.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eUpdates\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e12/09/2022: Diffuser (the RL model) has been integrated into \u003cg-emoji class=\"g-emoji\" alias=\"hugs\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f917.png\"\u003e\ud83e\udd17\u003c/g-emoji\u003e Diffusers (the Hugging Face diffusion model library)! See \u003ca href=\"https://huggingface.co/docs/diffusers/using-diffusers/rl\" rel=\"nofollow\"\u003ethese docs\u003c/a\u003e for how to run Diffuser using their pipeline.\u003c/li\u003e\n\u003cli\u003e10/17/2022: A bug in the value function scaling has been fixed in \u003ca href=\"https://github.com/jannerm/diffuser/commit/3d7361c2d028473b601cc04f5eecd019e14eb4eb\"\u003ethis commit\u003c/a\u003e. Thanks to \u003ca href=\"https://scholar.google.com/citations?user=Q6UMpRYAAAAJ\u0026amp;hl=en\" rel=\"nofollow\"\u003ePhilemon Brakel\u003c/a\u003e for catching it!\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-quickstart\" class=\"anchor\" aria-hidden=\"true\" href=\"#quickstart\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuickstart\u003c/h2\u003e\n\u003cp\u003eLoad a pretrained diffusion model and sample from it in your browser with \u003ca href=\"https://colab.research.google.com/drive/1YajKhu-CUIGBJeQPehjVPJcK_b38a8Nc?usp=sharing\" rel=\"nofollow\"\u003escripts/diffuser-sample.ipynb\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml\nconda activate diffuser\npip install -e .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-using-pretrained-models\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-pretrained-models\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing pretrained models\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-downloading-weights\" class=\"anchor\" aria-hidden=\"true\" href=\"#downloading-weights\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownloading weights\u003c/h3\u003e\n\u003cp\u003eDownload pretrained diffusion models and value functions with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./scripts/download_pretrained.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis command downloads and extracts a \u003ca href=\"https://drive.google.com/file/d/1wc1m4HLj7btaYDN8ogDIAV9QzgWEckGy/view?usp=share_link\" rel=\"nofollow\"\u003etarfile\u003c/a\u003e containing \u003ca href=\"https://drive.google.com/drive/folders/1ie6z3toz9OjcarJuwjQwXXzDwh1XnS02?usp=sharing\" rel=\"nofollow\"\u003ethis directory\u003c/a\u003e to \u003ccode\u003elogs/pretrained\u003c/code\u003e. The models are organized according to the following structure:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u2514\u2500\u2500 logs/pretrained\n \u251c\u2500\u2500 ${environment_1}\n \u2502 \u251c\u2500\u2500 diffusion\n \u2502 \u2502 \u2514\u2500\u2500 ${experiment_name}\n \u2502 \u2502 \u251c\u2500\u2500 state_${epoch}.pt\n \u2502 \u2502 \u251c\u2500\u2500 sample-${epoch}-*.png\n \u2502 \u2502 \u2514\u2500\u2500 {dataset, diffusion, model, render, trainer}_config.pkl\n \u2502 \u251c\u2500\u2500 values\n \u2502 \u2502 \u2514\u2500\u2500 ${experiment_name}\n \u2502 \u2502 \u251c\u2500\u2500 state_${epoch}.pt\n \u2502 \u2502 \u2514\u2500\u2500 {dataset, diffusion, model, render, trainer}_config.pkl\n \u2502 \u2514\u2500\u2500 plans\n \u2502 \u2514\u2500\u2500 defaults\n \u2502 \u251c\u2500\u2500 0\n \u2502 \u251c\u2500\u2500 1\n \u2502 \u251c\u2500\u2500 ...\n \u2502 \u2514\u2500\u2500 149\n \u2502\n \u251c\u2500\u2500 ${environment_2}\n \u2502 \u2514\u2500\u2500 ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003estate_${epoch}.pt\u003c/code\u003e files contain the network weights and the \u003ccode\u003econfig.pkl\u003c/code\u003e files contain the instantation arguments for the relevant classes.\nThe png files contain samples from different points during training of the diffusion model.\nWithin the \u003ccode\u003eplans\u003c/code\u003e subfolders, there are the results of 150 evaluation trials for each environment using the default hyperparameters.\u003c/p\u003e\n\u003cdetails\u003e\n\u003csummary\u003eTo aggregate the results of the evaluations in the \u003ccode\u003elogs\u003c/code\u003e folder, run \u003ccode\u003epython scripts/read_results.py\u003c/code\u003e. (Expand to view the output of this command on the plans downloaded from Google Drive.)\n\u003c/summary\u003e\n\u003cpre\u003e\u003ccode\u003ehopper-medium-replay-v2 | defaults | logs/pretrained/hopper-medium-replay-v2/plans | 150 scores\n 93.6 +/- 0.37\nhopper-medium-v2 | defaults | logs/pretrained/hopper-medium-v2/plans | 150 scores\n 74.3 +/- 1.36\nhopper-medium-expert-v2 | defaults | logs/pretrained/hopper-medium-expert-v2/plans | 150 scores\n 103.3 +/- 1.30\nwalker2d-medium-replay-v2 | defaults | logs/pretrained/walker2d-medium-replay-v2/plans | 150 scores\n 70.6 +/- 1.60\nwalker2d-medium-v2 | defaults | logs/pretrained/walker2d-medium-v2/plans | 150 scores\n 79.6 +/- 0.55\nwalker2d-medium-expert-v2 | defaults | logs/pretrained/walker2d-medium-expert-v2/plans | 150 scores\n 106.9 +/- 0.24\nhalfcheetah-medium-replay-v2 | defaults | logs/pretrained/halfcheetah-medium-replay-v2/plans | 150 scores\n 37.7 +/- 0.45\nhalfcheetah-medium-v2 | defaults | logs/pretrained/halfcheetah-medium-v2/plans | 150 scores\n 42.8 +/- 0.32\nhalfcheetah-medium-expert-v2 | defaults | logs/pretrained/halfcheetah-medium-expert-v2/plans | 150 scores\n 88.9 +/- 0.25\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/details\u003e\n\u003cdetails\u003e\n\u003csummary\u003eTo create the table of offline RL results from the paper, run \u003ccode\u003epython plotting/table.py\u003c/code\u003e. This will print a table that can be copied into a Latex document. (Expand to view table source.)\u003c/summary\u003e\n\u003cpre\u003e\u003ccode\u003e\\definecolor{tblue}{HTML}{1F77B4}\n\\definecolor{tred}{HTML}{FF6961}\n\\definecolor{tgreen}{HTML}{429E9D}\n\\definecolor{thighlight}{HTML}{000000}\n\\newcolumntype{P}{\u0026gt;{\\raggedleft\\arraybackslash}X}\n\\begin{table*}[hb!]\n\\centering\n\\small\n\\begin{tabularx}{\\textwidth}{llPPPPPPPPr}\n\\toprule\n\\multicolumn{1}{r}{\\bf \\color{black} Dataset} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} Environment} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} BC} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} CQL} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} IQL} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} DT} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} TT} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} MOPO} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} MOReL} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} MBOP} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} Diffuser} \\\\ \n\\midrule\nMedium-Expert \u0026amp; HalfCheetah \u0026amp; $55.2$ \u0026amp; $91.6$ \u0026amp; $86.7$ \u0026amp; $86.8$ \u0026amp; $95.0$ \u0026amp; $63.3$ \u0026amp; $53.3$ \u0026amp; $\\textbf{\\color{thighlight}105.9}$ \u0026amp; $88.9$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.3$}} \\\\ \nMedium-Expert \u0026amp; Hopper \u0026amp; $52.5$ \u0026amp; $\\textbf{\\color{thighlight}105.4}$ \u0026amp; $91.5$ \u0026amp; $\\textbf{\\color{thighlight}107.6}$ \u0026amp; $\\textbf{\\color{thighlight}110.0}$ \u0026amp; $23.7$ \u0026amp; $\\textbf{\\color{thighlight}108.7}$ \u0026amp; $55.1$ \u0026amp; $103.3$ \\scriptsize{\\raisebox{1pt}{$\\pm 1.3$}} \\\\ \nMedium-Expert \u0026amp; Walker2d \u0026amp; $\\textbf{\\color{thighlight}107.5}$ \u0026amp; $\\textbf{\\color{thighlight}108.8}$ \u0026amp; $\\textbf{\\color{thighlight}109.6}$ \u0026amp; $\\textbf{\\color{thighlight}108.1}$ \u0026amp; $101.9$ \u0026amp; $44.6$ \u0026amp; $95.6$ \u0026amp; $70.2$ \u0026amp; $\\textbf{\\color{thighlight}106.9}$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.2$}} \\\\ \n\\midrule\nMedium \u0026amp; HalfCheetah \u0026amp; $42.6$ \u0026amp; $44.0$ \u0026amp; $\\textbf{\\color{thighlight}47.4}$ \u0026amp; $42.6$ \u0026amp; $\\textbf{\\color{thighlight}46.9}$ \u0026amp; $42.3$ \u0026amp; $42.1$ \u0026amp; $44.6$ \u0026amp; $42.8$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.3$}} \\\\ \nMedium \u0026amp; Hopper \u0026amp; $52.9$ \u0026amp; $58.5$ \u0026amp; $66.3$ \u0026amp; $67.6$ \u0026amp; $61.1$ \u0026amp; $28.0$ \u0026amp; $\\textbf{\\color{thighlight}95.4}$ \u0026amp; $48.8$ \u0026amp; $74.3$ \\scriptsize{\\raisebox{1pt}{$\\pm 1.4$}} \\\\ \nMedium \u0026amp; Walker2d \u0026amp; $75.3$ \u0026amp; $72.5$ \u0026amp; $\\textbf{\\color{thighlight}78.3}$ \u0026amp; $74.0$ \u0026amp; $\\textbf{\\color{thighlight}79.0}$ \u0026amp; $17.8$ \u0026amp; $\\textbf{\\color{thighlight}77.8}$ \u0026amp; $41.0$ \u0026amp; $\\textbf{\\color{thighlight}79.6}$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.55$}} \\\\ \n\\midrule\nMedium-Replay \u0026amp; HalfCheetah \u0026amp; $36.6$ \u0026amp; $45.5$ \u0026amp; $44.2$ \u0026amp; $36.6$ \u0026amp; $41.9$ \u0026amp; $\\textbf{\\color{thighlight}53.1}$ \u0026amp; $40.2$ \u0026amp; $42.3$ \u0026amp; $37.7$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.5$}} \\\\ \nMedium-Replay \u0026amp; Hopper \u0026amp; $18.1$ \u0026amp; $\\textbf{\\color{thighlight}95.0}$ \u0026amp; $\\textbf{\\color{thighlight}94.7}$ \u0026amp; $82.7$ \u0026amp; $\\textbf{\\color{thighlight}91.5}$ \u0026amp; $67.5$ \u0026amp; $\\textbf{\\color{thighlight}93.6}$ \u0026amp; $12.4$ \u0026amp; $\\textbf{\\color{thighlight}93.6}$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.4$}} \\\\ \nMedium-Replay \u0026amp; Walker2d \u0026amp; $26.0$ \u0026amp; $77.2$ \u0026amp; $73.9$ \u0026amp; $66.6$ \u0026amp; $\\textbf{\\color{thighlight}82.6}$ \u0026amp; $39.0$ \u0026amp; $49.8$ \u0026amp; $9.7$ \u0026amp; $70.6$ \\scriptsize{\\raisebox{1pt}{$\\pm 1.6$}} \\\\ \n\\midrule\n\\multicolumn{2}{c}{\\bf Average} \u0026amp; 51.9 \u0026amp; \\textbf{\\color{thighlight}77.6} \u0026amp; \\textbf{\\color{thighlight}77.0} \u0026amp; 74.7 \u0026amp; \\textbf{\\color{thighlight}78.9} \u0026amp; 42.1 \u0026amp; 72.9 \u0026amp; 47.8 \u0026amp; \\textbf{\\color{thighlight}77.5} \\hspace{.6cm} \\\\ \n\\bottomrule\n\\end{tabularx}\n\\vspace{-.0cm}\n\\caption{\n}\n\\label{table:locomotion}\n\\end{table*}\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/diffusion-planning/diffusion-planning.github.io/blob/master/images/table.png\"\u003e\u003cimg src=\"https://github.com/diffusion-planning/diffusion-planning.github.io/raw/master/images/table.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003c/details\u003e\n\u003ch3\u003e\u003ca id=\"user-content-planning\" class=\"anchor\" aria-hidden=\"true\" href=\"#planning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePlanning\u003c/h3\u003e\n\u003cp\u003eTo plan with guided sampling, run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/plan_guided.py --dataset halfcheetah-medium-expert-v2 --logbase logs/pretrained\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003e--logbase\u003c/code\u003e flag points the \u003ca href=\"scripts/plan_guided.py#L22-L30\"\u003eexperiment loaders\u003c/a\u003e to the folder containing the pretrained models.\nYou can override planning hyperparameters with flags, such as \u003ccode\u003e--batch_size 8\u003c/code\u003e, but the default\nhyperparameters are a good starting point.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-training-from-scratch\" class=\"anchor\" aria-hidden=\"true\" href=\"#training-from-scratch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTraining from scratch\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eTrain a diffusion model with:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/train.py --dataset halfcheetah-medium-expert-v2\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe default hyperparameters are listed in \u003ca href=\"config/locomotion.py#L22-L65\"\u003elocomotion:diffusion\u003c/a\u003e.\nYou can override any of them with flags, eg, \u003ccode\u003e--n_diffusion_steps 100\u003c/code\u003e.\u003c/p\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eTrain a value function with:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/train_values.py --dataset halfcheetah-medium-expert-v2\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee \u003ca href=\"config/locomotion.py#L67-L108\"\u003elocomotion:values\u003c/a\u003e for the corresponding default hyperparameters.\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003ePlan using your newly-trained models with the same command as in the pretrained planning section, simply replacing the logbase to point to your new models:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/plan_guided.py --dataset halfcheetah-medium-expert-v2 --logbase logs\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee \u003ca href=\"config/locomotion.py#L110-L149\"\u003elocomotion:plans\u003c/a\u003e for the corresponding default hyperparameters.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eDeferred f-strings.\u003c/strong\u003e Note that some planning script arguments, such as \u003ccode\u003e--n_diffusion_steps\u003c/code\u003e or \u003ccode\u003e--discount\u003c/code\u003e,\ndo not actually change any logic during planning, but simply load a different model using a deferred f-string.\nFor example, the following flags:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e---horizon 32 --n_diffusion_steps 20 --discount 0.997\n--value_loadpath \u0027f:values/defaults_H{horizon}_T{n_diffusion_steps}_d{discount}\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewill resolve to a value checkpoint path of \u003ccode\u003evalues/defaults_H32_T20_d0.997\u003c/code\u003e. It is possible to\nchange the horizon of the diffusion model after training (see \u003ca href=\"https://colab.research.google.com/drive/1YajKhu-CUIGBJeQPehjVPJcK_b38a8Nc?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e for an example),\nbut not for the value function.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eBuild the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003edocker build -f Dockerfile . -t diffuser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eTest the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -it --rm --gpus all \\\n --mount type=bind,source=$PWD,target=/home/code \\\n --mount type=bind,source=$HOME/.d4rl,target=/root/.d4rl \\\n diffuser \\\n bash -c \\\n \"export PYTHONPATH=$PYTHONPATH:/home/code \u0026amp;\u0026amp; \\\n python /home/code/scripts/train.py --dataset halfcheetah-medium-expert-v2 --logbase logs\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eBuild the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build --fakeroot diffuser.sif Singularity.def\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eTest the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv --writable-tmpfs diffuser.sif \\\n bash -c \\\n \"pip install -e . \u0026amp;\u0026amp; \\\n python scripts/train.py --dataset halfcheetah-medium-expert-v2 --logbase logs\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-on-azure\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-on-azure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning on Azure\u003c/h2\u003e\n\u003ch4\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003eTag the Docker image (built in the \u003ca href=\"#Docker\"\u003eDocker section\u003c/a\u003e) and push it to Docker Hub:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eexport DOCKER_USERNAME=$(docker info | sed \u0027/Username:/!d;s/.* //\u0027)\ndocker tag diffuser ${DOCKER_USERNAME}/diffuser:latest\ndocker image push ${DOCKER_USERNAME}/diffuser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\n\u003cp\u003eUpdate \u003ca href=\"azure/config.py\"\u003e\u003ccode\u003eazure/config.py\u003c/code\u003e\u003c/a\u003e, either by modifying the file directly or setting the relevant \u003ca href=\"azure/config.py#L47-L52\"\u003eenvironment variables\u003c/a\u003e. To set the \u003ccode\u003eAZURE_STORAGE_CONNECTION\u003c/code\u003e variable, navigate to the \u003ccode\u003eAccess keys\u003c/code\u003e section of your storage account. Click \u003ccode\u003eShow keys\u003c/code\u003e and copy the \u003ccode\u003eConnection string\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDownload \u003ca href=\"https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10\" rel=\"nofollow\"\u003e\u003ccode\u003eazcopy\u003c/code\u003e\u003c/a\u003e: \u003ccode\u003e./azure/download.sh\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch4\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h4\u003e\n\u003cp\u003eLaunch training jobs with \u003ccode\u003epython azure/launch.py\u003c/code\u003e. The launch script takes no command-line arguments; instead, it launches a job for every combination of hyperparameters in \u003ca href=\"azure/launch_train.py#L36-L38\"\u003e\u003ccode\u003eparams_to_sweep\u003c/code\u003e\u003c/a\u003e.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-viewing-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#viewing-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eViewing results\u003c/h4\u003e\n\u003cp\u003eTo rsync the results from the Azure storage container, run \u003ccode\u003e./azure/sync.sh\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eTo mount the storage container:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eCreate a blobfuse config with \u003ccode\u003e./azure/make_fuse_config.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003e./azure/mount.sh\u003c/code\u003e to mount the storage container to \u003ccode\u003e~/azure_mount\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eTo unmount the container, run \u003ccode\u003esudo umount -f ~/azure_mount; rm -r ~/azure_mount\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-reference\" class=\"anchor\" aria-hidden=\"true\" href=\"#reference\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReference\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e@inproceedings{janner2022diffuser,\n title = {Planning with Diffusion for Flexible Behavior Synthesis},\n author = {Michael Janner and Yilun Du and Joshua B. Tenenbaum and Sergey Levine},\n booktitle = {International Conference on Machine Learning},\n year = {2022},\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-acknowledgements\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgements\u003c/h2\u003e\n\u003cp\u003eThe diffusion model implementation is based on Phil Wang\u0027s \u003ca href=\"https://github.com/lucidrains/denoising-diffusion-pytorch\"\u003edenoising-diffusion-pytorch\u003c/a\u003e repo.\nThe organization of this repo and remote launcher is based on the \u003ca href=\"https://github.com/jannerm/trajectory-transformer\"\u003etrajectory-transformer\u003c/a\u003e repo.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1533338985.0
+ "updated_at": 1675500146.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "material/scientific/Singularity",
- "material/tensorflow/Singularity",
- "material/hello/Singularity",
- "material/centos/Singularity",
- "material/mpi/Singularity",
- "material/ubuntu/Singularity"
+ "singularity/Singularity"
],
- "full_name": "DataSystemsGroupUT/singularity-tutorial",
+ "full_name": "oxfordmmm/Bugflow_DSL2",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-a-practical-guide-to-singularity---ut-data-engineering-fall-2021\" class=\"anchor\" aria-hidden=\"true\" href=\"#a-practical-guide-to-singularity---ut-data-engineering-fall-2021\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eA Practical Guide to Singularity - UT Data Engineering (Fall 2021)\u003c/h1\u003e\n\u003cp\u003eThis guide will introduce you to Singularity, a containerization system for scientific computing environments that is available on many scientific computing clusters. Containers allow you to package the environment that your code depends on inside of a portable unit. This is extremely useful for ensuring that your code can be run portably on other machines. It is also useful for installing software, packages, libraries, etc. in environments where you do not have root privileges, like an HPC account.\nThe repository contains the guide and files for the practical session of Singularity containers for the course Data Engineering at the University of Tartu.\nIt is divided in four parts and it goes from the installation process, knowing basic commands and finally a more advanced exercise.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-part-i-installing-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#part-i-installing-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePart I. Installing Singularity\u003c/h2\u003e\n\u003cp\u003eYou have two options to get Singularity installed on your machine.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-option-1-the-docker-way-recommended-for-the-practice-session\" class=\"anchor\" aria-hidden=\"true\" href=\"#option-1-the-docker-way-recommended-for-the-practice-session\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOption 1: The Docker way (recommended for the practice session)\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003edocker\u003c/code\u003e and \u003ccode\u003egit\u003c/code\u003e should be installed on your machine. Then we need to create a container that has the dependencies and binary of singularity in it. The container to run uses the \u003ccode\u003ejcrm/singularity\u003c/code\u003e image that was built with a custom \u003ca href=\"./Dockerfile\"\u003eDockerfile\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eDownload the contents of the repo:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone https://github.com/DataSystemsGroupUT/singularity-tutorial.git\n$ cd singularity-tutorial\n$ docker run --name singularity -v $(pwd)/material:/material -it --privileged jcrm/singularity:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTest that the installation works.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity --version\nsingularity version 3.8.0\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-option-2-the-traditional-way\" class=\"anchor\" aria-hidden=\"true\" href=\"#option-2-the-traditional-way\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOption 2: The traditional way\u003c/h3\u003e\n\u003cp\u003eDepending on your machine, install the dependencies and the singularity program.\nThe \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/quick_start.html#quick-installation-steps\" rel=\"nofollow\"\u003eofficial website\u003c/a\u003e provides a comprehensive manual to get it done.\u003c/p\u003e\n\u003cp\u003eTest that installation works.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity --version\nsingularity version 3.8.0\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNow clone the repository locally. If you have \u003ccode\u003egit\u003c/code\u003e, then just execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone https://github.com/DataSystemsGroupUT/singularity-tutorial.git\n$ cd singularity-tutorial\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eNB!\u003c/strong\u003e In the following sections we will assume that commands and examples will run under the \"Docker way\" configuration.\u003c/p\u003e\n\u003cp\u003eNow you\u0027re ready to go :)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-part-ii-first-steps-with-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#part-ii-first-steps-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePart II. First steps with Singularity\u003c/h2\u003e\n\u003cp\u003eSingularity instantiates containers from images that define their environment. Singularity images are stored in \u003ccode\u003e.sif\u003c/code\u003e files.\nYou build a .sif file by defining your environment in a text file and providing that definition to the command singularity build.\nBuilding an image file does require root privileges, so it is most convenient to build the image on your local machine or workstation and then copy it to your HPC cluster.\nOnce you\u0027ve uploaded your image to your HPC cluster, you can submit a batch job that runs singularity exec with the image file you created and the command you want to run.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning containers\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003eExample 1\u003c/strong\u003e: Latest Ubuntu image from the Docker Hub:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run docker://ubuntu:latest\n$ docker run ubuntu:latest # Docker equivalent\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eExample 2\u003c/strong\u003e: Any image from the Docker Hub:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run docker://godlovedc/lolcow\n$ docker run godlovedc/lolcow # Docker equivalent\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eExample 3\u003c/strong\u003e: Pre-built \u003ccode\u003e.sif\u003c/code\u003e file:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run hello/hello.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWe can run containers from different sources.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e*.sif Singularity Image Format (SIF)\n*.sqsh SquashFS format. Native to Singularity 2.4+\n*.img ext3 format. Native to Singularity versions \u0026lt; 2.4\ndirectory/ sandbox format. Directory containing a valid root file\ninstance://* A local running instance of a container\nlibrary://* A SIF container hosted on a Library\ndocker://* A Docker/OCI container hosted on Docker Hub\nshub://* A container hosted on Singularity Hub\noras://* A SIF container hosted on an OCI registry\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-building-our-own-container-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-our-own-container-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding our own container image\u003c/h3\u003e\n\u003cp\u003eTo build a singularity container, we use the \u003ccode\u003ebuild\u003c/code\u003e command. The \u003ccode\u003ebuild\u003c/code\u003e command installs an OS, sets up a container\u0027s environment and installs the apps we will need.\nThe \u003ccode\u003ebuild\u003c/code\u003e command accepts a target as input and produces a container as output.\nTo use the \u003ccode\u003ebuild\u003c/code\u003e command, we need a \u003cstrong\u003erecipe file\u003c/strong\u003e (a.k.a definition file).\u003c/p\u003e\n\u003cp\u003eA Singularity recipe file is a set of instructions telling Singularity what software to install in the container.\nA Singularity Definition file is divided in two parts:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eHeader :\u003c/strong\u003e Describes configuration of the base operating system within the container. The most important keyword here is \u003ccode\u003eBootstrap\u003c/code\u003e and you can find the supported options in the \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/appendix.html?highlight=bootstrap\" rel=\"nofollow\"\u003edocumentation\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003eBootStrap: debootstrap\nOSVersion: trusty\nMirrorURL: http://us.archive.ubuntu.com/ubuntu/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eSections :\u003c/strong\u003e Group definitions of the container. Each section is defined by the \u003ccode\u003e%\u003c/code\u003e character and a reserved keyword:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e%runscript\n echo \"This is what happens when you run the container...\"\n\n%post\n echo \"Hello from inside the container\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHere we can see an overview of the valid sections. The complete reference can be found \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/definition_files.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e%setup groups commands to be executed first on the host system\n%files copies files into the container\n%app* redundant to build different containers for each app\n%post installs new software and libraries, write configuration files, create new directories\n%test runs at the very end of the build process to validate the container using a method of your choice\n%environment defines environment variables used at runtime\n%startscript groups files executed when the instance start command is issued\n%runscript groups commands to be executed when the container image is run\n%labels used to add metadata to the file\n%help adds information to the metadata file in the container during the build\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe Singularity source code contains several example definition files in the \u003ccode\u003e/examples\u003c/code\u003e subdirectory.\nLet\u0027s take its \u003ccode\u003eubuntu\u003c/code\u003e example definition that has been copied to the \u003ccode\u003ematerial/ubuntu\u003c/code\u003e directory.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cat /material/ubuntu/Singularity\nBootStrap: debootstrap\nOSVersion: trusty\nMirrorURL: http://us.archive.ubuntu.com/ubuntu/\n\n\n%runscript\n echo \"This is what happens when you run the container...\"\n\n\n%post\n echo \"Hello from inside the container\"\n sed -i \u0027s/$/ universe/\u0027 /etc/apt/sources.list\n apt-get update\n apt-get -y install vim\n apt-get clean\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNow let\u0027s use this definition file as a starting point to build our \u003ccode\u003eubuntu.sif\u003c/code\u003e container. Note that the build command requires \u003ccode\u003esudo\u003c/code\u003e privileges when executing in non-docker mode.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cd /material/ubuntu\n$ singularity build ubuntu.sif Singularity\n$ singularity run ubuntu.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWe can also spawn a shell within the container and interact with it. For this we execute the \u003ccode\u003eshell\u003c/code\u003e command.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity shell ubuntu.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDepending on the environment on your host system you may see your prompt change. Let\u0027s see the information of the OS running in the container.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity\u0026gt; cat /etc/os-release\nNAME=\"Ubuntu\"\nVERSION=\"14.04, Trusty Tahr\"\nID=ubuntu\nID_LIKE=debian\nPRETTY_NAME=\"Ubuntu 14.04 LTS\"\nVERSION_ID=\"14.04\"\nHOME_URL=\"http://www.ubuntu.com/\"\nSUPPORT_URL=\"http://help.ubuntu.com/\"\nBUG_REPORT_URL=\"http://bugs.launchpad.net/ubuntu/\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAs an additional experiment, let\u0027s build the lolcow program in two different ways. These two ways will only differ in the bootstrap agent and they will contain the same definitions for the sections. This is described below:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e%runscript\n fortune | cowsay | lolcat\n\n%files\n install-dependencies.sh install-dependencies.sh\n\n%post\n echo \"Hello from inside the container\"\n sh -x install-dependencies.sh\n\n%environment\n export PATH=/usr/games:$PATH\n export LC_ALL=C\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe first way uses the \u003ccode\u003eubuntu.sif\u003c/code\u003e image that we previously built.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootStrap: localimage\nFrom: /material/ubuntu/ubuntu.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLet\u0027s build the image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cd /material/lolcow\n$ singularity build lolcow-localimage.sif lolcow-localimage.def\n$ singularity run lolcow-localimage.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe second way uses the base library, which is commonly used for Singularity containerized environments.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootStrap: library\nFrom: ubuntu:18.04\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLet\u0027s build and run the second image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cd /material/lolcow\n$ singularity build lolcow-library.sif lolcow-library.def\n$ singularity run lolcow-library.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRemember that Singularity can build containers in several different file formats. The default is to build a \u003ca href=\"https://en.wikipedia.org/wiki/SquashFS\" rel=\"nofollow\"\u003esquashfs\u003c/a\u003e image. The \u003ccode\u003esquashfs\u003c/code\u003e format is compressed and immutable making it a good choice for reproducible, production-grade containers. However, if you want to shell into a container and have more freedom with it, you should build a sandbox (which is just a directory). This is great when you are still developing your container and don\u0027t yet know what should be included in the recipe file.\nThe command would look like this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity --sandbox build lolcow-library.sif lolcow-library.def\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-part-iii-data-intensive-application\" class=\"anchor\" aria-hidden=\"true\" href=\"#part-iii-data-intensive-application\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePart III. Data intensive application\u003c/h2\u003e\n\u003cp\u003eFor this part we will execute a Tensorflow program (borrowed from \u003ca href=\"https://github.com/easy-tensorflow/easy-tensorflow/tree/master/3_Neural_Network\"\u003ehere\u003c/a\u003e) that trains a neural network to classify MNIST data of handwriting images. It also logs the progress of the training and saves the result into a file.\nSince we want to avoid installing all the dependencies of tensorflow in a blank Singularity image, we better use the \u003ccode\u003etensorflow/tensorflow:1.15.5\u003c/code\u003e image from the Docker Hub. Additionally we install the \u003ccode\u003ematplotlib\u003c/code\u003e dependency in the \u003ccode\u003e%post\u003c/code\u003e stage.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap: docker\nFrom: tensorflow/tensorflow:1.15.5\n\n%post\n pip install matplotlib\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe definition of the image can be found in \u003ca href=\"material/tensorflow/Singularity\"\u003ematerial/tensorflow/Singularity\u003c/a\u003e.\nNow we can build this definition into a \u003ccode\u003e.sif\u003c/code\u003e image file using the following command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cd /material/tensorflow\n$ singularity build tensorflow.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis ran the commands we defined in the \u003ccode\u003e%post\u003c/code\u003e section inside a container and\nafterwards saved the state of the container in the image \u003ccode\u003etensorflow.sif\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eLet\u0027s run our Tensorflow program in a container based on the image we just built.\nBefore executing the command we have to copy the python source code files into the new container.\nWe achieve this by adding the \u003ccode\u003e--bind\u003c/code\u003e flag and specifying the source and destintation paths to mount.\nFinally we run the program using the\u003ccode\u003esh\u003c/code\u003e command.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec --bind /material/tensorflow/:/material tensor.sif sh -c \"cd /material \u0026amp;\u0026amp; python main.py\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis program does not take long to run. Once it finishes, it creates the file \u003ccode\u003eout.png\u003c/code\u003e with the correct and misclassified examples.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/plot.png\"\u003e\u003cimg src=\"images/plot.png\" alt=\"Plot\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWorth to mention that, for convenience, Singularity\n\u003ca href=\"https://www.sylabs.io/guides/3.2/user-guide/bind_paths_and_mounts.html\" rel=\"nofollow\"\u003ebinds a few important directories by default\u003c/a\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eYour home directory\u003c/li\u003e\n\u003cli\u003eThe current working directory\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003e/sys\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003e/proc\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003eothers (depending on the version of Singularity)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-part-iv-advanced-usage-of-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#part-iv-advanced-usage-of-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePart IV. Advanced Usage of Singularity\u003c/h2\u003e\n\u003cp\u003eFor this part it is necessary to get access to an HPC cluster or set it up locally.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-mpi\" class=\"anchor\" aria-hidden=\"true\" href=\"#mpi\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMPI\u003c/h3\u003e\n\u003cp\u003eYou can run Singularity containers via MPI. You\u0027ll need to have MPI installed within the container.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eIf you are working on a single node, you can run MPI within a container.\u003c/li\u003e\n\u003cli\u003eHowever, more commonly you would use the MPI executable on your HPC cluster to execute Singularity containers.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe key thing in order to use the system MPI to run Singularity containers is to make sure the MPI installed inside the container is compatible with the MPI installed on the HPC.\nThe easiest way to ensure this is to have the version inside the container be the same version as the MPI module you plan to use on any HPC cluster. You can see these modules with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ module load gcc # load the gcc version of interest\n$ module avail openmpi # see the MPI versions available for that gcc\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHere is an example of running a Singularity container via MPI. Fist we build the image:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cd /material/mpi\n$ singularity build openmpi.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will prepare the \u003ccode\u003empitest.c\u003c/code\u003e to execute MPI natively on the HPC cluster.\nThe program is simple. It ranks the completion order of MPI executors.\nFor that we launch 2 processes per node on all allocated nodes.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ module load gcc openmpi\n$ mpirun -n 2 singularity run openmpi.sif /opt/mpitest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-slurm\" class=\"anchor\" aria-hidden=\"true\" href=\"#slurm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSLURM\u003c/h3\u003e\n\u003cp\u003eIf your target system is setup with a batch system such as SLURM, a standard way to execute MPI applications is through a batch script. The following example illustrates the context of a batch script for Slurm that aims at starting a Singularity container on each node allocated to the execution of the job. It can easily be adapted for all major batch systems available.\nHere\u0027s an example of running a Singularity container with SLURM:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\n#SBATCH --job-name singularity-mpi\n#SBATCH -N $NNODES # total number of nodes\n#SBATCH --time=00:05:00 # Max execution time\n\nmpirun -n $NP singularity exec openmpi.sif /opt/mpitest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-gpucuda\" class=\"anchor\" aria-hidden=\"true\" href=\"#gpucuda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGPU/CUDA\u003c/h3\u003e\n\u003cp\u003eYou can easily use a Singularity container that does computation on a GPU. Singularity supports NVIDIA\u2019s CUDA GPU compute framework.\nBy using the \u003ccode\u003e--nv\u003c/code\u003e flag when running Singularity, the NVIDIA drivers in the HPC cluster are dynamically mounted into the container at run time. The container should provide the CUDA toolkit, using a version of the toolkit that is compatible with the NVIDIA driver version in the HPC.\u003c/p\u003e\n\u003cp\u003eHere\u0027s an example of running a Singularity container based on a Docker container that provides GPU-using software.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run --nv docker://pytorch/pytorch:1.6.0-cuda10.1-cudnn7-runtime\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-conclusion\" class=\"anchor\" aria-hidden=\"true\" href=\"#conclusion\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConclusion\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eWe have learned the necessary commands of Singularity to start producing containers that can run in HPC environments.\u003c/li\u003e\n\u003cli\u003eSingularity enables isolation, reproducibility and security in HPC environments.\u003c/li\u003e\n\u003cli\u003eIts use is mostly targeted to scientific applications with intensive performance requirements.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-references\" class=\"anchor\" aria-hidden=\"true\" href=\"#references\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/sylabs/singularity-userdocs/blob/master/mpi.rst\"\u003ehttps://github.com/sylabs/singularity-userdocs/blob/master/mpi.rst\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/maheshbabuadapa/Singularity-Tutorial\"\u003ehttps://github.com/maheshbabuadapa/Singularity-Tutorial\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://docs-research-it.berkeley.edu/services/high-performance-computing/user-guide/software/using-software/using-singularity-savio\" rel=\"nofollow\"\u003ehttps://docs-research-it.berkeley.edu/services/high-performance-computing/user-guide/software/using-software/using-singularity-savio\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/bdusell/singularity-tutorial\"\u003ehttps://github.com/bdusell/singularity-tutorial\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [],
- "updated_at": 1637825788.0
+ "updated_at": 1676460377.0
},
{
"data_format": 2,
@@ -6892,279 +6583,231 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "ipelupessy/test-singularity",
+ "full_name": "asfistonlavie/TEFLoN2",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-teflon2\" class=\"anchor\" aria-hidden=\"true\" href=\"#teflon2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTEFLoN2\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1522955804.0
+ "updated_at": 1658824620.0
},
{
"data_format": 2,
- "description": "informations and configurations for OpenFLUID containerization",
+ "description": null,
"filenames": [
- "v2.1.3/Singularity",
- "v2.1.9/Singularity",
- "v1.7.2/Singularity",
- "v2.1.5/Singularity",
- "v2.1.4/Singularity",
- "v2.1.2/Singularity",
- "v2.1.8/Singularity",
- "v2.1.6/Singularity",
- "v2.1.7/Singularity",
- "v2.0.2/Singularity",
- "v2.1.10/Singularity",
- "v2.1.11/Singularity"
+ "v4.7.1/Singularity",
+ "v4.9.1/Singularity"
],
- "full_name": "OpenFLUID/openfluid-containers",
+ "full_name": "yh549848/singularity-code-server-stacks",
"latest_release": null,
- "readme": "\u003cp\u003eThis repository contains configuration files for Docker and Singularity containerization of OpenFLUID.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1616516042.0
+ "updated_at": 1676597534.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Recipes/Singularity_pytorch",
- "Recipes/Singularity_pytorch_full",
- "Recipes/Singularity_spark_full",
- "Recipes/Singularity_mpich",
- "Recipes/Singularity_example",
- "Recipes/Singularity_ompi",
- "Recipes/Singularity_tensorflow",
- "Recipes/Singularity_spark"
+ "envs/containers/Singularity"
],
- "full_name": "Yasmim-Fernandes/Ufscar-hpc-template-ci",
+ "full_name": "EnriqueDoster/AMRplusplus",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-pr\u00e9-requisitos\" class=\"anchor\" aria-hidden=\"true\" href=\"#pr\u00e9-requisitos\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePr\u00e9-requisitos\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-sele\u00e7\u00e3o-do-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#sele\u00e7\u00e3o-do-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSele\u00e7\u00e3o do Recipe\u003c/h2\u003e\n\u003cp\u003eAdicione o caminho do \u003cem\u003esingularity recipe\u003c/em\u003e desejado na vari\u00e1vel RECIPE no github (projeto \u0026gt;\u0026gt; Settings \u0026gt;\u0026gt; Secrets \u0026gt;\u0026gt; New Secret).\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-template-integra\u00e7\u00e3o-cont\u00ednua-github\" class=\"anchor\" aria-hidden=\"true\" href=\"#template-integra\u00e7\u00e3o-cont\u00ednua-github\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTemplate Integra\u00e7\u00e3o Cont\u00ednua Github\u003c/h1\u003e\n\u003cp\u003eEsse projeto o template para uso do cluster da UFSCar, contendo integra\u00e7\u00e3o cont\u00ednua com o Google Drive e Amazon S3.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requisitos-para-google-drive\" class=\"anchor\" aria-hidden=\"true\" href=\"#requisitos-para-google-drive\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequisitos para Google Drive\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eEntre no \u003ca href=\"https://console.developers.google.com/apis/credentials\" rel=\"nofollow\"\u003econsole de credenciais de API do Google\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eSe ainda n\u00e3o houver um projeto, crie um com permiss\u00e3o para a \"Google Drive API\".\u003c/li\u003e\n\u003cli\u003eClique em \"Criar credenciais\".\u003c/li\u003e\n\u003cli\u003eSelecione \"ID do cliente do OAuth\".\u003c/li\u003e\n\u003cli\u003eEm \"Tipo de aplicativo\", selecione \"App para computador\".\u003c/li\u003e\n\u003cli\u003eD\u00ea um nome de identifica\u00e7\u00e3o para as credenciais e clique em \"criar\". V\u00e3o aparecer dois dados (\"Seu ID de cliente\" e \"Sua chave secreta de cliente\"), precisaremos dos dois no passo seguinte.\u003c/li\u003e\n\u003cli\u003eAcesse o \u003cem\u003ecluster\u003c/em\u003e, execute o comando \u003ccode\u003erclone config\u003c/code\u003e e forne\u00e7a as seguintes informa\u00e7\u00f5es quando solicitado:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003en/s/q\u0026gt; n\nname\u0026gt; cloud\nStorage\u0026gt; 13\nclient_id\u0026gt; conte\u00fado de \"Seu ID de cliente\"\nclient_secret\u0026gt; conte\u00fado de \"Sua chave secreta de cliente\"\nscope\u0026gt; 1\nroot_folder_id\u0026gt; deixe em branco\nservice_account_file\u0026gt; deixe em branco\ny/n\u0026gt; deixe em branco\ny/n\u0026gt; n\n\nCopie o url e cole no navegador no computador local. Autorize e:\n\nEnter verification code\u0026gt; c\u00f3digo fornecido pelo navegador ap\u00f3s autoriza\u00e7\u00e3o\ny/n\u0026gt; deixe em branco\ny/e/d\u0026gt; deixe em branco\ne/n/d/r/c/s/q\u0026gt; q\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA configura\u00e7\u00e3o at\u00e9 agora servir\u00e1 para transfer\u00eancia de dados do \u003cem\u003ecluster\u003c/em\u003e para a nuvem e vice-e-versa. A partir de agora vamos configurar a integra\u00e7\u00e3o cont\u00ednua no github.\u003c/p\u003e\n\u003col start=\"8\"\u003e\n\u003cli\u003eExecute o comando:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eecho $(cat ~/.config/rclone/rclone.conf | base64 --wrap=0)\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"9\"\u003e\n\u003cli\u003eCopie a sa\u00edda e adicione \u00e0 vari\u00e1vel RCLONE_CONF no github.\u003c/li\u003e\n\u003cli\u003eAdicione no github \u00e0 vari\u00e1vel COLLECTION_CONTAINER \u003ccode\u003e/path/to/project\u003c/code\u003e, esse ser\u00e1 o caminho cujo container vai ser disponibilizado no seu Google Drive no formato \u003ccode\u003erecipe_name_DateTime.simg\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requisitos-para-amazon-s3\" class=\"anchor\" aria-hidden=\"true\" href=\"#requisitos-para-amazon-s3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequisitos para Amazon S3\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eEntre na \u003ca href=\"console.aws.amazon.com\"\u003eAWS\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eClique na seta ao lado de seu nome de usu\u00e1rio e em \"My Security Credentials\".\u003c/li\u003e\n\u003cli\u003eNa se\u00e7\u00e3o \"Access Keys\", clique em \"Create New Access Key\".\u003c/li\u003e\n\u003cli\u003eNa janela que aparece, clique em \"Show Access Key\".\u003c/li\u003e\n\u003cli\u003eAcesse o \u003cem\u003ecluster\u003c/em\u003e, execute o comando \u003ccode\u003erclone config\u003c/code\u003e e forne\u00e7a as seguintes informa\u00e7\u00f5es quando solicitado:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003en/s/q\u0026gt; n\nname\u0026gt; cloud\nStorage\u0026gt; 4\nprovider\u0026gt; 1\nenv_auth\u0026gt; 1\naccess_key_id\u0026gt; conte\u00fado de \"Access Key ID\"\nsecret_access_key\u0026gt; conte\u00fado de \"Secret Access Key\"\nregion\u0026gt; 16\nendpoint\u0026gt; deixe em branco\nlocation_constraint\u0026gt; 16\nacl\u0026gt; deixe em branco\nserver_side_encryption\u0026gt; deixe em branco\nsse_kms_key_id\u0026gt; deixe em branco\nstorage_class\u0026gt; deixe em branco\ny/n\u0026gt; deixe em branco\ny/e/d\u0026gt; deixe em branco\ne/n/d/r/c/s/q\u0026gt; q\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA configura\u00e7\u00e3o at\u00e9 agora servir\u00e1 para transfer\u00eancia de dados do \u003cem\u003ecluster\u003c/em\u003e para a nuvem e vice-e-versa. A partir de agora vamos configurar a integra\u00e7\u00e3o cont\u00ednua no github.\u003c/p\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003eExecute o comando:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eecho $(cat ~/.config/rclone/rclone.conf | base64 --wrap=0)\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"7\"\u003e\n\u003cli\u003eCopie a sa\u00edda e adicione \u00e0 vari\u00e1vel RCLONE_CONF no github.\u003c/li\u003e\n\u003cli\u003eAdicione no github \u00e0 vari\u00e1vel COLLECTION_CONTAINER \u003ccode\u003e/path/to/project\u003c/code\u003e, esse ser\u00e1 o caminho cujo container vai ser disponibilizado no seu Google Drive no formato \u003ccode\u003erecipe_name_DateTime.simg\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003ch2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-hidden=\"true\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOverview\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/78f47a09877ba9d28da1887a93e5c3bc2efb309c1e910eb21135becd2998238a/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d4d49542d79656c6c6f772e737667\" alt=\"License: MIT\" data-canonical-src=\"https://img.shields.io/badge/License-MIT-yellow.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6b7af09ab5d3e54feb3acda4c7b70aef9718f2928a49a50c92ea6ce95e96b2f7/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4e657874666c6f772d254532253839254135302e32352e312d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/Nextflow-%E2%89%A50.25.1-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-amr-bioinformatic-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#amr-bioinformatic-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAMR++ bioinformatic pipeline\u003c/h1\u003e\n\u003cp\u003e(\u003ca href=\"https://megares.meglab.org/\" rel=\"nofollow\"\u003ehttps://megares.meglab.org/\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003eAMR++ is a bioinformatic pipeline meant to aid in the analysis of raw sequencing reads to characterize the profile of antimicrobial resistance genes, or resistome. AMR++ was developed to work in conjuction with the the MEGARes database which contains sequence data for approximately 9,000 hand-curated antimicrobial resistance genes accompanied by an annotation structure that is optimized for use with high throughput sequencing and metagenomic analysis. The acyclical annotation graph of MEGARes allows for accurate, count-based, hierarchical statistical analysis of resistance at the population level, much like microbiome analysis, and is also designed to be used as a training database for the creation of statistical classifiers.\u003c/p\u003e\n\u003cp\u003eThe goal of many metagenomics studies is to characterize the content and relative abundance of sequences of interest from the DNA of a given sample or set of samples. You may want to know what is contained within your sample or how abundant a given sequence is relative to another.\u003c/p\u003e\n\u003cp\u003eOften, metagenomics is performed when the answer to these questions must be obtained for a large number of targets where techniques like multiplex PCR and other targeted methods would be too cumbersome to perform. AMR++ can process the raw data from the sequencer, identify the fragments of DNA, and count them. It also provides a count of the polymorphisms that occur in each DNA fragment with respect to the reference database.\u003c/p\u003e\n\u003cp\u003eAdditionally, you may want to know if the depth of your sequencing (how many reads you obtain that are on target) is high enough to identify rare organisms (organisms with low abundance relative to others) in your population. This is referred to as rarefaction and is calculated by randomly subsampling your sequence data at intervals between 0% and 100% in order to determine how many targets are found at each depth.\u003c/p\u003e\n\u003cp\u003eWith AMR++, you will obtain alignment count files for each sample that are combined into a count matrix that can be analyzed using any statistical and mathematical techniques that can operate on a matrix of observations.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-more-information\" class=\"anchor\" aria-hidden=\"true\" href=\"#more-information\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMore Information\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/usage.md\"\u003eUsage\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/configuration.md\"\u003eConfiguration\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/output.md\"\u003eOutput\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/dependencies.md\"\u003eDependencies\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/requirements.md\"\u003eSoftware Requirements\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/FAQs.md\"\u003eFAQs\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/update_details.md\"\u003eDetails on AMR++ updates\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/contact.md\"\u003eContact\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-amr-demonstration\" class=\"anchor\" aria-hidden=\"true\" href=\"#amr-demonstration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAMR++ demonstration\u003c/h2\u003e\n\u003cp\u003eCreate the anaconda environment for AMR++. This will work for both the nextflow version and snakemake version.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda create -c conda-forge -n mamba_base mamba\nconda activate mamba_base\nmamba create -c conda-forge -c bioconda -n AMR++ snakemake nextflow git make cxx-compiler singularity\nmamba activate AMR++\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eClone the AMR++ repository.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/EnriqueDoster/AMRplusplus.git\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBrief tutorial for nextflow pipeline test run\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e AMRplusplus\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Run command to perform the demonstration pipeline using the singularity profile\u003c/span\u003e\nnextflow run main_AMR++.nf -profile singularity --pipeline demo\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\u003ca id=\"user-content-using-amr-to-analyze-your-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-amr-to-analyze-your-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing AMR++ to analyze your data\u003c/h1\u003e\n\u003cp\u003eAMR++ is customizable to suit your computing needs and analyze your data. Primarily, the \u003ccode\u003e-profile\u003c/code\u003e paramater allows you to choose between running AMR++ using a singularity container, docker container, anaconda packages, or a local installation of your software.\nAll parameters used to control how AMR++ analyzes your data can also be changed as needed in a variety of ways. For full information, review this \u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/configuration.md\"\u003econfiguration document.\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eBelow is a brief example, the default parameters were run using this command:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003enextflow run main_AMR++.nf -profile singularity --pipeline demo\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTo change the reads that were analyzed, you should specify the ```--reads`` parameters. Here, we can use regular expressions to point to your samples in a different directory.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003enextflow run main_AMR++.nf -profile singularity --pipeline demo --reads \"path/to/your/reads/*_R{1,2}.fastq.gz\" \u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-choosing-a-modified-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#choosing-a-modified-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eChoosing a modified pipeline\u003c/h2\u003e\n\u003cp\u003eAMR++ analyzes data by combining workflows that takes a set of sequencing reads through various bioinformatic software. We recommend our standard AMR++ pipeline as a comprehensive way to start from raw sequencing reads, QC assessment, host DNA removal, and resistome analysis with MEGARes. However, users might only want to replicate portions of the pipeline and have more control over their computing needs. Using the \u003ccode\u003e--pipeline\u003c/code\u003e parameter, users can change how AMR++ runs.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline demo\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSimple demonstration\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline standard_AMR\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming \u0026gt; Host DNA removal \u0026gt; Resistome alignment \u0026gt; Resistome results\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline fast_AMR\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming \u0026gt; Resistome alignment \u0026gt; Resistome results\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline standard_AMR_wKraken\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming \u0026gt; Host DNA removal \u0026gt; Resistome alignment \u0026gt; Resistome results\nNon-host reads \u0026gt; Microbiome analysis\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003epipeline fragments\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline multiqc\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eEvaluate sample QC\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline trim\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming using trimmomatic\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline rmhost\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eAlign reads to host DNA using bwa and remove contaminants\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline resistome\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eAlign reads to MEGARes using bwa, perform rarefaction and resistome analysis\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline kraken\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eClassify reads taxanomically using kraken\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1607370441.0
+ "updated_at": 1665339720.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for APSIM Classic (https://github.com/APSIMInitiative/APSIMClassic)",
+ "description": "Testing SingularityHub integration",
"filenames": [
- "Singularity",
- "Singularity.7.10-r49ace54f9c8a670190aef9d8d0fb9d5477bb1534",
- "Singularity.7.9-r4047"
+ "Singularity.fun"
],
- "full_name": "powerPlant/apsim-srf",
+ "full_name": "mmarinriera/Singularity_training",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for the APSIM Classic version of the Agricultural Production Systems sIMulator\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-maintainer-notes\" class=\"anchor\" aria-hidden=\"true\" href=\"#maintainer-notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMaintainer Notes\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eRecipes for APSIM 7.9 use the upstream SVN repository (no longer available)\u003c/li\u003e\n\u003cli\u003ePlease see comments inside the recipes for the reasons why some upstream files are overwritten during the build process\u003c/li\u003e\n\u003cli\u003eThe Cotton Model requires a password, which needs to be obtained by the model owner and placed under \u003ccode\u003efiles/CottonPassword.txt\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1586904956.0
+ "updated_at": 1551276494.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "envs/containers/Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-docker-pytorch-a40",
+ "full_name": "Microbial-Ecology-Group/MHplusplus",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-testing-image-for-a40-gpupytorch-\" class=\"anchor\" aria-hidden=\"true\" href=\"#testing-image-for-a40-gpupytorch-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etesting image for a40 gpu/pytorch \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-pytorch-a40/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-pytorch-a40/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003edocker:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-pytorch-a40:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003esingularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell oras://ghcr.io/truatpasteurdotfr/singularity-docker-pytorch-a40:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-hidden=\"true\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOverview\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/78f47a09877ba9d28da1887a93e5c3bc2efb309c1e910eb21135becd2998238a/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d4d49542d79656c6c6f772e737667\" alt=\"License: MIT\" data-canonical-src=\"https://img.shields.io/badge/License-MIT-yellow.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6b7af09ab5d3e54feb3acda4c7b70aef9718f2928a49a50c92ea6ce95e96b2f7/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4e657874666c6f772d254532253839254135302e32352e312d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/Nextflow-%E2%89%A50.25.1-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-----in-development----\" class=\"anchor\" aria-hidden=\"true\" href=\"#----in-development----\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e--- In development ---\u003c/h1\u003e\n\u003ch1\u003e\u003ca id=\"user-content-mh-bioinformatic-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#mh-bioinformatic-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMH++ bioinformatic pipeline\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-more-information\" class=\"anchor\" aria-hidden=\"true\" href=\"#more-information\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMore Information\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/usage.md\"\u003eUsage\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/configuration.md\"\u003eConfiguration\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/output.md\"\u003eOutput\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/dependencies.md\"\u003eDependencies\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/requirements.md\"\u003eSoftware Requirements\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/FAQs.md\"\u003eFAQs\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/update_details.md\"\u003eDetails on AMR++ updates\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/contact.md\"\u003eContact\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-amr-demonstration\" class=\"anchor\" aria-hidden=\"true\" href=\"#amr-demonstration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAMR++ demonstration\u003c/h2\u003e\n\u003cp\u003eCreate the anaconda environment for AMR++. This will work for both the nextflow version and snakemake version.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda create -c conda-forge -n mamba_base mamba\nconda activate mamba_base\nmamba create -c conda-forge -c bioconda -n AMR++ snakemake nextflow git make cxx-compiler singularity\nmamba activate AMR++\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eClone the AMR++ repository.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/EnriqueDoster/AMRplusplus.git\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBrief tutorial for nextflow pipeline test run\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e AMRplusplus\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Run command to perform the demonstration pipeline using the singularity profile\u003c/span\u003e\nnextflow run main_AMR++.nf -profile singularity --pipeline demo\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\u003ca id=\"user-content-using-amr-to-analyze-your-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-amr-to-analyze-your-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing AMR++ to analyze your data\u003c/h1\u003e\n\u003cp\u003eAMR++ is customizable to suit your computing needs and analyze your data. Primarily, the \u003ccode\u003e-profile\u003c/code\u003e paramater allows you to choose between running AMR++ using a singularity container, docker container, anaconda packages, or a local installation of your software.\nAll parameters used to control how AMR++ analyzes your data can also be changed as needed in a variety of ways. For full information, review this \u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/configuration.md\"\u003econfiguration document.\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eBelow is a brief example, the default parameters were run using this command:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003enextflow run main_AMR++.nf -profile singularity --pipeline demo\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTo change the reads that were analyzed, you should specify the ```--reads`` parameters. Here, we can use regular expressions to point to your samples in a different directory.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003enextflow run main_AMR++.nf -profile singularity --pipeline demo --reads \"path/to/your/reads/*_R{1,2}.fastq.gz\" \u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-choosing-a-modified-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#choosing-a-modified-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eChoosing a modified pipeline\u003c/h2\u003e\n\u003cp\u003eAMR++ analyzes data by combining workflows that takes a set of sequencing reads through various bioinformatic software. We recommend our standard AMR++ pipeline as a comprehensive way to start from raw sequencing reads, QC assessment, host DNA removal, and resistome analysis with MEGARes. However, users might only want to replicate portions of the pipeline and have more control over their computing needs. Using the \u003ccode\u003e--pipeline\u003c/code\u003e parameter, users can change how AMR++ runs.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline demo\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSimple demonstration\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline standard_AMR\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming \u0026gt; Host DNA removal \u0026gt; Resistome alignment \u0026gt; Resistome results\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline fast_AMR\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming \u0026gt; Resistome alignment \u0026gt; Resistome results\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline standard_AMR_wKraken\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming \u0026gt; Host DNA removal \u0026gt; Resistome alignment \u0026gt; Resistome results\nNon-host reads \u0026gt; Microbiome analysis\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003epipeline fragments\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline multiqc\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eEvaluate sample QC\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline trim\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming using trimmomatic\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline rmhost\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eAlign reads to host DNA using bwa and remove contaminants\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline resistome\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eAlign reads to MEGARes using bwa, perform rarefaction and resistome analysis\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline kraken\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eClassify reads taxanomically using kraken\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1636479915.0
+ "updated_at": 1667397676.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Material for the GPU course ML-variant",
"filenames": [
- "Singularity"
+ "singularity/Singularity.tensorflow_gpu-py3",
+ "singularity/Singularity.pytorch_gpu-py3",
+ "singularity/Singularity.tensorflow_cpu-py3"
],
- "full_name": "Samip1211/MongoImage",
+ "full_name": "mmoelle1/GPU_Cource_ML",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1565456485.0
+ "updated_at": 1667300805.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.PhaGCN"
],
- "full_name": "GeertvanGeest/test_shub",
+ "full_name": "cschu/phagcn_singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-test_shub\" class=\"anchor\" aria-hidden=\"true\" href=\"#test_shub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etest_shub\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1618210665.0
+ "updated_at": 1669215943.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity",
- "Singularity.hpc"
+ "SingularityRecipe"
],
- "full_name": "hqhv/oneapi",
+ "full_name": "CRC-901-On-the-Fly-Computing/executor-bootup",
"latest_release": null,
+ "readme": "\u003cp\u003eThis repository contains shell scripts that are supposed to be executed within a Docker container when basic services are deployed in the Testbed.\nThe shell script downloads the source code, runs the verification, runs the compilation and finally launches the SEDE executor.\nThe Docker container that is created for basic services has the following file system structure:\u003c/p\u003e\n\u003cp\u003e.\u003c/p\u003e\n\u003cp\u003e\u251c\u2500 cpachecker\n\u251c\u2500 hooks\u003cbr\u003e\n\u251c\u2500 sede\u003cbr\u003e\n\u251c\u2500 src\u003c/p\u003e\n\u003cp\u003e-\u0026gt; Folder src contains the C, Java or Python code of basic services. This container must contain a compile.sh for the compilation. The compile script may call another build tool like gradle or make.\u003c/p\u003e\n\u003cp\u003e-\u0026gt; Source code is downloaded from a ServiceCodeProvider repository.\u003c/p\u003e\n\u003cp\u003e-\u0026gt; Cerificates (*.proof) for C implementations must be in the same directory as the .*c file and must have a specific file name pattern: _.proof. For example, the name of the proof for the analysis sign for the C implementation service_grey_cpu.c must be service_grey_cpu_sign.proof.\u003c/p\u003e\n\u003cp\u003e-\u0026gt; The configuration files that are necessary for the SEDE executor must be in the folder src/main/resources/config.\u003c/p\u003e\n\u003cp\u003e-\u0026gt; Folder hooks contains shell scripts for downloading the source code, running the verification, and running the compilation.\u003c/p\u003e\n\u003cp\u003e-\u0026gt; Folder sede contains the SEDE executor logic.\u003c/p\u003e\n\u003cp\u003e-\u0026gt; The script run.sh executes all scripts in the hooks folder in alphanumerical order and starts the SEDE server in the end.\u003c/p\u003e\n\u003cp\u003eInstallation\nThe following software needs to be installed inside the Docker container:\u003c/p\u003e\n\u003cp\u003ecurl |\ngit |\njavac / gcc |\ngradle / make\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1611066291.0
- },
- {
- "data_format": 2,
- "description": "OpenFOAM atmospheric test cases",
- "filenames": [
- "Singularity"
- ],
- "full_name": "hertzsprung/AtmosTests",
- "latest_release": "jshaw-thesis",
- "stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1517845038.0
+ "updated_at": 1669321582.0
},
{
"data_format": 2,
- "description": "cutadapt removes adapter sequences from sequencing reads.",
+ "description": "Project for I519",
"filenames": [
- "2.10/Singularity"
+ "SingularityPRJ.def"
],
- "full_name": "pscedu/singularity-cutadapt",
+ "full_name": "ginnymortensen/gamortenPRJ",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-cutadapt/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-cutadapt/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/1a971ebb81368ce57d4702d1ac0fa0534e1de4e11c2f3a1fc98cb5c5203ae017/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6375746164617074\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1a971ebb81368ce57d4702d1ac0fa0534e1de4e11c2f3a1fc98cb5c5203ae017/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6375746164617074\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-cutadapt\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/460062e41af5fcb53936a892aaf05699f5552d0c369d8c9d05308a15ecb18032/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6375746164617074\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/460062e41af5fcb53936a892aaf05699f5552d0c369d8c9d05308a15ecb18032/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6375746164617074\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-cutadapt\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5403066544c7ca2002d9c3183ace39dbb1aabbed23f96489c23f815b84b3a31f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6375746164617074\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5403066544c7ca2002d9c3183ace39dbb1aabbed23f96489c23f815b84b3a31f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6375746164617074\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-cutadapt\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/d60627004d3b1d480327260e840077df4c84113f1dcd462a39d25dfc08daae2a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6375746164617074\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d60627004d3b1d480327260e840077df4c84113f1dcd462a39d25dfc08daae2a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6375746164617074\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-cutadapt\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-cutadapt\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-cutadapt\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-cutadapt\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://cutadapt.readthedocs.io/en/stable\" rel=\"nofollow\"\u003ecutadapt\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ecutadapt\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/cutadapt/2.10\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/cutadapt\u003c/code\u003e as \u003ccode\u003e2.10.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1629217124.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1670041069.0
},
{
"data_format": 2,
- "description": "Contains the material presented at CCD lab meeting on 11/13/2019",
+ "description": null,
"filenames": [
- "examples/Singularity.pytorch-docker",
- "examples/Singularity.julia",
- "examples/Singularity.conda",
- "examples/Singularity.fasttext"
+ "Singularity.bwa",
+ "Singularity.gatk"
],
- "full_name": "CNCLgithub/singularity_workshop_2019",
+ "full_name": "mkgoita/containers",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainers\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1573678647.0
+ "updated_at": 1671889682.0
},
{
"data_format": 2,
- "description": "An adaptive planner for IPC ",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "zyf505/CPC0",
+ "full_name": "saviodot/singularity_MACS2",
"latest_release": null,
- "readme": "\u003cp\u003eFast Downward is a domain-independent planning system.\u003c/p\u003e\n\u003cp\u003eFor documentation and contact information see \u003ca href=\"http://www.fast-downward.org/\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org/\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe following directories are not part of Fast Downward as covered by this\nlicense:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eCopyright (C) 2003-2016 Malte Helmert\nCopyright (C) 2008-2016 Gabriele Roeger\nCopyright (C) 2010-2016 Jendrik Seipp\nCopyright (C) 2010, 2011, 2013-2016 Silvan Sievers\nCopyright (C) 2012-2016 Florian Pommerening\nCopyright (C) 2016 Martin Wehrle\nCopyright (C) 2013, 2015 Salome Simon\nCopyright (C) 2014, 2015 Patrick von Reth\nCopyright (C) 2015 Manuel Heusner, Thomas Keller\nCopyright (C) 2009-2014 Erez Karpas\nCopyright (C) 2014 Robert P. Goldman\nCopyright (C) 2010-2012 Andrew Coles\nCopyright (C) 2010, 2012 Patrik Haslum\nCopyright (C) 2003-2011 Silvia Richter\nCopyright (C) 2009-2011 Emil Keyder\nCopyright (C) 2010, 2011 Moritz Gronbach, Manuela Ortlieb\nCopyright (C) 2011 Vidal Alc\u00e1zar Saiz, Michael Katz, Raz Nissim\nCopyright (C) 2010 Moritz Goebelbecker\nCopyright (C) 2007-2009 Matthias Westphal\nCopyright (C) 2009 Christian Muise\n\nFast Downward is free software: you can redistribute it and/or modify it under\nthe terms of the GNU General Public License as published by the Free Software\nFoundation, either version 3 of the License, or (at your option) any later\nversion.\n\nFast Downward is distributed in the hope that it will be useful, but WITHOUT ANY\nWARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A\nPARTICULAR PURPOSE. See the GNU General Public License for more details.\n\nYou should have received a copy of the GNU General Public License along with\nthis program. If not, see \u0026lt;http://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_macs2\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity_macs2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_MACS2\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1613781111.0
+ "updated_at": 1616690622.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.mg5_ma5_madspin"
+ "Singularity.4.0.14",
+ "Singularity.4.4.2"
],
- "full_name": "HenryDayHall/madspin_singularity",
+ "full_name": "sschmeier/container-fishtank-gpu",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1602173663.0
+ "updated_at": 1624344477.0
},
{
"data_format": 2,
- "description": "Singularity Ubuntu container with the Paraview stack",
+ "description": "TransDecoder identifies candidate coding regions within transcript sequences.",
"filenames": [
"Singularity"
],
- "full_name": "CHPC-UofU/Singularity-ubuntu-paraview",
+ "full_name": "sghignone/TransDecoder",
"latest_release": null,
+ "readme": "\u003ch2\u003e\u003ca id=\"user-content-transdecoder-v550\" class=\"anchor\" aria-hidden=\"true\" href=\"#transdecoder-v550\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTransDecoder v.5.5.0\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/5159\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe current build is based on the bioconda distribution of Brian Haas\u0027 transdecoder 5.5.0.\u003c/p\u003e\n\u003cp\u003eTransDecoder identifies candidate coding regions within transcript sequences, such as those generated by de novo RNA-Seq transcript assembly using Trinity, or constructed based on RNA-Seq alignments to the genome using Tophat and Cufflinks.\u003c/p\u003e\n\u003cp\u003eVisit the project \u003ca href=\"https://github.com/TransDecoder/TransDecoder/wiki\"\u003ewiki\u003c/a\u003e for all TransDecoder documentation.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [],
- "updated_at": 1492111584.0
- },
- {
- "data_format": 2,
- "description": "Singularity dependency container, neuroglia-core + DWI software (camino, mrtrix, unring)",
- "filenames": [
- "Singularity",
- "Singularity.v1.4.1"
+ "topics": [
+ "miniconda3",
+ "singularity",
+ "singularity-hub",
+ "singularity-recipe"
],
- "full_name": "khanlab/neuroglia-dwi",
- "latest_release": "v1.5",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-neuroglia-dwi\" class=\"anchor\" aria-hidden=\"true\" href=\"#neuroglia-dwi\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eneuroglia-dwi\u003c/h1\u003e\n\u003cp\u003eSingularity image for neuroimaging dependencies. Supplements \u003ca href=\"http://www.github.com/khanlab/neuroglia-core\"\u003ehttp://www.github.com/khanlab/neuroglia-core\u003c/a\u003e with additional DWI software. Includes:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003emrtrix3\u003c/li\u003e\n\u003cli\u003ecamino\u003c/li\u003e\n\u003cli\u003eunring\u003c/li\u003e\n\u003cli\u003eDKE\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eCommits and pull-requests to this repository rebuild the \u003ccode\u003elatest\u003c/code\u003e version on Docker Hub, which is updated nightly to Singularity Hub. Releases on Docker Hub and Singularity Hub are built whenever a tag named \u003ccode\u003ev.*\u003c/code\u003e is committed. To avoid re-building on minor commits (e.g. changes to documentation), use \u003ccode\u003e[skip ci]\u003c/code\u003e in the commit message.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://circleci.com/gh/khanlab/neuroglia-core\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6231f7b29a2b680358e7d9c865672c500cdd9b75198b457634e3cc4c3a78cb70/68747470733a2f2f636972636c6563692e636f6d2f67682f6b68616e6c61622f6e6575726f676c69612d6477692e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/khanlab/neuroglia-dwi.svg?style=svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/451\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eDocker:\n\u003ccode\u003edocker pull khanlab/neuroglia-dwi\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eSingularity:\n\u003ccode\u003esingularity pull khanlab/neuroglia-dwi\u003c/code\u003e\u003c/p\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1591844442.0
+ "updated_at": 1612624905.0
},
{
"data_format": 2,
- "description": "Singularity images for everyday research work.",
+ "description": null,
"filenames": [
- "Singularity.deepo-cpu",
- "Singularity.pymc3",
- "Singularity.datasci",
- "Singularity.deepo-cpu-nlp"
+ "Singularity"
],
- "full_name": "hans/research-labs",
+ "full_name": "thomas-robinson/single-point-land",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1648667607.0
+ "updated_at": 1613156529.0
},
{
"data_format": 2,
- "description": "The GATK is the industry standard for identifying SNPs and indels in germline DNA and RNAseq data. ",
+ "description": "Computational Analysis of gene Family Evolution (CAFE)",
"filenames": [
- "4.2.0.0/Singularity",
- "4.1.9.0/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-gatk",
- "latest_release": "v4.2.0.0",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-gatk/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-gatk/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/93c4f349e621f15ffd8933b4c7d4ea8eea7b6f9156528a6b483b1b47d8064a91/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6761746b\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/93c4f349e621f15ffd8933b4c7d4ea8eea7b6f9156528a6b483b1b47d8064a91/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6761746b\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-gatk\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/744613aa898037bbfe237a7943e118e4fe72355964b8726f785c33e44de131e0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6761746b\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/744613aa898037bbfe237a7943e118e4fe72355964b8726f785c33e44de131e0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6761746b\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-gatk\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5d9f7edad1535dfc343a82ee05a1cee751f4185de5e88e9959f1e306baf3af56/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6761746b\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5d9f7edad1535dfc343a82ee05a1cee751f4185de5e88e9959f1e306baf3af56/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6761746b\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-gatk\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/936434bf1d55721ba57e95e4bb99cfb8b78d330106b7ffebafb8911c75556071/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6761746b\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/936434bf1d55721ba57e95e4bb99cfb8b78d330106b7ffebafb8911c75556071/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6761746b\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-gatk\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-gatk\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-gatk\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-gatk\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f0a6e98fde6f4e7dd338612de8a154b1169c4572acc8ca3ffed117a81e28d4be/68747470733a2f2f7468656d652e7a646173736574732e636f6d2f7468656d655f6173736574732f323337383336302f646630383566313534333231666161633931353964646135376635303130336238376134663734332e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f0a6e98fde6f4e7dd338612de8a154b1169c4572acc8ca3ffed117a81e28d4be/68747470733a2f2f7468656d652e7a646173736574732e636f6d2f7468656d655f6173736574732f323337383336302f646630383566313534333231666161633931353964646135376635303130336238376134663734332e706e67\" alt=\"Logo\" data-canonical-src=\"https://theme.zdassets.com/theme_assets/2378360/df085f154321faac9159dda57f50103b87a4f743.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\nSingularity recipe for \u003ca href=\"https://gatk.broadinstitute.org/hc/en-us\" rel=\"nofollow\"\u003eGATK\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003egatk\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/gatk/4.1.9.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/gatk\u003c/code\u003e as \u003ccode\u003e4.1.9.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "sghignone/CAFE",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-cafe\" class=\"anchor\" aria-hidden=\"true\" href=\"#cafe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCAFE\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-computational-analysis-of-gene-family-evolution-cafe\" class=\"anchor\" aria-hidden=\"true\" href=\"#computational-analysis-of-gene-family-evolution-cafe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eComputational Analysis of gene Family Evolution (CAFE)\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/5151\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe current build is based on the bioconda distribution of the Hahn Lab CAFE v.4.2.1.\u003c/p\u003e\n\u003cp\u003eThe purpose of CAFE is to analyze changes in gene family size in a way that accounts for phylogenetic history and provides a statistical foundation for evolutionary inferences. The program uses a birth and death process to model gene gain and loss across a user-specified phylogenetic tree. The distribution of family sizes generated under this model can provide a basis for assessing the significance of the observed family size differences among taxa.\u003c/p\u003e\n\u003cp\u003eCAFE v4.2.1 is the latest in a regular series of releases to the CAFE application. The manual and various tutorials may be viewed on the website (\u003ca href=\"https://hahnlab.github.io/CAFE/\" rel=\"nofollow\"\u003ehttps://hahnlab.github.io/CAFE/\u003c/a\u003e) . This document describes how to download and use CAFE v4.2.1. (credits: \u003ca href=\"https://github.com/hahnlab/CAFE\"\u003ehttps://github.com/hahnlab/CAFE\u003c/a\u003e)\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [
"singularity",
- "bioinformatics"
+ "singularity-hub",
+ "singularity-recipe",
+ "miniconda3"
],
- "updated_at": 1628991719.0
+ "updated_at": 1612624956.0
},
{
"data_format": 2,
- "description": "Pipeline for preprocessing fMRI data ",
+ "description": null,
"filenames": [
- "TheBrainPipeline/preprocessing/Singularity_Containers/Singularity",
- "TheBrainPipeline/preprocessing/Singularity_Containers/.ipynb_checkpoints/Singularity-checkpoint"
+ "Singularity"
],
- "full_name": "niblunc/NIBL",
+ "full_name": "juanca09/default",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-neuropsychology-of-ingestive-behavior-lab\" class=\"anchor\" aria-hidden=\"true\" href=\"#neuropsychology-of-ingestive-behavior-lab\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNeuropsychology of Ingestive Behavior Lab\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/niblunc/TheBrainPipeline/tree/master/TheBrainPipeline\"\u003eTheBrainPipeline\u003c/a\u003e : analysis scripts and files, such as decoding\u003cbr\u003e\n\u003ca href=\"https://github.com/niblunc/TheBrainPipeline/tree/master/OsirixFiles\"\u003eOsirix_Files\u003c/a\u003e : scripts used to prep data from OsiriX \u003cbr\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-default\" class=\"anchor\" aria-hidden=\"true\" href=\"#default\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edefault\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1583185636.0
+ "updated_at": 1612274393.0
},
{
"data_format": 2,
@@ -7172,67 +6815,69 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "ctpelok77/ipc2018-delfi",
+ "full_name": "kristinebilgrav/Retro_files",
"latest_release": null,
- "readme": "\u003cp\u003eFast Downward is a domain-independent planning system.\u003c/p\u003e\n\u003cp\u003eFor documentation and contact information see \u003ca href=\"http://www.fast-downward.org/\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org/\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe following directories are not part of Fast Downward as covered by this\nlicense:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify it under\nthe terms of the GNU General Public License as published by the Free Software\nFoundation, either version 3 of the License, or (at your option) any later\nversion.\n\nFast Downward is distributed in the hope that it will be useful, but WITHOUT ANY\nWARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A\nPARTICULAR PURPOSE. See the GNU General Public License for more details.\n\nYou should have received a copy of the GNU General Public License along with\nthis program. If not, see \u0026lt;http://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-retro_files\" class=\"anchor\" aria-hidden=\"true\" href=\"#retro_files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRetro_files\u003c/h1\u003e\n\u003cp\u003eContains files used to run retroseq and analyse outcome\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1660771542.0
+ "updated_at": 1621431178.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "0.39/Singularity.0.39"
+ "Singularity"
],
- "full_name": "yh549848/singularity-trimmomatic",
+ "full_name": "kristinebilgrav/Vep_retro_containers",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-jitterbug\" class=\"anchor\" aria-hidden=\"true\" href=\"#jitterbug\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eJitterbug\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1602826148.0
+ "updated_at": 1617190998.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.snowflake"
+ "Singularity"
],
- "full_name": "longgangfan/ubuntu2004uwgeo-sig",
+ "full_name": "nicspalla/openmpi_centos_x86_64",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-ubuntu2004uwgeo-sig\" class=\"anchor\" aria-hidden=\"true\" href=\"#ubuntu2004uwgeo-sig\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eubuntu2004uwgeo-sig\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-openmpi_centos_x86_64\" class=\"anchor\" aria-hidden=\"true\" href=\"#openmpi_centos_x86_64\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eopenmpi_centos_x86_64\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1621586669.0
+ "updated_at": 1605260984.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "singularity/Singularity"
+ "Singularity.v1.0.0"
],
- "full_name": "ddesvillechabrol/lora",
+ "full_name": "baxpr/segwarp",
"latest_release": null,
+ "readme": "\u003cp\u003eWarp SEG output of a multi-atlas assessor to MNI space using the supplied SPM warp field.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1678461554.0
+ "updated_at": 1605062943.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Code used to generate summaries, models and figures for article \"A field-wide assessment of differential high throughput sequencing reveals widespread bias\".",
"filenames": [
- "singularity/Singularity"
+ "Singularity"
],
- "full_name": "mohammadreza-sheykhmousa/FFS",
+ "full_name": "tpall/geo-htseq-paper",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-polygonal-building-segmentation-by-frame-field-learning\" class=\"anchor\" aria-hidden=\"true\" href=\"#polygonal-building-segmentation-by-frame-field-learning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePolygonal Building Segmentation by Frame Field Learning\u003c/h1\u003e\n\u003cp\u003eWe add a frame field output to an image segmentation neural network to improve segmentation quality\nand provide structural information for the subsequent polygonization step.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/frame_field_sample.png\"\u003e\u003cimg src=\"images/frame_field_sample.png\" width=\"512\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n \u003cbr\u003e\n Figure 1: Close-up of our additional frame field output on a test image.\n \u003cbr\u003e\n \u003cbr\u003e\n \u003cbr\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/model_training.png\"\u003e\u003cimg src=\"images/model_training.png\" width=\"768\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n \u003cbr\u003e\n Figure 2: Given an overhead image, the model outputs an edge mask, an interior mask,\n and a frame field for buildings. The total loss includes terms that align the masks and\n frame field to ground truth data as well as regularizers to enforce smoothness of the\n frame field and consistency between the outputs.\n \u003cbr\u003e\n \u003cbr\u003e\n \u003cbr\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/schematic_polygonization.png\"\u003e\u003cimg src=\"images/schematic_polygonization.png\" width=\"768\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n \u003cbr\u003e\n Figure 3: Given classification maps and a frame field as input, we optimize skeleton polylines to\n align to the frame field using an Active Skeleton Model (ASM) and detect corners using\n the frame field, simplifying non-corner vertices.\n\u003c/p\u003e\n\u003cp\u003eThis repository contains the official code for the paper:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolygonal Building Segmentation by Frame Field Learning\u003c/strong\u003e\u003cbr\u003e\n\u003ca href=\"https://www-sop.inria.fr/members/Nicolas.Girard/\" rel=\"nofollow\"\u003eNicolas Girard\u003c/a\u003e,\n\u003ca href=\"https://people.csail.mit.edu/smirnov/\" rel=\"nofollow\"\u003eDmitriy Smirnov\u003c/a\u003e,\n\u003ca href=\"https://people.csail.mit.edu/jsolomon/\" rel=\"nofollow\"\u003eJustin Solomon\u003c/a\u003e,\n\u003ca href=\"https://www-sop.inria.fr/members/Yuliya.Tarabalka/\" rel=\"nofollow\"\u003eYuliya Tarabalka\u003c/a\u003e\u003cbr\u003e\nCVPR 2021\u003cbr\u003e\n\u003cstrong\u003e[\u003ca href=\"https://arxiv.org/abs/2004.14875\" rel=\"nofollow\"\u003epaper\u003c/a\u003e, \u003ca href=\"https://www.youtube.com/watch?v=226pPTBsNJ8\u0026amp;t=8s\" rel=\"nofollow\"\u003evideo\u003c/a\u003e]\u003c/strong\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-git-submodules\" class=\"anchor\" aria-hidden=\"true\" href=\"#git-submodules\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGit submodules\u003c/h2\u003e\n\u003cp\u003eThis project uses various git submodules that should be cloned too.\u003c/p\u003e\n\u003cp\u003eTo clone a repository including its submodules execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone --recursive --jobs 8 \u0026lt;URL to Git repo\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you already have cloned the repository and now want to load it\u2019s submodules execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit submodule update --init --recursive --jobs 8\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit submodule update --recursive\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor more about explanations about using submodules and git, see \u003ca href=\"SUBMODULES.md\"\u003eSUBMODULES.md\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003cp\u003eThe easiest way to setup environment is to use the Docker image provided in the \u003ca href=\"docker\"\u003edocker\u003c/a\u003e (see README inside the folder).\u003c/p\u003e\n\u003cp\u003eOnce the docker container is built and launched, execute the \u003ca href=\"setup.sh\"\u003esetup.sh\u003c/a\u003e script inside to install required packages.\u003c/p\u003e\n\u003cp\u003eThe environment in the container is now ready for use.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-conda-environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#conda-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConda environment\u003c/h2\u003e\n\u003cp\u003eAlternatively you can install all dependencies in a conda environment.\nI provide my environment specifications in the \u003ca href=\"environment.yml\"\u003eenvironment.yml\u003c/a\u003e which you can use to create your environment own with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData\u003c/h1\u003e\n\u003cp\u003eSeveral datasets are used in this work.\nWe typically put all datasets in a \"data\" folder which we link to the \"/data\" folder in the container (with the \u003ccode\u003e-v\u003c/code\u003e argument when running the container).\nEach dataset has it\u0027s own sub-folder, usually named with a short version of that dataset\u0027s name.\nEach dataset sub-folder should have a \"raw\" folder inside containing all the original folders and files fo the datset.\nWhen pre-processing data, \"processed\" folders will be created alongside the \"raw\" folder.\u003c/p\u003e\n\u003cp\u003eFor example, here is an example working file structure inside the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e/data \n|-- AerialImageDataset\n |-- raw\n |-- train\n | |-- aligned_gt_polygons_2\n | |-- gt\n | |-- gt_polygonized\n | |-- images\n `-- test\n |-- aligned_gt_polygons_2\n |-- images\n`-- mapping_challenge_dataset\n |-- raw\n |-- train\n | |-- images\n | |-- annotation.json\n | `-- annotation-small.json\n `-- val\n `-- ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf however you would like to use a different folder for the datasets (for example while not using Docker),\nyou can change the path to datasets in config files.\nYou can modify the \"data_dir_candidates\" list in the config to only include your path.\nThe training script checks this list of paths one at a time and picks the first one that exists.\nIt then appends the \"data_root_partial_dirpath\" directory to get to the dataset.\u003c/p\u003e\n\u003cp\u003eYou can find some of the data we used in this shared \"data\" folder: \u003ca href=\"https://drive.google.com/drive/folders/19yqseUsggPEwLFTBl04CmGmzCZAIOYhy?usp=sharing\" rel=\"nofollow\"\u003ehttps://drive.google.com/drive/folders/19yqseUsggPEwLFTBl04CmGmzCZAIOYhy?usp=sharing\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-inria-aerial-image-labeling-dataset\" class=\"anchor\" aria-hidden=\"true\" href=\"#inria-aerial-image-labeling-dataset\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInria Aerial Image Labeling Dataset\u003c/h2\u003e\n\u003cp\u003eLink to the dataset: \u003ca href=\"https://project.inria.fr/aerialimagelabeling/\" rel=\"nofollow\"\u003ehttps://project.inria.fr/aerialimagelabeling/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFor the Inria dataset, the original ground truth is just a collection of raster masks.\nAs our method requires annotations to be polygons in order to compute the ground truth angle for the frame field, we made 2 versions of the dataset:\u003c/p\u003e\n\u003cp\u003eThe \u003cem\u003eInria OSM dataset\u003c/em\u003e has aligned annotations pulled from OpenStreetMap.\u003c/p\u003e\n\u003cp\u003eThe \u003cem\u003eInria Polygonized dataset\u003c/em\u003e has polygon annotations obtained from using our frame field polygonization algorithm on the original raster masks.\nThis was done by running the \u003ccode\u003epolygonize_mask.py\u003c/code\u003e script like so:\n\u003ccode\u003epython polygonize_mask.py --run_name inria_dataset_osm_mask_only.unet16 --filepath ~/data/AerialImageDataset/raw/train/gt/*.tif\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eYou can find this new ground truth for both cases in the shared \"data\" folder (\u003ca href=\"https://drive.google.com/drive/folders/19yqseUsggPEwLFTBl04CmGmzCZAIOYhy?usp=sharing\" rel=\"nofollow\"\u003ehttps://drive.google.com/drive/folders/19yqseUsggPEwLFTBl04CmGmzCZAIOYhy?usp=sharing\u003c/a\u003e.).\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-running-the-mainpy-script\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-the-mainpy-script\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the main.py script\u003c/h1\u003e\n\u003cp\u003eExecute \u003ca href=\"main.py\"\u003emain.py\u003c/a\u003e script to train a model, test a model or use a model on your own image.\nSee the help of the main script with:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003epython main.py --help\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe script can be launched on multiple GPUs for multi-GPU training and evaluation.\nSimply set the \u003ccode\u003e--gpus\u003c/code\u003e argument to the number of gpus you want to use.\nHowever, for the first launch of the script on a particular dataset (when it will pre-process the data),\nit is best to leave it at 1 as I did not implement multi-GPU synchronization when pre-processing datasets.\u003c/p\u003e\n\u003cp\u003eAn example use is for training a model with a certain config file, like so:\n\u003ccode\u003epython main.py --config configs/config.mapping_dataset.unet_resnet101_pretrained\u003c/code\u003e\nwhich will train the Unet-Resnet101 on the CrowdAI Mapping Challenge dataset.\nThe batch size can be adjusted like so:\n\u003ccode\u003epython main.py --config configs/config.mapping_dataset.unet_resnet101_pretrained -b \u0026lt;new batch size\u0026gt;\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eWhen training is done, the script can be launched in eval mode, to evaluate the trained model:\n\u003ccode\u003epython main.py --config configs/config.mapping_dataset.unet_resnet101_pretrained --mode eval\u003c/code\u003e.\nDepending on the eval parameters of the config file, running this will output results on the test dataset.\u003c/p\u003e\n\u003cp\u003eFinally, if you wish to compute AP and AR metrics with the COCO API, you can run:\n\u003ccode\u003epython main.py --config configs/config.mapping_dataset.unet_resnet101_pretrained --mode eval_coco\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-launch-inference-on-one-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#launch-inference-on-one-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLaunch inference on one image\u003c/h2\u003e\n\u003cp\u003eMake sure the run folder has the correct structure:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ePolygonization-by-Frame-Field-Learning\n|-- frame_field_learning\n| |-- runs\n| | |-- \u0026lt;run_name\u0026gt; | \u0026lt;yyyy-mm-dd hh:mm:ss\u0026gt;\n| | `-- ...\n| |-- inference.py\n| `-- ...\n|-- main.py\n|-- README.md (this file)\n`-- ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExecute the [main.py] script like so (filling values for arguments run_name and in_filepath):\n\u003ccode\u003epython main.py --run_name \u0026lt;run_name\u0026gt; --in_filepath \u0026lt;your_image_filepath\u0026gt;\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe outputs will be saved next to the input image\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-download-trained-models\" class=\"anchor\" aria-hidden=\"true\" href=\"#download-trained-models\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownload trained models\u003c/h2\u003e\n\u003cp\u003eWe provide already-trained models so you can run inference right away.\nDownload here: \u003ca href=\"https://drive.google.com/drive/folders/1poTQbpCz12ra22CsucF_hd_8dSQ1T3eT?usp=sharing\" rel=\"nofollow\"\u003ehttps://drive.google.com/drive/folders/1poTQbpCz12ra22CsucF_hd_8dSQ1T3eT?usp=sharing\u003c/a\u003e.\nEach model was trained in a \"run\", whose folder (named with the format \u003ccode\u003e\u0026lt;run_name\u0026gt; | \u0026lt;yyyy-mm-dd hh:mm:ss\u0026gt;\u003c/code\u003e) you can download at the provided link.\nYou should then place those runs in a folder named \"runs\" inside the \"frame_field_learning\" folder like so:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ePolygonization-by-Frame-Field-Learning\n|-- frame_field_learning\n| |-- runs\n| | |-- inria_dataset_polygonized.unet_resnet101_pretrained.leaderboard | 2020-06-02 07:57:31\n| | |-- mapping_dataset.unet_resnet101_pretrained.field_off.train_val | 2020-09-07 11:54:48\n| | |-- mapping_dataset.unet_resnet101_pretrained.train_val | 2020-09-07 11:28:51\n| | `-- ...\n| |-- inference.py\n| `-- ...\n|-- main.py\n|-- README.md (this file)\n`-- ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBecause Google Drive reformats folder names, you have to rename the run folders as above.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-cite\" class=\"anchor\" aria-hidden=\"true\" href=\"#cite\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCite:\u003c/h1\u003e\n\u003cp\u003eIf you use this code for your own research, please cite\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@InProceedings{Girard_2021_CVPR,\n author = {Girard, Nicolas and Smirnov, Dmitriy and Solomon, Justin and Tarabalka, Yuliya},\n title = {Polygonal Building Extraction by Frame Field Learning},\n booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},\n month = {June},\n year = {2021},\n pages = {5891-5900}\n}\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/tpall/geo-htseq-paper/workflows/CI/badge.svg\"\u003e\u003cimg src=\"https://github.com/tpall/geo-htseq-paper/workflows/CI/badge.svg\" alt=\"CI\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-geo-htseq-paper\" class=\"anchor\" aria-hidden=\"true\" href=\"#geo-htseq-paper\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGeo-htseq-paper\u003c/h1\u003e\n\u003cp\u003eWe analyzed the field of expression profiling by high throughput sequencing, or RNA-seq, in terms of replicability and reproducibility, using data from the GEO (Gene Expression Omnibus) repository. Our work puts an upper bound of 56% to field-wide reproducibility, based on the types of files submitted to GEO.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-getting-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#getting-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting data\u003c/h2\u003e\n\u003cp\u003eGot to \u003ca href=\"https://zenodo.org/record/6795313\" rel=\"nofollow\"\u003ehttps://zenodo.org/record/6795313\u003c/a\u003e and download data archive, let\u0027s say, to your Downloads folder.\u003c/p\u003e\n\u003cp\u003eThen create new folder, e.g. \"geo-htseq\" and enter this folder\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emkdir geo-htseq\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e geo-htseq\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eCopy downloaded dataset to your working directory and uncompress:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ecp \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Downloads/geo-htseq.tar.gz \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\ntar -xzvf geo-htseq.tar.gz\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eRemove tar.gz archive from working directory:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003erm geo-htseq.tar.gz\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNow you should have dataset in \"output\" subdirectory ready for analysis.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-workflow-graph\" class=\"anchor\" aria-hidden=\"true\" href=\"#workflow-graph\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWorkflow graph\u003c/h2\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"resources/images/rulegraph.pdf\"\u003e\u003cimg src=\"resources/images/rulegraph.pdf\" alt=\"rulegraph\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1636198482.0
+ "updated_at": 1656954496.0
},
{
"data_format": 2,
@@ -7240,371 +6885,358 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-docker-centos7-ci",
+ "full_name": "marcjwilliams1/rstudiosrvrV4",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-building-a-centos7-singularity-and-docker-image-for-ci\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-a-centos7-singularity-and-docker-image-for-ci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a centos7 singularity and docker image for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-why-\" class=\"anchor\" aria-hidden=\"true\" href=\"#why-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003einitial docker image project \u003ca href=\"https://github.com/truatpasteurdotfr/docker-c7-ci\"\u003ehttps://github.com/truatpasteurdotfr/docker-c7-ci\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eadding support for singularity format to be used directly\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-caveat\" class=\"anchor\" aria-hidden=\"true\" href=\"#caveat\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:main\u003c/code\u003e tagged docker image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocker \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-centos7-ci/actions/workflows/docker-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-centos7-ci/actions/workflows/docker-publish.yml/badge.svg\" alt=\"Docker build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-centos7-ci:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-centos7-ci/actions/workflows/singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-centos7-ci/actions/workflows/singularity-publish.yml/badge.svg\" alt=\"Singularity build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run oras://ghcr.io/truatpasteurdotfr/singularity-docker-centos7-ci:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4911\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image for R studio server with Rv4.0.\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1605122458.0
+ },
+ {
+ "data_format": 2,
+ "description": "The definition files for creating singularity containers that can run in the WashU HPC",
+ "filenames": [
+ "Singularity.def"
+ ],
+ "full_name": "humanconnectome/hcp-pipelines-singularity",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-definitions-for-hcp-pipelines\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-definitions-for-hcp-pipelines\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Definitions for HCP Pipelines\u003c/h1\u003e\n\u003cp\u003eThe definition files for creating singularity containers for the XNAT pipelines\nwrapper code so that it can run in the WashU HPC.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-cloning-with-submodules\" class=\"anchor\" aria-hidden=\"true\" href=\"#cloning-with-submodules\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCloning with Submodules\u003c/h2\u003e\n\u003cp\u003eDon\u0027t forget to pull down the submodules as well, with the \u003ccode\u003e--recursive\u003c/code\u003e flag.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/humanconnectome/hcp-pipelines-singularity --recursive\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-development\" class=\"anchor\" aria-hidden=\"true\" href=\"#development\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopment\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eCommand\u003c/th\u003e\n\u003cth\u003eTask\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emake clean\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eRemove previous container image.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emake update\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eUpdate all the git submodule repos.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emake build\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eGenerate a container image from .def file\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emake upload\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eUpload the container to correct location in the HPC.\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1635152901.0
+ "updated_at": 1610395015.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for GroIMP (http://www.grogra.de/software/groimp)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.1.6-jre8-cuda+sundials-2.7.0",
+ "Singularity.1.6-cuda",
+ "Singularity.1.6-jre8-cuda"
],
- "full_name": "mwanakijiji/rrlyrae_metallicity",
+ "full_name": "powerPlant/groimp-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-rrlyrae_metallicity\" class=\"anchor\" aria-hidden=\"true\" href=\"#rrlyrae_metallicity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003errlyrae_metallicity\u003c/h1\u003e\n\u003cp\u003eThis is a package for determining metallicities from med-res RRab spectroscopy. See --- for documentation.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://coveralls.io/github/mwanakijiji/rrlyrae_metallicity?branch=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2bb0fd2bc008af8b9f3e3838890e25c208723b50f910daa5e509bba2111d27c8/68747470733a2f2f636f766572616c6c732e696f2f7265706f732f6769746875622f6d77616e616b696a696a692f72726c797261655f6d6574616c6c69636974792f62616467652e7376673f6272616e63683d6d6173746572\" alt=\"Coverage Status\" data-canonical-src=\"https://coveralls.io/repos/github/mwanakijiji/rrlyrae_metallicity/badge.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for GroIMP, a 3D-modelling platform\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1641769814.0
+ "updated_at": 1651533257.0
+ },
+ {
+ "data_format": 2,
+ "description": "Singularity recipe files for pinfish (https://github.com/nanoporetech/pinfish)",
+ "filenames": [
+ "Singularity",
+ "Singularity.0.1.0"
+ ],
+ "full_name": "powerPlant/pinfish-srf",
+ "latest_release": null,
+ "readme": "\u003cp\u003eSingularity recipe files for the pinfish collection of tools helping to make sense of long transcriptomics data (long cDNA reads, direct RNA reads)\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1583274123.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity_jlabsolidbase_devel",
- "Singularity.1.0.2"
+ "Singularity"
],
- "full_name": "jlabsolid/container",
+ "full_name": "arezaii/pf_singularity_demo",
"latest_release": null,
- "readme": "\u003cp\u003eContainer\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-parflow-singularity-container-demonstration\" class=\"anchor\" aria-hidden=\"true\" href=\"#parflow-singularity-container-demonstration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParFlow Singularity Container Demonstration\u003c/h1\u003e\n\u003cp\u003eThe Singularity container is built with ParFlow installed as a SCIF-app, providing access to both sequential and parallel\nbuilds of ParFlow. See additional information about \u003ca href=\"https://sylabs.io/guides/3.3/user-guide/definition_files.html?highlight=apps#apps\" rel=\"nofollow\"\u003eApps in Singularity\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eHost OS must have Singularity installed (See \u003ca href=\"https://sylabs.io/guides/3.3/user-guide/installation.html\" rel=\"nofollow\"\u003eInstalling Singularity\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-linux-hosts\" class=\"anchor\" aria-hidden=\"true\" href=\"#linux-hosts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLinux Hosts\u003c/h2\u003e\n\u003cp\u003eVerify Singularity is installed with the command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity --version\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen, see the Quickstart directions below\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-windowsmac-hosts\" class=\"anchor\" aria-hidden=\"true\" href=\"#windowsmac-hosts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWindows/Mac Hosts\u003c/h2\u003e\n\u003cp\u003eFollow the instructions to \u003ca href=\"https://sylabs.io/guides/3.3/user-guide/installation.html#install-on-windows-or-mac\" rel=\"nofollow\"\u003einstall Singularity\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eMake sure you are ssh\u0027d into the Vagrant box before beginning the Quickstart steps below\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003evagrant ssh\nvagrant@vagrant:~$ singularity --version\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-quickstart\" class=\"anchor\" aria-hidden=\"true\" href=\"#quickstart\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuickstart\u003c/h2\u003e\n\u003cp\u003eSteps:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eClone this repository\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/arezaii/pf_singularity_demo\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003ecd to the repository directory\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003ecd pf_singularity_demo\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003erun the shell script to execute tests for Little Washita domain on 1 processor, for 1 timestep\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003e./run_test.sh LW 1 1 1 1\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-performance-test-cases\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-performance-test-cases\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Performance Test Cases\u003c/h2\u003e\n\u003cp\u003eThe shell script run_test.sh facilitates running tests on different domains.\u003c/p\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ ./run_test.sh \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edomain\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eP\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eQ\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eR\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eTimeSteps\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ewhere\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003edomain is a test domain defined below\u003c/li\u003e\n\u003cli\u003eP, Q, R are integers defining processor topology in X, Y, Z directions\u003c/li\u003e\n\u003cli\u003eTimesteps is number of timesteps to execute\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-test-domains\" class=\"anchor\" aria-hidden=\"true\" href=\"#test-domains\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest Domains\u003c/h2\u003e\n\u003cp\u003eThere are several test domains for performance analysis contained in the perf_tests folder.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eLW - Little Washita\u003c/li\u003e\n\u003cli\u003eclayl - ClayL\u003c/li\u003e\n\u003cli\u003econus_ru - CONUS Clip - Run off\u003c/li\u003e\n\u003cli\u003econus_tfg - CONUS Clip - Terrain Following Grid\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-little-washita\" class=\"anchor\" aria-hidden=\"true\" href=\"#little-washita\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLittle Washita\u003c/h3\u003e\n\u003cp\u003eNatural model of the Little Washita watershed in Oklahoma.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eDomain Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNumber of Cells: 84,050, 41x41x50 (X,Y,Z)\u003c/li\u003e\n\u003cli\u003eHorizontal Resolution: 1km\u003c/li\u003e\n\u003cli\u003eVertical Resolution: 2m\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eTechnical Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCLM enabled with NLDAS Forcings\u003c/li\u003e\n\u003cli\u003eTimestep: 1hr\u003c/li\u003e\n\u003cli\u003eSuburface: Heterogeneous\u003c/li\u003e\n\u003cli\u003eInitial Condition: Pressure file from spin-up\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-clayl\" class=\"anchor\" aria-hidden=\"true\" href=\"#clayl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eClayL\u003c/h3\u003e\n\u003cp\u003eSynthetic model with completely flat surface and many thin, vertical layers\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eDomain Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNumber of Cells: 2.4M for 1 core. Scales with processor count, 100Px100Qx240 (X,Y,Z)\u003c/li\u003e\n\u003cli\u003eHorizontal Resolution: 1m\u003c/li\u003e\n\u003cli\u003eVertical Resolution: 0.025m\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eTechnical Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNo CLM, constant simulated rain on top surface @ .0008 mm/hr\u003c/li\u003e\n\u003cli\u003eTimestep 1hr\u003c/li\u003e\n\u003cli\u003eSubsurface: Homogeneous\u003c/li\u003e\n\u003cli\u003eInitial Condition: Dry\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-conus-run-off\" class=\"anchor\" aria-hidden=\"true\" href=\"#conus-run-off\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCONUS Run-off\u003c/h3\u003e\n\u003cp\u003eNatural topography with an impervious surface (parking lot simulation)\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eDomain Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNumber of Cells: 1,562,500 1250x1250x1 (X,Y,Z)\u003c/li\u003e\n\u003cli\u003eHorizontal Resolution: 1km\u003c/li\u003e\n\u003cli\u003eVertical Resolution: 0.10m\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eTechnical Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNo CLM, period of 1 hour simulated rain on top surface @ .005 mm/hr, then recession for 1000 hours\u003c/li\u003e\n\u003cli\u003eTimestep: 6 minutes\u003c/li\u003e\n\u003cli\u003eSubsurface: Homogeneous\u003c/li\u003e\n\u003cli\u003eInitial Condition: Dry\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-conus-terrain-following-grid\" class=\"anchor\" aria-hidden=\"true\" href=\"#conus-terrain-following-grid\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCONUS Terrain Following Grid\u003c/h3\u003e\n\u003cp\u003eNatural topography with the terrain following grid (TFG) feature enabled\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eDomain Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNumber of Cells: 1,125,000 750x750x2 (X,Y,Z)\u003c/li\u003e\n\u003cli\u003eHorizontal Resolution: 1km\u003c/li\u003e\n\u003cli\u003eVertical Resolution: toplayer=1m, bottomlayer=100m\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eTechnical Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNo CLM, seepage face boundary condition type on top layer, @ 0.00001\u003c/li\u003e\n\u003cli\u003eTimestep: 100000\u003c/li\u003e\n\u003cli\u003eSubsurface: Homogeneous\u003c/li\u003e\n\u003cli\u003eInitial Condition: Water Table at 45m above lower boundary\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-about-apps\" class=\"anchor\" aria-hidden=\"true\" href=\"#about-apps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAbout Apps\u003c/h2\u003e\n\u003cp\u003eThe demo container has two apps installed:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003epar = distributed build of ParFlow, -DPARFLOW_AMPS_SEQUENTIAL_IO=False\u003c/li\u003e\n\u003cli\u003eseq = sequential build of ParFlow, -DPARFLOW_AMPS_SEQUENTIAL_IO=True\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity run --app \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eapp_name\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003e/path/to/singularity_container.sif\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003e.tcl input file\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eSee additional information about \u003ca href=\"https://sylabs.io/guides/3.3/user-guide/definition_files.html?highlight=apps#apps\" rel=\"nofollow\"\u003eApps in Singularity\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-build-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo Build Container\u003c/h2\u003e\n\u003cp\u003eThe quickest way to build is to use a remote build service such as \u003ca href=\"https://cloud.sylabs.io/builder\" rel=\"nofollow\"\u003ecloud.sylabs.io\u003c/a\u003e\nIf a user has root access, they can build from the definition file, conventionally named Singularity.\u003c/p\u003e\n\u003cp\u003eGeneral build command is of the form:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo singularity build \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edestination/path/to/singularity_container.sif\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eSingularity definition file\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eas a specific example:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo singularity build \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/pf_singularity_demo.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-use-parflow-in-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-use-parflow-in-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo Use ParFlow in Container\u003c/h2\u003e\n\u003cp\u003eExample of running the LW test case in \u003ccode\u003eparflow/test/washita/tcl_scripts\u003c/code\u003e directory\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity run --app par \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/pf_singularity_demo.sif LW_Test.tcl\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pull-from-sylabs-cloud\" class=\"anchor\" aria-hidden=\"true\" href=\"#pull-from-sylabs-cloud\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePull from Sylabs Cloud\u003c/h2\u003e\n\u003cp\u003eTo pull the pre-built image from Sylabs Cloud:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull [destination image name] library://arezaii/default/parflow_demo:master\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-testing\" class=\"anchor\" aria-hidden=\"true\" href=\"#testing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting\u003c/h2\u003e\n\u003cp\u003eBecause singularity containers are write protected and ParFlow tests write to disk, you must expand the image to a writable sandbox.\nThis requires super user access, similar to building a container from the definition file.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-make-container-writable\" class=\"anchor\" aria-hidden=\"true\" href=\"#make-container-writable\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMake Container Writable\u003c/h3\u003e\n\u003cp\u003eFirst, create a writable sandbox from the immutable container using Singularity\u0027s build command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build --sandbox \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edirectory_to_create_for_sandbox/\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003esingularity_container\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eas an example, if you had pulled the parflow_ompi image from shub:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build --sandbox parflow_demo_master_sandbox/ parflow_demo_master.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThere will now be a new directory parflow_demo_master_sandbox/ that is the root of the container.\nEditing any of the folder contents will require super user permissions.\u003c/p\u003e\n\u003cp\u003eYou can enter a console into the container now by using the Singularity shell command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity shell --writable \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edirectory_to_create_for_sandbox/\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Tests\u003c/h3\u003e\n\u003cp\u003eAfter making the container writable and accessing it through a shell, both documented above, running the ParFlow\ntests can be done by changing directories and exporting the PARFLOW_DIR environment variable for either distributed\nor sequential builds of ParFlow.\u003c/p\u003e\n\u003cp\u003eTake note of the ParFlow build and install directories in the container:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eSequential Build\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ebuild directory: /home/parflow/build_seq\u003c/li\u003e\n\u003cli\u003einstall directory: /home/parflow/pfdir_seq\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eDistributed Build\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ebuild directory: /home/parflow/build_par\u003c/li\u003e\n\u003cli\u003einstall directory: /home/parflow/pfdir_par\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e /home/parflow/\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003ebuild_dir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e PARFLOW_DIR=/home/parflow/\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003einstall_dir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \n\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e make \u003cspan class=\"pl-c1\"\u003etest\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1521236311.0
+ "updated_at": 1583512107.0
},
{
"data_format": 2,
- "description": "Applied nuclear physics relevant software, containerized. Including Geant4 and Root.",
+ "description": "Owncloud",
"filenames": [
- "Singularity"
+ "Singularity.owncloud"
],
- "full_name": "peter-jansson/appnuc",
- "latest_release": "0.6.3",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-appnuc-applied-nuclear-physics-relevant-software-containerized\" class=\"anchor\" aria-hidden=\"true\" href=\"#appnuc-applied-nuclear-physics-relevant-software-containerized\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eappnuc: Applied nuclear physics relevant software, containerized.\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.5281/zenodo.6841830\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fe0491dd1b21254f68c00e841d95cb67f03343dd15eaf13e20280daa72ec13a7/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e363834313833302e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.6841830.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003cbr\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/peter-jansson/appnuc/actions/workflows/docker-image.yml/badge.svg?branch=master\"\u003e\u003cimg src=\"https://github.com/peter-jansson/appnuc/actions/workflows/docker-image.yml/badge.svg?branch=master\" alt=\"Docker build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003cbr\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/peter-jansson/appnuc/actions/workflows/apptainer-image.yml/badge.svg?branch=master\"\u003e\u003cimg src=\"https://github.com/peter-jansson/appnuc/actions/workflows/apptainer-image.yml/badge.svg?branch=master\" alt=\"Apptainer build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAn Ubuntu Linux 22.04 based image/container with a bunch of standard programs that are useful for scientific work in the field of applied nuclear physics. In addition to relevant software listed \u003ca href=\"scripts/install-apt-packages.sh\"\u003ehere\u003c/a\u003e and \u003ca href=\"scripts/install-pip-packages.sh\"\u003ehere\u003c/a\u003e, the following list of software packages are installed.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://geant4.web.cern.ch/\" rel=\"nofollow\"\u003eGeant4\u003c/a\u003e monte carlo framework, version 11.1.1.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://root.cern.ch/\" rel=\"nofollow\"\u003eRoot\u003c/a\u003e data analysis framework, version 6.26/10.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://dx.doi.org/10.18434/T48G6X\" rel=\"nofollow\"\u003eXCOM\u003c/a\u003e program from NIST, version 3.1.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis containerized solution can be referenced as:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003ePeter Jansson; \"appnuc: Applied nuclear physics relevant software, containerized\"; GitHub software repository: \u003ca href=\"https://github.com/peter-jansson/appnuc\"\u003epeter-jansson/appnuc\u003c/a\u003e; Version: 0.6.3; DOI: \u003ca href=\"https://doi.org/10.5281/zenodo.6841830\" rel=\"nofollow\"\u003e10.5281/zenodo.6841830\u003c/a\u003e; 2023-03-31\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eThis work is licensed under the \u003ca href=\"LICENSE\"\u003eGNU Lesser General Public License v3.0 (LGPL-3)\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f400597fcdcb66eeb5702e037732d66d7eecdf94f4f363a2dde0da21c4ba9ec4/68747470733a2f2f7777772e676e752e6f72672f67726170686963732f6c67706c76332d776974682d746578742d3135347836382e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f400597fcdcb66eeb5702e037732d66d7eecdf94f4f363a2dde0da21c4ba9ec4/68747470733a2f2f7777772e676e752e6f72672f67726170686963732f6c67706c76332d776974682d746578742d3135347836382e706e67\" alt=\"LGPL-3\" data-canonical-src=\"https://www.gnu.org/graphics/lgplv3-with-text-154x68.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003cp\u003eA \u003ca href=\"https://docker.com/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e image named \u003ccode\u003eappnuc\u003c/code\u003e can built using the Dockerfile, by the command\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003edocker build -t appnuc:latest -t appnuc:0.6.3 .\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe image can be started in a container by, e.g., the command\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003edocker run --rm -i -t appnuc bash -l\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eSignificantly more information on how to mount a local file system to the container as well as other command line options is available in the \u003ca href=\"https://docs.docker.com/engine/reference/commandline/cli/\" rel=\"nofollow\"\u003eDocker documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-apptainer-former-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#apptainer-former-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eApptainer (former Singularity)\u003c/h2\u003e\n\u003cp\u003eAn \u003ca href=\"http://apptainer.org/\" rel=\"nofollow\"\u003eApptainer\u003c/a\u003e file containing the same containerized software can be built using the definition file, named \u003ccode\u003eSingularity\u003c/code\u003e. E.g. using the command\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eapptainer build appnuc-0.6.3.sif Singularity\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eto build \u003ccode\u003eappnuc-0.6.3.sif\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eSee the \u003ca href=\"http://apptainer.org/docs\" rel=\"nofollow\"\u003eApptainer documentation\u003c/a\u003e for more information.\u003c/p\u003e\n",
+ "full_name": "ternaustralia/coesra-singularity-owncloud",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-coesra-singularity-owncloud\" class=\"anchor\" aria-hidden=\"true\" href=\"#coesra-singularity-owncloud\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-owncloud\u003c/h1\u003e\n\u003cp\u003eAuthor: Hoang Nguyen\nCreated: 22 July 2019\nThis will create a image with Singularity 2.5.1\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 2,
"topics": [
- "applied-nuclear-physics",
- "singularity",
- "apptainer",
- "docker",
- "geant4",
- "geant4-simulation",
- "root",
- "root-cern",
- "xcom"
+ "coesra"
],
- "updated_at": 1671696032.0
+ "updated_at": 1610426521.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Knime",
"filenames": [
- "Singularity"
+ "Singularity.knime"
],
- "full_name": "hkong1/fhirql",
+ "full_name": "ternaustralia/coesra-singularity-knime",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-a-fhir-has-been-lit-on-this-server\" class=\"anchor\" aria-hidden=\"true\" href=\"#a-fhir-has-been-lit-on-this-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eA FHIR has been lit on this server\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-what-is-fhirql\" class=\"anchor\" aria-hidden=\"true\" href=\"#what-is-fhirql\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is fhirql\u003c/h2\u003e\n\u003cp\u003eFhirql is a spring boot adaptation of hapi fhir server. This can be used as a template for extending generic FHIR server for specific use cases. See the example projects below. I have updated it to FHIR-R4 and spring-boot 2.2.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-fhir-r4-hl7-fast-healthcare-interoperability-resources-release-4\" class=\"anchor\" aria-hidden=\"true\" href=\"#fhir-r4-hl7-fast-healthcare-interoperability-resources-release-4\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFHIR\u00ae R4 (HL7 Fast Healthcare Interoperability Resources, Release 4)\u003c/h2\u003e\n\u003ch2\u003e\u003ca id=\"user-content-other-projects-that-using-this-as-backend\" class=\"anchor\" aria-hidden=\"true\" href=\"#other-projects-that-using-this-as-backend\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOther projects that using this as backend\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/E-Health/fhirform\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"fire\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f525.png\"\u003e\ud83d\udd25\u003c/g-emoji\u003e The FHIRForm framework for managing healthcare eForms\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/E-Health/drishti\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"eyes\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f440.png\"\u003e\ud83d\udc40\u003c/g-emoji\u003e Drishti | An mHealth sense-plan-act framework!\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-hidden=\"true\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003ejava 8\u003c/li\u003e\n\u003cli\u003emaven 3\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-use\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to Use:\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/dermatologist/fhirql.git\nmvn spring-boot:run\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eAccess UI at \u003ca href=\"http://localhost:8080/fhir\" rel=\"nofollow\"\u003ehttp://localhost:8080/fhir\u003c/a\u003e and FHIR BASE at \u003ca href=\"http://localhost:8080/fhir/fhir\" rel=\"nofollow\"\u003ehttp://localhost:8080/fhir/fhir\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-extend\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-extend\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to extend\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eThis uses spring boot Web.\u003c/li\u003e\n\u003cli\u003eOverride the default UI by adding files with the same name to WEB-INF/templates (Thymeleaf).\u003c/li\u003e\n\u003cli\u003eFor example this application overrides tmpl-head.html and tmpl-home-welcome.html\u003c/li\u003e\n\u003cli\u003eThe list of original templates are \u003ca href=\"https://github.com/jamesagnew/hapi-fhir/tree/master/hapi-fhir-testpage-overlay/src/main/webapp/WEB-INF/templates\"\u003ehere\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003cp\u003ePre-build docker container of overlay branch is available for testing and can be deployed using the following command. Access it at \u003ca href=\"http://localhost:8080/fhirql\" rel=\"nofollow\"\u003ehttp://localhost:8080/fhirql\u003c/a\u003e\n(Docker container is for testing only.)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -d --name fhirserver -p 8080:8080 beapen/fhir\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-author\" class=\"anchor\" aria-hidden=\"true\" href=\"#author\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthor\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://nuchange.ca\" rel=\"nofollow\"\u003eBell Eapen\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-coesra-singularity-knime\" class=\"anchor\" aria-hidden=\"true\" href=\"#coesra-singularity-knime\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-knime\u003c/h1\u003e\n\u003cp\u003eAuthor: Hoang Nguyen\nCreated: 22 July 2019\nThis will create a image with Singularity 2.5.1\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1603378426.0
+ "subscribers_count": 2,
+ "topics": [
+ "coesra"
+ ],
+ "updated_at": 1670882548.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "ploi/planning/FD/misc/releases/latest/Singularity",
- "ploi/planning/FD/misc/releases/19.12/Singularity.19.12",
- "ploi/planning/FD/misc/releases/20.06/Singularity.20.06",
- "ploi/planning/FD/misc/releases/19.06/Singularity.19.06"
+ "Singularity.macroecodesktop"
],
- "full_name": "alestarbucks/ofappdl",
+ "full_name": "ternaustralia/coesra-singularity-macroecodesktop",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-object-filtering-in-automatic-planning-problems-using-deep-learning\" class=\"anchor\" aria-hidden=\"true\" href=\"#object-filtering-in-automatic-planning-problems-using-deep-learning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eObject Filtering in Automatic Planning Problems using Deep Learning\u003c/h1\u003e\n\u003cp\u003eThis README file is explicitly dedicated to serve as the guide of use of the source code associated to Alejandro \u00c1lvarez Conejo\u0027s Final Bachelor Thesis in order to run the project in any local computer. Note that these instructions are described to be applicable to Linux-based systems.\u003c/p\u003e\n\u003cp\u003eThis repository contains three main folders, which are referred to in this annex as \u003ccode\u003emodules\u003c/code\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe \u003ccode\u003eploi\u003c/code\u003e folder contains all the code related to the execution of the main algorithm for PLOI. It includes the code related to the guiders, the planners (including Fast-Downward) and the GNN implementation, as well as the main scripts that allow the whole project to work as discussed in the main body of the thesis. Note that inside the \u003ccode\u003emodel\u003c/code\u003e folder the model and data set files for the conducted tests can be found.\u003c/li\u003e\n\u003cli\u003eThe \u003ccode\u003egenerators\u003c/code\u003e folder contains the scripts that were used to generate the training and test problems. Inside, there is a folder dedicated to each of the domains of study and all of their versions, including the scripts that were used for the first approach described in chapter 5.3 in the \u003ccode\u003eunconnectednoise\u003c/code\u003e subfolder.\u003c/li\u003e\n\u003cli\u003eThe \u003ccode\u003epddlgym\u003c/code\u003e folder, which contains all the code related to the PDDLGym module. It has to be modified in order to include the domains of study inside its existing library of domains and example problems. Note that the original code for this module was also modified in order to make it more flexible to several valid syntaxes in PDDL. These modifications are not related to the core algorithm and thus have not been thoroughly detailed but the code inside the \u003ccode\u003eparser\u003c/code\u003e file of this module can be compared to the original parser in PDDLGym\u2019s original repository in order to examine the specifics of these changes.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-projects-source-code-and-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-projects-source-code-and-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the project\u2019s source code and dependencies\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eInstall basic dependencies: cmake, g++, make, git, Python 3.6 or higher and pip, if these are not already installed.\u003c/li\u003e\n\u003cli\u003eClone the thesis\u2019 repository using the following command:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/alestarbucks/ofappdl\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eNavigate to the \u003ccode\u003eploi\u003c/code\u003e folder and install the requirements for that module:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip install -r requirements.txt\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eRepeat the same operation for the PDDLGym module.\n4.\tAdditionally, install wandb to avoid missing dependencies:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip install wandb\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eCreate a symbolic link called \u003ccode\u003evalidate\u003c/code\u003e on the machine\u2019s path, pointing to the VAL validator\u2019s binary:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo ln -s \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003epath_to_ofappdl\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/ofappdl/val/bin/Validate /usr/local/bin/validate\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIn order to check that the symbolic link is working as intended, try to enter the command \u003ccode\u003evalidate\u003c/code\u003e in the command line and expect an output showing the usage of the command.\n6.\tBuild the Fast-Downward planner by navigating to ploi/planning/fd and running the following command (it may take a few minutes):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./build.py\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"7\"\u003e\n\u003cli\u003eBefore the first run and every time that a new domain is added to the PDDLGym module, re-install it using the version that exists in the repository. From the root folder of the repository, run:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip install -e ./pddlgym\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis command is automatically included in the provided shell script that runs the project, so it is not explicitly needed to execute this step if such script is used.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-including-a-new-domain\" class=\"anchor\" aria-hidden=\"true\" href=\"#including-a-new-domain\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIncluding a new domain\u003c/h2\u003e\n\u003cp\u003eIn order to use PLOI for the purpose of applying it to other domains, a few changes must be made inside both the \u003ccode\u003epddlgym\u003c/code\u003e module and the \u003ccode\u003eploi\u003c/code\u003e module:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eFirst, add the domain. Navigate to \u003ccode\u003epddlgym/pddlgym/pddl\u003c/code\u003e and copy the domain file inside that folder.\u003c/li\u003e\n\u003cli\u003eLikewise, add the training and test problems in two separate folders called \u003ccode\u003e\u0026lt;domain name\u0026gt;\u003c/code\u003e and \u003ccode\u003e\u0026lt;domain name\u0026gt;_test\u003c/code\u003e, respectively, inside the aforementioned folder.\u003c/li\u003e\n\u003cli\u003eOpen the \u003ccode\u003e__init__.py\u003c/code\u003e file inside pddlgym/pddlgym. Locate the list of environments after line 34 (\u003ccode\u003efor env_name, kwargs in [\u003c/code\u003e) and add the following lines, completing with the same name as the domain that was added in 1:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e(\u003cspan class=\"pl-s\"\u003e\"\u0026lt;domain name\u0026gt;\"\u003c/span\u003e,\n {\u003cspan class=\"pl-s\"\u003e\"operators_as_actions\"\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\"dynamic_action_space\"\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e}\n)\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eThe domain has now been added to the PDDLGym module and now it must be included in the PLOI module. For this, open the \u003ccode\u003emain.py\u003c/code\u003e file inside the ploi module and locate the \u003ccode\u003epddlgym_env_names\u003c/code\u003e dictionary. Add an entry in which the key is the name to which the domain will be referred in the invoking command inside the PLOI module, and the value is the name of the domain inside the PDDLGym module that was used for steps 1 to 3. For clarity, using the same name for both is recommended.\u003c/li\u003e\n\u003cli\u003eIn case of using the provided shell script to run the project, set the \u003ccode\u003eDOMAIN_NAME\u003c/code\u003e variable to match the key of the previously added entry in the dictionary mentioned in step 4.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-the-project\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-the-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the project\u003c/h2\u003e\n\u003cp\u003eThe main command that triggers the start of the project\u2019s execution takes the following parameters:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--domain_name\u003c/code\u003e (required): The name of the domain of study to which the selected method is intended to be applied. It must be consistent and match the name chosen in the process detailed in the previous section.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--train_planner_name\u003c/code\u003e: The name of the planner used for training. In the experiments detailed in this report, this planner was fd-opt-lmcut (the optimal variant of FD).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--test_planner_name\u003c/code\u003e (required): The name of the planner used for testing. In the experiments detailed in this report, this planner was fd-lama-first (the satisficing variant of FD).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--guider_name\u003c/code\u003e (required): The name of the guider to be used, between gnn-bce-10 (GNN guider) or no-guidance (for standard planning or random score).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--num_seeds\u003c/code\u003e (required): The number of seeds which will be used to randomly initialize the model\u2019s weights before training. The learning phase will be repeated as many times as seeds are specified, and only the best model will be selected. Only one seed was used for the experiments in this thesis.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--num_train_problems\u003c/code\u003e (default to 0): The number of training problems to be considered.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--num_test_problems\u003c/code\u003e (required): The number of testing problems to be considered.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--do_incremental_planning\u003c/code\u003e (required): 1 or 0. Whether or not to use incremental planning, i.e., for PLOI or random scoring, whether it implements random score guidance or GNN-based guidance. For standard planning this flag must be set to 0.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--greedy_search\u003c/code\u003e (default to 0): 1 or 0. Indicates whether the greedy search algorithm is implemented in the phase of training data collection.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--timeout\u003c/code\u003e (required): Time in seconds that each test problem is dedicated before time running out and the problem being skipped. For this thesis, this time span was of 120 seconds.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--num_epochs\u003c/code\u003e (default 1001): Number of epochs that will constitute the learning phase.\nThe command is then executed as:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 main.py [flags]\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe provided shell script called \u003ccode\u003emyrun.sh\u003c/code\u003e inside the PLOI module serves as an easy way to control the experimental process. The selected domain and method must be uncommented from the file and the script will run the appropriate command to execute the required experimental run.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [],
- "updated_at": 1624570598.0
+ "topics": [
+ "coesra"
+ ],
+ "updated_at": 1610426323.0
},
{
"data_format": 2,
- "description": "Repository for \u0027Biased Exploration for Satisificing Heuristic Search\u0027 at ICAPS22",
+ "description": "Python wrapper for submitting jobs via bsub with the option to do so in a container environment.",
"filenames": [
- "downward/misc/releases/latest/Singularity",
- "downward/misc/releases/19.12/Singularity.19.12",
- "downward/misc/releases/20.06/Singularity.20.06",
- "downward/misc/releases/19.06/Singularity.19.06"
+ "singularity/Singularity"
],
- "full_name": "Kurorororo/biased-exploration",
+ "full_name": "funkelab/funlib.run",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-biased-exploration-for-satisficing-heuristic-search\" class=\"anchor\" aria-hidden=\"true\" href=\"#biased-exploration-for-satisficing-heuristic-search\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBiased Exploration for Satisficing Heuristic Search\u003c/h1\u003e\n\u003cp\u003eThis repository is for our ICAPS 2022 paper, \u003ca href=\"https://tidel.mie.utoronto.ca/pubs/biased-exploration-icaps22.pdf\" rel=\"nofollow\"\u003eBiased Exploration for Satisficing Heuristic Search\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-classical-planning\" class=\"anchor\" aria-hidden=\"true\" href=\"#classical-planning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eClassical Planning\u003c/h2\u003e\n\u003cp\u003eOur implementation is on top of \u003ca href=\"https://www.fast-downward.org/\" rel=\"nofollow\"\u003eFast Downward\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-hidden=\"true\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e downward\npython3 build.py\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eType-LAMA with Softmin-Type(h) using two type-based buckets\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 fast-downward.py domain.pddl problem.pddl --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true),transform=adapt_costs(one),pref=false)\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehff=ff(transform=adapt_costs(one))\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --search \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003elazy(alt([single(hff),single(hff,pref_only=true),softmin_type_based([hff,g]),single(hlm),single(hlm,pref_only=true),softmin_type_based([hlm,g])],boost=1000),preferred=[hff,hlm],cost_type=one,reopen_closed=false)\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eType-LAMA with Softmin-Type(h)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 fast-downward.py domain.pddl problem.pddl --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true),transform=adapt_costs(one),pref=false)\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehff=ff(transform=adapt_costs(one))\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --search \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003elazy(alt([single(hff),single(hff,pref_only=true),single(hlm),single(hlm,pref_only=true),softmin_type_based([hff,g])],boost=1000),preferred=[hff,hlm],cost_type=one,reopen_closed=false)\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eSoftmin-Type(h) with FF\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 fast-downward.py domain.pddl problem.pddl --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehff=ff(transform=adapt_costs(one))\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --search \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eeager(alt([single(hff), softmin_type_based([hff, g()], ignore_size=true)]), cost_type=one)\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eLin-Type(h) with FF\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 fast-downward.py domain.pddl problem.pddl --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehff=ff(transform=adapt_costs(one))\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --search \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eeager(alt([single(hff), linear_weighted_type_based([hff, g()])]), cost_type=one)\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e3-Type(h) with FF\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 fast-downward.py domain.pddl problem.pddl --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehff=ff(transform=adapt_costs(one))\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --search \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eeager(alt([single(hff), nth_type_based([hff, g()], n=3)]), cost_type=one)\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eType(h) with FF\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 fast-downward.py domain.pddl problem.pddl --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehff=ff(transform=adapt_costs(one))\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --search \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eeager(alt([single(hff), softmin_type_based([hff, g()], ignore_size=true, ignore_weights=true)]))\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-synthetic-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#synthetic-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSynthetic Data\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 random_digraph.py -o result.json\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-funlibrun\" class=\"anchor\" aria-hidden=\"true\" href=\"#funlibrun\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efunlib.run\u003c/h1\u003e\n\u003cp\u003ePython wrapper for submitting jobs via bsub with the option to do so in a container environment.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003emake install-full\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis creates a funlib.run config file ~/.funlib.run\nthat contains default parameters that\ncan be overwritten for each specific run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enum_gpus = 1\nmemory = 25600\nworking_directory = .\nsingularity = \"\"\nhost = \"\"\nqueue = \"normal\"\nenvironment = \"\"\nbatch = False\nmount_dirs = \"\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003eThere are three useful ways to use funlib.run:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDirect usage via command line arguments (overwrites config file defaults):\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython run.py -p \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003epython train.py\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e -c 5 -g 1 -q normal -s path-to-singularity-image\n\npython run_singularity.py -p \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003epython mknet.py\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e -s path-to-singularity-image\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eIndirect call via another script:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003efunlib\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003erun\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003erun\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003erun_singularity\u003c/span\u003e\n\n\u003cspan class=\"pl-en\"\u003erun\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ecommand\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"python train.py\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003enum_cpus\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e5\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003enum_gpus\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003equeue\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"normal\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eexecute\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e)\n\n\u003cspan class=\"pl-en\"\u003erun_singularity\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ecommand\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"python mknet.py\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003esingularity_image\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"path_to_image\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eexecute\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eCommand creation and subsequent call:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003efunlib\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003erun\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003erun\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003erun_singularity\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003esubprocess\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003echeck_call\u003c/span\u003e\n\n\u003cspan class=\"pl-s1\"\u003erun_command\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-en\"\u003erun\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ecommand\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"python train.py\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003enum_cpus\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e5\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003enum_gpus\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003equeue\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"normal\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eexecute\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eFalse\u003c/span\u003e)\n\n\u003cspan class=\"pl-en\"\u003echeck_call\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003erun_command\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eshell\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e)\n\n\u003cspan class=\"pl-s1\"\u003erun_singularity_command\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-en\"\u003erun_singularity\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ecommand\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"python mknet.py\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003esingularity_image\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"path_to_image\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eexecute\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eFalse\u003c/span\u003e)\n\n\u003cspan class=\"pl-en\"\u003echeck_call\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003erun_singularity_command\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eshell\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage-with-daisy\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage-with-daisy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage with Daisy\u003c/h2\u003e\n\u003cp\u003eWhen used with daisy.call do not expand the cmd to a string via setting expand=False:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s1\"\u003ecmd\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-en\"\u003erun\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ecommand\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003ebase_command\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003equeue\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003equeue\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003enum_gpus\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003enum_cpus\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003enum_cpus\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003esingularity_image\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003esingularity_container\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003emount_dirs\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003emount_dirs\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eexecute\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eFalse\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eexpand\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eFalse\u003c/span\u003e)\n\n\u003cspan class=\"pl-s1\"\u003edaisy\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003ecall\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ecmd\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003elog_out\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003elog_out\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003elog_err\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003elog_err\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1655238687.0
+ "updated_at": 1635345979.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "singularity/Singularity.BlendIt.def"
],
- "full_name": "shots47s/cbrain-plugins-mriqc",
+ "full_name": "housw/BlendIt",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1560259505.0
+ "updated_at": 1623019661.0
},
{
"data_format": 2,
- "description": "TRACULA Pipeline",
+ "description": "Nextflow workflow for finding conserved motifs intersecting with splice junctions",
"filenames": [
- "Singularity",
- "Singularity.v2.0.0",
- "Singularity.v2.1.1"
+ "Singularity"
],
- "full_name": "ccmvumc/TRACULA",
- "latest_release": "v2.1.1",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-tracula\" class=\"anchor\" aria-hidden=\"true\" href=\"#tracula\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTRACULA\u003c/h1\u003e\n\u003cp\u003eTRACULA Pipeline\u003c/p\u003e\n",
+ "full_name": "czbiohub/splicemotifs",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-nf-corebedtools-intersect\" class=\"anchor\" aria-hidden=\"true\" href=\"#nf-corebedtools-intersect\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enf-core/bedtools-intersect\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eIntersect lots of bed files with lots of other bed files\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nf-core/bedtools-intersect\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/811368779316af4f70b4dd35fc2c24cebcc4dc194cd63234e130384ec38ac89f/68747470733a2f2f7472617669732d63692e6f72672f6e662d636f72652f626564746f6f6c732d696e746572736563742e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nf-core/bedtools-intersect.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/67e0b26cefcc362513a5e2e7613f4638251b0ab5f029eba762be3d49a716c325/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33322e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.32.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/bedtools-intersect\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ca7e06b0d2929a9cba14da1892e90c6d4673a695806cb07ea82e89a1cbecef92/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f626564746f6f6c732d696e746572736563742e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/bedtools-intersect.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eThe nf-core/bedtools-intersect pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/local.md\"\u003eLocal installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eAdding your own system\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1621015992.0
+ "updated_at": 1564673719.0
},
{
"data_format": 2,
- "description": null,
+ "description": "RNA-seq analysis pipeline based on Snakemake",
"filenames": [
- "Selector/hclib/modules/bale_actor/singularity/Singularity.def"
+ "Singularity"
],
- "full_name": "youssefelmougy/tempSC",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-an-asynchronous-distributed-actor-based-approach-to-jaccard-similarity-for-genome-comparisons\" class=\"anchor\" aria-hidden=\"true\" href=\"#an-asynchronous-distributed-actor-based-approach-to-jaccard-similarity-for-genome-comparisons\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAn Asynchronous Distributed Actor-based Approach to Jaccard Similarity for Genome Comparisons\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-abstract\" class=\"anchor\" aria-hidden=\"true\" href=\"#abstract\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAbstract\u003c/h2\u003e\n\u003cp\u003eThe computation of genome similarity is important in computational biology applications, and is assessed by calculating Jaccard similarity of DNA sequencing sets. However, it\u2019s challenging to find solutions that can compute Jaccard similarity with the efficiency and scalability needed to fully utilize capabilities of modern HPC hardware. We introduce a novel algorithm for computing Jaccard similarity for genome comparisons, founded on an actor-based programming model. Our algorithm takes advantage of fine-grained asynchronous computations, distributed/shared memory model, and the Fine-grained Asynchronous Bulk-Synchronous Parallelism execution model. Our performance results on the NERSC Perlmutter supercomputer demonstrate that this approach scales to 16,384 cores, showing an average of 3.6\u00d7 and 5.5\u00d7 improvement in execution time and hardware counters compared to a state-of-the-art baseline. Moreover, we propose a novel compiler approach enabling programmers to optionally develop distributed code using the familiar BSP-based Partitioned Global Address Space model while automatically generating Actor-based code for improved performance.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation Instructions\u003c/h2\u003e\n\u003cp\u003eThe following installation instructions are for the Perlmutter supercomputer at the National Energy Research Scientific Computing Center (NERSC).\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-load-the-appropriate-modules-to-prepare-for-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#load-the-appropriate-modules-to-prepare-for-setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLoad the appropriate modules to prepare for setup\u003c/h3\u003e\n\u003cp\u003eThis loads the modules for both Selector and GenomeAtScale to prepare for setup.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esource scripts/modules.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-first-time-setup-and-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#first-time-setup-and-installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFirst time setup and installation\u003c/h3\u003e\n\u003cp\u003eThis sets up and installs both the Selector and GenomeAtScale applications and their backend runtimes.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esource scripts/setup.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Instructions\u003c/h2\u003e\n\u003cp\u003eThe following running instructions are for the Perlmutter supercomputer at the National Energy Research Scientific Computing Center (NERSC).\u003c/p\u003e\n\u003cp\u003eThe run script (\u003ccode\u003e/scripts/run.sh\u003c/code\u003e) has 4 options:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e source /scripts/run.sh [selector | ctf | both] [1...inf] [1...inf] [0...5]\n \n [selector | ctf | both] Selects which application (or both) to run\n [1...inf] Selects the number of cores for the run\n [1...inf] Selects the number of nodes for the run\n [0...5] Selects the set of HWPC to collect (0:none, 1:L1DA/L1DM/L1IA/L1IM, 2:L2DR/L2DM/L2IR/L2IM, 3:TLBDM/TLBIM, 4:BRINS/BRMSP, 5:INS/CYC)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote: when selecting the number of nodes for the run, please remember that GenomeAtScale uses 32 cores/node and Selector uses either 32 or 64 cores/node.\u003c/p\u003e\n\u003cp\u003eFor example, \u003ccode\u003esource /scripts/run.sh selector 1024 16 2\u003c/code\u003e will run an experiment for the Selector application using 1024 cores on 16 nodes, collecting L2 cache statistics.\u003c/p\u003e\n\u003cp\u003eThis will submit an sbatch file to the run queue at Perlmutter. At job completion, a \u003ccode\u003ejaccard_selector.out\u003c/code\u003e or \u003ccode\u003ejaccard_ctf.out\u003c/code\u003e or both will be created, showing the CMD output of the run. Moreover, if HWPC were collected, a directory with the structure \u003ccode\u003ejaccard*+pat+*\u003c/code\u003e will be created in \u003ccode\u003e/Selector/hclib/modules/bale_actor/jaccard-selector/\u003c/code\u003e or \u003ccode\u003e/GenomeAtScale/jaccard-ctf/\u003c/code\u003e or both. Please see the Output Interpretation section for instructions on how to understand these results.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-output-interpretation\" class=\"anchor\" aria-hidden=\"true\" href=\"#output-interpretation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput Interpretation\u003c/h2\u003e\n\u003cp\u003eThe following instructions are for understanding the results and relating them to the results found in the paper.\u003c/p\u003e\n\u003cp\u003eAt the completion of each run, there are two outputs that are created:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ejaccard_selector.out OR jaccard_ctf.out OR both Output file from submitted job\njaccard_selector+pat+* OR jaccard+pat+* OR both Output folder (in respective directory) from a CrayPat run if HWPC were collected\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003e*.out\u003c/code\u003e files contain the execution times of the run for the specific version. This result directly relates to Figure 2 (q) in the paper. An example output is shown below, where \u003ccode\u003e0.06150 seconds\u003c/code\u003e would be reported as the resulting value for the run.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e...\nRunning jaccard on 128 threads\nK-mer Matrix is 15000x5000 and has 15248 nonzeros.\n\nJaccard Similarity Matrix is 5000x5000 and has 12497374 values.\n\nRunning Jaccard Similarity K-mers (selector): \n 0.06150 seconds\n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003ejaccard*+pat+*\u003c/code\u003e folders contain information dumped by the CrayPat profiler (for more information see \u003ca href=\"https://docs.nersc.gov/tools/performance/craypat/\" rel=\"nofollow\"\u003ehttps://docs.nersc.gov/tools/performance/craypat/\u003c/a\u003e). To generate human-readable content, we run \u003ccode\u003epat_report\u003c/code\u003e on the respective directory. This will display information of interest for the specified HWPC in the run, and will directly relate to Figures 2 (a-p). An example output is shown below, where we can see the L1 cache statistics which would be reported as the resulting values for the run.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003euser@perlmutter: ~\u0026gt; pat_report $PWD/Selector/hclib/modules/bale_actor/jaccard-selector/jaccard_kmer_selector+pat+190420-8718377t\n CrayPat/X: Version 23.02.0 Revision a53634a72 01/11/23 17:17:09\n\n Number of PEs (MPI ranks): 128\n\n Numbers of PEs per Node: 64 PEs on each of 2 Nodes\n\n Numbers of Threads per PE: 2\n\n Number of Cores per Socket: 64\n\n Execution start time: Sun Mar 19 10:25:36 2023\n\n System name and speed: nid004836 2.552 GHz (nominal)\n\n AMD Milan CPU Family: 25 Model: 1 Stepping: 1\n\n Core Performance Boost: 256 PEs have CPB capability\n\n\n Current path to data file:\n /Selector/hclib/modules/bale_actor/jaccard-selector/jaccard_kmer_selector+pat+190420-8718377t (RTS, 2 data files)\n\n ...\n ...\n\n Processing step 7 of 10\n Notes for table 5:\n ...\n ...\n ==============================================================================\n USER / #1.selector_jaccard\n ------------------------------------------------------------------------------\n Time% 2.8% \n Time 0.060836 secs\n Imb. Time 0.000013 secs\n Imb. Time% 0.0% \n Calls 16.438 /sec 1.0 calls\n PAPI_L1_DCM 0.057G/sec 2,369,390.898 misses\n PAPI_L1_DCA 2.252G/sec 110,478,052.633 refs\n Average Time per Call 0.060836 secs\n CrayPat Overhead : Time 0.0% \n perf::PERF_COUNT_HW_CACHE_L1I:ACCESS 1,214,778 \n perf::PERF_COUNT_HW_CACHE_L1I:MISS 5,868\n ==============================================================================\n\n ...\n ...\n\n Hardware performance counter events:\n PAPI_L1_DCM Level 1 data cache misses\n PAPI_L1_DCA Level 1 data cache accesses\n perf::PERF_COUNT_HW_CACHE_L1I:ACCESS Undocumented counter\n perf::PERF_COUNT_HW_CACHE_L1I:MISS Undocumented counter\n\n Estimated minimum instrumentation overhead per call of a traced function,\n which was subtracted from the data shown in this report\n (for raw data, use the option: -s overhead=include):\n Time 0.114 microsecs\n\n Number of traced functions that were called: 7\n\n (To see the list, specify: -s traced_functions=show)\nuser@perlmutter: ~\u0026gt; \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-top-level-directory-organization\" class=\"anchor\" aria-hidden=\"true\" href=\"#top-level-directory-organization\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTop-Level Directory Organization\u003c/h2\u003e\n\u003cp\u003eThe folder structure of this repository is as follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e.\n\u251c\u2500\u2500 Selector # Contains files for the Actor-based runtime and the Jaccard k-mer Selector application\n\u2502 \u251c\u2500\u2500 hclib # Contains the HClib library and the Actor-based runtime\n\u2502 \u2502 \u251c\u2500\u2500 ... \n\u2502 \u2514\u2500\u2500 \u2500\u2500\u2500 modules \n\u2502 \u2502 \u2502 \u251c\u2500\u2500 ... \n\u2502 \u2514\u2500\u2500 \u2500\u2500\u2500 \u2500\u2500\u2500 bale_actor \n\u2502 \u2502 \u2502 \u2502 \u251c\u2500\u2500 ... \n\u2502 \u2514\u2500\u2500 \u2500\u2500\u2500 \u2500\u2500\u2500 \u2500\u2500\u2500 jaccard-selector # Contains the Jaccard k-mer Selector application files\n\u2502 \u2502 \u2502 \u2502 \u251c\u2500\u2500 jaccard_kmer_selector.cpp # Application code for Selector version of Jaccard similarity for genome comparisons\n\u2502 \u2502 \u2502 \u2502 \u251c\u2500\u2500 jaccard_kmer_locality_selector.cpp # Application code for locality-aware Selector version of Jaccard similarity for genome comparisons\n\u2502 \u2502 \u2502 \u2502 \u251c\u2500\u2500 kmer_matrix.mtx # K-mer matrix file for evaluation\n\u2502 \u2514\u2500\u2500 \u2500\u2500\u2500 \u2500\u2500\u2500 \u2500\u2500\u2500 ... \n\u251c\u2500\u2500 GenomeAtScale # Contains files for the CTF library and the GenomeAtScale application\n\u2502 \u251c\u2500\u2500 ctf # Contains the CTF library\n\u2502 \u2502 \u251c\u2500\u2500 ... \n\u2502 \u251c\u2500\u2500 jaccard-ctf # Contains the GenomeAtScale (jaccard-ctf) files\n\u2502 \u2502 \u251c\u2500\u2500 jaccard.cxx # Application code for GenomeAtScale\n\u2502 \u2502 \u251c\u2500\u2500 kmer_matrix.zip # K-mer matrix files for evaluation\n\u2502 \u2514\u2500\u2500 \u2500\u2500\u2500 ... \n\u251c\u2500\u2500 ActorCode_from_PGASOpenMP # Contains PGAS-OpenMP code and translated Actor-based code (Section 6)\n\u251c\u2500\u2500 scripts # Contains installation, running, and modules scripts and sample Perlmutter sbatch files\n\u2502 \u251c\u2500\u2500 setup.sh # Installation and build script for the system backends and application code for both the Selector application and the GenomeAtScale application\n\u2502 \u251c\u2500\u2500 run.sh # Run script for both the selector application and GenomeAtScale application\n\u2502 \u251c\u2500\u2500 modules.sh # Modules script to prepare for running experiments (only used following first time setup using setup.sh, has to be re-run everytime you login to a cluster/supercomputer)\n\u2502 \u2514\u2500\u2500 ... \n\u2514\u2500\u2500 README.md\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\u003cp\u003eIf you use our application in your work, please cite \u003ca href=\"\"\u003eour paper\u003c/a\u003e.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eYoussef Elmougy, Akhiro Hayashi, Jun Shirako, and Vivek Sarkar. 2023. An Asynchronous Distributed Actor-based Approach to Jaccard Similarity for Genome Comparisons.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eCorresponding author: Youssef Elmougy (\u003ca href=\"mailto:yelmougy3@gatech.edu\"\u003eyelmougy3@gatech.edu\u003c/a\u003e)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-acknowledgement\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgement\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgement\u003c/h2\u003e\n\u003cp\u003eThis research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Advanced Graphical Intelligence Logical Computing Environment (AGILE) research program, under Army Research Office (ARO) contract number W911NF22C0083. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government.\u003c/p\u003e\n",
+ "full_name": "tgac-vumc/RNA-seq",
+ "latest_release": "v1.0.0",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-rna-seq-analysis-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#rna-seq-analysis-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRNA-seq analysis pipeline\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://snakemake.bitbucket.io\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9e0a726dc69516d51067fd9fc2074a9f2dc9d44eb069ae05434a36f580af32f7/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f736e616b656d616b653d3d352e32352e302d627269676874677265656e2e7376673f7374796c653d666c61742d737175617265\" alt=\"Snakemake\" data-canonical-src=\"https://img.shields.io/badge/snakemake==5.25.0-brightgreen.svg?style=flat-square\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://singularity-hub.org/collections/3066\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c9d2afb620129b7ba0f4d918b77bfdb2b91c595cd6c6d013e950ee6e3c2bbc55/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d73696e67756c61726974792d2d6875622d7265642e737667\" alt=\"singularity-hub\" data-canonical-src=\"https://img.shields.io/badge/install%20with-singularity--hub-red.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e225eb3891735f81d51e8e6aa377429328cfd43656973ff807bffe9234bc28c7/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d636f6e64612d677265656e2e737667\" alt=\"miniconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-conda-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis is a \u003ca href=\"https://snakemake.readthedocs.io/en/stable/\" rel=\"nofollow\"\u003eSnakemake\u003c/a\u003e based pipeline for RNA-seq used in the \u003ca href=\"http://www.tgac.nl/\" rel=\"nofollow\"\u003eTumor Genome Core Analysis\u003c/a\u003e housed in the \u003ca href=\"https://www.vumc.com/departments/cancer-center-amsterdam.htm\" rel=\"nofollow\"\u003eCancer Center Amsterdam\u003c/a\u003e, at \u003ca href=\"https://www.vumc.nl/\" rel=\"nofollow\"\u003eAmsterdam UMC location VUmc\u003c/a\u003e and part of the Department of Pathology.\u003c/p\u003e\n\u003cp\u003eThe pipeline processes raw data from FastQ inputs (\u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003eFastQC\u003c/a\u003e, \u003ca href=\"http://www.usadellab.org/cms/?page=trimmomatic\" rel=\"nofollow\"\u003eTrimmomatic\u003c/a\u003e), aligns the reads (\u003ca href=\"https://github.com/alexdobin/STAR\"\u003eSTAR\u003c/a\u003e), generates gene counts (\u003ca href=\"http://bioinf.wehi.edu.au/featureCounts/\" rel=\"nofollow\"\u003efeatureCounts\u003c/a\u003e) and performs quality-control on the results (\u003ca href=\"https://multiqc.info/\" rel=\"nofollow\"\u003eMultiQC\u003c/a\u003e). Paired-end (PE) and single read (SR) are supported.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/tgac-vumc/RNA-seq/blob/master/DAG_RNAseq.png\"\u003e\u003cimg width=\"850\" height=\"483\" src=\"https://github.com/tgac-vumc/RNA-seq/raw/master/DAG_RNAseq.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eThe pipeline is preliminary used in linux environment with conda/singularity available.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-using-conda\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing Conda\u003c/h3\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-1-installing-miniconda-3\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-1-installing-miniconda-3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 1: Installing Miniconda 3\u003c/h3\u003e\n\u003cp\u003eFirst, please open a terminal or make sure you are logged into your Linux VM. Assuming that you have a 64-bit system, on Linux, download and install Miniconda 3 with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\nbash Miniconda3-latest-Linux-x86_64.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOn MacOS X, download and install with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecurl https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -o Miniconda3-latest-MacOSX-x86_64.sh\nbash Miniconda3-latest-MacOSX-x86_64.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-2-downloading-repository--creating-environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-2-downloading-repository--creating-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 2: Downloading repository \u0026amp; creating environment\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003emkdir snakemake_RNAseq\ncd snakemake_RNAseq\ngit clone https://github.com/tgac-vumc/RNA-seq\nconda env create --name RNAseq --file env.yaml\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-using-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing Singularity\u003c/h3\u003e\n\u003cp\u003eThe singularity container holds a virtual environment of CentOS 7 and it\u0027s available with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://tgac-vumc/RNA-seq\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-path-configuration--running-the-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#path-configuration--running-the-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePath Configuration \u0026amp; Running the pipeline\u003c/h2\u003e\n\u003cp\u003eBefore attempting to run the pipeline, please open \u003cem\u003econfig.yaml\u003c/em\u003e. Inside, you will encounter \u003cstrong\u003ePath Configuration\u003c/strong\u003e and \u003cstrong\u003eSoftware Options\u003c/strong\u003e.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eOn \u003cstrong\u003ePath configuration\u003c/strong\u003e, first, you have to choose whether your data is PE or SR and after change the fastq path to the path where your fastq files are actually stored.\u003c/li\u003e\n\u003cli\u003eOn \u003cstrong\u003eSoftware Options\u003c/strong\u003e, you will find several options that can be modified by the user. Please, have a look at it before running the pipeline.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eAll the software used in the pipeline is installed by conda or executed in a wrapper. We recommend to run the pipeline from a different location than the pipeline path, like the example below:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -s PATH_TO_PIPELINE/Snakefile --use-conda --cores=24\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWith --use-conda option, the pipeline will create environments to run rules based on \u003cem\u003eenv.yaml\u003c/em\u003e.\n\u003cstrong\u003eNote\u003c/strong\u003e the pipeline assumes that \u003cem\u003econfig.yaml\u003c/em\u003e is available at the location where the pipeline is executed.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1681587929.0
+ "updated_at": 1625231941.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Affinity Representing Instance Descriptors",
"filenames": [
- "Singularity.UbuntuMOE-xenial",
- "Singularity.YelpMOE"
+ "singularity/Singularity"
],
- "full_name": "aminnayebi/ContainerMOE",
+ "full_name": "funkelab/arid",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1554405415.0
+ "updated_at": 1562764827.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.v1.0.1",
- "Singularity.v1.0.0"
+ "Singularity.v2.2.0"
],
- "full_name": "bud42/RWML",
- "latest_release": "v1.0.1",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-rwml\" class=\"anchor\" aria-hidden=\"true\" href=\"#rwml\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRWML\u003c/h1\u003e\n",
+ "full_name": "baxpr/connprep",
+ "latest_release": "v2.2.0",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-connprep\" class=\"anchor\" aria-hidden=\"true\" href=\"#connprep\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econnprep\u003c/h1\u003e\n\u003cp\u003eProduce preprocessed fMRI images ready for connectivity analysis.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eDrop initial or final volumes as specified. Default: Analyze all volumes.\u003c/li\u003e\n\u003cli\u003eGet the TR (volume acquisition time) from pixdim[4] field of the Nifti header.\u003c/li\u003e\n\u003cli\u003eSlice timing correction. Default: none.\u003c/li\u003e\n\u003cli\u003eHead motion realignment (SPM12 two-stage) and production of mean fMRI.\u003c/li\u003e\n\u003cli\u003eRigid body coregistration of mean fMRI to T1 structural.\u003c/li\u003e\n\u003cli\u003eCompute volume quality metrics FD, DVARS.\u003c/li\u003e\n\u003cli\u003eReslice realigned fMRI to native space, and also warp to MNI space using CAT12 transform.\u003c/li\u003e\n\u003cli\u003eRemove confounds from the native and MNI space fMRIs by simultaneous regression. Defaults:\n\u003cul\u003e\n\u003cli\u003e0.01 - 0.10 Hz bandpass filter\u003c/li\u003e\n\u003cli\u003e6 estimated motion parameters and their first differences\u003c/li\u003e\n\u003cli\u003e6 principal components from the white matter + CSF compartment\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eRepeat the confound removal, additionally removing the mean signal of the gray matter compartment.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-inputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003enum_initial_vols_to_drop 0 Number of initial volumes to drop\nnum_vols_to_analyze all Total number of volumes to analyze\nbandpasslo_hz 0.01 Low edge of bandpass filter in Hz\nbandpasshi_hz 0.10 High edge of bandpass filter\nmot_PCs 6 Number of PCs of motion params to remove\nmotderiv_PCs 6 Same for motion derivatives\nwmcsf_PCs 6 Same for white matter/CSF compartment\nslorder none Slice timing correction, SPM12 nomenclature \nfmri_niigz fMRI images, 4D Nifti\nmt1_niigz T1 structural\ndeffwd_niigz Forward deformation of T1 to MNI\ngray_niigz Gray matter volume fraction\nwhite_niigz White matter volume fraction\ncsf_niigz CSF volume fraction\nproject XNAT project label\nsubject XNAT subject label\nsession XNAT session label\nscan XNAT scan label\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003econnprep.pdf Processing report\nrp_adfmri.txt Realignment parameters\nFD.txt Framewise displacement\nDVARS.txt Framewise noise\nfiltered_keepgm_noscrub_nadfmri.nii.gz Filtered data, native space, gray matter signal retained\nfiltered_keepgm_noscrub_wadfmri.nii.gz Filtered data, MNI space, gray matter signal retained\nfiltered_removegm_noscrub_nadfmri.nii.gz Filtered data, native space, gray matter signal removed\nfiltered_removegm_noscrub_wadfmri.nii.gz Filtered data, MNI space, gray matter signal removed\nmeanadfmri.nii.gz Mean fMRI, native space\nwmeanadfmri.nii.gz Mean fMRI, MNI space\nstats_keepgm_noscrub.txt Processing info when gray matter signal retained\nstats_removegm_noscrub.txt Processing info when gray matter signal removed\ngm_mask.nii.gz Native space gray matter mask\nwmcsf_mask.nii.gz Native space white matter/CSF mask\nconfounds_keepgm_noscrub.txt Confounds matrix when gray matter signal retained\nconfounds_removegm_noscrub.txt Confounds matrix when gray matter signal removed\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1612386680.0
+ "updated_at": 1595372367.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Nextflow workflow for assembling large, diploid, eukaryotic genomes (2 gigabases haploid size or bigger)",
"filenames": [
- "Singularity/Singularity.v1.0"
+ "Singularity"
],
- "full_name": "Monia234/IARC-RNA-seq",
+ "full_name": "czbiohub/nf-large-assembly",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-nf-rna-fusions\" class=\"anchor\" aria-hidden=\"true\" href=\"#nf-rna-fusions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enf-rna-fusions\u003c/h1\u003e\n\u003cp\u003eA nextflow pipeline to call somatic rna fusions\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-czbiohubnf-large-assembly\" class=\"anchor\" aria-hidden=\"true\" href=\"#czbiohubnf-large-assembly\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eczbiohub/nf-large-assembly\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eAssemble large diploid eukaryotic genomes (2 gigabases haploid size or bigger)\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/czbiohub/nf-large-assembly\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8d428dc306e8c519b4952b8239ab3eace188860f1c5dfabe1a4059c42c067a1e/68747470733a2f2f7472617669732d63692e6f72672f637a62696f6875622f6e662d6c617267652d617373656d626c792e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/czbiohub/nf-large-assembly.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/67e0b26cefcc362513a5e2e7613f4638251b0ab5f029eba762be3d49a716c325/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33322e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.32.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/nf-large-assembly\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/767f13dee3d8a1039b493b285b876f4ef216154825cb6401031b09e8d959b916/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f6e662d6c617267652d617373656d626c792e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/nf-large-assembly.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eThe czbiohub/nf-large-assembly pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/local.md\"\u003eLocal installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eAdding your own system\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1644245608.0
+ "updated_at": 1556036860.0
},
{
"data_format": 2,
- "description": "GNU Midnight Commander is a visual file manager, licensed under GNU General Public License and therefore qualifies as Free Software.",
+ "description": "test of nf-core create",
"filenames": [
- "4.8.28/Singularity",
- "4.8.25/Singularity",
- "4.8.26/Singularity",
- "4.8.29/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-mc",
- "latest_release": "v4.8.29",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-mc/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-mc/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-mc/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-mc/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/20f9b62353e523d3ab71a141bef01e7c6c9b266b5d21ca495fec6bcf5149a691/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6d63\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/20f9b62353e523d3ab71a141bef01e7c6c9b266b5d21ca495fec6bcf5149a691/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6d63\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-mc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/197b32bc5699c413928a8dc98e7fc7ba78e4232c6d05026a53625842fe00f633/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6d63\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/197b32bc5699c413928a8dc98e7fc7ba78e4232c6d05026a53625842fe00f633/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6d63\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-mc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/d972290aeff699a37c55f27a4af658b413ceba5d7bc7697189e546d9cc80fa22/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6d63\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d972290aeff699a37c55f27a4af658b413ceba5d7bc7697189e546d9cc80fa22/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6d63\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-mc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/3210b070126fcd60c3222ffb78e07d55b8223b3eb1c9f4e7e8cb2b33fb54931c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6d63\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3210b070126fcd60c3222ffb78e07d55b8223b3eb1c9f4e7e8cb2b33fb54931c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6d63\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-mc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-mc\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-mc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-mc\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/07885183f92acdf4c924ec41b91e32bf00dd0b1f3f820c477551a32ec8dfad98/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f392f39622f4d69646e696768745f436f6d6d616e6465725f342e372e302e395f6f6e5f5562756e74755f31312e30342e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/07885183f92acdf4c924ec41b91e32bf00dd0b1f3f820c477551a32ec8dfad98/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f392f39622f4d69646e696768745f436f6d6d616e6465725f342e372e302e395f6f6e5f5562756e74755f31312e30342e706e67\" alt=\"Image\" data-canonical-src=\"https://upload.wikimedia.org/wikipedia/commons/9/9b/Midnight_Commander_4.7.0.9_on_Ubuntu_11.04.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/mc\"\u003emc\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003emc\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/mc/4.8.29\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/mc\u003c/code\u003e as \u003ccode\u003e4.8.29.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2023 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "czbiohub/nf-core-test",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-nf-coretest\" class=\"anchor\" aria-hidden=\"true\" href=\"#nf-coretest\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enf-core/test\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003etest of nf-core\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nf-core/test\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5656ec3ca80ae8775904761dfc7b47e3357d325de15a8d013edd4a0093630611/68747470733a2f2f7472617669732d63692e6f72672f6e662d636f72652f746573742e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nf-core/test.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/67e0b26cefcc362513a5e2e7613f4638251b0ab5f029eba762be3d49a716c325/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33322e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.32.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/test\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8a74c7ad053a343b2d1b30e0ef0f86afe191999cfc823635773862aefd840fd2/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f746573742e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/test.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eThe nf-core/test pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/local.md\"\u003eLocal installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eAdding your own system\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1676698058.0
+ "topics": [],
+ "updated_at": 1554245021.0
},
{
"data_format": 2,
- "description": "Set of Singularity HPC containers",
+ "description": null,
"filenames": [
- "fenics/Singularity"
+ "Singularity"
],
- "full_name": "kma/HPC-Container",
+ "full_name": "ResearchIT/SimNIBS",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-hpc-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#hpc-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHPC-Container\u003c/h1\u003e\n\u003cp\u003eSet of Singularity containers\u003c/p\u003e\n",
+ "readme": "\u003ch3\u003e\u003ca id=\"user-content-simnibs-singularity-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#simnibs-singularity-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSimNIBS singularity recipe\u003c/h3\u003e\n\u003cp\u003eBefore building, place the SimNIBS source tarball in the /tmp directory. (recipe version 2.1.1)\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1530297750.0
+ "updated_at": 1546981375.0
},
{
"data_format": 2,
- "description": "w2l",
+ "description": "Batch Connect - Example Shiny App that runs on OSC OnDemand",
"filenames": [
- "Singularity",
- "Singularity.gpu"
+ "ext/Singularity"
],
- "full_name": "klm122/w2l",
+ "full_name": "OSC/bc_osc_example_shiny",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-w2l\" class=\"anchor\" aria-hidden=\"true\" href=\"#w2l\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ew2l\u003c/h1\u003e\n\u003cp\u003ew2l\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-wip-batch-connect---osc-example-shiny-app\" class=\"anchor\" aria-hidden=\"true\" href=\"#wip-batch-connect---osc-example-shiny-app\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e[WIP] Batch Connect - OSC Example Shiny App\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a8152a2780451d58acdca1e79b03f771d6e84ae12087e6e7a824b6759b715dc1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6f73635f6578616d706c655f7368696e792e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a8152a2780451d58acdca1e79b03f771d6e84ae12087e6e7a824b6759b715dc1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6f73635f6578616d706c655f7368696e792e737667\" alt=\"GitHub Release\" data-canonical-src=\"https://img.shields.io/github/release/osc/bc_osc_example_shiny.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA Batch Connect app designed for OSC OnDemand that launches a Shiny App within\nan Owens batch job.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eThis Batch Connect app requires the following software be installed on the\n\u003cstrong\u003ecompute nodes\u003c/strong\u003e that the batch job is intended to run on (\u003cstrong\u003eNOT\u003c/strong\u003e the\nOnDemand node):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://shiny.rstudio.com/\" rel=\"nofollow\"\u003eShiny\u003c/a\u003e x.y.z+\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.tacc.utexas.edu/research-development/tacc-projects/lmod\" rel=\"nofollow\"\u003eLmod\u003c/a\u003e 6.0.1+ or any other \u003ccode\u003emodule purge\u003c/code\u003e and \u003ccode\u003emodule load \u0026lt;modules\u0026gt;\u003c/code\u003e based\nCLI used to load appropriate environments within the batch job\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install\" class=\"anchor\" aria-hidden=\"true\" href=\"#install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h2\u003e\n\u003cp\u003eUse git to clone this app and checkout the desired branch/version you want to\nuse:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003escl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git clone \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003erepo\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git checkout \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etag/branch\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou will not need to do anything beyond this as all necessary assets are\ninstalled. You will also not need to restart this app as it isn\u0027t a Passenger\napp.\u003c/p\u003e\n\u003cp\u003eTo update the app you would:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git fetch\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git checkout \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etag/branch\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAgain, you do not need to restart the app as it isn\u0027t a Passenger app.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eFork it ( \u003ca href=\"https://github.com/OSC/bc_osc_example_shiny/fork\"\u003ehttps://github.com/OSC/bc_osc_example_shiny/fork\u003c/a\u003e )\u003c/li\u003e\n\u003cli\u003eCreate your feature branch (\u003ccode\u003egit checkout -b my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCommit your changes (\u003ccode\u003egit commit -am \u0027Add some feature\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003ePush to the branch (\u003ccode\u003egit push origin my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a new Pull Request\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 11,
"topics": [],
- "updated_at": 1645905985.0
+ "updated_at": 1527005209.0
},
{
"data_format": 2,
- "description": "IMPICA is notoriously difficult to build, so I made this so it would build if you have docker and mount for my research use.",
+ "description": null,
"filenames": [
- "singularity/Singularity"
+ "IMAGES/methylator/Singularity",
+ "WGBS/DMT_analysis/Singularity_Methylator.def"
],
- "full_name": "utcs-scea/Impica-Builder",
+ "full_name": "kirsho/DASH",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-dash-dazl-scarlet-hygromycin\" class=\"anchor\" aria-hidden=\"true\" href=\"#dash-dazl-scarlet-hygromycin\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDASH (DAzl-Scarlet-Hygromycin)\u003c/h1\u003e\n\u003cp\u003eDescription of WGBS analysis for the \u003ca href=\"https://www.biorxiv.org/content/10.1101/2021.05.03.442415v1\" rel=\"nofollow\"\u003epreprint\u003c/a\u003e \u003cstrong\u003e\"A genome-wide knock-out screen for actors of epigenetic silencing reveals new regulators of germline genes and 2-cell like cell state\"\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eDefossez \u003ca href=\"http://parisepigenetics.com/dmdeg/\" rel=\"nofollow\"\u003elab\u003c/a\u003e, Epigenetics \u0026amp; cell fate \u003ca href=\"http://parisepigenetics.com/fr/\" rel=\"nofollow\"\u003eUnit\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1636746170.0
+ "updated_at": 1658847725.0
},
{
"data_format": 2,
- "description": "code_aster containers",
+ "description": null,
"filenames": [
- "Singularity.common.default",
- "Singularity.salome_meca.cwa",
- "Singularity.seq.default",
- "Singularity.mpi.asterxx",
- "Singularity.mpi.default"
+ "haz/docker/fd/Singularity"
],
- "full_name": "codeaster/container",
+ "full_name": "FlorianPommerening/core-challenge-2022-solvers",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-containers-for-code_aster\" class=\"anchor\" aria-hidden=\"true\" href=\"#containers-for-code_aster\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainers for code_aster\u003c/h1\u003e\n\u003cp\u003eThis repository provides some recipes to build containers for\n\u003ca href=\"https://www.code-aster.org/\" rel=\"nofollow\"\u003ecode_aster\u003c/a\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003efor \u003ca href=\"https://docs.docker.com/\" rel=\"nofollow\"\u003edocker\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003efor \u003ca href=\"https://www.sylabs.io/docs/\" rel=\"nofollow\"\u003esingularity\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eIt should be considered as a work in progress.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eFor example, additional work is needed to execute a containerized version of\ncode_aster from an existing\n\u003ca href=\"https://www.code-aster.org/spip.php?article302\" rel=\"nofollow\"\u003esalome_meca\u003c/a\u003e\ninstallation.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eThe repository contains recipes to build a sequential and a parallel\nversion for the development branch (\u003ccode\u003edefault\u003c/code\u003e) which refers to the \u003ccode\u003elatest\u003c/code\u003e\ntag on docker images.\nThe code_aster version is named \u003ccode\u003eunstable\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-list-of-code_aster-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#list-of-code_aster-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eList of code_aster images\u003c/h2\u003e\n\u003cp\u003eExecutable images:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ecodeastersolver/codeaster-seq\u003c/code\u003e: Sequential version of code_aster.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ecodeastersolver/codeaster-mpi\u003c/code\u003e: Parallel version of code_aster.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIntermediate layer with prerequisites:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ecodeastersolver/codeaster-common\u003c/code\u003e: Prerequisites for the sequential and\nparallel versions.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis image can also be used to build your own development version.\u003c/p\u003e\n\u003cp\u003eSingularity recipes are simple \u003cem\u003econversions\u003c/em\u003e that use the Docker images as\nbootstrap.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tags\" class=\"anchor\" aria-hidden=\"true\" href=\"#tags\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTags\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003elatest\u003c/code\u003e: It refers to the last head of the \u003ccode\u003edefault\u003c/code\u003e branch.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cem\u003eNo more for the moment...\u003c/em\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild images\u003c/h2\u003e\n\u003cp\u003eSee available targets:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emake\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen choose your target between \u003ccode\u003eseq\u003c/code\u003e and \u003ccode\u003empi\u003c/code\u003e, or \u003ccode\u003ebuild\u003c/code\u003e to build all:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emake build\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eEnvironment files added in the \u003ccode\u003eenv.d\u003c/code\u003e directory are sourced before calling\n\u003ccode\u003edocker\u003c/code\u003e/\u003ccode\u003esingularity\u003c/code\u003e builder. It may be useful for example to configure the\nenvironment to pass a proxy.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-testing\" class=\"anchor\" aria-hidden=\"true\" href=\"#testing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-a-shell-using-the-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-a-shell-using-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning a shell using the image:\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run --rm -it codeastersolver/codeaster-seq:latest\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-a-testcase-using-testcase-files-embedded-in-the-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-a-testcase-using-testcase-files-embedded-in-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning a testcase using testcase files embedded in the image:\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run --rm codeastersolver/codeaster-seq:latest as_run --nodebug_stderr --test zzzz100f\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-a-testcase-using-files-out-of-the-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-a-testcase-using-files-out-of-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning a testcase using files out of the image:\u003c/h3\u003e\n\u003cp\u003eIn this example the data files are extracted from the \u003cem\u003eimage\u003c/em\u003e.\nIn the real life, these files are for example created from salome_meca.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e create a temporary container to access the testcase files\u003c/span\u003e\ndocker run --name astercp codeastersolver/codeaster-seq:latest\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e copy files\u003c/span\u003e\nmkdir workdir\ndocker cp astercp:/scif/apps/aster/share/aster/tests/sslv155a.comm workdir/\ndocker cp astercp:/scif/apps/aster/share/aster/tests/sslv155a.mmed workdir/\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e clean the temporary container\u003c/span\u003e\ndocker rm astercp\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e create the export file\u003c/span\u003e\ndocker run --rm codeastersolver/codeaster-seq:latest as_run --get_export sslv155a --nodebug_stderr \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \\\n sed -e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003es#/scif/apps/aster/share/aster/tests#.#g\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \\\n \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e workdir/export\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf the \u003ccode\u003eexport\u003c/code\u003e file is manually created, the version can be addressed just\nby name (\u003ccode\u003eP version unstable\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eNow, run a code_aster container using local files:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run --rm --volume \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003epwd\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e/workdir:/aster codeastersolver/codeaster-seq:latest \\\n as_run --nodebug_stderr /aster/export\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-validation\" class=\"anchor\" aria-hidden=\"true\" href=\"#validation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eValidation\u003c/h3\u003e\n\u003cp\u003eTo limit the size of the binary images only few testcases are available in the\ninstallation directory.\nThe 3800+ testcases can be extracted from the source tree from the\n\u003ca href=\"https://bitbucket.org/code_aster/codeaster-src\" rel=\"nofollow\"\u003eBitbucket repository\u003c/a\u003e\n(see below).\nChecking all the 3800 testcases takes about 15-20h cpu.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eSome prerequisites are not yet available within the container\n(miss3d, ecrevisse, etc.). So, all the tests that are using these tools\nare currently in failure.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eTo execute the existing testcases, use:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run -t codeastersolver/codeaster-seq:latest run_testcases unstable\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e to copy the result files\u003c/span\u003e\ndocker cp -a \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eCONTAINER\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e:/home/aster/resutest \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eDESTINATION\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUse the following commands to download all the 3800+ testcases from the\n\u003ca href=\"https://bitbucket.org/code_aster/codeaster-src\" rel=\"nofollow\"\u003eBitbucket repository\u003c/a\u003e and\nexecute them.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e download the testcases out of the container\u003c/span\u003e\nwget https://bitbucket.org/code_aster/codeaster-src/get/default.tar.gz\ntar xzf default.tar.gz\nmv code_aster-codeaster-src-\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e/astest \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e rm -rf code_aster-codeaster-src-\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e mount \u0027astest\u0027 and run testcases in the container\u003c/span\u003e\ndocker run -t --volume \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003epwd\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e/astest:/home/aster/tests codeastersolver/codeaster-seq:latest \\\n run_testcases --tests=/home/aster/tests unstable\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1575303352.0
+ "updated_at": 1663181341.0
},
{
"data_format": 2,
- "description": "Diamond aligner Docker image",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "biocorecrg/diamond_docker",
+ "full_name": "smfsamir/transformer-gnn",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-diamond-docker-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#diamond-docker-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDiamond Docker images\u003c/h1\u003e\n\u003cp\u003eDiamond aligner Docker image\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://hub.docker.com/r/biocorecrg/diamond/builds/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/50336b251df61eac194e273e6751254dd983989ce3ad82bd5782d5367ad795c7/68747470733a2f2f646f636b65726275696c646261646765732e7175656c6c746578742e65752f7374617475732e7376673f6f7267616e697a6174696f6e3d62696f636f7265637267267265706f7369746f72793d6469616d6f6e64\" alt=\"Docker Build Status\" data-canonical-src=\"https://dockerbuildbadges.quelltext.eu/status.svg?organization=biocorecrg\u0026amp;repository=diamond\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-gnn-fast\" class=\"anchor\" aria-hidden=\"true\" href=\"#gnn-fast\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGNN-Fast\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-hidden=\"true\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting started\u003c/h2\u003e\n\u003cp\u003eTo make it easy for you to get started with GitLab, here\u0027s a list of recommended next steps.\u003c/p\u003e\n\u003cp\u003eAlready a pro? Just edit this README.md and make it your own. Want to make it easy? \u003ca href=\"#editing-this-readme\"\u003eUse the template at the bottom\u003c/a\u003e!\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-add-your-files\" class=\"anchor\" aria-hidden=\"true\" href=\"#add-your-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAdd your files\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-file\" rel=\"nofollow\"\u003eCreate\u003c/a\u003e or \u003ca href=\"https://docs.gitlab.com/ee/user/project/repository/web_editor.html#upload-a-file\" rel=\"nofollow\"\u003eupload\u003c/a\u003e files\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/gitlab-basics/add-file.html#add-a-file-using-the-command-line\" rel=\"nofollow\"\u003eAdd files using the command line\u003c/a\u003e or push an existing Git repository with the following command:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003ecd existing_repo\ngit remote add origin https://gitlab.com/smfsamir/gnn-fast.git\ngit branch -M main\ngit push -uf origin main\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-integrate-with-your-tools\" class=\"anchor\" aria-hidden=\"true\" href=\"#integrate-with-your-tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntegrate with your tools\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://gitlab.com/smfsamir/gnn-fast/-/settings/integrations\" rel=\"nofollow\"\u003eSet up project integrations\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-collaborate-with-your-team\" class=\"anchor\" aria-hidden=\"true\" href=\"#collaborate-with-your-team\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCollaborate with your team\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/project/members/\" rel=\"nofollow\"\u003eInvite team members and collaborators\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html\" rel=\"nofollow\"\u003eCreate a new merge request\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically\" rel=\"nofollow\"\u003eAutomatically close issues from merge requests\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/project/merge_requests/approvals/\" rel=\"nofollow\"\u003eEnable merge request approvals\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/project/merge_requests/merge_when_pipeline_succeeds.html\" rel=\"nofollow\"\u003eAutomatically merge when pipeline succeeds\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-test-and-deploy\" class=\"anchor\" aria-hidden=\"true\" href=\"#test-and-deploy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest and Deploy\u003c/h2\u003e\n\u003cp\u003eUse the built-in continuous integration in GitLab.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/ci/quick_start/index.html\" rel=\"nofollow\"\u003eGet started with GitLab CI/CD\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/application_security/sast/\" rel=\"nofollow\"\u003eAnalyze your code for known vulnerabilities with Static Application Security Testing(SAST)\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/topics/autodevops/requirements.html\" rel=\"nofollow\"\u003eDeploy to Kubernetes, Amazon EC2, or Amazon ECS using Auto Deploy\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/clusters/agent/\" rel=\"nofollow\"\u003eUse pull-based deployments for improved Kubernetes management\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/ci/environments/protected_environments.html\" rel=\"nofollow\"\u003eSet up protected environments\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003ch1\u003e\u003ca id=\"user-content-editing-this-readme\" class=\"anchor\" aria-hidden=\"true\" href=\"#editing-this-readme\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEditing this README\u003c/h1\u003e\n\u003cp\u003eWhen you\u0027re ready to make this README your own, just edit this file and use the handy template below (or feel free to structure it however you want - this is just a starting point!). Thank you to \u003ca href=\"https://www.makeareadme.com/\" rel=\"nofollow\"\u003emakeareadme.com\u003c/a\u003e for this template.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-suggestions-for-a-good-readme\" class=\"anchor\" aria-hidden=\"true\" href=\"#suggestions-for-a-good-readme\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSuggestions for a good README\u003c/h2\u003e\n\u003cp\u003eEvery project is different, so consider which of these sections apply to yours. The sections used in the template are suggestions for most open source projects. Also keep in mind that while a README can be too long and detailed, too long is better than too short. If you think your README is too long, consider utilizing another form of documentation rather than cutting out information.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-name\" class=\"anchor\" aria-hidden=\"true\" href=\"#name\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eName\u003c/h2\u003e\n\u003cp\u003eChoose a self-explaining name for your project.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-description\" class=\"anchor\" aria-hidden=\"true\" href=\"#description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h2\u003e\n\u003cp\u003eLet people know what your project can do specifically. Provide context and add a link to any reference visitors might be unfamiliar with. A list of Features or a Background subsection can also be added here. If there are alternatives to your project, this is a good place to list differentiating factors.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-badges\" class=\"anchor\" aria-hidden=\"true\" href=\"#badges\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBadges\u003c/h2\u003e\n\u003cp\u003eOn some READMEs, you may see small images that convey metadata, such as whether or not all the tests are passing for the project. You can use Shields to add some to your README. Many services also have instructions for adding a badge.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-visuals\" class=\"anchor\" aria-hidden=\"true\" href=\"#visuals\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVisuals\u003c/h2\u003e\n\u003cp\u003eDepending on what you are making, it can be a good idea to include screenshots or even a video (you\u0027ll frequently see GIFs rather than actual videos). Tools like ttygif can help, but check out Asciinema for a more sophisticated method.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eWithin a particular ecosystem, there may be a common way of installing things, such as using Yarn, NuGet, or Homebrew. However, consider the possibility that whoever is reading your README is a novice and would like more guidance. Listing specific steps helps remove ambiguity and gets people to using your project as quickly as possible. If it only runs in a specific context like a particular programming language version or operating system or has dependencies that have to be installed manually, also add a Requirements subsection.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003eUse examples liberally, and show the expected output if you can. It\u0027s helpful to have inline the smallest example of usage that you can demonstrate, while providing links to more sophisticated examples if they are too long to reasonably include in the README.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-support\" class=\"anchor\" aria-hidden=\"true\" href=\"#support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSupport\u003c/h2\u003e\n\u003cp\u003eTell people where they can go to for help. It can be any combination of an issue tracker, a chat room, an email address, etc.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-roadmap\" class=\"anchor\" aria-hidden=\"true\" href=\"#roadmap\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRoadmap\u003c/h2\u003e\n\u003cp\u003eIf you have ideas for releases in the future, it is a good idea to list them in the README.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003cp\u003eState if you are open to contributions and what your requirements are for accepting them.\u003c/p\u003e\n\u003cp\u003eFor people who want to make changes to your project, it\u0027s helpful to have some documentation on how to get started. Perhaps there is a script that they should run or some environment variables that they need to set. Make these steps explicit. These instructions could also be useful to your future self.\u003c/p\u003e\n\u003cp\u003eYou can also document commands to lint the code or run tests. These steps help to ensure high code quality and reduce the likelihood that the changes inadvertently break something. Having instructions for running tests is especially helpful if it requires external setup, such as starting a Selenium server for testing in a browser.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-authors-and-acknowledgment\" class=\"anchor\" aria-hidden=\"true\" href=\"#authors-and-acknowledgment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors and acknowledgment\u003c/h2\u003e\n\u003cp\u003eShow your appreciation to those who have contributed to the project.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eFor open source projects, say how it is licensed.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-project-status\" class=\"anchor\" aria-hidden=\"true\" href=\"#project-status\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eProject status\u003c/h2\u003e\n\u003cp\u003eIf you have run out of energy or time for your project, put a note at the top of the README saying that development has slowed down or stopped completely. Someone may choose to fork your project or volunteer to step in as a maintainer or owner, allowing your project to keep going. You can also make an explicit request for maintainers.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1567699875.0
+ "updated_at": 1663265237.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.ubuntu",
- "Singularity.cell2location",
- "Singularity.irods.4.2.8"
+ "Singularity"
],
- "full_name": "prete/singularity-recipes",
+ "full_name": "rses-singularity/caffe-cpu",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-caffe-cpu\" class=\"anchor\" aria-hidden=\"true\" href=\"#caffe-cpu\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaffe (CPU)\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eSee \u003ca href=\"build.sh\"\u003ebuild.sh\u003c/a\u003e for info on how to build and run the image\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e file for the definition of the image, including\n\u003cul\u003e\n\u003cli\u003eThe (Docker) image it is based on\u003c/li\u003e\n\u003cli\u003eWhat OS packages are installed\u003c/li\u003e\n\u003cli\u003eWhat environment variables are set\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e project website for more info on Singularity in general and detailed documentaiton.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1606249308.0
+ "updated_at": 1542376576.0
},
{
"data_format": 2,
- "description": "Singularity container with Spack",
+ "description": "Singularity file for Cornell-MOE based off git clone https://github.com/wujian16/Cornell-MOE.git",
"filenames": [
- "Singularity.spack-root",
- "Singularity.spack-lmod",
- "Singularity.spack-bowtie",
- "Singularity.spack-rhel",
- "Singularity.spackbase",
- "Singularity.spack-fastqvalidator",
- "Singularity.spack"
+ "Singularity"
],
- "full_name": "baberlevi/spack-singularity",
+ "full_name": "belledon/moe-sing",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-work-in-progress\" class=\"anchor\" aria-hidden=\"true\" href=\"#work-in-progress\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ework in progress\u003c/h1\u003e\n\u003cp\u003eattempt to build a base singularity image with spack that can be used as the bootstrap for\nother singularity images that would perform the spack install of a particular package\u003c/p\u003e\n\u003cp\u003ecurrently having an issue with stage directory for spack attempting to write to\nthe immutable squashfs\u003c/p\u003e\n\u003cp\u003eas expected, the child container will happily install during %post since it can write\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-moe-sing\" class=\"anchor\" aria-hidden=\"true\" href=\"#moe-sing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emoe-sing\u003c/h1\u003e\n\u003cp\u003eSingularity file for Cornell-MOE based off git clone \u003ca href=\"https://github.com/wujian16/Cornell-MOE.git\"\u003ehttps://github.com/wujian16/Cornell-MOE.git\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eTested on Singularity 2.4\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1521583740.0
+ "updated_at": 1516305918.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.ExplainAI2",
- "Singularity.ubuntu_tf",
- "Singularity.physio",
- "Singularity.centos_torch3",
- "Singularity.centos_tf2",
- "Singularity.ubuntu_pre",
- "Singularity.centos_tf",
- "Singularity.centos_torch2",
- "Singularity.ExplainAI",
- "Singularity.Spektral",
- "Singularity.ubuntu_torch",
- "Singularity.torch_mmf",
- "Singularity.centos_torch",
- "Singularity.jax",
- "Singularity.mac_local",
- "Singularity.pytorch",
- "Singularity.torch"
+ "src/pddlstream/downward/misc/releases/20.06/Singularity.20.06",
+ "src/pddlstream/downward/misc/releases/19.12/Singularity.19.12",
+ "src/pddlstream/downward/misc/releases/19.06/Singularity.19.06",
+ "src/pddlstream/downward/misc/releases/latest/Singularity"
],
- "full_name": "cyang31/containers",
+ "full_name": "Gaoyuan-Liu/Non-prehensile-Augmented-TAMP",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-non-prehensile-augmented-tamp\" class=\"anchor\" aria-hidden=\"true\" href=\"#non-prehensile-augmented-tamp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNon-Prehensile Augmented TAMP\u003c/h1\u003e\n\u003cp\u003eRobotic manipulation in cluttered environments requires synergistic planning among prehensile and non-prehensile actions. Previous work on sampling-based Task and Motion Planning (TAMP) algorithms, e.g. PDDLStream, provide a fast and generalizable solution for multi-modal manipulation. However, they are likely to fail in cluttered scenarios where no collision-free grasping approaches can be sampled without preliminary manipulations.\nTo extend the ability of sampling-based algorithms, we integrate a vision-based Reinforcement Learning (RL) non-prehensile procedure, namely pusher, the pushing actions generated by pusher can eliminate interlocked situations and make the problem solvable. Also, the sampling-based algorithm evaluates the pushing actions by providing rewards in the training process, thus the pusher can learn to avoid situations containing irreversible failures.\nThe proposed hybrid planning method is validated on a cluttered bin picking problem and implemented in both simulation and real world. Results show that the pusher can effectively improve the success ratio of the previous sampling-based algorithm, while the sampling-based algorithm can help the pusher to learn pushing skills.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/Gaoyuan-Liu/Non-prehensile-Augmented-TAMP/blob/main/pics/intro.png\"\u003e\u003cimg src=\"https://github.com/Gaoyuan-Liu/Non-prehensile-Augmented-TAMP/raw/main/pics/intro.png\" width=\"400\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-video\" class=\"anchor\" aria-hidden=\"true\" href=\"#video\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVideo\u003c/h2\u003e\n\u003cp\u003eThe method introduction and experiments:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://youtu.be/brXAh9BH_Qw\" rel=\"nofollow\"\u003e\u003cimg src=\"https://github.com/Gaoyuan-Liu/Non-prehensile-Augmented-TAMP/raw/main/pics/youtube.png\" alt=\"Watch the video\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install\" class=\"anchor\" aria-hidden=\"true\" href=\"#install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eClone this repo:\n\u003cpre\u003e\u003ccode\u003egit clone git@github.com:Gaoyuan-Liu/panda_tamp.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003eComplie DownwardFast:\n\u003cpre\u003e\u003ccode\u003ecd panda_tamp/src/pddlstream\n\n./downward/build.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003eCompile IKFast:\n\u003cpre\u003e\u003ccode\u003ecd panda_tamp/src/pddlstream/examples/pybullet/utils/\n\npybullet-planning$ (cd pybullet_tools/ikfast/franka_panda; python setup.py)\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eNvigate terminal to \u003ccode\u003esrc/panda_pddlstream\u003c/code\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda activate pddlstream\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun panda_pddl in pybullet:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython -m examples.pybullet.panda.run_pybullet -n 3 -v\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun panda_pddl with Franka:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eroslaunch panda_control franka_following.launch \n\npython -m examples.pybullet.panda.run -n 3 -v\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-trainning\" class=\"anchor\" aria-hidden=\"true\" href=\"#trainning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTrainning\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eRun moveit motion planner, go to to \u003ccode\u003ews_moveit\u003c/code\u003e workspace\n\u003cpre\u003e\u003ccode\u003esource devel/setup.bash\n\nroslaunch panda_moveit_config demo.launch\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003eRun trainning scripts, go to \u003ccode\u003esrc/pddlstream/examples/pybullet/panda\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-ros-interpretation\" class=\"anchor\" aria-hidden=\"true\" href=\"#ros-interpretation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eROS Interpretation\u003c/h2\u003e\n\u003cp\u003eAfter PDDLStream solve the problem, the \u003ccode\u003esolution\u003c/code\u003e after post process returns a list \u003ccode\u003ecommands\u003c/code\u003e, the elements in the list are classes defined in \u003ccode\u003epanda_primitives\u003c/code\u003e. Therefore, the main pourpose of ROS interpretation is to interpret the \u003ccode\u003epanda_primitives\u003c/code\u003e to ROS commands.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-debug\" class=\"anchor\" aria-hidden=\"true\" href=\"#debug\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDebug\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-general\" class=\"anchor\" aria-hidden=\"true\" href=\"#general\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGeneral\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003eThe defaut top grasping pose is in \u003ccode\u003epanda_utils.py\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\u003ca id=\"user-content-moveit-cartesian-path\" class=\"anchor\" aria-hidden=\"true\" href=\"#moveit-cartesian-path\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMoveit cartesian path\u003c/h3\u003e\n\u003cp\u003eThe \u003ca href=\"https://thomasweng.com/moveit_cartesian_jump_threshold/\" rel=\"nofollow\"\u003epost\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-pybullet-camera\" class=\"anchor\" aria-hidden=\"true\" href=\"#pybullet-camera\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePybullet camera\u003c/h3\u003e\n\u003cp\u003eThe \u003ca href=\"https://towardsdatascience.com/simulate-images-for-ml-in-pybullet-the-quick-easy-way-859035b2c9dd\" rel=\"nofollow\"\u003epost\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-test\" class=\"anchor\" aria-hidden=\"true\" href=\"#test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest\u003c/h3\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1632080282.0
+ "updated_at": 1662124624.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "2.0.3/Singularity"
+ "install/Singularity"
],
- "full_name": "yh549848/singularity-blastxmlparser",
+ "full_name": "BrennanGambling/mindboogle",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1645547232.0
+ "updated_at": 1662174191.0
},
{
"data_format": 2,
@@ -7612,172 +7244,157 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "snystrom/bioconductor_docker_meme",
+ "full_name": "thanhtlx/linevd2",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-bioconductor-docker-with-meme-suite\" class=\"anchor\" aria-hidden=\"true\" href=\"#bioconductor-docker-with-meme-suite\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBioconductor Docker with MEME Suite\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4716\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eBuilds the bioconductor docker container with the \u003ca href=\"meme-suite.org\"\u003ememe-suite\u003c/a\u003e v5.1.1, using python3.7.1\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNOTE:\u003c/strong\u003e Currently only builds from the \u003ccode\u003ebioconductor_docker:devel\u003c/code\u003e container. In the future, I will support stable releases.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003cp\u003eBuild the Docker image from Dockerfile:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build -t snystrom/bioconductor_docker_meme\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePull from Dockerhub:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull snystrom/bioconductor_docker_meme:devel\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -e PASSWORD=\u0026lt;password\u0026gt; -p 8787:8787 -v \u0026lt;drive/to/mount\u0026gt;:/mnt/\u0026lt;location\u0026gt; snystrom/bioconductor_docker_meme\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhile running, go to \u003ca href=\"https://localhost:8787/\" rel=\"nofollow\"\u003ehttps://localhost:8787/\u003c/a\u003e and login with \u003ccode\u003erstudio:\u0026lt;password\u0026gt;\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTo enter the container at the commandline while running:\n\u003cstrong\u003eNOTE:\u003c/strong\u003e this will enter as \u003ccode\u003eroot\u003c/code\u003e not the \u003ccode\u003erstudio\u003c/code\u003e user\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -it snystrom/bioconductor_docker_meme /bin/bash\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-linevd\" class=\"anchor\" aria-hidden=\"true\" href=\"#linevd\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLineVD\u003c/h1\u003e\n\u003cp\u003eThis repository provides the code for \u003ca href=\"https://arxiv.org/pdf/2203.05181.pdf\" rel=\"nofollow\"\u003eLineVD: Statement-level Vulnerability Detection using Graph Neural Networks\u003c/a\u003e. The environment can be built using \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e, or by following / following the commands in the Singularity file. To start, clone the repository and navigate to the root directory.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-directory-structure\" class=\"anchor\" aria-hidden=\"true\" href=\"#directory-structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDirectory Structure\u003c/h2\u003e\n\u003cpre lang=\"dir\"\u003e\u003ccode\u003e(main module) \u251c\u2500\u2500 sastvd\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 codebert\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 helpers\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 ivdetect\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 linevd\n \u2502\u00a0\u00a0 \u2514\u2500\u2500 scripts\n \u251c\u2500\u2500 storage\n(memoization) \u2502\u00a0\u00a0 \u251c\u2500\u2500 cache\n(raw data) \u2502\u00a0\u00a0 \u251c\u2500\u2500 external\n(csvs) \u2502\u00a0\u00a0 \u251c\u2500\u2500 outputs\n(models) \u2502\u00a0\u00a0 \u2514\u2500\u2500 processed\n(tests) \u2514\u2500\u2500 tests\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-training-linevd-from-scratch\" class=\"anchor\" aria-hidden=\"true\" href=\"#training-linevd-from-scratch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTraining LineVD from scratch\u003c/h2\u003e\n\u003cp\u003eBuild and initialise environment and download dataset\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build main.sif Singularity\nsingularity run main.sif -p initialise\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFeature extraction (Increase NUM_JOBS if running on HPC for speed up)\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e main.sif python sastvd/scripts/prepare.py\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e main.sif python sastvd/scripts/getgraphs.py\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTrain model (Training takes around 1-2 hours using GTX 3060)\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e --nv main.sif python sastvd/scripts/train_best.py\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e -H /mnt/hdd/thuonglc/linevd/ --nv --env TUNE_DISABLE_STRICT_METRIC_CHECKING=1 main.sif python sastvd/scripts/train_best.py 16\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1618423035.0
+ "updated_at": 1663593135.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for busco (https://gitlab.com/ezlab/busco)",
+ "description": "Collection of numerical and analytical tools for the solution of nonlinear matter-wave equation in Bose Einstein Condensates (BEC)",
"filenames": [
- "Singularity.4.1.4",
- "Singularity",
- "Singularity.4.0.2",
- "Singularity.4.1.0",
- "Singularity.4.0.0",
- "Singularity.4.0.6",
- "Singularity.4.0.4",
- "Singularity.5.1.2",
- "Singularity.4.0.1",
- "Singularity.4.0.5",
- "Singularity.4.1.1",
- "Singularity.5.2.2",
- "Singularity.4.1.2"
+ "Singularity"
],
- "full_name": "powerPlant/busco-srf",
+ "full_name": "lorenzifrancesco/soliton-BEC",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for the BUSCO tool for Benchmarking Universal Single-Copy Ortholog assessment\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-soliton-bec\" class=\"anchor\" aria-hidden=\"true\" href=\"#soliton-bec\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esoliton-BEC\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/AshtonSBradley/FourierGPE.jl/actions\"\u003e\u003cimg src=\"https://github.com/AshtonSBradley/FourierGPE.jl/workflows/CI/badge.svg\" alt=\"Build Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://codecov.io/gh/AshtonSBradley/FourierGPE.jl\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7fe44b2d2126e2133bbad1e9b91a108b030bc57ca00f6e0e1c3b636a0811ab8e/68747470733a2f2f636f6465636f762e696f2f67682f417368746f6e53427261646c65792f466f75726965724750452e6a6c2f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"Coverage\" data-canonical-src=\"https://codecov.io/gh/AshtonSBradley/FourierGPE.jl/branch/master/graph/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eCollection of numerical and analytical tools for the solution of nonlinear matter-wave equation in Bose Einstein Condensates (BEC)\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1629171754.0
+ "updated_at": 1648714594.0
},
{
"data_format": 2,
- "description": "Containers for game AI",
+ "description": "Mostly command-line utilities for automating cumbersome processes",
"filenames": [
- "Singularity"
+ "Singularity.def"
],
- "full_name": "sbutcher/game-container",
+ "full_name": "mfromano/utils",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-game-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#game-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egame-container\u003c/h1\u003e\n\u003cp\u003eContainers for game AI\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-utils\" class=\"anchor\" aria-hidden=\"true\" href=\"#utils\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eutils\u003c/h1\u003e\n\u003cp\u003eMostly command-line utilities for automating cumbersome processes\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1547647598.0
+ "updated_at": 1671898445.0
},
{
"data_format": 2,
- "description": "Diffusion NLP project",
+ "description": null,
"filenames": [
- "Singularity",
- "Diffusion-LM/Singularity"
+ "Testes_ate_21_10_2022/facies_classification_benchmark/my_benchmark-box/.singularity.d/Singularity",
+ "Testes_ate_21_10_2022/thurbridi/my_thurbridi/.singularity.d/Singularity"
],
- "full_name": "mathematiguy/diffusion-nlp",
+ "full_name": "elis-essantos/sdumontHome",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-diffusion-nlp\" class=\"anchor\" aria-hidden=\"true\" href=\"#diffusion-nlp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ediffusion-nlp\u003c/h1\u003e\n\u003cp\u003eThis project attempts to reproduce the paper \"Diffusion-LM Improves Controllable Text Generation\" by Li, X. L., Thickstun, J., Gulrajani, I., Liang, P., \u0026amp; Hashimoto, T. B. (2022), available here: \u003ca href=\"https://arxiv.org/pdf/2205.14217.pdf\" rel=\"nofollow\"\u003ehttps://arxiv.org/pdf/2205.14217.pdf\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-directory-structure\" class=\"anchor\" aria-hidden=\"true\" href=\"#directory-structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDirectory structure\u003c/h2\u003e\n\u003cp\u003eThere are 3 significant subfolders of this repository:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ediffusion_lm\u003c/code\u003e - contains code towards a from scratch reproduction of the authors\u0027 work. It includes a \u003ccode\u003emodel.py\u003c/code\u003e model definition file in PyTorch, which implements the forward pass of the model as closely as I could figure out from the paper and also by looking through their source code. It is supported by \u003ccode\u003enotebooks\u003c/code\u003e, which contains my investigations of the model design, and also \u003ccode\u003etests\u003c/code\u003e where I implemented some tests for testing the model code.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eDiffusion-LM\u003c/code\u003e - contains a fork of the original source code for the paper at \u003ca href=\"https://github.com/XiangLi1999/Diffusion-LM\"\u003ehttps://github.com/XiangLi1999/Diffusion-LM\u003c/a\u003e. There I have containerized the project so it can be run reliably on other computers. The full details of the fork are documented there.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eMLRC-2022-Report\u003c/code\u003e - is a latex project containing a report written by myself for the completion of a Class Project for Comp-599 Natural Language Understanding at McGill University, fall 2022 semester.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-how-to-get-started\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-get-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to get started\u003c/h1\u003e\n\u003cp\u003eThe only software dependencies for this repository is GNU Make and Singularity. On Ubuntu systems, make can be installed simply via \u003ccode\u003esudo apt install make\u003c/code\u003e. Instructions for how to install Singularity are available here: \u003ca href=\"https://docs.sylabs.io/guides/3.5/user-guide/quick_start.html\" rel=\"nofollow\"\u003ehttps://docs.sylabs.io/guides/3.5/user-guide/quick_start.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eIf you are interested in running \u003ccode\u003ediffusion_lm\u003c/code\u003e, then you will need to build the singularity container in this directory.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Build the singularity container for this project\nmake container\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen once you have done that, you can start a local Jupyterlab server via:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Start local jupyterlab server\nmake jupyter\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe server will be listening at \u003ccode\u003elocalhost:8888\u003c/code\u003e and has a default password of \"jupyter\".\u003c/p\u003e\n\u003cp\u003eYou can also run other \u003ccode\u003emake\u003c/code\u003e commands, such as:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Build the latex report at MLRC-2022-Report/article.pdf\nmake report\n\n# Run pytest unit tests\nmake test\n\n# Attempt to train the diffusion_lm model (not working)\nmake train\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis is everything you would need to know to get around this repository. Building the singularity container does take time, so if you insist on not using it you can still install the python requirements for the project with \u003ccode\u003epip install -r requirements.txt\u003c/code\u003e, although it is recommended to do this inside of a python environment of some sort.\u003c/p\u003e\n\u003cp\u003eYou can still run the make commands outside of the singularity container with \u003ccode\u003emake \u0026lt;command\u0026gt; RUN=\u003c/code\u003e - this suppresses the \u003ccode\u003esingularity exec\u003c/code\u003e command, but this will only work if you have the dependencies installed on your machine.\u003c/p\u003e\n",
+ "readme": "",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1671466565.0
+ "updated_at": 1671998603.0
},
{
"data_format": 2,
- "description": "Master Thesis for Robotics Master",
+ "description": "HTCondor execution point setup and configuration for using HTCondor file transfer to synchronize a directory between two hosts",
"filenames": [
- "vision/src/vision/pythonClasses/deeplab/SingularityResNest",
- "vision/src/vision/pythonClasses/darknet/Singularity"
+ "Singularity.def"
],
- "full_name": "GuiMateus/thesis",
+ "full_name": "brianaydemir/htcondor_file_transfer_ep",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-3d-volumetric-and-semantic-environment-reconstruction\" class=\"anchor\" aria-hidden=\"true\" href=\"#3d-volumetric-and-semantic-environment-reconstruction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3D Volumetric and Semantic Environment Reconstruction\u003c/h1\u003e\n\u003cp\u003eThis repo contains the materials used in the Master\u0027s Thesis from Guilherme Mateus at Aalborg University. The pipeline contained in it creates 3D semantical and volumetric reconstructions of environments using Deep Learning. This implementation is done using ROS melodic as a framework of communication.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\".images/gitImage.png\"\u003e\u003cimg src=\".images/gitImage.png\" alt=\"alt text\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA small description of each package is given below:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eontologies\u003c/strong\u003e: Handles object ontonlogies.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eservice\u003c/strong\u003e: Consists of services files for system communication.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003erealsense-ros\u003c/strong\u003e: Gathers data using realsense camera.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003euserInterface\u003c/strong\u003e: Provides a GUI for users to control the system.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003evision\u003c/strong\u003e: Handles screw detection using YOLOv4 and DeepLabV3+.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-hidden=\"true\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003cp\u003eThe system contains YOLOv4 and DeepLabV3+. However, YOLOv4 still has to be manually built under \u003ccode\u003ecatkin_ws/src/release/vision/src/vision/pythonClasses/darknet.py\u003c/code\u003e, for that follow the instructions on the \u003ca href=\"https://github.com/AlexeyAB/darknet\"\u003erepo\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eOBS: To build darknet you need to get a CMake version bigger than 3.12, which is not compatible with ROS. Do not uninstall the current version installed in the system, instead use a local CMake version.\u003c/p\u003e\n\u003cp\u003eIn case of problems with DeepLabV3+, follow the \u003ca href=\"https://github.com/jfzhang95/pytorch-deeplab-xception\"\u003erepo\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003ePre-trained models and configs can be found by using \u003ccode\u003e./setup.sh\u003c/code\u003e. The weights are stored under \u003ccode\u003e/opt/vision/\u003c/code\u003e, therefore to use the weights models the script needs root permissions. Alternatively the weights paths must be manually changed in \u003ccode\u003ecatkin_ws/src/release/vision/src/vision/pythonClasses/detectObjects.py\u003c/code\u003e and \u003ccode\u003ecatkin_ws/src/release/vision/src/vision/pythonClasses/segmentationInit.py\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eIf it still doesn\u0027t work, I don\u0027t know mate, ask my parrot, he might know it better than me or something like that.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h3\u003e\n\u003cp\u003eThis requires a system setup with ROS. It is recommended to use \u003ccode\u003eUbuntu 18.04\u003c/code\u003e with \u003ccode\u003eROS Melodic\u003c/code\u003e.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-creating-workspace-and-cloning-the-repository\" class=\"anchor\" aria-hidden=\"true\" href=\"#creating-workspace-and-cloning-the-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreating workspace and cloning the repository\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e create a catkin workspace\u003c/span\u003e\nmkdir -p catkin_ws/src \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e catkin_ws/src\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Clone the repository from bitbucket.\u003c/span\u003e\ngit clone --recursive https://guimateus@bitbucket.org/guimateus/thesis.git\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e install dependencies\u003c/span\u003e\nsudo apt update -qq \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e ..\nrosdep update\nrosdep install --from-paths \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e --ignore-src --rosdistro melodic -y\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003einstall python catkin tools. Needed for catkin build command\u003c/span\u003e\nsudo apt-get install python-catkin-tools\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e build the workspace\u003c/span\u003e\ncatkin build\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-installing-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling dependencies\u003c/h3\u003e\n\u003cp\u003eGo to Intel Realsense website and \u003ca href=\"https://www.intelrealsense.com/developers/\" rel=\"nofollow\"\u003einstall the SDK for Linux\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-launching-the-system\" class=\"anchor\" aria-hidden=\"true\" href=\"#launching-the-system\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLaunching The System\u003c/h3\u003e\n\u003cp\u003eTo launch system type the following to a terminal window.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eroslaunch launch_nodes main.launch\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-reconstructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-reconstructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning reconstructions\u003c/h2\u003e\n\u003cp\u003eThis is the user interface of the system\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\".images/GUI3D.png\"\u003e\u003cimg src=\".images/GUI3D.png\" alt=\"alt text\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFirst use offline reconstruction to detect static objects in the environment. Then, to perform an online reconstruction create ontological relations using the tab of the interface shown below, and select an object of interest under the \"Object Selection\" tab.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\".images/ontologiesTabNew.png\"\u003e\u003cimg src=\".images/ontologiesTabNew.png\" alt=\"alt text\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe results can be visualized in \"Object Detection\", \"Object Segmentation\", and \"3D Reconstruction\".\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-future-works\" class=\"anchor\" aria-hidden=\"true\" href=\"#future-works\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFuture works\u003c/h2\u003e\n\u003cp\u003eSome possible future works to increase quality of the repo:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eSegmentation change\u003c/strong\u003e: The qualitative results of the segmentation network are not satisfying, therefore it must be changed.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eSimplifying setup\u003c/strong\u003e: Setup can be a bit convoluted, so maybe I can make it a bit easier.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eImprove ontologies framework\u003c/strong\u003e: Could be cool to have some extra functionalities in ontologies and maybe use a stochastic method.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eImprove addition of new objects\u003c/strong\u003e: Kind of hard to add custom objects to system right now, have to make the training framework easier.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eParrots\u003c/strong\u003e: This git repo critically lacks parrots.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\".images/sam.jpg\"\u003e\u003cimg src=\".images/sam.jpg\" alt=\"alt text\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-authors\" class=\"anchor\" aria-hidden=\"true\" href=\"#authors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003e[Guilherme Mateus Martins]\u003c/strong\u003e - \u003ca href=\"mailto:gmateu16@student.aau.dk\"\u003eemail\u003c/a\u003e - \u003ca href=\"https://bitbucket.org/%7Bba72de4e-9cb6-4e73-89db-24d4d8f12fe7%7D/\" rel=\"nofollow\"\u003eGit Profile\u003c/a\u003e - \u003ca href=\"https://www.linkedin.com/in/guilherme-mateus-346b58b5/\" rel=\"nofollow\"\u003eLinkedIn\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-acknowledgements\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgements\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eAalborg university\u003c/li\u003e\n\u003cli\u003eDimitris Chrysostomou\u003c/li\u003e\n\u003cli\u003eSome other cool people\u003c/li\u003e\n\u003cli\u003eMy computer for being a real trooper and not dying after this repo made it crash several times\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1641547757.0
+ "updated_at": 1658411822.0
},
{
"data_format": 2,
- "description": "Magic-BLAST is a tool for mapping large next-generation RNA or DNA sequencing runs against a whole genome or transcriptome.",
+ "description": "openjdk:8 based release of CANU, a PacBio assembler",
"filenames": [
- "2.10.8/Singularity",
- "2.10.9/Singularity",
- "2.11.0/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-sra-toolkit",
- "latest_release": "v2.11.0",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-sra-toolkit/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-sra-toolkit/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-sra-toolkit/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-sra-toolkit/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/31e3cb09d81e6fb61f9191e5ce617c6808d24498265a7a0c0f5b82303b18306d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/31e3cb09d81e6fb61f9191e5ce617c6808d24498265a7a0c0f5b82303b18306d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-sra-toolkit\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/829e9dae945b99db01be6a45bd00195069d38a971309a3673faa34fcc622e860/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/829e9dae945b99db01be6a45bd00195069d38a971309a3673faa34fcc622e860/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-sra-toolkit\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/ab0f5d5286d9642bb3b041fca0d27ceef55d8806e1f752c89fb699f6f7794e03/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ab0f5d5286d9642bb3b041fca0d27ceef55d8806e1f752c89fb699f6f7794e03/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-sra-toolkit\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/753805fc4e3f4b095bd00c1a208047377e71c91f500b66d8730044e6298c3a8d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/753805fc4e3f4b095bd00c1a208047377e71c91f500b66d8730044e6298c3a8d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-sra-toolkit\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-sra-toolkit\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-sra-toolkit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-sra-toolkit\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/ncbi/sra-tools\"\u003esra-toolkit\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003esra-toolkit\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/sra-toolkit/2.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/sra-toolkit\u003c/code\u003e as \u003ccode\u003e 2.11.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "sghignone/canu",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-canu\" class=\"anchor\" aria-hidden=\"true\" href=\"#canu\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecanu\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [
- "singularity",
- "bioinformatics"
+ "container",
+ "docker-container",
+ "dockerfile",
+ "dna-assembly",
+ "pacbio"
],
- "updated_at": 1629226848.0
+ "updated_at": 1662449005.0
},
{
"data_format": 2,
- "description": "Singularity recipes for ALCF-Theta",
+ "description": "WaveUnet for Saraga Dataset (Indian Carnatic Music)",
"filenames": [
- "singularity_recipes/Singularity.py36",
- "singularity_recipes/Singularity.hello_world",
- "singularity_recipes/Singularity.mpich33"
+ "Singularity"
],
- "full_name": "Romit-Maulik/Theta_Containers",
+ "full_name": "its-rajesh/WaveUnet",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-containers-on-theta\" class=\"anchor\" aria-hidden=\"true\" href=\"#containers-on-theta\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainers on Theta\u003c/h1\u003e\n\u003cp\u003eSingularity recipes for ALCF-Theta\u003c/p\u003e\n\u003cp\u003eSingularity hub is discontinued. One must build on dockerhub and pull on ALCF.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-waveunet-implementation-for-saraga-dataset-indian-carnatic-music\" class=\"anchor\" aria-hidden=\"true\" href=\"#waveunet-implementation-for-saraga-dataset-indian-carnatic-music\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWaveUnet Implementation for Saraga Dataset (Indian Carnatic Music)\u003c/h1\u003e\n\u003cp\u003eActual Network: \u003ca href=\"https://github.com/f90/Wave-U-Net-Pytorch\"\u003ehttps://github.com/f90/Wave-U-Net-Pytorch\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSaraga Carnatic Dataset:\u003c/p\u003e\n\u003cp\u003eIt has five stems: Mixed, Vocal, Violin, Mrindangam Right and Mrindangam Left.\nConverting Mrindangam left and right into single audio file (mrindangam)\nExpecting Four stem output namely: Vocal, violin, mrindangam and others\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eWith Bleeding (Actual Dataset)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSDR:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eWithout Bleeding (Bleeding Removed Dataset)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSDR:\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1619207429.0
+ "updated_at": 1665079190.0
},
{
"data_format": 2,
- "description": null,
+ "description": "a Singularity recipe with openmpi 2.1.1 on base centos 7 to run on the Cineca clusters x86_64 based",
"filenames": [
"Singularity"
],
- "full_name": "Freakey17/CP4TP",
+ "full_name": "simarocchi/openmpi_centos7_x86_64",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-openmpi_centos7_x86_64\" class=\"anchor\" aria-hidden=\"true\" href=\"#openmpi_centos7_x86_64\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eopenmpi_centos7_x86_64\u003c/h1\u003e\n\u003cp\u003ea Singularity recipe with openmpi 2.1.1 on base centos 7 to run on the Cineca clusters x86_64 based\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1557407944.0
+ "updated_at": 1605098444.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity",
- "Singularity.test2"
+ "diamond-with-ncbidb/Singularity"
],
- "full_name": "rsm5139/singularity",
+ "full_name": "AsagaKosho/containers",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1551716847.0
+ "updated_at": 1652842419.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "mshow34jt/analysis_container",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-analysis_container\" class=\"anchor\" aria-hidden=\"true\" href=\"#analysis_container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eanalysis_container\u003c/h1\u003e\n\u003cp\u003egit clone \u003ca href=\"http://github.com/mshow34jt/analysis_container\"\u003ehttp://github.com/mshow34jt/analysis_container\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003ecd analysis_container\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-with-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-with-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eto build with Docker\u003c/h3\u003e\n\u003cp\u003edocker build -t analysis:v1 .\u003c/p\u003e\n\u003cp\u003eexecute with:\u003cbr\u003e\ndocker run --rm -d --network host --name analysis -v $PWD/log:/data/log -v $PWD/ldms:/data/ldms -v $PWD/slurm:/data/slurm -v /etc/localtime:/etc/localtime analysis:v1\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-proceed-with-singularity-as-an-alternative\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-proceed-with-singularity-as-an-alternative\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo proceed with Singularity as an alternative:\u003c/h3\u003e\n\u003cp\u003edocker save analysis:v1 \u0026gt;analysisv1.tar\u003c/p\u003e\n\u003cp\u003esingularity build analysis.sif docker-archive://analysisv1.tar\u003c/p\u003e\n\u003cp\u003ealternatively build without docker requires root or fakeroot setup\nsteps to build image (sif file) and start instance (example):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eIn the wscont/ folder, as the container owner user, run ./dock2sing.sh (generates Singularity.def)\u003c/li\u003e\n\u003cli\u003eBe sure to setup \"fakeroot\" requirements first if not there already.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://sylabs.io/guides/3.5/user-guide/cli/singularity_config_fakeroot.html\" rel=\"nofollow\"\u003ehttps://sylabs.io/guides/3.5/user-guide/cli/singularity_config_fakeroot.html\u003c/a\u003e\nsingularity build --fakeroot analysis.sif Singularity.def\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-move-the-file-to-the-desired-host-and-there-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#move-the-file-to-the-desired-host-and-there-run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMove the file to the desired host, and there run\u2026\u003c/h3\u003e\n\u003cp\u003esingularity instance start --bind /storage/nvme0n1/ncsa/eclipse/store_function_csv/spool/:/data/ldms --bind /storage/slurm/eclipse/spool-bitzer/job_detail:/data/slurm --bind /etc/localtime:/etc/localtime --bind /storage/nvme0n1/ncsa/log:/data/log analysis.sif analysis\u003c/p\u003e\n\u003cp\u003eThe first time the container is started, you will need to prime the database with test data and metadata for the metrics\u003cbr\u003e\nI do it interactively with singularity shell instance://analysis\u003cbr\u003e\ncat tests.csv |./inserttests.pl\u003cbr\u003e\ncat eclipse_md.csv |./insertmd.pl\nexit\u003c/p\u003e\n\u003cp\u003esingularity run instance://analysis /jobmon/bin/init.sh \u0026amp;\u003c/p\u003e\n",
+ "full_name": "jt2gtwci/HessianScreeningRule",
+ "latest_release": "v0.2.0",
+ "readme": "\n\u003ch1\u003e\u003ca id=\"user-content-code-for-the-hessian-screening-rule\" class=\"anchor\" aria-hidden=\"true\" href=\"#code-for-the-hessian-screening-rule\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCode for the Hessian Screening Rule\u003c/h1\u003e\n\n\n\u003ch2\u003e\u003ca id=\"user-content-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResults\u003c/h2\u003e\n\u003cp\u003eThe results from the simulations are stored in the \u003ca href=\"results/\"\u003eresults\nfolder\u003c/a\u003e. The figures and tables in the paper, generated from\nthese results, are stored in \u003ca href=\"figures/\"\u003e\u003ccode\u003efigures/\u003c/code\u003e\u003c/a\u003e and\n\u003ca href=\"tables/\"\u003e\u003ccode\u003etables/\u003c/code\u003e\u003c/a\u003e respectively.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-reproducing-the-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#reproducing-the-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReproducing the Results\u003c/h2\u003e\n\u003cp\u003eTo reproduce the results, we recommend you use the singularity\ncontainer. See the release section on GitHub and download the container\nfrom there. To run an experiment from the singularity container, call\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run --no-home --bind results:/project/results container.sif \u0026lt;script\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere \u003ccode\u003e\u0026lt;script\u0026gt;\u003c/code\u003e should be a name of a script to run from the\n\u003ca href=\"experiments/\"\u003eexperiments folder\u003c/a\u003e folder, such as\n\u003ccode\u003eexperiments/simulateddata.R\u003c/code\u003e. The results will then be output to the\n\u003ccode\u003eresults\u003c/code\u003e folder.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-re-building-the-singularity-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#re-building-the-singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRe-building the Singularity Container\u003c/h3\u003e\n\u003cp\u003eIf you want to re-build the singularity container (or simply want to\nclone the repo to your local drive), you can do so via the following\nsteps.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eClone the repository to your local hard drive. On linux, using SSH\nauthentication, run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone git@github.com:jt2gtwci/HessianScreeningRule.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eNavigate to the root of the repo and build the singularity container\nby calling\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd HessianScreeningRule\nsudo singularity build container.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThen proceed as in \u003ca href=\"#reproducing-the-results\"\u003eReproducing the Results\u003c/a\u003e\nto run the experiments.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-experiments-without-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-experiments-without-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Experiments without Singularity\u003c/h3\u003e\n\u003cp\u003eAlternatively, you may also reproduce the results by cloning this\nrepository, then either opening the \u003ccode\u003eHessianScreening.Rproj\u003c/code\u003e file in R\nStudio or starting R in the root directory of this folder (which will\nactivate the renv repository) and then run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erenv::restore()\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto restore the project library. Then build the R package (see below) and\nrun the simulations directly by running the scripts in the experiments\nfolder. This is not recommended, however, since it, unlike the\nSingularity container approach, does not exactly reproduce the software\nenvironment used when these simulations where originally run and may\nresult in discrepancies due to differences in for instance operating\nsystems, compilers, and BLAS/LAPACK implementations.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-r-package\" class=\"anchor\" aria-hidden=\"true\" href=\"#r-package\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR Package\u003c/h2\u003e\n\u003cp\u003eIf you want to build and experiment with the package, you can do so by\ncalling\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e R CMD INSTALL .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData\u003c/h2\u003e\n\u003cp\u003eThe data sets used for the project are not stored on this repository and\nhave to be downloaded by running the script found in\n\u003ca href=\"data-raw/\"\u003e\u003ccode\u003edata-raw/\u003c/code\u003e\u003c/a\u003e. This does not apply when you use the\nsingularity container, however, since the data sets are stored inside it\n(and could technically be retrieved from it too).\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1636506455.0
+ "updated_at": 1652962267.0
},
{
"data_format": 2,
- "description": "EPACTS container",
+ "description": "Modified copy of GEMMA version 0.93 (Zhou and Stephens) for use with bugs",
"filenames": [
"Singularity"
],
- "full_name": "CHPC-UofU/Singularity-ubuntu-epacts",
- "latest_release": null,
+ "full_name": "danny-wilson/gemma0.93b",
+ "latest_release": "v0.1",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1504217055.0
+ "updated_at": 1653040520.0
},
{
"data_format": 2,
@@ -7785,44 +7402,46 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "lixuekai2001/brain-inversion",
+ "full_name": "michalpolic/yolact",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-you-only-look-at-coefficients\" class=\"anchor\" aria-hidden=\"true\" href=\"#you-only-look-at-coefficients\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\n\u003cstrong\u003eY\u003c/strong\u003eou \u003cstrong\u003eO\u003c/strong\u003enly \u003cstrong\u003eL\u003c/strong\u003eook \u003cstrong\u003eA\u003c/strong\u003et \u003cstrong\u003eC\u003c/strong\u003eoefficien\u003cstrong\u003eT\u003c/strong\u003es\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003e \u2588\u2588\u2557 \u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2588\u2557\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2557\n \u255a\u2588\u2588\u2557 \u2588\u2588\u2554\u255d\u2588\u2588\u2554\u2550\u2550\u2550\u2588\u2588\u2557\u2588\u2588\u2551 \u2588\u2588\u2554\u2550\u2550\u2588\u2588\u2557\u2588\u2588\u2554\u2550\u2550\u2550\u2550\u255d\u255a\u2550\u2550\u2588\u2588\u2554\u2550\u2550\u255d\n \u255a\u2588\u2588\u2588\u2588\u2554\u255d \u2588\u2588\u2551 \u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2551 \n \u255a\u2588\u2588\u2554\u255d \u2588\u2588\u2551 \u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2554\u2550\u2550\u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2551 \n \u2588\u2588\u2551 \u255a\u2588\u2588\u2588\u2588\u2588\u2588\u2554\u255d\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2557\u2588\u2588\u2551 \u2588\u2588\u2551\u255a\u2588\u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2551 \n \u255a\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u2550\u255d\u255a\u2550\u255d \u255a\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u255d \u255a\u2550\u255d \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA simple, fully convolutional model for real-time instance segmentation. This is the code for our papers:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://arxiv.org/abs/1904.02689\" rel=\"nofollow\"\u003eYOLACT: Real-time Instance Segmentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://arxiv.org/abs/1912.06218\" rel=\"nofollow\"\u003eYOLACT++: Better Real-time Instance Segmentation\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\u003ca id=\"user-content-yolact-v12-released-changelog\" class=\"anchor\" aria-hidden=\"true\" href=\"#yolact-v12-released-changelog\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eYOLACT++ (v1.2) released! (\u003ca href=\"CHANGELOG.md\"\u003eChangelog\u003c/a\u003e)\u003c/h4\u003e\n\u003cp\u003eYOLACT++\u0027s resnet50 model runs at 33.5 fps on a Titan Xp and achieves 34.1 mAP on COCO\u0027s \u003ccode\u003etest-dev\u003c/code\u003e (check out our journal paper \u003ca href=\"https://arxiv.org/abs/1912.06218\" rel=\"nofollow\"\u003ehere\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003eIn order to use YOLACT++, make sure you compile the DCNv2 code. (See \u003ca href=\"https://github.com/dbolya/yolact#installation\"\u003eInstallation\u003c/a\u003e)\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-for-a-real-time-demo-check-out-our-iccv-video\" class=\"anchor\" aria-hidden=\"true\" href=\"#for-a-real-time-demo-check-out-our-iccv-video\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor a real-time demo, check out our ICCV video:\u003c/h4\u003e\n\u003cp\u003e\u003ca href=\"https://www.youtube.com/watch?v=0pMfmo8qfpQ\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c9e061dab1a6754a417d6eb14803f1104cce54aa9231aa0d779e2523694ed23e/68747470733a2f2f696d672e796f75747562652e636f6d2f76692f30704d666d6f38716670512f302e6a7067\" alt=\"IMAGE ALT TEXT HERE\" data-canonical-src=\"https://img.youtube.com/vi/0pMfmo8qfpQ/0.jpg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSome examples from our YOLACT base model (33.5 fps on a Titan Xp and 29.8 mAP on COCO\u0027s \u003ccode\u003etest-dev\u003c/code\u003e):\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/yolact_example_0.png\"\u003e\u003cimg src=\"data/yolact_example_0.png\" alt=\"Example 0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/yolact_example_1.png\"\u003e\u003cimg src=\"data/yolact_example_1.png\" alt=\"Example 1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/yolact_example_2.png\"\u003e\u003cimg src=\"data/yolact_example_2.png\" alt=\"Example 2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eClone this repository and enter it:\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/dbolya/yolact.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e yolact\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eSet up the environment using one of the following methods:\n\u003cul\u003e\n\u003cli\u003eUsing \u003ca href=\"https://www.anaconda.com/distribution/\" rel=\"nofollow\"\u003eAnaconda\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eRun \u003ccode\u003econda env create -f environment.yml\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eManually with pip\n\u003cul\u003e\n\u003cli\u003eSet up a Python3 environment (e.g., using virtenv).\u003c/li\u003e\n\u003cli\u003eInstall \u003ca href=\"http://pytorch.org/\" rel=\"nofollow\"\u003ePytorch\u003c/a\u003e 1.0.1 (or higher) and TorchVision.\u003c/li\u003e\n\u003cli\u003eInstall some other packages:\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Cython needs to be installed before pycocotools\u003c/span\u003e\npip install cython\npip install opencv-python pillow pycocotools matplotlib \u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you\u0027d like to train YOLACT, download the COCO dataset and the 2014/2017 annotations. Note that this script will take a while and dump 21gb of files into \u003ccode\u003e./data/coco\u003c/code\u003e.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esh data/scripts/COCO.sh\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you\u0027d like to evaluate YOLACT on \u003ccode\u003etest-dev\u003c/code\u003e, download \u003ccode\u003etest-dev\u003c/code\u003e with this script.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esh data/scripts/COCO_test.sh\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you want to use YOLACT++, compile deformable convolutional layers (from \u003ca href=\"https://github.com/CharlesShang/DCNv2/tree/pytorch_1.0\"\u003eDCNv2\u003c/a\u003e).\nMake sure you have the latest CUDA toolkit installed from \u003ca href=\"https://developer.nvidia.com/cuda-toolkit\" rel=\"nofollow\"\u003eNVidia\u0027s Website\u003c/a\u003e.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e external/DCNv2\npython setup.py build develop\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-evaluation\" class=\"anchor\" aria-hidden=\"true\" href=\"#evaluation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEvaluation\u003c/h1\u003e\n\u003cp\u003eHere are our YOLACT models (released on April 5th, 2019) along with their FPS on a Titan Xp and mAP on \u003ccode\u003etest-dev\u003c/code\u003e:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eImage Size\u003c/th\u003e\n\u003cth align=\"center\"\u003eBackbone\u003c/th\u003e\n\u003cth align=\"center\"\u003eFPS\u003c/th\u003e\n\u003cth align=\"center\"\u003emAP\u003c/th\u003e\n\u003cth\u003eWeights\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet50-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e42.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e28.2\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1yp7ZbbDwvMiFJEq4ptVKTYTI2VeRDXl0/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_resnet50_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EUVpxoSXaqNIlssoLKOEoCcB1m0RpzGq_Khp5n1VX3zcUw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eDarknet53-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e40.0\u003c/td\u003e\n\u003ctd align=\"center\"\u003e28.7\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1dukLrTzZQEuhzitGkHaGjphlmRJOjVnP/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_darknet53_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/ERrao26c8llJn25dIyZPhwMBxUp2GdZTKIMUQA3t0djHLw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e33.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e29.8\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1UYy3dMapbH1BnmtZU4WH1zbYgOzzHHf_/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_base_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EYRWxBEoKU9DiblrWx2M89MBGFkVVB_drlRd_v5sdT3Hgg\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e700\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e23.6\u003c/td\u003e\n\u003ctd align=\"center\"\u003e31.2\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1lE4Lz5p25teiXV-6HdTiOJSnS7u7GBzg/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_im700_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/Eagg5RSc5hFEhp7sPtvLNyoBjhlf2feog7t8OQzHKKphjw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eYOLACT++ models (released on December 16th, 2019):\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eImage Size\u003c/th\u003e\n\u003cth align=\"center\"\u003eBackbone\u003c/th\u003e\n\u003cth align=\"center\"\u003eFPS\u003c/th\u003e\n\u003cth align=\"center\"\u003emAP\u003c/th\u003e\n\u003cth\u003eWeights\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet50-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e33.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e34.1\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1ZPu1YR2UzGHQD0o1rEqy-j5bmEm3lbyP/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_plus_resnet50_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EcJAtMiEFlhAnVsDf00yWRIBUC4m8iE9NEEiV05XwtEoGw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e27.3\u003c/td\u003e\n\u003ctd align=\"center\"\u003e34.6\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/15id0Qq5eqRbkD-N3ZjDZXdCvRyIaHpFB/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_plus_base_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EVQ62sF0SrJPrl_68onyHF8BpG7c05A8PavV4a849sZgEA\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eTo evalute the model, put the corresponding weights file in the \u003ccode\u003e./weights\u003c/code\u003e directory and run one of the following commands. The name of each config is everything before the numbers in the file name (e.g., \u003ccode\u003eyolact_base\u003c/code\u003e for \u003ccode\u003eyolact_base_54_800000.pth\u003c/code\u003e).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-quantitative-results-on-coco\" class=\"anchor\" aria-hidden=\"true\" href=\"#quantitative-results-on-coco\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuantitative Results on COCO\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Quantitatively evaluate a trained model on the entire validation set. Make sure you have COCO downloaded as above.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e This should get 29.92 validation mask mAP last time I checked.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Output a COCOEval json to submit to the website or to use the run_coco_eval.py script.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e This command will create \u0027./results/bbox_detections.json\u0027 and \u0027./results/mask_detections.json\u0027 for detection and instance segmentation respectively.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --output_coco_json\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e You can run COCOEval on the files created in the previous command. The performance should match my implementation in eval.py.\u003c/span\u003e\npython run_coco_eval.py\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e To output a coco json file for test-dev, make sure you have test-dev downloaded from above and go\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --output_coco_json --dataset=coco2017_testdev_dataset\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-qualitative-results-on-coco\" class=\"anchor\" aria-hidden=\"true\" href=\"#qualitative-results-on-coco\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQualitative Results on COCO\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display qualitative results on COCO. From here on I\u0027ll use a confidence threshold of 0.15.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --display\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-benchmarking-on-coco\" class=\"anchor\" aria-hidden=\"true\" href=\"#benchmarking-on-coco\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBenchmarking on COCO\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Run just the raw model on the first 1k images of the validation set\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --benchmark --max_images=1000\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImages\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display qualitative results on the specified image.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=my_image.png\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process an image and save it to another file.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=input_image.png:output_image.png\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process a whole folder of images.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --images=path/to/input/folder:path/to/output/folder\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-video\" class=\"anchor\" aria-hidden=\"true\" href=\"#video\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVideo\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display a video in real-time. \"--video_multiframe\" will process that many frames at once for improved performance.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e If you want, use \"--display_fps\" to draw the FPS directly on the frame.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=my_video.mp4\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display a webcam feed in real-time. If you have multiple webcams pass the index of the webcam you want instead of 0.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=0\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process a video and save it to another file. This uses the same pipeline as the ones above now, so it\u0027s fast!\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=input_video.mp4:output_video.mp4\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAs you can tell, \u003ccode\u003eeval.py\u003c/code\u003e can do a ton of stuff. Run the \u003ccode\u003e--help\u003c/code\u003e command to see everything it can do.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython eval.py --help\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\u003ca id=\"user-content-training\" class=\"anchor\" aria-hidden=\"true\" href=\"#training\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTraining\u003c/h1\u003e\n\u003cp\u003eBy default, we train on COCO. Make sure to download the entire dataset using the commands above.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eTo train, grab an imagenet-pretrained model and put it in \u003ccode\u003e./weights\u003c/code\u003e.\n\u003cul\u003e\n\u003cli\u003eFor Resnet101, download \u003ccode\u003eresnet101_reducedfc.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/1tvqFPd4bJtakOlmn-uIA492g2qurRChj/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor Resnet50, download \u003ccode\u003eresnet50-19c8e357.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/1Jy3yCdbatgXa5YYIdTCRrSV0S9V5g1rn/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor Darknet53, download \u003ccode\u003edarknet53.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/17Y431j4sagFpSReuPNoFcj9h7azDTZFf/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eRun one of the training commands below.\n\u003cul\u003e\n\u003cli\u003eNote that you can press ctrl+c while training and it will save an \u003ccode\u003e*_interrupt.pth\u003c/code\u003e file at the current iteration.\u003c/li\u003e\n\u003cli\u003eAll weights are saved in the \u003ccode\u003e./weights\u003c/code\u003e directory by default with the file name \u003ccode\u003e\u0026lt;config\u0026gt;_\u0026lt;epoch\u0026gt;_\u0026lt;iter\u0026gt;.pth\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Trains using the base config with a batch size of 8 (the default).\u003c/span\u003e\npython train.py --config=yolact_base_config\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Trains yolact_base_config with a batch_size of 5. For the 550px models, 1 batch takes up around 1.5 gigs of VRAM, so specify accordingly.\u003c/span\u003e\npython train.py --config=yolact_base_config --batch_size=5\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Resume training yolact_base with a specific weight file and start from the iteration specified in the weight file\u0027s name.\u003c/span\u003e\npython train.py --config=yolact_base_config --resume=weights/yolact_base_10_32100.pth --start_iter=-1\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Use the help option to see a description of all available command line arguments\u003c/span\u003e\npython train.py --help\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-multi-gpu-support\" class=\"anchor\" aria-hidden=\"true\" href=\"#multi-gpu-support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMulti-GPU Support\u003c/h2\u003e\n\u003cp\u003eYOLACT now supports multiple GPUs seamlessly during training:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBefore running any of the scripts, run: \u003ccode\u003eexport CUDA_VISIBLE_DEVICES=[gpus]\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eWhere you should replace [gpus] with a comma separated list of the index of each GPU you want to use (e.g., 0,1,2,3).\u003c/li\u003e\n\u003cli\u003eYou should still do this if only using 1 GPU.\u003c/li\u003e\n\u003cli\u003eYou can check the indices of your GPUs with \u003ccode\u003envidia-smi\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eThen, simply set the batch size to \u003ccode\u003e8*num_gpus\u003c/code\u003e with the training commands above. The training script will automatically scale the hyperparameters to the right values.\n\u003cul\u003e\n\u003cli\u003eIf you have memory to spare you can increase the batch size further, but keep it a multiple of the number of GPUs you\u0027re using.\u003c/li\u003e\n\u003cli\u003eIf you want to allocate the images per GPU specific for different GPUs, you can use \u003ccode\u003e--batch_alloc=[alloc]\u003c/code\u003e where [alloc] is a comma seprated list containing the number of images on each GPU. This must sum to \u003ccode\u003ebatch_size\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-logging\" class=\"anchor\" aria-hidden=\"true\" href=\"#logging\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLogging\u003c/h2\u003e\n\u003cp\u003eYOLACT now logs training and validation information by default. You can disable this with \u003ccode\u003e--no_log\u003c/code\u003e. A guide on how to visualize these logs is coming soon, but now you can look at \u003ccode\u003eLogVizualizer\u003c/code\u003e in \u003ccode\u003eutils/logger.py\u003c/code\u003e for help.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pascal-sbd\" class=\"anchor\" aria-hidden=\"true\" href=\"#pascal-sbd\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePascal SBD\u003c/h2\u003e\n\u003cp\u003eWe also include a config for training on Pascal SBD annotations (for rapid experimentation or comparing with other methods). To train on Pascal SBD, proceed with the following steps:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDownload the dataset from \u003ca href=\"http://home.bharathh.info/pubs/codes/SBD/download.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. It\u0027s the first link in the top \"Overview\" section (and the file is called \u003ccode\u003ebenchmark.tgz\u003c/code\u003e).\u003c/li\u003e\n\u003cli\u003eExtract the dataset somewhere. In the dataset there should be a folder called \u003ccode\u003edataset/img\u003c/code\u003e. Create the directory \u003ccode\u003e./data/sbd\u003c/code\u003e (where \u003ccode\u003e.\u003c/code\u003e is YOLACT\u0027s root) and copy \u003ccode\u003edataset/img\u003c/code\u003e to \u003ccode\u003e./data/sbd/img\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eDownload the COCO-style annotations from \u003ca href=\"https://drive.google.com/open?id=1ExrRSPVctHW8Nxrn0SofU1lVhK5Wn0_S\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eExtract the annotations into \u003ccode\u003e./data/sbd/\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eNow you can train using \u003ccode\u003e--config=yolact_resnet50_pascal_config\u003c/code\u003e. Check that config to see how to extend it to other models.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eI will automate this all with a script soon, don\u0027t worry. Also, if you want the script I used to convert the annotations, I put it in \u003ccode\u003e./scripts/convert_sbd.py\u003c/code\u003e, but you\u0027ll have to check how it works to be able to use it because I don\u0027t actually remember at this point.\u003c/p\u003e\n\u003cp\u003eIf you want to verify our results, you can download our \u003ccode\u003eyolact_resnet50_pascal_config\u003c/code\u003e weights from \u003ca href=\"https://drive.google.com/open?id=1yLVwtkRtNxyl0kxeMCtPXJsXFFyc_FHe\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. This model should get 72.3 mask AP_50 and 56.2 mask AP_70. Note that the \"all\" AP isn\u0027t the same as the \"vol\" AP reported in others papers for pascal (they use an averages of the thresholds from \u003ccode\u003e0.1 - 0.9\u003c/code\u003e in increments of \u003ccode\u003e0.1\u003c/code\u003e instead of what COCO uses).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-custom-datasets\" class=\"anchor\" aria-hidden=\"true\" href=\"#custom-datasets\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCustom Datasets\u003c/h2\u003e\n\u003cp\u003eYou can also train on your own dataset by following these steps:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCreate a COCO-style Object Detection JSON annotation file for your dataset. The specification for this can be found \u003ca href=\"http://cocodataset.org/#format-data\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. Note that we don\u0027t use some fields, so the following may be omitted:\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003einfo\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eliscense\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003eUnder \u003ccode\u003eimage\u003c/code\u003e: \u003ccode\u003elicense, flickr_url, coco_url, date_captured\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecategories\u003c/code\u003e (we use our own format for categories, see below)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eCreate a definition for your dataset under \u003ccode\u003edataset_base\u003c/code\u003e in \u003ccode\u003edata/config.py\u003c/code\u003e (see the comments in \u003ccode\u003edataset_base\u003c/code\u003e for an explanation of each field):\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s1\"\u003emy_custom_dataset\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003edataset_base\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003ecopy\u003c/span\u003e({\n \u003cspan class=\"pl-s\"\u003e\u0027name\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027My Dataset\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027train_images\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_training_images\u0027\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027train_info\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_training_annotation\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027valid_images\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_validation_images\u0027\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027valid_info\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_validation_annotation\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027has_gt\u0027\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027class_names\u0027\u003c/span\u003e: (\u003cspan class=\"pl-s\"\u003e\u0027my_class_id_1\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027my_class_id_2\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027my_class_id_3\u0027\u003c/span\u003e, ...)\n})\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eA couple things to note:\n\u003cul\u003e\n\u003cli\u003eClass IDs in the annotation file should start at 1 and increase sequentially on the order of \u003ccode\u003eclass_names\u003c/code\u003e. If this isn\u0027t the case for your annotation file (like in COCO), see the field \u003ccode\u003elabel_map\u003c/code\u003e in \u003ccode\u003edataset_base\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eIf you do not want to create a validation split, use the same image path and annotations file for validation. By default (see \u003ccode\u003epython train.py --help\u003c/code\u003e), \u003ccode\u003etrain.py\u003c/code\u003e will output validation mAP for the first 5000 images in the dataset every 2 epochs.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eFinally, in \u003ccode\u003eyolact_base_config\u003c/code\u003e in the same file, change the value for \u003ccode\u003e\u0027dataset\u0027\u003c/code\u003e to \u003ccode\u003e\u0027my_custom_dataset\u0027\u003c/code\u003e or whatever you named the config object above. Then you can use any of the training commands in the previous section.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\u003ca id=\"user-content-creating-a-custom-dataset-from-scratch\" class=\"anchor\" aria-hidden=\"true\" href=\"#creating-a-custom-dataset-from-scratch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreating a Custom Dataset from Scratch\u003c/h4\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/dbolya/yolact/issues/70#issuecomment-504283008\"\u003ethis nice post by @Amit12690\u003c/a\u003e for tips on how to annotate a custom dataset and prepare it for use with YOLACT.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h1\u003e\n\u003cp\u003eIf you use YOLACT or this code base in your work, please cite\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@inproceedings{yolact-iccv2019,\n author = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},\n title = {YOLACT: {Real-time} Instance Segmentation},\n booktitle = {ICCV},\n year = {2019},\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor YOLACT++, please cite\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@misc{yolact-plus-arxiv2019,\n title = {YOLACT++: Better Real-time Instance Segmentation},\n author = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},\n year = {2019},\n eprint = {1912.06218},\n archivePrefix = {arXiv},\n primaryClass = {cs.CV}\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-contact\" class=\"anchor\" aria-hidden=\"true\" href=\"#contact\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h1\u003e\n\u003cp\u003eFor questions about our paper or code, please contact \u003ca href=\"mailto:dbolya@ucdavis.edu\"\u003eDaniel Bolya\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1652667265.0
+ "updated_at": 1653076832.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for sex-detector-plusplus (https://gitlab.in2p3.fr/sex-det-family/sex-detector-plusplus)",
+ "description": null,
"filenames": [
- "Singularity",
- "Singularity.00f7d723"
+ "Singularity.binutils-2.36.1-GCCcore-11.1.0-centos7.def",
+ "Singularity.zlib-1.2-centos7.def"
],
- "full_name": "powerPlant/sex-detector-plusplus-srf",
+ "full_name": "jkwmoore/centos7-eb-singularity-image",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for SEX-DETector, a tool for the statistical inferrence of sex-linked genes from RNA / DNA reads from a cross (parents and set of childrens)\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-centos7-eb-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#centos7-eb-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecentos7-eb-singularity-image\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1600917082.0
+ "updated_at": 1653324040.0
},
{
"data_format": 2,
- "description": "Centos 7 base image for ACI",
+ "description": "BRAKER is a pipeline for fully automated prediction of protein coding gene structures with GeneMark-ES/ET and AUGUSTUS in novel eukaryotic genomes.",
"filenames": [
- "Singularity",
- "Singularity.cuda9.1",
- "Singularity.gpu",
- "Singularity.test"
+ "2.1.5/Singularity",
+ "2.1.6/Singularity"
],
- "full_name": "willgpaik/centos7_aci",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-centos7_aci\" class=\"anchor\" aria-hidden=\"true\" href=\"#centos7_aci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecentos7_aci\u003c/h1\u003e\n\u003cp\u003eCentos 7 base image for ACI Singualarity recipe\u003cbr\u003e\nThis recipe may include unnecessary packages for certain software installation.\u003cbr\u003e\nSize of CPU-only container: ~1 GB\u003cbr\u003e\nSize of GPU container: ~2.6 GB\u003c/p\u003e\n\u003cp\u003eMore packages will be added in the future\u003c/p\u003e\n\u003cp\u003e2019/2/17\n\u003cstrong\u003eCentos 7\u003c/strong\u003e with \u003cstrong\u003eGCC 8\u003c/strong\u003e\u003cbr\u003e\nTo enable GCC 8,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; source /opt/rh/devtoolset-8/enable\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e2019/3/1\u003cbr\u003e\nOpenMPI is added to \u003ccode\u003e$PATH\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e2019/3/11\u003cbr\u003e\nOpenMPI is updated to version 2.1.6\u003c/p\u003e\n\u003cp\u003e2019/4/12\u003cbr\u003e\nBoost 1.70.0 in added\u003c/p\u003e\n\u003cp\u003e2019/7/19\u003cbr\u003e\n\u003cdel\u003ePython 2 and 3 are updated to version 2.7.16 and version 3.7.4\u003c/del\u003e\u003cbr\u003e\nOpenMPI is updated to version 4.0.1\u003c/p\u003e\n\u003cp\u003e2019/7/21\u003cbr\u003e\n\u003cdel\u003eFew Python packages are added\u003c/del\u003e\u003c/p\u003e\n\u003cp\u003e2019/7/22\u003cbr\u003e\n\u003cdel\u003eFew corrections are made including Python\u003c/del\u003e\u003c/p\u003e\n\u003cp\u003e2019/7/23\u003cbr\u003e\nPythons are replaced with packages\u003cbr\u003e\nTo enable Python 2.7.16,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; source /opt/rh/python27/enable\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSystem version of python is 3.6.8\u003c/p\u003e\n\u003cp\u003e2019/7/30\u003cbr\u003e\ndevtoolset-7 GCC is added (some software can\u0027t be built with GCC 8)\u003c/p\u003e\n\u003cp\u003e2019/11/9\u003cbr\u003e\nCMake 3.15.5 is added\u003c/p\u003e\n\u003cp\u003e2019/11/22\u003cbr\u003e\nOpenMPI is downgraded to 1.10.1 to match version on ACI\u003c/p\u003e\n\u003cp\u003e2020/2/12\u003cbr\u003e\nBoost is upgraded to 1.72.0 and CMake is upgraded to 3.16.4\u003c/p\u003e\n\u003cp\u003e2020/3/2\u003cbr\u003e\nGPU version is added\u003c/p\u003e\n\u003cp\u003e2020/9/21\u003cbr\u003e\nMinor updates are made (regarding libxkb)\u003c/p\u003e\n\u003cp\u003e2020/9/28\u003cbr\u003e\nRecipe for CUDA 9.1 is added (for FSL with CUDA)\u003c/p\u003e\n\u003cp\u003e2020/10/11\u003cbr\u003e\nBoost is upgraded to 1.74.0 and CMake is upgraded to 3.18.4\u003cbr\u003e\nR 4.0.3 is added (Curl 7.72.0 and XZ 5.2.5 are added for R)\u003cbr\u003e\nVirtualGL is downgraded to 2.5.2 to match system version\u003c/p\u003e\n\u003cp\u003e2020/10/18\u003cbr\u003e\nUDUNITS 2.2.26 is added\u003c/p\u003e\n\u003cp\u003e2020/10/20\u003cbr\u003e\nTix-devel, Tx-devel, TkInter-devel, LAPACK-devel, and BLAS-devel are added\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-braker2",
+ "latest_release": "v2.1.6",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-braker2/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-braker2/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-braker2/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-braker2/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/19dcb2c13dec2c34ca260c8ca2b2a8209ecde7a198e864340ede4eba62cb3d33/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6272616b657232\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/19dcb2c13dec2c34ca260c8ca2b2a8209ecde7a198e864340ede4eba62cb3d33/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6272616b657232\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-braker2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0bd8da7fc9970e7e157de2eec966b6db39f4c9445336118b4feae68787406ca0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6272616b657232\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0bd8da7fc9970e7e157de2eec966b6db39f4c9445336118b4feae68787406ca0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6272616b657232\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-braker2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/1538a0ecc9226a4026e275016281ee2daead4806b53f7afec5b265acf1ff03ee/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6272616b657232\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1538a0ecc9226a4026e275016281ee2daead4806b53f7afec5b265acf1ff03ee/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6272616b657232\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-braker2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c222f5a51b626a831c4b4d20b0afdb3b1157ec9ca835a8441f90b570f5fa7f0c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6272616b657232\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c222f5a51b626a831c4b4d20b0afdb3b1157ec9ca835a8441f90b570f5fa7f0c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6272616b657232\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-braker2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-braker2\" class=\"anchor\" href=\"#singularity-braker2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-braker2\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/a84569b5f282590e3c4947c993c063920444aca07bdf99e5914d7abcc82d939a/68747470733a2f2f7777772e62696f727869762e6f72672f636f6e74656e742f62696f727869762f6561726c792f323032302f30382f31312f323032302e30382e31302e3234353133342f46312e6c617267652e6a7067\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a84569b5f282590e3c4947c993c063920444aca07bdf99e5914d7abcc82d939a/68747470733a2f2f7777772e62696f727869762e6f72672f636f6e74656e742f62696f727869762f6561726c792f323032302f30382f31312f323032302e30382e31302e3234353133342f46312e6c617267652e6a7067\" width=\"50%\" data-canonical-src=\"https://www.biorxiv.org/content/biorxiv/early/2020/08/11/2020.08.10.245134/F1.large.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/Gaius-Augustus/BRAKER\"\u003eBRAKER2\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/braker2/2.1.5\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/BRAKER2\u003c/code\u003e as \u003ccode\u003e2.1.5.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1603227322.0
+ "subscribers_count": 2,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1649280757.0
},
{
"data_format": 2,
@@ -7830,128 +7449,97 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "kiwiroy/singularity-perlbrew",
+ "full_name": "truatpasteurdotfr/miniforge3-bioconda-perl-bioperl",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2845\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-perlbrew\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-perlbrew\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-perlbrew\u003c/h1\u003e\n\u003cp\u003eA simple ubuntu base with perlbrew installed. Useful as a base image for brewing\nspecific versions of perl.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-a-miniforge3-based-container-with-bioconda-bioperl\" class=\"anchor\" href=\"#a-miniforge3-based-container-with-bioconda-bioperl\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ea miniforge3 based container with bioconda-bioperl\u003c/h1\u003e\n\u003cp\u003eUsing \u003ca href=\"https://github.com/conda-forge/miniforge/\"\u003ehttps://github.com/conda-forge/miniforge/\u003c/a\u003e instead of miniconda3 from Anaconda.com\u003c/p\u003e\n\u003cp\u003edocker:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/miniforge3-bioconda-perl-bioperl:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003esingularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv oras://ghcr.io/truatpasteurdotfr/miniforge3-bioconda-perl-bioperl:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1556532781.0
+ "updated_at": 1651682376.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Kaysera/Singularity.def"
+ "Singularity-base-ubuntu20.04-intel2021.1.1"
],
- "full_name": "Kaysera/test-reproducibility",
+ "full_name": "NOAA-GFDL/HPC-ME",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-test-for-future-simd-reproducibility\" class=\"anchor\" aria-hidden=\"true\" href=\"#test-for-future-simd-reproducibility\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest for future SIMD reproducibility\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-hpc-me-hpc-portable-containers-for-model-environments\" class=\"anchor\" href=\"#hpc-me-hpc-portable-containers-for-model-environments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHPC-ME: HPC Portable Containers for Model Environments\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contents\" class=\"anchor\" href=\"#contents\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContents\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#what-is-hpc-me\"\u003eWhat is HPC-ME\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#list-of-current-compilers\"\u003eList of current compilers/MPI/OS\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#list-of-current-libraries\"\u003eList of current libraries\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#how-to-build\"\u003eHow to build\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#how-to-use\"\u003eHow to use\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#gfdl-example\"\u003eGFDL example\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#planned-improvements\"\u003ePlanned improvements\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-is-hpc-me\" class=\"anchor\" href=\"#what-is-hpc-me\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is HPC-ME\u003c/h2\u003e\n\u003cp\u003eHPC Portable Container - Model Environments is a set of Dockerfiles, Singularity Definition files, and containers to provide portable model environments for scientific applications that require the same set of libraries. The ultimate goal is to have a community-based list of libraries that are needed for compiling, executing, and post-processing earth science models. We all use many of the same underlying libraries, and by working together we can agree upon a community-based approach to making container usage as standardized as possible.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-list-of-current-compilersmpios\" class=\"anchor\" href=\"#list-of-current-compilersmpios\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eList of current compilers/MPI/OS\u003c/h2\u003e\n\u003cp\u003eFor each container, there is a full version that contains the programming environment and a smaller runtime environment that can be used to run compiled executables. (The runtime container definition files will be added soon.)\n#- \u003ca href=\"Dockerfile_gnu_ubuntu20.04\"\u003egcc 8/mpich/ubuntu 20.04\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"Dockerfile_gnu_rhel8\"\u003egcc 8/mpich/RHEL8\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Dockerfile_intel_ubuntu18.04\"\u003eintel oneAPI 2022.1/mpich(impi)/ubuntu 18.04\u003c/a\u003e\n#- \u003ca href=\"Dockerfile_intel_centos8\"\u003eintel oneAPI 2021.4/mpich(impi)/centos 8\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-list-of-current-libraries\" class=\"anchor\" href=\"#list-of-current-libraries\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eList of current libraries\u003c/h2\u003e\n\u003cp\u003eThis is the current list of most of the libraries used in the HPC-ME containers (We are trying to keep this up-to-date).\nThe complete lit should be found in the respective YAML file.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#automake\" rel=\"nofollow\"\u003eautomake@1.16.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#bacio\" rel=\"nofollow\"\u003ebacio@2.4.1\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#berkeley-db\" rel=\"nofollow\"\u003eberkeley-db@18.1.40\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#bison\" rel=\"nofollow\"\u003ebison@3.7.6\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#bzip2\" rel=\"nofollow\"\u003ebzip2@1.0.8\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#cmake\" rel=\"nofollow\"\u003ecmake@3.21.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#crtm\" rel=\"nofollow\"\u003ecrtm@2.3.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#curl\" rel=\"nofollow\"\u003ecurl@7.78.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#diffutils\" rel=\"nofollow\"\u003ediffutils@3.7\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#esmf\" rel=\"nofollow\"\u003eesmf@8.1.1\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#expat\" rel=\"nofollow\"\u003eexpat@2.4.1\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#g2\" rel=\"nofollow\"\u003eg2@3.4.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#g2tmpl\" rel=\"nofollow\"\u003eg2tmpl@1.10.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#gdbm\" rel=\"nofollow\"\u003egdbm@1.19\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#gsl\" rel=\"nofollow\"\u003egsl@2.7\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#hdf5\" rel=\"nofollow\"\u003ehdf5@1.10.7\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#intel-mpi\" rel=\"nofollow\"\u003eintel-mpi@2019.10.317\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#ip\" rel=\"nofollow\"\u003eip@3.3.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#ip2\" rel=\"nofollow\"\u003eip2@1.1.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#jasper\" rel=\"nofollow\"\u003ejasper@2.0.32\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libbsd\" rel=\"nofollow\"\u003elibbsd@0.11.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libiconv\" rel=\"nofollow\"\u003elibiconv@1.16\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libjpeg-turbo\" rel=\"nofollow\"\u003elibjpeg-turbo@2.1.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libmd\" rel=\"nofollow\"\u003elibmd@1.0.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libpng\" rel=\"nofollow\"\u003elibpng@1.6.37\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libsigsegv\" rel=\"nofollow\"\u003elibsigsegv@2.13\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libxml2\" rel=\"nofollow\"\u003elibxml2@2.9.12\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libyaml\" rel=\"nofollow\"\u003elibyaml@0.2.5\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#m4\" rel=\"nofollow\"\u003em4@1.4.19\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#nasm\" rel=\"nofollow\"\u003enasm@2.15.05\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#ncurses\" rel=\"nofollow\"\u003encurses@6.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#nemsio\" rel=\"nofollow\"\u003enemsio@2.5.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#netcdf-c\" rel=\"nofollow\"\u003enetcdf-c@4.8.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#netcdf-fortran\" rel=\"nofollow\"\u003enetcdf-fortran@4.5.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#numactl\" rel=\"nofollow\"\u003enumactl@2.0.14\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#openssl\" rel=\"nofollow\"\u003eopenssl@1.1.1l\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#parallel-netcdf\" rel=\"nofollow\"\u003eparallel-netcdf@1.12.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#perl\" rel=\"nofollow\"\u003eperl@5.34.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#pkgconf\" rel=\"nofollow\"\u003epkgconf@1.8.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#readline\" rel=\"nofollow\"\u003ereadline@8.1\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#sfcio\" rel=\"nofollow\"\u003esfcio@1.4.1\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#sigio\" rel=\"nofollow\"\u003esigio@2.3.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#sp\" rel=\"nofollow\"\u003esp@2.3.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#udunits\" rel=\"nofollow\"\u003eudunits@2.2.28\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#w3emc\" rel=\"nofollow\"\u003ew3emc@2.9.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#w3nco\" rel=\"nofollow\"\u003ew3nco@2.4.1\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#wrf-io\" rel=\"nofollow\"\u003ewrf-io@1.2.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#xerces-c\" rel=\"nofollow\"\u003exerces-c@3.2.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#xz\" rel=\"nofollow\"\u003exz@5.2.5\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#zlib\" rel=\"nofollow\"\u003ezlib@1.2.11\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#lmod\" rel=\"nofollow\"\u003elmod@8.5.6\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#nccmp\" rel=\"nofollow\"\u003enccmp@1.8.6.5\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#nco\" rel=\"nofollow\"\u003enco@4.7.9\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#cray-netcdf\" rel=\"nofollow\"\u003ecray-netcdf@4.6.3.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#cray-hdf5\" rel=\"nofollow\"\u003ecray-hdf5@1.10.5.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#uberftp\" rel=\"nofollow\"\u003euberftp\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to-build\" class=\"anchor\" href=\"#how-to-build\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to build\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eWe plan to make this step optional soon.\u003c/strong\u003e In order to build the Docker images, you will need access to a computer with root-like access, and either docker or singularity installed. If you do not have root-like access to a suitable machine, you can still run images that were already created (e.g. on Docker hub), and we plan on hosting runnable Docker images along with the Dockerfiles in this repository soon. If you have root-like access and docker, start by choosing one of the currently supported model environments from the list above. Then build the Docker container from the Dockerfile using docker build; for example, to build the gcc8/mpich/ubuntu18 container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --file Dockerfile_gnu_ubuntu20.04 . --tag hpc-me.ubuntu.gnu\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe build process takes approximately 2-3 hours, as the packages are downloaded and compiled using Spack. After a successful build, you will see that the image was built and tagged successfully:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSuccessfully built 90a878af77b4\nSuccessfully tagged hpc-me.rhel8.gnu:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen, you may run the container using docker or singularity on the same host. To run the image on a different machine, pushing the image to Docker Hub is recommended. Note that you will need a DockerHub account to do this (replace USER with your Docker user ID in the examples below). For example:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker tag hpc-me.rhel8.gnu USER/hpc-me.rhel8.gnu\ndocker login\ndocker push USER/hpc-me.rhel8.gnu:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to-use\" class=\"anchor\" href=\"#how-to-use\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to use\u003c/h2\u003e\n\u003cp\u003eWe plan to make improvements on this process. Also, while we plan on making Docker images available on the GitHub container registry, currently you must build the images yourself. Please start with the \u003ca href=\"#how-to-build\"\u003eBuild instructions\u003c/a\u003e to generate a Docker image with your desired OS/compiler HPC-ME environment. Then you may run the container using docker or singularity; singularity is more likely than docker to be available on HPC environments.\u003c/p\u003e\n\u003cp\u003eThe usage documentation consists of some general notes on serial/parallel usage, files inside and outside the container, downloading the containers, and then specific usage scenarios:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#serial-applications-using-docker\"\u003eSerial applications using docker\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#serial-applications-using-singularity\"\u003eSerial applications using singularity\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#parallel-applications-using-singularity\"\u003eParallel applications using singularity\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-serial-and-parallel-usage\" class=\"anchor\" href=\"#serial-and-parallel-usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSerial and parallel usage\u003c/h3\u003e\n\u003cp\u003eHPC-ME containers are intended for both serial and parallel applications. Serial applications include compiling model executables, generating input grids, and post-processing model output. Earth system, climate, and weather models require parallelism to run efficiently, and use one of the Message Passage Interface (MPI) implementations OpenMPI, Intel MPI, or mpich. GCC-based HPC-ME containers use the mpich-based MPI library, which is widely available on most HPC sites, and the Intel-based containers contain both mpich and Intel MPI.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-notes-on-filesystems-and-writing-files\" class=\"anchor\" href=\"#notes-on-filesystems-and-writing-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes on filesystems and writing files\u003c/h3\u003e\n\u003cp\u003eWe recommend not saving or modifying files within the environment container, and instead create and modify files on your regular filesystem. To do this, you will need to connect your filesystem to your container using bind mounts.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-downloading-containers-and-managing-images-on-the-filesystem\" class=\"anchor\" href=\"#downloading-containers-and-managing-images-on-the-filesystem\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownloading containers and managing images on the filesystem\u003c/h3\u003e\n\u003cp\u003eOnce you have pushed your images to DockerHub, you will need to download them before using. In the examples below, replace USER with your Docker Hub ID. If using docker,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull USER/hpc-me.rhel8.gnu:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf using singularity,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull docker://USER/hpc-me.rhel8.gnu:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf using singularity, the image file (SIF format) is saved to the current working directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; ls *.sif\n-rwxr-xr-x 532M Dec 10 16:09 hpc-me.rhel8.gnu_latest.sif*\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf using docker, the downloaded image is handled by the central docker service.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-serial-applications-using-docker\" class=\"anchor\" href=\"#serial-applications-using-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSerial applications using docker\u003c/h3\u003e\n\u003cp\u003eYou may activate an interactive shell within the desired HPC-ME container using docker. After running the container, the compilers and tools available within the container will be accessible in your PATH; e.g.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; docker run -it hpc-me.rhel8.gnu:latest\n\n[root@0d2cf64e1175 /]# which nf-config\n/opt/view/bin/nf-config\n\n[root@0d2cf64e1175 /]# nf-config --version\nnetCDF-Fortran 4.5.3\n\n[root@0d2cf64e1175 /]# nf-config --cflags\n-I/opt/software/linux-rhel8-x86_64/gcc-8.4.1/netcdf-fortran-4.5.3-g5qfkdlp36unt2s4j4wyrc6heh2sa64n/include\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-serial-applications-using-singularity\" class=\"anchor\" href=\"#serial-applications-using-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSerial applications using singularity\u003c/h3\u003e\n\u003cp\u003eSingularity can run Docker images and is more likely to be available on HPC environments. As with docker run, the HPC-ME tools and compilers are available in the shell, somewhat similar to loading a set of Environment Modules prepared by site administrators.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt;singularity run hpc-me.rhel8.gnu_latest.sif\n\nSingularity\u0026gt; which nf-config\n/opt/view/bin/nf-config\n\nSingularity\u0026gt; nf-config --version\nnetCDF-Fortran 4.5.3\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-parallel-applications-using-singularity\" class=\"anchor\" href=\"#parallel-applications-using-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParallel applications using singularity\u003c/h3\u003e\n\u003cp\u003eHPC-ME containers can provide the runtime environment for MPI applications. For instance, one could compile an MPI application using the instructions above using one of the HPC-ME development containers; and then run the application using the corresponding runtime HPC-ME container.\u003c/p\u003e\n\u003cp\u003ePlease note that we are continuing to improve the usability of HPC-ME containers as well as provide more usage examples.\u003c/p\u003e\n\u003cp\u003eUsually, GFDL climate models are run on gaea by submitting a runscript to the Slurm scheduler. The runscript loads needed runtime Environment Modules, prepares input directories and files, and executes the MPI executable using srun. The HPC-ME containers provide the necessary runtime environment, obviating the need for loading Environment Modules. Currently, our approach for using the HPC-ME containers is as follows:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eCreate a new container, starting with the desired HPC-ME runtime container\u003c/li\u003e\n\u003cli\u003eAdd the MPI-compiled executable to the container filesystem\u003c/li\u003e\n\u003cli\u003eSet the MPI-compiled executable to as the container\u0027s command (so that when the container is run the MPI executable within the container runs)\u003c/li\u003e\n\u003cli\u003eRun the singularity container SIF file using srun within the runscript, replacing the traditional MPI executable.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eReplace \"srun executable.x\" with \"srun singularity run container.SIF\"\u003c/li\u003e\n\u003cli\u003eAdd --mpi=pmi2 to the srun call, which connects the system MPI to the container MPI to the singularity run call\u003c/li\u003e\n\u003cli\u003eBind the working directory so that the container has access to the input files and can write output files (singularity run -B=/path/to/workdir)\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eSubmit the modified runscript to the scheduler\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eWe plan to provide more examples and usage scenarios, such as using the HPC-ME containers as-is (i.e. not creating a new container as described above)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-gfdl-example\" class=\"anchor\" href=\"#gfdl-example\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGFDL example\u003c/h2\u003e\n\u003cp\u003eAn example of using an HPC-ME container with the GFDL FRE workflow can be found \u003ca href=\"GFDL_EXAMPLE.md\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-planned-improvements\" class=\"anchor\" href=\"#planned-improvements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePlanned improvements\u003c/h2\u003e\n\u003cp\u003eHPC-ME is a work in progress under active development, so please check back or follow the repository for more updates.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-build-cache\" class=\"anchor\" href=\"#build-cache\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild cache\u003c/h3\u003e\n\u003cp\u003eWe are working to create a build cache for the libraries listed so that building the containers is quick and easy.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-github-container-registry\" class=\"anchor\" href=\"#github-container-registry\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGithub container registry\u003c/h3\u003e\n\u003cp\u003eWe are working to add CI capability to this repository, so that the containers will be automatically built and stored in the github container registry. This will make building unnecessary for most cases, though users may build the containers themselves if they wish (e.g. for custom modifications).\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-more-usage-examples-and-documentation-especially-for-mpi-applications\" class=\"anchor\" href=\"#more-usage-examples-and-documentation-especially-for-mpi-applications\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMore usage examples and documentation, especially for MPI applications\u003c/h3\u003e\n\u003cp\u003eWe are still learning how to best use the HPC-ME containers with MPI appliations, so please check back.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-disclaimer\" class=\"anchor\" href=\"#disclaimer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDisclaimer\u003c/h3\u003e\n\u003cp\u003eThe United States Department of Commerce (DOC) GitHub project code is provided\non an \u0027as is\u0027 basis and the user assumes responsibility for its use. DOC has\nrelinquished control of the information and no longer has responsibility to\nprotect the integrity, confidentiality, or availability of the information. Any\nclaims against the Department of Commerce stemming from the use of its GitHub\nproject will be governed by all applicable Federal law. Any reference to\nspecific commercial products, processes, or services by service mark,\ntrademark, manufacturer, or otherwise, does not constitute or imply their\nendorsement, recommendation or favoring by the Department of Commerce. The\nDepartment of Commerce seal and logo, or the seal and logo of a DOC bureau,\nshall not be used in any manner to imply endorsement of any commercial product\nor activity by DOC or the United States Government.\u003c/p\u003e\n\u003cp\u003eThis project code is made available through GitHub but is managed by NOAA-GFDL\nat \u003ca href=\"https://gitlab.gfdl.noaa.gov\" rel=\"nofollow\"\u003ehttps://gitlab.gfdl.noaa.gov\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1655130007.0
+ "updated_at": 1650907447.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Flappie singularity image =\u003e https://github.com/nanoporetech/flappie",
"filenames": [
- "os_recipes/Singularity.SuSE",
- "os_recipes/Singularity.deboot.ubuntu",
- "os_recipes/Singularity.centos7",
- "os_recipes/Singularity.4.2.5",
- "os_recipes/Singularity.archive.debian",
- "os_recipes/Singularity.centos6",
- "os_recipes/Singularity.base-4.2.5",
- "os_recipes/Singularity.usmirror.debian",
- "docs/Singularity.3_0.debian9",
- "store_pw/Singularity.pw_embed",
- "store_pw/Singularity.4.2.5",
- "store_pw/Singularity.python-4.2.5",
- "store_pw/Singularity.base-4.2.5",
- "store_pw/Singularity.pw_encrypt"
+ "Singularity"
],
- "full_name": "d-w-moore/new_d2c",
+ "full_name": "romxero/flappie_singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-installing-and-running-slurm-on-ubuntu-16-or-18\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-and-running-slurm-on-ubuntu-16-or-18\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling and Running SLURM on ubuntu 16 or 18\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install-slurm\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-slurm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall SLURM\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esudo apt install slurm-wlm\ngit clone http://github.com/d-w-moore/new_d2c\ncd new_d2c\nperl process_slurm_template.pl | sudo dd of=/etc/slurm-llnl/slurm.conf\nsudo systemctl restart slurmctld slurmd\nsudo systemctl enable slurmctld slurmd\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto test:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esudo apt install bc\u003c/li\u003e\n\u003cli\u003elocate command file slurm_install_test.sh containing:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e #!/bin/bash\n bc -l \u0026lt;\u0026lt;\u0026lt;\"scale=4000;a(1)*4\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003erun the above mentioned test script using : \u003ccode\u003esbatch \u0026lt;script\u0026gt;\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003etype: \u003ccode\u003esqueue\u003c/code\u003e and note the job present (most likely running)\u003c/li\u003e\n\u003cli\u003ewhen it disappears from queue (\u003ccode\u003ewatch -n1 squeue\u003c/code\u003e), look for \u003ccode\u003eslurm-\u0026lt;JOBNUM\u0026gt;.out\u003c/code\u003e\ncontaining the job\u0027s output\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-datacompute-automated-setup---install-irods-hook-scripts-for-slurm-prolog--epilog\" class=\"anchor\" aria-hidden=\"true\" href=\"#datacompute-automated-setup---install-irods-hook-scripts-for-slurm-prolog--epilog\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData/Compute automated setup - install iRODS hook scripts for slurm prolog / epilog\u003c/h2\u003e\n\u003cp\u003eThe following command will setup prolog and epilog scripts to be run (pre- and post-,\nrespectively) for each job executed by SLURM:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo ./slurm_hook_setup.sh\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1561308424.0
+ "updated_at": 1555445240.0
},
{
"data_format": 2,
- "description": "Singularity container script for 10x Genomics SuperNova software",
+ "description": "Dynamic-programming optimizer to solve exact literal-weighted SAT (Boolean MPE)",
"filenames": [
- "Singularity.2.0.0"
+ "lg/Singularity"
],
- "full_name": "arcsUVA/supernova",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-supernova\" class=\"anchor\" aria-hidden=\"true\" href=\"#supernova\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esupernova\u003c/h1\u003e\n\u003cp\u003eSingularity container script for 10x Genomics SuperNova software\u003c/p\u003e\n",
+ "full_name": "vuphan314/DPO",
+ "latest_release": "v0",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dpo-dynamic-programming-optimizer\" class=\"anchor\" href=\"#dpo-dynamic-programming-optimizer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDPO (dynamic-programming optimizer)\u003c/h1\u003e\n\u003cp\u003eDPO runs in two phases:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe planning phase constructs a project-join tree for an XOR-CNF formula.\u003c/li\u003e\n\u003cli\u003eThe execution phase computes the maximum and a maximizer from the constructed join tree.\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-cloning-this-repository\" class=\"anchor\" href=\"#cloning-this-repository\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCloning this repository\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/vuphan314/DPO\u003c/pre\u003e\u003c/div\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-files\" class=\"anchor\" href=\"#files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFiles\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDir \u003ca href=\"./lg/\"\u003e\u003ccode\u003elg/\u003c/code\u003e\u003c/a\u003e: DPO\u0027s planner\u003c/li\u003e\n\u003cli\u003eDir \u003ca href=\"./dmc/\"\u003e\u003ccode\u003edmc/\u003c/code\u003e\u003c/a\u003e: DPO\u0027s executor\u003c/li\u003e\n\u003cli\u003eDir \u003ca href=\"./eval/\"\u003e\u003ccode\u003eeval/\u003c/code\u003e\u003c/a\u003e: empirical evaluation\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-acknowledgment\" class=\"anchor\" href=\"#acknowledgment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgment\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/vardigroup/ADDMC\"\u003eADDMC\u003c/a\u003e: Dudek, Phan, Vardi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/meelgroup/approxmc\"\u003eBIRD\u003c/a\u003e: Soos, Meel\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://cs.rochester.edu/u/kautz/Cachet\" rel=\"nofollow\"\u003eCachet\u003c/a\u003e: Sang, Beame, Kautz\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/msoos/cryptominisat\"\u003eCryptoMiniSat\u003c/a\u003e: Soos\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/ivmai/cudd\"\u003eCUDD package\u003c/a\u003e: Somenzi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://davidkebo.com/cudd#cudd6\" rel=\"nofollow\"\u003eCUDD visualization\u003c/a\u003e: Kebo\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/jarro2783/cxxopts\"\u003ecxxopts\u003c/a\u003e: Beck\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/vardigroup/DPMC\"\u003eDPMC\u003c/a\u003e: Dudek, Phan, Vardi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/kit-algo/flow-cutter-pace17\"\u003eFlowCutter\u003c/a\u003e: Strasser\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/mabseher/htd\"\u003ehtd\u003c/a\u003e: Abseher, Musliu, Woltran\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://reasoning.cs.ucla.edu/minic2d\" rel=\"nofollow\"\u003eminiC2D\u003c/a\u003e: Oztok, Darwiche\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://mccompetition.org\" rel=\"nofollow\"\u003eModel Counting Competition\u003c/a\u003e: Hecher, Fichte\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/Kasekopf/SlurmQueen\"\u003eSlurmQueen\u003c/a\u003e: Dudek\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://trolando.github.io/sylvan\" rel=\"nofollow\"\u003eSylvan\u003c/a\u003e: van Dijk\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/TCS-Meiji/PACE2017-TrackA\"\u003eTamaki\u003c/a\u003e: Tamaki\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/vardigroup/TensorOrder\"\u003eTensorOrder\u003c/a\u003e: Dudek, Duenas-Osorio, Vardi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/meelgroup/WAPS\"\u003eWAPS\u003c/a\u003e: Gupta, Sharma, Roy, Meel\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1551891095.0
+ "updated_at": 1652124481.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for slim (https://github.com/MesserLab/SLiM)",
+ "description": "Dynamic-programming existential-random stochastic SAT solver",
"filenames": [
- "Singularity",
- "Singularity.3.4+1c85d00",
- "Singularity.3.5"
+ "lg/Singularity"
],
- "full_name": "powerPlant/slim-srf",
- "latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for Selection on Linked Mutations: A forward population genetic simulation for studying linkage effects, such as hitchhiking, background selection, and Hill-Robertson interference\u003c/p\u003e\n",
+ "full_name": "vuphan314/DPER",
+ "latest_release": "v0",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dper-dynamic-programming-existential-random-stochastic-sat-solver\" class=\"anchor\" href=\"#dper-dynamic-programming-existential-random-stochastic-sat-solver\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDPER (dynamic-programming existential-random stochastic SAT solver)\u003c/h1\u003e\n\u003cp\u003eDPER runs in two phases:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe planning phase constructs a graded project-join tree for a CNF formula.\u003c/li\u003e\n\u003cli\u003eThe execution phase computes the maximum and a maximizer from the constructed tree.\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-cloning-this-repository\" class=\"anchor\" href=\"#cloning-this-repository\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCloning this repository\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/vuphan314/DPER\u003c/pre\u003e\u003c/div\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-files\" class=\"anchor\" href=\"#files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFiles\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDir \u003ca href=\"lg\"\u003e\u003ccode\u003elg\u003c/code\u003e\u003c/a\u003e: DPER\u0027s planner\u003c/li\u003e\n\u003cli\u003eDir \u003ca href=\"dmc\"\u003e\u003ccode\u003edmc\u003c/code\u003e\u003c/a\u003e: DPER\u0027s executor\u003c/li\u003e\n\u003cli\u003eDir \u003ca href=\"eval\"\u003e\u003ccode\u003eeval\u003c/code\u003e\u003c/a\u003e: empirical evaluation\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-acknowledgment\" class=\"anchor\" href=\"#acknowledgment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgment\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/vardigroup/ADDMC\"\u003eADDMC\u003c/a\u003e: Dudek, Phan, Vardi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/meelgroup/approxmc\"\u003eBIRD\u003c/a\u003e: Soos, Meel\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://cs.rochester.edu/u/kautz/Cachet\" rel=\"nofollow\"\u003eCachet\u003c/a\u003e: Sang, Beame, Kautz\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/ivmai/cudd\"\u003eCUDD package\u003c/a\u003e: Somenzi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://davidkebo.com/cudd#cudd6\" rel=\"nofollow\"\u003eCUDD visualization\u003c/a\u003e: Kebo\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/jarro2783/cxxopts\"\u003ecxxopts\u003c/a\u003e: Beck\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/vardigroup/DPMC\"\u003eDPMC\u003c/a\u003e: Dudek, Phan, Vardi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/kit-algo/flow-cutter-pace17\"\u003eFlowCutter\u003c/a\u003e: Strasser\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/mabseher/htd\"\u003ehtd\u003c/a\u003e: Abseher, Musliu, Woltran\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://reasoning.cs.ucla.edu/minic2d\" rel=\"nofollow\"\u003eminiC2D\u003c/a\u003e: Oztok, Darwiche\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://mccompetition.org\" rel=\"nofollow\"\u003eModel-counting competition\u003c/a\u003e: Hecher, Fichte\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/Kasekopf/SlurmQueen\"\u003eSlurmQueen\u003c/a\u003e: Dudek\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://trolando.github.io/sylvan\" rel=\"nofollow\"\u003eSylvan\u003c/a\u003e: van Dijk\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/TCS-Meiji/PACE2017-TrackA\"\u003eTamaki\u003c/a\u003e: Tamaki\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/vardigroup/TensorOrder\"\u003eTensorOrder\u003c/a\u003e: Dudek, Duenas-Osorio, Vardi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/meelgroup/WAPS\"\u003eWAPS\u003c/a\u003e: Gupta, Sharma, Roy, Meel\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1607459916.0
+ "updated_at": 1652162476.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "scripts/Singularity"
],
- "full_name": "jganong/singularity-test",
+ "full_name": "waglecn/mabs",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-mabs\" class=\"anchor\" href=\"#mabs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emabs\u003c/h1\u003e\n\u003cp\u003eauthor:\u003ca href=\"mailto:nwaglechner@gmail.com\"\u003enwaglechner@gmail.com\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-basic-setup\" class=\"anchor\" href=\"#basic-setup\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBasic Setup\u003c/h1\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/waglecn/mabs.git\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eConda and snakemake\u003c/p\u003e\n\u003cp\u003eMiniconda available from:\n\u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003ehttps://docs.conda.io/en/latest/miniconda.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003ePython 3.8.3 Miniconda\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ewget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh \nbash Miniconda3-latest-Linux-X86_64.sh\nconda env create --name mabs --file environment.yaml\nconda activate mabs\u003c/pre\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e- note the version of python installed in the the mabs environment is not necessarily the same as the default miniconda python version\n- asking for ete3 in the default environment will required python 3.6 (200921)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-required-files\" class=\"anchor\" href=\"#required-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequired files:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eGATK3 jar file\n\u003cul\u003e\n\u003cli\u003eavailable from \u003ca href=\"https://console.cloud.google.com/storage/browser/gatk-software/package-archive/gatk\" rel=\"nofollow\"\u003ehttps://console.cloud.google.com/storage/browser/gatk-software/package-archive/gatk\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eused \u0027\u0027\u0027GenomeAnalysisTK-3.8-1-0-gf15c1c3ef.tar.bz2\u0027\u0027\u0027\u003c/li\u003e\n\u003cli\u003esee config.yaml\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eadapters for trimming - see config.yaml\n\u003cul\u003e\n\u003cli\u003elook for adapter files bundled with trimmomatic, ie.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003elocate TruSeq3-PE.fa\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eKraken database\n\u003ca href=\"ftp://ftp.ccb.jhu.edu/pub/data/kraken2_dbs/\" rel=\"nofollow\"\u003eftp://ftp.ccb.jhu.edu/pub/data/kraken2_dbs/\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ewget ftp://ftp.ccb.jhu.edu/pub/data/kraken2_dbs/minikraken_8GB_202003.tgz\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-how-to-run\" class=\"anchor\" href=\"#how-to-run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake --configfile config.yaml --cores 8 --use-conda --conda-prefix /path/to/.snakemake/conda\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUse config.default.yaml as a template for other config files.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-notes\" class=\"anchor\" href=\"#notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h1\u003e\n\u003cp\u003e200915\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003estrange bug causing infinite loop in snakemake downloading refseq genomes. I think this is because of the dynamic() output/input in rules. Checking this out, seeing if the bug happens if I run entire pipeline from scratch.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e200917\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003enoticed a bug in running shovill, increased expected memory usage. Shovill version 0.9.0 running from an older miniconda. Removed miniconda, started from scratch, and pinned Shovill 1.1.0 in shovill.yaml\u003c/li\u003e\n\u003cli\u003eafter fixing, rerunning seems to work with example data, then works after deleting the mashtree and refseq_download directories.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e210302\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eon vs masking before gubbins vs after see \u003ca href=\"https://github.com/sanger-pathogens/gubbins/issues/275\"\u003ehttps://github.com/sanger-pathogens/gubbins/issues/275\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-200902\" class=\"anchor\" href=\"#todo-200902\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 200902\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e[ ]download internal project data - deferred\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[X] configurable data-dir - 200914\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003edownload external project data\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[X] refseq genomes - done 200904\u003c/li\u003e\n\u003cli\u003e[ ] genomes from Bryant et al, SRA\n\u003cul\u003e\n\u003cli\u003eneed to know what these are\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[X] download reference assemblies - 200908\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003efirst used all contig assemblies, changed to \u0027complete\u0027 keyword\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ereading in samples somehow, obviously this depends on how/where they are downloaded (see previous TODO item) and the data that is already downloaded\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eneed a dummy rule that requires these as input in order to define wildcards\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[X] basic Snakefile - 200905\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[X] build workflow part 1\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[X] index reference assemblies - deferred 200914\n\u003cul\u003e\n\u003cli\u003emoved to resources/alignment_references\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] pre-trim QC - done 200908\u003c/li\u003e\n\u003cli\u003e[X] trim - done 200909\n\u003cul\u003e\n\u003cli\u003especify adapter files, add variable to config\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] post-trim QC done 200909\u003c/li\u003e\n\u003cli\u003e[X] kraken check - done 200910\n\u003cul\u003e\n\u003cli\u003e[X] download kraken db automatically - deferred, added to Required files\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] genome assembly on raw reads - 200914\n\u003cul\u003e\n\u003cli\u003e[X] Erm(41) identification on assembly - 200912\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] kraken2 on assembly - 200912\u003c/li\u003e\n\u003cli\u003e[X] mashtree assembly - 200913\u003c/li\u003e\n\u003cli\u003e[X] map everything to ATCC 19977 for basic coverage - 200914\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[ ] build workflow part 2 on available assemblies\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[X] tree-guided MRCA - 200915\u003c/li\u003e\n\u003cli\u003e[X] MRCA-guided MLST - 200913\u003c/li\u003e\n\u003cli\u003e[X] MRCA-guided reference mapping - 200921\u003c/li\u003e\n\u003cli\u003e[ ] Optional: Mark duplicates with picard\u003c/li\u003e\n\u003cli\u003e[X] read filtering - see Martin et al 2018 and Lee et al 2020\n\u003cul\u003e\n\u003cli\u003e[X] filter soft clips - 200922\u003c/li\u003e\n\u003cli\u003e[X] optional GATK realignment, but see for why it was removed in 2015 for gatk4 \u003ca href=\"https://github.com/broadinstitute/gatk-docs/blob/master/blog-2012-to-2019/2016-06-21-Changing_workflows_around_calling_SNPs_and_indels.md?id=7847\"\u003ehttps://github.com/broadinstitute/gatk-docs/blob/master/blog-2012-to-2019/2016-06-21-Changing_workflows_around_calling_SNPs_and_indels.md?id=7847\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e[X] added 200923, optional 200924\u003c/li\u003e\n\u003cli\u003eintially added gatk4, got errors and followed the rabbit-hole\u003c/li\u003e\n\u003cli\u003eto follow Martin et al, added conda env with gatk3.8, since the resulting bam can be used with any downstream variant caller\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] annotate regions of interest\n\u003cul\u003e\n\u003cli\u003eremove PP/PPE regions (BED file)\n\u003cul\u003e\n\u003cli\u003e[X] identify PP/PPE - 200927\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] zero coverage of reference\u003c/li\u003e\n\u003cli\u003e[ ] remove phage, tnp, IS\u003c/li\u003e\n\u003cli\u003e[X] merge ROI BED files\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] MRCA-guided variant calling with bcftools - 200922\n\u003cul\u003e\n\u003cli\u003e[X] bcftools mpileup - 200923\u003c/li\u003e\n\u003cli\u003e[X] called variants - 200923\u003c/li\u003e\n\u003cli\u003e[X] variant filtering\n\u003cul\u003e\n\u003cli\u003e[X] basic Martin et al - 200925\u003c/li\u003e\n\u003cli\u003e[ ] density filter - see \u003ca href=\"https://github.com/c2-d2/within-host-diversity/blob/master/fastq_to_vcf_pipeline.py#L122\"\u003ehttps://github.com/c2-d2/within-host-diversity/blob/master/fastq_to_vcf_pipeline.py#L122\u003c/a\u003e line\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] variant annotation with SNPEff\u003c/li\u003e\n\u003cli\u003e[X] SNP-tree construction\n\u003cul\u003e\n\u003cli\u003e[X] SNP extraction - custom? merge vcf as per Robyn 201006\u003c/li\u003e\n\u003cli\u003e[X] - merge SNPs - 201013\u003c/li\u003e\n\u003cli\u003e[X] concatenate cSNPSs (exclude hSNPs) 201016\n\u003cul\u003e\n\u003cli\u003esnp-sites ? snippy?\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] - vcfmerge 201014\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-200911\" class=\"anchor\" href=\"#todo-200911\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 200911\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e[X] add trimming parameters to config file - 200921\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-200914\" class=\"anchor\" href=\"#todo-200914\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 200914\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003esub-species type assemblies are hard-coded in scripts/tree_MRCA.py, it would be useful for these to be configurable but adds layers of complexity to snakefile\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-200920\" class=\"anchor\" href=\"#todo-200920\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 200920\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eAdded GATK info to REQUIREMENTS, and config.yaml\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-200926\" class=\"anchor\" href=\"#todo-200926\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 200926\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] Tune variant filtering\u003c/li\u003e\n\u003cli\u003e[X] TODO big question here - use stats from part 1 to make \u003cem\u003enew\u003c/em\u003e sample_sheet with QC pass samples? No\n\u003cul\u003e\n\u003cli\u003e[X] make list to prune from SNP alignment - not needed 201012\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] need separate list of in-complete genomes, as MRCA-guided MLST didn\u0027t work as expected, tree has wrong structure (samples from pt 29 should be mmas) - Fixed 201006, need to convert gbff files before mashtree can read\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-201010\" class=\"anchor\" href=\"#todo-201010\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 201010\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e[X] start density filter\u003c/li\u003e\n\u003cli\u003e[X] merge completed results without recalculating shovill assemblies for old samples - 201010\u003c/li\u003e\n\u003cli\u003e[X] merge 0-coverage bed files and PE_PPE bed files 201013\u003c/li\u003e\n\u003cli\u003e[X] filter merged bed from vcf\n\u003cul\u003e\n\u003cli\u003e[X] compress vcf with bcftools\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-201013\" class=\"anchor\" href=\"#todo-201013\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 201013\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e[X] complete density filter - 20-11-23\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-201015\" class=\"anchor\" href=\"#todo-201015\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 201015\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e[X] incorporate \u003ca href=\"https://github.com/phac-nml/mab_mabscessus\"\u003ehttps://github.com/phac-nml/mab_mabscessus\u003c/a\u003e 211021\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-210323\" class=\"anchor\" href=\"#210323\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e210323\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003emerging script\u003c/li\u003e\n\u003cli\u003ecopy results_folder1 and results_folder2 into results_merge folder\u003c/li\u003e\n\u003cli\u003eremove the gubbins folder\u003c/li\u003e\n\u003cli\u003eremove the SNP_phylo folder\u003c/li\u003e\n\u003cli\u003eremove the files in MRCA_ref_folder, but keep the individual reference sub-folders\u003c/li\u003e\n\u003cli\u003eremove the mashtree folder\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003erun snakemake with the following targets, in this order:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003emashtree/assembly_mashtree.complete.tree\u003c/li\u003e\n\u003cli\u003estage1\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003etouch ./MRCA_ref_mapping/\u003cem\u003e/tempRGSC.merged.\u003c/em\u003e.sorted.bam.bai\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.intervals\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA.bam\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA.mpileup\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA_filter.vcf.gz\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA_filter.failed.vcf.gz\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA_filter.AD_failed.vcf.gz\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA_filter.hvar.vcf.gz\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA.0cov.bed\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA_filter.hvar_DF.bed\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003estage2\u003c/li\u003e\n\u003cli\u003estage3 to generate the merged output (gubbins, SNP phylo, merged beds, etc)\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1606934860.0
+ "updated_at": 1651613417.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Uniform and Weighted Sampling using Dynamic Programming",
"filenames": [
- "Singularity.conda_torch",
- "Singularity.torch3",
- "Singularity.tf2new",
- "Singularity.ubuntu_tf",
- "Singularity.tf_einops",
- "Singularity.ubuntu_pre",
- "Singularity.centos_tf",
- "Singularity.centos_torch2",
- "Singularity.conda",
- "Singularity.ExplainAI",
- "Singularity.geometric",
- "Singularity.tf23",
- "Singularity.Spektral",
- "Singularity.tf2",
- "Singularity.ubuntu_torch",
- "Singularity.torch2",
- "Singularity.centos_torch",
- "Singularity.tf2b1",
- "Singularity.torch"
+ "dmc/Singularity",
+ "lg/Singularity"
],
- "full_name": "alex-chunhui-yang/container",
+ "full_name": "allrtaken/DPSampler",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dpmc-dynamic-programming-for-model-counting\" class=\"anchor\" href=\"#dpmc-dynamic-programming-for-model-counting\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDPMC (Dynamic Programming for Model Counting)\u003c/h1\u003e\n\u003cp\u003eDPMC computes weighted model counts of formulas in conjunctive normal form (CNF)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe DPMC framework runs in two phases:\n\u003cul\u003e\n\u003cli\u003ePlanning phase: \u003ca href=\"./lg\"\u003eLG\u003c/a\u003e or \u003ca href=\"./htb\"\u003eHTB\u003c/a\u003e constructs a join tree of a CNF formula\u003c/li\u003e\n\u003cli\u003eExecution phase: \u003ca href=\"./dmc\"\u003eDMC\u003c/a\u003e computes the model count of the formula using the join tree\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eDevelopers:\n\u003cul\u003e\n\u003cli\u003eJeffrey Dudek\u003c/li\u003e\n\u003cli\u003eVu Phan\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\n\u003ch2\u003e\n\u003ca id=\"user-content-releases\" class=\"anchor\" href=\"#releases\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"https://github.com/vardigroup/DPMC/releases\"\u003eReleases\u003c/a\u003e\n\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e2021/05/25: \u003ca href=\"https://github.com/vardigroup/DPMC/releases/tag/mc-2021\"\u003emc-2021\u003c/a\u003e \u003ca href=\"https://zenodo.org/badge/latestdoi/280443175\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a66989e99eb192ab9857e39b3f1e218d0f4b7bcd8b478436fdace72cf61b408c/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3238303434333137352e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/280443175.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"./mcc\"\u003eModel Counting Competition MC-2021\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e2021/05/23: \u003ca href=\"https://github.com/vardigroup/DPMC/releases/tag/v2.0.0\"\u003ev2.0.0\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eSAT-2021 paper: \u003cstrong\u003eProCount: Weighted Projected Model Counting with Graded Project-Join Trees\u003c/strong\u003e\n\u003cul\u003e\n\u003cli\u003eAuthors: Jeffrey M. Dudek, Vu H. N. Phan, Moshe Y. Vardi\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e2020/07/20: \u003ca href=\"https://github.com/vardigroup/DPMC/releases/tag/v1.0.0\"\u003ev1.0.0\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eCP-2020 paper: \u003cstrong\u003e\u003ca href=\"https://arxiv.org/abs/2008.08748\" rel=\"nofollow\"\u003eDPMC: Weighted Model Counting by Dynamic Programming on Project-Join Trees\u003c/a\u003e\u003c/strong\u003e\n\u003cul\u003e\n\u003cli\u003eAuthors: Jeffrey M. Dudek, Vu H. N. Phan, Moshe Y. Vardi\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\n\u003ch2\u003e\n\u003ca id=\"user-content-example-files\" class=\"anchor\" href=\"#example-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"./examples\"\u003eExample files\u003c/a\u003e\n\u003c/h2\u003e\n\n\u003ch2\u003e\n\u003ca id=\"user-content-acknowledgment\" class=\"anchor\" href=\"#acknowledgment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"./ACKNOWLEDGMENT.md\"\u003eAcknowledgment\u003c/a\u003e\n\u003c/h2\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1617573462.0
+ "updated_at": 1652210102.0
},
{
"data_format": 2,
@@ -7959,535 +7547,423 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "shots47s/MAGetBrain_Sinularity",
+ "full_name": "Hydroinformatics/singularity-swat681wr-main",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-magetbrain_sinularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#magetbrain_sinularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMAGetBrain_Sinularity\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-soil--water-assessment-tool\" class=\"anchor\" href=\"#soil--water-assessment-tool\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSoil \u0026amp; Water Assessment Tool\u003c/h1\u003e\n\u003cp\u003eThis container includes the Soil and Water Assessment Tool (\u003ca href=\"https://swat.tamu.edu/software/\" rel=\"nofollow\"\u003ehttps://swat.tamu.edu/software/\u003c/a\u003e)\nrevision 681,\nbuilt for use on amd64 Linux systems. The binary is installed at /usr/local/swat681/swat.\nAt run-time, any input files MUST be bind-mounted to /usr/local/swat681 - for example:\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1534432676.0
- },
- {
- "data_format": 2,
- "description": "CS 361 Evolutionary Computation and Artificial Life project. ",
- "filenames": [
- "third-party/force-cover/Singularity"
- ],
- "full_name": "koellingh/empirical-p53-simulator",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-evolutionary-algorithm\" class=\"anchor\" aria-hidden=\"true\" href=\"#evolutionary-algorithm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEvolutionary Algorithm\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/anyaevostinar/evo-algo/releases\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ff63e2cc80517f7b8e8246b33025f569d757ede0ae65c7ea57418d79e5a3709d/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e6769746875622e696f25324665766f2d616c676f25324676657273696f6e2d62616467652e6a736f6e\" alt=\"version\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.github.io%2Fevo-algo%2Fversion-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://travis-ci.com/anyaevostinar/evo-algo\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2bde10efc09d993aad000b3101be56d5410d0ced348c4c7bbedbc7ffce79d630/68747470733a2f2f696d672e736869656c64732e696f2f7472617669732f616e796165766f7374696e61722f65766f2d616c676f2e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/travis/anyaevostinar/evo-algo.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://evo-algo.readthedocs.io/en/latest/?badge=latest\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2af827df5df15ff6f5c6a9fff5021e631a0049aa2274f98e983135bb66f0ed81/68747470733a2f2f72656164746865646f63732e6f72672f70726f6a656374732f65766f2d616c676f2f62616467652f3f76657273696f6e3d6c6174657374\" alt=\"Documentation Status\" data-canonical-src=\"https://readthedocs.org/projects/evo-algo/badge/?version=latest\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://evo-algo.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0e035446b6d1c7a911bd4b203bd581f2116c7873352a90d4797dc08119abbd0e/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e6769746875622e696f25324665766f2d616c676f253246646f63756d656e746174696f6e2d636f7665726167652d62616467652e6a736f6e\" alt=\"documentation coverage\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.github.io%2Fevo-algo%2Fdocumentation-coverage-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://codecov.io/gh/anyaevostinar/evo-algo\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/869814fe0b90d0baadc37140ac31d6d9c0e4e00c2854a51f1030c40678bc13a4/68747470733a2f2f636f6465636f762e696f2f67682f616e796165766f7374696e61722f65766f2d616c676f2f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"code coverage status\" data-canonical-src=\"https://codecov.io/gh/anyaevostinar/evo-algo/branch/master/graph/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/anyaevostinar/evo-algo/search?q=todo+OR+fixme\u0026amp;type=\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4455f1d1625d643fe17506cb6ad50a9a6612ce62ab4667dc60b75616241c7534/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e636f6d25324665766f2d616c676f253246646f746f2d62616467652e6a736f6e\" alt=\"dotos\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.com%2Fevo-algo%2Fdoto-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/anyaevostinar/evo-algo\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/db51ac0d7785eb561dcfc0cbccfc0cfed9872513120f8f732b1301504c4eb32e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f616e796165766f7374696e61722f65766f2d616c676f2e7376673f7374796c653d666c61742d737175617265266c6f676f3d676974687562266c6162656c3d5374617273266c6f676f436f6c6f723d7768697465\" alt=\"GitHub stars\" data-canonical-src=\"https://img.shields.io/github/stars/anyaevostinar/evo-algo.svg?style=flat-square\u0026amp;logo=github\u0026amp;label=Stars\u0026amp;logoColor=white\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAn evolutionary algorithm\u003c/p\u003e\n\u003cp\u003eCheck out the live in-browser web app at \u003ca href=\"https://anyaevostinar.github.io/evo-algo\" rel=\"nofollow\"\u003ehttps://anyaevostinar.github.io/evo-algo\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFree software: MIT license\u003c/li\u003e\n\u003cli\u003eDocumentation: \u003ca href=\"https://evo-algo.readthedocs.io\" rel=\"nofollow\"\u003ehttps://evo-algo.readthedocs.io\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-hidden=\"true\" href=\"#features\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFeatures\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eTODO\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/assets/cookie.gif\"\u003e\u003cimg src=\"docs/assets/cookie.gif\" alt=\"cookie monster example\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003eThis package was created with \u003ca href=\"https://github.com/audreyr/cookiecutter\"\u003eCookiecutter\u003c/a\u003e and the \u003ca href=\"https://github.com/devosoft/cookiecutter-empirical-project\"\u003edevosoft/cookiecutter-empirical-project\u003c/a\u003e project template.\u003c/p\u003e\n\u003cp\u003eThis package uses \u003ca href=\"https://github.com/devosoft/Empirical#readme\"\u003eEmpirical\u003c/a\u003e, a library of tools for scientific software development, with emphasis on also being able to build web interfaces using Emscripten.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eTo install \u003ca href=\"https://github.com/devosoft/Empirical\"\u003eEmpirical\u003c/a\u003e, pull down a clone of the Empirical repository. See \u003ca href=\"https://empirical.readthedocs.io/en/latest/QuickStartGuides\" rel=\"nofollow\"\u003eQuick Start Guides\u003c/a\u003e for directions on cloning and using the library.\u003c/p\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1615848203.0
+ "updated_at": 1652372813.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.specter",
+ "Singularity",
+ "Singularity.jupyter",
+ "conda-cudf/Singularity.conda-cudf",
+ "elastic_search/Singularity",
+ "semantic_scholar/Singularity",
+ "mental-ability-proj/Singularity.mental-ability",
+ "vocab_comp/Singularity.vocab_comp"
],
- "full_name": "mmore500/tag-olympics",
+ "full_name": "ghoshmainak/singularity-recipe",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-recipe\" class=\"anchor\" href=\"#singularity-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-recipe\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/5061\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-this-singularity-container-contains\" class=\"anchor\" href=\"#this-singularity-container-contains\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThis singularity container contains:\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003eConda environment\u003c/li\u003e\n\u003cli\u003eNumpy\u003c/li\u003e\n\u003cli\u003eNotebook=6.0.3\u003c/li\u003e\n\u003cli\u003ePandas\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-conda-cudf-recipe\" class=\"anchor\" href=\"#conda-cudf-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econda-cudf recipe\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/containers/15169\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis is an extention of singularity-recipe. This container contains:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eConda environment\u003c/li\u003e\n\u003cli\u003eNotebook=6.0.3\u003c/li\u003e\n\u003cli\u003eNumpy\u003c/li\u003e\n\u003cli\u003ecudf=0.13\u003c/li\u003e\n\u003cli\u003ecudatoolkit=10.1\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-mental-ability-project-recipe\" class=\"anchor\" href=\"#mental-ability-project-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emental-ability-project recipe\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/containers/15485\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis container is meant for my own project on mental ability. It contains:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003epython development environment\u003c/li\u003e\n\u003cli\u003epip3\u003c/li\u003e\n\u003cli\u003enumpy\u003c/li\u003e\n\u003cli\u003escipy\u003c/li\u003e\n\u003cli\u003escikit-learn\u003c/li\u003e\n\u003cli\u003epandas\u003c/li\u003e\n\u003cli\u003ejupyter\u003c/li\u003e\n\u003cli\u003ejupyterlab\u003c/li\u003e\n\u003cli\u003epandas\u003c/li\u003e\n\u003cli\u003estatmodels\u003c/li\u003e\n\u003cli\u003enltk\u003c/li\u003e\n\u003cli\u003espacy\u003c/li\u003e\n\u003cli\u003efasttext\u003c/li\u003e\n\u003cli\u003econtractions\u003c/li\u003e\n\u003cli\u003ewget\u003c/li\u003e\n\u003cli\u003ecurl\u003c/li\u003e\n\u003cli\u003enano and vim\u003c/li\u003e\n\u003cli\u003etransformers\u003c/li\u003e\n\u003cli\u003ePyTorch\u003c/li\u003e\n\u003cli\u003egit\u003c/li\u003e\n\u003cli\u003edask\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-elastic-search-recipe\" class=\"anchor\" href=\"#elastic-search-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eelastic search recipe\u003c/h1\u003e\n\u003cp\u003eIt contains:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003epython development environment\u003c/li\u003e\n\u003cli\u003epip3\u003c/li\u003e\n\u003cli\u003enumpy\u003c/li\u003e\n\u003cli\u003ecurl\u003c/li\u003e\n\u003cli\u003ewget\u003c/li\u003e\n\u003cli\u003epandas\u003c/li\u003e\n\u003cli\u003egit\u003c/li\u003e\n\u003cli\u003ejsonmerge\u003c/li\u003e\n\u003cli\u003ejsonlines\u003c/li\u003e\n\u003cli\u003eparquet\u003c/li\u003e\n\u003cli\u003eelasticsearch\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1635955138.0
+ "updated_at": 1639749845.0
},
{
"data_format": 2,
- "description": "Recipe for funannotate pipeline Singularity recipy for UA HPC",
+ "description": "example Singularity files",
"filenames": [
- "Singularity"
+ "cowsay/Singularity"
],
- "full_name": "dshyshlov/funannotate_singularity",
+ "full_name": "cyverse-education/intro2singularity",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-intro2singularity\" class=\"anchor\" href=\"#intro2singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eintro2singularity\u003c/h1\u003e\n\u003cp\u003eexample Singularity files\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1602202847.0
+ "updated_at": 1652622862.0
},
{
"data_format": 2,
- "description": null,
+ "description": "compute",
"filenames": [
- "Singularity.horovod_cpu",
- "Singularity.openmpi_cuda",
- "Singularity.cpu_tf2.2_torch1.5_hvd0.19",
- "Singularity.cpu_tf1.14_torch1.1_hvd0.16",
- "Singularity.horovod_cpu_centos",
- "Singularity.julia_deps",
- "Singularity.gpu",
- "Singularity.test2",
- "Singularity.test",
- "Singularity.horovod_gpu"
+ "Singularity.def"
],
- "full_name": "EliseJ/kay_singularity_images",
+ "full_name": "Aku02/cc",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-images-for-mldl-stack-on-kay\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-images-for-mldl-stack-on-kay\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity images for ML/DL stack on Kay\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-cc\" class=\"anchor\" href=\"#cc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecc\u003c/h1\u003e\n\u003cp\u003ecompute\u003c/p\u003e\n\u003cp\u003esingularity run --nv conda.sif\u003c/p\u003e\n\u003cp\u003esingularity run --nv --bind /scratch:/home/akash02 scratch/conda.sif\u003c/p\u003e\n\u003cp\u003e$ sudo singularity build --nv --nvccli --sandbox test conda.sif\u003c/p\u003e\n\u003cp\u003esingularity shell --nv --nvccli conda.sif\u003c/p\u003e\n\u003cp\u003esrun --mem=16G --cpus-per-task=2 --time=3:0:0 --gres=gpu:t4:1 --pty bash\u003c/p\u003e\n\u003cp\u003esingularity run --nv --nvccli --bind cc:/user_mnt cc/test/\u003c/p\u003e\n\u003cp\u003esudo singularity run --nv --nvccli --writable --bind cc:/root cc/product/\u003c/p\u003e\n\u003cp\u003esudo singularity run --nv banmo.sif\nsudo singularity run --nv --nvccli --writable --bind cc:/root cc/test/\u003c/p\u003e\n\u003cp\u003esudo singularity build --nv --nvccli --rocm product/ Singularity.def\u003c/p\u003e\n\u003cp\u003esudo singularity build --nv --nvccli banmo.sif --tmpdir=$SINGULARITY_TMPDIR docker-daemon://banmo:latest\u003c/p\u003e\n\u003cp\u003esudo singularity build --nv --sandbox --nvccli --rocm test/ Singularity.def\u003c/p\u003e\n\u003cp\u003eERROR conda.core.link:_execute(699): An error occurred while installing package \u0027conda-forge::cudatoolkit-dev-11.3.1-py39h3811e60_0\u0027.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1612268805.0
+ "updated_at": 1651513695.0
},
{
"data_format": 2,
- "description": "Singularity container recipes for bioinformatic workflows",
+ "description": null,
"filenames": [
- "Singularity",
- "cellranger-atac/Singularity",
- "cellranger-rna/Singularity_cellranger-rna_4.0.0"
+ "Singularity.def"
],
- "full_name": "perllb/singularity",
+ "full_name": "Garuda-1/Thesis-2022",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity container recipes for bioinformatics workflows\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e-- Build container with\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003esudo -E singularity build \u0026lt;.sif image file\u0026gt; \u0026lt; container recipe \u0026gt;\u003c/p\u003e\n\u003c/blockquote\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1604059761.0
+ "updated_at": 1652887962.0
},
{
"data_format": 2,
"description": null,
"filenames": [
+ "Singularity.full",
"Singularity"
],
- "full_name": "Saford91/centos7-singularity",
+ "full_name": "leo-cazenille/multiAE-ME",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-multiae-me\" class=\"anchor\" href=\"#multiae-me\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emultiAE-ME\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1500478470.0
+ "updated_at": 1650020409.0
},
{
"data_format": 2,
- "description": "Container Library of Apptainer definition files.",
+ "description": null,
"filenames": [
- "Singularity.digits",
- "Singularity.tensorflow",
- "Singularity.theano",
- "ciml/Singularity.tape-0.4",
- "ciml/Singularity.sparkr-2.3.1",
- "ciml/Singularity.r-3.6.1",
- "ciml/Singularity.esm-0.3.1",
- "ciml/Singularity.pyspark-3.1.2",
- "tensorflow/Singularity.tensorflow-2.8.2-ubuntu-20.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
- "tensorflow/Singularity.tensorflow-2.5.0-ubuntu-18.04-cuda-11.2-openmpi-4.0.5",
- "tensorflow/Singularity.tensorflow-2.7.3-ubuntu-20.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "tensorflow/Singularity.tensorflow-2.5.3-ubuntu-18.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "tensorflow/Singularity.tensorflow-2.5.1-ubuntu-18.04-cuda-11.2-mlnx-ofed-4.7-3.2.9.0-openmpi-4.0.5",
- "tensorflow/Singularity.tensorflow-2.3.0-ubuntu-18.04-cuda-10.1.168-openmpi-3.1.4",
- "hpl/Singularity.hpl-2.3-ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3-openblas-0.3.18",
- "hpl/Singularity.hpl-2.3-ubuntu-18.04-openmpi-4.0.5-openblas-0.3.14",
- "hpl/Singularity.hpl-2.3-ubuntu-18.04-openmpi-3.1.6-openblas-0.3.10",
- "hpl/Singularity.hpl-2.3-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6-openblas-0.3.18",
- "hpl/Singularity.hpl-2.3-ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6-openblas-0.3.18",
- "hpl/Singularity.hpl-2.3-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3-openblas-0.3.18",
- "hpl/Singularity.hpl-2.3-ubuntu-18.04-openmpi-3.1.4-openblas-0.3.10",
- "visit/Singularity.visit-3.1.4-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "beast/Singularity.beast-1.10.4-ubuntu-18.04-cuda-10.2",
- "beast/Singularity.beast-2.6.1-ubuntu-18.04-cuda-10.2",
- "pytorch/Singularity.pytorch-1.8.2-ubuntu-18.04-cuda-10.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "pytorch/Singularity.pytorch-1.10.2-ubuntu-20.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
- "ubuntu/Singularity.ubuntu-18.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "ubuntu/Singularity.ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
- "ubuntu/Singularity.ubuntu-20.04-cuda-11.2",
- "ubuntu/Singularity.ubuntu-18.04-cuda-10.2-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
- "ubuntu/Singularity.ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0",
- "ubuntu/Singularity.ubuntu-20.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
- "ubuntu/Singularity.ubuntu-18.04-cuda-10.2",
- "ubuntu/Singularity.ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "ubuntu/Singularity.ubuntu-20.04",
- "ubuntu/Singularity.ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "ubuntu/Singularity.ubuntu-18.04-cuda-10.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "ubuntu/Singularity.ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0",
- "ubuntu/Singularity.ubuntu-20.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0",
- "ubuntu/Singularity.ubuntu-18.04",
- "ubuntu/Singularity.ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
- "ubuntu/Singularity.ubuntu-18.04-cuda-11.2",
- "ubuntu/Singularity.ubuntu-20.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "ubuntu/Singularity.ubuntu-18.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0",
- "ubuntu/Singularity.ubuntu-18.04-cuda-10.2-mlnx-ofed-4.9-4.1.7.0",
- "ubuntu/Singularity.ubuntu-18.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
- "torch/Singularity.torch-extras",
- "torch/Singularity.torch",
- "ior/Singularity.ior-3.3.0rc1-ubuntu-18.04-openmpi-3.1.4",
- "ior/Singularity.ior-3.3.0rc1-ubuntu-18.04-openmpi-3.1.6",
- "ior/Singularity.ior-3.3.0-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "ior/Singularity.ior-3.3.0-ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
- "ior/Singularity.ior-3.3.0-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
- "ior/Singularity.ior-3.3.0-ubuntu-18.04-openmpi-4.0.5",
- "ior/Singularity.ior-3.3.0-ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "centos/Singularity.centos-7.9.2009-mvapich-2.3.2",
- "centos/Singularity.centos-7.9.2009-openmpi-3.1.4",
- "centos/Singularity.centos-7.9.2009",
- "centos/Singularity.centos-7.7.1908-openmpi-4.0.5",
- "centos/Singularity.centos-7.7.1908-cuda-11.0",
- "centos/Singularity.centos-7.9.2009-cuda-10.1.168",
- "centos/Singularity.centos-7.7.1908-openmpi-3.1.6",
- "centos/Singularity.centos-7.7.1908",
- "centos/Singularity.centos-7.7.1908-cuda-11.0-openmpi-3.1.6",
- "centos/Singularity.centos-7.7.1908-cuda-11.0-openmpi-4.0.5",
- "rstudio/Singularity.rstudio",
- "miniconda/Singularity.miniconda3-py38-4.11.0-ubuntu-20.04",
- "miniconda/Singularity.miniconda2-py27-4.8.3-ubuntu-18.04",
- "miniconda/Singularity.miniconda3-py39-4.9.2-ubuntu-18.04",
- "miniconda/Singularity.miniconda3-py39-4.11.0-ubuntu-20.04",
- "miniconda/Singularity.miniconda3-py38-4.9.2-ubuntu-18.04",
- "miniconda/Singularity.miniconda3-py37-4.9.2-ubuntu-18.04",
- "miniconda/Singularity.miniconda3-py37-4.11.0-ubuntu-20.04",
- "anaconda/Singularity.anaconda3-py39-2021.11-ubuntu-20.04",
- "anaconda/Singularity.anaconda2-py27-2019.10-ubuntu-18.04",
- "fenics/Singularity.fenics-2019.1.0-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "mxnet/Singularity.mxnet-1.7.0-ubuntu-18.04-cuda-10.1.168-openmpi-3.1.4",
- "gromacs/Singularity.gromacs-2020.7-ubuntu-18.04-cuda-10.2",
- "singularity/Singularity.singularity-3.7.4-ubuntu-18.04",
- "keras/Singularity.keras-py3",
- "keras/Singularity.keras-py2",
- "stream/Singularity.stream-5.10-ubuntu-18.04",
- "paraview/Singularity.paraview-5.9.0-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6-osmesa-20.1.5",
- "rnaseq/Singularity.rnaseq",
- "deepbench/Singularity.deepbench-da81ba7-ubuntu-18.04-cuda-11.2-mlnx-ofed-4.7-3.2.9.0-openmpi-3.1.6",
- "deepbench/Singularity.deepbench-da81ba7-ubuntu-18.04-cuda-10.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "xcrysden/Singularity.xcrysden-1.6.2-ubuntu-18.04",
- "spark/Singularity.spark-3.2.1-hadoop-3.2-ubuntu-20.04",
- "spark/Singularity.spark-2.3.1-hadoop-2.7-ubuntu-18.04",
- "spark/Singularity.spark-3.1.2-hadoop-3.2-ubuntu-18.04",
- "omb/Singularity.omb-5.6.3-centos-7.9.2009-mvapich-2.3.2",
- "omb/Singularity.omb-5.8-ubuntu-18.04-cuda-11.2-mlnx-ofed-4.7-3.2.9.0-openmpi-4.0.5",
- "omb/Singularity.omb-5.9-ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "omb/Singularity.omb-5.9-ubuntu-18.04-cuda-10.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "omb/Singularity.omb-5.7-ubuntu-18.04-openmpi-4.0.5",
- "omb/Singularity.omb-5.8-ubuntu-18.04-cuda-10.2-mlnx-ofed-4.6-1.0.1.1-openmpi-3.1.4",
- "omb/Singularity.omb-5.9-ubuntu-20.04-cuda-11.4-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "omb/Singularity.omb-5.7-ubuntu-18.04-mlnx-ofed-4.7-3.2.9.0-openmpi-3.1.6",
- "omb/Singularity.omb-5.7-centos-7.7.1908-openmpi-3.1.6",
- "omb/Singularity.omb-5.9-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
- "omb/Singularity.omb-5.6.3-ubuntu-18.04-openmpi-3.1.4",
- "omb/Singularity.omb-5.6.3-ubuntu-18.04-mvapich-2.3.2",
- "omb/Singularity.omb-5.9-ubuntu-20.04-cuda-11.4-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
- "omb/Singularity.omb-5.9-ubuntu-18.04-cuda-10.2-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
- "omb/Singularity.omb-5.7-centos-7.7.1908-cuda-11.0-openmpi-3.1.6",
- "omb/Singularity.omb-5.9-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
- "omb/Singularity.omb-5.6.3-ubuntu-18.04-cuda-10.1.168-openmpi-3.1.4",
- "omb/Singularity.omb-5.7-ubuntu-18.04-cuda-11.2-openmpi-4.0.5",
- "omb/Singularity.omb-5.6.3-ubuntu-18.04-openmpi-3.1.6",
- "omb/Singularity.omb-5.7-ubuntu-18.04-mlnx-ofed-4.7-3.2.9.0-openmpi-4.0.5",
- "omb/Singularity.omb-5.7-centos-7.7.1908-openmpi-4.0.5",
- "omb/Singularity.omb-5.7-ubuntu-18.04-mlnx-ofed-4.7-3.2.9.0-mvapich-2.3.6",
- "omb/Singularity.omb-5.9-ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
- "omb/Singularity.omb-5.8-ubuntu-18.04-mlnx-ofed-4.6-1.0.1.1-openmpi-3.1.4",
- "omb/Singularity.omb-5.6.3-centos-7.9.2009-openmpi-3.1.4"
+ "Singularity"
],
- "full_name": "acchapm1/containerlibrary",
+ "full_name": "carshadi/tiff2octree-singularity",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1680805708.0
+ "updated_at": 1651625714.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Research on the effects of mixing and matching dataset towards audio separation",
"filenames": [
- "Singularity"
+ "museparation/waveunet/Singularity"
],
- "full_name": "shailapar/build_container_on_shub",
+ "full_name": "B-lanc/Museparation",
"latest_release": null,
- "readme": "\u003cp\u003eExamples for building containers on Singularity Hub\u003c/p\u003e\n\u003cp\u003e./tutorial_steps.txt : example steps, command-by-command\u003c/p\u003e\n\u003cp\u003e./Singularity : is a recipe file for building your container\u003c/p\u003e\n\u003cp\u003e./text_translate.py is a sample python script we can run with the container\u003c/p\u003e\n\u003cp\u003e./make_git_repo.sh is a script that uploads your Singularity repository to github\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-museparation\" class=\"anchor\" href=\"#museparation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMuseparation\u003c/h1\u003e\n\u003cp\u003eResearch on the effects of mixing and matching dataset towards audio separation\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1558647668.0
+ "updated_at": 1649044884.0
},
{
"data_format": 2,
- "description": "If you are going to build off of basic Empirical, this is the project for you",
+ "description": "The Bootcamp of the Ghent Quantum Chemistry Group, aimed at achieving the initial competences needed in order to be able to contribute to our electronic structure method development group.",
"filenames": [
- "third-party/force-cover/Singularity"
+ "Singularity"
],
- "full_name": "piperwelch/Basic-Empirical-Starter-carlcs361s01w21-6",
+ "full_name": "GQCG-edu/bootcamp",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-evolutionary-algorithm\" class=\"anchor\" aria-hidden=\"true\" href=\"#evolutionary-algorithm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEvolutionary Algorithm\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/anyaevostinar/evo-algo/releases\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ff63e2cc80517f7b8e8246b33025f569d757ede0ae65c7ea57418d79e5a3709d/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e6769746875622e696f25324665766f2d616c676f25324676657273696f6e2d62616467652e6a736f6e\" alt=\"version\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.github.io%2Fevo-algo%2Fversion-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://travis-ci.com/anyaevostinar/evo-algo\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2bde10efc09d993aad000b3101be56d5410d0ced348c4c7bbedbc7ffce79d630/68747470733a2f2f696d672e736869656c64732e696f2f7472617669732f616e796165766f7374696e61722f65766f2d616c676f2e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/travis/anyaevostinar/evo-algo.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://evo-algo.readthedocs.io/en/latest/?badge=latest\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2af827df5df15ff6f5c6a9fff5021e631a0049aa2274f98e983135bb66f0ed81/68747470733a2f2f72656164746865646f63732e6f72672f70726f6a656374732f65766f2d616c676f2f62616467652f3f76657273696f6e3d6c6174657374\" alt=\"Documentation Status\" data-canonical-src=\"https://readthedocs.org/projects/evo-algo/badge/?version=latest\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://evo-algo.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0e035446b6d1c7a911bd4b203bd581f2116c7873352a90d4797dc08119abbd0e/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e6769746875622e696f25324665766f2d616c676f253246646f63756d656e746174696f6e2d636f7665726167652d62616467652e6a736f6e\" alt=\"documentation coverage\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.github.io%2Fevo-algo%2Fdocumentation-coverage-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://codecov.io/gh/anyaevostinar/evo-algo\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/869814fe0b90d0baadc37140ac31d6d9c0e4e00c2854a51f1030c40678bc13a4/68747470733a2f2f636f6465636f762e696f2f67682f616e796165766f7374696e61722f65766f2d616c676f2f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"code coverage status\" data-canonical-src=\"https://codecov.io/gh/anyaevostinar/evo-algo/branch/master/graph/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/anyaevostinar/evo-algo/search?q=todo+OR+fixme\u0026amp;type=\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4455f1d1625d643fe17506cb6ad50a9a6612ce62ab4667dc60b75616241c7534/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e636f6d25324665766f2d616c676f253246646f746f2d62616467652e6a736f6e\" alt=\"dotos\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.com%2Fevo-algo%2Fdoto-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/anyaevostinar/evo-algo\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/db51ac0d7785eb561dcfc0cbccfc0cfed9872513120f8f732b1301504c4eb32e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f616e796165766f7374696e61722f65766f2d616c676f2e7376673f7374796c653d666c61742d737175617265266c6f676f3d676974687562266c6162656c3d5374617273266c6f676f436f6c6f723d7768697465\" alt=\"GitHub stars\" data-canonical-src=\"https://img.shields.io/github/stars/anyaevostinar/evo-algo.svg?style=flat-square\u0026amp;logo=github\u0026amp;label=Stars\u0026amp;logoColor=white\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAn evolutionary algorithm\u003c/p\u003e\n\u003cp\u003eCheck out the live in-browser web app at \u003ca href=\"https://anyaevostinar.github.io/evo-algo\" rel=\"nofollow\"\u003ehttps://anyaevostinar.github.io/evo-algo\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFree software: MIT license\u003c/li\u003e\n\u003cli\u003eDocumentation: \u003ca href=\"https://evo-algo.readthedocs.io\" rel=\"nofollow\"\u003ehttps://evo-algo.readthedocs.io\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-hidden=\"true\" href=\"#features\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFeatures\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eTODO\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/assets/cookie.gif\"\u003e\u003cimg src=\"docs/assets/cookie.gif\" alt=\"cookie monster example\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003eThis package was created with \u003ca href=\"https://github.com/audreyr/cookiecutter\"\u003eCookiecutter\u003c/a\u003e and the \u003ca href=\"https://github.com/devosoft/cookiecutter-empirical-project\"\u003edevosoft/cookiecutter-empirical-project\u003c/a\u003e project template.\u003c/p\u003e\n\u003cp\u003eThis package uses \u003ca href=\"https://github.com/devosoft/Empirical#readme\"\u003eEmpirical\u003c/a\u003e, a library of tools for scientific software development, with emphasis on also being able to build web interfaces using Emscripten.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eTo install \u003ca href=\"https://github.com/devosoft/Empirical\"\u003eEmpirical\u003c/a\u003e, pull down a clone of the Empirical repository. See \u003ca href=\"https://empirical.readthedocs.io/en/latest/QuickStartGuides\" rel=\"nofollow\"\u003eQuick Start Guides\u003c/a\u003e for directions on cloning and using the library.\u003c/p\u003e\n",
+ "readme": "\u003cp align=\"center\"\u003e\n\u003ca href=\"media/bootcamp.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"media/bootcamp.png\" width=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp\u003eIn this boot camp you will learn the minimal set of computer skills that are required to survive \u003ca href=\"https://gqcg.github.io/\" rel=\"nofollow\"\u003ein our computational chemistry group\u003c/a\u003e. We will first focus on acquiring high-level skills using freely available resources that run in your browser. After you have obtained these skills, we will break free from the confines of those resources and transition to running software on your local system and in the cloud. Finally, you will apply the skills you have learned by implementing Restricted Hartree-Fock using PySCF.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-schedule\" class=\"anchor\" href=\"#schedule\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSchedule\u003c/h1\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eTraining\u003c/th\u003e\n\u003cth\u003eTechnologies\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ca href=\"training/browser.md\"\u003eCoding in the browser\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eGithub, LaTeX/Overleaf, SciPy-Stack/Colab\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ca href=\"training/local.md\"\u003eCoding locally\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eGit, VSCode, Docker, Jupyter, VSCode: LaTeX workshop\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ca href=\"training/cloud.md\"\u003eCoding in the cloud\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eHPC/modules, Singularity/Apptainer\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ca href=\"project/README.md\"\u003eCapstone project\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u00a0PySCF, RHF\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1615683851.0
+ "subscribers_count": 3,
+ "topics": [
+ "training",
+ "gqcg"
+ ],
+ "updated_at": 1656513940.0
},
{
"data_format": 2,
- "description": "A container for PyMultinest",
+ "description": "ShellCheck, a static analysis tool for shell scripts",
"filenames": [
- "Singularity"
+ "0.5.0/Singularity",
+ "0.8.0/Singularity"
],
- "full_name": "sysmso/singularity-multinest",
+ "full_name": "pscedu/singularity-shellcheck",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-multinest\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-multinest\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-multinest\u003c/h1\u003e\n\u003cp\u003eA container for PyMultinest\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-shellcheck/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-shellcheck/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-shellcheck/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-shellcheck/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/405923c0ac019718e1ce7ee2305e5e1e59721f91e675a8b0905b5c8b1e2abfbc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/405923c0ac019718e1ce7ee2305e5e1e59721f91e675a8b0905b5c8b1e2abfbc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-shellcheck\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/bd63ff1e920842a88281143fb261678d5a3c13a0b9aa2b77daa4f01c294053b4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bd63ff1e920842a88281143fb261678d5a3c13a0b9aa2b77daa4f01c294053b4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-shellcheck\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/3501f937ae3c9e631fa7626a21c08282d81835d5df168737e339adbc9b8e6d41/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3501f937ae3c9e631fa7626a21c08282d81835d5df168737e339adbc9b8e6d41/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-shellcheck\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f24e35c82c0a0127f9824f4cb911bf49ccdadbd7871a842b8ad8292cfbae64c6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f24e35c82c0a0127f9824f4cb911bf49ccdadbd7871a842b8ad8292cfbae64c6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-shellcheck\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-shellcheck\" class=\"anchor\" href=\"#singularity-shellcheck\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-shellcheck\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/koalaman/shellcheck.net\"\u003eshellcheck\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eshellcheck\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/shellcheck/0.8.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/shellcheck\u003c/code\u003e as \u003ccode\u003e0.8.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [],
- "updated_at": 1602594100.0
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1649646255.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "deepcell-tf/Singularity.0.1",
- "DS5559/Singularity-0.1",
- "tensorflow/Singularity.2.0.0-py36",
- "tensorflow/Singularity.1.12.0-py36",
- "tensorflow/Singularity.1.6.0-py36",
- "tensorflow/Singularity.1.13.1-py36",
- "tensorflow/Singularity.1.12.0-py27",
- "tensorflow/Singularity.1.12.3-py36",
- "tensorflow/Singularity.2.1.0-py37-rs8wa",
- "tensorflow/Singularity.1.6.0-py27",
- "tensorflow/Singularity.2.1.0-py37",
- "tensorflow/Singularity.1.14.0-py36",
- "patric/Singularity.1.026",
- "rhessys/Singularity.1",
- "rhessys/Singularity.3.3",
- "rhessys/Singularity.3",
- "rhessys/Singularity.2",
- "kaggle/Singularity-0.0",
- "kaggle/Singularity-0.1",
- "pytorch/Singularity.1.3.1-py36",
- "pytorch/Singularity.1.0.0-py36",
- "pytorch/Singularity.1.4.0-py37",
- "cryoCARE/Singularity.0.1.0",
- "danpos/Singularity.2.2.2",
- "cp-analyst/Singularity.2.2.1",
- "maxquant/Singularity.1.6.7.0",
- "caffe2/Singularity.0.8.0",
- "supernova/Singularity.2.0.0",
- "anaconda/Singularity.2019.10-cuda10.0-cudnn7.6-py3.6",
- "anaconda/Singularity.2019.10-cuda10.0-cudnn7.6-py3.7",
- "anaconda/Singularity.2019.10-cuda9.0-cudnn7.6-py2.7",
- "anaconda/Singularity.2019.10-cuda9.0-cudnn7.6-py3.6",
- "anaconda/Singularity.cuda10.0-cudnn7.4-py3.6",
- "anaconda/Singularity.cuda9.0-cudnn7.4-py3.6",
- "lolcow/Singularity.1.0.0",
- "theano/Singularity.1.0.4-py36",
- "hydrator/Singularity.0.0.2",
- "hydrator/Singularity.0.0.10",
- "cellprofiler/Singularity.2.2.0",
- "cellprofiler/Singularity.3.0.0",
- "cellprofiler/Singularity.3.1.8",
- "cellprofiler/Singularity.3.1.9",
- "p4vasp/Singularity.0.3.30",
- "anvio/Singularity.6.2-alpine",
- "anvio/Singularity.6.2",
- "inkscape/Singularity.0.92.3",
- "sumo/Singularity.1.3.1",
- "omero-client/Singularity.5.6.1",
- "omero-client/Singularity.5.4.10",
- "rstudio_server/Singularity.1.1.463",
- "rstudio_server/Singularity.1.0.143",
- "vg/Singularity.1.22.0",
- "vg/Singularity.1.23.0",
- "R/Singularity.3.6.0",
- "R/Singularity-3.6.0",
- "electron/Singularity"
+ "2/images/Singularity.def",
+ "4/images/Singularity.def",
+ "3/images/Singularity.def",
+ "1/images/Singularity.def"
],
- "full_name": "uvarc/singularity-scripts",
+ "full_name": "alcidesmig/hpc-ufscar-cluster",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-scripts\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-scripts\u003c/h1\u003e\n\u003cp\u003eCollection of Singularity container recipe files.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 6,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1614097316.0
+ "updated_at": 1643401257.0
},
{
"data_format": 2,
- "description": "ngs pipelines _ nextflow/singularity workflows",
+ "description": null,
"filenames": [
- "scATAC_cellranger/container_singularity/Singularity"
+ "Singularity"
],
- "full_name": "perllb/ngs_pipelines",
+ "full_name": "truatpasteurdotfr/singularity-cryolo-cuda10",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-singularity-container-for-cryolo-using-cuda-version-10\" class=\"anchor\" href=\"#building-a-singularity-container-for-cryolo-using-cuda-version-10\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a singularity container for crYOLO using CUDA version 10\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003etoy system for github actions\u003c/li\u003e\n\u003cli\u003ebuild singularity container from dockerhub registry and push to oras://ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity\n\u003ca href=\"https://github.com/truatpasteurdotfr/singularity-cryolo-cuda10/actions/workflows/singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-cryolo-cuda10/actions/workflows/singularity-publish.yml/badge.svg\" alt=\"Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /run --nv oras://ghcr.io/truatpasteurdotfr/singularity-cryolo-cuda10:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLICENSE:\nThe same as crYOLO (free for academic use, see \u003ca href=\"https://cryolo.readthedocs.io/en/stable/other/license.html\" rel=\"nofollow\"\u003ehttps://cryolo.readthedocs.io/en/stable/other/license.html\u003c/a\u003e)\ncopy retrieved from \u003ca href=\"https://raw.githubusercontent.com/MPI-Dortmund/cryolo/9ea47f694fc68bcdaedf550a128558b8e77855bc/source/other/license.rst\" rel=\"nofollow\"\u003ehttps://raw.githubusercontent.com/MPI-Dortmund/cryolo/9ea47f694fc68bcdaedf550a128558b8e77855bc/source/other/license.rst\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1668091545.0
+ "updated_at": 1650023541.0
},
{
"data_format": 2,
- "description": "This repo is intended for the tutorial in the Planning Meeting held on the 24th of October, 2018",
+ "description": "Ancestry ",
"filenames": [
- "demoPlanner/Singularity",
- "runPlanningTool/planners/OPTIC-Base/Singularity",
- "runPlanningTool/planners/team40/Singularity"
+ "Singularity"
],
- "full_name": "ionut94/KCL-PlanningTutorial",
+ "full_name": "jahaltom/RIA",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-kcl-planningtutorial\" class=\"anchor\" aria-hidden=\"true\" href=\"#kcl-planningtutorial\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eKCL-PlanningTutorial\u003c/h1\u003e\n\u003cp\u003eThis repo is intended for the tutorial in the Planning Meeting held on the 24th of October, 2018\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-dev-repo-for-runplanningtool-is-here\" class=\"anchor\" aria-hidden=\"true\" href=\"#dev-repo-for-runplanningtool-is-here\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDev repo for runPlanningTool is \u003ca href=\"https://github.com/momartinm/runPlanningTool.git\"\u003ehere\u003c/a\u003e\n\u003c/h2\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-rna-seq-inferred-ancestry-ria\" class=\"anchor\" href=\"#rna-seq-inferred-ancestry-ria\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRNA-Seq Inferred Ancestry (RIA)\u003c/h1\u003e\n\u003cp\u003eRIA is a method for infering super-population (Africa, Europe, South Asia, East Asia, and America) identity from Human RNA-seq data.\nRIA leverages data from 1000 genomes project and utilizes a machine learning approach that involves principal component analysis and support vector machine.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/jahaltom/RNA-Seq-Ancestry-Inference/blob/main/FlowChart.png?raw=true\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/jahaltom/RNA-Seq-Ancestry-Inference/raw/main/FlowChart.png?raw=true\" alt=\"alt text\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-prerequisites\" class=\"anchor\" href=\"#prerequisites\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eUsing Conda 4.10.3, create the conda enviroment and activate:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml\nconda activate Ancestry\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor you can use the Singularity image:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull ria.sif library://aseetharam/ancestry/ria:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eyou can access the tools inside the container by prefixing:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emodule load singularity\nsingularity exec --bind $PWD ria.sif snakemake \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-data-preparation\" class=\"anchor\" href=\"#data-preparation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData Preparation\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003e1000 Genomes Project:\u003c/strong\u003e\nThe snakemake script \"Prepare_1KGP\" downloads chr(1-22) level VCF files from 1000 Genomes Project phase 3 on GRCh38 (\u003ca href=\"https://www.internationalgenome.org/data-portal/data-collection/grch38\" rel=\"nofollow\"\u003ehttps://www.internationalgenome.org/data-portal/data-collection/grch38\u003c/a\u003e, \u003ca href=\"https://doi.org/10.12688/wellcomeopenres.15126.2\" rel=\"nofollow\"\u003ehttps://doi.org/10.12688/wellcomeopenres.15126.2\u003c/a\u003e) while filtering out indels. It also indexes and creates a BED for each filtered VCF file.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -j 22 -s Prepare_1KGP --cluster \"sbatch -t 01:00:00 -c 4 -N 1\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eGRCh38 Reference Genome\u003c/strong\u003e\nThe bash script \"Prepare_Reference_Genome\" will download the Human genome GRCh38 fasta(GCA_000001405.15_GRCh38_no_alt_plus_hs38d1_analysis_set.fna.gz) and the corresponding gtf, and will create a seqence dictionary and index file for the fasta. It also creates a STAR index.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esbatch Prepare_Reference_Genome\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-raw-data-retrieval-from-sra-qc-and-star-2-pass\" class=\"anchor\" href=\"#raw-data-retrieval-from-sra-qc-and-star-2-pass\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRaw data retrieval from SRA, QC, and STAR 2-Pass\u003c/h2\u003e\n\u003cp\u003eThe snakemake script \"STAR_SRA\" takes in a list of run accession IDs \"RAids.txt\" and fetches the raw fastq files from SRA and then uses Trimgalore for QC. The reads are then ran through STAR 2-Pass mode for enhanced novel SJ detection. The SJ.out.tab file for the 2nd pass is made by combining all SJ.out.tab files from the first pass and removing SJ\u0027s that are supported by 2 or less unique mappers.\u003c/p\u003e\n\u003cp\u003eFor just 1 study, create a list of the corresponding run accession IDs \"RAids.txt\" and run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -j 50 -k -s STAR_SRA --cluster \"sbatch -t 8:00:00 -c 30 -N 1\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor multiple studies, create 2 files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSRP: List of unique study accession IDs.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003eERP126405\nERP127339\nSRP293106\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003elist: 2 column file of study accession IDs and corresponding run accession IDs.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003eERP124749 ERR4777044\nERP124749 ERR4777043\nERP126405 ERR5104751\nERP126405 ERR5104750\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen run STAR_SRA on all studies using this script. This will make it so each study gets its own combined SJ.out.tab file for the 2nd pass.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecat SRP | while read i; do \n\tcat list | grep \"$i\" | awk \u0027{print $2}\u0027 \u0026gt; RAids.txt\n\tsnakemake -j 300 -k -s STAR_SRA --cluster \"sbatch -t 8:00:00 -c 30 -N 1 -p RM-shared\"\n\trm output/all.SJ.out.tab\ndone\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-infer-ancestry\" class=\"anchor\" href=\"#infer-ancestry\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInfer Ancestry\u003c/h2\u003e\n\u003cp\u003ePerforms GATK best practices workflow for RNAseq short variant discovery (SNPs + Indels). Intersects varaint data from GATK with 1000 Genomes Project ancestry informative SNPs to gather common loci. Performs PCA on variant data via PLINK and SVM model is implemented for ancestry inference.\u003c/p\u003e\n\u003cp\u003eSplit RAids.txt so snakemake doesnt stall.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esplit -l 100 RAids.txt\n\nls *xa* | cat \u0026gt; splits\n\ncat splits | while read i; do\n\tcat $i \u0026gt; RAids.txt\n\tsnakemake -j 300 -k -s InferAncestry.py --cluster \"sbatch -t 02:00:00 -c 7 -p RM-shared\"\ndone\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1540504981.0
+ "updated_at": 1645029635.0
},
{
"data_format": 2,
- "description": null,
+ "description": "R package for nsphs_ml_qt",
"filenames": [
- "hpc_files/singularity_hpc_files/Singularity.bld"
+ "Singularity",
+ "scripts_bianca/Singularity"
],
- "full_name": "ammunk/distributed-training-pytorch",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-demo-scripts\" class=\"anchor\" aria-hidden=\"true\" href=\"#demo-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDemo scripts\u003c/h1\u003e\n\u003cp\u003eThis repository contains demo scripts for running distributed training of deep\nneural networks using PyTorch. These scripts are written according to the\ninformation found at (\u003ca href=\"https://github.com/ammunk/hpc\"\u003ehttps://github.com/ammunk/hpc\u003c/a\u003e)\u003c/p\u003e\n",
+ "full_name": "richelbilderbeek/nsphs_ml_qt",
+ "latest_release": "v0.3",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nsphs_ml_qt\" class=\"anchor\" href=\"#nsphs_ml_qt\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ensphs_ml_qt\u003c/h1\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eBranch\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://github.com/richelbilderbeek/nsphs_ml_qt/actions\"\u003e\u003cimg src=\"man/figures/GitHubActions.png\" alt=\"GitHub Actions logo\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://www.codecov.io\" rel=\"nofollow\"\u003e\u003cimg src=\"man/figures/Codecov.png\" alt=\"Codecov logo\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emaster\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=master\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=master\" alt=\"R-CMD-check\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt?branch=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/be413dbe544678e8710f09ecb2ee97d7a26b0a853e40a539069148252157700f/68747470733a2f2f636f6465636f762e696f2f67682f72696368656c62696c6465726265656b2f6e737068735f6d6c5f71742f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"Codecov test coverage\" data-canonical-src=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt/branch/master/graph/badge.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003edevelop\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=develop\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=develop\" alt=\"R-CMD-check\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt?branch=develop\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d51e07e8b43e2d93b35336c3c0437fdb29a65ac9e5d54406d980daf81cd2567f/68747470733a2f2f636f6465636f762e696f2f67682f72696368656c62696c6465726265656b2f6e737068735f6d6c5f71742f6272616e63682f646576656c6f702f67726170682f62616467652e737667\" alt=\"Codecov test coverage\" data-canonical-src=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt/branch/develop/graph/badge.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eAll code for \u003cg-emoji class=\"g-emoji\" alias=\"lock\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f512.png\"\u003e\ud83d\udd12\u003c/g-emoji\u003e \u003ca href=\"https://github.com/AJResearchGroup/article_nsphs_ml_qt\"\u003earticle_nsphs_ml_qt\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"scripts_bianca/README.md\"\u003eWorkflow on Bianca\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"scripts_rackham/README.md\"\u003eWorkflow on Rackham\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"scripts_local/README.md\"\u003eWorkflow on local computer\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eResults: \u003ca href=\"https://github.com/richelbilderbeek/nsphs_ml_qt_results\"\u003esee the \u0027nsphs_ml_qt_results\u0027 repository\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca href=\"man/figures/example_architecture.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"man/figures/example_architecture.png\" alt=\"\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"man/figures/example_dimred.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"man/figures/example_dimred.png\" alt=\"\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"man/figures/legend_HO_tiny.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"man/figures/legend_HO_tiny.png\" alt=\"\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1646720319.0
+ "updated_at": 1655910726.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Work with Python installed at a custom location",
"filenames": [
- "Singularity.torch_mmf",
- "Singularity.torch"
+ "Singularity"
],
- "full_name": "ChunCun/container",
- "latest_release": null,
+ "full_name": "richelbilderbeek/ormr",
+ "latest_release": "v0.6.2.1",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ormr\" class=\"anchor\" href=\"#ormr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eormr\u003c/h1\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eBranch\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://github.com/richelbilderbeek/ormr/actions\"\u003e\u003cimg src=\"man/figures/GitHubActions.png\" alt=\"GitHub Actions logo\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://www.codecov.io\" rel=\"nofollow\"\u003e\u003cimg src=\"man/figures/Codecov.png\" alt=\"Codecov logo\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://github.com/richelbilderbeek/ormr/actions\"\u003e\u003cimg src=\"man/figures/GitHubActions.png\" alt=\"GitHub Actions logo\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emaster\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://github.com/richelbilderbeek/ormr/workflows/R-CMD-check/badge.svg?branch=master\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/ormr/workflows/R-CMD-check/badge.svg?branch=master\" alt=\"R-CMD-check\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://codecov.io/github/richelbilderbeek/ormr/branch/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/80f61013497de9c4ba38bd7d37d57f2baf9ad486b3e667b76823a2fa7acb1783/68747470733a2f2f636f6465636f762e696f2f6769746875622f72696368656c62696c6465726265656b2f6f726d722f636f7665726167652e7376673f6272616e63683d6d6173746572\" alt=\"codecov.io\" data-canonical-src=\"https://codecov.io/github/richelbilderbeek/ormr/coverage.svg?branch=master\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://github.com/richelbilderbeek/ormr/workflows/build_singularity/badge.svg?branch=master\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/ormr/workflows/build_singularity/badge.svg?branch=master\" alt=\"build_singularity\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003edevelop\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://github.com/richelbilderbeek/ormr/workflows/R-CMD-check/badge.svg?branch=develop\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/ormr/workflows/R-CMD-check/badge.svg?branch=develop\" alt=\"R-CMD-check\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://codecov.io/github/richelbilderbeek/ormr/branch/develop\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4e40a61ddb8d3cee1a4e177f20956ab6b1887a9d5a422c8e9f9024859f4c23af/68747470733a2f2f636f6465636f762e696f2f6769746875622f72696368656c62696c6465726265656b2f6f726d722f636f7665726167652e7376673f6272616e63683d646576656c6f70\" alt=\"codecov.io\" data-canonical-src=\"https://codecov.io/github/richelbilderbeek/ormr/coverage.svg?branch=develop\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://github.com/richelbilderbeek/ormr/workflows/build_singularity/badge.svg?branch=develop\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/ormr/workflows/build_singularity/badge.svg?branch=develop\" alt=\"build_singularity\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e\u003ca href=\"man/figures/ormr_logo_50.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"man/figures/ormr_logo_50.png\" alt=\"ormr logo\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWork with Python installed at a custom location.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-goal\" class=\"anchor\" href=\"#goal\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGoal\u003c/h1\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e allows a user to install Python packages,\ncreate a Conda environment and run Python scripts\nwith only one point of contact.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e heavily depends on \u003ccode\u003ereticulate\u003c/code\u003e, the latter being\nmore powerful and flexible. \u003ccode\u003eormr\u003c/code\u003e, however, focuses\non making it trivially simple to install Python\npackages and run Python scripts.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-install-ormr\" class=\"anchor\" href=\"#install-ormr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall \u003ccode\u003eormr\u003c/code\u003e\n\u003c/h1\u003e\n\u003cp\u003eAs \u003ccode\u003eormr\u003c/code\u003e is developed on the \u003ccode\u003emaster\u003c/code\u003e branch, only a release\nis tested to work:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eremotes::install_github(\"richelbilderbeek/ormr\", ref = \"v0.6.1\")\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee FAQ why one needs to install a release.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-examples\" class=\"anchor\" href=\"#examples\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExamples\u003c/h1\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e uses one point of contact, \u003ccode\u003eormr_folder_name\u003c/code\u003e.\nFor convenience, there is also a default \u003ccode\u003eormr_folder_name\u003c/code\u003e.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eInstall a Python package\u003c/li\u003e\n\u003cli\u003eRun a Python script\u003c/li\u003e\n\u003cli\u003eRun a Python script with command-line arguments\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eAlso, \u003ccode\u003eormr\u003c/code\u003e uses \u003cstrong\u003eeager loading\u003c/strong\u003e, which means that\nit will setup everything it needs for you. For example,\nif you want to run a Python script from a new \u003ccode\u003eormr_folder_name\u003c/code\u003e,\nit will create a Conda environment there for you as well.\u003c/p\u003e\n\u003cp\u003eNote that \u003ccode\u003ecreate_default_conda_env\u003c/code\u003e conveniently returns the\n\u003ccode\u003eormr_folder_name\u003c/code\u003e used to work with this environment.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-1-install-a-python-package\" class=\"anchor\" href=\"#1-install-a-python-package\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Install a Python package\u003c/h2\u003e\n\u003cp\u003eUsing the default \u003ccode\u003eormr\u003c/code\u003e environment:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003einstall_python_package(\n \u003cspan class=\"pl-v\"\u003epackage_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003escipy\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n)\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUsing a custom \u003ccode\u003eormr_folder_name\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003e\u003cspan class=\"pl-smi\"\u003eormr_folder_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e tempfile()\n\ninstall_python_package(\n \u003cspan class=\"pl-v\"\u003eormr_folder_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003eormr_folder_name\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003epackage_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003escipy\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n)\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-2-run-a-python-script\" class=\"anchor\" href=\"#2-run-a-python-script\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Run a Python script\u003c/h2\u003e\n\u003cp\u003eUsing the default \u003ccode\u003eormr\u003c/code\u003e environment:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003e\u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e system.file(\n \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eextdata\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003ehello_world.py\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003epackage\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eormr\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n)\nrun_python_script(\n \u003cspan class=\"pl-v\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e\n)\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUsing a custom \u003ccode\u003eormr_folder_name\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003e\u003cspan class=\"pl-smi\"\u003eormr_folder_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e tempfile()\n\u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e system.file(\n \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eextdata\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003ehello_world.py\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003epackage\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eormr\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n)\nrun_python_script(\n \u003cspan class=\"pl-v\"\u003eormr_folder_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003eormr_folder_name\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e\n)\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-3-run-a-python-script-with-command-line-arguments\" class=\"anchor\" href=\"#3-run-a-python-script-with-command-line-arguments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. Run a Python script with command-line arguments\u003c/h2\u003e\n\u003cp\u003eUsing the default \u003ccode\u003eormr\u003c/code\u003e environment:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003e\u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e system.file(\n \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eextdata\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eshow_args.py\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003epackage\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eormr\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n)\nrun_python_script_with_args(\n \u003cspan class=\"pl-v\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003eargs\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e c(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eHello\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eworld\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e)\n)\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUsing a custom \u003ccode\u003eormr_folder_name\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003e\u003cspan class=\"pl-smi\"\u003eormr_folder_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e tempfile()\n\u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e system.file(\n \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eextdata\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eshow_args.py\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003epackage\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eormr\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n)\nrun_python_script_with_args(\n \u003cspan class=\"pl-v\"\u003eormr_folder_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003eormr_folder_name\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003eargs\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e c(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eHello\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eworld\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e)\n)\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-faq\" class=\"anchor\" href=\"#faq\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFAQ\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-is-the-goal-of-ormr\" class=\"anchor\" href=\"#what-is-the-goal-of-ormr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is the goal of \u003ccode\u003eormr\u003c/code\u003e?\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e allows a user to install Python packages,\ncreate a Conda environment and run Python scripts\nwith only one point of contact.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-in-what-context-is-ormr-useful\" class=\"anchor\" href=\"#in-what-context-is-ormr-useful\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIn what context is \u003ccode\u003eormr\u003c/code\u003e useful?\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e was written to write simpler\n\u003ca href=\"https://singularity.hpcng.org/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e (a type of containerization\nsoftware, similar to Docker) scripts.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ereticulate\u003c/code\u003e is great when using its default folders on a local computer.\nHowever, for a Singularity container, it is recommended to install\nlibraries in a systems folder. In that setting, \u003ccode\u003ereticulate\u003c/code\u003e is\nharder to work with.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e allows to install install Python packages,\ncreate a Conda environment and run Python scripts\nin any folder easily, for example,\nin a system folder (\u003ccode\u003e/opt/ormr\u003c/code\u003e) of a Singularity container.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-not-just-use-reticulate\" class=\"anchor\" href=\"#why-not-just-use-reticulate\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy not just use \u003ccode\u003ereticulate\u003c/code\u003e?\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e heavily depends on \u003ccode\u003ereticulate\u003c/code\u003e, the latter being\nmore powerful and flexible.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e, however, focuses\non making it trivially simple to install Python\npackages and run Python scripts,\ndue to eager loading.\nAdditionally, \u003ccode\u003eormr\u003c/code\u003e has a more extensive documentation,\nand 100% code coverage.\u003c/p\u003e\n\u003cp\u003eBeyond the domain of \u003ccode\u003eormr\u003c/code\u003e, use \u003ccode\u003ereticulate\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-do-you-mean-with-eager-loading\" class=\"anchor\" href=\"#what-do-you-mean-with-eager-loading\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat do you mean with eager loading?\u003c/h2\u003e\n\u003cp\u003eEager loading is the opposite of lazy loading.\u003c/p\u003e\n\u003cp\u003eHere, it is defined as \u0027if you want \u003ccode\u003eormr\u003c/code\u003e to do B, which depends on\nthe setup of A\u0027, \u003ccode\u003eormr\u003c/code\u003e will setup A, then do B. For example, to install\na package to a certain \u003ccode\u003eormr_folder_name\u003c/code\u003e (\u0027to do B\u0027), \u003ccode\u003eormr\u003c/code\u003e\nwill create a Conda environment for that (\u0027the setup of A\u0027).\u003c/p\u003e\n\u003cp\u003eThis means that no setup code is necessary.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-does-one-need-to-install-a-release-instead-of-just-master\" class=\"anchor\" href=\"#why-does-one-need-to-install-a-release-instead-of-just-master\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy does one need to install a release, instead of just \u003ccode\u003emaster\u003c/code\u003e?\u003c/h2\u003e\n\u003cp\u003eThe development of \u003ccode\u003eormr\u003c/code\u003e takes place on the \u003ccode\u003emaster\u003c/code\u003e branch.\nHence, \u003ccode\u003emaster\u003c/code\u003e will break regularily.\nA specific release is tested to build correctly.\u003c/p\u003e\n\u003cp\u003eThe reason for this non-traditional workflow, is that the\nSingularity script always installs the \u003ccode\u003emaster\u003c/code\u003e branch,\nas it cannot detect the \u003ccode\u003egit\u003c/code\u003e branch is being built by.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-there-is-a-feature-i-miss\" class=\"anchor\" href=\"#there-is-a-feature-i-miss\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThere is a feature I miss\u003c/h2\u003e\n\u003cp\u003eSee \u003ca href=\"CONTRIBUTING.md\"\u003eCONTRIBUTING\u003c/a\u003e, at \u003ccode\u003eSubmitting use cases\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-i-want-to-collaborate\" class=\"anchor\" href=\"#i-want-to-collaborate\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eI want to collaborate\u003c/h2\u003e\n\u003cp\u003eSee \u003ca href=\"CONTRIBUTING.md\"\u003eCONTRIBUTING\u003c/a\u003e, at \u003ccode\u003eSubmitting code\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-i-think-i-have-found-a-bug\" class=\"anchor\" href=\"#i-think-i-have-found-a-bug\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eI think I have found a bug\u003c/h2\u003e\n\u003cp\u003eSee \u003ca href=\"CONTRIBUTING.md\"\u003eCONTRIBUTING\u003c/a\u003e, at \u003ccode\u003eSubmitting bugs\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-theres-something-else-i-want-to-say\" class=\"anchor\" href=\"#theres-something-else-i-want-to-say\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThere\u0027s something else I want to say\u003c/h2\u003e\n\u003cp\u003eSure, just add an Issue. Or send an email.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-do-i-contribute\" class=\"anchor\" href=\"#how-do-i-contribute\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow do I contribute?\u003c/h2\u003e\n\u003cp\u003eSee \u003ca href=\"CONTRIBUTING.md\"\u003eCONTRIBUTING.md\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-is-the-package-called-ormr\" class=\"anchor\" href=\"#why-is-the-package-called-ormr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy is the package called \u003ccode\u003eormr\u003c/code\u003e?\u003c/h2\u003e\n\u003cp\u003eThis name is a pun on \u003ccode\u003ereticulate\u003c/code\u003e. \u003ccode\u003ereticulate\u003c/code\u003e is named after a\ntype of snake. \u003ccode\u003eormr\u003c/code\u003e is written in Sweden. In Swedish, \u003ccode\u003eorm\u003c/code\u003e, is a snake.\nFollowing the common tradtion of adding an \u003ccode\u003er\u003c/code\u003e to the end of an R package\nname (e.g \u003ccode\u003edplyr\u003c/code\u003e, \u003ccode\u003etidyr\u003c/code\u003e, etc) resulted in \u003ccode\u003eormr\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-about-the-logo\" class=\"anchor\" href=\"#what-about-the-logo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat about the logo?\u003c/h2\u003e\n\u003cp\u003eThe original snake image was found when searching for a\npublic domain image of a snake, using the following DuckDuckGo image seach:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ehttps://duckduckgo.com/?q=orm+.png\u0026amp;t=ffab\u0026amp;iar=images\u0026amp;iaf=license%3APublic%2Ctype%3Aclipart\u0026amp;iax=images\u0026amp;ia=images\u0026amp;iai=https%3A%2F%2Fcdn.pixabay.com%2Fphoto%2F2016%2F03%2F31%2F15%2F10%2Fcartoon-1293047_1280.png\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAfter that, the image was modified using KolourPaint and the R logo was added.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-container\" class=\"anchor\" href=\"#singularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity container\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://cloud.sylabs.io/library/search;query=ormr\" rel=\"nofollow\"\u003eFind the latest \u0027ormr\u0027 Singularity container\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-links\" class=\"anchor\" href=\"#links\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLinks\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/richelbilderbeek/reticulate_on_singularity\"\u003ehttps://github.com/richelbilderbeek/reticulate_on_singularity\u003c/a\u003e:\ndemo how to run \u003ccode\u003ereticulate\u003c/code\u003e within a Singularity container, without \u003ccode\u003eormr\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1605677713.0
+ "updated_at": 1639766183.0
},
{
"data_format": 2,
- "description": "Centos 8 base image for Roar",
+ "description": "This is the repository for the workshop taught at ISPW 2022 in Sydney",
"filenames": [
- "Singularity",
- "Singularity.gpu"
+ "files/daskdev/Singularity.dask"
],
- "full_name": "willgpaik/centos8_roar",
+ "full_name": "ardimirzaei/ispw2022-abm-workshop",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-centos8_roar\" class=\"anchor\" aria-hidden=\"true\" href=\"#centos8_roar\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecentos8_roar\u003c/h1\u003e\n\u003cp\u003e\u003cdel\u003eCentos\u003c/del\u003e Rocky Linux 8 base image for Roar\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-note\" class=\"anchor\" aria-hidden=\"true\" href=\"#note\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNOTE\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eThis recipe may include unnecessary packages for certain software installation\u003c/li\u003e\n\u003cli\u003eMore packages will be added in the future\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-updates\" class=\"anchor\" aria-hidden=\"true\" href=\"#updates\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUpdates\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e2020/11/13\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eInitial recipe added\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e2021/03/22\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDefault Python3 is updated to Python 3.8\u003c/li\u003e\n\u003cli\u003eLapack, BLAS, OpenBLAS, ATLAS, and NetCDF are added\u003c/li\u003e\n\u003cli\u003eCMake 3.19.7, Boost 1.75.0, and R 4.0.4 are added\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e2022/10/31\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eImage changed from Centos 8 to Rocky Linux 8\u003c/li\u003e\n\u003cli\u003eDefault Python3 is updated to Python 3.9\u003c/li\u003e\n\u003cli\u003eCMake and R are removed due to later version can be installed from package repo\u003c/li\u003e\n\u003cli\u003eBoost is updated to 1.80.0\u003c/li\u003e\n\u003cli\u003e(Changes are applied to non-GPU version only)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ispw-2022-abm-workshop\" class=\"anchor\" href=\"#ispw-2022-abm-workshop\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eISPW 2022 ABm Workshop\u003c/h1\u003e\n\u003cp\u003eForked from SIH\n--Update this readme.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1667245535.0
+ "subscribers_count": 1,
+ "topics": [
+ "abm",
+ "complex-systems",
+ "pharmacy",
+ "workshop"
+ ],
+ "updated_at": 1654581868.0
},
{
"data_format": 2,
- "description": "Learning temporal planning models",
+ "description": "Deplete Fastq files from human or other content",
"filenames": [
- "planners/team1/src/Singularity"
+ "singularity/Singularity"
],
- "full_name": "sjimenezgithub/tmodeling",
+ "full_name": "sequana/depletion",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-tmodeling\" class=\"anchor\" aria-hidden=\"true\" href=\"#tmodeling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etmodeling\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1574164945.0
+ "updated_at": 1648819859.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Raw format to OME-TIFF converter.",
"filenames": [
- "Singularity.td_base_ml"
+ "3.0.0/Singularity"
],
- "full_name": "TurbulentDynamics/tdEnvSetup",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-turbulent-dynamics\" class=\"anchor\" aria-hidden=\"true\" href=\"#turbulent-dynamics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTurbulent Dynamics\u003c/h1\u003e\n\u003cp\u003eTurbulent Dynamics developes Maching Learning, MPI and iOS applications for both High Performance Computing (Supercomputing), edge devices (Xavier, Raspberry PI, MyriadX) and MacOS. Minimising system admin workload is not trivial so this guide was created to try setup a common dominator for all projects.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"#Environment-setup\"\u003eEnvironment setup\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Simple-Cluster-Diagnostics\"\u003eSimple Cluster Diagnostics\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Coding-Guidelines-and-Visualisations\"\u003eCoding Guidelines and Visualisations\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch1\u003e\u003ca id=\"user-content-environment-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#environment-setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEnvironment setup\u003c/h1\u003e\n\u003cp\u003eTurbulent Dynamics developes Maching Learning, MPI and iOS applications for both High Performance Computing (Supercomputing) edge devices (Xavier, Raspberry PI, MyriadX) and MacOS. Minimising system admin workload is not trivial, as different devices require a different stack, especially edge devices, and sometimes sudo is not available (on HPC systems). This drives out environment and app choices.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eAvoid sudo installs by using Brew for basic tools.\u003c/li\u003e\n\u003cli\u003eAvoid sudo and allow multiple versions of apps using Spack (also compiles all dependencies giving performance advantages).\u003c/li\u003e\n\u003cli\u003eUse containers where possible (Edge devices struggle or are unable).\u003c/li\u003e\n\u003cli\u003eUse Python Venv, for ML Tensorflow and tools.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eDevice\u003c/th\u003e\n\u003cth\u003eUse Case\u003c/th\u003e\n\u003cth\u003eNotes\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPC System\u003c/td\u003e\n\u003ctd\u003eTraining ML and Large Scale MPI apps 100s nodes\u003c/td\u003e\n\u003ctd\u003eSudo not available\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWorkstations (with AMD GPU)\u003c/td\u003e\n\u003ctd\u003eTraining ML\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWorkstations (with Nvidia GPU)\u003c/td\u003e\n\u003ctd\u003eTraining ML, rebuilding Xavier/Nano and MPI app testing\u003c/td\u003e\n\u003ctd\u003eNvidia SDK limits to Ubuntu 18.04\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMacOS (AMD GPU)\u003c/td\u003e\n\u003ctd\u003eVisualisations in Metal and iOS apps\u003c/td\u003e\n\u003ctd\u003eDevelop in Swift\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eNVIDIA Xavier/Nano\u003c/td\u003e\n\u003ctd\u003eML Inferencing\u003c/td\u003e\n\u003ctd\u003eLimited to Cuda 10.0, Tensorflow 1.14\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMyriadX (Intel Compute Stick)\u003c/td\u003e\n\u003ctd\u003eML Inferencing\u003c/td\u003e\n\u003ctd\u003eOpenVINO limits to Ubuntu 16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eRaspberry Pi\u003c/td\u003e\n\u003ctd\u003eML Inferencing\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_0_basics_and_brew.md\"\u003eInstall basics and brew on both MacOS and Linux\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_1_with_spack.md\"\u003eInstall spack and some applications\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_2_python_modules.md\"\u003eInstall python modules\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_3_OpenVINO_on_Ubuntu_16_04.md\"\u003eInstall OpenVINO on Ubuntu 16.04\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_3_nvidia_for_Ubuntu_18_04.md\"\u003eInstall Nvidia CUDA and tools on Ubuntu 18.04\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_4_nvidia_docker2_base_ml_container.md\"\u003eInstall docker, nvidia-docker2 and run TD_Base_Nvidia_ML container\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_5_singularity.md.md\"\u003eInstall singularity and run TD_Base_Nvidia_ML container\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_6_optional_apps.md\"\u003eOptional Apps\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/spack_swift_package.py\"\u003e(WIP) Use Spack to install Swift\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/swift_for_ubuntu.md\"\u003e(WIP) Install Swift on Ubuntu\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-simple-cluster-diagnostics\" class=\"anchor\" aria-hidden=\"true\" href=\"#simple-cluster-diagnostics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSimple Cluster Diagnostics\u003c/h1\u003e\n\u003cp\u003eSimple utility to check if OpenMP, MPI and cuda are working as expected.\n\u003ca href=\"diagnostics_hello_world_mpi_openmp_gpu/README.md\"\u003eDiagnostics OpenMP, MPI, GPU\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-coding-guidelines-and-visualisations\" class=\"anchor\" aria-hidden=\"true\" href=\"#coding-guidelines-and-visualisations\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCoding Guidelines and Visualisations\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"dev_info/index.md\"\u003eCoding guidelines\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://turbulentdynamics.github.io/tdEnvSetup/graphics/arrows.html\" rel=\"nofollow\"\u003eVector Identifiers\u003c/a\u003e The vectors are numbered differently than usual LBM implementations\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://turbulentdynamics.github.io/tdEnvSetup/graphics/cube.html\" rel=\"nofollow\"\u003eItem Identifiers\u003c/a\u003e The cells in the outer shell of the lattice grid has been given an identification\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://turbulentdynamics.github.io/tdEnvSetup/graphics/1000.html\" rel=\"nofollow\"\u003eVisualisation 1000 cubes\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "pscedu/singularity-raw2ometiff",
+ "latest_release": "v3.0.0",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-raw2ometiff/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-raw2ometiff/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-raw2ometiff/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-raw2ometiff/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/8d0d22e8f29e65a71263e2fb6bce4826c7ce3f09aed55e6dbde2928785d212f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8d0d22e8f29e65a71263e2fb6bce4826c7ce3f09aed55e6dbde2928785d212f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-raw2ometiff\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7822cb72c205ba7e407c8e3c73f1753c3051e55c850a256628b591b7640cb064/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7822cb72c205ba7e407c8e3c73f1753c3051e55c850a256628b591b7640cb064/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-raw2ometiff\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ee493a8b01574ccdadc2be17adf48265c4d4d5b8d4dd7528eebab32317323e41/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ee493a8b01574ccdadc2be17adf48265c4d4d5b8d4dd7528eebab32317323e41/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-raw2ometiff\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/48898dd432d34088bdf217be2af09312648ecdf47ab776fb4de050c5338365bd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/48898dd432d34088bdf217be2af09312648ecdf47ab776fb4de050c5338365bd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-raw2ometiff\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-raw2ometiff\" class=\"anchor\" href=\"#singularity-raw2ometiff\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-raw2ometiff\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/d6ac5fb6156e1b197fd547d7632a7b90cb6aac15112aff196834a376c3065baf/68747470733a2f2f7777772e676c656e636f65736f6674776172652e636f6d2f696d672f6c6f676f2e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d6ac5fb6156e1b197fd547d7632a7b90cb6aac15112aff196834a376c3065baf/68747470733a2f2f7777772e676c656e636f65736f6674776172652e636f6d2f696d672f6c6f676f2e737667\" width=\"25%\" data-canonical-src=\"https://www.glencoesoftware.com/img/logo.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/glencoesoftware/raw2ometiff\"\u003eraw2ometiff\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eraw2ometiff\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/raw2ometiff/3.0.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/raw2ometiff\u003c/code\u003e as \u003ccode\u003e3.0.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
- "topics": [],
- "updated_at": 1635665969.0
+ "topics": [
+ "singularity",
+ "utilities",
+ "image-processing"
+ ],
+ "updated_at": 1633063422.0
+ },
+ {
+ "data_format": 2,
+ "description": "A command-line benchmarking tool.",
+ "filenames": [
+ "1.13.0/Singularity",
+ "1.11.0/Singularity"
+ ],
+ "full_name": "pscedu/singularity-hyperfine",
+ "latest_release": "v1.11.0",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-hyperfine\" class=\"anchor\" href=\"#singularity-hyperfine\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-hyperfine\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sharkdp/hyperfine\"\u003ehyperfine\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ehyperfine\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hyperfine/1.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hyperfine\u003c/code\u003e as \u003ccode\u003e1.11.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 2,
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1649205323.0
+ },
+ {
+ "data_format": 2,
+ "description": "BLAST finds regions of similarity between biological sequences.",
+ "filenames": [
+ "2.13.0/Singularity",
+ "2.11.0/Singularity",
+ "2.9.0/Singularity"
+ ],
+ "full_name": "pscedu/singularity-blast",
+ "latest_release": "v2.13.0",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-blast/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-blast/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/34775a544d028af1a76f53887556e0b47d8a40289aa78e79056c5e13dcbc48e4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626c617374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/34775a544d028af1a76f53887556e0b47d8a40289aa78e79056c5e13dcbc48e4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626c617374\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-blast\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/e33eb8d62dc7df0e7a911833138fefaed18e36044c13f7a3aa53c104c1ffc719/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626c617374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e33eb8d62dc7df0e7a911833138fefaed18e36044c13f7a3aa53c104c1ffc719/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626c617374\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-blast\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c141231c49671d4a45e13d6d79f61b30ec62be1462b950fac124cfb21cc2d206/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626c617374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c141231c49671d4a45e13d6d79f61b30ec62be1462b950fac124cfb21cc2d206/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626c617374\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-blast\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0ec9871992e72eb86a829ac86878026892749bddbb4623030eb745093184def6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626c617374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0ec9871992e72eb86a829ac86878026892749bddbb4623030eb745093184def6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626c617374\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-blast\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-blast\" class=\"anchor\" href=\"#singularity-blast\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-blast\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web\u0026amp;PAGE_TYPE=BlastDocs\u0026amp;DOC_TYPE=Download\" rel=\"nofollow\"\u003eBLAST\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the other scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/blast/2.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/blast\u003c/code\u003e as \u003ccode\u003e2.11.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 4,
+ "topics": [
+ "bioinformatics",
+ "singularity"
+ ],
+ "updated_at": 1636731786.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "external/oskar/singularity/Singularity.base-dep",
- "external/oskar/singularity/Singularity.python3"
+ "Singularity"
],
- "full_name": "kernsuite-debian/everybeam",
+ "full_name": "khourhin/uber_container",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-everybeam-library\" class=\"anchor\" aria-hidden=\"true\" href=\"#everybeam-library\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEveryBeam library\u003c/h1\u003e\n\u003cp\u003eThis package can be used to compute the beam response for a variety of\nradio telescopes, i.e.:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eLOFAR\u003c/li\u003e\n\u003cli\u003eOSKAR\u003c/li\u003e\n\u003cli\u003eMWA\u003c/li\u003e\n\u003cli\u003eVLA\u003c/li\u003e\n\u003cli\u003eATCA\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis package also provides an abstract interface to a selection of beam responses for apperture arrays (LOFAR/OSKAR), and beamformed versions thereof. Currently implemented are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eHamaker LOFAR model\u003c/li\u003e\n\u003cli\u003eOSKAR spherical wave model\u003c/li\u003e\n\u003cli\u003eOSKAR-dipole: work in progress\u003c/li\u003e\n\u003cli\u003eLOBEs: work in progress. A coefficient file is currently only available for a limited number of LOFAR stations. Selecting the LOBEs model defaults back to Hamaker, in case no coefficient file is available.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eEveryBeam replaces the stand alone version of the LOFAR station response library (LOFARBeam).\u003c/p\u003e\n\u003cp\u003eEveryBeam is licensed under the terms of the GNU GPL3 license.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-documentation-and-installation-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation-and-installation-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation and Installation Instructions\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://www.astron.nl/citt/EveryBeam/\" rel=\"nofollow\"\u003eDocumentation\u003c/a\u003e along with \u003ca href=\"https://www.astron.nl/citt/EveryBeam/build-instructions.html\" rel=\"nofollow\"\u003einstallation instructions\u003c/a\u003e can be found at the provided links.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage-with-dp3\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage-with-dp3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage with DP3\u003c/h2\u003e\n\u003cp\u003eTo use Everybeam within \u003ca href=\"https://git.astron.nl/RD/DP3\" rel=\"nofollow\"\u003eDP3\u003c/a\u003e - the streaming visibility framework - DP3 needs to be compiled against EveryBeam. To do so, make sure DP3 can find EveryBeam by adding the EveryBeam install dir to the \u003ccode\u003eCMAKE_PREFIX_PATH\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eA test measurement set is included in DP3 (\u003ccode\u003etNDP3-generic.in_MS.tgz\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eTo simulate visibilities with a certain element model, use \u003ccode\u003eDP3 DP3.parset\u003c/code\u003e with \u003ccode\u003eDP3.parset\u003c/code\u003e a parset file with the following contents:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emsin=tNDP3-generic.MS\nmsout=.\nsteps=[predict]\npredict.usebeammodel=True\npredict.elementmodel=oskardipole\npredict.sourcedb=tNDP3-generic.MS/sky # sourcedb file\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage-with-wsclean\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage-with-wsclean\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage with WSClean\u003c/h2\u003e\n\u003cp\u003eTo use EveryBeam with \u003ca href=\"https://gitlab.com/aroffringa/wsclean\" rel=\"nofollow\"\u003eWSClean\u003c/a\u003e (for A-term or primary beam corrections), WSClean needs to be compiled against EveryBeam. In order to do so, make sure WSClean can find EveryBeam by adding the EveryBeam install dir to the \u003ccode\u003eCMAKE_PREFIX_PATH\u003c/code\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1663586637.0
+ "updated_at": 1653684576.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Bio-Formats image file format to raw format converter.",
+ "filenames": [
+ "0.3.0/Singularity"
+ ],
+ "full_name": "pscedu/singularity-bioformats2raw",
+ "latest_release": "v3.0.0",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-bioformats2raw/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bioformats2raw/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-bioformats2raw/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bioformats2raw/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/393a92fbeeb7f1545c3869f957dc859760052e0eff8eeb8f95b409800de2d2b2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/393a92fbeeb7f1545c3869f957dc859760052e0eff8eeb8f95b409800de2d2b2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bioformats2raw\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/444f4d60540e76ad5618bb8884c8f9d5a6a1f61fcf2a94363f379f6c6b074c5c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/444f4d60540e76ad5618bb8884c8f9d5a6a1f61fcf2a94363f379f6c6b074c5c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bioformats2raw\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/91fa772cacd77c7d5f540224712927de4888ac6dc960cd56dc1d23edeac9a1b9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/91fa772cacd77c7d5f540224712927de4888ac6dc960cd56dc1d23edeac9a1b9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bioformats2raw\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f6dea7ba6ee602447c05fc1a8d8498d7d44f22ad6f72fb6ad78b424301cd6d14/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f6dea7ba6ee602447c05fc1a8d8498d7d44f22ad6f72fb6ad78b424301cd6d14/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bioformats2raw\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-bioformats2raw\" class=\"anchor\" href=\"#singularity-bioformats2raw\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bioformats2raw\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/d6ac5fb6156e1b197fd547d7632a7b90cb6aac15112aff196834a376c3065baf/68747470733a2f2f7777772e676c656e636f65736f6674776172652e636f6d2f696d672f6c6f676f2e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d6ac5fb6156e1b197fd547d7632a7b90cb6aac15112aff196834a376c3065baf/68747470733a2f2f7777772e676c656e636f65736f6674776172652e636f6d2f696d672f6c6f676f2e737667\" width=\"25%\" data-canonical-src=\"https://www.glencoesoftware.com/img/logo.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/glencoesoftware/bioformats2raw\"\u003ebioformats2raw\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebioformats2raw\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bioformats2raw/3.0.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bioformats2raw\u003c/code\u003e as \u003ccode\u003e3.0.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 3,
+ "topics": [
+ "singularity",
+ "utilities",
+ "image-processing"
+ ],
+ "updated_at": 1649185211.0
+ },
+ {
+ "data_format": 2,
+ "description": "singularity container",
"filenames": [
+ "Singularity.salad",
"Singularity",
- "model_preprocess/Singularity"
+ "Singularity.pokemon"
],
- "full_name": "lsx1980/3D_model_reconstruction",
+ "full_name": "dcasciotti/alexrequest",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-3d-root-model-reconstruction\" class=\"anchor\" aria-hidden=\"true\" href=\"#3d-root-model-reconstruction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3D root model reconstruction\u003c/h1\u003e\n\u003cp\u003eThe software package was integrated as a module at PlantIT website at : \u003ca href=\"https://portnoy.cyverse.org/\" rel=\"nofollow\"\u003ehttps://portnoy.cyverse.org/\u003c/a\u003e.\n(Collaborate with Cyverse \u003ca href=\"https://www.cyverse.org/\" rel=\"nofollow\"\u003ehttps://www.cyverse.org/\u003c/a\u003e ) . Users are welcomed to registered as an user to try this package via PlantIT website.\u003c/p\u003e\n\u003cp\u003eThe software package was also available at Dockerhub (\u003ca href=\"https://hub.docker.com/r/computationalplantscience/3d-model-reconstruction\" rel=\"nofollow\"\u003ehttps://hub.docker.com/r/computationalplantscience/3d-model-reconstruction\u003c/a\u003e) for advanced users to run locally via singularity at Linux environment:\u003c/p\u003e\n\u003cp\u003eThis software can be run by docker container, users do not need to install many libraries and compile complex source files.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-setup-docker-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-docker-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup Docker container\u003c/h1\u003e\n\u003cp\u003eOS requirements\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eTo install Docker container (https://docs.docker.com/engine/install/ubuntu/): \n\nTo install Docker Engine, you need the 64-bit version of one of these Ubuntu versions:\n\nUbuntu Groovy 20.10\nUbuntu Focal 20.04 (LTS)\nUbuntu Bionic 18.04 (LTS)\nUbuntu Xenial 16.04 (LTS)\n\nDocker Engine is supported on x86_64 (or amd64), armhf, and arm64 architectures.\n\nUninstall old versions\n$ sudo apt-get remove docker docker-engine docker.io containerd runc\n\nSet up the repository\n\nUpdate the apt package index and install packages to allow apt to use a repository over HTTPS:\n\n$ sudo apt-get update\n\n$ sudo apt-get install \\\n apt-transport-https \\\n ca-certificates \\\n curl \\\n gnupg-agent \\\n software-properties-common\n\nAdd Docker\u2019s official GPG key:\n\n$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -\n\nVerify that you now have the key with the fingerprint 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88, by searching for the last 8 characters of the fingerprint.\n\n$ sudo apt-key fingerprint 0EBFCD88\n\npub rsa4096 2017-02-22 [SCEA]\n 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88\nuid [ unknown] Docker Release (CE deb) \u0026lt;docker@docker.com\u0026gt;\nsub rsa4096 2017-02-22 [S]\n\n$ sudo add-apt-repository \\\n \"deb [arch=amd64] https://download.docker.com/linux/ubuntu \\\n $(lsb_release -cs) \\\n stable\"\n\nUpdate the apt package index, and install the latest version of Docker Engine and containerd, or go to the next step to install a specific version:\n\n$ sudo apt-get update\n$ sudo apt-get install docker-ce docker-ce-cli containerd.io\n\nVerify that Docker Engine is installed correctly by running the hello-world image.\n\n$ sudo docker run hello-world\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-this-container-by-building-it-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-this-container-by-building-it-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun this container by building it locally:\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003e# Clone source code to your local path\n$ git clone https://github.com/Computational-Plant-Science/3D_model_reconstruction_demo.git\n\n# Enter into the source code folder named as \"cd 3D_model_reconstruction_demo\"\n$ cd 3D_model_reconstruction_demo/\n\n# Build docker container locally named as \"3d_model_reconstruction\" using \"Dockerfile\" in the same folder, note: docker repository name must be lowercase.\n$ docker build -t 3d_model_reconstruction -f Dockerfile .\n\n# Run the docker container by linking docker container data path to user\u0027s image data folder local path\n# Note: please replace $path_to_image_folder as your local image data folder path, \n# Suggest to check your image folder path using \"pwd\" command\n# Example: $ docker run -v /home/suxing/example/root_images:/images -it 3d_model_reconstruction\n\n$ docker run -v /$path_to_image_folder:/images -it 3d_model_reconstruction\n\n# After launch the docker container, run \"pipeline.sh\" or \"pipeline.sh\" insider the container\n$ root@0529cde0b988:/opt/code# ./pipeline.sh\nor $ root@0529cde0b988:/opt/code# python3 pipeline.py\n\n# Get 3d model result named as \"dense.0.ply\"\n# After the container was executed successfully with image data files, user should be able to see output in your command window like this:\n\u0027\u0027\u0027\nLoading option-0000.ply, 48656 vertices ...\nSave to /images/dense.nvm ... done\nSave /images/dense.0.ply ...done\n----------------------------------------------------------------\n\u0027\u0027\u0027\nThe 3D model file was in ply format(https://en.wikipedia.org/wiki/PLY_(file_format)), it is located inside your image folder, its name is \"dense.0.ply\".\npath = \"/$path_to_image_folder/dense.0.ply\"\n\nTo visualize the 3d model file, suggest to install Meshlab(https://www.meshlab.net/) or cloudcompare(https://www.danielgm.net/cc/)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-author\" class=\"anchor\" aria-hidden=\"true\" href=\"#author\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthor\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003esuxing liu(suxingliu@gmail.com)\nWesley Paul Bonelli(wbonelli@uga.edu)\n\nReference:\nVisualSFM\n[Anders Damsgaard](mailto:adamsgaard@ucsd.edu) with contributions by Caleb Adams and Connor P Doherty.\nChangchang Wu ( wucc1130@gmail.com )\n+ Structure from Motion\n[1] Changchang Wu, \"Towards Linear-time Incremental Structure From Motion\", 3DV 2013\n[2] Changchang Wu, \"VisualSFM: A Visual Structure from Motion System\", http://ccwu.me/vsfm/, 2011\n+ Bundle Adjustment\n[3] Changchang Wu, Sameer Agarwal, Brian Curless, and Steven M. Seitz, \"Multicore Bundle Adjustment\", CVPR 2011 \n+ Feature Detection\n[4] Changchang Wu, \"SiftGPU: A GPU implementation of Scale Invaraint Feature Transform (SIFT)\", http://cs.unc.edu/~ccwu/siftgpu, 2007\n\nCOLMAP\nhttps://colmap.github.io\nAuthor: Johannes L. Schoenberger (jsch-at-demuc-dot-de)\n@inproceedings{schoenberger2016sfm,\n author={Sch\\\"{o}nberger, Johannes Lutz and Frahm, Jan-Michael},\n title={Structure-from-Motion Revisited},\n booktitle={Conference on Computer Vision and Pattern Recognition (CVPR)},\n year={2016},\n}\n\n@inproceedings{schoenberger2016mvs,\n author={Sch\\\"{o}nberger, Johannes Lutz and Zheng, Enliang and Pollefeys, Marc and Frahm, Jan-Michael},\n title={Pixelwise View Selection for Unstructured Multi-View Stereo},\n booktitle={European Conference on Computer Vision (ECCV)},\n year={2016},\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDocker container was maintained by Wesley Paul Bonelli. it was deployed to Plant IT website by Wesley Paul Bonelli (\u003ca href=\"mailto:wbonelli@uga.edu\"\u003ewbonelli@uga.edu\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003eSingularity container overlay issues were solved by [Saravanaraj Ayyampalayam] (\u003ca href=\"https://github.com/raj76\"\u003ehttps://github.com/raj76\u003c/a\u003e) (\u003ca href=\"mailto:raj76@uga.edu\"\u003emailto:raj76@uga.edu\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003eSpecial thanks to Chris Cotter building the container recipe for testing and debugging.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-todo\" class=\"anchor\" aria-hidden=\"true\" href=\"#todo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTodo\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eGPU cuda version container\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eGNU Public License\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-deploy\" class=\"anchor\" href=\"#singularity-deploy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Deploy\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"img/shpc.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"img/shpc.png\" alt=\"img/shpc.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWouldn\u0027t it be nice to build Singularity images without a registry proper,\nand just keep them alongside the GitHub codebase? This is now possible!\nThis small repository provides an example to get you started. It will\nbuild one or more images (whatever Singularity.* files that are present at\nthe root) and then release them as assets to your GitHub repository so\nthat they can be programatically obtained. It is associated with\n\u003ca href=\"https://github.com/singularityhub/singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e to allow\nyou to then define LMOD modules for these same containers.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eCan I upload the largest of chonkers?\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eYes and no. Note that assets are limited to 2 GB in size, which is still fairly good. You can use\nit as a template for your own recipes as is, or modify it for your custom\nuse case. Instructions are below!\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e Currently recipe extensions are associated with tags, and the GitHub release is\nassociated with a digest. We likely will change this in the next few weeks so that GitHub\nreleases are tags, and the \"digests\" are flie names. Stay tuned for updates!\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-getting-started\" class=\"anchor\" href=\"#getting-started\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1-template-or-fork\" class=\"anchor\" href=\"#1-template-or-fork\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Template or Fork\u003c/h3\u003e\n\u003cp\u003eIf you haven\u0027t already, template or fork this repository. You can then clone\nyour fork:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git clone git@github.com:\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eusername\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/singularity-deploy\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou likely want to name the repository by the container. For example, if I would\nhave created a container on Docker Hub or similar with the name \u003ccode\u003evsoch/salad\u003c/code\u003e,\nhere I\u0027d call the repository \u003ccode\u003esalad\u003c/code\u003e. You obviously are limited to your username\nor an organizational namespace.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1-write-your-singularity-recipes\" class=\"anchor\" href=\"#1-write-your-singularity-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Write your Singularity Recipe(s)\u003c/h3\u003e\n\u003cp\u003eFirst, you should write your container recipe(s) in the present working directory.\nFor good practice, when you are updating recipes you should checkout a new branch\nand open a pull request, as the repository comes with a workflow to trigger on a PR\nto \u003ca href=\".github/workflows/test.yml\"\u003etest your container build\u003c/a\u003e. Note that in the main workflow\nthat deploys the releases, the current branch is set to be \u003ccode\u003emain-branch\u003c/code\u003e. You should\nupdate this to be your main \"production\" branch that you want to deploy releases on merge.\nYou are also free to choose a different trigger and release strategy. You can add any additional\ntests that that you might need. By default, any Singularity.* file will be automatically detected.\nIf there is no extension (the name Singularity), the name used will be \"latest.\"\nYou can use these tags across multiple releases of your containers. For example,\nthese files would generate packages with sifs named as follows:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.pokemon\"\u003eSingularity.pokemon\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.salad\"\u003eSingularity.salad\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor each name, you can see the direct download URL contains the repository (singularityhub/singularity-deploy),\nYou should not use any \u003ccode\u003e:\u003c/code\u003e characters in either your container tag (the GitHub extension) or\nthe GitHub tags (the release tags) as this might interfere with parsing.\nThe GitHub release tag (0.0.1 in the example above) is discussed next.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-2-update-the-version-file\" class=\"anchor\" href=\"#2-update-the-version-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Update the VERSION file\u003c/h3\u003e\n\u003cp\u003eAny time that you prepare new container recipes, you should update the \u003ca href=\"VERSION\"\u003eVERSION\u003c/a\u003e\nfile. The way that this repository works is to generate a release based on the\nstring in \u003ccode\u003eVERSION\u003c/code\u003e. A version is just a tag, so it could be something like\n\u003ccode\u003e0.0.1\u003c/code\u003e or \u003ccode\u003e0.0.1-slim\u003c/code\u003e. Keep in mind that GitHub releases cannot have duplicated\nnames, so you should not repeat the same tag. Do not use \u003ccode\u003e:\u003c/code\u003e in your tag names.\nIf you do need to re-release a tag (not recommended if a user might be using it and then it\u0027s changed) you can manually delete\nthe release and the tag in the GitHub interface. This is a nice structure because it\nmeans you can have containers with different names under the same tag. In the example\nabove, we have each of \"pokemon,\" \"latest,\" and \"salad\" released under tag 0.0.1.\nThis is how it looks on GitHub:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"img/releases.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"img/releases.png\" alt=\"img/releases.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-3-how-to-develop\" class=\"anchor\" href=\"#3-how-to-develop\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. How to Develop\u003c/h3\u003e\n\u003cp\u003eAs we mentioned previously, the container builds will be tested on a pull request,\nand the release will trigger on merge into your main branch (main). See the \u003ca href=\".github/workflows/builder.yml\"\u003e.github/workflows/builder.yml\u003c/a\u003e)\nto edit this. The idea is that you can:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDevelop your container via a development branch\u003c/li\u003e\n\u003cli\u003eOpen a pull request to test the container (the \u003ca href=\".github/workflows/test.yml\"\u003e.github/workflows/test.yml\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eOn merge, your container will be released!\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-4-how-to-pull\" class=\"anchor\" href=\"#4-how-to-pull\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. How to pull\u003c/h3\u003e\n\u003cp\u003eTechnically, Singularity can pull just knowing the URL. For example:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eHowever, the \u003ca href=\"singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e tool (will be) designed to be able to parse and handle\nthese container uris automatically. For the containers here, you could do:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:latest\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:salad\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:pokemon\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor write the container URI into a registry entry:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egh: singularityhub/singularity-deploy\nlatest:\n latest: \"0.0.1\"\ntags:\n \"latest\": \"0.0.1\"\n \"salad\": \"0.0.1\"\n \"pokemon\": \"0.0.1\"\nmaintainer: \"@vsoch\"\nurl: https://github.com/singularityhub/singularity-deploy\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(This part is still under development!)\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1614652430.0
+ "updated_at": 1652978087.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Recipe files used to compile SLURM (https://github.com/SchedMD/slurm) in powerPlant",
"filenames": [
- "envs/illumina/Singularity"
+ "21.08.8-2/centos7/singularity/Singularity.21.08.8-2-make",
+ "21.08.8-2/centos7/singularity/Singularity.21.08.8-2-rpm"
],
- "full_name": "here0009/SARS-Cov2_Snakemake_Pipeline",
+ "full_name": "powerPlant/slurm-build",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-sarscov2_snakemake_pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#sarscov2_snakemake_pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSarsCov2_Snakemake_Pipeline\u003c/h1\u003e\n\u003cp\u003eThis is a snakemake pipeline used for analyse SarsCov2 sequence data generated by illumina machine.\nThis pipelien was based on \u003ca href=\"https://github.com/artic-network/fieldbioinformatics\"\u003eARTIC network\u0027s fieldbioinformatics tools\u003c/a\u003e, \u003ca href=\"https://github.com/dridk/Sars-CoV-2-NGS-pipeline\"\u003eSars-CoV-2-NGS-pipeline\u003c/a\u003e and \u003ca href=\"https://github.com/connor-lab/ncov2019-artic-nf\"\u003encov2019-artic-nf\u003c/a\u003e with some updates:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ccode\u003efastqc\u003c/code\u003e and was used to generate the qc report of input data.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003equast\u003c/code\u003e was used to generate the sequence assembly report.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/cov-lineages/pangolin\"\u003epangolin\u003c/a\u003e was used for the typing of SarsCov-2\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eCorGat\u003c/code\u003e was used to annotate the sequence, and generate alle frequency reports\nYou need to clone \u003ca href=\"https://github.com/matteo14c/CorGAT\"\u003eCorGat\u003c/a\u003e and specify the directory in the config files.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emultiqc\u003c/code\u003e was used to generate the final report.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThe workflow shows like below:\u003c/p\u003e\n\u003cp\u003eA test_data file was provided to test the pipeline.\nYou may test the pipeline by dry-run\n\u003ccode\u003esnakemake -s sars2.smk -n\u003c/code\u003e\nthen run the pipeline:\n\u003ccode\u003esnakemake -s sars2.smk -j 4 --use-conda\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eWARNING - THIS REPO IS UNDER ACTIVE DEVELOPMENT AND ITS BEHAVIOUR MAY CHANGE AT \u003cstrong\u003eANY\u003c/strong\u003e TIME.\u003c/p\u003e\n\u003cp\u003ePLEASE ENSURE THAT YOU READ BOTH THE README AND THE CONFIG FILE AND UNDERSTAND THE EFFECT OF THE OPTIONS ON YOUR DATA!\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1622116428.0
+ "updated_at": 1652918976.0
},
{
"data_format": 2,
- "description": "A Singularity File for Running Trinity on the HPCC",
+ "description": "VNC Server in a Singularity container",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.2.1.2"
],
- "full_name": "msuefishlab/trinity_singularity",
+ "full_name": "nickjer/singularity-vncserver",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-vnc-server\" class=\"anchor\" href=\"#singularity-vnc-server\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity VNC Server\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/603\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"Singularity Hub\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image for \u003ca href=\"https://turbovnc.org/\" rel=\"nofollow\"\u003eTurboVNC\u003c/a\u003e with the inclusion of \u003ca href=\"https://github.com/novnc/websockify/\"\u003ewebsockify\u003c/a\u003e for\nconnecting to the VNC server from within your browser using \u003ca href=\"https://kanaka.github.io/noVNC/\" rel=\"nofollow\"\u003enoVNC\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThis is still a work in progress.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-build\" class=\"anchor\" href=\"#build\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild\u003c/h2\u003e\n\u003cp\u003eYou can build a local Singularity image named \u003ccode\u003esingularity-vncserver.simg\u003c/code\u003e\nwith:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build singularity-vncserver.simg Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-deploy\" class=\"anchor\" href=\"#deploy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeploy\u003c/h2\u003e\n\u003cp\u003eInstead of building it yourself you can download the pre-built image from\n\u003ca href=\"https://www.singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name singularity-vncserver.simg shub://nickjer/singularity-vncserver\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-run\" class=\"anchor\" href=\"#run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-vncserver\" class=\"anchor\" href=\"#vncserver\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003evncserver\u003c/h3\u003e\n\u003cp\u003eThe \u003ccode\u003evncserver\u003c/code\u003e command is launched using the default run command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run singularity-vncserver.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor as an explicit app:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --app vncserver singularity-vncserver.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003esingularity run --app vncserver singularity-vncserver.simg\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eYou will require a password to access your desktops.\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003ePassword:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eVerify:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eWould you like to enter a view-only password (y/n)? n\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eDesktop \u0027TurboVNC: dev:1 (nickjer)\u0027 started on display dev:1\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eCreating default startup script /home/nickjer/.vnc/xstartup.turbovnc\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eStarting applications specified in /home/nickjer/.vnc/xstartup.turbovnc\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eLog file is /home/nickjer/.vnc/dev:1.log\u003c/span\u003e\n\n$ \u003cspan class=\"pl-s1\"\u003esingularity run --app vncserver singularity-vncserver.simg -kill :1\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eKilling Xvnc process ID 9738\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-vncpasswd\" class=\"anchor\" href=\"#vncpasswd\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003evncpasswd\u003c/h3\u003e\n\u003cp\u003eThe \u003ccode\u003evncpasswd\u003c/code\u003e command is launched as an explicit app:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --app vncpasswd singularity-vncserver.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003e\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003emypassword\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e singularity run --app vncpasswd singularity-vncserver.simg -f \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e vnc_passwd\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eWarning: password truncated to the length of 8.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-websockify\" class=\"anchor\" href=\"#websockify\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ewebsockify\u003c/h3\u003e\n\u003cp\u003eIn some cases you may not want to download and install a VNC client on your\nlocal machine. In those cases you can actually use the \u003ca href=\"https://kanaka.github.io/noVNC/\" rel=\"nofollow\"\u003enoVNC\u003c/a\u003e client which\nruns completely in your browser.\u003c/p\u003e\n\u003cp\u003eIn order to connect to the VNC server with \u003ca href=\"https://kanaka.github.io/noVNC/\" rel=\"nofollow\"\u003enoVNC\u003c/a\u003e you will need to enable\n\u003ca href=\"https://github.com/novnc/websockify/\"\u003ewebsockify\u003c/a\u003e which will translate the incoming websocket traffic from \u003ca href=\"https://kanaka.github.io/noVNC/\" rel=\"nofollow\"\u003enoVNC\u003c/a\u003e\nto normal TCP traffic proxied to the listening VNC server.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003ewebsockify\u003c/code\u003e command is launched as an explicit app:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --app websockify singularity-vncserver.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAssuming you started a \u003ccode\u003evncserver\u003c/code\u003e above listening on port \u003ccode\u003e5901\u003c/code\u003e (display port\n\u003ccode\u003e:1\u003c/code\u003e), you will launch \u003ccode\u003ewebsockify\u003c/code\u003e on the same machine with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003esingularity run --app websockify singularity-vncserver.simg 8000 localhost:5901\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eWebSocket server settings:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e - Listen on :8000\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e - No SSL/TLS support (no cert file)\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e - proxying from :8000 to localhost:5901\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen from your browser using the \u003ca href=\"https://kanaka.github.io/noVNC/\" rel=\"nofollow\"\u003enoVNC\u003c/a\u003e client, connect to the machine running\nthe VNC server and port \u003ccode\u003e8000\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eIt is recommended you either setup SSL for a secure connection or host it\nfrom behind a reverse proxy with SSL already enabled.\u003c/strong\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributing\" class=\"anchor\" href=\"#contributing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003cp\u003eBug reports and pull requests are welcome on GitHub at\n\u003ca href=\"https://github.com/nickjer/singularity-vncserver\"\u003ehttps://github.com/nickjer/singularity-vncserver\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe code is available as open source under the terms of the \u003ca href=\"http://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003eMIT License\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [],
- "updated_at": 1528136809.0
+ "updated_at": 1581617600.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for winnowmap (https://github.com/marbl/Winnowmap)",
+ "description": null,
"filenames": [
- "Singularity.2.0.0"
+ "Singularity.v8",
+ "Singularity.v4",
+ "Singularity.v2",
+ "Singularity.v6",
+ "Singularity.v3",
+ "Singularity.va",
+ "Singularity.v5",
+ "Singularity.v1",
+ "Singularity.v9",
+ "Singularity.v7"
],
- "full_name": "powerPlant/winnowmap-srf",
+ "full_name": "sternacht/tf_singu",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for Winnowmap, a long-read mapping algorithm optimized for mapping ONT and PacBio reads to repetitive reference sequences.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/marbl/Winnowmap\"\u003ehttps://github.com/marbl/Winnowmap\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1615953867.0
+ "updated_at": 1560171965.0
},
{
"data_format": 2,
- "description": "Docker image to get DeepLabCutCore running on cloud GPUs.",
+ "description": null,
"filenames": [
- "Singularity"
+ "RNAja/envs/Singularity.RNAja.def"
],
- "full_name": "bchaselab/DeepLabCut-HPC",
- "latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/bchaselab/DeepLabCut-Slurm/workflows/Docker/badge.svg\"\u003e\u003cimg src=\"https://github.com/bchaselab/DeepLabCut-Slurm/workflows/Docker/badge.svg\" alt=\"Docker\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/bchaselab/DeepLabCut-Slurm/workflows/Docker%20Image%20CI/badge.svg\"\u003e\u003cimg src=\"https://github.com/bchaselab/DeepLabCut-Slurm/workflows/Docker%20Image%20CI/badge.svg\" alt=\"Docker Image CI\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/76a9b0a79aec38ba07bbf90a456c47bbdbca1fd005e919d62ec4fbc0cb2719d4/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f70756c6c732f6663617475732f646565706c6162637574\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/76a9b0a79aec38ba07bbf90a456c47bbdbca1fd005e919d62ec4fbc0cb2719d4/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f70756c6c732f6663617475732f646565706c6162637574\" alt=\"Docker Pulls\" data-canonical-src=\"https://img.shields.io/docker/pulls/fcatus/deeplabcut\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/62efa830e023afaea0c6e665046187228790fcc4c07825b174254f2d1694a96d/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f696d6167652d73697a652f6663617475732f646565706c6162637574\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/62efa830e023afaea0c6e665046187228790fcc4c07825b174254f2d1694a96d/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f696d6167652d73697a652f6663617475732f646565706c6162637574\" alt=\"Docker Image Size (latest by date)\" data-canonical-src=\"https://img.shields.io/docker/image-size/fcatus/deeplabcut\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-from-dockerhub\" class=\"anchor\" aria-hidden=\"true\" href=\"#from-dockerhub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFrom \u003ca href=\"https://hub.docker.com/repository/docker/fcatus/deeplabcut\" rel=\"nofollow\"\u003eDockerhub\u003c/a\u003e\n\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker pull fcatus/deeplabcut:latest\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-use-with-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-use-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo Use With Singularity\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull docker://fcatus/deeplabcut:latest\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor build it from a singularity file\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ vim singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003eBootstrap\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003edocker\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003eFrom\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003efcatus/deeplabcut:latest\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity build --remote deeplabcut.sif singularity\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-from-a-singularity-definition-file\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-from-a-singularity-definition-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild From a Singularity \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/definition_files.html\" rel=\"nofollow\"\u003eDefinition File\u003c/a\u003e\n\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Download the definition file\u003c/span\u003e\n$ wget https://git.io/JJvBb\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Customize the definition file (optional)\u003c/span\u003e\n$ vim dlc.def\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Build remotely from the definition file\u003c/span\u003e\n$ singularity build --remote deeplabcut.sif dlc.def\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFor more information about using \u003ccode\u003esingularity build\u003c/code\u003e, see \u003ca href=\"https://sylabs.io/guides/3.1/user-guide/cli/singularity_build.html\" rel=\"nofollow\"\u003eSingularity Build\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "Aucomte/RNAja",
+ "latest_release": "0.1.0",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "docker",
- "deeplabcut",
- "clone",
- "slurm",
- "hpc",
- "singularity"
- ],
- "updated_at": 1617137580.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1646051177.0
},
{
"data_format": 2,
@@ -8495,94 +7971,148 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "monaghaa/mytranslator",
+ "full_name": "talha-naveed97/orion_test",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1638480957.0
+ "updated_at": 1646090180.0
},
{
"data_format": 2,
- "description": "Singularity recipe for Pathway-Tools and mpwt.",
+ "description": "Some util functions for machine learning experiments",
"filenames": [
"Singularity"
],
- "full_name": "ArnaudBelcour/mpwt-singularity",
+ "full_name": "martinmamql/mini-tool-box",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-mini-tool-box\" class=\"anchor\" href=\"#mini-tool-box\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emini-tool-box\u003c/h1\u003e\n\u003cp\u003eSome util functions for machine learning experiments\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1642610373.0
+ },
+ {
+ "data_format": 2,
+ "description": null,
+ "filenames": [
+ "Singularity"
+ ],
+ "full_name": "raveancic/scRNAaltas_TNBC_mm",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-scrnaaltas_tnbc_mm\" class=\"anchor\" href=\"#scrnaaltas_tnbc_mm\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003escRNAaltas_TNBC_mm\u003c/h1\u003e\n\u003cp\u003eA pipeline for the scRNAseq data analysis of TNBC mouse model\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/raveancic/scRNAaltas_TNBC_mm/tree/master/cl_crt_FASTQ2countmat\"\u003eStep\u003c/a\u003e - Create the count matrix/bam file from FASTQ files. (sankemake pipeline - singularity container - PBS cluster). This step is the one published in \u003ca href=\"https://www.nature.com/articles/s41420-022-00893-x\" rel=\"nofollow\"\u003eCarpen et al., 2022, Cell Death Discovery\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 3,
"topics": [
- "pathway-tools"
+ "scrna-seq-analysis",
+ "snakemake",
+ "snakemake-pipeline",
+ "cellranger",
+ "singularity",
+ "scrna",
+ "pbs"
],
- "updated_at": 1643893785.0
+ "updated_at": 1646907794.0
},
{
"data_format": 2,
- "description": "If you are going to build off of basic Empirical, this is the project for you",
+ "description": "Repository for automatic software installation with a Singularity container containing EasyBuild. ",
"filenames": [
- "third-party/force-cover/Singularity"
+ "scripts/Singularity.eb-4.5.0-Lmod-ubuntu20-LTR",
+ "scripts/Singularity.eb-4.5.0-Lmod-rocky8",
+ "scripts/Singularity.eb-4.4.2-Lmod-ubuntu20-LTR",
+ "scripts-23-01-2022/Singularity.eb-4.5.0-Lmod-ubuntu20-LTR",
+ "scripts-23-01-2022/Singularity.eb-4.5.0-Lmod-rocky8",
+ "scripts-23-01-2022/Singularity.eb-4.4.2-Lmod-ubuntu20-LTR",
+ "scripts-combined/easybuild/Singularity.eb-4.5.0-Lmod-ubuntu20-LTR",
+ "scripts-combined/easybuild/Singularity.eb-4.5.0-Lmod-rocky8",
+ "scripts-combined/easybuild/Singularity.eb-4.4.2-Lmod-ubuntu20-LTR"
],
- "full_name": "EGBWright/ArbitriumSimulation",
+ "full_name": "sassy-crick/software-installation",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-evolutionary-algorithm\" class=\"anchor\" aria-hidden=\"true\" href=\"#evolutionary-algorithm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEvolutionary Algorithm\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/anyaevostinar/evo-algo/releases\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ff63e2cc80517f7b8e8246b33025f569d757ede0ae65c7ea57418d79e5a3709d/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e6769746875622e696f25324665766f2d616c676f25324676657273696f6e2d62616467652e6a736f6e\" alt=\"version\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.github.io%2Fevo-algo%2Fversion-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://travis-ci.com/anyaevostinar/evo-algo\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2bde10efc09d993aad000b3101be56d5410d0ced348c4c7bbedbc7ffce79d630/68747470733a2f2f696d672e736869656c64732e696f2f7472617669732f616e796165766f7374696e61722f65766f2d616c676f2e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/travis/anyaevostinar/evo-algo.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://evo-algo.readthedocs.io/en/latest/?badge=latest\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2af827df5df15ff6f5c6a9fff5021e631a0049aa2274f98e983135bb66f0ed81/68747470733a2f2f72656164746865646f63732e6f72672f70726f6a656374732f65766f2d616c676f2f62616467652f3f76657273696f6e3d6c6174657374\" alt=\"Documentation Status\" data-canonical-src=\"https://readthedocs.org/projects/evo-algo/badge/?version=latest\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://evo-algo.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0e035446b6d1c7a911bd4b203bd581f2116c7873352a90d4797dc08119abbd0e/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e6769746875622e696f25324665766f2d616c676f253246646f63756d656e746174696f6e2d636f7665726167652d62616467652e6a736f6e\" alt=\"documentation coverage\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.github.io%2Fevo-algo%2Fdocumentation-coverage-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://codecov.io/gh/anyaevostinar/evo-algo\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/869814fe0b90d0baadc37140ac31d6d9c0e4e00c2854a51f1030c40678bc13a4/68747470733a2f2f636f6465636f762e696f2f67682f616e796165766f7374696e61722f65766f2d616c676f2f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"code coverage status\" data-canonical-src=\"https://codecov.io/gh/anyaevostinar/evo-algo/branch/master/graph/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/anyaevostinar/evo-algo/search?q=todo+OR+fixme\u0026amp;type=\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4455f1d1625d643fe17506cb6ad50a9a6612ce62ab4667dc60b75616241c7534/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e636f6d25324665766f2d616c676f253246646f746f2d62616467652e6a736f6e\" alt=\"dotos\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.com%2Fevo-algo%2Fdoto-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/anyaevostinar/evo-algo\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/db51ac0d7785eb561dcfc0cbccfc0cfed9872513120f8f732b1301504c4eb32e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f616e796165766f7374696e61722f65766f2d616c676f2e7376673f7374796c653d666c61742d737175617265266c6f676f3d676974687562266c6162656c3d5374617273266c6f676f436f6c6f723d7768697465\" alt=\"GitHub stars\" data-canonical-src=\"https://img.shields.io/github/stars/anyaevostinar/evo-algo.svg?style=flat-square\u0026amp;logo=github\u0026amp;label=Stars\u0026amp;logoColor=white\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAn evolutionary algorithm\u003c/p\u003e\n\u003cp\u003eCheck out the live in-browser web app at \u003ca href=\"https://anyaevostinar.github.io/evo-algo\" rel=\"nofollow\"\u003ehttps://anyaevostinar.github.io/evo-algo\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFree software: MIT license\u003c/li\u003e\n\u003cli\u003eDocumentation: \u003ca href=\"https://evo-algo.readthedocs.io\" rel=\"nofollow\"\u003ehttps://evo-algo.readthedocs.io\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-hidden=\"true\" href=\"#features\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFeatures\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eTODO\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/assets/cookie.gif\"\u003e\u003cimg src=\"docs/assets/cookie.gif\" alt=\"cookie monster example\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003eThis package was created with \u003ca href=\"https://github.com/audreyr/cookiecutter\"\u003eCookiecutter\u003c/a\u003e and the \u003ca href=\"https://github.com/devosoft/cookiecutter-empirical-project\"\u003edevosoft/cookiecutter-empirical-project\u003c/a\u003e project template.\u003c/p\u003e\n\u003cp\u003eThis package uses \u003ca href=\"https://github.com/devosoft/Empirical#readme\"\u003eEmpirical\u003c/a\u003e, a library of tools for scientific software development, with emphasis on also being able to build web interfaces using Emscripten.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eTo install \u003ca href=\"https://github.com/devosoft/Empirical\"\u003eEmpirical\u003c/a\u003e, pull down a clone of the Empirical repository. See \u003ca href=\"https://empirical.readthedocs.io/en/latest/QuickStartGuides\" rel=\"nofollow\"\u003eQuick Start Guides\u003c/a\u003e for directions on cloning and using the library.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-automatic-software-installation-script\" class=\"anchor\" href=\"#automatic-software-installation-script\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAutomatic software installation script\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction:\u003c/h2\u003e\n\u003cp\u003eThe aim of the script is to install the software inside a container, and thus the so installed software is independent from the OS as much as possible, and also takes care of different architectures. The idea comes from the EESSI project and how the software is installed in there. So kudos to them!!\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to\" class=\"anchor\" href=\"#how-to\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow-to:\u003c/h2\u003e\n\u003cp\u003eBefore the script can run, there are a few files which need to be adjusted.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003einstall.sh\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003esoftwarelist.txt\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003esoftwarelist.yaml\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe \u003ccode\u003einstall.sh\u003c/code\u003e does basically the whole magic. There are a few lines at the top which need to be changed to reflect where the software needs to go. The most important are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSOFTWARE_INSTDIR\u003c/code\u003e which is where the software tree and all the helper stuff lives\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eBINDDIR\u003c/code\u003e is the directory which needs to be bound inside the container as per default Singularity does only mount \u003ccode\u003e/tmp\u003c/code\u003e and \u003ccode\u003e/home\u003c/code\u003e it seems.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou also might want to look at:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eCONTAINER_VERSION\u003c/code\u003e which is the name of the sif-file, i.e. the container\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eEB_VERSION\u003c/code\u003e which is the version of EasyBuild to be used for building software. If that does not exist, it should be automatically installed\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eSW_LIST\u003c/code\u003e contains a simple list of the EasyConfig files to be installed. All in one line with a blank between them.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eSW_YAML\u003c/code\u003econtains the software to be installed as an EasyStack file in \u003ccode\u003eyaml\u003c/code\u003e format.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eBoth the \u003ccode\u003eSW_LIST\u003c/code\u003e and the \u003ccode\u003eSW_YAML\u003c/code\u003e are independent from each other. So as long as the file got a content, it will be used.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003esoftware.sh\u003c/code\u003e will be created on the fly in the right directory, using the various template files, and does contain the list of software which needs to be installed which will be pulled in by the \u003ccode\u003esoftwarelist.txt\u003c/code\u003e file. The EasyStack file, so it exists, will be places in the correct directory.\nIf you need to change any of the paths where the software will be installed, you will need to look into \u003ccode\u003esoftware.tmpl\u003c/code\u003e, the Singularity Definition file \u003ccode\u003eSingularity.eb-4.4.2-Lmod-ubuntu20-LTR\u003c/code\u003e and both the \u003ccode\u003einstall.sh\u003c/code\u003e and \u003ccode\u003einteractive-install.sh\u003c/code\u003e files.\nNote: You can mount any folder outside the container but you will need to make sure that the \u003ccode\u003eMODULEPATH\u003c/code\u003e variable are identical inside and outside the container. Thus, if you are using like in our example \u003ccode\u003e/apps/easybuild\u003c/code\u003e as the root install directory, the \u003ccode\u003eMODULEPATH\u003c/code\u003e then needs to be set to for example \u003ccode\u003e/apps/easybuild/modules/all\u003c/code\u003e inside and outside the container!\u003c/p\u003e\n\u003cp\u003eThere is currently one bad hack in the \u003ccode\u003einstall.sh\u003c/code\u003e script, which is the architecture where the container is running on is determined by a fixed-path script! That will be tidied up at one point, so please be aware of this!\nThe idea about using \u003ccode\u003earchspec.py\u003c/code\u003e is that outside the container you got different paths where to install the software, but one common path for all the source files. If you are only having one type of architecture, you can set that manually at the top of the file.\u003c/p\u003e\n\u003cp\u003eThe first time the script runs, it will create the directory structure but then stops as the Singularity container is not in place. For the full automated installation, we would download the container from somewhere. However, as this only needs to be done once, it is left for now like this.\u003c/p\u003e\n\u003cp\u003eOnce the container in the right folder we are upgrading EasyBuild to the latest version. This way, a module file is created automatically. Once that is done, the software will be installed if required.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-requirements\" class=\"anchor\" href=\"#requirements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements:\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003eSingularity\u003c/code\u003e \u0026gt;= 2.7.x and \u003ccode\u003efusermount\u003c/code\u003e \u0026gt;= 2.9.7\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-do\" class=\"anchor\" href=\"#to-do\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo Do:\u003c/h2\u003e\n\u003cp\u003eIt needs to be tested on Lustre but that does currently not work as \u003ccode\u003efusermount\u003c/code\u003e on at the current cluster is too old.\u003c/p\u003e\n\u003cp\u003eAlso, as mentioned above, the \u003ccode\u003earchpsec.py\u003c/code\u003e needs to be installed in a better way.\u003c/p\u003e\n\u003cp\u003eFinally, it somehow would be nice to include \u003ccode\u003e--cuda-compute-capabilities=8.0\u003c/code\u003e for the A100 GPU builds automatically to make it a bit more fool-proved.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1615402009.0
+ "updated_at": 1639737533.0
},
{
"data_format": 2,
- "description": "singularity recipes",
+ "description": "MLPerf Inference containers recipes",
"filenames": [
- "Singularity.tf2p4_addons",
- "Singularity.tf2p1",
- "Singularity.tf2p4_costum",
- "Singularity.tf2_cuda",
- "Singularity.skimage",
- "Singularity.tf2_addons",
- "Singularity.tf2",
- "Singularity.tf2_cuda_pip",
- "Singularity.comet",
- "Singularity.pandas",
- "Singularity.torch",
- "Singularity.tf2p1_addons",
- "Singularity..torch1p8"
+ "v0.5/Singularity.v0.5",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_pre-release_src_cg_omp-py36-gcc75-ubuntu18",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_rt_c_tbb-py36-gcc75-ubuntu18",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_pre-release_src_c_omp-py36-gcc75-ubuntu18-avx2",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2020.3.1_src_c_omp-py36-gcc75-ubuntu18",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_pre-release_src_c_omp-py36-gcc75-ubuntu18",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_src_c_omp-py36-gcc75-ubuntu18-avx2",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_src_c_omp-py36-gcc75-ubuntu18",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_src_c_omp-py38-gcc75-ubuntu20",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_src_c_omp-py36-gcc75-ubuntu18-sse42",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_rt_cg_tbb-py36-gcc75-ubuntu18",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_src_cg_tbb-py36-gcc75-ubuntu18",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_src_cg_omp-py36-gcc75-ubuntu18",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_pre-release_src_cg_tbb-py36-gcc75-ubuntu18",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_pre-release_src_c_omp-py36-gcc75-ubuntu18-sse42",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_pre-release_src_c_tbb-py36-gcc75-ubuntu18",
+ "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_src_c_tbb-py36-gcc75-ubuntu18",
+ "v0.7/Singularity.v0.7",
+ "v0.7/python/MXNet/singularity/Singularity.v0.7-MXNet-1.7.0-py38-gcc93-ubuntu20",
+ "v0.7/python/MXNet/singularity/Singularity.v0.7-MXNet-1.8.0-py38-gcc93-ubuntu20",
+ "v0.7/python/MXNet/singularity/Singularity.v0.7-MXNet-1.7.0_6ae469a-py38-gcc93-ubuntu20",
+ "v0.7/cpp/TensorFlow/singularity/Singularity.v0.7-TensorFlow-v2.3.0-py38-gcc93-ubuntu20",
+ "v0.7/cpp/TensorFlow/singularity/Singularity.v0.7-TensorFlow-v2.3.0-py38-gcc93-ubuntu20_cl",
+ "v0.7/cpp/TensorFlow/singularity/Singularity.v0.7-TensorFlow-v2.3.0-py38-gcc10-ubuntu20",
+ "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2019_R3.1_rt_cg_tbb-py36-gcc75-ubuntu18",
+ "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2021.1pre_src_c_tbb-py36-gcc75-ubuntu18",
+ "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2019_R3.1_src_c_omp-py36-gcc75-ubuntu18",
+ "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2021.1pre_src_c_omp-py36-gcc75-ubuntu18",
+ "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2019_R3.1_src_c_tbb-py36-gcc75-ubuntu18",
+ "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2019_R3.1_rt_c_tbb-py36-gcc75-ubuntu18",
+ "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2019_R3.1_src_cg_omp-py36-gcc75-ubuntu18",
+ "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2019_R3.1_src_cg_tbb-py36-gcc75-ubuntu18",
+ "v1.1/Singularity.v1.1",
+ "v1.1/cpp/OpenVINO/singularity/Singularity.v1.1-OpenVINO-2021.4_src_c_tbb-py38-gcc93-ubuntu20",
+ "v1.1/cpp/OpenVINO/singularity/Singularity.v1.1-OpenVINO-2021.4_src_c_omp-py38-gcc93-ubuntu20",
+ "v1.1/cpp/OpenVINO/singularity/Singularity.v1.1-OpenVINO-2021.1pre_src_c_omp-py36-gcc75-ubuntu18",
+ "v1.0/Singularity.v1.0"
],
- "full_name": "xiyaojin/singularity",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity\u003c/h1\u003e\n\u003cp\u003esingularity recipes\u003c/p\u003e\n",
+ "full_name": "provarepro/mlperf_inference",
+ "latest_release": "0.1.9",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-mlperf-inference\" class=\"anchor\" href=\"#mlperf-inference\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMLPerf Inference\u003c/h1\u003e\n\u003cp\u003eMLPerf Inference containers recipes\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1622692314.0
+ "updated_at": 1641476524.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.def"
+ "container/Singularity.vep-96.0"
],
- "full_name": "robomorelli/horovod_torch_nccl",
+ "full_name": "vsarsani/Genetic-Characterization-Nextflow",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-horovod_torch_nccl\" class=\"anchor\" aria-hidden=\"true\" href=\"#horovod_torch_nccl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ehorovod_torch_nccl\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-genetic-characterization-of-a-phenotype-nextflow-pipeline\" class=\"anchor\" href=\"#genetic-characterization-of-a-phenotype-nextflow-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGenetic Characterization of a Phenotype Nextflow-pipeline\u003c/h1\u003e\n\u003cp\u003eThis pipeline performs the following functions to do a comprehensive genetic characterization of a phenotype marker (ex: height )\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eQC of GWAS Summary Statistics files, allele matching.\u003c/li\u003e\n\u003cli\u003eTrans-ancestry meta-analysis using various approaches. ( Fixed and random effects).\u003c/li\u003e\n\u003cli\u003eIdentification of Lead Variants and gene annotation from the meta-analysis results.\u003c/li\u003e\n\u003cli\u003eConditional analysis using GCTA COJO.\u003c/li\u003e\n\u003cli\u003eDistributional and Manhanttan plots of meta-analysis and conditional analysis.\u003c/li\u003e\n\u003cli\u003eWindow-based fine-mapping around lead variants to identify causal variants.\u003c/li\u003e\n\u003cli\u003eWindow-based fine-mapping around lead variants to identify eQTL colocalization.\u003c/li\u003e\n\u003cli\u003eeQTL based summary mendelian randomization.\u003c/li\u003e\n\u003cli\u003ePRS score construction from causal variants.\u003c/li\u003e\n\u003cli\u003eEnrichment analysis.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThe pipeline has a total of ten processes. The tools used for all the ten processes are containerized in the \u003ca href=\"https://github.com/vsarsani/Genetic-Characterization-Nextflow/blob/master/container/Dockerfile\"\u003edocker image \u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/vsarsani/Genetic-Characterization-Nextflow.git\ncd Nextflow-pipeline\ngit checkout dev_nf\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-nextflow\" class=\"anchor\" href=\"#nextflow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNextflow\u003c/h1\u003e\n\u003cp\u003e\u003ccode\u003emake install\u003c/code\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-docker-image-installion\" class=\"anchor\" href=\"#docker-image-installion\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker image installion\u003c/h1\u003e\n\u003cp\u003eTo install the docker image for all the process tools using Docker, run the Makefile command in the container directory.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd container\nmake docker-build\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-how-to-run-the-pipeline\" class=\"anchor\" href=\"#how-to-run-the-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run the pipeline\u003c/h1\u003e\n\u003cp\u003eIn order to run the pipeline, you need GWAS Summary files obtained from a study or multiple studies. Please use the following command.\n\u003ccode\u003e./nextflow run main.nf -resume --gwas-files ukb_bmi.txt\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eOtherwise, you can also run the whole pipeline by using the following one liner,\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003e./nextflow run main.nf\u003c/code\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1616241702.0
+ "updated_at": 1647271167.0
},
{
"data_format": 2,
- "description": "Standalone Singularity file for CAMISIM fork",
+ "description": null,
"filenames": [
- "Singularity.cami_python2"
+ "Singularity.recipe"
],
- "full_name": "KatSteinke/singularity-camisim-standalone",
+ "full_name": "robbieperrott/Hons",
"latest_release": null,
+ "readme": "\u003cp\u003eThis repository contains\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eA Jenkinsfile, which contains parameters to be fed to a Jenkins pipeline job.\u003c/li\u003e\n\u003cli\u003eA Singularity recipe file, which specifies how to build the Singularity container on the target server.\u003c/li\u003e\n\u003cli\u003eRobbie\u0027s final research paper.\u003c/li\u003e\n\u003cli\u003eA poster summarizing the contents of our paper.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eOur final mark was 72 percent.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1618570284.0
+ "updated_at": 1647336586.0
},
{
"data_format": 2,
@@ -8590,637 +8120,516 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "juanca09/dino",
+ "full_name": "truatpasteurdotfr/singularity-docker-miniconda-quicksom",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-dino--a-nice-dinosaurio-\" class=\"anchor\" aria-hidden=\"true\" href=\"#dino--a-nice-dinosaurio-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edino ( A nice dinosaurio )\u003c/h1\u003e\n\u003cp\u003eYou need a GitHub account\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eLog into Github\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eAdd a git repository ( ex:hello )\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eLog into Singularity Hub ( \u003ca href=\"https://singularity-hub.org\" rel=\"nofollow\"\u003ehttps://singularity-hub.org\u003c/a\u003e ) as the github user\u003c/p\u003e\n\u003cp\u003eIn the Hub add a new collection ( with the repository )\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eClone the git project\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone\n\ngit clone git@github.com:\u0026lt;USER\u0026gt;/hello.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ein the directory \"hello\" add a Singularity definition file as \"Singularity\"\u003c/p\u003e\n\u003cp\u003eEx:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap:docker\nFrom:ubuntu:16.04\n\n%labels\nMAINTAINER juanca09\nSPECIES Dinosaur\n\n %environment\nRAWR_BASE=/code\nexport RAWR_BASE\n\n %runscript\necho \"This gets run when you run the image!\" \nexec /bin/bash /code/dino.sh \"$@\"\n\n\n%post \necho \"This section happens once after bootstrap to build the image.\" \nmkdir -p /code \necho \"echo \\\"RoooAAAARRRRR !!!!\\\"\" \u0026gt;\u0026gt; /code/dino.sh\nchmod u+x /code/dino.sh \n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eCommit and push the project\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-a-miniconda-based-quicksom-httpsgithubcombougui505quicksom-container-with-pymolpytorch\" class=\"anchor\" href=\"#a-miniconda-based-quicksom-httpsgithubcombougui505quicksom-container-with-pymolpytorch\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ea miniconda based quicksom (\u003ca href=\"https://github.com/bougui505/quicksom\"\u003ehttps://github.com/bougui505/quicksom\u003c/a\u003e) container with pymol/pytorch\u003c/h1\u003e\n\u003cp\u003edocker: \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-miniconda-quicksom/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-miniconda-quicksom/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-miniconda-quicksom:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003esingularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv oras://ghcr.io/truatpasteurdotfr/singularity-docker-miniconda-quicksom:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-test-the-examples\" class=\"anchor\" href=\"#test-the-examples\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etest the examples\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone https://github.com/bougui505/quicksom.git\n$ cd quicksom\n$ singularity --nv -B `pwd` oras://ghcr.io/truatpasteurdotfr/singularity-docker-miniconda-quicksom:latest\nSingularity\u0026gt; dcd2npy --pdb data/2lj5.pdb --dcd data/2lj5.dcd --select \u0027name CA\u0027\nSingularity\u0026gt; time quicksom_fit -i data/2lj5.npy -o data/som_2lj5.p --n_iter 100 --batch_size 50 --periodic --alpha 0.5\nSingularity\u0026gt; quicksom_gui -i data/som_2lj5.p\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1613312484.0
+ "updated_at": 1647383705.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity",
- "Singularity.5.28.2",
- "Singularity.5.28.0",
- "Singularity.5.28.1"
+ "singularity/Singularity"
],
- "full_name": "kiwiroy/singularity-perl",
+ "full_name": "Egrt/https---huggingface.co-spaces-Egrt-Luuu",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2846\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-perl\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-perl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-perl\u003c/h1\u003e\n\u003cp\u003eUbuntu images with perl installed using perlbrew.\u003c/p\u003e\n",
+ "readme": "\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-title-luuuemoji-colorfrom-redcolorto-purplesdk-gradiosdk_version-2812app_file-apppypinned-falselicense-apache-20\" class=\"anchor\" href=\"#title-luuuemoji-colorfrom-redcolorto-purplesdk-gradiosdk_version-2812app_file-apppypinned-falselicense-apache-20\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etitle: Luuu\nemoji: \u003cg-emoji class=\"g-emoji\" alias=\"earth_africa\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f30d.png\"\u003e\ud83c\udf0d\u003c/g-emoji\u003e\ncolorFrom: red\ncolorTo: purple\nsdk: gradio\nsdk_version: 2.8.12\napp_file: app.py\npinned: false\nlicense: apache-2.0\u003c/h2\u003e\n\u003cp\u003eCheck out the configuration reference at \u003ca href=\"https://huggingface.co/docs/hub/spaces#reference\" rel=\"nofollow\"\u003ehttps://huggingface.co/docs/hub/spaces#reference\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1556534425.0
+ "updated_at": 1647768660.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for nanopolish (https://github.com/jts/nanopolish)",
+ "description": null,
"filenames": [
- "Singularity",
- "Singularity.3.8.3-1.el7"
+ "Singularity.def"
],
- "full_name": "powerPlant/nanopolish-srf",
+ "full_name": "piyu2181/singularity",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for nanopolish \u003ca href=\"https://github.com/jts/nanopolish\"\u003ehttps://github.com/jts/nanopolish\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1639350932.0
+ "updated_at": 1565737347.0
},
{
"data_format": 2,
- "description": "proof of concept for running singularity in a singularity container",
+ "description": "Planning problem generation using Graph Neural Networks and Reinforcement Learning.",
"filenames": [
- "Singularity"
+ "src/fast-downward/misc/releases/19.06/Singularity.19.06",
+ "src/fast-downward/misc/releases/20.06/Singularity.20.06",
+ "src/fast-downward/misc/releases/21.12/Singularity.21.12",
+ "src/fast-downward/misc/releases/19.12/Singularity.19.12"
],
- "full_name": "lkirk/singularity-in-singularity",
+ "full_name": "ari-dasci/S-PlanningProblemGeneration",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-in-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-in-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity in singularity\u003c/h1\u003e\n\u003cp\u003eThis is a proof-of-concept to show that it is indeed possible to run nested singularity processes.\nMy purpose for doing this is to create containers that can run applications that are in other other containers, allowing me to decompose the containers into small, purpose-built units.\u003c/p\u003e\n\u003cp\u003eTo test this for yourself, you can do the following:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003esudo singularity build container.sif Singularity\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003esingularity shell container.sif\u003c/span\u003e\n\n# \u003cspan class=\"pl-s1\"\u003ethen, go ahead and try running\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003esingularity shell container.sif\u003c/span\u003e\n# \u003cspan class=\"pl-s1\"\u003eas many \u003cspan class=\"pl-c1\"\u003etimes\u003c/span\u003e as you want\u003cspan class=\"pl-k\"\u003e!\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eHere is an example session where I nest 3 containers:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003euser@host$ singularity shell container.sif\nSingularity\u0026gt; singularity shell container.sif\nINFO: Converting SIF file to temporary sandbox...\nSingularity\u0026gt; singularity shell container.sif\nINFO: Converting SIF file to temporary sandbox...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAnd the resulting process tree (reported by htop):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity runtime parent\n\u251c\u2500 /bin/bash --norc\n\u2502 \u2514\u2500 Singularity runtime parent\n\u2502 \u251c\u2500 /bin/bash --norc\n\u2502 \u2502 \u2514\u2500 Singularity runtime parent\n\u2502 \u2502 \u251c\u2500 /bin/bash --norc\n\u2502 \u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u2502 \u2514\u2500 Singularity runtime parent\n\u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u2514\u2500 Singularity runtime parent\n\u251c\u2500 Singularity runtime parent\n\u251c\u2500 Singularity runtime parent\n\u251c\u2500 Singularity runtime parent\n\u251c\u2500 Singularity runtime parent\n\u251c\u2500 Singularity runtime parent\n\u251c\u2500 Singularity runtime parent\n\u2514\u2500 Singularity runtime parent\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you do not want to coerce conversion to a temporary sandbox on every call (it can be time intensive for large images), you can simply create the sandbox upfront:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003euser@host$ singularity build --sandbox test container.sif\nWARNING: \u0027nodev\u0027 mount option set on /tmp, it could be a source of failure during build process\nINFO: Starting build...\nINFO: Verifying bootstrap image container.sif\nINFO: Creating sandbox directory...\nINFO: Build complete: test\nuser@host$ singularity shell container.sif\nSingularity\u0026gt; singularity shell test\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1626825365.0
+ "updated_at": 1648654350.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for truvari (https://github.com/spiralgenetics/truvari)",
+ "description": null,
"filenames": [
- "Singularity",
- "Singularity.2.1.0"
+ "Singularity"
],
- "full_name": "powerPlant/truvari-srf",
+ "full_name": "aminhaghparast/deep-variant",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for truvari, a Structural variant toolkit for benchmarking, annotating and more for VCFs.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://raw.githubusercontent.com/nf-core/deepvariant/master/docs/images/deepvariant_logo.png\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/nf-core/deepvariant/master/docs/images/deepvariant_logo.png\" alt=\"deepvariant\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-nf-coredeepvariant\" class=\"anchor\" href=\"#nf-coredeepvariant\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enf-core/deepvariant\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eDeep Variant as a Nextflow pipeline\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nf-core/deepvariant\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/554b3a00bbca0efb91acd93d9efc7929d4f25be25b8c7e5a58a31906f742ac65/68747470733a2f2f7472617669732d63692e6f72672f6e662d636f72652f6465657076617269616e742e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nf-core/deepvariant.svg?branch=master\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b6478e9f9fab44bd81e58f3ac9c53bd07b4447d3ce541c677c184903c7466e52/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d25453225383925413531382e31302e312d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A518.10.1-brightgreen.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://gitter.im/nf-core/Lobby\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/75a58bd7ba3966d16ebf50e1d2d55a4d21c67fa281370f9b823c2f4e53532b03/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6769747465722d2532306a6f696e253230636861742532302545322538362539322d3466623939612e737667\" alt=\"Gitter\" data-canonical-src=\"https://img.shields.io/badge/gitter-%20join%20chat%20%E2%86%92-4fb99a.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/deepvariant\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2b79519758c23c61efc7c090d99e6c194456d4d72c071d9fb892501ca0be4f1c/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f6465657076617269616e742e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/deepvariant.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA Nextflow pipeline for running the \u003ca href=\"https://github.com/google/deepvariant\"\u003eGoogle DeepVariant variant caller\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-is-deepvariant-and-why-in-nextflow\" class=\"anchor\" href=\"#what-is-deepvariant-and-why-in-nextflow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is DeepVariant and why in Nextflow?\u003c/h2\u003e\n\u003cp\u003eThe Google Brain Team in December 2017 released a \u003ca href=\"https://www.ebi.ac.uk/training/online/course/human-genetic-variation-i-introduction/variant-identification-and-analysis/what-variant\" rel=\"nofollow\"\u003eVariant Caller\u003c/a\u003e based on DeepLearning: DeepVariant.\u003c/p\u003e\n\u003cp\u003eIn practice, DeepVariant first builds images based on the BAM file, then it uses a DeepLearning image recognition approach to obtain the variants and eventually it converts the output of the prediction in the standard VCF format.\u003c/p\u003e\n\u003cp\u003eDeepVariant as a Nextflow pipeline provides several advantages to the users. It handles automatically, through \u003cstrong\u003epreprocessing steps\u003c/strong\u003e, the creation of some extra needed indexed and compressed files which are a necessary input for DeepVariant, and which should normally manually be produced by the users.\nVariant Calling can be performed at the same time on \u003cstrong\u003emultiple BAM files\u003c/strong\u003e and thanks to the internal parallelization of Nextflow no resources are wasted.\nNextflow\u0027s support of Docker allows to produce the results in a computational reproducible and clean way by running every step inside of a \u003cstrong\u003eDocker container\u003c/strong\u003e.\u003c/p\u003e\n\u003cp\u003eFor more detailed information about Google\u0027s DeepVariant please refer to \u003ca href=\"https://github.com/google/deepvariant\"\u003egoogle/deepvariant\u003c/a\u003e or this \u003ca href=\"https://research.googleblog.com/2017/12/deepvariant-highly-accurate-genomes.html\" rel=\"nofollow\"\u003eblog post\u003c/a\u003e. \u003cbr\u003e\nFor more information about DeepVariant in Nextflow please refer to this \u003ca href=\"https://blog.lifebit.ai/post/deepvariant/?utm_campaign=documentation\u0026amp;utm_source=github\u0026amp;utm_medium=web\" rel=\"nofollow\"\u003eblog post\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quick-start\" class=\"anchor\" href=\"#quick-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eWarning DeepVariant can be very computationally intensive to run.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eTo \u003cstrong\u003etest\u003c/strong\u003e the pipeline you can run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run nf-core/deepvariant -profile test,docker\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eA typical run on \u003cstrong\u003ewhole genome data\u003c/strong\u003e looks like this:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run nf-core/deepvariant --genome hg19 --bam yourBamFile --bed yourBedFile -profile standard,docker\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIn this case variants are called on the bam files contained in the testdata directory. The hg19 version of the reference genome is used.\nOne vcf files is produced and can be found in the folder \"results\"\u003c/p\u003e\n\u003cp\u003eA typical run on \u003cstrong\u003ewhole exome data\u003c/strong\u003e looks like this:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run nf-core/deepvariant --exome --genome hg19 --bam_folder myBamFolder --bed myBedFile -profile standard,docker\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eThe nf-core/deepvariant documentation is split into the following files:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eAdding your own system\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/reference_genomes.md\"\u003eReference genomes\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/about.md\"\u003eMore about DeepVariant\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-more-about-the-pipeline\" class=\"anchor\" href=\"#more-about-the-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMore about the pipeline\u003c/h2\u003e\n\u003cp\u003eAs shown in the following picture, the worklow both contains \u003cstrong\u003epreprocessing steps\u003c/strong\u003e ( light blue ones ) and proper \u003cstrong\u003evariant calling steps\u003c/strong\u003e ( darker blue ones ).\u003c/p\u003e\n\u003cp\u003eSome input files ar optional and if not given, they will be automatically created for the user during the preprocessing steps. If these are given, the preprocessing steps are skipped. For more information about preprocessing, please refer to the \"INPUT PARAMETERS\" section.\u003c/p\u003e\n\u003cp\u003eThe worklow \u003cstrong\u003eaccepts one reference genome and multiple BAM files as input\u003c/strong\u003e. The variant calling for the several input BAM files will be processed completely indipendently and will produce indipendent VCF result files. The advantage of this approach is that the variant calling of the different BAM files can be parallelized internally by Nextflow and take advantage of all the cores of the machine in order to get the results at the fastest.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca href=\"https://github.com/nf-core/deepvariant/blob/master/pics/pic_workflow.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/nf-core/deepvariant/raw/master/pics/pic_workflow.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-credits\" class=\"anchor\" href=\"#credits\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003eThis pipeline was originally developed at \u003ca href=\"https://lifebit.ai/?utm_campaign=documentation\u0026amp;utm_source=github\u0026amp;utm_medium=web\" rel=\"nofollow\"\u003eLifebit\u003c/a\u003e, by @luisas, to ease and reduce cost for variant calling analyses\u003c/p\u003e\n\u003cp\u003eMany thanks to nf-core and those who have helped out along the way too, including (but not limited to): @ewels, @MaxUlysse, @apeltzer, @sven1103 \u0026amp; @pditommaso\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1613598092.0
+ "updated_at": 1651618731.0
},
{
"data_format": 2,
- "description": "GSOC 2020 @ Red Hen \u0026 Vitrivr",
+ "description": "A symbolic generalized MaxSAT solver",
"filenames": [
- "openpose_singularity/Singularity.openpose_v1.60",
- "openpose_singularity/Singularity.frankier_gsoc2020",
- "attic/vitrivr_singularity/Singularity.adampro",
- "attic/vitrivr_singularity/Singularity.cineast"
+ "dmc/Singularity",
+ "lg/Singularity"
],
- "full_name": "frankier/gsoc2020",
+ "full_name": "zzwonder/DPMS",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/frankier/gsoc2020/wiki\"\u003eProgress is on the wiki.\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis repository is for small odds/ends and to point to other places where the\nactual coding has taken place including forks of other projects.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contents\" class=\"anchor\" aria-hidden=\"true\" href=\"#contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContents\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eattic\u003c/code\u003e contains old and abandoned work:\n\u003cul\u003e\n\u003cli\u003eHand pose annotation\u003c/li\u003e\n\u003cli\u003eSingularity def files for Cineast (Docker is used now)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eopenpose_singularity\u003c/code\u003e contains Singularity container for OpenPose\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esingslurm\u003c/code\u003e (Snakemake SLURM profile) Run SLURM outside container by\ncommunicating over the filesystem\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eskelshop\u003c/code\u003e contains a \u003cem\u003esubmodule\u003c/em\u003e for the skelshop utility, which contains\nall the Python code/Snakemake pipelines, for skeleton dumping, tracking,\nsegmentation, and embedding pipelines\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eforks\u003c/code\u003e contains \u003cem\u003esubmodules\u003c/em\u003e with forks of existing repos:\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003evitrivr-ng\u003c/code\u003e, \u003ccode\u003ecineast\u003c/code\u003e \u0026amp; \u003ccode\u003ecottontail\u003c/code\u003e are forks of Vitrivr projects\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ejavacpp-presets-add-openpose\u003c/code\u003e: OpenPose JavaCPP binding\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eopencv_wrapper\u003c/code\u003e: Add a couple of extra methods\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eopenpose\u003c/code\u003e: Improve Python API and enable broken tracking\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003evitrivr_pilot\u003c/code\u003e contains scripts to deploy pilot Vitrivr instance\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003erefreeze_hand_tracking\u003c/code\u003e contains code to refreeze a pretrained hand\ndetection model\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dpms-dynamic-programming-for-generalized-maxsat\" class=\"anchor\" href=\"#dpms-dynamic-programming-for-generalized-maxsat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDPMS (Dynamic Programming for Generalized MaxSAT)\u003c/h1\u003e\n\u003cp\u003eDPMS handles generalized MaxSAT problems in an extended DIMACS format (described below)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe DPMC framework runs in two phases:\n\u003cul\u003e\n\u003cli\u003ePlanning phase: \u003ca href=\"./lg\"\u003eLG\u003c/a\u003e constructs a (graded) project-join tree of a generalized MaxSAT formula\u003c/li\u003e\n\u003cli\u003eExecution phase: \u003ca href=\"./dmc\"\u003eDMC\u003c/a\u003e computes the answer to a generalized MaxSAT formula using the (graded) project-join tree\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation-linux\" class=\"anchor\" href=\"#installation-linux\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation (Linux)\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eautomake 1.16\u003c/li\u003e\n\u003cli\u003ecmake 3.16\u003c/li\u003e\n\u003cli\u003eg++ 9.3\u003c/li\u003e\n\u003cli\u003egmp 6.2\u003c/li\u003e\n\u003cli\u003emake 4.2\u003c/li\u003e\n\u003cli\u003ealready included as git submodules:\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/ivmai/cudd\"\u003ecudd 3.0\u003c/a\u003e (a slightly modified version for DPMS is inlcuded)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/jarro2783/cxxopts\"\u003ecxxopts 2.2\u003c/a\u003e (included)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/trolando/sylvan\"\u003esylvan 1.5\u003c/a\u003e(included)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-install-submodules\" class=\"anchor\" href=\"#install-submodules\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall submodules:\u003c/h3\u003e\n\u003cp\u003eIn addmc/libraries/, run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./install.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-compile-lg-tree-builder\" class=\"anchor\" href=\"#compile-lg-tree-builder\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompile LG (Tree Builder)\u003c/h3\u003e\n\u003cp\u003eSee \u003ca href=\"./lg/README.md\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-compile-dmc-executor\" class=\"anchor\" href=\"#compile-dmc-executor\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompile DMC (Executor)\u003c/h3\u003e\n\u003cp\u003eSee \u003ca href=\"./dmc/README.md\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage-example-command-line\" class=\"anchor\" href=\"#usage-example-command-line\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage Example (Command Line)\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003ecnfFile=\"examples/pbtest.wbo\" \u0026amp;\u0026amp; bash -c \"lg/build/lg \u0027lg/solvers/flow-cutter-pace17/flow_cutter_pace17 -p 100\u0027\" \u0026lt; $cnfFile | dmc/dmc --cf=$cnfFile --mx=1 --mb=999\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eMake sure to use \"--mx=1\" to enable maxSAT.\u003c/p\u003e\n\u003cp\u003eChange \"999\" in \"--mb=999\" to a better upper bound of optimal cost (e.g., the result of o-line of a MaxSAT solver). For a WBO or partial MaxSAT instance, --mb is set to be the trivial bound which can be read from the instance, unless the user gives a better bound.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-problem-format-of-generalized-maxsat\" class=\"anchor\" href=\"#problem-format-of-generalized-maxsat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eProblem format of Generalized MaxSAT\u003c/h2\u003e\n\u003cp\u003eSome examples of each type of problem can be found in examples/\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-generalized-maxsat-and-weighted-maxsat\" class=\"anchor\" href=\"#generalized-maxsat-and-weighted-maxsat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e(generalized) MaxSAT and weighted MaxSAT\u003c/h3\u003e\n\u003cp\u003eThe Max-CNF-SAT problems (.cnf) should use the DIMACS format: \u003ca href=\"https://www.ieee.org/conferences/publishing/templates.html\" rel=\"nofollow\"\u003ehttps://www.ieee.org/conferences/publishing/templates.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFor XOR constraints, use \u0027x\u0027 at the beginning of a line\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ex1 xor x2 xor \\neg x3 =\u0026gt; x 1 2 -3 0.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor weighted MaxSAT (.cnf), use \"p wcnf nvars nclauses total-Soft-Weight\" instead of \"p cnf nvars nclauses\" in header. For each clause line, put the weight at the beginning of a line, then the first literal.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-pseudo-boolean-optimization-wbo\" class=\"anchor\" href=\"#pseudo-boolean-optimization-wbo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePseudo-Boolean optimization (WBO)\u003c/h3\u003e\n\u003cp\u003eFor PB constraints (.wbo), here is an example\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e+1 x1 +1 x2 \u0026gt;= 1 ;\n[90] -1 x1 -1 x2 \u0026gt;= -1 ;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe first constraint is a hard constraint. The second constraint is soft with weight 90.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-min-maxsat\" class=\"anchor\" href=\"#min-maxsat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMin-MaxSAT\u003c/h3\u003e\n\u003cp\u003eA Min-MaxSAT problem file is same with a MaxSAT file except that there is a \u0027vm\u0027 line indicating the min variables. Variables that do not appear in the vm line are all max variables.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1603876660.0
+ "updated_at": 1641000935.0
},
{
"data_format": 2,
- "description": "Docker Environment for running 21cmFAST",
+ "description": "Tensorflow running in an Arch Linux Singularity container. Working towards JupyterHub SingularityHub Interop",
"filenames": [
"Singularity"
],
- "full_name": "nkern/21cmfast_env",
+ "full_name": "chiroptical/tensorflow-jupyterhub",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-21cmfast_env\" class=\"anchor\" aria-hidden=\"true\" href=\"#21cmfast_env\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e21cmfast_env\u003c/h1\u003e\n\u003cp\u003eDocker environment for running 21cmFAST on ubuntu\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-container-with-tensorflow-and-jupyter-notebook\" class=\"anchor\" href=\"#singularity-container-with-tensorflow-and-jupyter-notebook\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Container with Tensorflow and Jupyter Notebook\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eIntent is to run Tensorflow on GPU compute nodes through JupyterHub\n\u003cul\u003e\n\u003cli\u003eIf you would like this built for another driver, submit an issue\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eBorrowed \u003ccode\u003elinks.sh\u003c/code\u003e from \u003ca href=\"https://github.com/drorlab/tf-singularity\"\u003ehttps://github.com/drorlab/tf-singularity\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eI extracted CuDNN here because the download link expires\u003c/li\u003e\n\u003cli\u003eBuilding the Singularity container:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity create -s 3072 tensorflow-jupyterhub.img\n$ sudo singularity bootstrap tensorflow-jupyterhub.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eRunning local jupyter server:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run tensorflow-jupyterhub.img\n[I 21:58:36.327 NotebookApp] Serving notebooks from local directory: \u0026lt;some directory\u0026gt;\n[I 21:58:36.327 NotebookApp] 0 active kernels \n[I 21:58:36.327 NotebookApp] The Jupyter Notebook is running at: http://localhost:8888/?token=\u0026lt;some token\u0026gt;\n[I 21:58:36.327 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).\n[C 21:58:36.329 NotebookApp] \n \n Copy/paste this URL into your browser when you connect for the first time,\n to login with a token:\n http://localhost:8888/?token=\u0026lt;some token\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eIf you want to just run a script:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec tensorflow-jupyterhub.img python hello-world.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/mcburton\"\u003emcburton\u003c/a\u003e and I are working on JupyterHub\nplugins to handle Singularity Hub images cleanly.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-do\" class=\"anchor\" href=\"#to-do\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo Do\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003ePossibly indicate any bloat in the image and clear it out, if possible\n\u003cul\u003e\n\u003cli\u003eTensorflow DockerHub Compressed Image with GPU is 2 GB, mine is 3 GB\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eWorking on JupyterHub plugin to deploy images from SingularityHub\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1503421722.0
+ "updated_at": 1497564620.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "context/ocserv-container/Singularity.def",
- "context/openconnect-container/Singularity.def"
+ "Singularity"
],
- "full_name": "cooperative-computing-lab/userlevel-vpn-tun-tap",
+ "full_name": "porchard/RNAseq-NextFlow",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-userlevel-vpn-tun-tap\" class=\"anchor\" aria-hidden=\"true\" href=\"#userlevel-vpn-tun-tap\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003euserlevel-vpn-tun-tap\u003c/h1\u003e\n\u003cp\u003eSetup of a virtual network interface inside a singularity container using\nnetwork namespaces. All the network traffic of the container is routed to the\nvirtual interface and then a vpn server (ocserv). The interface gets its ip\nfrom the vpn server.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pre-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#pre-setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePre-setup\u003c/h2\u003e\n\u003cp\u003eThe following is needed to allow a user to manipulate namespaces at the compute nodes:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Add the following line to /etc/sysctl.d/99-sysctl.conf\u003c/span\u003e\nuser.max_user_namespaces=10000\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eand then run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esysctl -p\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe machine running the VPN host needs the following changes:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Add the following line to /etc/sysctl.d/99-sysctl.conf\u003c/span\u003e\nuser.max_user_namespaces=10000\nnet.ipv4.ip_forward=1\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eand similarly run \u003ccode\u003esysctl -p\u003c/code\u003e afterwards. These are the only steps that require\nroot at the execution sites.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the containers\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-building-the-singularity-image-for-the-vpn-clients\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-singularity-image-for-the-vpn-clients\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the singularity image for the VPN clients:\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e context/openconnect-container\n$ sudo singularity build vpncms-client.sif Singularity.def\n$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e ../..\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe build process installs openconnect and its dependencies using the\ncmssw/cms:rhel7 image as a base. It will also compile from source \u003ccode\u003evpnns\u003c/code\u003e,\n\u003ccode\u003eocproxy\u0027 and \u003c/code\u003etsocks`, the alternative programs to use openconnect without\nroot privileges.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-building-the-singularity-image-for-the-vpn-server\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-singularity-image-for-the-vpn-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the singularity image for the VPN server:\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e context/ocserv-container\n$ sudo singularity build vpncms-server.sif Singularity.def\n$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e ../..\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-the-vpn-server\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-the-vpn-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the VPN server\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-without-root-privileges\" class=\"anchor\" aria-hidden=\"true\" href=\"#without-root-privileges\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWithout root privileges:\u003c/h3\u003e\n\u003cp\u003eTo ensure that all processes are termianted when the singularity container\nterminates, we execute the image inside an instance:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ ./launch-vpn-server --image context/ocserv-container/vpncms-server.img --instance vpn_server --add-user myvpnuser:myvpnpasswd --port 8443\nAdded user: myvpnuser\nSERVER PIN:\npin-sha256:XXXXXXX...\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eWe make note of the server pin printed, as we will need it when connecting the clients.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-with-root-privileges\" class=\"anchor\" aria-hidden=\"true\" href=\"#with-root-privileges\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWith root privileges:\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo ./launch-vpn-server --image context/ocserv-container/vpncms-server.img --instance vpn_server --add-user myvpnuser:myvpnpasswd --port 8443 --privileged\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-launch-some-vpn-clients\" class=\"anchor\" aria-hidden=\"true\" href=\"#launch-some-vpn-clients\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLaunch some vpn clients;\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ ./launch-vpn-client --image context/openconnect-container/vpncms-client.sif \\\n --server MACHINE_WHERE_OCSERV_RUNS:8443 \\\n --servercert pin-sha256:XXXXXXX... \\\n --user myvpnuser \\\n --passwd myvpnpasswd \\\n --vpn-mode ns \\\n -- /bin/bash\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003elaunch-vpn-client\u003c/code\u003e script simply starts/stops an instance of the singularity\ncontainer so that no openconnect services are left behind The real virtual interface\nsetup magic happens in /etc/cms-vpn/vpn-start.sh.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-adding-cvmfs-support\" class=\"anchor\" aria-hidden=\"true\" href=\"#adding-cvmfs-support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAdding cvmfs support\u003c/h2\u003e\n\u003cp\u003ecvmfs can be provided using cvmfsexec via fusermount and singularity. We do\nthis by creating a self-contained cvmfsexec distribution and using it as the\nsingularity executable:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git clone https://github.com/cvmfs/cvmfsexec.git\n$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e cvmfsexec\n$ ./makedist -s -m rhel7-x86_64 osg\n$ ./makedist -s -o /tmp/singularity-cmvfsexec\n$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e ..\n$ \u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e SINGCVMFS_REPOSITORIES=cms.cern.ch,atlas.cern.ch,oasis.opensciencegrid.org\n$ ./launch-vpn-client --image context/openconnect-container/vpncms-client.sif \\\n --server MACHINE_WHERE_OCSERV_RUNS:8443 \\\n --servercert pin-sha256:XXXXXXX... \\\n --user myvpnuser \\\n --passwd myvpnpasswd \\\n --vpn-mode ns \\\n --singularity /tmp/singularity-cmvfsexec \\\n -- ls /cvmfs/cms.cern.ch\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nextflow-pipeline-for-paired-end-rna-seq-data\" class=\"anchor\" href=\"#nextflow-pipeline-for-paired-end-rna-seq-data\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNextFlow pipeline for paired-end RNA-seq data\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eIf you have Singularity installed, you can use the config provided here (\u0027Singularity\u0027) to build a container with all the dependencies.\u003c/p\u003e\n\u003cp\u003eOtherwise, you\u0027ll need to have the following installed:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSTAR\u003c/li\u003e\n\u003cli\u003efastqc\u003c/li\u003e\n\u003cli\u003esamtools\u003c/li\u003e\n\u003cli\u003eQoRTs\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eI\u0027ve used this pipeline with NextFlow v. 19.04.1\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-configuration\" class=\"anchor\" href=\"#configuration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguration\u003c/h2\u003e\n\u003cp\u003ePaths to various generic files (STAR indices and chromosome size files) must be included in the nextflow.config file -- check that file and change paths accordingly.\u003c/p\u003e\n\u003cp\u003eYou\u0027ll also need to set the params.results variable -- either in the nextflow.config file itself, or on the command line when you run the pipeline (\u0027--results /path/to/results\u0027).\u003c/p\u003e\n\u003cp\u003eLastly, you\u0027ll need to include information about each RNA-seq library, including the genome to which it should be mapped, and the paths to the fastq files for each readgroup. Organize this information in a JSON file, as in library-config.json.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running\" class=\"anchor\" href=\"#running\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning\u003c/h2\u003e\n\u003cp\u003eOnce you have all of the above information, you can run the pipeline as follows (in this case, indicating the path to the results on the command line):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run -with-singularity /path/to/Singularity.simg -params-file library-config.json --results /path/to/results /path/to/main.nf\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1614364980.0
+ "updated_at": 1642007112.0
},
{
"data_format": 2,
- "description": "Proteomics pipeline",
+ "description": null,
"filenames": [
- "Singularity/singularity-master/singularity-master/examples/shub/Singularity",
- "Singularity/singularity-master/singularity-master/examples/scientific/Singularity",
- "Singularity/singularity-master/singularity-master/examples/arch/Singularity",
- "Singularity/singularity-master/singularity-master/examples/ubuntu/Singularity",
- "Singularity/singularity-master/singularity-master/examples/centos/Singularity",
- "Singularity/singularity-master/singularity-master/examples/docker/Singularity",
- "Singularity/singularity-master/singularity-master/examples/scratch/Singularity.busybox",
- "Singularity/singularity-master/singularity-master/examples/scratch/Singularity.alpine",
- "Singularity/singularity-master/singularity-master/examples/self/Singularity",
- "Singularity/singularity-master/singularity-master/examples/busybox/Singularity",
- "Singularity/singularity-master/singularity-master/examples/apps/Singularity",
- "Singularity/singularity-master/singularity-master/examples/apps/Singularity.cowsay",
- "Singularity/singularity-master/singularity-master/examples/instances/Singularity",
- "Singularity/singularity-master/singularity-master/examples/asciinema/Singularity",
- "Singularity/singularity-master/singularity-master/examples/sle/Singularity",
- "Singularity/singularity-master/singularity-master/examples/raspbian/Singularity",
- "Singularity/singularity-master/singularity-master/examples/library/Singularity",
- "Singularity/singularity-master/singularity-master/examples/multistage/Singularity",
- "Singularity/singularity-master/singularity-master/examples/opensuse/Singularity",
- "Singularity/singularity-master/singularity-master/e2e/testdata/Singularity"
+ "Singularity"
],
- "full_name": "HayleyPrice/Pipeline",
+ "full_name": "ddbj/singularity_guacamole_mysql",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity_guacamole_mysql\" class=\"anchor\" href=\"#singularity_guacamole_mysql\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_guacamole_mysql\u003c/h1\u003e\n\u003cp\u003eRemote Desktop \u3084 VNC \u306e\u63a5\u7d9a\u3092 HTTP \u306b\u5909\u63db\u3057\u3066 HTML5 \u30a6\u30a7\u30d6\u30d6\u30e9\u30a6\u30b6\u3067\u8868\u793a\u3059\u308b Apache Guacamole \u3092 singularity instance \u3067\u5b9f\u884c\u3059\u308b\u305f\u3081\u306e\u30ec\u30b7\u30d4\u30d5\u30a1\u30a4\u30eb\u30fb\u521d\u671f\u5316\u30b9\u30af\u30ea\u30d7\u30c8\u3067\u3059\u3002\u30e6\u30fc\u30b6\u30fc\u8a8d\u8a3c\u306bMySQL\u3092\u4f7f\u7528\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003eguacamole 1.3\u3067\u3059\u3067\u306b\u30a4\u30f3\u30b9\u30bf\u30f3\u30b9\u3092\u5b9f\u884c\u3057\u3066\u3044\u308b\u5834\u5408\u306f\u3001\u30a4\u30f3\u30b9\u30bf\u30f3\u30b9\u3092\u4e00\u5ea6\u7d42\u4e86\u3057\u3066\u300csingularity image\u306e\u30d3\u30eb\u30c9\u300d\u3092\u5b9f\u884c\u5f8c\u3001\u300c\u30c7\u30fc\u30bf\u306e\u79fb\u884c\u300d\u307e\u3067\u9032\u3093\u3067\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-image-\u306e\u30d3\u30eb\u30c9\" class=\"anchor\" href=\"#singularity-image-%E3%81%AE%E3%83%93%E3%83%AB%E3%83%89\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity image \u306e\u30d3\u30eb\u30c9\u003c/h2\u003e\n\u003cp\u003e\u4ee5\u4e0b\u306e\u30b3\u30de\u30f3\u30c9\u3067 singularity image \u3092\u30d3\u30eb\u30c9\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity build guacamole.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eMySQL, Tomcat\u306b\u3064\u3044\u3066\u306f\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u5148\u306b\u7f6e\u304b\u308c\u3066\u3044\u308b\u30d0\u30fc\u30b8\u30e7\u30f3\u304c\u9650\u5b9a\u3055\u308c\u3066\u3044\u308b\u305f\u3081\u3001\u30d5\u30a1\u30a4\u30eb\u3092\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3067\u304d\u305a\u306b\u30d3\u30eb\u30c9\u306b\u5931\u6557\u3059\u308b\u5834\u5408\u304c\u3042\u308a\u307e\u3059\u3002\u305d\u306e\u5834\u5408\u306f\u30d5\u30a1\u30a4\u30eb\u306e\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u5148\u3092\u898b\u3066\u3001Singularity\u30d5\u30a1\u30a4\u30eb\u4e2d\u306e\u4ee5\u4e0b\u306e\u30d0\u30fc\u30b8\u30e7\u30f3\u306e\u8a18\u8ff0\u3092\u9069\u5b9c\u5909\u66f4\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eMYSQL_VERSION=\"5.6.51\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eTOMCAT_VERSION=\"9.0.56\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-\u521d\u671f\u8a2d\u5b9a\" class=\"anchor\" href=\"#%E5%88%9D%E6%9C%9F%E8%A8%AD%E5%AE%9A\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u521d\u671f\u8a2d\u5b9a\u003c/h2\u003e\n\u003cp\u003e\u4ee5\u4e0b\u306e\u30b3\u30de\u30f3\u30c9\u3067 singularity isntance \u8d77\u52d5\u306e\u305f\u3081\u306e\u521d\u671f\u8a2d\u5b9a\u3092\u884c\u3044\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003e\u5b9f\u884c\u524d\u306b init.sh \u5185\u306e MYSQL_ROOT_PASSWD, MYSQL_GUACAMOLE_USER_PASSWD, MYSQL_PORT, GUACAMOLE_PORT, TOMCAT_SHUTDOWN_PORT, TOMCAT_PORT \u306e\u5024\u3092\u9069\u5b9c\u4fee\u6b63\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cp\u003e\"Enter current password for root (enter for none):\" \u3068\u8868\u793a\u3055\u308c\u305f\u3068\u3053\u308d\u3067\u51e6\u7406\u304c\u30a4\u30f3\u30bf\u30e9\u30af\u30c6\u30a3\u30d6\u306b\u306a\u308a\u307e\u3059\u3002\u3053\u3053\u3067\u306f\u30ea\u30bf\u30fc\u30f3\u30ad\u30fc\u3092\u62bc\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cp\u003e\u6b21\u306b\u3001\"Set root password? [Y/n]\" \u3068\u8868\u793a\u3055\u308c\u305f\u3068\u3053\u308d\u3067Y\u3092\u5165\u529b\u3057\u3001MySQL\u306eroot\u30e6\u30fc\u30b6\u30fc\u306e\u30d1\u30b9\u30ef\u30fc\u30c9\u3092\u8a2d\u5b9a\u3057\u307e\u3059\u3002\u3053\u3053\u3067\u3001init.sh\u306eMYSQL_ROOT_PASSWD\u306b\u8a2d\u5b9a\u3057\u305f\u5024\u3092\u5165\u529b\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u4ee5\u964d\u306f\u3059\u3079\u3066Y\u3092\u5165\u529b\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cp\u003e\u51e6\u7406\u304c\u5b8c\u4e86\u3059\u308b\u3068\u3001data\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u3068start_container.sh\u30d5\u30a1\u30a4\u30eb\u304c\u751f\u6210\u3055\u308c\u3066\u3044\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash init.sh\nexec init_mysql.sh\nperl: warning: Setting locale failed.\nperl: warning: Please check that your locale settings:\n\tLANGUAGE = \"ja_JP\",\n\tLC_ALL = (unset),\n\tLANG = \"ja_JP.UTF-8\"\n are supported and installed on your system.\nperl: warning: Falling back to the standard locale (\"C\").\nWARNING: Could not write to config file ./my.cnf: Read-only file system\n\nInstalling MySQL system tables...2021-03-17 18:46:46 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please use --explicit_defaults_for_timestamp server option (see documentation for more details).\n2021-03-17 18:46:46 0 [Note] Ignoring --secure-file-priv value as server is running with --bootstrap.\n2021-03-17 18:46:46 0 [Note] ./bin/mysqld (mysqld 5.6.51) starting as process 18851 ...\n2021-03-17 18:46:46 18851 [Note] InnoDB: Using atomics to ref count buffer pool pages\n2021-03-17 18:46:46 18851 [Note] InnoDB: The InnoDB memory heap is disabled\n2021-03-17 18:46:46 18851 [Note] InnoDB: Mutexes and rw_locks use GCC atomic builtins\n2021-03-17 18:46:46 18851 [Note] InnoDB: Memory barrier is not used\n2021-03-17 18:46:46 18851 [Note] InnoDB: Compressed tables use zlib 1.2.11\n2021-03-17 18:46:46 18851 [Note] InnoDB: Using CPU crc32 instructions\n2021-03-17 18:46:46 18851 [Note] InnoDB: Initializing buffer pool, size = 128.0M\n2021-03-17 18:46:46 18851 [Note] InnoDB: Completed initialization of buffer pool\n2021-03-17 18:46:46 18851 [Note] InnoDB: The first specified data file ./ibdata1 did not exist: a new database to be created!\n2021-03-17 18:46:46 18851 [Note] InnoDB: Setting file ./ibdata1 size to 12 MB\n2021-03-17 18:46:46 18851 [Note] InnoDB: Database physically writes the file full: wait...\n2021-03-17 18:46:46 18851 [Note] InnoDB: Setting log file ./ib_logfile101 size to 48 MB\n2021-03-17 18:46:46 18851 [Note] InnoDB: Setting log file ./ib_logfile1 size to 48 MB\n2021-03-17 18:46:47 18851 [Note] InnoDB: Renaming log file ./ib_logfile101 to ./ib_logfile0\n2021-03-17 18:46:47 18851 [Warning] InnoDB: New log files created, LSN=45781\n2021-03-17 18:46:47 18851 [Note] InnoDB: Doublewrite buffer not found: creating new\n2021-03-17 18:46:47 18851 [Note] InnoDB: Doublewrite buffer created\n2021-03-17 18:46:47 18851 [Note] InnoDB: 128 rollback segment(s) are active.\n2021-03-17 18:46:47 18851 [Warning] InnoDB: Creating foreign key constraint system tables.\n2021-03-17 18:46:47 18851 [Note] InnoDB: Foreign key constraint system tables created\n2021-03-17 18:46:47 18851 [Note] InnoDB: Creating tablespace and datafile system tables.\n2021-03-17 18:46:47 18851 [Note] InnoDB: Tablespace and datafile system tables created.\n2021-03-17 18:46:47 18851 [Note] InnoDB: Waiting for purge to start\n2021-03-17 18:46:47 18851 [Note] InnoDB: 5.6.51 started; log sequence number 0\n2021-03-17 18:46:47 18851 [Note] RSA private key file not found: /usr/local/mysql/data//private_key.pem. Some authentication plugins will not work.\n2021-03-17 18:46:47 18851 [Note] RSA public key file not found: /usr/local/mysql/data//public_key.pem. Some authentication plugins will not work.\n2021-03-17 18:46:53 18851 [Note] Binlog end\n2021-03-17 18:46:53 18851 [Note] InnoDB: FTS optimize thread exiting.\n2021-03-17 18:46:53 18851 [Note] InnoDB: Starting shutdown...\n2021-03-17 18:46:54 18851 [Note] InnoDB: Shutdown completed; log sequence number 1625977\nOK\n\nFilling help tables...2021-03-17 18:46:54 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please use --explicit_defaults_for_timestamp server option (see documentation for more details).\n2021-03-17 18:46:54 0 [Note] Ignoring --secure-file-priv value as server is running with --bootstrap.\n2021-03-17 18:46:54 0 [Note] ./bin/mysqld (mysqld 5.6.51) starting as process 18875 ...\n2021-03-17 18:46:54 18875 [Note] InnoDB: Using atomics to ref count buffer pool pages\n2021-03-17 18:46:54 18875 [Note] InnoDB: The InnoDB memory heap is disabled\n2021-03-17 18:46:54 18875 [Note] InnoDB: Mutexes and rw_locks use GCC atomic builtins\n2021-03-17 18:46:54 18875 [Note] InnoDB: Memory barrier is not used\n2021-03-17 18:46:54 18875 [Note] InnoDB: Compressed tables use zlib 1.2.11\n2021-03-17 18:46:54 18875 [Note] InnoDB: Using CPU crc32 instructions\n2021-03-17 18:46:54 18875 [Note] InnoDB: Initializing buffer pool, size = 128.0M\n2021-03-17 18:46:54 18875 [Note] InnoDB: Completed initialization of buffer pool\n2021-03-17 18:46:54 18875 [Note] InnoDB: Highest supported file format is Barracuda.\n2021-03-17 18:46:54 18875 [Note] InnoDB: 128 rollback segment(s) are active.\n2021-03-17 18:46:54 18875 [Note] InnoDB: Waiting for purge to start\n2021-03-17 18:46:55 18875 [Note] InnoDB: 5.6.51 started; log sequence number 1625977\n2021-03-17 18:46:55 18875 [Note] RSA private key file not found: /usr/local/mysql/data//private_key.pem. Some authentication plugins will not work.\n2021-03-17 18:46:55 18875 [Note] RSA public key file not found: /usr/local/mysql/data//public_key.pem. Some authentication plugins will not work.\n2021-03-17 18:46:55 18875 [Note] Binlog end\n2021-03-17 18:46:55 18875 [Note] InnoDB: FTS optimize thread exiting.\n2021-03-17 18:46:55 18875 [Note] InnoDB: Starting shutdown...\n2021-03-17 18:46:56 18875 [Note] InnoDB: Shutdown completed; log sequence number 1625987\nOK\n\nTo start mysqld at boot time you have to copy\nsupport-files/mysql.server to the right place for your system\n\nPLEASE REMEMBER TO SET A PASSWORD FOR THE MySQL root USER !\nTo do so, start the server, then issue the following commands:\n\n ./bin/mysqladmin -u root password \u0027new-password\u0027\n ./bin/mysqladmin -u root -h dbod04 password \u0027new-password\u0027\n\nAlternatively you can run:\n\n ./bin/mysql_secure_installation\n\nwhich will also give you the option of removing the test\ndatabases and anonymous user created by default. This is\nstrongly recommended for production servers.\n\nSee the manual for more instructions.\n\nYou can start the MySQL daemon with:\n\n cd . ; ./bin/mysqld_safe \u0026amp;\n\nYou can test the MySQL daemon with mysql-test-run.pl\n\n cd mysql-test ; perl mysql-test-run.pl\n\nPlease report any problems at http://bugs.mysql.com/\n\nThe latest information about MySQL is available on the web at\n\n http://www.mysql.com\n\nSupport MySQL by buying support/licenses at http://shop.mysql.com\n\nWARNING: Could not copy config file template ./support-files/my-default.cnf to\n./my.cnf, may not have access rights to do so.\nYou may want to copy the file manually, or create your own,\nit will then be used by default by the server when you start it.\n\nexec mysql_secure_installation\nINFO: instance started successfully\nperl: warning: Setting locale failed.\nperl: warning: Please check that your locale settings:\n\tLANGUAGE = \"ja_JP\",\n\tLC_ALL = (unset),\n\tLANG = \"ja_JP.UTF-8\"\n are supported and installed on your system.\nperl: warning: Falling back to the standard locale (\"C\").\n\n\n\nNOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MySQL\n SERVERS IN PRODUCTION USE! PLEASE READ EACH STEP CAREFULLY!\n\nIn order to log into MySQL to secure it, we\u0027ll need the current\npassword for the root user. If you\u0027ve just installed MySQL, and\nyou haven\u0027t set the root password yet, the password will be blank,\nso you should just press enter here.\n\nEnter current password for root (enter for none): \nOK, successfully used password, moving on...\n\nSetting the root password ensures that nobody can log into the MySQL\nroot user without the proper authorisation.\n\nSet root password? [Y/n] Y\nNew password: \nRe-enter new password: \nPassword updated successfully!\nReloading privilege tables..\n ... Success!\n\n\nBy default, a MySQL installation has an anonymous user, allowing anyone\nto log into MySQL without having to have a user account created for\nthem. This is intended only for testing, and to make the installation\ngo a bit smoother. You should remove them before moving into a\nproduction environment.\n\nRemove anonymous users? [Y/n] Y\n ... Success!\n\nNormally, root should only be allowed to connect from \u0027localhost\u0027. This\nensures that someone cannot guess at the root password from the network.\n\nDisallow root login remotely? [Y/n] Y\n ... Success!\n\nBy default, MySQL comes with a database named \u0027test\u0027 that anyone can\naccess. This is also intended only for testing, and should be removed\nbefore moving into a production environment.\n\nRemove test database and access to it? [Y/n] Y\n - Dropping test database...\n ... Success!\n - Removing privileges on test database...\n ... Success!\n\nReloading the privilege tables will ensure that all changes made so far\nwill take effect immediately.\n\nReload privilege tables now? [Y/n] Y\n ... Success!\n\n\n\n\nAll done! If you\u0027ve completed all of the above steps, your MySQL\ninstallation should now be secure.\n\nThanks for using MySQL!\n\n\nCleaning up...\nsetup guacamole database\nWarning: Using a password on the command line interface can be insecure.\nWarning: Using a password on the command line interface can be insecure.\nWarning: Using a password on the command line interface can be insecure.\nWarning: Using a password on the command line interface can be insecure.\nWarning: Using a password on the command line interface can be insecure.\nINFO: Stopping guacamole instance of /home/okuda/singularity/ubuntu-18.04-guacamole-1.3.0-mysql/guacamole.sif (PID=18915)\ncreate server.xml\ncreate guacamole_home\nINFO: instance started successfully\nINFO: Stopping guacamole instance of /home/okuda/singularity/ubuntu-18.04-guacamole-1.3.0-mysql/guacamole.sif (PID=19214)\ncreate guacamole.properties\ncreate start_container.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-instance-\u306e\u8d77\u52d5\" class=\"anchor\" href=\"#singularity-instance-%E3%81%AE%E8%B5%B7%E5%8B%95\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity instance \u306e\u8d77\u52d5\u003c/h2\u003e\n\u003cp\u003e\u4ee5\u4e0b\u306e\u30b3\u30de\u30f3\u30c9\u3067 singularity instance \u3092\u8d77\u52d5\u3057\u307e\u3059\u3002instance \u306e\u8d77\u52d5\u5f8c\u3001instance \u5185\u3067mysqld, guacd, tomcat\u3000\u304c\u8d77\u52d5\u3055\u308c\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash start_container.sh\nINFO: instance started successfully\nguacd[22]: INFO:\tGuacamole proxy daemon (guacd) version 1.3.0 started\nUsing CATALINA_BASE: /opt/tomcat\nUsing CATALINA_HOME: /opt/tomcat\nUsing CATALINA_TMPDIR: /opt/tomcat/temp\nUsing JRE_HOME: /usr\nUsing CLASSPATH: /opt/tomcat/bin/bootstrap.jar:/opt/tomcat/bin/tomcat-juli.jar\nUsing CATALINA_OPTS: \nTomcat started.\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-\u30c7\u30fc\u30bf\u306e\u79fb\u884c\" class=\"anchor\" href=\"#%E3%83%87%E3%83%BC%E3%82%BF%E3%81%AE%E7%A7%BB%E8%A1%8C\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u30c7\u30fc\u30bf\u306e\u79fb\u884c\u003c/h2\u003e\n\u003cp\u003eguacamole 1.3\u3067\u4f5c\u6210\u6e08\u307f\u306estart_container.sh\u3092\u4f7f\u3063\u3066\u65b0\u3057\u3044\u30a4\u30e1\u30fc\u30b8\u3067\u30a4\u30f3\u30b9\u30bf\u30f3\u30b9\u3092\u8d77\u52d5\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash start_container.sh\nINFO: instance started successfully\nguacd[25]: INFO:\tGuacamole proxy daemon (guacd) version 1.4.0 started\nUsing CATALINA_BASE: /opt/tomcat\nUsing CATALINA_HOME: /opt/tomcat\nUsing CATALINA_TMPDIR: /opt/tomcat/temp\nUsing JRE_HOME: /usr/lib/jvm/java-11-openjdk-amd64\nUsing CLASSPATH: /opt/tomcat/bin/bootstrap.jar:/opt/tomcat/bin/tomcat-juli.jar\nUsing CATALINA_OPTS: \nTomcat started.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u30a4\u30f3\u30b9\u30bf\u30f3\u30b9\u5185\u306b\u5165\u308a\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity shell instance://guacamole\nSingularity\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eguacamole-auth-jdbc-mysql-1.3.0.jar\u306e\u30b7\u30f3\u30dc\u30ea\u30c3\u30af\u30ea\u30f3\u30af\u3092guacamole-auth-jdbc-mysql-1.4.0.jar\u306e\u30b7\u30f3\u30dc\u30ea\u30c3\u30af\u30ea\u30f3\u30af\u306b\u5909\u66f4\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity\u0026gt; ls -l /etc/guacamole/extensions/\ntotal 4\nlrwxrwxrwx 1 okuda okuda 82 Mar 17 2021 guacamole-auth-jdbc-mysql-1.3.0.jar -\u0026gt; /usr/local/src/guacamole-auth-jdbc-1.3.0/mysql/guacamole-auth-jdbc-mysql-1.3.0.jar\nSingularity\u0026gt; ln -s /usr/local/src/guacamole-auth-jdbc-1.4.0/mysql/guacamole-auth-jdbc-mysql-1.4.0.jar /etc/guacamole/extensions/\nSingularity\u0026gt; ls -l /etc/guacamole/extensions/\ntotal 8\nlrwxrwxrwx 1 okuda okuda 82 Mar 17 2021 guacamole-auth-jdbc-mysql-1.3.0.jar -\u0026gt; /usr/local/src/guacamole-auth-jdbc-1.3.0/mysql/guacamole-auth-jdbc-mysql-1.3.0.jar\nlrwxrwxrwx 1 okuda okuda 82 Jan 17 12:06 guacamole-auth-jdbc-mysql-1.4.0.jar -\u0026gt; /usr/local/src/guacamole-auth-jdbc-1.4.0/mysql/guacamole-auth-jdbc-mysql-1.4.0.jar\nSingularity\u0026gt; rm /etc/guacamole/extensions/guacamole-auth-jdbc-mysql-1.3.0.jar \nSingularity\u0026gt; ls -l /etc/guacamole/extensions/\ntotal 4\nlrwxrwxrwx 1 okuda okuda 82 Jan 17 12:06 guacamole-auth-jdbc-mysql-1.4.0.jar -\u0026gt; /usr/local/src/guacamole-auth-jdbc-1.4.0/mysql/guacamole-auth-jdbc-mysql-1.4.0.jar\nSingularity\u0026gt; exit\nexit\n$\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u30a4\u30f3\u30b9\u30bf\u30f3\u30b9\u3092\u518d\u8d77\u52d5\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity instance stop guacamole\nINFO: Stopping guacamole instance of /home/okuda/singularity/ubuntu-18.04-guacamole-1.4.0-mysql/guacamole.sif (PID=29810)\n$ bash start_container.sh \nINFO: instance started successfully\nguacd[26]: INFO:\tGuacamole proxy daemon (guacd) version 1.4.0 started\nUsing CATALINA_BASE: /opt/tomcat\nUsing CATALINA_HOME: /opt/tomcat\nUsing CATALINA_TMPDIR: /opt/tomcat/temp\nUsing JRE_HOME: /usr/lib/jvm/java-11-openjdk-amd64\nUsing CLASSPATH: /opt/tomcat/bin/bootstrap.jar:/opt/tomcat/bin/tomcat-juli.jar\nUsing CATALINA_OPTS: \nTomcat started.\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-guacamole-\u3078\u306e\u30a2\u30af\u30bb\u30b9\" class=\"anchor\" href=\"#guacamole-%E3%81%B8%E3%81%AE%E3%82%A2%E3%82%AF%E3%82%BB%E3%82%B9\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eguacamole \u3078\u306e\u30a2\u30af\u30bb\u30b9\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"http://localhost\" rel=\"nofollow\"\u003ehttp://localhost\u003c/a\u003e:\u0026lt;TOMCAT_PORT\u306e\u5024\u0026gt;/guacamole \u3092\u30a6\u30a7\u30d6\u30d6\u30e9\u30a6\u30b6\u3067\u958b\u3044\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cp\u003e\u8d77\u52d5\u76f4\u5f8c\u306e\u30e6\u30fc\u30b6\u30fc\u540d\u3001\u30d1\u30b9\u30ef\u30fc\u30c9\u306f\u3044\u305a\u308c\u3082 guacadmin \u306b\u8a2d\u5b9a\u3055\u308c\u3066\u3044\u307e\u3059\u3002\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1645798954.0
+ "updated_at": 1642040783.0
},
{
"data_format": 2,
- "description": "Analysis scripts and code for Paramormyrops RNA-seq project",
+ "description": null,
"filenames": [
- "trinity_singularity/Singularity"
+ "Singularity.def"
],
- "full_name": "msuefishlab/paramormyrops_rnaseq",
+ "full_name": "mysteryresearcher/dasha",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-paramormyrops_rnaseq\" class=\"anchor\" aria-hidden=\"true\" href=\"#paramormyrops_rnaseq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eparamormyrops_rnaseq\u003c/h1\u003e\n\u003cp\u003eAnalysis scripts and code for our research article: Losilla, M., Luecke, D.M. \u0026amp; Gallant, J.R. The transcriptional correlates of divergent electric organ discharges in Paramormyrops electric fish. BMC Evol Biol 20, 6 (2020). \u003ca href=\"https://doi.org/10.1186/s12862-019-1572-3\" rel=\"nofollow\"\u003ehttps://doi.org/10.1186/s12862-019-1572-3\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis repository contains files with the code we used in our analysis.\u003c/p\u003e\n\u003cp\u003eThe table below serves as a guide to understand the flow of the code. It details the order in which the code was executed, along with a description and comments of each step. Notes are shown in \u003cstrong\u003ebold\u003c/strong\u003e text.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNote:\u003c/em\u003e that a Singularity file is provided in the folder trinity_singularity to run on high performance computing systems. This would allow any user capable of running Singularity images to recreate the exact computing environment used for these analyses, though it is not required.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003escript/command file\u003c/th\u003e\n\u003cth\u003edescription\u003c/th\u003e\n\u003cth\u003ecomments\u003c/th\u003e\n\u003cth\u003eadditional_outputs (These are provided in the folder named additional_files)\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_01_FastQCraw.sh\u003c/td\u003e\n\u003ctd\u003eassess quality of raw reads\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_02_trim_rename_unzip.sh\u003c/td\u003e\n\u003ctd\u003etrim, rename and unzip reads\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_03_FastQCtrimmed.sh\u003c/td\u003e\n\u003ctd\u003eassess quality of trimmed reads\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cstrong\u003eThe NCBI transcripts file we used as reference for the align and count steps was from: NCBI Paramormyrops kingsleyae Annotation Release 100, based on genome assembly PKINGS_0.1. We downloaded the transcripts file from here: ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/872/115/GCF_002872115.1_PKINGS_0.1 We used the file called: rna.fna.gz, and removed the sole rRNA transcript present: XR_002837744.1\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ecmd_generate_gene_to_trans_file.txt\u003c/td\u003e\n\u003ctd\u003egenerate a gene-to-transcript list from the NCBI transcripts file\u003c/td\u003e\n\u003ctd\u003ethis list is required by the align and count steps\u003c/td\u003e\n\u003ctd\u003egene-trans-map.txt\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_04a_RSEMindex.sh\u003c/td\u003e\n\u003ctd\u003eIndex the NCBI transcripts file\u003c/td\u003e\n\u003ctd\u003ecalls the singularity container\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_04a_bash.sh\u003c/td\u003e\n\u003ctd\u003eIndex the NCBI transcripts file\u003c/td\u003e\n\u003ctd\u003eexecutes commands within the singularity container\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_04b_RSEMperIndiv.sh\u003c/td\u003e\n\u003ctd\u003eAligns reads to NCBI transcripts file and counts reads per gene\u003c/td\u003e\n\u003ctd\u003ecalls the singularity container\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_04b_bash.sh\u003c/td\u003e\n\u003ctd\u003eAligns reads to NCBI transcripts file and counts reads per gene\u003c/td\u003e\n\u003ctd\u003eexecutes commands within the singularity container\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_04c_matrices.sh\u003c/td\u003e\n\u003ctd\u003eBuild gene expression matrices\u003c/td\u003e\n\u003ctd\u003ecalls the singularity container\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_04c_bash.sh\u003c/td\u003e\n\u003ctd\u003eBuild gene expression matrices\u003c/td\u003e\n\u003ctd\u003eexecutes commands within the singularity container\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cstrong\u003eAt this point the gene expression matrices (RSEM.gene.counts.matrix and RSEM.gene.TMM.counts.matrix ) use gene names and symbols from the NCBI transcriptome. However, EntrezGeneIDs are preferred for downstream analyses. Therefore, I converted their gene names and symbols to Pkings EntrezGeneIDs with the next R code. The converted files were assigned to the original file names. The original files were first renamed to: \u0026lt;orginal name\u0026gt;_ORIG_gene_symbols\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003etranslate_gene_IDs.Rmd\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e\n\u003cli\u003e Replace gene names and symbols with EntrezGeneIDs in the gene expression matrices\u003c/li\u003e \u003cli\u003e generate a file with the columns Pking EntrezGeneID, gene name, gene symbol and type of gene for each of the predicted 27610 P. kingsleyae genes. This file is named Dic.PkingEntrezGeneID-to-name_symbol_type.txt \u003c/li\u003e\n\u003c/ol\u003e\u003c/td\u003e\n\u003ctd\u003eThis code runs on the renamed files\u003c/td\u003e\n\u003ctd\u003eDic.PkingEntrezGeneID-to-name_symbol_type.txt\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_05a_DE_analyses.sh\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e \u003cli\u003e Data exploration - Correlation matrix, PCA \u003c/li\u003e \u003cli\u003e DGE and MA plots - all 10 possible pairwise OTU comparisons \u003c/li\u003e\n\u003c/ol\u003e\u003c/td\u003e\n\u003ctd\u003ecalls the singularity container\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_05a_bash_DE_genes.sh\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e \u003cli\u003e Data exploration - Correlation matrix, PCA \u003c/li\u003e \u003cli\u003e DGE and MA plots - all 10 possible pairwise OTU comparisons \u003c/li\u003e\n\u003c/ol\u003e\u003c/td\u003e\n\u003ctd\u003e\n\u003cli\u003e executes commands within the singularity container \u003c/li\u003e\n\u003cli\u003e We modified 2) to use the function estimateDisp() instead of the functions estimateCommonDisp() and estimateTagwiseDisp() \u003c/li\u003e\n\u003c/td\u003e\n\u003ctd\u003euses the samples.txt file\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eClustering_of_DEG_mean.Rmd\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e \u003cli\u003e For each phenotype pair, extract the genes that meet the expression filters (Set B groups) \u003c/li\u003e \u003cli\u003e plot expression patterns of the genes in each group from 1) \u003c/li\u003e\n\u003c/ol\u003e\u003c/td\u003e\n\u003ctd\u003egenerates black \u0026amp; white and colored plots for Set B genes (These plots served informational purposes)\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003egenerate_suppl_files_DEG_comparisons_and_groups.Rmd\u003c/td\u003e\n\u003ctd\u003egenerate the supplemental files with the details of the \u003col\u003e \u003cli\u003e 10 DGE comparisons and \u003c/li\u003e \u003cli\u003e Set B groups \u003c/li\u003e\n\u003c/ol\u003e\n\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_06_blastp.sh\u003c/td\u003e\n\u003ctd\u003eblast P. kingsleyae proteins to D. rerio proteins\u003c/td\u003e\n\u003ctd\u003eoutput is split into 7 files, we merged all to one file afterwards\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAnnotation_wrangling.Rmd\u003c/td\u003e\n\u003ctd\u003eFor each ontology, generate two \u0027dictionaries\u0027: \u003col\u003e \u003cli\u003e Pking Entrez Gene IDs to D. rerio GO IDs \u003c/li\u003e \u003cli\u003e D. rerio GO IDs to GO terms \u003c/li\u003e \u003c/ol\u003e\n\u003c/td\u003e\n\u003ctd\u003eFiles from 2) were not used in later scripts, they served as references\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e \u003cli\u003e Dic.PkingEntrezGeneID-to-GO.{ontology}.txt \u003c/li\u003e \u003cli\u003e Dic.{ontology}.GOid_to_term.txt \u003c/li\u003e\n\u003c/ol\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eenrichment_on_Pkings _all_10_DGE_comparisons.Rmd\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e \u003cli\u003e GO enrichment on all 10 DGE comparisons \u003c/li\u003e \u003cli\u003e Horizontal bar plot significant GO terms\u003c/li\u003e\n\u003c/ol\u003e\u003c/td\u003e\n\u003ctd\u003e\n\u003cli\u003e Xcel file from 1) is part of the supplementary files \u003c/li\u003e\n\u003cli\u003e This code also produces a file with information on each upregulated gene annotated to enriched GO terms, including how many GO terms the gene was annotated to for a given upregulated list and ontology (frequency). The file served informational purposes \u003c/li\u003e\n\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eenrichment_on_Pkings_clusters.Rmd\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e \u003cli\u003e GO enrichment on Set B groups \u003c/li\u003e \u003cli\u003e Horizontal bar plot significant GO terms \u003c/li\u003e \u003c/ol\u003e\u003c/td\u003e\n\u003ctd\u003e\n\u003cli\u003e Xcel file from 1) is part of the supplementary files \u003c/li\u003e \u003cli\u003e the horizontal bar plot from 2) served informational purposes) \u003c/li\u003e \u003cli\u003e This code also produces a file with information on each upregulated gene annotated to enriched GO terms, including how many GO terms the gene was annotated to for a given upregulated list and ontology (frequency). The file served informational purposes \u003c/li\u003e\n\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eset_C.Rmd\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e \u003cli\u003e Intersect upregulated genes from Sets A\u0027 and B (these intersected genes are Set C) \u003c/li\u003e \u003cli\u003e GO enrichment on Set C genes \u003c/li\u003e \u003cli\u003e plot expression patterns of Set C genes \u003c/li\u003e \u003cli\u003e Horizontal bar plot significant GO terms \u003c/li\u003e \u003c/ol\u003e\u003c/td\u003e\n\u003ctd\u003eThe outputs are: \u003col\u003e \u003cli\u003e one file per list of upregulated genes \u003c/li\u003e \u003cli\u003e one file per list of enriched GO terms \u003c/li\u003e \u003cli\u003e Xcel file with upregulated genes (consolidation of output 1) \u003c/li\u003e \u003cli\u003e Xcel file with enriched GO terms (consolidation of output 2) \u003c/li\u003e \u003cli\u003e Xcel file with information on each upregulated gene annotated to enriched GO terms, including how many GO terms the gene was annotated to for a given upregulated list and ontology (frequency). The file served informational purposes \u003c/li\u003e \u003cli\u003e Color plots for Set C genes expression patterns \u003c/li\u003e \u003cli\u003e Horizontal bar plot with enriched GO terms \u003c/li\u003e \u003c/ol\u003e \u003cli\u003e Outputs 3) and 4) are part of the supplemental files \u003c/li\u003e \u003cli\u003e Outputs 6) and 7) make up Figs. 4-6 \u003c/li\u003e\n\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dasha-distributed-nonconvex-optimization-with-communication-compression-optimal-oracle-complexity-and-without-client-synchronization\" class=\"anchor\" href=\"#dasha-distributed-nonconvex-optimization-with-communication-compression-optimal-oracle-complexity-and-without-client-synchronization\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDASHA: Distributed Nonconvex Optimization with Communication Compression, Optimal Oracle Complexity and Without Client Synchronization\u003c/h1\u003e\n\u003cp\u003eThis repository provides the code to reproduce the experiments of the submission for The Thirty-ninth International Conference on Machine Learning (ICML 2022)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quick-start\" class=\"anchor\" href=\"#quick-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1-install-singularity-optional\" class=\"anchor\" href=\"#1-install-singularity-optional\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Install \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/introduction.html\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e (optional)\u003c/h3\u003e\n\u003cp\u003eIf you don\u0027t want to install Singularity, make sure that you have all dependecies from Singularity.def (python3, numpy, pytorch, etc.)\u003c/p\u003e\n\u003cp\u003ea. Pull an image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull library://k3nfalt/default/python_ml:sha256.efcd1fc038228cb7eb0f6f1942dfbaa439cd95d6463015b83ceb2dbaad9e1e98\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eb. Open a shell console of the image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv ~/python_ml_sha256.efcd1fc038228cb7eb0f6f1942dfbaa439cd95d6463015b83ceb2dbaad9e1e98.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-2-prepare-scripts-for-experiments\" class=\"anchor\" href=\"#2-prepare-scripts-for-experiments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Prepare scripts for experiments\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003ePYTHONPATH=./code python3 ./code/distributed_optimization_library/experiments/zero_marina/config_libsvm_zero_marina.py \n--dumps_path SOME_PATH --dataset_path PATH_TO_FOLDER_WITH_DATASET --dataset mushrooms \n--experiments_name EXPERIMENT_NAME --num_nodes_list 5 \n--step_size_range -10 4 --number_of_seeds 1 --number_of_iterations 21000 \n--algorithm_names zero_marina marina --function nonconvex \n--compressors rand_k --number_of_coordinates 10 --quality_check_rate 10\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-3-execute-scripts\" class=\"anchor\" href=\"#3-execute-scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. Execute scripts\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esh SOME_PATH/EXPERIMENT_NAME/singularity_*.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-4-plot-results\" class=\"anchor\" href=\"#4-plot-results\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. Plot results\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003ePYTHONPATH=./code python3 ./code/distributed_optimization_library/experiments/plots/zero_marina/plot_marina_mushrooms_gradient.py \n--dumps_paths SOME_PATH/EXPERIMENT_NAME\n--output_path SOME_PATH_FOR_PLOTS\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOne can find all other scripts \u003ca href=\"https://github.com/mysteryresearcher/dasha/blob/ac7d0dce798898fb6255e7c0ab181def8ac88f48/code/distributed_optimization_library/experiments/plots/zero_marina/script.txt#L1\"\u003ehere\u003c/a\u003e that generate experiments from the paper.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1602949531.0
+ "updated_at": 1642513577.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for spades (git@github:powerPlant/spades-srf.git)",
+ "description": "A curriculum framework",
"filenames": [
- "Singularity.cami2-submission",
- "Singularity.v3.10.0",
- "Singularity.v3.8.1",
- "Singularity.v0.5-recomb",
- "Singularity.v3.12.0",
- "Singularity.v3.9.0",
- "Singularity.spaligner-paper",
- "Singularity.v3.11.1",
- "Singularity.v3.13.0",
- "Singularity.v3.8.0",
- "Singularity.v3.10.1",
- "Singularity.v3.14.0",
- "Singularity.template",
- "Singularity.cloudspades-paper",
- "Singularity.v3.13.1",
- "Singularity.v3.8.2",
- "Singularity.v3.11.0",
- "Singularity.metaplasmid-paper",
- "templates/Singularity.template"
+ "pddlgym_planners/FD/misc/releases/19.06/Singularity.19.06",
+ "pddlgym_planners/FD/misc/releases/latest/Singularity",
+ "pddlgym_planners/FD/misc/releases/19.12/Singularity.19.12",
+ "pddlgym_planners/FD/misc/releases/20.06/Singularity.20.06"
],
- "full_name": "powerPlant/spades-srf",
+ "full_name": "nitsan57/CDM_torch",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for spades\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-cdm_torch\" class=\"anchor\" href=\"#cdm_torch\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCDM_torch\u003c/h1\u003e\n\u003cp\u003eA curriculum framework\ncheck out cdm.ipynb\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1580700253.0
+ "updated_at": 1642618241.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Pycharm in Singularity",
"filenames": [
"Singularity"
],
- "full_name": "tomuram/singularity_recipes",
- "latest_release": null,
+ "full_name": "serheang/pycharm_singularity",
+ "latest_release": "pycharm",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-build-status-badge-\" class=\"anchor\" href=\"#build-status-badge-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild status badge: \u003ca href=\"https://github.com/serheang/pycharm_singularity/workflows/build-singularity-container/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/serheang/pycharm_singularity/workflows/build-singularity-container/badge.svg\" alt=\"badge.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-pycharm_singularity\" class=\"anchor\" href=\"#pycharm_singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epycharm_singularity\u003c/h1\u003e\n\u003cp\u003ePycharm in Singularity container.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1625019915.0
+ "updated_at": 1642676609.0
},
{
"data_format": 2,
- "description": "Recipes for Singularity images used by Singularity Hub.",
+ "description": null,
"filenames": [
- "Singularity.Root6.Ubuntu-18.04",
- "Singularity.Root6.Geant4.OptSim.Ubuntu-18.04",
- "Singularity.Root6.Geant4.Ubuntu-18.04"
+ "Singularity"
],
- "full_name": "PPKoller/SHub",
+ "full_name": "zellerlab/vortex_light",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-shub\" class=\"anchor\" aria-hidden=\"true\" href=\"#shub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSHub\u003c/h1\u003e\n\u003cp\u003eRecipes for Singularity images to be built on Singularity Hub.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4666\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-argoncube-optical-simulation--\" class=\"anchor\" aria-hidden=\"true\" href=\"#argoncube-optical-simulation--\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eArgonCube Optical Simulation \u003ca href=\"https://github.com/PPKoller/ArCubeOptSim\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ac28190b3bdb446d46b2760854ecec42927bd2ae802d0729c6b0e72449b56082/68747470733a2f2f6769746875622e6769746875626173736574732e636f6d2f696d616765732f6d6f64756c65732f6c6f676f735f706167652f4769744875622d4d61726b2e706e67\" width=\"30\" data-canonical-src=\"https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://argoncube.org/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://github.com/PPKoller/SHub/raw/master/.ArCube_Logo.png\" width=\"100\" align=\"right\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-pull-the-container-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-pull-the-container-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Pull the container image:\u003c/h3\u003e\n\u003cp\u003eThe optical simulation software container can be pulled directly via the Singularity command:\u003cbr\u003e\n(size ~ 1.4G)\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull shub://PPKoller/SHub:root6.geant4.optsim.ubuntu-18.04\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-2-image-default-checks\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-image-default-checks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Image default checks:\u003c/h3\u003e\n\u003cp\u003ePerforming the Singularity default checks should return \u003ccode\u003ePASS: (retval=0)\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emv PPKoller-SHub-master-root6.geant4.optsim.ubuntu-18.04.simg OptSim.simg\nsingularity check --tag default OptSim.simg\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-3-export-io-binding-paths\" class=\"anchor\" aria-hidden=\"true\" href=\"#3-export-io-binding-paths\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. Export I/O binding paths:\u003c/h3\u003e\n\u003cp\u003eUsing the environment variable \u003ccode\u003e$SINGULARITY_BINDPATH\u003c/code\u003e there won\u0027t be any need to bind I/O paths manually later.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emkdir input output\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e SINGULARITY_BINDPATH=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003einput/:/input,output/:/output\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-4-run-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#4-run-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. Run instructions:\u003c/h3\u003e\n\u003cp\u003eRunning the container without any arguments will return a list of the available apps including a short description on what it does and what parameters you might need to provide.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run OptSim.simg\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-5-run-apps\" class=\"anchor\" aria-hidden=\"true\" href=\"#5-run-apps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e5. Run apps:\u003c/h3\u003e\n\u003cp\u003eThere are five apps available within the container: four simulaion related apps that run the optical simulation with different levels of user defined input and one app that allows you to build the photon look-up-table using the output created by running the simulation.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThe selected voxels will be processed sequentially. Separate container calls are needed for parallel processing.\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003esim\u003c/strong\u003e\u003cbr\u003e\nRun the simulation on voxels no. 0 to 9 using the default statistics, voxel geometry and optical properties.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --app sim OptSim.simg 0 10\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eStatistics\u003c/em\u003e: 1\u0027000 events per voxel / 10\u0027000 photons per event\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eVoxel geometry\u003c/em\u003e: 32 x 128 x 32 voxels / 9.460 x 9.858 x 9.692 mm\u003csup\u003e3\u003c/sup\u003e (drift x vertical x beam)\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eOpt. properties\u003c/em\u003e: \u003ca href=\"https://github.com/PPKoller/ArCubeOptSim/tree/LUT/resources/datafiles\"\u003ePPKoller/ArCubeOptSim/tree/LUT/resources/datafiles\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003esim_usr_geo\u003c/strong\u003e\u003cbr\u003e\nRun the simulation on voxels no. 0 to 9 with user defined statistics and voxel geometry. Herefore, the file \u003ccode\u003eOptSim_LUT_voxel_table.txt\u003c/code\u003e has to be placed in the folder \u003ccode\u003einput/\u003c/code\u003e before executing the simulation.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --app sim_usr_geo OptSim.simg 0 10\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe file \u003ccode\u003eOptSim_LUT_voxel_table.txt\u003c/code\u003e can be created by the Jupyter Notebook provided \u003ca href=\"create_OptSim_LUT_voxel_table.ipynb\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003esim_usr_opt\u003c/strong\u003e\u003cbr\u003e\nRun the simulation on voxels no. 0 to 9 with user defined optical properties. Herefore, a folder \u003ccode\u003edatafiles/\u003c/code\u003e containing all optical properties files has to be placed in the folder \u003ccode\u003einput/\u003c/code\u003e before executing the simulation.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --app sim_usr_opt OptSim.simg 0 10\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe folder \u003ccode\u003edatafiles/\u003c/code\u003e containing the default optical properties files can be found \u003ca href=\"https://github.com/PPKoller/ArCubeOptSim/tree/LUT/resources/datafiles\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003esim_usr\u003c/strong\u003e\u003cbr\u003e\nRun the simulation on voxels no. 0 to 9 with user defined statistics, voxel geometry and optical properties. (see instructions above)\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --app sim_usr OptSim.simg 0 10\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003elut / lut_usr\u003c/strong\u003e\u003cbr\u003e\nBuild the photon look-up-table using the output created by running the simulation. Herefore, voxel number \u00270\u0027 needs to have been processed and the respective root file \u003ccode\u003eOptSim_00000000.root\u003c/code\u003e has to be present in \u003ccode\u003eoutput/root_files/\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --app lut OptSim.simg\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eAnd in case the simulation was run with user defined statistics and voxel geometry:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --app lut_usr OptSim.simg\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-6-output\" class=\"anchor\" aria-hidden=\"true\" href=\"#6-output\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e6. Output\u003c/h3\u003e\n\u003cp\u003eAfter running the optical simulation, log and error files will appear in \u003ccode\u003eoutput/log_files/\u003c/code\u003e and root files will appear in \u003ccode\u003eoutput/root_files/\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eAfter running the LUT builder, the photon look-up-table will apper in \u003ccode\u003eoutput/\u003c/code\u003e as \u003ccode\u003eOptSim_LUT_ArgonCube2x2.root\u003c/code\u003e.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e[optional]\u003c/h3\u003e\n\u003ch4\u003e\u003ca id=\"user-content-user-defined-tpb-thickness\" class=\"anchor\" aria-hidden=\"true\" href=\"#user-defined-tpb-thickness\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUser defined TPB thickness\u003c/h4\u003e\n\u003cp\u003ePlace the file \u003ccode\u003epreinit.mac\u003c/code\u003e with custom TPB thickness in the folder \u003ccode\u003einput/\u003c/code\u003e before executing the simulation. The default \u003ccode\u003epreinit.mac\u003c/code\u003e can be found \u003ca href=\"https://github.com/PPKoller/ArCubeOptSim/tree/LUT/resources/macros/preinit.mac\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-build-and-shell-into-writable-sandbox-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-and-shell-into-writable-sandbox-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild and shell into writable sandbox image:\u003c/h4\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build --sandbox OptSim OptSim.simg\nsudo singularity shell --writable OptSim\u003c/pre\u003e\u003c/div\u003e\n\u003ch4\u003e\u003ca id=\"user-content-build-compressed-read-only-squashfs-image-from-sandbox-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-compressed-read-only-squashfs-image-from-sandbox-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild compressed read-only squashfs image from sandbox image:\u003c/h4\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build OptSim_edited.simg OptSim\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-vortex_light\" class=\"anchor\" href=\"#vortex_light\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003evortex_light\u003c/h1\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-installing-locally-and-running-from-local-installation\" class=\"anchor\" href=\"#installing-locally-and-running-from-local-installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling locally and running from local installation\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003eClone the repo from GitHub.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/zellerlab/vortex_light.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eCreate a conda environment with NextFlow, e.g. by using the provided \u003ccode\u003eenvironment.yml\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003ecd vortex_light\nconda env create -f environment.yml\nconda activate vortex_light\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\n\u003cp\u003eMake a copy of the \u003ccode\u003econfig/run.config\u003c/code\u003e file and adjust it to your environment.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun the pipeline\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run /path/to/vortex_light/main.nf --input_dir /path/to/input_files --output_dir /path/to/output_dir -c /path/to/run.config\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cem\u003eNote: Nextflow itself requires at least \u003ccode\u003e5GB\u003c/code\u003e of memory.\u003c/em\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-running-from-github\" class=\"anchor\" href=\"#running-from-github\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning from GitHub\u003c/h3\u003e\n\u003cp\u003eThis requires a local nextflow installation. If you don\u0027t have one, see Steps 1/2 above.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eMake a local copy of the \u003ca href=\"https://raw.githubusercontent.com/zellerlab/vortex_light/main/config/run.config\" rel=\"nofollow\"\u003erun configuration file\u003c/a\u003e and adjust to your environment.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun the pipeline\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run zellerlab/vortex_light --input_dir /path/to/input_files --output_dir /path/to/output_dir -c /path/to/run.config\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cem\u003eNote: Nextflow itself requires at least \u003ccode\u003e5GB\u003c/code\u003e of memory.\u003c/em\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-input-parameters\" class=\"anchor\" href=\"#input-parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput parameters\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--input_dir\u003c/code\u003e should be a folder with bam files or with gzipped fastq files. For fastq files, individual samples should be separated into individual folders.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--output_dir\u003c/code\u003e is \u003ccode\u003evlight_out\u003c/code\u003e in the local directory by default.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--skip_\u0026lt;analysis\u0026gt;\u003c/code\u003e, \u003ccode\u003e--run_\u0026lt;analysis\u0026gt;\u003c/code\u003e skips, resp. explicitly requires execution of the specified analysis (\u003ccode\u003epathseq\u003c/code\u003e, \u003ccode\u003ebase_counts\u003c/code\u003e (read counts post pre-processing), \u003ccode\u003ekraken2\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--publishMode\u003c/code\u003e allows to switch between various modes of how results files are placed in the \u003ccode\u003eoutput_dir\u003c/code\u003e (cf. NextFlow documentation)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-notes\" class=\"anchor\" href=\"#notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ekraken2\u003c/code\u003e can only run when the parameter \u003ccode\u003ekraken_database\u003c/code\u003e is set.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003epathseq\u003c/code\u003e can only run when the parameter \u003ccode\u003epathseq_database\u003c/code\u003e is set.\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eOutputs\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThe output folder contains:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ea subdirectory per sample (named \u003ccode\u003e\u0026lt;sample\u0026gt;\u003c/code\u003e) with\n\u003cul\u003e\n\u003cli\u003ethe kraken2 report \u003ccode\u003e\u0026lt;sample\u0026gt;.kraken2_report.txt\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003ethe library size \u003ccode\u003e\u0026lt;sample\u0026gt;.libsize.txt\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003epathseq output\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003e\u0026lt;sample\u0026gt;.pathseq.bam\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003e\u0026lt;sample\u0026gt;.pathseq.bam.sgi\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003e\u0026lt;sample\u0026gt;.pathseq.score_metrics\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003e\u0026lt;sample\u0026gt;.pathseq.scores\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eNote that by default, all files in the output folder are symlinks into the work dir! Before you delete the work dir, ensure you have dereferenced copies. Alternatively, change the --publishMode parameter to \u003ccode\u003ecopy\u003c/code\u003e or \u003ccode\u003elink\u003c/code\u003e (if the target file system supports hard links).\u003c/strong\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1612530237.0
+ "updated_at": 1642692226.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Version 3 of OnDemand apps",
"filenames": [
- "Singularity.Bowtie2",
- "Singularity",
- "Singularity.FastQC",
- "Singularity.bedtools",
- "Singularity.samtools",
- "Singularity.methylkit"
+ "rstudio_server_app/Singularity",
+ "shiny_app/ext/Singularity"
],
- "full_name": "thakk/biobase",
+ "full_name": "CHPC-UofU/OOD-apps-v3",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-containers-for-bioinformatics-tools\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-containers-for-bioinformatics-tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity containers for bioinformatics tools\u003c/h1\u003e\n\u003cp\u003eBioinformatics related singularity container recipies.\u003c/p\u003e\n\u003cp\u003eBase is CentOS 8.\u003c/p\u003e\n\u003cp\u003eCurrently two containers are implemented:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ebasic tools:\n\u003cul\u003e\n\u003cli\u003eSamtools\u003c/li\u003e\n\u003cli\u003eBEDTools\u003c/li\u003e\n\u003cli\u003eFastQC\u003c/li\u003e\n\u003cli\u003eBowtie2\u003c/li\u003e\n\u003cli\u003eMultiQC\u003c/li\u003e\n\u003cli\u003eCutadapt\u003c/li\u003e\n\u003cli\u003eSTAR\u003c/li\u003e\n\u003cli\u003eHisat2\u003c/li\u003e\n\u003cli\u003ePicard\u003c/li\u003e\n\u003cli\u003eTrimmomatic\u003c/li\u003e\n\u003cli\u003eSamblaster\u003c/li\u003e\n\u003cli\u003eVarScan\u003c/li\u003e\n\u003cli\u003eVcfanno\u003c/li\u003e\n\u003cli\u003ePlink\u003c/li\u003e\n\u003cli\u003eMACS2\u003c/li\u003e\n\u003cli\u003eHomer\u003c/li\u003e\n\u003cli\u003eNextFlow\u003c/li\u003e\n\u003cli\u003enf-core\u003c/li\u003e\n\u003cli\u003eMAGeCK\u003c/li\u003e\n\u003cli\u003eTrimGalore\u003c/li\u003e\n\u003cli\u003eBismark\u003c/li\u003e\n\u003cli\u003eUCSC tools\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003emethylKit (built from basic):\n\u003cul\u003e\n\u003cli\u003eR + Bioconductor\u003c/li\u003e\n\u003cli\u003emethylkit\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003esamtools (built from Alpine Linux 3.10.3)\n\u003cul\u003e\n\u003cli\u003eNote, automated Singularity Hub build does not seem to work correctly as this recipe uses multistage build to minimize container size\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-availability\" class=\"anchor\" aria-hidden=\"true\" href=\"#availability\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAvailability\u003c/h2\u003e\n\u003cp\u003eBasic tools container is available at Singularity hub: shub://thakk/biobase\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ood-apps\" class=\"anchor\" href=\"#ood-apps\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOOD-apps\u003c/h1\u003e\n\u003cp\u003eRepository of CHPC\u0027s Open OnDemand apps\u003c/p\u003e\n\u003cp\u003eVersion 3.0\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003etemplated filling of job parameters\u003c/li\u003e\n\u003cli\u003edynamic filling of application versions (module files)\u003c/li\u003e\n\u003cli\u003ethe templates are in directory app-templates\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis is a repository of interactive apps used at CHPC with Open OnDemand.\u003c/p\u003e\n\u003cp\u003eEach subdirectory has its own README.md which contains information about this particular app.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1589801761.0
+ "updated_at": 1643047602.0
},
{
"data_format": 2,
- "description": "Singularity containers for tools using the MAGICIAN pipeline",
+ "description": "Singularity recipe files for sqlite-tools (http://www.sqlite.org/)",
"filenames": [
- "drep/Singularity.drep",
- "camisim_ks_fork/Singularity.cami_python2",
- "bbmap_36.49_metabat2_latest/Singularity.bbmap_from_metabat"
+ "Singularity.3.36.0",
+ "Singularity"
],
- "full_name": "KatSteinke/magician-singularity-containers",
+ "full_name": "powerPlant/sqlite-tools-srf",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/5332\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for sqlite-tools to provide sqldiff\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1617363865.0
+ "updated_at": 1643154969.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "setup/Singularity"
+ "Singularity"
],
- "full_name": "smithhenryd/GSoC_2020_UnderrepresentedMessagesAndDemocrats-",
+ "full_name": "canceromics/LncPipe",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-gsoc_2020_underrepresentedmessagesanddemocrats\" class=\"anchor\" aria-hidden=\"true\" href=\"#gsoc_2020_underrepresentedmessagesanddemocrats\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGSoC_2020_UnderrepresentedMessagesAndDemocrats:\u003c/h1\u003e\n\u003cp\u003eThe 2020 Google Summer of Code project \"Understanding Messages to Underrepresented Racial, Ethnic, Gender, and Sexual Groups on Social Media by Democratic Politicians and their Electoral Implications\" is contributed by Henry Smith with \u003ca href=\"http://www.redhenlab.org/\" rel=\"nofollow\"\u003eRed Hen Lab\u003c/a\u003e. Work on the project is completed under the mentorship of \u003ca href=\"http://home.jsjoo.com/\" rel=\"nofollow\"\u003eDr. Jungeock Joo\u003c/a\u003e and \u003ca href=\"https://bywords.github.io/\" rel=\"nofollow\"\u003eDr. Kunwoo Park\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-gsoc-2020-blog\" class=\"anchor\" aria-hidden=\"true\" href=\"#gsoc-2020-blog\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGSOC 2020 Blog:\u003c/h2\u003e\n\u003cp\u003eDetailed weekly updates during summer 2020 can be found at the project\u0027s \u003ca href=\"https://smithhenryd.github.io/UnderrepresentedMessagesAndDemocrats.github.io/\" rel=\"nofollow\"\u003eblog page\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-project-directory\" class=\"anchor\" aria-hidden=\"true\" href=\"#project-directory\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eProject Directory:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/smithhenryd/GSoC_2020_UnderrepresentedMessagesAndDemocrats-/tree/master/background\"\u003ebackground\u003c/a\u003e details preliminary information relevant to the research project and topic. This folder currently contains the original proposal as well as a brief summary of related political science research.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/smithhenryd/GSoC_2020_UnderrepresentedMessagesAndDemocrats-/tree/master/electoral_outcomes_data\"\u003eelectoral_outcomes_data\u003c/a\u003e includes data collected from \u003ca href=\"https://ballotpedia.org/Election_results,_2018\" rel=\"nofollow\"\u003eBallotpedia\u003c/a\u003e summarizing 2018 U.S. midterm election outcomes. The current data details primary and general election outcomes in racially and ethnically diverse congressional districts, measured by the proportion of individuals that identify as people of color (POC).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/smithhenryd/GSoC_2020_UnderrepresentedMessagesAndDemocrats-/tree/master/imgs_data\"\u003eimgs_data\u003c/a\u003e contains information pertaining to the 2018 Facebook images dataset collected by Dr. Jungseock Joo and his colleagues. The dataset consists of images shared on Facebook from January 1 - November 5, 2018 by U.S. politicians who competed for the U.S. House, Senate, and state governorships during the 2018 general election.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-background-and-motivation\" class=\"anchor\" aria-hidden=\"true\" href=\"#background-and-motivation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBackground and Motivation:\u003c/h2\u003e\n\u003cp\u003eThe importance of underrepresented voters is not new to the Democratic party: a 2017 poll of registered voters by the Pew Research Institute of U.S. Politics and Policy estimated that only fifty-nine percent of self-identified Democrats/lean Democrats label themselves as white, compared to the eighty-nine percent of Republicans/lean Republicans. This figure is down from an estimated sixty-seven percent in 2007 and seventy-five percent in 1997. The same report approximates that Black voters constitute nineteen percent of this Democratic base, Hispanic voters twelve percent, and Asian together with other underrepresented racial/ethnic groups constitute ten percent [6].\u003c/p\u003e\n\u003cp\u003eMoreover, recent elections suggest the emergence of the LGBT community, which we classify as underrepresented gender and sexual individuals, as one of the most solid Democratic voting blocs. Exit polling by NBC following the 2018 midterm elections indicated that while LGBT voters constituted only six percent of the electorate, upwards of eighty-two percent of these voters supported the Democratic candidate [1].\u003c/p\u003e\n\u003cp\u003eDespite the distinct importance of these groups to the Democratic party, it is not clear that the party knows how to effectively mobilize underrepresented voters. This harrowing reality came to the forefront of the news cycle following a decade-low Black voter turnout during the 2016 election [4]. In response to this fall in turnout, to which many have attributed Democratic presidential candidate Hillary Clinton\u2019s loss, the Democratic National Committee (DNC) pledged $2.5 million for the funding of programs to increase turnout among underrepresented groups during the 2018 midterm elections [3].\u003c/p\u003e\n\u003cp\u003eOf particular interest to our research is how politicians themselves aim to mobilize these communities through social media. Past research has underscored the importance of social media as spaces for underrepresented racial, gender, and sexual groups. In conflict with the narrative that a lack of access to technology divides disadvantaged racial groups, a recent study has shown that online platforms in fact embolden social networks between these groups [2]. Likewise, it is estimated that eighty percent of LGBT adults engage on at least one social media website, which is much greater than the fifty-eight percent of the general public [5].\u003c/p\u003e\n\u003cp\u003eKeeping this in mind, we seek to answer the following questions:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eHow do Democratic politicians present themselves to underrepresented racial, gender, and sexual groups on social media platforms through visual content?\u003c/li\u003e\n\u003cli\u003eWhich traits displayed in these images are perceived most positively/negatively by underrepresented voters?\u003c/li\u003e\n\u003cli\u003eHow do visual messages predict primary election outcomes in diverse electoral districts?\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eSources:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[1] Fitzsimons, T. (2018, November 08). Record LGBT support for Democrats in midterms, NBC News Exit Poll shows. NBC News. Retrieved from \u003ca href=\"https://www.nbcnews.com/feature/nbc-out/record-lgbt-support-democrats-midterms-nbc-news-exit-poll-shows-n934211\" rel=\"nofollow\"\u003ehttps://www.nbcnews.com/feature/nbc-out/record-lgbt-support-democrats-midterms-nbc-news-exit-poll-shows-n934211\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003e[2] Amy L. Gonzales. 2015. Disadvantaged Minorities\u2019 Use of the Internet to Expand Their Social Networks. Communication Research 44, 4 (2017), 467-486.\u003c/li\u003e\n\u003cli\u003e[3] Herndon, A. W. (2018, June 21). Democrats Plan New Effort to Target Minority Voters. The New York Times. Retrieved from \u003ca href=\"https://www.nytimes.com/2018/06/21/us/politics/democrats-minority-voters-midterms.html?smtyp=cur\u0026amp;smid=tw-nytimes\" rel=\"nofollow\"\u003ehttps://www.nytimes.com/2018/06/21/us/politics/democrats-minority-voters-midterms.html?smtyp=cur\u0026amp;smid=tw-nytimes\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003e[4] Krogstad, J. M. and Lopez, M. H. (2017, May 12). Black voter turnout fell in 2016, even as a record number of Americans cast ballots. Pew Research Center, Washington, D.C. Retrieved from \u003ca href=\"https://www.pewresearch.org/fact-tank/2017/05/12/black-voter-turnout-fell-in-2016-even-as-a-record-number-of-americans-cast-ballots/\" rel=\"nofollow\"\u003ehttps://www.pewresearch.org/fact-tank/2017/05/12/black-voter-turnout-fell-in-2016-even-as-a-record-number-of-americans-cast-ballots/\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003e[5] \u201cA Survey of LGBT Americans.\u201d Pew Research Center, Washington, D.C. (2013, June 13) \u003ca href=\"https://www.pewsocialtrends.org/2013/06/13/a-survey-of-lgbt-americans/\" rel=\"nofollow\"\u003ehttps://www.pewsocialtrends.org/2013/06/13/a-survey-of-lgbt-americans/\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003e[6] \u201cWide Gender Gap, Growing Educational Divide in Voters\u2019 Party Identification.\u201d Pew Research Center, Washington, D.C. (2018, March 20) \u003ca href=\"https://www.people-press.org/2018/03/20/wide-gender-gap-growing-educational-divide-in-voters-party-identification/\" rel=\"nofollow\"\u003ehttps://www.people-press.org/2018/03/20/wide-gender-gap-growing-educational-divide-in-voters-party-identification/\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-lncpipe\" class=\"anchor\" href=\"#lncpipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"https://github.com/likelet/LncPipe\"\u003eLncPipe\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/likelet/LncPipe/blob/master/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/baf841111dc28f78162a4622b162743688582f72fdd1489701abaed0dbedeb6c/68747470733a2f2f696d672e736869656c64732e696f2f6175722f6c6963656e73652f79616f7572742e737667\" alt=\"AUR\" data-canonical-src=\"https://img.shields.io/aur/license/yaourt.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"http://nextflow.io\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4592602bf49949ce2bf5d14fd5d8f82ff4d9da11fcc13f9afaadaa60e0f915e0/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e32342e302d627269676874677265656e2e737667\" alt=\"nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.24.0-brightgreen.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-overall\" class=\"anchor\" href=\"#overall\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOverall\u003c/h2\u003e\n\u003cp\u003eRecently, long noncoding RNA molecules (lncRNA) captured widespread attentions for their critical\nroles in diverse biological process and important implications in variety of human diseases and\ncancers. Identification and profiling of lncRNAs is a fundamental step to advance our knowledge\non their function and regulatory mechanisms. However, RNA sequencing based lncRNA discovery is\ncurrently limited due to complicated operations and implementation of the tools involved. Therefore, we present a one-stop multi-tool integrated pipeline called \u003ca href=\"https://github.com/likelet/LncPipe\"\u003eLncPipe\u003c/a\u003e focused on characterizing lncRNAs from raw transcriptome sequencing data.\nThe pipeline was developed based on a popular workflow framework \u003ca href=\"https://github.com/nextflow-io/nextflow\"\u003eNextflow\u003c/a\u003e, composed of four core procedures including reads alignment, assembly, identification and quantification. It contains various unique features such as well-designed lncRNAs annotation strategy, optimized calculating efficiency, diversified classification and interactive analysis report. \u003ca href=\"https://github.com/likelet/LncPipe\"\u003eLncPipe\u003c/a\u003e allows users additional control in interuppting the pipeline, resetting parameters from command line, modifying main script directly and resume analysis from previous checkpoint.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" href=\"#table-of-contents\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTable of Contents\u003c/h2\u003e\n\n\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#schematic-diagram\"\u003eSchematic diagram\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#installation-and-quick-start\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#run-docker\"\u003eRun Docker\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/likelet/LncPipeTestData\"\u003eRun with example data\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#interactive-reports\"\u003eInteractive reports\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#parameters\"\u003eParameters\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#faq\"\u003eFAQ\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#acknowledgements\"\u003eAcknowledgements\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#contact\"\u003eContact\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#license\"\u003eLicense\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-schematic-diagram\" class=\"anchor\" href=\"#schematic-diagram\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSchematic diagram\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/nextflow-io/nextflow\"\u003eNextflow\u003c/a\u003e\u003cbr\u003e\nLncPipe is implemented with Nextflow pipeline management system. To run LncPipe. \u003ca href=\"https://github.com/nextflow-io/nextflow\"\u003eNextflow\u003c/a\u003e should be pre-installed at POSIX compatible system (Linux, Solaris, OS X, etc), It requires BASH and Java 7 or higher to be installed. We do not recommend running the pipes in the Windows since most of bioinformatic tools are not supported.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quick-start\" class=\"anchor\" href=\"#quick-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick start\u003c/h2\u003e\n\u003cp\u003eHere, we show step by step installation of \u003ca href=\"https://github.com/nextflow-io/nextflow\"\u003eNextflow\u003c/a\u003e in a linux system as an example (adopted from \u003ca href=\"https://www.nextflow.io/docs/latest/getstarted.html\" rel=\"nofollow\"\u003eNextFlow\u003c/a\u003e).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eDownload the NextFlow executable package by pasting the following command into your terminal window:\u003c/p\u003e\n\u003cp\u003ewget -qO- get.nextflow.io | bash\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cblockquote\u003e\n\u003cp\u003eIt will create the \u003ca href=\"https://github.com/nextflow-io/nextflow\"\u003eNextflow\u003c/a\u003e main executable file in the current directory.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eOptionally, move the nextflow file to a directory accessible by your \u003ccode\u003e$PATH\u003c/code\u003e variable (only required to avoid typing the full path to this file each time you need to run it). Of course, you can download the lastest binary version of NextFlow by yourself from \u003ca href=\"https://github.com/nextflow-io/nextflow/releases\"\u003ehere\u003c/a\u003e and add the path to your system environment.All those pipelines were written in \u003ca href=\"https://github.com/nextflow-io/nextflow\"\u003eNextflow\u003c/a\u003e commands. For more details, please see \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eDownload the LncPipe github repository by:\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/likelet/LncPipe.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eConfigure the design.file with experimental conditions and replicate info\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eConfigure your data and reference files in \u003cem\u003enextflow.config\u003c/em\u003e or \u003cem\u003edocker.config\u003c/em\u003e or \u003cem\u003esingularity.config\u003c/em\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003e\n\u003cp\u003eRun LncPipe nextflow pipeline:\u003c/p\u003e\n\u003cp\u003enextflow -c nextflow.config run LncRNAanalysisPipe.nf\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eor docker command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e nextflow -c docker.config run LncRNAanalysisPipe.nf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor singularity command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e # create image \n singularity build lncPipe.image docker://bioinformatist/lncpipe\n # run command \n nextflow -c singularity.config run LncRNAanalysisPipe.nf\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e__7.Run with test data __ .\u003c/p\u003e\n\u003cp\u003ePlZ go to \u003ca href=\"https://github.com/likelet/LncPipeTestData\"\u003ehttps://github.com/likelet/LncPipeTestData\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-prepare-input-files\" class=\"anchor\" href=\"#prepare-input-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrepare input files\u003c/h3\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-references-index-and-annotation-filesmandatory\" class=\"anchor\" href=\"#references-index-and-annotation-filesmandatory\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences, index and annotation files(Mandatory).\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cg-emoji class=\"g-emoji\" alias=\"blush\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f60a.png\"\u003e\ud83d\ude0a\u003c/g-emoji\u003ePlease keep the consistency of your genome sequence,index library and annotation files (Important!): genome version, chromosome format, gtf coordinated e.g. The dependent third-party softwares may stop for any discrepencies in file-formatting.\u003c/strong\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGenome reference (genome fasta file with suffix \u003ccode\u003e.fa\u003c/code\u003e etc. )\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGenome Index for alignment (hisat2 or tophat or STAR)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGENCODE gene annotation file in GTF format\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eLNCipedia gene annotation file in GTF format.(set null if not available for your species)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRaw sequence file with *.fastq.gz / *.fq.gz suffixed\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-species\" class=\"anchor\" href=\"#species\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpecies\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt;Currently, LncPipe has been tested for detection of lncRNAs in \u0027humans\u0027 only.\nHowever, LncPipe can be manually configured to run the anlysis for other species as well and requires additional files \"known_protein_coding.gtf\" and \"known_lncRNA.gtf\" for coding probability calculations. More information on usage for non-human species can be found here. \n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eReference files for humans\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003ehisat index built from Genome:\n\u003ca href=\"http://cancerbio.info/pub/hg38_hisat_index.tar.gz\" rel=\"nofollow\"\u003ehttp://cancerbio.info/pub/hg38_hisat_index.tar.gz\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGenome reference:\n\u003ca href=\"ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_27/GRCh38.p10.genome.fa.gz\" rel=\"nofollow\"\u003eftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_27/GRCh38.p10.genome.fa.gz\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGENCODE gene annotation:\n\u003ca href=\"ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_27/gencode.v27.annotation.gtf.gz\" rel=\"nofollow\"\u003eftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_27/gencode.v27.annotation.gtf.gz\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eLNCipedia gene annotation:\n\u003ca href=\"https://lncipedia.org/downloads/lncipedia_5_0_hc_hg38.gtf\" rel=\"nofollow\"\u003ehttps://lncipedia.org/downloads/lncipedia_5_0_hc_hg38.gtf\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRaw sequence file with *.fastq.gz / *.fq.gz suffixed\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eReference files for mouse\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003ehisat index built from Genome\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGenome reference:\u003cbr\u003e\n\u003ca href=\"ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M16/GRCm38.p5.genome.fa.gz\" rel=\"nofollow\"\u003eftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M16/GRCm38.p5.genome.fa.gz\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGENCODE gene annotation:\n\u003ca href=\"ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M16/gencode.vM16.annotation.gtf.gz\" rel=\"nofollow\"\u003eftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M16/gencode.vM16.annotation.gtf.gz\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eLNCipedia gene annotation: null\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRaw sequence file with *.fastq.gz / *.fq.gz suffixed\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-run-docker\" class=\"anchor\" href=\"#run-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Docker\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003ePrepare input files as mentioned earlier.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eModify the \u003ccode\u003edocker.config\u003c/code\u003e in \u003ccode\u003emandatory\u003c/code\u003e section.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInstall docker and download the latest LncPipe build using:\n\u003ccode\u003edocker pull bioinformatist/lncpipe\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun LncPipe using the following command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e nextflow -c docker.config run LncRNAanalysisPipe.nf\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cblockquote\u003e\n\u003cp\u003eThe docker image for LncPipe is available on the docker-hub (\u003ca href=\"https://hub.docker.com/r/bioinformatist/lncpipe/tags/\" rel=\"nofollow\"\u003ehttps://hub.docker.com/r/bioinformatist/lncpipe/tags/\u003c/a\u003e).\nAlternatively, nextflow can automatically pull image from docker.io. \u003ccode\u003eDockerfile\u003c/code\u003e recorded that what we have done with the image. For user from local China looking to pull the docker image can use this \u003ca href=\"https://github.com/likelet/Blogs_tips/blob/master/README.md#setting-docker-download-mirror-site\"\u003emirror site instead\u003c/a\u003e.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eTO Install softwares locally on your machine, please see install instructions \u003ca href=\"https://github.com/likelet/LncPipe/blob/master/InstallSoftwareLocally.md\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-interactive-reports\" class=\"anchor\" href=\"#interactive-reports\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInteractive reports\u003c/h2\u003e\n\u003cp\u003eThe results of LncPipe are summarized and visualized via interactive plots by our novel R package \u003ca href=\"https://github.com/bioinformatist/LncPipeReporter\"\u003eLncPipeReporter\u003c/a\u003e. Users can also try LncPipeReporter as stand-alone for visualizing known and novel lncRNAs.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-configuration\" class=\"anchor\" href=\"#configuration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguration\u003c/h2\u003e\n\u003cp\u003eAs a nextflow-based analysis pipeline, LncPipe allow users edit configure file \u003ccode\u003enextflow.config\u003c/code\u003e to set the index files and default file path parameters instead of typing them into the command line.\u003c/p\u003e\n\u003cp\u003eTo configure, please go to \u003ccode\u003eparams\u003c/code\u003e line, and set the following information of various file locations and system environment settings\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-groovy\"\u003e\u003cpre\u003e params {\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e/*\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e User setting options (mandatory)\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e \u003cspan class=\"pl-c\"\u003e*/\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e input file and genome reference\u003c/span\u003e\n fastq_ext \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e*_{1,2}.fq.gz\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n fasta_ref \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e/data/database/hg38/genome.fa\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n design \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003edesign.file\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n hisat2_index \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e/data/database/hg38/hisatIndex/grch38_snp_tran/genome_snp_tran\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n cpatpath\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e/opt/CPAT-1.2.3\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003ehuman gtf only\u003c/span\u003e\n gencode_annotation_gtf \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/data/database/hg38/Annotation/gencode.v24.annotation.gtf\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n lncipedia_gtf \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/data/database/hg38/Annotation/lncipedia_4_0_hg38.gtf\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e set \"null\" if you are going to perform analysis on other species\u003c/span\u003e\n\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e additional options for non-human species, else leaving them unchanged\u003c/span\u003e\n species\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003ehuman\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e mouse , zebrafish, fly\u003c/span\u003e\n known_coding_gtf\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n known_lncRNA_gtf\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003efor test\u003c/span\u003e\n cpatpath \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e/home/zhaoqi/software/CPAT/CPAT-1.2.2/\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n\n\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e/*\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e User setting options (optional)\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e \u003cspan class=\"pl-c\"\u003e*/\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e tools setting\u003c/span\u003e\n star_idex \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003eset if star used\u003c/span\u003e\n bowtie2_index \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003eset if tophat used\u003c/span\u003e\n aligner \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003ehisat\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e or \"star\",\"tophat\"\u003c/span\u003e\n sam_processor\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003esambamba\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003eor \"samtools(deprecated)\"\u003c/span\u003e\n qctools \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003efastp\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e or \"afterqc\",\"fastp\",\"fastqc\"\u003c/span\u003e\n detools \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eedger\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003eor \"deseq2\",\"noiseq\" not supported yet\u003c/span\u003e\n quant \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003ekallisto\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e or \u0027htseq\u0027\u003c/span\u003e\n\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003eother setting\u003c/span\u003e\n singleEnd \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003efalse\u003c/span\u003e\n unstrand \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003efalse\u003c/span\u003e\n skip_combine \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003efalse\u003c/span\u003e\n lncRep_Output \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ereporter.html\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n lncRep_theme \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003enpg\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n lncRep_cdf_percent \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e10\u003c/span\u003e\n lncRep_max_lnc_len \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e10000\u003c/span\u003e\n lncRep_min_expressed_sample \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e50\u003c/span\u003e\n mem\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e60\u003c/span\u003e\n cpu\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e30\u003c/span\u003e\n }\n\n manifest {\n homePage \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehttps//github.com/likelet/LncPipe\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n description \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eLncPipe:a Nextflow-based Long non-coding RNA analysis PIPELINE\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n mainScript \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eLncRNAanalysisPipe.nf\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n }\n\n\n timeline {\n \u003cspan class=\"pl-c1\"\u003eenabled\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003etrue\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003efile\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003etimeline.html\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n }\n\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-parameters\" class=\"anchor\" href=\"#parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParameters\u003c/h2\u003e\n\u003cblockquote\u003e\n\u003cp\u003eThose parameters would cover the setting from \u003ccode\u003enextflow.config\u003c/code\u003e file\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003eMandatory(plz configure those options in \u003cem\u003enextflow.config\u003c/em\u003e or \u003cem\u003edocker.config\u003c/em\u003e file)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth align=\"right\"\u003eExample/Default value\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--input_folder\u003c/td\u003e\n\u003ctd align=\"right\"\u003e\u003ccode\u003e.\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003einput folder\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--species\u003c/td\u003e\n\u003ctd align=\"right\"\u003e\u003ccode\u003ehuman\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eYour species, mouse, fly and zebra fish are also supported\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--fastq_ext\u003c/td\u003e\n\u003ctd align=\"right\"\u003e\u003ccode\u003e*_{1,2}.fastq.gz\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003einput raw paired reads\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--out_folder\u003c/td\u003e\n\u003ctd align=\"right\"\u003e\u003ccode\u003e.\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eoutput folder\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--design\u003c/td\u003e\n\u003ctd align=\"right\"\u003e\u003ccode\u003eFALSE\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003ea txt file that stored experimental design information, plz see details from \u003ccode\u003e--design\u003c/code\u003e section below\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003eReferences\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eRequired\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--star_index/--bowtie2_index/--hisat2_index\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003ctd\u003ePath to STAR?bowtie2/hisat2(mutually exclusive) index(required if not set in config file)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--fasta\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003e-\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003ePath to Fasta reference(required if not set in config file)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--gencode_annotation_gtf\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003e-\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eAn annotation file from GENCODE database for annotating lncRNAs(required if not set in config file). e.g. gencode.v26.annotation.gtf\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--lncipedia_gtf\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003e-\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eAn annotation file from LNCipedia database for annotating lncRNAs(required if not set in config file) e.g. \u003ca href=\"http://www.lncipedia.org/downloads/lncipedia_4_0_hc_hg38.gtf\" rel=\"nofollow\"\u003elncipedia_4_0_hc_hg38.gtf\u003c/a\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003esoftware path (should not setting when using docker )\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eRequired\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--cpatpath\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003e-\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eHome folder of cpat installed location\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cblockquote\u003e\n\u003cp\u003esince cpat may call model data from its home path, users should specified where the model file is located in. Especially users install cpat by themselves without our install code.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003eOptional\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eDefault value\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--singleEnd\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003eFALSE\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003especify that the reads are single ended\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--merged_gtf\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003eFALSE\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eSkip mapping and assembly step by directly providing assembled merged gtf files\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--unstrand\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003eFALSE\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003especify that library is unstrand specific\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--aligner\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003estar\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eAligner for reads mapping (optional), STAR is default and supported only at present,\u003cem\u003estar\u003c/em\u003e/\u003cem\u003etophat\u003c/em\u003e/\u003cem\u003ehisat2\u003c/em\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--qctools\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003efastp\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eTools for assess raw reads quality or filtered by \u003cem\u003efastp\u003c/em\u003e, \u003cem\u003efastqc\u003c/em\u003e, \u003cem\u003eafterqc\u003c/em\u003e or \u003cem\u003enone\u003c/em\u003e(skip qc step)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003eLncPipeReporter options\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eDefault value\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--lncRep_Output\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003ereporter.html\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eSpecify report file name.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--lncRep_theme\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003enpg\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003ePlot theme setting in interactive plot. Values from \u003ca href=\"https://github.com/road2stat/ggsci\"\u003eggsci\u003c/a\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--lncRep_min_expressed_sample\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003e50\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eMinimum expressed gene allowed in each sample, 50 default. Samples not passed were filtered from analysis\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e\u003ccode\u003e--fastq_ext\u003c/code\u003e\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eRaw fastq files are required for de-novo analysis.This parameters should be set according to your paired or singled reads file names.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eFor example:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e Sample1_1.fq.gz\n Sample1_2.fq.gz\n Sample2_1.fq.gz\n Sample2_2.fq.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen you can input pattern \u003ccode\u003e*_{1,2}.fq.gz\u003c/code\u003e to make the all paired-end file recognized by \u003ca href=\"https://github.com/likelet/LncPipe\"\u003eLncPipe\u003c/a\u003e .\u003c/p\u003e\n\u003cp\u003eFor singled reads file, file pattern should be fed with \u003ccode\u003e--singleEnd\u003c/code\u003e parameter specified\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003e--star_idex?--bowtie2_index/--hisat2_index\u003c/code\u003e\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eThis parameter is \u003cem\u003erequired\u003c/em\u003e when not configured in nextflow.config file. It specify the star/tophat/hisat2(mutually exclusive) index folder built before running \u003ca href=\"https://github.com/likelet/LncPipe\"\u003eLncPipe\u003c/a\u003e .\nIf you don\u0027t know what it is?You can use \u003ccode\u003e--fasta\u003c/code\u003e to specify the reference sequence data. The index file would be built by \u003ca href=\"https://github.com/likelet/LncPipe\"\u003eLncPipe\u003c/a\u003e automatically.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003e\u003ccode\u003e--design\u003c/code\u003e\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eExperimental design file matrix for differential expression analysis. Default: \u003ccode\u003enull\u003c/code\u003e\nFormat:\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cpre\u003e\u003ccode\u003eWT:Sample1,Sample2,Sample3\nKO:Sample1,Sample2,Sample3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhile \u003ccode\u003eKO/WT\u003c/code\u003e represents the two experimental condition, and sample1, sample2, sample3 are replicates which should be comma-delimited in the same line .\u003c/p\u003e\n\u003cp\u003eFor sample names, it should be the sample as the prefix of fastq files which was trimmed by \u003ccode\u003e--fastq_ext\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eFor example:\u003c/p\u003e\n\u003cp\u003eif fastq file names are \u003ccode\u003eSample1_1.fq.gz, Sample1_2.fq.gz\u003c/code\u003e that comes from one sample and your \u003ccode\u003e--fastq_ext\u003c/code\u003e is set as \u003ccode\u003e*_{1,2}.fq.gz\u003c/code\u003e, the sample name\nshould be Sample1.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-output\" class=\"anchor\" href=\"#output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003eResult\u003c/code\u003e folder under current path(default) or output_folder set by user. A typical structure of \u003ccode\u003eResult\u003c/code\u003e is follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e Result/\n \u251c\u2500\u2500 QC\n \u2502 \u251c\u2500\u2500 N1141_1.clean_fastqc.html\n \u2502 \u251c\u2500\u2500 N1141_2.clean_fastqc.html\n \u2502 \u251c\u2500\u2500 N1177_1.clean_fastqc.html\n \u2502 \u2514\u2500\u2500 N1177_2.clean_fastqc.html\n \u251c\u2500\u2500 Identified_lncRNA\n \u2502 \u251c\u2500\u2500 all_lncRNA_for_classifier.gtf\n \u2502 \u251c\u2500\u2500 final_all.fa\n \u2502 \u251c\u2500\u2500 final_all.gtf\n \u2502 \u251c\u2500\u2500 lncRNA.fa\n \u2502 \u251c\u2500\u2500 protein_coding.fa\n \u2502 \u2514\u2500\u2500 protein_coding.final.gtf\n \u251c\u2500\u2500 LncReporter\n \u2502 \u251c\u2500\u2500 Differential_Expression_analysis.csv\n \u2502 \u2514\u2500\u2500 Report.html\n \u251c\u2500\u2500 Quantification\n \u2502 \u251c\u2500\u2500 kallisto.count.txt\n \u2502 \u2514\u2500\u2500 kallisto.tpm.txt\n \u2514\u2500\u2500 Star_alignment\n \u251c\u2500\u2500 STAR_N1141\n \u2502 \u251c\u2500\u2500 N1141Aligned.sortedByCoord.out.bam\n \u2502 \u251c\u2500\u2500 N1141Log.final.out\n \u2502 \u251c\u2500\u2500 N1141Log.out\n \u2502 \u251c\u2500\u2500 N1141Log.progress.out\n \u2502 \u2514\u2500\u2500 N1141SJ.out.tab\n \u2514\u2500\u2500 STAR_N1177\n \u251c\u2500\u2500 N1177Aligned.sortedByCoord.out.bam\n \u251c\u2500\u2500 N1177Log.final.out\n \u251c\u2500\u2500 N1177Log.out\n \u251c\u2500\u2500 N1177Log.progress.out\n \u2514\u2500\u2500 N1177SJ.out.tab\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eQC\u003c/code\u003e stored the Quality control output generated by FastQC or AfterQC software.\u003cbr\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eIdentified_lncRNA\u003c/code\u003e contains all assembled lncRNA and their sequences. \u003cem\u003eall_lncRNA_for_classifier.gtf\u003c/em\u003e includes both novel and known lncRNA features in \u003ca href=\"http://www.ensembl.org/info/website/upload/gff.html\" rel=\"nofollow\"\u003eGTF format\u003c/a\u003e;\n\u003cem\u003elncRNA.fa\u003c/em\u003e is all lncRNA sequences in fasta format. \u003cem\u003eprotein_coding.final.gtf\u003c/em\u003e and \u003cem\u003eprotein_coding.fa\u003c/em\u003e are protein coding information extracted from gencode annotation. \u003cem\u003efinal_all.gtf\u003c/em\u003e and \u003cem\u003efinal_all.fa\u003c/em\u003e are combined files for further analysis.\u003cbr\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eAlignment\u003c/code\u003e are hisat/tophat/STAR aligner standard output\u003cbr\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eQuantification\u003c/code\u003e are estimated abundance using kallisto. \u003cem\u003ekallisto.count.txt\u003c/em\u003e stored reads count matrix and \u003cem\u003ekallisto.tpm.txt\u003c/em\u003e are tpm(Transcripts Per Kilobase Million) matrix.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eLncReporter\u003c/code\u003e stored the interactive report file and differential expression matrix generated by LncPipeReporter which wrapped EdgeR.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-tips\" class=\"anchor\" href=\"#tips\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTips\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cg-emoji class=\"g-emoji\" alias=\"blush\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f60a.png\"\u003e\ud83d\ude0a\u003c/g-emoji\u003ePlz keep the consistency of your genome sequence, index library and annotation files: genome version, chromosome format, gtf coordinated e.g. The third-party software may stop for any of the above reasons.\u003c/li\u003e\n\u003cli\u003e\n\u003cg-emoji class=\"g-emoji\" alias=\"confused\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f615.png\"\u003e\ud83d\ude15\u003c/g-emoji\u003eSetting your analysis parameters always in config file, differ project should corresponding to differ configurations for reproductive analysis. To rerun a project, you can just specify -c \u003ccode\u003eyour.config\u003c/code\u003e in your command, which can also help you to record analysis parameters.\u003c/li\u003e\n\u003cli\u003e\n\u003cg-emoji class=\"g-emoji\" alias=\"open_mouth\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f62e.png\"\u003e\ud83d\ude2e\u003c/g-emoji\u003eRun analysis on docker container, no much to say.\u003c/li\u003e\n\u003cli\u003e\n\u003cg-emoji class=\"g-emoji\" alias=\"grimacing\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f62c.png\"\u003e\ud83d\ude2c\u003c/g-emoji\u003eAlways use the latest version to be away from the known bugs.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-acknowledgement\" class=\"anchor\" href=\"#acknowledgement\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgement\u003c/h2\u003e\n\u003cp\u003eThanks to the author of \u003ca href=\"https://github.com/OpenGene/AfterQC\"\u003eAfterQC\u003c/a\u003e, Shifu Chen, for his help on providing a gzip output support to meet the require of LncPipe. Thanks to the internal test by Hongwan Zhang and Yan Wang from SYSUCC Cancer bioinformatics platform.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-faq\" class=\"anchor\" href=\"#faq\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFAQ\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cem\u003e1. PLEK throws an error \"/data/software/PLEK.1.2/PLEK.py:line12: $\u0027\\r\u0027: can not find command\", how to fix?\u003c/em\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cblockquote\u003e\n\u003cp\u003eA: using the follow command as suggested in the installation section.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cpre\u003e\u003ccode\u003e perl -CD -pi -e\u0027tr/\\x{feff}//d \u0026amp;\u0026amp; s/[\\r\\n]+/\\n/\u0027 *.py \n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cem\u003e2. IOError: [Errno 2] No such file or directory: \u0027/opt/CPAT-1.2.3/dat/Human_Hexamer.tsv\u0027?\u003c/em\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cblockquote\u003e\n\u003cp\u003eA: The cpat command required the \u003ccode\u003eHuman_Hexamer.tsv\u003c/code\u003e to predict lncRNA coding potential, plz check your \u003ccode\u003ecpatpath\u003c/code\u003e parameters.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cem\u003e3. When using htseq to quantify transicript, it throws \"Error occured when reading beginning of SAM/BAM file. \u0027csamtools.AlignedRead\u0027 object has no attribute \u0027reference_start\u0027 \"\u003c/em\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cblockquote\u003e\n\u003cp\u003eA: It\u0027s a version conflict caused by htseq and hisat generated bamfile, a possible solution for this is to install the old version of htseq\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contact\" class=\"anchor\" href=\"#contact\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h2\u003e\n\u003cp\u003eFor implementation:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/likelet\"\u003eQi Zhao\u003c/a\u003e \u003ca href=\"mailto:zhaoqi@sysucc.org.cn\"\u003ezhaoqi@sysucc.org.cn\u003c/a\u003e, Sun Yat-sen University Cancer Center;\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://icannotendure.space\" rel=\"nofollow\"\u003eYu Sun\u003c/a\u003e \u003ca href=\"mailto:sun_yu@mail.nankai.edu.cn\"\u003esun_yu@mail.nankai.edu.cn\u003c/a\u003e, Nan kai University;\u003cbr\u003e\nFor project design and new feature request:\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/likelet\"\u003eQi Zhao\u003c/a\u003e \u003ca href=\"mailto:zhaoqi@sysucc.org.cn\"\u003ezhaoqi@sysucc.org.cn\u003c/a\u003e, Sun Yat-sen University Cancer Center;\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"\"\u003eZhixiang Zuo\u003c/a\u003e \u003ca href=\"mailto:zuozhx@sysucc.org.cn\"\u003ezuozhx@sysucc.org.cn\u003c/a\u003e, Sun Yat-sen University Cancer Center;\u003c/li\u003e\n\u003c/ul\u003e\n\u003cblockquote\u003e\n\u003cp\u003eWe strongly recommend users open new issues if they have questions or find bugs.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"LICENSE\"\u003eGPL v3 license\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-citation\" class=\"anchor\" href=\"#citation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\u003cp\u003eQi Zhao, Yu Sun, Dawei Wang, Hongwan Zhang, Kai Yu, Jian Zheng, Zhixiang Zuo. LncPipe: A Nextflow-based pipeline for identification and analysis of long non-coding RNAs from RNA-Seq data. Journal of Genetics and Genomics. 2018. (\u003cem\u003eIn press\u003c/em\u003e)\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [
- "data-cleaning",
- "statistics",
- "political-science",
- "political-parties",
- "python",
- "election-analysis",
- "election-data"
- ],
- "updated_at": 1640627843.0
+ "topics": [],
+ "updated_at": 1643344466.0
},
{
"data_format": 2,
- "description": "Attempt at Docker/GATK Port to Singularity for MSU HPCC",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "msuefishlab/gatk_singularity",
+ "full_name": "stela2502/singularityImages",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularityimages\" class=\"anchor\" href=\"#singularityimages\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularityImages\u003c/h1\u003e\n\u003cp\u003eThis git repo is a skelleton of my work I have done on singularity images.\nThese images are used on aurora-ls2 to run analyses on the blades instead of the frontend.\u003c/p\u003e\n\u003cp\u003eAll of that documention is in our Bioinformatics Slack Howto channel.\u003c/p\u003e\n\u003cp\u003eThe software I install I mainly install from within the singularity image. Hence the usage of shell.sh.\u003c/p\u003e\n\u003cp\u003eInstaling Python modules is tricky as pip3 always installs in a private path and not the global unless told otherwise.\nHence only I with my username on the computer I build the images could use the modules.\u003c/p\u003e\n\u003cp\u003eA solution could be to use some conda approach, but as this here will be a singularity image we could also try to install globaly:\u003c/p\u003e\n\u003cp\u003ePython solution:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip3 install --prefix=/usr/local \u0026lt;package name\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1521034490.0
+ "updated_at": 1643377152.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Studenten/XiaoyuSun/Polygonization-by-Frame-Field-Learning/singularity/Singularity",
+ "Studenten/Polygonization-by-Frame-Field-Learning-master-3bandRGB/singularity/Singularity"
],
- "full_name": "juanca09/tgv",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-tgv\" class=\"anchor\" aria-hidden=\"true\" href=\"#tgv\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etgv\u003c/h1\u003e\n",
+ "full_name": "vissed-kad/github_demo",
+ "latest_release": "v1.0",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-objectherkenning-met-deeplearning-technieken\" class=\"anchor\" href=\"#objectherkenning-met-deeplearning-technieken\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eObjectherkenning met Deeplearning technieken\u003c/h1\u003e\n\u003cp\u003eDeze repository bevat folders en bestanden van de projecten van het Objectherkenningsteam.\u003c/p\u003e\u003cp\u003eZie de info in de onderliggende folder(s) voor meer informatie.\u003c/p\u003e\n\u003cp\u003etest 1234\ntest 5678\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1612281173.0
+ "updated_at": 1643653877.0
},
{
"data_format": 2,
- "description": "Test using singularityhub",
+ "description": "centos8 container to run brave ",
"filenames": [
- "Singularity",
- "Singularity.centostest",
- "Singularity.basic"
+ "Singularity"
],
- "full_name": "nbarlowATI/shub-test",
+ "full_name": "truatpasteurdotfr/singularity-docker-centos8-brave",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-shub-test\" class=\"anchor\" aria-hidden=\"true\" href=\"#shub-test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eshub-test\u003c/h1\u003e\n\u003cp\u003eTest using singularityhub\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-docker-centos8-brave-using-stream8-now-that-centos8-is-eoled\" class=\"anchor\" href=\"#singularity-docker-centos8-brave-using-stream8-now-that-centos8-is-eoled\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-docker-centos8-brave (using stream8 now that centos8 is EOL\u0027ed)\u003c/h1\u003e\n\u003cp\u003ecentos8 container to run brave built from github actions\u003c/p\u003e\n\u003cp\u003eRunning without installation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /run oras://ghcr.io/truatpasteurdotfr/singularity-docker-centos8-brave:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBuilding:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build singularity-docker-centos8-brave.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDownload and rename:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name singularity-docker-centos8-brave.sif oras://ghcr.io/truatpasteurdotfr/singularity-docker-centos8-brave:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning with a separate $HOME (here ~/singularity.d/home/singularity-docker-centos8-brave)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emkdir -p ~/singularity.d/home/singularity-docker-centos8-brave\nsingularity run -B /run -H ~/singularity.d/home/singularity-docker-centos8-brave singularity-docker-centos8-brave.sif\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1617891470.0
+ "updated_at": 1635199842.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.0.9.18"
],
- "full_name": "CN-Healthborn/el7tf1.12gpu",
+ "full_name": "Famingzhao/pySCENIC",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-nova-el7-tensorflow-gpu\" class=\"anchor\" aria-hidden=\"true\" href=\"#nova-el7-tensorflow-gpu\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enova-el7-tensorflow-gpu\u003c/h1\u003e\n\u003cp\u003eConfigurations for docker and singularity for making OSG-compatible CENTOS7 container with GPU-accelerated tensorflow and keras installed.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1603475388.0
+ "updated_at": 1643982275.0
},
{
"data_format": 2,
- "description": "Age Group Prediction in TV news (Open Source)",
+ "description": "Files of FWI Paper",
"filenames": [
- "Singularity.trial",
- "Singularity.newsage"
+ "devito/docker/Singularity.nvidia.def"
],
- "full_name": "Xiaoyu-Lu/GSoC_2020",
- "latest_release": null,
- "readme": "\u003cp\u003eGSoC 2020: Age Group Prediction in TV news\u003c/p\u003e\n",
+ "full_name": "felipeaugustogudes/paper-fwi",
+ "latest_release": "v1.0",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-effectiveness-and-computational-efficiency-of-absorbing-boundary-conditions-for-full-waveform-inversion\" class=\"anchor\" href=\"#effectiveness-and-computational-efficiency-of-absorbing-boundary-conditions-for-full-waveform-inversion\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEffectiveness and computational efficiency of absorbing boundary conditions for full-waveform inversion\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-authors-daiae-iglesia-dolci-felipe-a-g-silva-pedro-s-peixoto-and-ernani-v-volpe\" class=\"anchor\" href=\"#authors-daiae-iglesia-dolci-felipe-a-g-silva-pedro-s-peixoto-and-ernani-v-volpe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors: Daiae Iglesia Dolci, Felipe A. G. Silva, Pedro S. Peixoto and Ernani V. Volpe\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-department-of-mechanical-engineering-of-polytechnic-school-university-of-s\u00e3o-paulo\" class=\"anchor\" href=\"#department-of-mechanical-engineering-of-polytechnic-school-university-of-s%C3%A3o-paulo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDepartment of Mechanical Engineering of Polytechnic School, University of S\u00e3o Paulo\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-department-of-applied-mathematics-institute-of-mathematics-and-statistics-university-of-s\u00e3o-paulo\" class=\"anchor\" href=\"#department-of-applied-mathematics-institute-of-mathematics-and-statistics-university-of-s%C3%A3o-paulo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDepartment of Applied Mathematics, Institute of Mathematics and Statistics, University of S\u00e3o Paulo\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contacts-dolciuspbr-felipeaugustoguedesuspbr-pedrospimeuspbr-ernvolpeuspbr\" class=\"anchor\" href=\"#contacts-dolciuspbr-felipeaugustoguedesuspbr-pedrospimeuspbr-ernvolpeuspbr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContacts: \u003ca href=\"mailto:dolci@usp.br\"\u003edolci@usp.br\u003c/a\u003e, \u003ca href=\"mailto:felipe.augusto.guedes@usp.br\"\u003efelipe.augusto.guedes@usp.br\u003c/a\u003e, \u003ca href=\"mailto:pedrosp@ime.usp.br\"\u003epedrosp@ime.usp.br\u003c/a\u003e, \u003ca href=\"mailto:ernvolpe@usp.br\"\u003eernvolpe@usp.br\u003c/a\u003e\n\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eImportant Informations:\u003c/strong\u003e These codes are part of the Project Software Technologies for Modeling and Inversion (STMI) at RCGI in the University of Sao Paulo.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1606450294.0
+ "updated_at": 1644293938.0
},
{
"data_format": 2,
- "description": "Singularity container for Samviewer",
+ "description": "Nextflow pipeline for single cell analysis",
"filenames": [
"Singularity"
],
- "full_name": "CHPC-UofU/Singularity-ubuntu-samviewer",
+ "full_name": "soulj/SkeletalVis-SingleCell",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-skeletalvis-singlecell\" class=\"anchor\" href=\"#skeletalvis-singlecell\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSkeletalVis-SingleCell\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eSkeletalVis-SingleCell\u003c/strong\u003e is a bioinformatics pipeline for reproducible analyses of 10x Genomics single-cell RNA-sequencing data.\u003c/p\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a portable workflow tool to run tasks across multiple compute infrastructures. This pipeline uses a singularity container containing all the software needed to run the analysis, making installation simple and the results reproducible.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pipeline-summary\" class=\"anchor\" href=\"#pipeline-summary\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline summary\u003c/h2\u003e\n\u003cp\u003eThe \u003cstrong\u003eSkeletalVis-SingleCell\u003c/strong\u003e pipeline takes a sample table and a parameter file defining the experiment as input. If not provided fastq files are automatically downloaded using the provided sample identifiers.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-features\" class=\"anchor\" href=\"#features\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFeatures:\u003c/h3\u003e\n\u003cp\u003e(\u003cstrong\u003ea\u003c/strong\u003e) Download of fastq files either directly from ENA, via conversion of sra or bam files from SRA\u003cbr\u003e\n(\u003cstrong\u003eb\u003c/strong\u003e)\tQuantification using \u003ca href=\"https://www.kallistobus.tools/\" rel=\"nofollow\"\u003e\u003ccode\u003ekallisto-bustools\u003c/code\u003e\u003c/a\u003e to produce cell x gene matrices\u003cbr\u003e\n(\u003cstrong\u003ec\u003c/strong\u003e) Flexible filtering of \u003ca href=\"https://bioconductor.org/packages/release/bioc/html/DropletUtils.html\" rel=\"nofollow\"\u003e\u003ccode\u003eempty droplets\u003c/code\u003e\u003c/a\u003e, quality control and thresholding\u003cbr\u003e\n(\u003cstrong\u003ed\u003c/strong\u003e) Normalisation and cell cycle effect removal\u003cbr\u003e\n(\u003cstrong\u003ee\u003c/strong\u003e) Automatic cell type annotation with \u003ca href=\"https://bioconductor.org/packages/release/bioc/html/SingleR.html\" rel=\"nofollow\"\u003e\u003ccode\u003eSingleR\u003c/code\u003e\u003c/a\u003e\u003cbr\u003e\n(\u003cstrong\u003ef\u003c/strong\u003e) Clustering and visualisation with \u003ca href=\"https://satijalab.org/seurat/\" rel=\"nofollow\"\u003e\u003ccode\u003eSeurat\u003c/code\u003e\u003c/a\u003e\u003cbr\u003e\n(\u003cstrong\u003eg\u003c/strong\u003e) Marker gene identification and pathway analysis\u003cbr\u003e\n(\u003cstrong\u003eh\u003c/strong\u003e) Cell crosstalk analysis of ligand-receptor predictions using \u003ca href=\"https://github.com/saezlab/liana\"\u003e\u003ccode\u003eliana\u003c/code\u003e\u003c/a\u003e\u003cbr\u003e\n(\u003cstrong\u003ei\u003c/strong\u003e) Sample integration and differential expression analysis between conditions with \u003ca href=\"https://github.com/MarioniLab/miloR\"\u003e\u003ccode\u003emiloR\u003c/code\u003e\u003c/a\u003e\u003cbr\u003e\u003c/p\u003e\n\u003cp\u003eAnalyses are run in parallel and in result of error you can resume with the \u003ccode\u003e-resume\u003c/code\u003e parameter to re-run the pipeline starting from the previous fault.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quick-start\" class=\"anchor\" href=\"#quick-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-analyse-an-example-dataset\" class=\"anchor\" href=\"#analyse-an-example-dataset\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAnalyse an example dataset\u003c/h3\u003e\n\u003cp\u003eTry the pipeline on an example dataset (all inputs will be automatically downloaded): -\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eInstall \u003ca href=\"https://www.nextflow.io/docs/latest/getstarted.html#installation\" rel=\"nofollow\"\u003e\u003ccode\u003eNextflow\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInstall \u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/\" rel=\"nofollow\"\u003e\u003ccode\u003eSingularity\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://www.nextflow.io/docs/latest/config.html\" rel=\"nofollow\"\u003e\u003ccode\u003eConfigure\u003c/code\u003e\u003c/a\u003e the resource profile for your HPC or local computer. A template for slurm schedulers is provided as an example in \u003ccode\u003enextflow.config\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDownload the pipeline and test on the example dataset with a single command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e nextflow run soulj/SkeletalVis-SingleCell -profile slurm -params-file GSE152805.yaml -with-singularity library://jsoul/default/singlecell:latest\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-analyse-your-own-data\" class=\"anchor\" href=\"#analyse-your-own-data\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAnalyse your own data\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003eDefine the sampleTable\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eCreate a tab seperated table with unique Sample names, SRR accession numbers (if download is needed) and any additional metadata e.g\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eSample\u003c/th\u003e\n\u003cth\u003eFile\u003c/th\u003e\n\u003cth\u003eCondition\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eControl_1\u003c/td\u003e\n\u003ctd\u003eSRRXXX\u003c/td\u003e\n\u003ctd\u003eControl\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eControl_2\u003c/td\u003e\n\u003ctd\u003eSRRXXX\u003c/td\u003e\n\u003ctd\u003eControl\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTreated_1\u003c/td\u003e\n\u003ctd\u003eSRRXXX\u003c/td\u003e\n\u003ctd\u003eTreated\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTreated_2\u003c/td\u003e\n\u003ctd\u003eSRRXXX\u003c/td\u003e\n\u003ctd\u003eTreated\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eDefine the configuration\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eMost parameters are set to sensible defaults within the main nextflow script, with only 5 parameters required to be altered with typical use:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eParameter\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003cth\u003eOptions\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eaccession\u003c/td\u003e\n\u003ctd\u003eThe GEO accession of the data - used to name output data and download fastq files\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003edownloadSite\u003c/td\u003e\n\u003ctd\u003eThe site to download the raw data from if needed\u003c/td\u003e\n\u003ctd\u003eSRA, ENA, SRA_BAM\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003especies\u003c/td\u003e\n\u003ctd\u003eThe species the reads originate from - used to create the kallisto bus index\u003c/td\u003e\n\u003ctd\u003ehuman, mouse\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003echemistry\u003c/td\u003e\n\u003ctd\u003eThe chemistry used for the 10x Genomics experiment\u003c/td\u003e\n\u003ctd\u003e10xv1, 10xv2, 10xv3\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ereplciates\u003c/td\u003e\n\u003ctd\u003eDoes the experiment contain replicated treatments to perform differential expression analysis?\u003c/td\u003e\n\u003ctd\u003etrue, false\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eParameters should be defined within a yaml file. See \u003ccode\u003eparams/GSE152805.yaml\u003c/code\u003e for an example.\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\n\u003cp\u003eRun the pipeline with your own parameters\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e nextflow run soulj/SkeletalVis-SingleCell -profile slurm -params-file ownData.yaml -with-singularity library://jsoul/default/skeletalvis-singlecell\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-testing-modules\" class=\"anchor\" href=\"#testing-modules\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting modules\u003c/h3\u003e\n\u003cp\u003eModules can be tested using the \u003ca href=\"https://pypi.org/project/pytest-workflow/\" rel=\"nofollow\"\u003e\u003ccode\u003epytest-workflow\u003c/code\u003e\u003c/a\u003e framework. Module test directories within the \u003ccode\u003etests\u003c/code\u003e folder contain a nextflow script and a configuration yaml file defining the test for each module.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eInstall pytest-workflow\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003econda install pytest-workflow\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun the tests - e.g to test the GSEA module\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003epytest --symlink --kwdof --tag gsea\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1498859914.0
+ "updated_at": 1644406348.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Files to create singularity container for CHPC deeplearning module",
"filenames": [
- "container/Singularity"
+ "Singularity.deeplearning"
],
- "full_name": "Genomic-Medicine-Linkoping/nextflow_rnaseqfus",
+ "full_name": "CHPC-UofU/deeplearning-module",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-deeplearning-module\" class=\"anchor\" href=\"#deeplearning-module\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edeeplearning-module\u003c/h1\u003e\n\u003cp\u003eThis repo contains files to construct the container for the CHPC deeplearning\nmodule.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1622550367.0
+ "updated_at": 1644445691.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "0.0.0.9000/Singularity.0.0.0.9000"
+ "Singularity.salad",
+ "Singularity",
+ "Singularity.pokemon"
],
- "full_name": "yh549848/singularity-raptranker",
- "latest_release": null,
+ "full_name": "mwittep/EAGER",
+ "latest_release": "v1.92.56",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-deploy\" class=\"anchor\" href=\"#singularity-deploy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Deploy\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"img/shpc.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"img/shpc.png\" alt=\"img/shpc.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWouldn\u0027t it be nice to build Singularity images without a registry proper,\nand just keep them alongside the GitHub codebase? This is now possible!\nThis small repository provides an example to get you started. It will\nbuild one or more images (whatever Singularity.* files that are present at\nthe root) and then release them as assets to your GitHub repository so\nthat they can be programatically obtained. It is associated with\n\u003ca href=\"https://github.com/singularityhub/singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e to allow\nyou to then define LMOD modules for these same containers.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eCan I upload the largest of chonkers?\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eYes and no. Note that assets are limited to 2 GB in size, which is still fairly good. You can use\nit as a template for your own recipes as is, or modify it for your custom\nuse case. Instructions are below!\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e Currently recipe extensions are associated with tags, and the GitHub release is\nassociated with a digest. We likely will change this in the next few weeks so that GitHub\nreleases are tags, and the \"digests\" are flie names. Stay tuned for updates!\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-getting-started\" class=\"anchor\" href=\"#getting-started\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1-template-or-fork\" class=\"anchor\" href=\"#1-template-or-fork\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Template or Fork\u003c/h3\u003e\n\u003cp\u003eIf you haven\u0027t already, template or fork this repository. You can then clone\nyour fork:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git clone git@github.com:\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eusername\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/singularity-deploy\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou likely want to name the repository by the container. For example, if I would\nhave created a container on Docker Hub or similar with the name \u003ccode\u003evsoch/salad\u003c/code\u003e,\nhere I\u0027d call the repository \u003ccode\u003esalad\u003c/code\u003e. You obviously are limited to your username\nor an organizational namespace.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1-write-your-singularity-recipes\" class=\"anchor\" href=\"#1-write-your-singularity-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Write your Singularity Recipe(s)\u003c/h3\u003e\n\u003cp\u003eFirst, you should write your container recipe(s) in the present working directory.\nFor good practice, when you are updating recipes you should checkout a new branch\nand open a pull request, as the repository comes with a workflow to trigger on a PR\nto \u003ca href=\".github/workflows/test.yml\"\u003etest your container build\u003c/a\u003e. Note that in the main workflow\nthat deploys the releases, the current branch is set to be \u003ccode\u003emain-branch\u003c/code\u003e. You should\nupdate this to be your main \"production\" branch that you want to deploy releases on merge.\nYou are also free to choose a different trigger and release strategy. You can add any additional\ntests that that you might need. By default, any Singularity.* file will be automatically detected.\nIf there is no extension (the name Singularity), the name used will be \"latest.\"\nYou can use these tags across multiple releases of your containers. For example,\nthese files would generate packages with sifs named as follows:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.pokemon\"\u003eSingularity.pokemon\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.salad\"\u003eSingularity.salad\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor each name, you can see the direct download URL contains the repository (singularityhub/singularity-deploy),\nYou should not use any \u003ccode\u003e:\u003c/code\u003e characters in either your container tag (the GitHub extension) or\nthe GitHub tags (the release tags) as this might interfere with parsing.\nThe GitHub release tag (0.0.1 in the example above) is discussed next.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-2-update-the-version-file\" class=\"anchor\" href=\"#2-update-the-version-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Update the VERSION file\u003c/h3\u003e\n\u003cp\u003eAny time that you prepare new container recipes, you should update the \u003ca href=\"VERSION\"\u003eVERSION\u003c/a\u003e\nfile. The way that this repository works is to generate a release based on the\nstring in \u003ccode\u003eVERSION\u003c/code\u003e. A version is just a tag, so it could be something like\n\u003ccode\u003e0.0.1\u003c/code\u003e or \u003ccode\u003e0.0.1-slim\u003c/code\u003e. Keep in mind that GitHub releases cannot have duplicated\nnames, so you should not repeat the same tag. Do not use \u003ccode\u003e:\u003c/code\u003e in your tag names.\nIf you do need to re-release a tag (not recommended if a user might be using it and then it\u0027s changed) you can manually delete\nthe release and the tag in the GitHub interface. This is a nice structure because it\nmeans you can have containers with different names under the same tag. In the example\nabove, we have each of \"pokemon,\" \"latest,\" and \"salad\" released under tag 0.0.1.\nThis is how it looks on GitHub:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"img/releases.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"img/releases.png\" alt=\"img/releases.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-3-how-to-develop\" class=\"anchor\" href=\"#3-how-to-develop\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. How to Develop\u003c/h3\u003e\n\u003cp\u003eAs we mentioned previously, the container builds will be tested on a pull request,\nand the release will trigger on merge into your main branch (main). See the \u003ca href=\".github/workflows/builder.yml\"\u003e.github/workflows/builder.yml\u003c/a\u003e)\nto edit this. The idea is that you can:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDevelop your container via a development branch\u003c/li\u003e\n\u003cli\u003eOpen a pull request to test the container (the \u003ca href=\".github/workflows/test.yml\"\u003e.github/workflows/test.yml\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eOn merge, your container will be released!\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-4-how-to-pull\" class=\"anchor\" href=\"#4-how-to-pull\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. How to pull\u003c/h3\u003e\n\u003cp\u003eTechnically, Singularity can pull just knowing the URL. For example:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eHowever, the \u003ca href=\"singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e tool (will be) designed to be able to parse and handle\nthese container uris automatically. For the containers here, you could do:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:latest\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:salad\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:pokemon\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor write the container URI into a registry entry:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egh: singularityhub/singularity-deploy\nlatest:\n latest: \"0.0.1\"\ntags:\n \"latest\": \"0.0.1\"\n \"salad\": \"0.0.1\"\n \"pokemon\": \"0.0.1\"\nmaintainer: \"@vsoch\"\nurl: https://github.com/singularityhub/singularity-deploy\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(This part is still under development!)\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1602825895.0
+ "updated_at": 1644482849.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "dockerfiles/Singularity-dota.simg",
- "dockerfiles/Singularity-dotaservice.simg"
+ "singularity/student/Singularity",
+ "singularity/base/Singularity"
],
- "full_name": "bglick13/dotaservice",
+ "full_name": "UIUC-cs484/uiuccs484parallelprog",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-dotaservice\" class=\"anchor\" aria-hidden=\"true\" href=\"#dotaservice\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDotaService\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"dotaservice-icon.png\"\u003e\u003cimg src=\"dotaservice-icon.png\" alt=\"dotaservice icon\" width=\"128\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003chr\u003e\n\u003cp\u003eNOTE: The project that uses the dotaservice in a k8s environment is the \u003ca href=\"https://github.com/TimZaman/dotaclient\"\u003eDotaClient\u003c/a\u003e repo.\u003c/p\u003e\n\u003cp\u003eDotaService is a service to play Dota 2 through gRPC. There are first class python bindings\nand examples, so you can play dota as you would use the OpenAI gym API.\u003c/p\u003e\n\u003cp\u003eIt\u0027s fully functional and super lightweight. Starting Dota \u003ccode\u003eobs = env.reset()\u003c/code\u003e takes 5 seconds,\nand each \u003ccode\u003eobs = env.step(action)\u003c/code\u003e in the environment takes between 10 and 30 ms.\u003c/p\u003e\n\u003cp\u003eYou can even set the config of \u003ccode\u003erender=True\u003c/code\u003e and you can watch the game play live. Each game will\nhave a uuid and folder associated where there\u0027s a Dota demo (replay) and console logs.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"demo.gif\"\u003e\u003cimg src=\"demo.gif\" alt=\"demo\" width=\"600\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-dotaservice-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-dotaservice-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun DotaService Locally\u003c/h2\u003e\n\u003cp\u003eRun the DotaService so you can connect your client to it later. Only one client per server\nis supported, and only one DotaService per VM (eg local or one per docker container).\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 -m dotaservice\n\u0026gt;\u0026gt;\u0026gt; Serving on 127.0.0.1:13337\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-dotaservice-distributed\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-dotaservice-distributed\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun DotaService Distributed\u003c/h2\u003e\n\u003cp\u003eSee \u003ca href=\"docker/README.md\"\u003edocker/README.md\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eTo run two dockerservice instances, one on port \u003ccode\u003e13337\u003c/code\u003e and one on \u003ccode\u003e13338\u003c/code\u003e, f.e. run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run -dp 13337:13337 ds\ndocker run -dp 13338:13337 ds\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can run as many as you want, until you run out of ports or ip addresses. If you are wearing\nyour fancy pants, use Kubernetes to deploy gazillions.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-client-code\" class=\"anchor\" aria-hidden=\"true\" href=\"#client-code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eClient Code\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003egrpclib\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eclient\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eChannel\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eprotobuf\u003c/span\u003e.\u003cspan class=\"pl-v\"\u003eDotaService_grpc\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eDotaServiceStub\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eprotobuf\u003c/span\u003e.\u003cspan class=\"pl-v\"\u003eDotaService_pb2\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAction\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eprotobuf\u003c/span\u003e.\u003cspan class=\"pl-v\"\u003eDotaService_pb2\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eConfig\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e# Connect to the DotaService.\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eenv\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eDotaServiceStub\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eChannel\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\u0027127.0.0.1\u0027\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e13337\u003c/span\u003e))\n\n\u003cspan class=\"pl-c\"\u003e# Get the initial observation.\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eobservation\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eawait\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eenv\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003ereset\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eConfig\u003c/span\u003e())\n\u003cspan class=\"pl-k\"\u003efor\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ei\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ein\u003c/span\u003e \u003cspan class=\"pl-en\"\u003erange\u003c/span\u003e(\u003cspan class=\"pl-c1\"\u003e8\u003c/span\u003e):\n \u003cspan class=\"pl-c\"\u003e# Sample an action from the action protobuf\u003c/span\u003e\n \u003cspan class=\"pl-s1\"\u003eaction\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAction\u003c/span\u003e.\u003cspan class=\"pl-v\"\u003eMoveToLocation\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ex\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e.., \u003cspan class=\"pl-s1\"\u003ey\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e.., \u003cspan class=\"pl-s1\"\u003ez\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e..)\n \u003cspan class=\"pl-c\"\u003e# Take an action, returning the resulting observation.\u003c/span\u003e\n \u003cspan class=\"pl-s1\"\u003eobservation\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eawait\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eenv\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003estep\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003eaction\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis is very useful to provide an environment for reinforcement learning, and service aspect of it makes it\nespecially useful for distributed training. I am planning to provide a client python\nmodule for this (\u003ccode\u003ePyDota\u003c/code\u003e) that mimics typical OpenAI gym APIs. Maybe I won\u0027t even make PyDota\nand the gRPC client is enough.\u003c/p\u003e\n\u003cdiv\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"dotaservice.png\"\u003e\u003cimg src=\"dotaservice.png\" alt=\"dotaservice connections\" width=\"680\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-hidden=\"true\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003ePython 3.7\u003c/li\u003e\n\u003cli\u003eUnix: MacOS, Ubuntu. A dockerfile is also provided see: \u003ca href=\"docker/README.md\"\u003edocker/README.md\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cp\u003eInstalling from pypi:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip3 install dotaservice\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFor development; installing from source:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip3 install -e \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e(Optional) Compile the protos for Python (run from repository root):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 -m grpc_tools.protoc -I. --python_out=. --python_grpc_out=. --grpc_python_out=. dotaservice/protos/\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e.proto\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\u003ca id=\"user-content-notes\" class=\"anchor\" aria-hidden=\"true\" href=\"#notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h1\u003e\n\u003cp\u003eMy dev notes: \u003ca href=\"NOTES.md\"\u003eNOTES.md\u003c/a\u003e.\u003c/p\u003e\n\u003chr\u003e\n\u003ch1\u003e\u003ca id=\"user-content-acknowledgements\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgements\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eOpenAI Dota crew\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://karpathy.github.io/2016/05/31/rl/\" rel=\"nofollow\"\u003eKarpathy\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003eJan Ivanecky\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Nostrademous\"\u003eNostrademous\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-containers\" class=\"anchor\" href=\"#containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainers\u003c/h1\u003e\n\u003cp\u003eContainer declarations and other tools for building the containers for CS 484.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-vmfarm-setup-via-ansible\" class=\"anchor\" href=\"#vmfarm-setup-via-ansible\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVMFarm setup via ansible\u003c/h2\u003e\n\u003cp\u003eThese Ansible scripts assume CentOS_7.\u003c/p\u003e\n\u003cp\u003eInstall Ansible on your fresh VM.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo yum install ansible\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eDepending on your setup, you may have a single VM, or you may have an administrative VM and several student VMs.\u003c/p\u003e\n\u003cp\u003eIn either case, you will need to create a file named \u003ccode\u003e/etc/ansible/hosts\u003c/code\u003e (or in older versions of Ansible, \u003ccode\u003e/etc/ansible/hosts/ansiblehosts\u003c/code\u003e) on the admin machine (or single machine).\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://docs.ansible.com/ansible/2.9/\" rel=\"nofollow\"\u003ehttps://docs.ansible.com/ansible/2.9/\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-single-vm\" class=\"anchor\" href=\"#single-vm\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingle VM\u003c/h3\u003e\n\u003cp\u003eThe host file should look like this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e[admin]\nlocalhost ansible_connection=local\n[all]\nlocalhost ansible_connection=local\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-multiple-vms-admin--individual-student-vms\" class=\"anchor\" href=\"#multiple-vms-admin--individual-student-vms\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMultiple VMs (admin + individual student VMs)\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e[admin]\nlocalhost ansible_connection=local\n[students]\nstudenthost1.anydomain.edu\nstudenthost2.anydomain.edu\nstudenthost3.anydomain.edu\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you have difficulty connecting to the student machines, please see \u003ca href=\"https://docs.ansible.com/ansible/latest/user_guide/connection_details.html\" rel=\"nofollow\"\u003ehttps://docs.ansible.com/ansible/latest/user_guide/connection_details.html\u003c/a\u003e . You may need to setup an SSH key.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-running-ansible-scripts\" class=\"anchor\" href=\"#running-ansible-scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Ansible scripts\u003c/h3\u003e\n\u003cp\u003eSSH to the admin machine, clone this repo and run the following commands. (These take a long time, you should probably use a \u003ccode\u003escreen\u003c/code\u003e session for them.)\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eStart a bash terminal as root:\u003c/em\u003e \u003ccode\u003esudo bash\u003c/code\u003e .\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\nansible-playbook ./ansible/vmfarm/0_basepkgs.yml\nansible-playbook ./ansible/vmfarm/0a_disable_aslr.yml\nansible-playbook ./ansible/vmfarm/0b_mpi.yml\nansible-playbook ./ansible/vmfarm/cmake_installer.yml\nansible-playbook ./ansible/vmfarm/gtest.yml\nansible-playbook ./ansible/vmfarm/gbench.yml\nansible-playbook ./ansible/vmfarm/charm.yml\nansible-playbook ./ansible/vmfarm/hpctoolkitall.yml\n\nrm -rf /tmp/gtest /tmp/gbench /tmp/charm\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e /tmp/hpctoolkit\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n\nyum clean all \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e rm -rf /var/cache/yum\n\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-docker-container-building\" class=\"anchor\" href=\"#docker-container-building\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker container building\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003eYou probably don\u0027t have to do this. Be absolutely certain beforehand.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eTo begin with, you shouldn\u0027t need to do this unless you have altered the Ansible scripts that build something in the container.\u003c/p\u003e\n\u003cp\u003eIf future generations of TAs decide to use a newer version of Charm or to radically change the environment for the MPs, it may be necessary to build new docker containers. Otherwise, please find working Docker containers at \u003ca href=\"https://hub.docker.com/u/uiuccs484parallelprog\" rel=\"nofollow\"\u003ehttps://hub.docker.com/u/uiuccs484parallelprog\u003c/a\u003e assignments should be done using the \u003ccode\u003euiuccs484parallelprog/cs484_student\u003c/code\u003e container.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-building-docker-containers\" class=\"anchor\" href=\"#building-docker-containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding docker containers\u003c/h3\u003e\n\u003cp\u003eYou can build the docker containers by cloning this repo, then running\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ebash ./docker/build.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cem\u003eSTOP\u003c/em\u003e\nIf you have altered the Ansible or Docker scripts, you should increment the version number for the docker image. The version number is in the script \u003ccode\u003e./docker/build.sh\u003c/code\u003e .\u003c/p\u003e\n\u003cp\u003eIf you are logged in to docker hub and a member of the group \u003ccode\u003euiuccs484parallelprog\u003c/code\u003e, you can push these images to make them available to the world.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-container-building\" class=\"anchor\" href=\"#singularity-container-building\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity container building\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003eHopefully you don\u0027t have to do this. If you update the docker container, then you may need to.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eTODO: Write this.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1585923678.0
+ "updated_at": 1539027275.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Code repository for a project focused on diagnostic prediction from whole blood slides ",
"filenames": [
- "Singularity"
+ "pipeline_tf2/Singularity.def"
],
- "full_name": "dylanturpin/shub_test",
+ "full_name": "josegcpa/wbs-prediction",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-a-complete-computational-assessment-of-the-cytomorphological-determinants-of-myelodyplastic-syndromes\" class=\"anchor\" href=\"#a-complete-computational-assessment-of-the-cytomorphological-determinants-of-myelodyplastic-syndromes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eA complete computational assessment of the cytomorphological determinants of myelodyplastic syndromes\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-motivation\" class=\"anchor\" href=\"#motivation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMotivation\u003c/h2\u003e\n\u003cp\u003eThis is the repository for \u003ca href=\"\"\u003ePLACEHOLDER\u003c/a\u003e. In this work, we use the whole blood slides of \u0026gt;300 individuals with myelodyplastic syndromes and anaemias and use them to develop a method that is capable of predicting a disease and retrieving examples of cells which are relevant for each classification.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-code-map\" class=\"anchor\" href=\"#code-map\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCode map\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-requirements\" class=\"anchor\" href=\"#requirements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements\u003c/h3\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-software\" class=\"anchor\" href=\"#software\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSoftware\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003epython\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003esnakemake\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eR\u003c/code\u003e (analysis and plotting)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-required-python-packages\" class=\"anchor\" href=\"#required-python-packages\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequired python packages\u003c/h4\u003e\n\u003cp\u003e\u003ccode\u003eopencv-python\u003c/code\u003e, \u003ccode\u003etensorflow==1.12\u003c/code\u003e, \u003ccode\u003escikit-image\u003c/code\u003e, \u003ccode\u003eh5py\u003c/code\u003e, \u003ccode\u003ealbumentations\u003c/code\u003e, \u003ccode\u003epsutil\u003c/code\u003e, \u003ccode\u003epytorch\u003c/code\u003e, \u003ccode\u003etifffile\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-project-enumeration\" class=\"anchor\" href=\"#project-enumeration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eProject enumeration\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ccode\u003epipeline\u003c/code\u003e - contains the pipeline for WBC and RBC detection and characterisation from WBS\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esimulations\u003c/code\u003e - contains simulations validating MILe-ViCe\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emile-vice\u003c/code\u003e - contains the code to train and run MILe-ViCe on the output from \u003ccode\u003epipeline\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003erbc-segmentation\u003c/code\u003e - contains the code to train a predictor that filters poorly predictions for detected RBC\u003c/li\u003e\n\u003cli\u003e(STILL TESTING) \u003ccode\u003evae-characterisation\u003c/code\u003e - characterisation of blood cells using a beta-variational autoencoder\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [],
- "updated_at": 1574885235.0
+ "topics": [
+ "morphometrics",
+ "image-analysis",
+ "bioimage-analysis",
+ "deep-learning",
+ "machine-learning"
+ ],
+ "updated_at": 1641212653.0
},
{
"data_format": 2,
- "description": null,
+ "description": "CBL-D (quinault) singularity and docker image for CI",
"filenames": [
"Singularity"
],
- "full_name": "robomorelli/singularity_test",
+ "full_name": "truatpasteurdotfr/singularity-docker-quinault-ci",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_test\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity_test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_test\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-cbl-d-quinault-singularity-and-docker-image-for-ci\" class=\"anchor\" href=\"#building-a-cbl-d-quinault-singularity-and-docker-image-for-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a CBL-D (quinault) singularity and docker image for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eCBL-D (Common Base Linux - Delridge)\u003c/li\u003e\n\u003cli\u003eDebian 10 based (quinault)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-references\" class=\"anchor\" href=\"#references\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Azure/CloudShell\"\u003ehttps://github.com/Azure/CloudShell\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/Azure/CloudShell/blob/master/linux/base.Dockerfile\"\u003ehttps://github.com/Azure/CloudShell/blob/master/linux/base.Dockerfile\u003c/a\u003e for \u003ccode\u003eFROM sbidprod.azurecr.io/quinault\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://boxofcables.dev/building-cbl-d-microsofts-other-linux-distro/\" rel=\"nofollow\"\u003ehttps://boxofcables.dev/building-cbl-d-microsofts-other-linux-distro/\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003eLICENSE copied verbatim from \u003ca href=\"https://raw.githubusercontent.com/Azure/CloudShell/master/LICENSE\" rel=\"nofollow\"\u003ehttps://raw.githubusercontent.com/Azure/CloudShell/master/LICENSE\u003c/a\u003e as of 2022/02/13\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:main\u003c/code\u003e tagged docker image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocker \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-quinault-ci/actions/workflows/docker-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-quinault-ci/actions/workflows/docker-publish.yml/badge.svg\" alt=\"Docker build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-quinault-ci:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-quinault-ci/actions/workflows/singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-quinault-ci/actions/workflows/singularity-publish.yml/badge.svg\" alt=\"Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run oras://ghcr.io/truatpasteurdotfr/singularity-docker-quinault-ci:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1610876939.0
+ "updated_at": 1644758743.0
},
{
"data_format": 2,
- "description": "Jupyter Miniconda Python 3 and Singularity Container",
+ "description": "RNA-seq raw reads processing pipeline through alignment",
"filenames": [
- "Singularity.jupyter3",
- "Singularity.rstudio",
- "Singularity.rbase",
- "Singularity.ecmwf.odb",
- "Singularity.jupyter23",
- "Singularity.jupyter2rttov",
- "Singularity.centos8",
- "Singularity.stuff",
- "Singularity.jupyter3ec",
- "Singularity.centos",
- "Singularity.centos.apps",
- "Singularity.jedi",
- "Singularity.gitlab",
- "Singularity.jupyter3rttov",
- "Singularity.lehre",
- "Singularity.intelpy",
- "Singularity.jupyter2"
+ "Singularity.hg19v1.centos"
],
- "full_name": "MBlaschek/singularity-jupyter",
+ "full_name": "ertheisen/cloudsrest_centos",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3843\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-jupyter-and-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#jupyter-and-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eJupyter and Singularity\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eUpdated: 25.11.2019, new singularity version 3.5\u003c/strong\u003e\n\u003cstrong\u003eContainers are on singularity-hub now: \u003ca href=\"https://singularity-hub.org/collections/3843\" rel=\"nofollow\"\u003eMyCollections\u003c/a\u003e\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eJupyter Miniconda Python 3 and Singularity Container\u003c/p\u003e\n\u003cp\u003eThis is an update from \u003ca href=\"https://github.com/singularityhub/jupyter\"\u003e\u003c/a\u003e the offical jupyter singularity container that requires root permissions to run:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[NEW] Only need root permissions to create the container\u003c/li\u003e\n\u003cli\u003e[NEW] Miniconda (smaller in size)\u003c/li\u003e\n\u003cli\u003e[NEW] runscript gives informaiton\u003c/li\u003e\n\u003cli\u003e[NEW] Using CentOS 6.10 not Ubuntu anymore\u003c/li\u003e\n\u003cli\u003e[NEW] GLIBC 2.12 compatibility to CentOS 6.10 (Final)\u003c/li\u003e\n\u003cli\u003e[NEW] Build NCAR WRF containers with singularity \u003ca href=\"https://github.com/NCAR/container-wrf\"\u003eNCAR WRF containers\u003c/a\u003e\nIf you haven\u0027t installed singularity, do that with \u003ca href=\"http://singularity.lbl.gov/install-linux\" rel=\"nofollow\"\u003ethese instructions\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eDownlaod Receipie files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity.centos (Base only Centos)\u003c/li\u003e\n\u003cli\u003eSingularity.jupyter23 (Miniconda, Jupyter Python2 \u0026amp; Python 3)\u003c/li\u003e\n\u003cli\u003eSingularity.jupyter3 (Miniconda, Jupyter Python 3)\u003c/li\u003e\n\u003cli\u003eSingularity.jupyter3x (Miniconda, Jupyter Python 3, \u003ca href=\"https://confluence.ecmwf.int/display/ECC\" rel=\"nofollow\"\u003eEccodes\u003c/a\u003e, cfgrib from ECMWF)\u003c/li\u003e\n\u003cli\u003eSingualrity.jupyter3ec (Miniconda, Jupyter Python 3, Eccodes library manual build, \u003cstrong\u003edeprecated\u003c/strong\u003e)\u003c/li\u003e\n\u003cli\u003eSingualrity.jupyter3rttov (Miniconda, Jupyter Python 3, \u003ca href=\"https://www.nwpsaf.eu/site/software/rttov/\" rel=\"nofollow\"\u003eRTTOV\u003c/a\u003e from EUMETSAT (not included due to license))\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eClone the Repository and manually build containers:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003e git clone https://github.com/MBlaschek/singularity-jupyter jupyter\n cd jupyter \n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eRetrieve Containers from singularity hub:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003e singularity pull shub://MBlaschek/singularity-jupyter:[TAG]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTags are the names above (centos, jupyter23, jupyter3, ...):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity pull shub://MBlaschek/singularity-jupyter:centos\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-create\" class=\"anchor\" aria-hidden=\"true\" href=\"#create\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCREATE\u003c/h2\u003e\n\u003cp\u003eFirst create the CentOS container that is used by all the others.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e sudo singularity build centos610.sif Singularity.centos\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLet\u0027s now create the notebook container:\nIf you build locally, then just edit the Recipie to use the local image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Local centos 6.10 image\nBootstrap: localimage\nFrom: centos610.sif\n# Bootstrap: shub\n# From: MBlaschek/singularity-jupyter:centos\n# most recent and debian image\n# BootStrap: docker\n# From: continuumio/miniconda3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eJupyter Python 3 Notebook Container: \u003ccode\u003eSingularity.jupyter3\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eJupyter Python 2 \u0026amp; 3 Notebook Container: \u003ccode\u003eSingularity.jupyter23\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eJupyter Python 2 \u0026amp; 3 Notebook + Eccodes Library: \u003ccode\u003eSingularity.jupyter3x\u003c/code\u003e (depends on the image from \u003ccode\u003ejupyter3.sif \u003c/code\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou can choose now if you prefer a writeable container (for development, installation of additional packages, ...) or a deployment container (read_only, default) \u003ca href=\"http://singularity.lbl.gov/docs-build-container\" rel=\"nofollow\"\u003eread more\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e sudo singularity build --writeable jupyter3.sif Singularity.jupyter3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor for deployment:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e sudo singularity build jupyter3.sif Singularity.jupyter3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe Notebook server Recipies include a line at the end that is quite important for jupyter to run properly:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e export JUPYTER_RUNTIME_DIR=$PWD/.runtime\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis line tells jupyter to use a specific directory for its runtime. Otherwise it would try to use the default \u003ccode\u003eXDG_RUNTIME_DIR\u003c/code\u003e, which is by default set to \u003ccode\u003e/run/user/...\u003c/code\u003e and not accessable via the container.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRUN\u003c/h2\u003e\n\u003cp\u003eThen to run the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run jupyter3.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003egives Information on the container and it\u0027s apps (notebook)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity Container\n Container Centos 6.10 (docker)\n Glibc: 2.12-1.212.el6.x86_64\n Installed: wget, git, curl, bzip2 ca-certificates\n\n SCIF (Apps): notebook\n Container.Glibc : 2.12-1.212.el6.x86_64\n Container.OS : CentOS 6.10\n Definition.Author : M. Blaschek\n Definition.Author.Email : michael.blaschek@univie.ac.at\n Definition.File.Date : 5.11.2019\n Definition.File.Version : 1.0\n org.label-schema.build-date : Thursday_28_November_2019_8:49:15_UTC\n org.label-schema.schema-version : 1.0\n org.label-schema.usage : /.singularity.d/runscript.help\n org.label-schema.usage.singularity.deffile.bootstrap : shub\n org.label-schema.usage.singularity.deffile.from : MBlaschek/singularity-jupyter:centos\n org.label-schema.usage.singularity.runscript.help : /.singularity.d/runscript.help\n org.label-schema.usage.singularity.version : 3.4.2\n Bye Bye\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003elaunch the notebook:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity run jupyter3.sif notebook\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003elaunch the console:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity run jupyter3.sif ipython\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor as a singularity instances (background server):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity instance start jupyter3.sif Jupy3\nsingularity run instance://Jupy3 notebook\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor as an instance with remote access (default is just localhost):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run instance://Jupy3 notebook --ip=$(hostname) \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAnyway you should see output like this:\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"jupyter.png\"\u003e\u003cimg src=\"jupyter.png\" alt=\"jupyter.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe current directory is where your server starts. In your browser you should be able to navigate to the link from the console:\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"jupyterweb.png\"\u003e\u003cimg src=\"jupyterweb.png\" alt=\"jupyterweb.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThere is a \u003ccode\u003e.jupyter3.log\u003c/code\u003e file that shows this output.\u003c/p\u003e\n\u003cp\u003eThe password is \u003cstrong\u003esuper-secret\u003c/strong\u003e. You can change that easily within the Singularity file.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-ipykernel-and-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#ipykernel-and-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIPYKernel and Containers\u003c/h2\u003e\n\u003cp\u003eIn order to use your container with an existing notebook server you need to register your container kernel with that server.\nOther people have done this:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/clemsonciti/singularity-in-jupyter-notebook\"\u003eTensorflow\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://gist.github.com/mattpitkin/35ac19214048e96c391e948d7ec34ca5\"\u003eKernel\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo register your container, in the \u003ccode\u003e${HOME}/.local/share/jupyter/kernels\u003c/code\u003e create a new directory, e.g. myimage, and add a \u003ccode\u003ekernel.json\u003c/code\u003e file containing:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e{\n \"language\": \"python\",\n \"argv\": [\"/usr/bin/singularity\",\n \"exec\",\n \"/dir/to/your/image/jupyter3.sif\",\n \"/opt/conda/bin/python\",\n \"-m\",\n \"ipykernel\",\n \"-f\",\n \"{connection_file}\"\n ],\n \"display_name\": \"Python 3 (Singularity)\"\n}\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eChange the path to your image and singularity executable. Then start a jupyter notebook with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e jupyter notebook \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand there should be a usable Python 3 (Singularity) kernel option! Check your Jupyter paths, like this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e jupyter --paths\n \n config:\n /home/user/.jupyter\n /opt/anaconda2/etc/jupyter\n /usr/local/etc/jupyter\n /etc/jupyter\n data:\n /home/user/.local/share/jupyter\n /opt/anaconda2/share/jupyter\n /usr/local/share/jupyter\n /usr/share/jupyter\n runtime:\n /run/user/1000/jupyter\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand make sure the runtime directory is accessable from inside the container. In this example it isn\u0027t. There I need to change this to something like this, before I run the server again:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e export JUPYTER_RUNTIME_DIR=$HOME/.local/share/jupyter/runtime\n jupyter notebook \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThat should solve the issue and make your contained jupyter environment accessable via your notebook server. :)\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-runtime-dir\" class=\"anchor\" aria-hidden=\"true\" href=\"#runtime-dir\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRUNTIME DIR\u003c/h4\u003e\n\u003cp\u003eI came across a few problems, which related to the \u003ccode\u003eRUNTIME_DIR\u003c/code\u003e and is quite import to run your server without root permissions.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e XDG_RUNTIME_DIR=/run/user/1000 # Default in Ubuntu/Linux (inside the container)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThat is not a good path. Therefore we change it to a defined path inside the container (already in the singularity file).\nThe following shows a way around, not necessary if you use the above recipe.\u003c/p\u003e\n\u003cp\u003eThis directory \u003ccode\u003e/run/user/..\u003c/code\u003e is not accessable by default from inside the container.\nTo register your container, in the \u003ccode\u003e${HOME}/.local/share/jupyter/kernels\u003c/code\u003e create a new directory, e.g. myimage, and add a \u003ccode\u003ekernel.json\u003c/code\u003e file containing:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e{\n \"language\": \"python\",\n \"argv\": [\"/usr/bin/singularity\",\n \"exec\",\n \"-B\",\n \"/run/user:/run/user\",\n \"/dir/to/your/image/jupyter.img\",\n \"/opt/conda/bin/python\",\n \"-m\",\n \"ipykernel\",\n \"-f\",\n \"{connection_file}\"\n ],\n \"display_name\": \"Python 3 (Singularity)\"\n}\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere adding the \u003ccode\u003e-B /run/user:/run/user\u003c/code\u003e option is important, which allows the container to have access.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-r-studio-server\" class=\"anchor\" aria-hidden=\"true\" href=\"#r-studio-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR-Studio Server\u003c/h1\u003e\n\u003cp\u003eThis is a lightly modified version of what \u003ca href=\"https://github.com/nickjer/singularity-rstudio\"\u003enickjer\u003c/a\u003e has done. The Modifications allow to run the R-Studio server as an instance.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity instance start rserver.sif RStudio\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUsually the R-Studio server runs on port 9090.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-syntax-highlighting\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-syntax-highlighting\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Syntax Highlighting\u003c/h1\u003e\n\u003cp\u003eThere is a nice repo \u003ca href=\"https://github.com/singularityhub/singularity.lang\"\u003esingularity.lang\u003c/a\u003e, where this can be added for Gedit, Nano and Vim. For Atom there is a highlighting as well. Works well.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-appalachianhg19v1-container-for-early-ngs-pipeline-applications\" class=\"anchor\" href=\"#appalachianhg19v1-container-for-early-ngs-pipeline-applications\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eappalachian.hg19v1 container for early NGS pipeline applications\u003c/h1\u003e\n\u003cp\u003eHow to run pipeline:\u003c/p\u003e\n\u003cp\u003esingularity run --app [appname] --bind [directory_info] container_name.simg\u003c/p\u003e\n\u003cp\u003ePath to genome in container needs to be:\n\u0027/genomes/test/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/spike/dm6/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/spike/sacCer3/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/STAR/[STAR index files]\u0027\n-or-\n\u0027/genomes/anno/[gtf or gff annotation file]\u0027\u003c/p\u003e\n\u003cp\u003eFor Baker Cluster Users:\ndirectory to mount for fly spike-in is: /gpfs0/home/gdlessnicklab/share/trails/genomes/Drosophila_melanogaster/UCSC\ndirectory to mount for yeast spike-in is: /gpfs0/home/gdlessnicklab/share/trails/genomes/Saccharomyces_cerevisiae/UCSC\ndirectory to mount for hg19 is: /reference/homo_sapiens/hg19/ucsc_assembly/illumina_download/\u003c/p\u003e\n\u003cp\u003eTo run interactive terminal in container\u003c/p\u003e\n\u003cp\u003esingularity shell --bind [directory_info] appalachian_hg19.simg\u003c/p\u003e\n\u003cp\u003e##Be sure to bind your data, your genome, and any script files you may want to run\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1662971530.0
+ "updated_at": 1560527292.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.nanocomp",
- "Singularity.parallel",
- "Singularity.pomoxis",
- "Singularity.OligoMiner",
- "Singularity.bedops",
- "Singularity.AP_master",
- "Singularity.salmon",
- "Singularity.freebayes",
- "Singularity.seqkit",
- "Singularity.yacrd",
- "Singularity.PEPPER",
- "Singularity.HELEN",
- "Singularity.medaka",
- "Singularity.R",
- "Singularity.busco",
- "Singularity.slamdunk",
- "Singularity.marvel",
- "Singularity.medakaGPU",
- "Singularity.mashmap",
- "Singularity.TailfindR",
- "Singularity.mosdepth",
- "Singularity.cutadapt",
- "Singularity.pycoQC",
- "Singularity.bowtie",
- "Singularity.hiC-pro",
- "Singularity.ngmlr.txt",
- "Singularity.deep-variant",
- "Singularity.bedtools",
- "Singularity.Repeatmasker",
- "Singularity.filtlong",
- "Singularity.samtools",
- "Singularity.sratoolkit",
- "Singularity.homer-tools",
- "Singularity.purge_dups",
- "Singularity.STAR",
- "Singularity.mummer",
- "Singularity.guppy",
- "Singularity.nanopolish",
- "Singularity.kentUtils",
- "Singularity.quast",
- "Singularity.albacore"
+ "Singularity.ubuntu_base"
],
- "full_name": "dominik-handler/AP_singu",
- "latest_release": null,
+ "full_name": "miquelmassot/singularity-deploy",
+ "latest_release": "0.0.2",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-deploy\" class=\"anchor\" href=\"#singularity-deploy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-deploy\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/miquelmassot/singularity-deploy/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/miquelmassot/singularity-deploy/actions/workflows/builder.yml/badge.svg\" alt=\"singularity-deploy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eBased on: \u003ca href=\"https://github.com/singularityhub/singularity-deploy\"\u003ehttps://github.com/singularityhub/singularity-deploy\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1612162065.0
+ "updated_at": 1644837961.0
},
{
"data_format": 2,
- "description": "image_preprocess",
+ "description": "My collection of singularity containers recipes",
"filenames": [
- "Singularity"
+ "busco/Singularity.busco",
+ "Biocontainer/Singularity.Biocontainers",
+ "DIRT/Singularity.DIRT",
+ "genome-annotation/Singularity.genome-annotation"
],
- "full_name": "lsx1980/image_preprocess",
+ "full_name": "raj76/singularity",
"latest_release": null,
- "readme": "\u003cp\u003e\"\"\"\nVersion: 1.5\u003c/p\u003e\n\u003cp\u003eSummary: image pre-processingfor 3D model reconstruction\u003c/p\u003e\n\u003cp\u003eAuthor: suxing liu\u003c/p\u003e\n\u003cp\u003eAuthor-email: \u003ca href=\"mailto:suxingliu@gmail.com\"\u003esuxingliu@gmail.com\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eUSAGE:\u003c/p\u003e\n\u003cp\u003epython pipeline.py -p /path_to_image_folder/ -ft jpg\u003c/p\u003e\n\u003cp\u003eparameter list:\u003c/p\u003e\n\u003cp\u003eargument:\n(\"-p\", \"--path\", required = True, help = \"path to image file\")\n(\"-ft\", \"--filetype\", required = True, help = \"Image filetype\")\u003c/p\u003e\n\u003cp\u003esingularity build --writable image_preprocess.img Singularity\nsingularity exec image_preprocess.img python /opt/code/pipeline.py -p /path_to_image_folder/ -ft jpg\n\"\"\"\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity\u003c/h1\u003e\n\u003cp\u003eMy collection of singularity containers recipes\n\u003ca href=\"https://singularity-hub.org/collections/611\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1561479834.0
+ "updated_at": 1518905174.0
},
{
"data_format": 2,
- "description": null,
+ "description": "RAxML - Randomized Axelerated Maximum Likelihood.",
"filenames": [
- "Singularity"
+ "8.2.9/Singularity"
],
- "full_name": "yuechenwangwyc/topaz",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-topaz\" class=\"anchor\" aria-hidden=\"true\" href=\"#topaz\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTopaz\u003c/h1\u003e\n\u003cp\u003eA pipeline for particle detection in cryo-electron microscopy images using convolutional neural networks trained from positive and unlabeled examples. Topaz also includes methods for micrograph and tomogram denoising using deep denoising models.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eCheck out our \u003ca href=\"https://github.com/tbepler/topaz/discussions\"\u003eDiscussion\u003c/a\u003e section for general help, suggestions, and tips on using Topaz.\u003c/strong\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-new-in-v025\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-in-v025\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew in v0.2.5\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eAdded Relion integration scripts\u003c/li\u003e\n\u003cli\u003eTopaz extract can now write particle coordinates to one file per input micrograph\u003c/li\u003e\n\u003cli\u003eAdded Gaussian filter option for after 3D denoising\u003c/li\u003e\n\u003cli\u003eAdded info on Topaz Workshops\u003c/li\u003e\n\u003cli\u003eTopaz GUI update\u003c/li\u003e\n\u003cli\u003eVarious bug fixes\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-new-in-v024\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-in-v024\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew in v0.2.4\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eAdded 3D denoising with \u003cstrong\u003etopaz denoise3d\u003c/strong\u003e and two pretrained 3D denoising models\u003c/li\u003e\n\u003cli\u003eAdded argument for setting number of threads to multithreaded commands\u003c/li\u003e\n\u003cli\u003eTopaz GUI update\u003c/li\u003e\n\u003cli\u003eVarious bug fixes\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-new-in-v023\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-in-v023\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew in v0.2.3\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eImprovements to the pretrained denoising models\u003c/li\u003e\n\u003cli\u003eTopaz now includes pretrained particle picking models\u003c/li\u003e\n\u003cli\u003eUpdated tutorials\u003c/li\u003e\n\u003cli\u003eUpdated GUI to include denoising commands\u003c/li\u003e\n\u003cli\u003eDenoising paper preprint is available \u003ca href=\"https://doi.org/10.1101/838920\" rel=\"nofollow\"\u003ehere\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-new-in-v022\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-in-v022\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew in v0.2.2\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eThe Topaz publication is out \u003ca href=\"https://doi.org/10.1038/s41592-019-0575-8\" rel=\"nofollow\"\u003ehere\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eBug fixes and GUI update\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-new-in-v020\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-in-v020\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew in v0.2.0\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eTopaz now supports the newest versions of pytorch (\u0026gt;= 1.0.0). If you have pytorch installed for an older version of topaz, it will need to be upgraded. See installation instructions for details.\u003c/li\u003e\n\u003cli\u003eAdded \u003cstrong\u003etopaz denoise\u003c/strong\u003e, a command for denoising micrographs using neural networks.\u003c/li\u003e\n\u003cli\u003eUsability improvements to the GUI.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eAn Nvidia GPU with CUDA support for GPU acceleration.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBasic Unix/Linux knowledge.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003e(Recommended) Click here to install \u003cem\u003eusing Anaconda\u003c/em\u003e\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003cp\u003eIf you do not have the Anaconda python distribution, \u003ca href=\"https://www.anaconda.com/download\" rel=\"nofollow\"\u003eplease install it following the instructions on their website\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eWe strongly recommend installing Topaz into a separate conda environment. To create a conda environment for Topaz:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda create -n topaz python=3.6 # or 2.7 if you prefer python 2\nsource activate topaz # this changes to the topaz conda environment, \u0027conda activate topaz\u0027 can be used with anaconda \u0026gt;= 4.4 if properly configured\n# source deactivate # returns to the base conda environment\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eMore information on conda environments can be found \u003ca href=\"https://conda.io/docs/user-guide/tasks/manage-environments.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install-topaz\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-topaz\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall Topaz\u003c/h2\u003e\n\u003cp\u003eTo install the precompiled Topaz package and its dependencies, including pytorch:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install topaz -c tbepler -c pytorch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis installs pytorch from the official channel. To install pytorch for specific cuda versions, you will need to add the \u0027cudatoolkit=X.X\u0027 package. E.g. to install pytorch for CUDA 9.0:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install cudatoolkit=9.0 -c pytorch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor combined into a single command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install topaz cudatoolkit=9.0 -c tbepler -c pytorch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee \u003ca href=\"https://pytorch.org/get-started/locally/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e for additional pytorch installation instructions.\u003c/p\u003e\n\u003cp\u003eThat\u0027s it! Topaz is now installed in your anaconda environment.\u003c/p\u003e\n\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003eClick here to install \u003cem\u003eusing Pip\u003c/em\u003e\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003cp\u003eWe strongly recommend installing Topaz into a \u003cem\u003evirtual environment\u003c/em\u003e. See \u003ca href=\"https://virtualenv.pypa.io/en/latest/installation/\" rel=\"nofollow\"\u003einstallation instructions\u003c/a\u003e and \u003ca href=\"https://virtualenv.pypa.io/en/latest/userguide/\" rel=\"nofollow\"\u003euser guide\u003c/a\u003e for virtualenv.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install-topaz-1\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-topaz-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall Topaz\u003c/h2\u003e\n\u003cp\u003eTo install Topaz for Python 3.X\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip3 install topaz-em\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003efor Python 2.7\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip install topaz-em\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee \u003ca href=\"https://pytorch.org/get-started/locally/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e for additional pytorch installation instructions, including how to install pytorch for specific CUDA versions.\u003c/p\u003e\n\u003cp\u003eThat\u0027s it! Topaz is now installed through pip.\u003c/p\u003e\n\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003eClick here to install \u003cem\u003eusing Docker\u003c/em\u003e\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003eDo you have Docker installed? If not, \u003cem\u003eclick here\u003c/em\u003e\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-linuxmacos--command-line\" class=\"anchor\" aria-hidden=\"true\" href=\"#linuxmacos--command-line\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLinux/MacOS \u00a0\u00a0 \u003cem\u003e(command line)\u003c/em\u003e\n\u003c/h2\u003e\n\u003cp\u003eDownload and install Docker 1.21 or greater for \u003ca href=\"https://docs.docker.com/engine/installation/\" rel=\"nofollow\"\u003eLinux\u003c/a\u003e or \u003ca href=\"https://store.docker.com/editions/community/docker-ce-desktop-mac\" rel=\"nofollow\"\u003eMacOS\u003c/a\u003e.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eConsider using a Docker \u0027convenience script\u0027 to install (search on your OS\u0027s Docker installation webpage).\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eLaunch docker according to your Docker engine\u0027s instructions, typically \u003ccode\u003edocker start\u003c/code\u003e.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eNote:\u003c/strong\u003e You must have sudo or root access to \u003cem\u003einstall\u003c/em\u003e Docker. If you do not wish to \u003cem\u003erun\u003c/em\u003e Docker as sudo/root, you need to configure user groups as described here: \u003ca href=\"https://docs.docker.com/install/linux/linux-postinstall/\" rel=\"nofollow\"\u003ehttps://docs.docker.com/install/linux/linux-postinstall/\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch2\u003e\u003ca id=\"user-content-windows--gui--command-line\" class=\"anchor\" aria-hidden=\"true\" href=\"#windows--gui--command-line\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWindows \u00a0\u00a0 \u003cem\u003e(GUI \u0026amp; command line)\u003c/em\u003e\n\u003c/h2\u003e\n\u003cp\u003eDownload and install \u003ca href=\"https://docs.docker.com/toolbox/toolbox_install_windows/\" rel=\"nofollow\"\u003eDocker Toolbox for Windows\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eLaunch Kitematic.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eIf on first startup Kitematic displays a red error suggesting that you run using VirtualBox, do so.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eNote:\u003c/strong\u003e \u003ca href=\"https://docs.docker.com/toolbox/toolbox_install_mac/\" rel=\"nofollow\"\u003eDocker Toolbox for MacOS\u003c/a\u003e has not yet been tested.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch2\u003e\u003ca id=\"user-content-what-is-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#what-is-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is Docker?\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://www.youtube.com/watch?v=YFl2mCHdv24\" rel=\"nofollow\"\u003eThis tutorial explains why Docker is useful.\u003c/a\u003e\u003c/p\u003e\n\n\u003cbr\u003e\n\u003cp\u003eA Dockerfile is provided to build images with CUDA support. Build from the github repo:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build -t topaz https://github.com/tbepler/topaz.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor download the source code and build from the source directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/tbepler/topaz\ncd topaz\ndocker build -t topaz .\n\u003c/code\u003e\u003c/pre\u003e\n\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003eClick here to install \u003cem\u003eusing Singularity\u003c/em\u003e\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003cp\u003eA prebuilt Singularity image for Topaz is available \u003ca href=\"https://singularity-hub.org/collections/2413\" rel=\"nofollow\"\u003ehere\u003c/a\u003e and can be installed with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://nysbc/topaz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen, you can run topaz from within the singularity image with (paths must be changed appropriately):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv -B /mounted_path:/mounted_path /path/to/singularity/container/topaz_latest.sif /usr/local/conda/bin/topaz\n\u003c/code\u003e\u003c/pre\u003e\n\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003eClick here to install \u003cem\u003efrom source\u003c/em\u003e\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eRecommended: install Topaz into a virtual Python environment\u003c/em\u003e\u003cbr\u003e\nSee \u003ca href=\"https://conda.io/docs/user-guide/tasks/manage-environments.html\" rel=\"nofollow\"\u003ehttps://conda.io/docs/user-guide/tasks/manage-environments.html\u003c/a\u003e or \u003ca href=\"https://virtualenv.pypa.io/en/stable/\" rel=\"nofollow\"\u003ehttps://virtualenv.pypa.io/en/stable/\u003c/a\u003e for setting one up.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-install-the-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-the-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall the dependencies\u003c/h4\u003e\n\u003cp\u003eTested with python 3.6 and 2.7\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003epytorch (\u0026gt;= 1.0.0)\u003c/li\u003e\n\u003cli\u003etorchvision\u003c/li\u003e\n\u003cli\u003epillow (\u0026gt;= 6.2.0)\u003c/li\u003e\n\u003cli\u003enumpy (\u0026gt;= 1.11)\u003c/li\u003e\n\u003cli\u003epandas (\u0026gt;= 0.20.3)\u003c/li\u003e\n\u003cli\u003escipy (\u0026gt;= 0.19.1)\u003c/li\u003e\n\u003cli\u003escikit-learn (\u0026gt;= 0.19.0)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eEasy installation of dependencies with conda\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install numpy pandas scikit-learn\nconda install -c pytorch pytorch torchvision\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor more info on installing pytorch for your CUDA version see \u003ca href=\"https://pytorch.org/get-started/locally/\" rel=\"nofollow\"\u003ehttps://pytorch.org/get-started/locally/\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-download-the-source-code\" class=\"anchor\" aria-hidden=\"true\" href=\"#download-the-source-code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownload the source code\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/tbepler/topaz\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-install-topaz-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-topaz-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall Topaz\u003c/h4\u003e\n\u003cp\u003eMove to the source code directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd topaz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBy default, this will be the most recent version of the topaz source code. To install a specific older version, checkout that commit. For example, for v0.1.0 of Topaz:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit checkout v0.1.0\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote that older Topaz versions may have different dependencies. Refer to the README for the specific Topaz version.\u003c/p\u003e\n\u003cp\u003eInstall Topaz into your Python path including the topaz command line interface\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip install .\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo install for development use\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip install -e .\n\u003c/code\u003e\u003c/pre\u003e\n\n\u003cp\u003eTopaz is also available through \u003ca href=\"https://sbgrid.org/software/titles/topaz\" rel=\"nofollow\"\u003eSBGrid\u003c/a\u003e.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-tutorial\" class=\"anchor\" aria-hidden=\"true\" href=\"#tutorial\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTutorial\u003c/h1\u003e\n\u003cp\u003eThe tutorials are presented in Jupyter notebooks. Please install Jupyter following the instructions \u003ca href=\"http://jupyter.org/install\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"tutorial/01_quick_start_guide.ipynb\"\u003eQuick start guide\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"tutorial/02_walkthrough.ipynb\"\u003eComplete walkthrough\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"tutorial/03_cross_validation.ipynb\"\u003eCross validation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"tutorial/04_denoising.ipynb\"\u003eMicrograph denoising\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThe tutorial data can be downloaded \u003ca href=\"http://bergerlab-downloads.csail.mit.edu/topaz/topaz-tutorial-data.tar.gz\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eTo run the tutorial steps on your own system, you will need to install \u003ca href=\"http://jupyter.org/install\" rel=\"nofollow\"\u003eJupyter\u003c/a\u003e and \u003ca href=\"https://matplotlib.org/\" rel=\"nofollow\"\u003ematplotlib\u003c/a\u003e which is used for visualization.\u003c/p\u003e\n\u003cp\u003eWith Anaconda this can be done with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install jupyter matplotlib\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you installed Topaz using anaconda, make sure these are installed into your Topaz evironment.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-user-guide\" class=\"anchor\" aria-hidden=\"true\" href=\"#user-guide\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUser guide\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003eClick here for a description of the Topaz pipeline and its commands\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003cp\u003eThe command line interface is structured as a single entry command (topaz) with different steps defined as subcommands. A general usage guide is provided below with brief instructions for the most important subcommands in the particle picking pipeline.\u003c/p\u003e\n\u003cp\u003eTo see a list of all subcommands with a brief description of each, run \u003ccode\u003etopaz --help\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-image-preprocessing\" class=\"anchor\" aria-hidden=\"true\" href=\"#image-preprocessing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImage preprocessing\u003c/h3\u003e\n\u003ch4\u003e\u003ca id=\"user-content-downsampling-topaz-downsample\" class=\"anchor\" aria-hidden=\"true\" href=\"#downsampling-topaz-downsample\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownsampling (topaz downsample)\u003c/h4\u003e\n\u003cp\u003eIt is recommened to downsample and normalize images prior to model training and prediction.\u003c/p\u003e\n\u003cp\u003eThe downsample script uses the discrete Fourier transform to reduce the spacial resolution of images. It can be used as\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003etopaz downsample --scale={downsampling factor} --output={output image path} {input image path} \n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eusage: topaz downsample [-h] [-s SCALE] [-o OUTPUT] [-v] file\n\npositional arguments:\n file\n\noptional arguments:\n -h, --help show this help message and exit\n -s SCALE, --scale SCALE\n downsampling factor (default: 4)\n -o OUTPUT, --output OUTPUT\n output file\n -v, --verbose print info\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-normalization-topaz-normalize\" class=\"anchor\" aria-hidden=\"true\" href=\"#normalization-topaz-normalize\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNormalization (topaz normalize)\u003c/h4\u003e\n\u003cp\u003eThe normalize script can then be used to normalize the images. This script fits a two component Gaussian mixture model with an additional scaling multiplier per image to capture carbon pixels and account for differences in exposure. The pixel values are then adjusted by dividing each image by its scaling factor and then subtracting the mean and dividing by the standard deviation of the dominant Gaussian mixture component. It can be used as\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003etopaz normalize --destdir={directory to put normalized images} [list of image files]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eusage: topaz normalize [-h] [-s SAMPLE] [--niters NITERS] [--seed SEED]\n [-o DESTDIR] [-v]\n files [files ...]\n\npositional arguments:\n files\n\noptional arguments:\n -h, --help show this help message and exit\n -s SAMPLE, --sample SAMPLE\n pixel sampling factor for model fit (default: 100)\n --niters NITERS number of iterations to run for model fit (default:\n 200)\n --seed SEED random seed for model initialization (default: 1)\n -o DESTDIR, --destdir DESTDIR\n output directory\n -v, --verbose verbose output\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-single-step-preprocessing-topaz-preprocess\" class=\"anchor\" aria-hidden=\"true\" href=\"#single-step-preprocessing-topaz-preprocess\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingle-step preprocessing (topaz preprocess)\u003c/h4\u003e\n\u003cp\u003eBoth downsampling and normalization can be performed in one step with the preprocess script.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003etopaz preprocess --scale={downsampling factor} --destdir={directory to put processed images} [list of image files]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eusage: topaz preprocess [-h] [-s SCALE] [-t NUM_WORKERS]\n [--pixel-sampling PIXEL_SAMPLING] [--niters NITERS]\n [--seed SEED] -o DESTDIR [-v]\n files [files ...]\n\npositional arguments:\n files\n\noptional arguments:\n -h, --help show this help message and exit\n -s SCALE, --scale SCALE\n rescaling factor for image downsampling (default: 4)\n -t NUM_WORKERS, --num-workers NUM_WORKERS\n number of processes to use for parallel image\n downsampling (default: 0)\n --pixel-sampling PIXEL_SAMPLING\n pixel sampling factor for model fit (default: 100)\n --niters NITERS number of iterations to run for model fit (default:\n 200)\n --seed SEED random seed for model initialization (default: 1)\n -o DESTDIR, --destdir DESTDIR\n output directory\n -v, --verbose verbose output\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-model-training\" class=\"anchor\" aria-hidden=\"true\" href=\"#model-training\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModel training\u003c/h3\u003e\n\u003ch4\u003e\u003ca id=\"user-content-file-formats\" class=\"anchor\" aria-hidden=\"true\" href=\"#file-formats\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFile formats\u003c/h4\u003e\n\u003cp\u003eThe training script requires a file listing the image file paths and another listing the particle coordinates. Coordinates index images from the top left. These files should be tab delimited with headers as follows:\u003c/p\u003e\n\u003cp\u003eimage file list\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eimage_name\tpath\n...\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eparticle coordinates\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eimage_name\tx_coord\ty_coord\n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-train-region-classifiers-with-labeled-particles-topaz-train\" class=\"anchor\" aria-hidden=\"true\" href=\"#train-region-classifiers-with-labeled-particles-topaz-train\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTrain region classifiers with labeled particles (topaz train)\u003c/h4\u003e\n\u003cp\u003eModels are trained using the \u003ccode\u003etopaz train\u003c/code\u003e command. For a complete list of training arguments, see\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003etopaz train --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-segmentation-and-particle-extraction\" class=\"anchor\" aria-hidden=\"true\" href=\"#segmentation-and-particle-extraction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSegmentation and particle extraction\u003c/h3\u003e\n\u003ch4\u003e\u003ca id=\"user-content-segmention-topaz-segment-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#segmention-topaz-segment-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSegmention (topaz segment, optional)\u003c/h4\u003e\n\u003cp\u003eImages can be segmented using the \u003ccode\u003etopaz segment\u003c/code\u003e command with a trained model.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eusage: topaz segment [-h] [-m MODEL] [-o DESTDIR] [-d DEVICE] [-v]\n paths [paths ...]\n\npositional arguments:\n paths paths to image files for processing\n\noptional arguments:\n -h, --help show this help message and exit\n -m MODEL, --model MODEL\n path to trained classifier\n -o DESTDIR, --destdir DESTDIR\n output directory\n -d DEVICE, --device DEVICE\n which device to use, \u0026lt;0 corresponds to CPU (default:\n GPU if available)\n -v, --verbose verbose mode\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-particle-extraction-topaz-extract\" class=\"anchor\" aria-hidden=\"true\" href=\"#particle-extraction-topaz-extract\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParticle extraction (topaz extract)\u003c/h4\u003e\n\u003cp\u003ePredicted particle coordinates can be extracted directly from saved segmented images (see above) or images can be segmented and particles extracted in one step given a trained model using the \u003ccode\u003etopaz extract\u003c/code\u003e command.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eusage: topaz extract [-h] [-m MODEL] [-r RADIUS] [-t THRESHOLD]\n [--assignment-radius ASSIGNMENT_RADIUS]\n [--min-radius MIN_RADIUS] [--max-radius MAX_RADIUS]\n [--step-radius STEP_RADIUS] [--num-workers NUM_WORKERS]\n [--targets TARGETS] [--only-validate] [-d DEVICE]\n [-o OUTPUT]\n paths [paths ...]\n\npositional arguments:\n paths paths to image files for processing\n\noptional arguments:\n -h, --help show this help message and exit\n -m MODEL, --model MODEL\n path to trained subimage classifier, if no model is\n supplied input images must already be segmented\n -r RADIUS, --radius RADIUS\n radius of the regions to extract\n -t THRESHOLD, --threshold THRESHOLD\n score quantile giving threshold at which to terminate\n region extraction (default: 0.5)\n --assignment-radius ASSIGNMENT_RADIUS\n maximum distance between prediction and labeled target\n allowed for considering them a match (default: same as\n extraction radius)\n --min-radius MIN_RADIUS\n minimum radius for region extraction when tuning\n radius parameter (default: 5)\n --max-radius MAX_RADIUS\n maximum radius for region extraction when tuning\n radius parameters (default: 100)\n --step-radius STEP_RADIUS\n grid size when searching for optimal radius parameter\n (default: 5)\n --num-workers NUM_WORKERS\n number of processes to use for extracting in parallel,\n 0 uses main process (default: 0)\n --targets TARGETS path to file specifying particle coordinates. used to\n find extraction radius that maximizes the AUPRC\n --only-validate flag indicating to only calculate validation metrics.\n does not report full prediction list\n -d DEVICE, --device DEVICE\n which device to use, \u0026lt;0 corresponds to CPU\n -o OUTPUT, --output OUTPUT\n file path to write\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis script uses the non maxima suppression algorithm to greedily select particle coordinates and remove nearby coordinates from the candidates list. Two additional parameters are involved in this process.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eradius: coordinates within this parameter of selected coordinates are removed from the candidates list\u003c/li\u003e\n\u003cli\u003ethreshold: specifies the score quantile below which extraction stops\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe radius parameter can be tuned automatically given a set of known particle coordinates by finding the radius which maximizes the average precision score. In this case, predicted coordinates must be assigned to target coordinates which requires an additional distance threshold (--assignment-radius).\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-choosing-a-final-particle-list-threshold-topaz-precision_recall_curve\" class=\"anchor\" aria-hidden=\"true\" href=\"#choosing-a-final-particle-list-threshold-topaz-precision_recall_curve\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eChoosing a final particle list threshold (topaz precision_recall_curve)\u003c/h4\u003e\n\u003cp\u003eParticles extracted using Topaz still have scores associated with them and a final particle list should be determined by choosing particles above some score threshold. The \u003ccode\u003etopaz precision_recall_curve\u003c/code\u003e command can facilitate this by reporting the precision-recall curve for a list of predicted particle coordinates and a list of known target coordinates. A threshold can then be chosen to optimize the F1 score or for specific recall/precision levels on a heldout set of micrographs.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eusage: topaz precision_recall_curve [-h] [--predicted PREDICTED]\n [--targets TARGETS] -r ASSIGNMENT_RADIUS\n\noptional arguments:\n -h, --help show this help message and exit\n --predicted PREDICTED\n path to file containing predicted particle coordinates\n with scores\n --targets TARGETS path to file specifying target particle coordinates\n -r ASSIGNMENT_RADIUS, --assignment-radius ASSIGNMENT_RADIUS\n maximum distance between prediction and labeled target\n allowed for considering them a match\n\u003c/code\u003e\u003c/pre\u003e\n\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003eClick here for a description of the model architectures, training methods, and training radius\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-model-architectures\" class=\"anchor\" aria-hidden=\"true\" href=\"#model-architectures\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModel architectures\u003c/h4\u003e\n\u003cp\u003eCurrently, there are several model architectures available for use as the region classifier\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eresnet8 [receptive field = 71]\u003c/li\u003e\n\u003cli\u003econv127 [receptive field = 127]\u003c/li\u003e\n\u003cli\u003econv63 [receptive field = 63]\u003c/li\u003e\n\u003cli\u003econv31 [receptive field = 31]\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eResNet8 gives a good balance of performance and receptive field size. Conv63 and Conv31 can be better choices when less complex models are needed.\u003c/p\u003e\n\u003cp\u003eThe number of units in the base layer can be set with the --units flag. ResNet8 always doubles the number of units when the image is strided during processing. Conv31, Conv63, and Conv127 do not by default, but the --unit-scaling flag can be used to set a multiplicative factor on the number of units when striding occurs.\u003c/p\u003e\n\u003cp\u003eThe pooling scheme can be changed for the conv* models. The default is not to perform any pooling, but max pooling and average pooling can be used by specifying \"--pooling=max\" or \"--pooling=avg\".\u003c/p\u003e\n\u003cp\u003eFor a detailed layout of the architectures, use the --describe flag.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-training-methods\" class=\"anchor\" aria-hidden=\"true\" href=\"#training-methods\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTraining methods\u003c/h4\u003e\n\u003cp\u003eThe PN method option treats every coordinate not labeled as positive (y=1) as negative (y=0) and then optimizes the standard classification objective:\n$$ \\piE_{y=1}[L(g(x),1)] + (1-\\pi)E_{y=0}[L(g(x),0)] $$\nwhere $\\pi$ is a parameter weighting the positives and negatives, $L$ is the misclassifiaction cost function, and $g(x)$ is the model output.\u003c/p\u003e\n\u003cp\u003eThe GE-binomial method option instead treats coordinates not labeled as positive (y=1) as unlabeled (y=?) and then optimizes an objective including a generalized expectation criteria designed to work well with minibatch SGD.\u003c/p\u003e\n\u003cp\u003eThe GE-KL method option instead treats coordinates not labeled as positive (y=1) as unlabeled (y=?) and then optimizes the objective:\n$$ E_{y=1}[L(g(x),1)] + \\lambdaKL(\\pi, E_{y=?}[g(x)]) $$\nwhere $\\lambda$ is a slack parameter (--slack flag) that specifies how strongly to weight the KL divergence of the expecation of the classifier over the unlabeled data from $\\pi$.\u003c/p\u003e\n\u003cp\u003eThe PU method uses the objective function proposed by Kiryo et al. (2017)\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-radius\" class=\"anchor\" aria-hidden=\"true\" href=\"#radius\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRadius\u003c/h4\u003e\n\u003cp\u003eThis sets how many pixels around each particle coordinate are treated as positive, acting as a form of data augmentation. These coordinates follow a distribution that results from which pixel was selected as the particle center when the data was labeled. The radius should be chosen to be large enough that it covers a reasonable region of pixels likely to have been selected but not so large that pixels outside of the particles are labeled as positives.\u003c/p\u003e\n\n\u003cp\u003eA user guide is also built into the \u003ca href=\"https://emgweb.nysbc.org/topaz.html\" rel=\"nofollow\"\u003eTopaz GUI\u003c/a\u003e.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-integration\" class=\"anchor\" aria-hidden=\"true\" href=\"#integration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntegration\u003c/h1\u003e\n\u003cp\u003eTopaz also integrates with RELION, CryoSPARC, Scipion, and Appion. You can find information and tutorials here:\u003c/p\u003e\n\u003cp\u003eRELION: \u003ca href=\"https://github.com/tbepler/topaz/tree/master/relion_run_topaz\"\u003ehttps://github.com/tbepler/topaz/tree/master/relion_run_topaz\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eCryoSPARC: \u003ca href=\"https://guide.cryosparc.com/processing-data/all-job-types-in-cryosparc/deep-picking/deep-picking\" rel=\"nofollow\"\u003ehttps://guide.cryosparc.com/processing-data/all-job-types-in-cryosparc/deep-picking/deep-picking\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eScipion: \u003ca href=\"https://github.com/scipion-em/scipion-em-topaz\"\u003ehttps://github.com/scipion-em/scipion-em-topaz\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-references\" class=\"anchor\" aria-hidden=\"true\" href=\"#references\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences\u003c/h1\u003e\n\u003ch3\u003e\u003ca id=\"user-content-topaz-1\" class=\"anchor\" aria-hidden=\"true\" href=\"#topaz-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTopaz\u003c/h3\u003e\n\u003cp\u003eBepler, T., Morin, A., Rapp, M., Brasch, J., Shapiro, L., Noble, A.J., Berger, B. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat Methods 16, 1153\u20131160 (2019). \u003ca href=\"https://doi.org/10.1038/s41592-019-0575-8\" rel=\"nofollow\"\u003ehttps://doi.org/10.1038/s41592-019-0575-8\u003c/a\u003e\u003c/p\u003e\n\u003cdetails\u003e\u003csummary\u003eBibtex\u003c/summary\u003e\u003cp\u003e\n\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@Article{Bepler2019,\nauthor={Bepler, Tristan\nand Morin, Andrew\nand Rapp, Micah\nand Brasch, Julia\nand Shapiro, Lawrence\nand Noble, Alex J.\nand Berger, Bonnie},\ntitle={Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs},\njournal={Nature Methods},\nyear={2019},\nissn={1548-7105},\ndoi={10.1038/s41592-019-0575-8},\nurl={https://doi.org/10.1038/s41592-019-0575-8}\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/details\u003e\n\u003ch3\u003e\u003ca id=\"user-content-topaz-denoise\" class=\"anchor\" aria-hidden=\"true\" href=\"#topaz-denoise\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTopaz-Denoise\u003c/h3\u003e\n\u003cp\u003eBepler, T., Kelley, K., Noble, A.J., Berger, B. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat Commun 11, 5208 (2020). \u003ca href=\"https://doi.org/10.1038/s41467-020-18952-1\" rel=\"nofollow\"\u003ehttps://doi.org/10.1038/s41467-020-18952-1\u003c/a\u003e\u003c/p\u003e\n\u003cdetails\u003e\u003csummary\u003eBibtex\u003c/summary\u003e\u003cp\u003e\n\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@Article{Bepler2020_topazdenoise,\nauthor={Bepler, Tristan\nand Kelley, Kotaro\nand Noble, Alex J.\nand Berger, Bonnie},\ntitle={Topaz-Denoise: general deep denoising models for cryoEM and cryoET},\njournal={Nature Communications},\nyear={2020},\nissn={2041-1723},\ndoi={10.1038/s41467-020-18952-1},\nurl={https://doi.org/10.1038/s41467-020-18952-1}\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/details\u003e\n\u003ch1\u003e\u003ca id=\"user-content-authors\" class=\"anchor\" aria-hidden=\"true\" href=\"#authors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors\u003c/h1\u003e\n\u003cdetails\u003e\u003csummary\u003eTristan Bepler\u003c/summary\u003e\u003cp\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/tbepler.png\"\u003e\u003cimg src=\"images/tbepler.png\" width=\"120\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\u003c/details\u003e\n\u003cdetails\u003e\u003csummary\u003eAlex J. Noble\u003c/summary\u003e\u003cp\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/anoble.png\"\u003e\u003cimg src=\"images/anoble.png\" width=\"120\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\u003c/details\u003e\n\u003ch1\u003e\u003ca id=\"user-content-topaz-workshop\" class=\"anchor\" aria-hidden=\"true\" href=\"#topaz-workshop\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTopaz Workshop\u003c/h1\u003e\n\u003cp\u003eTo request a Topaz Workshop for academic or non-academic purposes, send a request to:\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u0026lt;alexjnoble [at] gmail [dot] com\u0026gt;\u003c/em\u003e \u0026amp; \u003cem\u003e\u0026lt;tbepler [at] gmail [dot] com\u0026gt;\u003c/em\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h1\u003e\n\u003cp\u003eTopaz is open source software released under the \u003ca href=\"https://github.com/tbepler/topaz/blob/master/LICENSE\"\u003eGNU General Public License, Version 3\u003c/a\u003e.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-bugs--suggestions\" class=\"anchor\" aria-hidden=\"true\" href=\"#bugs--suggestions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBugs \u0026amp; Suggestions\u003c/h1\u003e\n\u003cp\u003ePlease report bugs and make specific feature requests and suggestions for improvements as a \u003ca href=\"https://github.com/tbepler/topaz/issues\"\u003eGithub issue\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor general help, questions, suggestions, tips, and installation/setup assistance, please take a look at our new \u003ca href=\"https://github.com/tbepler/topaz/discussions\"\u003eDiscussion\u003c/a\u003e section.\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-raxml",
+ "latest_release": "v8.2.9",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-raxml/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-raxml/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-raxml/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-raxml/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/277233f105b68116448cd7db2faac6b9dedc5603317bc3be2789550b8554d1e2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7261786d6c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/277233f105b68116448cd7db2faac6b9dedc5603317bc3be2789550b8554d1e2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7261786d6c\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-raxml\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/60d3d420d133df2ca3e6346fa5baca67b3a2100e92322bef33b335d23d867cb8/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7261786d6c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/60d3d420d133df2ca3e6346fa5baca67b3a2100e92322bef33b335d23d867cb8/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7261786d6c\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-raxml\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/304eaca0dbef42b860c7c8d5b95de8e8e1672a13e0e5568946afa88d4f631d52/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7261786d6c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/304eaca0dbef42b860c7c8d5b95de8e8e1672a13e0e5568946afa88d4f631d52/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7261786d6c\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-raxml\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ee982fcac05c22d0d030c924d411c219e655450543d9c54220f0f105c072ede2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7261786d6c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ee982fcac05c22d0d030c924d411c219e655450543d9c54220f0f105c072ede2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7261786d6c\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-raxml\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-raxml\" class=\"anchor\" href=\"#singularity-raxml\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-raxml\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://cme.h-its.org/exelixis/web/software/raxml\" rel=\"nofollow\"\u003eraxml\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eraxml\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/raxml/8.2.9\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/raxml\u003c/code\u003e as \u003ccode\u003e8.2.9.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1611916919.0
+ "subscribers_count": 3,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1644856111.0
},
{
"data_format": 2,
- "description": "local settings",
+ "description": null,
"filenames": [
- "examples/shub/Singularity",
- "examples/scientific/Singularity",
- "examples/arch/Singularity",
- "examples/ubuntu/Singularity",
- "examples/centos/Singularity",
- "examples/docker/Singularity",
- "examples/scratch/Singularity.busybox",
- "examples/scratch/Singularity.alpine",
- "examples/debian/Singularity",
- "examples/self/Singularity",
- "examples/busybox/Singularity",
- "examples/apps/Singularity",
- "examples/apps/Singularity.cowsay",
- "examples/instances/Singularity",
- "examples/asciinema/Singularity",
- "examples/raspbian/Singularity",
- "examples/library/Singularity",
- "examples/multistage/Singularity",
- "examples/opensuse/Singularity"
+ "docker/Singularity.snowflake"
],
- "full_name": "frankwillmore/alcf-singularity",
+ "full_name": "nuKs/bids-preproc",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/sylabs/singularity\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a1646c42a348a1331feb3842e34171e866c139adbae2608ba5fbd2c022c9c20f/68747470733a2f2f7472617669732d63692e6f72672f73796c6162732f73696e67756c61726974792e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/sylabs/singularity.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://circleci.com/gh/sylabs/singularity/tree/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ff56e7dd170e08e53c09fda12031315bb91f5b4220f2d3cfaf46044700f32fa1/68747470733a2f2f636972636c6563692e636f6d2f67682f73796c6162732f73696e67756c61726974792f747265652f6d61737465722e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/sylabs/singularity/tree/master.svg?style=svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://goreportcard.com/report/github.com/sylabs/singularity\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/179d3d939b6a64c4f021860776fdc6243bc26409e966f1aa6bd7d35ca9593fea/68747470733a2f2f676f7265706f7274636172642e636f6d2f62616467652f6769746875622e636f6d2f73796c6162732f73696e67756c6172697479\" alt=\"Go Report Card\" data-canonical-src=\"https://goreportcard.com/badge/github.com/sylabs/singularity\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"CONTRIBUTING.md\"\u003eGuidelines for Contributing\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\".github/PULL_REQUEST_TEMPLATE.md\"\u003ePull Request Template\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"LICENSE.md\"\u003eProject License\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.sylabs.io/docs/\" rel=\"nofollow\"\u003eDocumentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177459\" rel=\"nofollow\"\u003eCitation\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSingularity is an open source container platform designed to be simple, fast, and secure. Singularity is optimized for \u003ca href=\"https://www.sylabs.io/2018/09/singularity-is-enterprise-performance-computing/\" rel=\"nofollow\"\u003eEPC\u003c/a\u003e and HPC workloads, allowing untrusted users to run untrusted containers in a trusted way.\u003c/p\u003e\n\u003cp\u003eCheck out \u003ca href=\"https://www.sylabs.io/singularity/whos-using-singularity/\" rel=\"nofollow\"\u003ewho is using Singularity\u003c/a\u003e and some \u003ca href=\"https://www.sylabs.io/category/how-tos/\" rel=\"nofollow\"\u003euse cases of Singularity\u003c/a\u003e on our website.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-getting-started-with-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#getting-started-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started with Singularity\u003c/h2\u003e\n\u003cp\u003eTo install Singularity from source, see the \u003ca href=\"INSTALL.md\"\u003einstallation instructions\u003c/a\u003e. For other installation options, see \u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/installation.html\" rel=\"nofollow\"\u003eour website\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor system administrators, see the \u003ca href=\"https://www.sylabs.io/guides/3.0/admin-guide/\" rel=\"nofollow\"\u003eadministrator documentation\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor users, see the \u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/\" rel=\"nofollow\"\u003euser documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing-to-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing-to-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing to Singularity\u003c/h2\u003e\n\u003cp\u003eCommunity contributions are always greatly appreciated. To start developing Singularity, check out the \u003ca href=\"CONTRIBUTING.md\"\u003eguidelines for contributing\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eWe also welcome contributions to our \u003ca href=\"https://github.com/sylabs/singularity-userdocs\"\u003euser docs\u003c/a\u003e and \u003ca href=\"https://github.com/sylabs/singularity-admindocs\"\u003eadmin docs\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-support\" class=\"anchor\" aria-hidden=\"true\" href=\"#support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSupport\u003c/h2\u003e\n\u003cp\u003eTo get help with Singularity, check out the \u003ca href=\"https://www.sylabs.io/singularity/community/\" rel=\"nofollow\"\u003eCommunity Portal\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor additional support, \u003ca href=\"https://www.sylabs.io/contact/\" rel=\"nofollow\"\u003econtact us\u003c/a\u003e to receive more information.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-cite-as\" class=\"anchor\" aria-hidden=\"true\" href=\"#cite-as\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCite as:\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eKurtzer GM, Sochat V, Bauer MW (2017) Singularity: Scientific containers for mobility of compute. PLoS ONE 12(5): e0177459. https://doi.org/10.1371/journal.pone.0177459\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWe also have a Zenodo citation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eKurtzer, Gregory M.. (2016). Singularity 2.1.2 - Linux application and environment\ncontainers for science. 10.5281/zenodo.60736\n\nhttps://doi.org/10.5281/zenodo.60736\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003eUnless otherwise noted, this project is licensed under a 3-clause BSD license found in the \u003ca href=\"LICENSE.md\"\u003elicense file\u003c/a\u003e.\u003c/em\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1558040154.0
+ "updated_at": 1644864844.0
},
{
"data_format": 2,
- "description": "Run a jupyter notebook server within singularity container.",
+ "description": "jq is a lightweight and flexible command-line JSON processor.",
"filenames": [
- "Singularity"
+ "1.6/Singularity"
],
- "full_name": "kma/singularity-jupyter",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-jupyter\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-jupyter\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-jupyter\u003c/h1\u003e\n\u003cp\u003eThis example shows how to run a jupyter notebook server within singularity container.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-create-and-bootstrap-the-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#create-and-bootstrap-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreate and bootstrap the container\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo singularity create -s 1200 jupyter.img\n$ sudo singularity bootstrap jupyter.img Singularity \u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-use-singularity-hub-to-pull-this-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#use-singularity-hub-to-pull-this-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUse singularity-hub to pull this container\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003e$ singularity pull shub://906\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eOR\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003e$ singularity pull shub://kma/singularity-jupyter:master\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-the-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun the container\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity run jupyter.img\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis will starts jupyter server on port 8888. The current directory will be used as the notebook direcory.\nYou can connect to the server and select the notebook file \u003ca href=\"python_heat2d.ipynb\"\u003epython_heat2d.ipynb\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-jq",
+ "latest_release": "v1.6",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-jq/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-jq/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-jq/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-jq/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7ba2d90cdf83d5e2c1ff43f36457bd7662a4c884cfaba4962f33517ebbcc87c1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6a71\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7ba2d90cdf83d5e2c1ff43f36457bd7662a4c884cfaba4962f33517ebbcc87c1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6a71\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-jq\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f57604a88aedfdf5b00774448eb1e1458a22026714624a4ed775fe8f7948d252/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6a71\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f57604a88aedfdf5b00774448eb1e1458a22026714624a4ed775fe8f7948d252/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6a71\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-jq\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/8f97344032bc1f53bcc9a24cb971084b86a8b67ee2c9e9cae802a9dd84cf569c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6a71\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8f97344032bc1f53bcc9a24cb971084b86a8b67ee2c9e9cae802a9dd84cf569c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6a71\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-jq\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0e1fe273a8da2bb31a820d69ebb9fce673aaed18c07e2b45b4ad319d38a46954/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6a71\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0e1fe273a8da2bb31a820d69ebb9fce673aaed18c07e2b45b4ad319d38a46954/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6a71\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-jq\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-jq\" class=\"anchor\" href=\"#singularity-jq\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-jq\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/2a6480b8877ea9a4e8d36292d5b1a2a918d31be6029767a0dc047dbe8c48d977/68747470733a2f2f737465646f6c616e2e6769746875622e696f2f6a712f6a712e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2a6480b8877ea9a4e8d36292d5b1a2a918d31be6029767a0dc047dbe8c48d977/68747470733a2f2f737465646f6c616e2e6769746875622e696f2f6a712f6a712e706e67\" width=\"50%\" data-canonical-src=\"https://stedolan.github.io/jq/jq.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://stedolan.github.io/jq/\" rel=\"nofollow\"\u003ejq\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ejq\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/jq/1.6\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/jq\u003c/code\u003e as \u003ccode\u003e1.6.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1493997701.0
+ "subscribers_count": 2,
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1644901477.0
},
{
"data_format": 2,
- "description": "Files to build Singularity images for running the Monte-Carlo event generator Sherpa",
+ "description": "The jp command is a command line interface to JMESPath, an expression language for manipulating JSON.",
"filenames": [
- "Singularity.fitting_centos6",
- "Singularity.sherpa-rel-2-2-7_68ab0c9c5_Caesar",
- "Singularity.sherpa-2.2.6",
- "Singularity.rivet_centos6",
- "Singularity.sherpa-tmp-cherrypick-ewvirt-into-master_HEAD_centos6",
- "Singularity.sherpa-rel-2-2-9_HEAD_centos6",
- "Singularity.sherpa-master_2dc43a3d_Asterix",
- "Singularity.plotting",
- "Singularity.mceg",
- "Singularity.sherpa-rel-2-2-7_12338b5d_Bossix",
- "Singularity.sherpa-master_HEAD_centos6",
- "Singularity.plotting_centos6",
- "Singularity.sherpa-openmpi.devtoolset",
- "Singularity.sherpa-2.2.6_centos6",
- "Singularity.rivet",
- "Singularity.sherpa-rel-2-2-7_HEAD_centos6",
- "Singularity.mceg_centos6"
+ "0.2.1/Singularity"
],
- "full_name": "ebothmann/sherpa-singularity",
- "latest_release": null,
+ "full_name": "pscedu/singularity-jp",
+ "latest_release": "v0.2.1",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-jp/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-jp/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-jp/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-jp/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/05b134868e56bf8c8fa7dc13f4470cf13cad0b7161546e09c789aafe22deec6e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6a70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/05b134868e56bf8c8fa7dc13f4470cf13cad0b7161546e09c789aafe22deec6e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6a70\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-jp\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/92fedab816aca4c765ddc450267fdad82b3f6c32c306fde8ca397c0a1aedec59/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6a70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/92fedab816aca4c765ddc450267fdad82b3f6c32c306fde8ca397c0a1aedec59/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6a70\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-jp\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/434a811330df95d0d19571e1ec67b47ba8e8e026d81c1f24c5f0eb3fae746f35/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6a70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/434a811330df95d0d19571e1ec67b47ba8e8e026d81c1f24c5f0eb3fae746f35/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6a70\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-jp\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/9e077544905c5c3ee2d0d7b1f83444e58ecffcb7d201f604c5eb3e114c1e18b3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6a70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9e077544905c5c3ee2d0d7b1f83444e58ecffcb7d201f604c5eb3e114c1e18b3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6a70\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-jp\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-jp\" class=\"anchor\" href=\"#singularity-jp\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-jp\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://jmespath.org/\" rel=\"nofollow\"\u003ejp\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ejp\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/jp/0.2.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/jp\u003c/code\u003e as \u003ccode\u003e0.2.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [],
- "updated_at": 1603222289.0
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1644903522.0
},
{
"data_format": 2,
- "description": "Testing Singularity container and Singularity-hub",
+ "description": "Custom implementation of neurodocker (https://github.com/ReproNim/neurodocker)",
"filenames": [
"Singularity"
],
- "full_name": "kma/singularity-lab",
+ "full_name": "achennings/neurodocker",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-use-case\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-use-case\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity use case\u003c/h1\u003e\n\u003cp\u003eCreate a reproducible container image to run a simple python program (\u003ccode\u003edata_alaysys.py\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eThis code takes a csv file and plots results in two separated pdf files.\u003c/p\u003e\n\u003cp\u003eThe csv can be found \u003ca href=\"http://info.iut-bm.univ-fcomte.fr/staff/mazouzi/docs/ganglia-metrics.csv\" rel=\"nofollow\"\u003e[here]\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-create-a-container-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#create-a-container-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreate a container locally\u003c/h2\u003e\n\u003cp\u003eRun \u003ccode\u003ebuild-local\u003c/code\u003e to create and bootstrap a container (This action needs root access).\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo singularity create -s 1000 mycontainer.img\n$ sudo singularity bootstrap mycontainer.img Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-python-code-inside-the-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-python-code-inside-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun python code inside the container\u003c/h2\u003e\n\u003cp\u003eRun \u003ccode\u003erun-local.sh\u003c/code\u003e to execute python code inside the container.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ wget http://info.iut-bm.univ-fcomte.fr/staff/mazouzi/docs/ganglia-metrics.csv\n\n$ ./mycontainer.img data_analysis\n\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pull-image-container-from-singularity-hub\" class=\"anchor\" aria-hidden=\"true\" href=\"#pull-image-container-from-singularity-hub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePull image container from singularity-hub\u003c/h2\u003e\n\u003cp\u003eIf you don\u0027t root access, singularity-hub can create images by providing a specification file. See the \u003ca href=\"https://singularity-hub.org/faq\" rel=\"nofollow\"\u003e[documentation]\u003c/a\u003e for more details .\u003c/p\u003e\n\u003cp\u003eThe image corresponding to the \u003ccode\u003eSingularity\u003c/code\u003e file can be pulled from \u003ca href=\"https://singularity-hub.org/containers/842/\" rel=\"nofollow\"\u003ehttps://singularity-hub.org/containers/842/\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003ePull image:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull shub://842\nOr\n$ singularity pull shub://kma/singularity-lab:master\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eRun python code using:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e kma-singularity-lab-master.img python data_analysis.py\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eOr\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ ./kma-singularity-lab-master.img data_analysis.py\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-neurodocker\" class=\"anchor\" href=\"#neurodocker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eneurodocker\u003c/h1\u003e\n\u003cp\u003eCustom implementation of neurodocker (\u003ca href=\"https://github.com/ReproNim/neurodocker\"\u003ehttps://github.com/ReproNim/neurodocker\u003c/a\u003e)\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1493818555.0
+ "updated_at": 1645031040.0
},
{
"data_format": 2,
@@ -9228,41 +8637,40 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "timo-singularity/rivet",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-recipes\" class=\"anchor\" aria-hidden=\"true\" href=\"#recipes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003erecipes\u003c/h1\u003e\n",
+ "full_name": "NagaComBio/singularity_gcnvplotting",
+ "latest_release": "v0.2.0",
+ "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-for-gcnvplotting_v010sif\" class=\"anchor\" href=\"#for-gcnvplotting_v010sif\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor gcnvplotting_v0.1.0.sif\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/NagaComBio/singularity_gcnvplotting.git\ncd singularity_gcnvplotting\nsudo singularity build gcnvplotting_v0.1.0.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1622810530.0
+ "updated_at": 1640253212.0
},
{
"data_format": 2,
- "description": "Singularity recipe(s) for LSDalton.",
+ "description": "Code related to the installation and use of the openface on PSU\u0027s ACI systems ",
"filenames": [
- "Singularity.latest-gcc-9.3.0"
+ "Singularity"
],
- "full_name": "bast/lsdalton",
+ "full_name": "behav/openface",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-recipes-for-lsdalton\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-recipes-for-lsdalton\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\n\u003ca href=\"https://sylabs.io/guides/latest/user-guide/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e recipe(s) for \u003ca href=\"https://gitlab.com/dalton/lsdalton/\" rel=\"nofollow\"\u003eLSDalton\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/5142\" rel=\"nofollow\"\u003ehttps://singularity-hub.org/collections/5142\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity pull --name lsdalton shub://bast/lsdalton:latest-gcc-9.3.0\n$ ./lsdalton myexample.dal mymolecule.mol\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-openface_ics\" class=\"anchor\" href=\"#openface_ics\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eopenface_ics\u003c/h1\u003e\n\u003cp\u003eCode and workflow for building \u003ca href=\"https://github.com/TadasBaltrusaitis/OpenFace\"\u003eOpenFace\u003c/a\u003e\nin Docker Hub and modifying it with Singularity Hub for use with PSU\nACI HPC clusters.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quick-start\" class=\"anchor\" href=\"#quick-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h2\u003e\n\u003cp\u003eFrom ACI, executing the following code should create an \u003ccode\u003eOpenFace\u003c/code\u003e image.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://d-bohn/openface_ics:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-image-builds\" class=\"anchor\" href=\"#image-builds\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImage Builds\u003c/h2\u003e\n\u003cp\u003eThe OpenFace docker image was built from scratch on docker hub following the\n\u003ca href=\"https://github.com/TadasBaltrusaitis/OpenFace/wiki/Unix-Installation\"\u003edocumentation\u003c/a\u003e provided by it\u0027s maintainers.\u003c/p\u003e\n\u003cp\u003eThe OpenFace singularity image was built using the docker image base and\nconverting it to a singularity image via singularity hub.\u003c/p\u003e\n\u003cp\u003eSetup for linking Github with Docker Hub and Singularity Hub can be found here:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://docs.docker.com/docker-hub/\" rel=\"nofollow\"\u003edocker Hub\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/singularityhub/singularityhub.github.io/wiki\"\u003eSingularity Hub\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe \u003ccode\u003eSingularity\u003c/code\u003e file specifies creating a Singularity-compatible image\nfrom the docker image, as well as adding access to folders within ACI, specifically:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# ACI mappings so you can access your files.\nmkdir -p /storage/home\nmkdir -p /storage/work\nmkdir -p /gpfs/group\nmkdir -p /gpfs/scratch\nmkdir -p /var/spool/torque\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-notes\" class=\"anchor\" href=\"#notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eThe OpenFace docker image is large (\u0026gt; 6GB). It is built on Ubuntu 18.04.\nNot sure if it can be reduced in size as the executables rely on several\nlarge libraries.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSeveral important updates for \u003ccode\u003efaciallandmarkdetector\u003c/code\u003e are hosted on\nthe maintainer\u0027s cloud account. Might be prudent to download them\nseparately and/or include them in the repository.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSome functionality for real-time video viewing is not available\nwhen run in a container (at least not as of now).\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1612249375.0
+ "updated_at": 1556740713.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "scripts/Singularity"
+ "Singularity"
],
- "full_name": "SCXsunchenxi/Auto-Pytorch",
+ "full_name": "yhisaki/exp_pfrl",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-auto-pytorch\" class=\"anchor\" aria-hidden=\"true\" href=\"#auto-pytorch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuto-PyTorch\u003c/h1\u003e\n\u003cp\u003eCopyright (C) 2019 \u003ca href=\"http://www.automl.org/\" rel=\"nofollow\"\u003eAutoML Group Freiburg\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis a very early pre-alpha version of our upcoming Auto-PyTorch.\nSo far, Auto-PyTorch supports featurized data (classification, regression) and image data (classification).\u003c/p\u003e\n\u003cp\u003eThe newest features in Auto-PyTorch for tabular data are described in the paper \u003ca href=\"https://arxiv.org/abs/2006.13799\" rel=\"nofollow\"\u003e\"Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL\"\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eClone repository\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e install/path\n$ git clone https://github.com/automl/Auto-PyTorch.git\n$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e Auto-PyTorch\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf you want to contribute to this repository switch to our current develop branch\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git checkout develop\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eInstall pytorch:\n\u003ca href=\"https://pytorch.org/\" rel=\"nofollow\"\u003ehttps://pytorch.org/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eInstall Auto-PyTorch:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ cat requirements.txt \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e xargs -n 1 -L 1 pip install\n$ python setup.py install\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-examples\" class=\"anchor\" aria-hidden=\"true\" href=\"#examples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExamples\u003c/h2\u003e\n\u003cp\u003eCode for the \u003ca href=\"https://arxiv.org/abs/2006.13799\" rel=\"nofollow\"\u003epaper\u003c/a\u003e is available under \u003ccode\u003eexamples/ensemble\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eFor a detailed tutorial, please refer to the jupyter notebook in \u003ca href=\"https://github.com/automl/Auto-PyTorch/tree/master/examples/basics\"\u003ehttps://github.com/automl/Auto-PyTorch/tree/master/examples/basics\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eIn a nutshell:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e# data and metric imports\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003esklearn\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003emodel_selection\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003esklearn\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003edatasets\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003esklearn\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003emetrics\u003c/span\u003e\n\u003cspan class=\"pl-v\"\u003eX\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003esklearn\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003edatasets\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eload_digits\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ereturn_X_y\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e)\n\u003cspan class=\"pl-v\"\u003eX_train\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003eX_test\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey_train\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey_test\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \\\n \u003cspan class=\"pl-s1\"\u003esklearn\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003emodel_selection\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003etrain_test_split\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eX\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003erandom_state\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e)\n\n\u003cspan class=\"pl-c\"\u003e# running Auto-PyTorch\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\"tiny_cs\"\u003c/span\u003e, \u003cspan class=\"pl-c\"\u003e# config preset\u003c/span\u003e\n \u003cspan class=\"pl-s1\"\u003elog_level\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u0027info\u0027\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003emax_runtime\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e300\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003emin_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e30\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003emax_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e90\u003c/span\u003e)\n\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003efit\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eX_train\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey_train\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003evalidation_split\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e0.3\u003c/span\u003e)\n\u003cspan class=\"pl-s1\"\u003ey_pred\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003epredict\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eX_test\u003c/span\u003e)\n\n\u003cspan class=\"pl-en\"\u003eprint\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\"Accuracy score\"\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003esklearn\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003emetrics\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eaccuracy_score\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ey_test\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey_pred\u003c/span\u003e))\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eMore examples with datasets:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e examples/\n\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-configuration\" class=\"anchor\" aria-hidden=\"true\" href=\"#configuration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguration\u003c/h2\u003e\n\u003cp\u003eHow to configure Auto-PyTorch for your needs:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e# Print all possible configuration options.\u003c/span\u003e\n\u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e().\u003cspan class=\"pl-en\"\u003eprint_help\u003c/span\u003e()\n\n\u003cspan class=\"pl-c\"\u003e# You can use the constructor to configure Auto-PyTorch.\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003elog_level\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u0027info\u0027\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_runtime\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e300\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emin_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e30\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e90\u003c/span\u003e)\n\n\u003cspan class=\"pl-c\"\u003e# You can overwrite this configuration in each fit call.\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003efit\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eX_train\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey_train\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003elog_level\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u0027debug\u0027\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_runtime\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e900\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emin_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e50\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e150\u003c/span\u003e)\n\n\u003cspan class=\"pl-c\"\u003e# You can use presets to configure the config space.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# Available presets: full_cs, medium_cs (default), tiny_cs.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# These are defined in autoPyTorch/core/presets.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# tiny_cs is recommended if you want fast results with few resources.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# full_cs is recommended if you have many resources and a very high search budget.\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\"full_cs\"\u003c/span\u003e)\n\n\u003cspan class=\"pl-c\"\u003e# Enable or disable components using the Auto-PyTorch config:\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003enetworks\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e[\u003cspan class=\"pl-s\"\u003e\"resnet\"\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\"shapedresnet\"\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\"mlpnet\"\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\"shapedmlpnet\"\u003c/span\u003e])\n\n\u003cspan class=\"pl-c\"\u003e# You can take a look at the search space.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# Each hyperparameter belongs to a node in Auto-PyTorch\u0027s ML Pipeline.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# The names of the hyperparameters are prefixed with the name of the node: NodeName:hyperparameter_name.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# If a hyperparameter belongs to a component: NodeName:component_name:hyperparameter_name.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# Call with the same arguments as fit.\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eget_hyperparameter_search_space\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eX_train\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey_train\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003evalidation_split\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e0.3\u003c/span\u003e)\n\n\u003cspan class=\"pl-c\"\u003e# You can configure the search space of every hyperparameter of every component:\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eHyperparameterSearchSpaceUpdates\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003esearch_space_updates\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eHyperparameterSearchSpaceUpdates\u003c/span\u003e()\n\n\u003cspan class=\"pl-s1\"\u003esearch_space_updates\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eappend\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003enode_name\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"NetworkSelector\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003ehyperparameter\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"shapedresnet:activation\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003evalue_range\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e[\u003cspan class=\"pl-s\"\u003e\"relu\"\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\"sigmoid\"\u003c/span\u003e])\n\u003cspan class=\"pl-s1\"\u003esearch_space_updates\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eappend\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003enode_name\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"NetworkSelector\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003ehyperparameter\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"shapedresnet:blocks_per_group\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003evalue_range\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e[\u003cspan class=\"pl-c1\"\u003e2\u003c/span\u003e,\u003cspan class=\"pl-c1\"\u003e5\u003c/span\u003e],\n \u003cspan class=\"pl-s1\"\u003elog\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eFalse\u003c/span\u003e)\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ehyperparameter_search_space_updates\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003esearch_space_updates\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eEnable ensemble building (for featurized data):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetEnsemble\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eautoPyTorchEnsemble\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetEnsemble\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\"tiny_cs\"\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_runtime\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e300\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emin_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e30\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e90\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eDisable pynisher if you experience issues when using cuda:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\"tiny_cs\"\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003elog_level\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u0027info\u0027\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_runtime\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e300\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emin_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e30\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e90\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ecuda\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003euse_pynisher\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eFalse\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThis program is free software: you can redistribute it and/or modify\nit under the terms of the Apache license 2.0 (please see the LICENSE file).\u003c/p\u003e\n\u003cp\u003eThis program is distributed in the hope that it will be useful,\nbut WITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\u003c/p\u003e\n\u003cp\u003eYou should have received a copy of the Apache license 2.0\nalong with this program (see LICENSE file).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-reference\" class=\"anchor\" aria-hidden=\"true\" href=\"#reference\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReference\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-text-bibtex\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003e@incollection\u003c/span\u003e{\u003cspan class=\"pl-en\"\u003emendoza-automlbook18a\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003eauthor\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eHector Mendoza and Aaron Klein and Matthias Feurer and Jost Tobias Springenberg and Matthias Urban and Michael Burkart and Max Dippel and Marius Lindauer and Frank Hutter\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003etitle\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eTowards Automatically-Tuned Deep Neural Networks\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003eyear\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003e2018\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003emonth\u003c/span\u003e = dec,\n \u003cspan class=\"pl-s\"\u003eeditor\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eHutter, Frank and Kotthoff, Lars and Vanschoren, Joaquin\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003ebooktitle\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eAutoML: Methods, Sytems, Challenges\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003epublisher\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eSpringer\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003echapter\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003e7\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003epages\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003e141--156\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003enote\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eTo appear.\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n}\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e: Previously, the name of the project was AutoNet. Since this was too generic, we changed the name to AutoPyTorch. AutoNet 2.0 in the reference mention above is indeed AutoPyTorch.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contact\" class=\"anchor\" aria-hidden=\"true\" href=\"#contact\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h2\u003e\n\u003cp\u003eAuto-PyTorch is developed by the \u003ca href=\"http://www.automl.org/\" rel=\"nofollow\"\u003eAutoML Group of the University of Freiburg\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1609655576.0
+ "updated_at": 1645156767.0
},
{
"data_format": 2,
@@ -9270,420 +8678,434 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "marcjwilliams1/rstudio_julia",
+ "full_name": "talha-naveed97/orion",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/5054\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image for R studio server with Rv4.0 + julia v1.5.3\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1611507934.0
+ "updated_at": 1646176107.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "containers/Singularity.0.4.1",
+ "containers/Singularity.0.4.0",
+ "containers/Singularity.0.3.5",
+ "containers/Singularity.0.3.3",
+ "containers/Singularity.0.3.6"
],
- "full_name": "jganong/ubuntu-focal-foiegras",
+ "full_name": "Samanwaya1301/tidal-heating-bilby",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1607375887.0
+ "updated_at": 1638182089.0
},
{
"data_format": 2,
- "description": "singularity container to run Ian Jonsen\u0027s foieGras package",
+ "description": "Demultiplexing and QC pipeline for Illumina and 10X Single Cell sequencing data",
"filenames": [
"Singularity"
],
- "full_name": "jganong/ubuntu-bionic-R-4.0.3-foieGras",
+ "full_name": "csawye01/nf-core-demultiplex-crick",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nf-coredemultiplex\" class=\"anchor\" href=\"#nf-coredemultiplex\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enf-core/demultiplex\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eDemultiplexing pipeline for Illumina data\u003c/strong\u003e\n\u003cstrong\u003eIN PROGRESS\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nf-core/demultiplex\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ae3bf24b0d68bb5e81863eb358c7f3cd3a383647e932a785a123565bf2d13391/68747470733a2f2f7472617669732d63692e6f72672f6e662d636f72652f64656d756c7469706c65782e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nf-core/demultiplex.svg?branch=master\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/67e0b26cefcc362513a5e2e7613f4638251b0ab5f029eba762be3d49a716c325/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33322e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.32.0-brightgreen.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/demultiplex\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c838bd17591342d038d2a3b9de19e08588f2ae0043530f3eb082113f2651bac7/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f64656d756c7469706c65782e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/demultiplex.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003enf-core/demultiplex\u003c/strong\u003e is a bioinformatics demultiplexing pipeline used for multiple types of data input from sequencing runs.\nThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-sample-sheet-format\" class=\"anchor\" href=\"#sample-sheet-format\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSample Sheet Format\u003c/h3\u003e\n\u003cp\u003eThe sample sheet must fall into the same format as seen below to adhere to the Illumina standards with the additional column of DataAnalysisType and ReferenceGenome to ensure 10X sample will be processed correctly. Order of columns does not matter but the case of column names does.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eLane\u003c/th\u003e\n\u003cth\u003eSample_ID\u003c/th\u003e\n\u003cth\u003eUser_Sample_Name\u003c/th\u003e\n\u003cth\u003eindex\u003c/th\u003e\n\u003cth\u003eindex2\u003c/th\u003e\n\u003cth\u003eSample_Project\u003c/th\u003e\n\u003cth\u003eReferenceGenome\u003c/th\u003e\n\u003cth\u003eDataAnalysisType\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e1\u003c/td\u003e\n\u003ctd\u003eABC11A2\u003c/td\u003e\n\u003ctd\u003eU_ABC0_BS_GL_DNA\u003c/td\u003e\n\u003ctd\u003eCGATGT\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003ePM10000\u003c/td\u003e\n\u003ctd\u003eHomo sapiens\u003c/td\u003e\n\u003ctd\u003eWhole Exome\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e2\u003c/td\u003e\n\u003ctd\u003eSAG100A10\u003c/td\u003e\n\u003ctd\u003eSAG100A10\u003c/td\u003e\n\u003ctd\u003eSI-GA-C1\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eSC18100\u003c/td\u003e\n\u003ctd\u003eMus musculus\u003c/td\u003e\n\u003ctd\u003e10X-3prime\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e3\u003c/td\u003e\n\u003ctd\u003eCAP200A11\u003c/td\u003e\n\u003ctd\u003eUN1800_AE_6\u003c/td\u003e\n\u003ctd\u003eiCLIP\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003ePM18200\u003c/td\u003e\n\u003ctd\u003eHomo sapiens\u003c/td\u003e\n\u003ctd\u003eOther\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-pipeline-summary\" class=\"anchor\" href=\"#pipeline-summary\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline summary\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003eReformatting the input sample sheet\n\u003cul\u003e\n\u003cli\u003eScript looks for \u003ccode\u003eiCLIP\u003c/code\u003e in the index column of the sample sheet and collapses the iCLIP samples into one per lane.\u003c/li\u003e\n\u003cli\u003eSplits 10X single cell samples into 10X, 10X-ATAC and 10X-DNA .csv files by searching in the sample sheet column DataAnalysisType for \u003ccode\u003e10X-3prime\u003c/code\u003e, \u003ccode\u003e10X-ATAC\u003c/code\u003e and \u003ccode\u003e10X-CNV\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eOutputs the results of needing to run specific processes in the pipeline (can be only 10X single cell samples, mix of 10X single cell with non single cell samples or all non single cell samples)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eChecking the sample sheet for downstream error causing samples such as:\n\u003cul\u003e\n\u003cli\u003ea mix of short and long indexes on the same lane\u003c/li\u003e\n\u003cli\u003ea mix of single and dual indexes on the same lane\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eProcesses that only run if there are issues within the sample sheet found by the sample sheet check process (CONDITIONAL):\n\u003col\u003e\n\u003cli\u003eCreates a new sample sheet with any samples that would cause an error removed and create a a txt file of a list of the removed problem samples\u003c/li\u003e\n\u003cli\u003eRun \u003ca href=\"http://emea.support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html\" rel=\"nofollow\"\u003e\u003ccode\u003ebcl2fastq\u003c/code\u003e\u003c/a\u003e on the newly created sample sheet and output the Stats.json file\u003c/li\u003e\n\u003cli\u003eParsing the Stats.json file for the indexes that were in the problem samples list.\u003c/li\u003e\n\u003cli\u003eRecheck newly made sample sheet for any errors or problem samples that did not match any indexes in the Stats.json file. If there is still an issue the pipeline will exit at this stage.\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003eSingle cell 10X sample processes (CONDITIONAL):\nWill run either CellRanger, CellRangerATAC, CellRangerDNA depending on the samplesheet data type\nNOTE: Must create CONFIG to point to CellRanger genome References\n\u003col\u003e\n\u003cli\u003eCell Ranger mkfastq runs only when 10X samples exist. This will run the process with \u003ca href=\"https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger\" rel=\"nofollow\"\u003e\u003ccode\u003eCellRanger\u003c/code\u003e\u003c/a\u003e, \u003ca href=\"https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/what-is-cell-ranger-atac\" rel=\"nofollow\"\u003e\u003ccode\u003eCellRanger ATAC\u003c/code\u003e\u003c/a\u003e, and \u003ca href=\"https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/what-is-cell-ranger-dna\" rel=\"nofollow\"\u003e\u003ccode\u003eCell Ranger DNA\u003c/code\u003e\u003c/a\u003e depending on which sample sheet has been created.\u003c/li\u003e\n\u003cli\u003eCell Ranger Count runs only when 10X samples exist. This will run the process with \u003ca href=\"https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/count\" rel=\"nofollow\"\u003e\u003ccode\u003eCell Ranger Count\u003c/code\u003e\u003c/a\u003e, \u003ca href=\"https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/count\" rel=\"nofollow\"\u003e\u003ccode\u003eCell Ranger ATAC Count\u003c/code\u003e\u003c/a\u003e, and \u003ca href=\"https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/using/cnv\" rel=\"nofollow\"\u003e\u003ccode\u003eCell Ranger DNA CNV\u003c/code\u003e\u003c/a\u003edepending on the output from Cell Ranger mkfastq. 10X reference genomes can be downloaded from the 10X site, a new config would have to be created to point to the location of these. Must add config to point Cell Ranger to genome references if used outside the Crick profile.\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://emea.support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html\" rel=\"nofollow\"\u003e\u003ccode\u003ebcl2fastq\u003c/code\u003e\u003c/a\u003e (CONDITIONAL):\n\u003col\u003e\n\u003cli\u003eRuns on either the original sample sheet that had no error prone samples or on the newly created sample sheet created from the extra steps.\u003c/li\u003e\n\u003cli\u003eThis is only run when there are samples left on the sample sheet after removing the single cell samples.\u003c/li\u003e\n\u003cli\u003eThe arguments passed in bcl2fastq are changeable parameters that can be set on the command line when initiating the pipeline. Takes into account if Index reads will be made into FastQ\u0027s as well\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003e\u003ccode\u003eFastQC\u003c/code\u003e\u003c/a\u003e runs on the pooled fastq files from all the conditional processes.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/\" rel=\"nofollow\"\u003e\u003ccode\u003eFastQ Screen\u003c/code\u003e\u003c/a\u003e runs on the pooled results from all the conditional processes.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://multiqc.info/docs/\" rel=\"nofollow\"\u003e\u003ccode\u003eMultiQC\u003c/code\u003e\u003c/a\u003e runs on each projects FastQC results produced.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://multiqc.info/docs/\" rel=\"nofollow\"\u003e\u003ccode\u003eMultiQC_all\u003c/code\u003e\u003c/a\u003e runs on all FastQC results produced.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eThe nf-core/demultiplex pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/local.md\"\u003eLocal installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eAdding your own system\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/reference_genomes.md\"\u003eReference genomes\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-credits\" class=\"anchor\" href=\"#credits\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h3\u003e\n\u003cp\u003eCredits\nThe nf-core/demultiplex pipeline was written by Chelsea Sawyer of the The Bioinformatics \u0026amp; Biostatistics Group for use at The Francis Crick Institute, London.\nMany thanks to others who have helped out along the way too, including (but not limited to): \u003ca href=\"https://github.com/ChristopherBarrington\"\u003e\u003ccode\u003e@ChristopherBarrington\u003c/code\u003e\u003c/a\u003e, \u003ca href=\"https://github.com/drpatelh\"\u003e\u003ccode\u003e@drpatelh\u003c/code\u003e\u003c/a\u003e, \u003ca href=\"https://github.com/danielecook\"\u003e\u003ccode\u003e@danielecook\u003c/code\u003e\u003c/a\u003e, \u003ca href=\"https://github.com/escudem\"\u003e\u003ccode\u003e@escudem\u003c/code\u003e\u003c/a\u003e, \u003ca href=\"https://github.com/crickbabs\"\u003e\u003ccode\u003e@crickbabs\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1607375064.0
+ "updated_at": 1638199013.0
},
{
"data_format": 2,
- "description": "Singularity description files",
+ "description": null,
"filenames": [
- "fusorsv/Singularity",
- "mousegwas/Singularity"
+ "Singularity"
],
- "full_name": "asafpr/singularity",
+ "full_name": "truatpasteurdotfr/singularity-debian9-visualstudio",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-vstudio-on-debian9-toy-system-for-singularity-for-ci\" class=\"anchor\" href=\"#building-a-vstudio-on-debian9-toy-system-for-singularity-for-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a vstudio on debian9 toy system for singularity for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003etoy system for github actions\u003c/li\u003e\n\u003cli\u003ebuild singularity container from dockerhub registry and push to oras://ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-debian9-visualstudio/actions/workflows/singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-debian9-visualstudio/actions/workflows/singularity-publish.yml/badge.svg\" alt=\"Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /run oras://ghcr.io/truatpasteurdotfr/singularity-debian9-visualstudio:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1616613441.0
+ "updated_at": 1638365824.0
},
{
"data_format": 2,
- "description": "This is the Artifact Description repository for the CGO21 paper: YaskSite \u2013 Stencil Optimization Techniques Applied to Explicit ODE Methods on Modern Architectures",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "seasite-project/CGO21_YaskSite_AD",
- "latest_release": "CGO21v0.3",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content--cgo21_yasksite_ad-\" class=\"anchor\" aria-hidden=\"true\" href=\"#-cgo21_yasksite_ad-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003cins\u003e CGO21_YaskSite_AD \u003c/ins\u003e\u003c/h1\u003e\n\u003ch1\u003e\u003ca id=\"user-content-setup-phase\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-phase\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup phase\u003c/h1\u003e\n\u003cp\u003eSteps 1 to 3 guide you through setting up.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-step-11\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-11\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 1.1\u003c/h2\u003e\n\u003cp\u003eClone this repository and go to the cloned directory.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/seasite-project/CGO21_YaskSite_AD.git\ncd CGO21_YaskSite_AD\ngit checkout CGO21v0.3\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-step-12\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-12\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 1.2\u003c/h2\u003e\n\u003cp\u003eFor the next steps we need singularity v 3.6.4 or higher.\nIf singularity is not installed, you can install singularity with the following script if you have root access.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./install_singularity.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-step-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 2\u003c/h2\u003e\n\u003cp\u003eDownload the singularity container.\u003c/p\u003e\n\u003cp\u003eThe pre-build container is available under the following link \u003ca href=\"https://doi.org/10.5281/zenodo.4415558\" rel=\"nofollow\"\u003ehttps://doi.org/10.5281/zenodo.4415558\u003c/a\u003e\nand can be installed using:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewget https://zenodo.org/record/4415558/files/YS_CGO.sif?download=1 -O YS_CGO.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-step-3\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 3\u003c/h2\u003e\n\u003cp\u003eOnce singularity image is downloaded on the benchmarking system the first step is to run the app called build.\nThis installs YaskSite. It should be done at runtime since the YaskSite does machine specific configuration\nat build time. Run the following to do this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run --app build YS_CGO.sif \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-phase\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-phase\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun phase\u003c/h1\u003e\n\u003cp\u003eStep 4 illustrates how to run the app to reproduce results.\nIt is recommended the settings in the paper are followed to get comparable results.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-step-4\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-4\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 4\u003c/h2\u003e\n\u003cp\u003eRun the apps corresponding to YaskSite and Offsite. There are also pre-configured apps that helps to\nreproduce data in figures of the paper. To see the list of available apps use:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run-help YS_CGO.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe method to run each apps are described in corresponding app\u0027s help. For example help on how to run Fig4 app\n(reproduces results in Fig4 of the paper) can be obtained using:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run-help --app Fig4 YS_CGO.sif\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "truatpasteurdotfr/singularity-debian10-visualstudio",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-vstudio-on-debian10-toy-system-for-singularity-for-ci\" class=\"anchor\" href=\"#building-a-vstudio-on-debian10-toy-system-for-singularity-for-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a vstudio on debian10 toy system for singularity for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003etoy system for github actions\u003c/li\u003e\n\u003cli\u003ebuild singularity container from dockerhub registry and push to oras://ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-debian10-visualstudio/actions/workflows/singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-debian10-visualstudio/actions/workflows/singularity-publish.yml/badge.svg\" alt=\"Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /run oras://ghcr.io/truatpasteurdotfr/singularity-debian10-visualstudio:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1609764345.0
+ "updated_at": 1638370657.0
},
{
"data_format": 2,
- "description": "Bayesian Atmospheric Radiative Transfer (BART) packaged in a Singularity container https://github.com/davecwright3/bart-singularity",
+ "description": "singularity recipe for https://github.com/chienchi/amplicon_coverage_plot",
"filenames": [
"Singularity"
],
- "full_name": "davecwright3/bart-singularity",
+ "full_name": "dcgc-bfx/singularity-amplicon_coverage_plot",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4946\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-bart-singularity-guide\" class=\"anchor\" aria-hidden=\"true\" href=\"#bart-singularity-guide\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBART Singularity Guide\u003c/h1\u003e\n\u003cp\u003eThe Singularity image has BART installed at \u003ccode\u003e/bart_dir\u003c/code\u003e. The \u003ccode\u003e$topdir\u003c/code\u003e environment variable is set to this directory inside the image. This means that the instructions for the demo listed here \u003ca href=\"https://github.com/exosports/BART/tree/master/examples/demo\"\u003ehttps://github.com/exosports/BART/tree/master/examples/demo\u003c/a\u003e still work, but we need to mount a directory for outputs into the container for two reasons:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eThe demo expects your output directory to be parallel to the BART directory\u003c/li\u003e\n\u003cli\u003eThe container file system is read-only (this is only a problem because of (1); being read-only is actually preferred because it helps ensure reproducible results)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eIf the output directory wasn\u0027t required to be parallel to BART, you could run the container anywhere in \u003ccode\u003e$HOME\u003c/code\u003e because Singularity mounts \u003ccode\u003e$HOME\u003c/code\u003e of the current user into the container by default\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe image has a directory parallel to BART that is meant for output at \u003ccode\u003e/bart_dir/run\u003c/code\u003e. Make a directory on your host system where you want to store results. For the sake of this guide, let\u0027s say it\u0027s under your current directory at \u003ccode\u003edemo/run\u003c/code\u003e and you have pulled the singularity image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name bart.sif shub://davecwright3/bart-singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto your current directory as well. Then start a shell in the singularity container with the bind mount specified\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell -B demo/run:/bart_dir/run bart.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe BART conda environment will be automatically activated. Now just \u003ccode\u003ecd $topdir/run\u003c/code\u003e and follow the instructions here \u003ca href=\"https://github.com/exosports/BART/tree/master/examples/demo\"\u003ehttps://github.com/exosports/BART/tree/master/examples/demo\u003c/a\u003e if you would like to do a demo run. You can \u003ccode\u003eexit\u003c/code\u003e the container whenever you are done, and your results will remain in your \u003ccode\u003edemo/run\u003c/code\u003e directory.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h1\u003e\n\u003cp\u003eBayesian Atmospheric Radiative Transfer (BART), a code to infer\nproperties of planetary atmospheres based on observed spectroscopic\ninformation.\u003c/p\u003e\n\u003cp\u003eThis project was completed with the support of the NASA Planetary\nAtmospheres Program, grant NNX12AI69G, held by Principal Investigator\nJoseph Harrington. Principal developers included graduate students\nPatricio E. Cubillos and Jasmina Blecic, programmer Madison Stemm, and\nundergraduates M. Oliver Bowman and Andrew S. D. Foster. The included\n\u0027transit\u0027 radiative transfer code is based on an earlier program of\nthe same name written by Patricio Rojo (Univ. de Chile, Santiago) when\nhe was a graduate student at Cornell University under Joseph\nHarrington. Statistical advice came from Thomas J. Loredo and Nate\nB. Lust.\u003c/p\u003e\n\u003cp\u003eCopyright (C) 2015-2016 University of Central Florida.\nAll rights reserved.\u003c/p\u003e\n\u003cp\u003eThis is a test version only, and may not be redistributed to any third\nparty. Please refer such requests to us. This program is distributed\nin the hope that it will be useful, but WITHOUT ANY WARRANTY; without\neven the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR\nPURPOSE.\u003c/p\u003e\n\u003cp\u003eOur intent is to release this software under an open-source,\nreproducible-research license, once the code is mature and the first\nresearch paper describing the code has been accepted for publication\nin a peer-reviewed journal. We are committed to development in the\nopen, and have posted this code on github.com so that others can test\nit and give us feedback. However, until its first publication and\nfirst stable release, we do not permit others to redistribute the code\nin either original or modified form, nor to publish work based in\nwhole or in part on the output of this code. By downloading, running,\nor modifying this code, you agree to these conditions. We do\nencourage sharing any modifications with us and discussing them\nopenly.\u003c/p\u003e\n\u003cp\u003eWe welcome your feedback, but do not guarantee support. Please send\nfeedback or inquiries to:\nPatricio Cubillos \u003ca href=\"mailto:patricio.cubillos@oeaw.ac.at\"\u003epatricio.cubillos@oeaw.ac.at\u003c/a\u003e\nJasmina Blecic \u003ca href=\"mailto:jasmina@physics.ucf.edu\"\u003ejasmina@physics.ucf.edu\u003c/a\u003e\nJoseph Harrington \u003ca href=\"mailto:jh@physics.ucf.edu\"\u003ejh@physics.ucf.edu\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eor alternatively,\nJoseph Harrington, Patricio Cubillos, and Jasmina Blecic\nUCF PSB 441\n4111 Libra Drive\nOrlando, FL 32816-2385\nUSA\u003c/p\u003e\n\u003cp\u003eThank you for testing BART!\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-amplicon_coverage_plot\" class=\"anchor\" href=\"#singularity-amplicon_coverage_plot\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-amplicon_coverage_plot\u003c/h1\u003e\n\u003cp\u003esingularity recipe for \u003ca href=\"https://github.com/chienchi/amplicon_coverage_plot\"\u003ehttps://github.com/chienchi/amplicon_coverage_plot\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eImages are stored here: \u003ca href=\"https://cloud.sylabs.io/library/fabianrost84/dcgc-bfx/amplicon_coverage_plot\" rel=\"nofollow\"\u003ehttps://cloud.sylabs.io/library/fabianrost84/dcgc-bfx/amplicon_coverage_plot\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1604965509.0
+ "updated_at": 1638796921.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.FMS-gcc10-openmpi-netcdf4.6.3-ubuntu",
- "Singularity",
- "Singularity.FMS-gcc10-openmpi-netcdf4.6.3-ubuntu-compile"
+ "Singularity"
],
- "full_name": "thomas-robinson/fms_containers",
+ "full_name": "Mauricemonashuniversity/Epileptic-seizure-prediction",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-fms_containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#fms_containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efms_containers\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1604411747.0
+ "updated_at": 1640038462.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for edta (https://github.com/oushujun/EDTA)",
+ "description": null,
"filenames": [
- "Singularity",
- "Singularity.1.8.3",
- "Singularity.1.9.0"
+ "recipes/Singularity.def"
],
- "full_name": "powerPlant/edta-srf",
- "latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for the Extensive de novo TE Annotator tool\u003c/p\u003e\n",
+ "full_name": "stigrj/ghcr_sandbox",
+ "latest_release": "v2.0.0",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-testing-out-ghcr-workflows\" class=\"anchor\" href=\"#testing-out-ghcr-workflows\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting out GHCR workflows\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1603071842.0
+ "updated_at": 1641893233.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "2.26.10/Singularity"
],
- "full_name": "shreyaskamathkm/singularity_meshroom",
+ "full_name": "yh549848/singularity-picard",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_meshroom\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity_meshroom\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_meshroom\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1602807348.0
+ "updated_at": 1641914982.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Playground for Julia environments to test on Milgram ",
"filenames": [
"Singularity"
],
- "full_name": "lehtiolab/nf-deqms",
+ "full_name": "CNCLgithub/JuliaHPCApp",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-lehtiolabnf-deqms\" class=\"anchor\" aria-hidden=\"true\" href=\"#lehtiolabnf-deqms\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003elehtiolab/nf-deqms\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eA small pipeline to re-run DEqMS on existing results\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0fcfc6847f4944e0c46cb62bb190c0110bafa56ce455c12dd23051df8d710a4a/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d25453225383925413532302e30312e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A520.01.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/lehtiolab/nf-deqms\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4068dc15ebffdfaa7d220510750dd7bcde75393d91d3fe2d05dc15190c515246/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6c656874696f6c61622f6e662d6465716d732e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/lehtiolab/nf-deqms.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThis workflow reruns DEqMS analysis on existing results, e.g. from the \u003ca href=\"https://github.com/lehtiolab/ddamsproteomics\"\u003elehtiolab/ddamsproteomics\u003c/a\u003e pipeline. It exists so one can use orthogonal sample groups (CTRL vs TREAT, old vs young) and rerun, or perhaps correct a mistake in the sample annotation, without having to re-search an entire set of spectra against a protein sequence database.\u003c/p\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003einstall \u003ca href=\"https://nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003einstall \u003ca href=\"https://docs.docker.com/engine/installation/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e, \u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e, or \u003ca href=\"https://conda.io/miniconda.html\" rel=\"nofollow\"\u003eConda\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003erun pipeline:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run lehtiolab/nf-deqms --proteins proteins.txt --peptides peptides.txt --genes genes.txt --ensg ensg.txt --sampletable samples.txt -profile standard,docker\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can leave out any accession that you do not have or are not interested in (e.g. \u003ccode\u003e--ensg\u003c/code\u003e in a Swissprot analysis).\u003c/p\u003e\n\u003cp\u003eThe lehtiolab/nf-deqms pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://nf-co.re/usage/troubleshooting\" rel=\"nofollow\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThere is more extensive documentation on the options inside the main.nf file.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003elehtiolab/nf-deqms was originally written by Jorrit Boekel and tries to follow the \u003ca href=\"https://nf-co.re\" rel=\"nofollow\"\u003enf-core\u003c/a\u003e best practices and templates.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1605692054.0
+ "updated_at": 1641927437.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for bedops (https://github.com/bedops/bedops)",
+ "description": "Apache Druid singularity container for holberton school student records and such",
"filenames": [
- "Singularity",
- "Singularity.2.4.39"
+ "Singularity"
],
- "full_name": "powerPlant/bedops-srf",
+ "full_name": "romxero/Singularity_Apache_Druid",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for the BEDOPS open-source command-line toolkit that performs highly efficient and scalable Boolean and other set operations, statistical calculations, archiving, conversion and other management of genomic data of arbitrary scale.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-apache-druid-in-a-singularity-container-this-is-used-for-testing-and-for-creating-a-database-for-interactive-use-by-holberton-tulsa\" class=\"anchor\" href=\"#apache-druid-in-a-singularity-container-this-is-used-for-testing-and-for-creating-a-database-for-interactive-use-by-holberton-tulsa\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eApache Druid in a singularity container. This is used for testing and for creating a database for interactive use by Holberton Tulsa.\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1596773368.0
+ "updated_at": 1642026259.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for REPET (https://urgi.versailles.inra.fr/Tools/REPET)",
+ "description": null,
"filenames": [
- "Singularity.3.0",
"Singularity"
],
- "full_name": "powerPlant/repet-srf",
+ "full_name": "biobox-info/fragpipe",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for REPET\n(\u003ca href=\"https://urgi.versailles.inra.fr/Tools/REPET\" rel=\"nofollow\"\u003ehttps://urgi.versailles.inra.fr/Tools/REPET\u003c/a\u003e), used to detect, annotate and\nanalyse repeats in genomic sequences, specifically designed for transposable\nelements (TEs).\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fragpipe\" class=\"anchor\" href=\"#fragpipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFragpipe\u003c/h1\u003e\n\u003cp\u003eFragpipe latest version: 1.0.0\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1602104190.0
+ "updated_at": 1642084970.0
},
{
"data_format": 2,
- "description": "parallel gzipper in pure python",
+ "description": null,
"filenames": [
- "Singularity.alpine"
+ "ext/Singularity"
],
- "full_name": "d-w-moore/zipit",
+ "full_name": "clemsonciti/ood_rshiny",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-zipit\" class=\"anchor\" aria-hidden=\"true\" href=\"#zipit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ezipit\u003c/h1\u003e\n\u003cp\u003eThis repo contains two scripts useful for gzipping and checking large files\nas quickly as possible leveraging the parallelism of your machine.\u003c/p\u003e\n\u003cp\u003eThey require only that python be installed, and they depend only on modules\nincluded in the Python Standard Library -- particularly, of course, gzip.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-zipitpy\" class=\"anchor\" aria-hidden=\"true\" href=\"#zipitpy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ezipit.py\u003c/h2\u003e\n\u003cp\u003eExample uses:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e $ ./zipit.py -v large.tar # =\u0026gt; Creates large.tar.gz at default level of parallelism.\n # (-v verbosely informs of the piece-wise gzip tasks)\n\n $ ./zipit.py -qm large.tar # =\u0026gt; creates large.tar.gz using all available CPU\u0027s\n\n $ some_command | ./zipit.py - \u0026gt; out.gz # =\u0026gt; gzips from the stdin stream, onto stdout\n\n $ docker export cimg | ./zipit.py \\ # =\u0026gt; export and compress the filesystem of\n -d cimg.dig - \u0026gt;cimg.tgz # a docker container\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-testzippy\" class=\"anchor\" aria-hidden=\"true\" href=\"#testzippy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etestzip.py\u003c/h2\u003e\n\u003cp\u003eExample use (for context, see the final \u003ccode\u003ezipit.py\u003c/code\u003e example above):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e $ ./testzip.py cimg.tgz cimg.dig # =\u0026gt; tests the gzipped file\u0027s integrity using a digest file\n # (returns 0 if the integrity is good)\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-batch-connect---example-jupyter-notebook-server-palmetto\" class=\"anchor\" href=\"#batch-connect---example-jupyter-notebook-server-palmetto\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBatch Connect - Example Jupyter Notebook Server Palmetto\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/3a55d969e5c049c5a679159fb5e33007b3341d832eb29fbf0419a7ea1df72b22/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6578616d706c655f6a7570797465722e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3a55d969e5c049c5a679159fb5e33007b3341d832eb29fbf0419a7ea1df72b22/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6578616d706c655f6a7570797465722e737667\" alt=\"GitHub Release\" data-canonical-src=\"https://img.shields.io/github/release/osc/bc_example_jupyter.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/d7ea6810dec03748ecd3a16bc0028d6d3ba3f7f01daa23e53e07ed1740b54420/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6f73632f62635f6578616d706c655f6a7570797465722e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d7ea6810dec03748ecd3a16bc0028d6d3ba3f7f01daa23e53e07ed1740b54420/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6f73632f62635f6578616d706c655f6a7570797465722e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/github/license/osc/bc_example_jupyter.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA Batch Connect app that launches a Jupyter Notebook server within a\nbatch job.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-prerequisites\" class=\"anchor\" href=\"#prerequisites\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eThis Batch Connect app requires the following software be installed on the\n\u003cstrong\u003ecompute nodes\u003c/strong\u003e that the batch job is intended to run on (\u003cstrong\u003eNOT\u003c/strong\u003e the\nOnDemand node):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"http://jupyter.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003eJupyter Notebook\u003c/a\u003e 4.2.3+ (earlier\nversions are untested but may work for you)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.openssl.org/\" rel=\"nofollow\"\u003eOpenSSL\u003c/a\u003e 1.0.1+ (used to hash the Jupyter Notebook\nserver password)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eOptional\u003c/strong\u003e software:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.tacc.utexas.edu/research-development/tacc-projects/lmod\" rel=\"nofollow\"\u003eLmod\u003c/a\u003e\n6.0.1+ or any other \u003ccode\u003emodule purge\u003c/code\u003e and \u003ccode\u003emodule load \u0026lt;modules\u0026gt;\u003c/code\u003e based CLI\nused to load appropriate environments within the batch job before launching\nthe Jupyter Notebook server.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-install\" class=\"anchor\" href=\"#install\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h2\u003e\n\u003cp\u003eThese are command line only installation directions.\u003c/p\u003e\n\u003cp\u003eWe start by downloading a zipped package of this code. This allows us to start\nwith a fresh directory that has no git history as we will be building off of\nthis.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Download the zip from the GitHub page\u003c/span\u003e\nwget https://github.com/OSC/bc_example_jupyter/archive/master.tar.gz\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Create a catchy directory\u003c/span\u003e\nmkdir my_jupyter_app\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Unzip the downloaded file into this directory\u003c/span\u003e\ntar xzvf master.tar.gz -C my_jupyter_app --strip-components=1\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Change the working directory to this new directory\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e my_jupyter_app\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFrom here you will make any modifications to the code that you would like and\nversion your changes in your own repository:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Version our app by making a new Git repository\u003c/span\u003e\ngit init\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Make all your code changes while testing them in the OnDemand Dashboard\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e ...\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Add the files to the Git repository\u003c/span\u003e\ngit add --all\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Commit the staged files to the Git repository\u003c/span\u003e\ngit commit -m \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003emy first commit\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributing\" class=\"anchor\" href=\"#contributing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eFork it ( \u003ca href=\"https://github.com/OSC/bc_example_jupyter/fork\"\u003ehttps://github.com/OSC/bc_example_jupyter/fork\u003c/a\u003e )\u003c/li\u003e\n\u003cli\u003eCreate your feature branch (\u003ccode\u003egit checkout -b my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCommit your changes (\u003ccode\u003egit commit -am \u0027Add some feature\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003ePush to the branch (\u003ccode\u003egit push origin my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a new Pull Request\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1602285708.0
+ "updated_at": 1642298553.0
},
{
"data_format": 2,
- "description": "Singularity for HPC",
+ "description": null,
"filenames": [
- "Singularity.centos7-python3.7-transformers3.0.2-ImageCrawl",
- "Singularity.centos7-python3.8-transformers4.11.0-ImageCrawl",
- "Singularity.centos7-python3.7-transformers2.11.0-ImageCrawl"
+ "Singularity_CPU",
+ "Singularity_GPU"
],
- "full_name": "sina-ehsani/hpc-singularity",
+ "full_name": "ddbj/singularity_alphafold",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-hpc-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#hpc-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ehpc-singularity\u003c/h1\u003e\n\u003cp\u003eSingularity for HPC\u003c/p\u003e\n\u003cp\u003eMake sure the sigularity is built on \u003ca href=\"https://sylabs.io\" rel=\"nofollow\"\u003ehttps://sylabs.io\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eif ready use:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity pull shub://sinaehsani6/hpc-singularity:centos7-python3.7-transformers3.0.2-imagecrawl\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTransformer 2.11.0:\n\u003ccode\u003esingularity pull shub://sinaehsani6/hpc-singularity:centos7-python3.7-transformers2.11.0-imagecrawl\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eMake sure the imagecrawl is updated (latest commit)\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity_alphafold\" class=\"anchor\" href=\"#singularity_alphafold\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_alphafold\u003c/h1\u003e\n\u003cp\u003eUbuntu 18.04\u306balphafold 2.1\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305fsingularity image\u3092\u4f5c\u6210\u3059\u308b\u305f\u3081\u306eSingularity definition file\u3067\u3059\u3002GPU\u3092\u4f7f\u7528\u3059\u308b\u5834\u5408\u306fSingularity_GPU\u3001GPU\u3092\u4f7f\u7528\u3057\u306a\u3044\u5834\u5408\u306fSingularity_CPU\u3092\u4f7f\u7528\u3057\u3066image\u3092\u30d3\u30eb\u30c9\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-image\u306e\u30d3\u30eb\u30c9\" class=\"anchor\" href=\"#image%E3%81%AE%E3%83%93%E3%83%AB%E3%83%89\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eimage\u306e\u30d3\u30eb\u30c9\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity build alphafold-2.1-xPU.sif Singularity_xPU\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1641850034.0
+ "updated_at": 1642384956.0
},
{
"data_format": 2,
- "description": "HPC-AI 2020 | Training Project NEMO - Nucleus for European Modelling of the Ocean",
+ "description": null,
"filenames": [
- "Slurm Script/Singularity.nemo.apps",
- "Slurm Script/Singularity.CENTOS-7.7-NEMO-MOFED"
+ "Singularity"
],
- "full_name": "soycoder/nemo",
+ "full_name": "lawlessrd/SCZ-WM-pipeline",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content--nemo---ocean\" class=\"anchor\" aria-hidden=\"true\" href=\"#-nemo---ocean\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003cg-emoji class=\"g-emoji\" alias=\"ocean\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f30a.png\"\u003e\ud83c\udf0a\u003c/g-emoji\u003e NEMO - ocean\u003c/h1\u003e\n\u003cp\u003eHPC-AI 2020 | Training Project - NEMO: Nucleus for European Modelling of the Ocean\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content--docker-images---centos\" class=\"anchor\" aria-hidden=\"true\" href=\"#-docker-images---centos\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003cg-emoji class=\"g-emoji\" alias=\"floppy_disk\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4be.png\"\u003e\ud83d\udcbe\u003c/g-emoji\u003e Docker Images - CentOS\u003c/h2\u003e\n\u003cp\u003eThank you for an image (\u003ca href=\"https://hub.docker.com/r/wangyoucao577/centos7-gcc7.4\" rel=\"nofollow\"\u003ewangyoucao577/centos7-gcc7.4\u003c/a\u003e)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content--tag\" class=\"anchor\" aria-hidden=\"true\" href=\"#-tag\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003cg-emoji class=\"g-emoji\" alias=\"bookmark\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f516.png\"\u003e\ud83d\udd16\u003c/g-emoji\u003e Tag\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://hub.docker.com/layers/soycoder/centos7/nemo-ocean/images/sha256-c7bdaa3614e1fc1bbef31bdb05ac997e64b11abff716d00315807b1b79ad13c3\" rel=\"nofollow\"\u003e:nemo-ocean\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content--environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003cg-emoji class=\"g-emoji\" alias=\"sunrise_over_mountains\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f304.png\"\u003e\ud83c\udf04\u003c/g-emoji\u003e Environment\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eHPC-X to build an out-of-box MPI environment\u003c/li\u003e\n\u003cli\u003eBoost library\u003c/li\u003e\n\u003cli\u003eHDF5 Parallellibrary\u003c/li\u003e\n\u003cli\u003eNETCDF Parallel library with HDF5\u003c/li\u003e\n\u003cli\u003eNETCDF-FortranParallel library with NETCDF Parallel\u003c/li\u003e\n\u003cli\u003eXIOS\u003c/li\u003e\n\u003cli\u003eGYREwith GNUgfortran + HPC-X OpenMPI\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-text-html-basic\"\u003e\u003cpre\u003e/usr/mpi/gcc/openmpi-3.1.1rc1/bin/mpirun \\\n-mca pml ucx -x UCX_NET_DEVICES=mlx5_0:1 \\\n-mca mpi_show_mca_params 1 -mca pml_ucx_verbose 9 \\\n/usr/mpi/gcc/openmpi-3.1.1rc1/tests/osu-micro-benchmarks-5.3.2/osu_get_bw\n\n\n/usr/mpi/gcc/openmpi-3.1.1rc1/bin/mpirun -n 2 \\\n-mca pml ucx -x UCX_NET_DEVICES=mlx5_0:1 \\\n/usr/mpi/gcc/openmpi-3.1.1rc1/tests/osu-micro-benchmarks-5.3.2/osu_get_bw\n\n/usr/bin/time -p mpirun -n 2 \\\n-mca pml ucx -x UCX_TLS=rc UCX_NET_DEVICES=mlx5_0:1 ./nemo\n\n/usr/bin/time -p mpirun -n 2 \\\n-mca -x UCX_TLS=rc -x UCX_NET_DEVICES=mlx5_0:1 ./nemo\n\n/usr/bin/time -p mpirun -n 2 \\\n-mca -x UCX_TLS=rc -x UCX_NET_DEVICES=ib0 \\\n/home/hpc/nemo/apps/hpcx-v2.6.0-gcc-MLNX_OFED_LINUX-4.7-1.0.0.1-redhat7.7-x86_64/ompi/tests/osu-micro-benchmarks-5.3.2/osu_get_bw\n\nibstat\n\n\nNow step into the container and install MOFED:\n\n$ sudo singularity exec -w u16.04-sandbox/ bash\n(singularity)# cd MOFED/MLNX_OFED_LINUX-4.3-1.0.1.0-ubuntu16.04-x86_64\n(singularity)# ./mlnxofedinstall\n\n\n! -- (nemo) singularity exec -w nemo.sif bash\n\n\n## Run container\nTo use Singularity in Mellanox/HPCX need to load env module: `module load tools/singularity`\n.\n\nRun `osu_latency` test:\n```sh\n$ mpirun -np 2 --map-by node -mca btl self singularity exec hpcx-u16.04.simg /hpcx/ompi-a7df\nd94/tests/osu-micro-benchmarks-5.3.2/osu_latency\n# OSU MPI Latency Test v5.3.2\n# Size Latency (us)\n0 1.55\n1 1.55\n2 1.55\n4 1.55\n8 1.54\n16 1.55\n32 1.55\n64 1.65\n128 2.19\n256 2.23\n512 2.35\n1024 2.64\n2048 2.89\n4096 3.51\n8192 5.00\n16384 6.44\n32768 8.91\n65536 14.12\n131072 25.05\n262144 27.31\n524288 49.03\n1048576 92.53\n2097152 178.95\n4194304 351.24\n\n\n\n$hpcx_mpi_dir/tests/osu-micro-benchmarks-5.3.2/osu_get_bw\n\ncd /home/hpc/nemo/apps/hpcx-v2.6.0-gcc-MLNX_OFED_LINUX-4.7-1.0.0.1-redhat7.7-x86_64\n\nmpirun \\\n-mca pml ucx -x UCX_NET_DEVICES=mlx5_0:1 \\\n-mca mpi_show_mca_params 1 -mca pml_ucx_verbose 9 \\\n./ompi/tests/osu-micro-benchmarks-5.3.2/osu_get_bw\n\n\nmpirun \\\n-mca mpi_show_mca_params 1 -mca pml_ucx_verbose 9 \\\n./ompi/tests/osu-micro-benchmarks-5.3.2/osu_get_bw\n\n\n\n/usr/bin/time -p mpirun -np 4 \\\n--map-by core -report-bindings \\\n-mca io ompio -x UCX_NET_DEVICES=mlx5_0:1 ./nemo\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-scz-white-matter-pipeline\" class=\"anchor\" href=\"#scz-white-matter-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSCZ White Matter Pipeline\u003c/h1\u003e\n\u003cp\u003eThis spider will preprocess fMRI data as well as corresponding T1 data, extract mean time-courses of each predefined ROI and compute the correlation matrices between white matter ROIs and gray matter ROIs. Please see Gao\u2019s publications [1, 2] for more details. The spider will also compute FALFF, ALFF and ReHo maps.\u003c/p\u003e\n\u003cp\u003eThis XNAT spider is currently designed for three databases (ADNI_23, BLSA and OASIS-3) which are proposed to be analyzed in white matter reanalysis project (PI: Dr. Gore and Dr. Landman).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-inputs\" class=\"anchor\" href=\"#inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs:\u003c/h2\u003e\n\u003cp\u003efMRI (.nii.gz)\u003c/p\u003e\n\u003cp\u003eT1 (.nii.gz)\u003c/p\u003e\n\u003cp\u003eConfiguration file (.mat)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-output\" class=\"anchor\" href=\"#output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput:\u003c/h2\u003e\n\u003cp\u003ePreprocessed fMRI in MNI space:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../scz_OUTPUTS/result1_corrmatrix/FunImgARCFWD/1/Detrend_4DVolume.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTissue probability maps (gray matter and white matter) in MNI space:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../scz_OUTPUTS/result1_corrmatrix/T1ImgNewSegment/1/wc1T1.nii.gz\n\n../scz_OUTPUTS/result1_corrmatrix/T1ImgNewSegment/1/wc2T1.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFunctional connectivity matrices between white matter ROIs and gray matter ROIs:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../scz_OUTPUTS/result1_corrmatrix/matr_1.mat\n\n../scz_OUTPUTS/result1_corrmatrix/matr_1.png\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eMean time-courses of the white and gray matter ROIs:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../ scz_OUTPUTS/result1_corrmatrix/tc_1.mat\t\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhole-brain ALFF maps:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../ scz_OUTPUTS/result2_wm_alff/ALFF_FunImgARCFWD/ALFFMap_1.nii.gz\n\n../ scz_OUTPUTS/result2_wm_alff/ALFF_FunImgARCFWD/mALFFMap_1.nii.gz\n\n../ scz_OUTPUTS/result2_wm_alff/ALFF_FunImgARCFWD/zALFFMap_1.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhole-brain FALFF maps:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../ scz_OUTPUTS/result3_wm_falff/fALFF_FunImgARCFWD/fALFFMap_1.nii.gz\n\n../ scz_OUTPUTS/result3_wm_falff/fALFF_FunImgARCFWD/mfALFFMap_1.nii.gz\n\n../ scz_OUTPUTS/result3_wm_falff/fALFF_FunImgARCFWD/zfALFFMap_1.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhole brain ReHo maps:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../ scz_OUTPUTS/result4_wm_reho/ReHo_FunImgARCFWD/ReHoMap_1.nii.gz\n\n../ scz_OUTPUTS/result4_wm_reho/ReHo_FunImgARCFWD/mReHoMap_1.nii.gz\n\n../ scz_OUTPUTS/result4_wm_reho/ReHo_FunImgARCFWD/zReHoMap_1.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhole brain maps of degree of centrality:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../ scz_OUTPUTS/result5_wm_degree_centrality/DegreeCentrality_FunImgARCFWD/DegreeCentrality_PositiveBinarizedSumBrainMap_1.nii.gz\n\n../ scz_OUTPUTS/result5_wm_degree_centrality/DegreeCentrality_FunImgARCFWD/DegreeCentrality_PositiveWeightedSumBrainMap_1.nii.gz\n\n../ scz_OUTPUTS/result5_wm_degree_centrality/DegreeCentrality_FunImgARCFWD/mDegreeCentrality_PositiveBinarizedSumBrainMap_1.nii.gz\n\n../ scz_OUTPUTS/result5_wm_degree_centrality/DegreeCentrality_FunImgARCFWD/mDegreeCentrality_PositiveWeightedSumBrainMap_1.nii.gz\n\n../ scz_OUTPUTS/result5_wm_degree_centrality/DegreeCentrality_FunImgARCFWD/zDegreeCentrality_PositiveBinarizedSumBrainMap_1.nii.gz\n\n../ scz_OUTPUTS/result5_wm_degree_centrality/DegreeCentrality_FunImgARCFWD/zDegreeCentrality_PositiveWeightedSumBrainMap_1.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-references\" class=\"anchor\" href=\"#references\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences\u003c/h1\u003e\n\u003cp\u003e[1] Gao Y, Sengupta A, Li M, et al. (2020) Functional connectivity of white matter as a biomarker of cognitive decline in Alzheimer\u2019s disease. PLoS ONE 15(10): e0240513. \u003ca href=\"https://doi.org/10.1371/journal.pone.0240513\" rel=\"nofollow\"\u003ehttps://doi.org/10.1371/journal.pone.0240513\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e[2] Gao Y, Li M, Huang AS. Lower functional connectivity of white matter during rest and working memory tasks is associated with cognitive impairments in schizophrenia. Schizophr Res. 2021 Jul;233:101-110. doi: 10.1016/j.schres.2021.06.013. Epub 2021 Jun 29. PMID: 34215467; PMCID: PMC8442250.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1603363757.0
+ "updated_at": 1642706993.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for sortmerna (https://github.com/biocore/sortmerna)",
+ "description": "singularity recipes for bioinformatic analysis",
"filenames": [
- "Singularity",
- "Singularity.4.3.2",
- "Singularity.4.3.6",
- "Singularity.3.0.3",
- "Singularity.4.2.0",
- "Singularity.4.3.4"
+ "Singularity.vcf_processing.v1.0",
+ "Singularity.dysgu.v1.3.0",
+ "Singularity.sv_call.v1.0",
+ "Singularity.bcftools.v1.10.2",
+ "Singularity.qcbam.v1.0",
+ "Singularity.align_dedup.v1.0",
+ "Singularity.expansion_hunter.v5.0.0",
+ "Singularity.Rstudio",
+ "Singularity.pygenometracks",
+ "Singularity.GADO-v1.0.4",
+ "Singularity.HapCUT2",
+ "Singularity.sv_processing.v1.0",
+ "Singularity.expansion_hunter.v3.2.2",
+ "Singularity.hail",
+ "Singularity.V2_anno.var2reg",
+ "Singularity.Exomiser-v12.1.0",
+ "Singularity.variantstore",
+ "Singularity.GREEN-VARAN_v1",
+ "Singularity.shiny.server"
],
- "full_name": "powerPlant/sortmerna-srf",
+ "full_name": "edg1983/Singularity_images",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-recipes\" class=\"anchor\" href=\"#singularity-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity recipes\u003c/h1\u003e\n\u003cp\u003eThese are singularity recipes for images used in our bionformatic analysis.\nSome images are bundled with supplementary resources for analysis.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-supporting-files\" class=\"anchor\" href=\"#supporting-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esupporting files\u003c/h2\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-resources-folder\" class=\"anchor\" href=\"#resources-folder\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eresources folder\u003c/h4\u003e\n\u003cp\u003eSome supporting files are needed for the analysis.\nSee description file in the resources folder for the list of expected files and folders\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-custom-scripts\" class=\"anchor\" href=\"#custom-scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecustom scripts\u003c/h2\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-tools-folder\" class=\"anchor\" href=\"#tools-folder\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etools folder\u003c/h4\u003e\n\u003cp\u003eSome supporting scripts are included in the tools folder and are copied into the corresponding images\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1636544746.0
+ },
+ {
+ "data_format": 2,
+ "description": null,
+ "filenames": [
+ "3.1.6/Singularity",
+ "2.0.19/Singularity"
+ ],
+ "full_name": "yh549848/singularity-q",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for the SortMeRNA local sequence alignment tool for filtering, mapping and clustering.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1659497761.0
+ "updated_at": 1643962791.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for trinityrnaseq (https://github.com/trinityrnaseq/trinityrnaseq)",
+ "description": null,
"filenames": [
- "Singularity.2.14.0",
- "Singularity",
- "Singularity.2.13.2",
- "Singularity.2.9.0",
- "Singularity.2.8.6",
- "Singularity.2.9.1",
- "Singularity.2.10.0"
+ "Singularity/Singularity.v1.0"
],
- "full_name": "powerPlant/trinityrnaseq-srf",
+ "full_name": "Monia234/IARC-imputation",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for the Trinity RNA-Seq de novo transcriptome assembly\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-genotyping-imputation---pipeline-v10\" class=\"anchor\" href=\"#genotyping-imputation---pipeline-v10\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGenotyping imputation : Pipeline V1.0\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-a-nextflow-pipeline-to-realise-a-datasets-genotyping-imputation\" class=\"anchor\" href=\"#a-nextflow-pipeline-to-realise-a-datasets-genotyping-imputation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eA nextflow pipeline to realise a dataset\u0027s genotyping imputation\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://circleci.com/gh/IARCbioinfo/Imputation-nf\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e3a0e94b24410397271294a485f985c85941b292ba2c7cbf3fefb26bf1e0c76b/68747470733a2f2f636972636c6563692e636f6d2f67682f4941524362696f696e666f2f74656d706c6174652d6e662e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/IARCbioinfo/template-nf.svg?style=svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/iarcbioinfo/imputation-nf/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c5d5383ee3d6248c7d31b5fcaa21fc7d689b53ecb330dbfe628cd1fae38c853/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d72656164792d626c75652e737667\" alt=\"Docker Hub\" data-canonical-src=\"https://img.shields.io/badge/docker-ready-blue.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/4533\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://zenodo.org/badge/latestdoi/94193130\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5decad826d7116b1c950b6b48c06052496f141e803525b088ce3cdcaaa4d7b88/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f39343139333133302e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/94193130.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"template-nf.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"template-nf.png\" alt=\"Workflow representation\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-description\" class=\"anchor\" href=\"#description\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h2\u003e\n\u003cp\u003eThe pipeline used to perform the imputation of several targets datasets processed with standard input.\u003c/p\u003e\n\u003cp\u003eHere is a summary of the method :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePreprocessing of data : by using the nextflow script Preparation.nf with create a directory \"file/\" with all the dependencies.\u003c/li\u003e\n\u003cli\u003eFirst step : Origin estimation of sample from the target dataset by using admixture tools and the hapmap dataset as reference.\u003c/li\u003e\n\u003cli\u003eSecond step : Series of SNPs filters and quality checking from the target dataset before the imputation step.\u003c/li\u003e\n\u003cli\u003eThird step : VCF production\u003c/li\u003e\n\u003cli\u003eLast step : Phasing and imputation\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSee the Usage section to test the full pipeline with your target dataset.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eThe pipeline works under Linux distributions.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eThis pipeline is based on \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003enextflow\u003c/a\u003e. As we have several nextflow pipelines, we have centralized the common information in the \u003ca href=\"https://github.com/IARCbioinfo/IARC-nf\"\u003eIARC-nf\u003c/a\u003e repository. Please read it carefully as it contains essential information for the installation, basic usage and configuration of nextflow and our pipelines.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eExternal software:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eLiftOver : conda install ucsc-liftover\u003c/li\u003e\n\u003cli\u003ePlink (PLINK v1.90b6.12 64-bit (28 Oct 2019)) : conda install plink\u003c/li\u003e\n\u003cli\u003eAdmixture (ADMIXTURE Version 1.3.0) : conda install admixture\u003c/li\u003e\n\u003cli\u003ePerl : conda install perl\u003c/li\u003e\n\u003cli\u003eTerm::ReadKey module : conda install perl-termreadkey\u003c/li\u003e\n\u003cli\u003eBcfTools : conda install bcftools\u003c/li\u003e\n\u003cli\u003eeagle 2.4.1 : \u003ca href=\"https://data.broadinstitute.org/alkesgroup/Eagle/#x1-50002.2\" rel=\"nofollow\"\u003eSee instructions\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eminimac4 : conda install cmake ; pip install cget ; git clone \u003ca href=\"https://github.com/statgen/Minimac4.git\"\u003ehttps://github.com/statgen/Minimac4.git\u003c/a\u003e ; cd Minimac4 ; bash install.sh\u003c/li\u003e\n\u003cli\u003eSamtools : conda install samtools\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eFile to download :\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"zzz.bwh.harvard.edu/plink/dist/hapmap_r23a.zip\"\u003eHapmap Dataset\u003c/a\u003e : as reference\u0027s dataset for admixture\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://www.hagsc.org/hgdp/data/hgdp.zip\" rel=\"nofollow\"\u003eHGDP Dataset\u003c/a\u003e : for the dataset\u0027s test, you have to use the toMap.py \u0026amp; toPed.py in the \u0027converstion\u0027 directory to convert files in the .map/.ped plink format. Next you have to convert this last output in the .bed/.bam/.fam plink format by using plink line command and run the imputation\u0027s pipeline.\u003c/li\u003e\n\u003cli\u003ePerl tool : \u003ca href=\"https://www.well.ox.ac.uk/~wrayner/tools/\" rel=\"nofollow\"\u003eHRC-1000G-check-bim-NoReadKey.pl\u003c/a\u003e \u0026amp; \u003ca href=\"https://www.well.ox.ac.uk/~wrayner/tools/1000GP_Phase3_combined.legend.gz\" rel=\"nofollow\"\u003e1000GP_Phase3_combined.legend\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eLiftOver tool : \u003ca href=\"http://hgdownload.cse.ucsc.edu/goldenpath/hg19/liftOver/hg19ToHg38.over.chain.gz\" rel=\"nofollow\"\u003ehg19ToHg38.over.chain\u003c/a\u003e \u0026amp; \u003ca href=\"http://hgdownload.cse.ucsc.edu/goldenpath/hg18/liftOver/hg18ToHg38.over.chain.gz\" rel=\"nofollow\"\u003ehg18ToHg38.over.chain\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ePeparation dataset tool : \u003ca href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2432498/bin/pone.0002551.s003.xls\" rel=\"nofollow\"\u003epone.0002551.s003.xls\u003c/a\u003e (Convert it in .csv format)\u003c/li\u003e\n\u003cli\u003eAdmixture tool : relationships_w_pops_121708.txt\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/zhanxw/checkVCF/raw/master/checkVCF.py\"\u003eCheckVCF\u003c/a\u003e, \u003ca href=\"http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz\" rel=\"nofollow\"\u003eFasta file in V37\u003c/a\u003e \u0026amp; \u003ca href=\"http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/\" rel=\"nofollow\"\u003eFasta file in V38\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/\" rel=\"nofollow\"\u003e1000G Reference in Hg38\u003c/a\u003e with the \u003ca href=\"https://data.broadinstitute.org/alkesgroup/Eagle/#x1-320005.3.2\" rel=\"nofollow\"\u003edoc\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eCreate \u003ca href=\"https://imputationserver.readthedocs.io/en/latest/create-reference-panels/#create-legend-files\" rel=\"nofollow\"\u003elegend\u003c/a\u003e, \u003ca href=\"https://data.broadinstitute.org/alkesgroup/Eagle/#x1-320005.3.2\" rel=\"nofollow\"\u003ebcf\u003c/a\u003e \u0026amp; \u003ca href=\"https://imputationserver.readthedocs.io/en/latest/create-reference-panels/#create-m3vcf-files\" rel=\"nofollow\"\u003em3vcf\u003c/a\u003e files for the reference\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eOther to know :\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eSee the Usage part to create the environment to run the pipeline. All the necessary dependencies are download with the using of the script Preparation.nf. To run it, you\u0027ll need to install the next software : in2csv(1.0.5), liftOver, plink, Minimac3(2.0.1) \u0026amp; bcftools\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou can avoid installing all the external software of the main scritp by only installing Docker. See the \u003ca href=\"https://github.com/IARCbioinfo/IARC-nf\"\u003eIARC-nf\u003c/a\u003e repository for more information.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-input\" class=\"anchor\" href=\"#input\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eType\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003ePlink datasets\u003c/td\u003e\n\u003ctd\u003eCorresponds to the target dataset to be analysed. Composed by the following files : bed, bim \u0026amp; fam\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eInput environment\u003c/td\u003e\n\u003ctd\u003ePath to your input directory\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-parameters\" class=\"anchor\" href=\"#parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParameters\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-mandatory\" class=\"anchor\" href=\"#mandatory\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMandatory\u003c/h4\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eExample value\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--target\u003c/td\u003e\n\u003ctd\u003emy_target\u003c/td\u003e\n\u003ctd\u003ePattern of the target dataset which do the link with the file .bed/.bim./fam for plink\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--input\u003c/td\u003e\n\u003ctd\u003euser/main_data/\u003c/td\u003e\n\u003ctd\u003eThe path of the main directory where we can find 2 directory : my_target/ + files/\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--output\u003c/td\u003e\n\u003ctd\u003euser/my_result/\u003c/td\u003e\n\u003ctd\u003eThe path of the main directory where you want to place your results\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-optional\" class=\"anchor\" href=\"#optional\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOptional\u003c/h4\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eDefault value\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--script\u003c/td\u003e\n\u003ctd\u003emy/directory/script/bin\u003c/td\u003e\n\u003ctd\u003eThe path of the bin script directory, to be able to run the annexe programme grom the pipeline\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--geno1\u003c/td\u003e\n\u003ctd\u003e0.03\u003c/td\u003e\n\u003ctd\u003eFirst genotyping call rate plink threshold, apply in the full target dataset\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--geno2\u003c/td\u003e\n\u003ctd\u003e0.03\u003c/td\u003e\n\u003ctd\u003eSecond genotyping call rate plink threshold, apply in the target dataset divide by population\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--maf\u003c/td\u003e\n\u003ctd\u003e0.01\u003c/td\u003e\n\u003ctd\u003eMinor allele frequencies plink threshold, apply in the full target dataset\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--pihat\u003c/td\u003e\n\u003ctd\u003e0.185\u003c/td\u003e\n\u003ctd\u003eMinimum pi_hat value use for the relatedness test, 0.185 is halfway between the expected IBD for third- and second-degree relatives\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--hwe\u003c/td\u003e\n\u003ctd\u003e1e-8\u003c/td\u003e\n\u003ctd\u003eHardy-Weinberg Equilibrium plink p-value threshold\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--legend\u003c/td\u003e\n\u003ctd\u003eALL.chr_GRCh38.genotypes.20170504.legend\u003c/td\u003e\n\u003ctd\u003eFile to use as .legend\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--fasta\u003c/td\u003e\n\u003ctd\u003eGRCh38_full_analysis_set_plus_decoy_hla.fa\u003c/td\u003e\n\u003ctd\u003eFile to use as fasta reference\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--chain\u003c/td\u003e\n\u003ctd\u003ehg18ToHg38.over.chain\u003c/td\u003e\n\u003ctd\u003eFile to use as liftover conversion\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--VCFref\u003c/td\u003e\n\u003ctd\u003emy/directory/ref/vcf/\u003c/td\u003e\n\u003ctd\u003eDirectory to use as VCF reference\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--BCFref\u003c/td\u003e\n\u003ctd\u003emy/directory/ref/bcf/\u003c/td\u003e\n\u003ctd\u003eDirectory to use as BCF reference\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--M3VCFref\u003c/td\u003e\n\u003ctd\u003emy/directory/ref/m3vcf/\u003c/td\u003e\n\u003ctd\u003eDirectory to use as M3VCF reference\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--conversion\u003c/td\u003e\n\u003ctd\u003ehg38/hg18/hg19\u003c/td\u003e\n\u003ctd\u003eOption to convert data from hg18 to HG38 version of the genome. Standard value is hg38\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--cloud\u003c/td\u003e\n\u003ctd\u003ehg38/hg18/hg19\u003c/td\u003e\n\u003ctd\u003eOption to convert data from hg18 to HG38 version of the genome. Standard value is hg38\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--token_Michighan\u003c/td\u003e\n\u003ctd\u003epath/to/my_token.txt\u003c/td\u003e\n\u003ctd\u003eOption to convert data from hg18 to HG38 version of the genome. Standard value is hg38\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--token_TOPMed\u003c/td\u003e\n\u003ctd\u003epath/to/my_token.txt\u003c/td\u003e\n\u003ctd\u003eOption to convert data from hg18 to HG38 version of the genome. Standard value is hg38\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--QC_cloud\u003c/td\u003e\n\u003ctd\u003emy/directory/donwload_imputation_server\u003c/td\u003e\n\u003ctd\u003eOption to convert data from hg18 to HG38 version of the genome. Standard value is hg38\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-flags\" class=\"anchor\" href=\"#flags\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFlags\u003c/h4\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFlags are special parameters without value.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--help\u003c/td\u003e\n\u003ctd\u003eDisplay help\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003ePrepare the environment to run the imputation pipeline.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003emkdir data\ncd data\nnextflow run IARCbioinfo/Imputation-nf/bin/Preparation.nf --out /data/\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003ePaste the bim/bed/fam plink target files in a directory, and the directory in your \"data/\" directory. You have to call the plink files and your directory with the same pattern, as the following exemple : data/target/target{.bed,.bim,.fam}. So now you have 2 directories in your \"data/\" repertory :\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e_ data/my_target/ : with the plink target files (my_target.bed, my_target.bim, my_target.fam).\u003c/p\u003e\n\u003cp\u003e_ data/files/ : with all the dependencies.\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eRun the imputation pipeline.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run IARCbioinfo/Imputation.nf --target my_target --input /data/ --output /results/ -r v1.0 -profile singularity \n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eIf you want to run the imputation in one of the server (Michigan and/or TOPMed Imputation), you need you write your token acces in a file and to give it in argument. For example :\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run IARCbioinfo/Imputation.nf --target my_target --input /data/ --output /results/ --cloud on --token_Michighan /folder/my_token_Michighan.txt --token_TOPMed /folder/my_token_TOPMed.txt -r v1.0 -profile singularity \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce your imputation data is downloaded, you can run the end of the QC analysis :\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run IARCbioinfo/Imputation.nf --target my_target --input /data/ --output /results/ --QC_cloud /downloaded_imputation_server_file/ -r v1.0 -profile singularity \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-output\" class=\"anchor\" href=\"#output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eType\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eoutput1\u003c/td\u003e\n\u003ctd\u003e......\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eoutput2\u003c/td\u003e\n\u003ctd\u003e......\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-detailed-description-optional-section\" class=\"anchor\" href=\"#detailed-description-optional-section\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDetailed description (optional section)\u003c/h2\u003e\n\u003cp\u003e...\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-directed-acyclic-graph\" class=\"anchor\" href=\"#directed-acyclic-graph\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDirected Acyclic Graph\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"http://htmlpreview.github.io/?https://github.com/IARCbioinfo/Imputation-nf/blob/master/dag.html\" rel=\"nofollow\"\u003e\u003cimg src=\"dag.png\" alt=\"DAG\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributions\" class=\"anchor\" href=\"#contributions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributions\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eEmail\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eGabriel Aur\u00e9lie\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"mailto:gabriela@students.iarc.fr\"\u003egabriela@students.iarc.fr\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eDeveloper to contact for support\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLipinski Boris\u003c/td\u003e\n\u003ctd\u003e\n\u003ca href=\"mailto:LipinskiB@students.iarc.fr\"\u003eLipinskiB@students.iarc.fr\u003c/a\u003e / \u003ca href=\"mailto:boris.lipinski@etu.univ-lyon1.fr\"\u003eboris.lipinski@etu.univ-lyon1.fr\u003c/a\u003e\n\u003c/td\u003e\n\u003ctd\u003eDeveloper to contact for support\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-references-optional\" class=\"anchor\" href=\"#references-optional\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences (optional)\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-faq-optional\" class=\"anchor\" href=\"#faq-optional\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFAQ (optional)\u003c/h2\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-test-pipeline\" class=\"anchor\" href=\"#test-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etest-pipeline\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1645140013.0
+ "updated_at": 1644245707.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "singularity/Singularity_1.0.0"
+ "Singularity/Singularity.v1.0",
+ "Singularity/Singularity.v1.1"
],
- "full_name": "daviesdrew/variantcalling",
+ "full_name": "Monia234/IARC-fastqc",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"\" class=\"anchor\" aria-hidden=\"true\" href=\"#\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/images/nf-core-illuminavariantcalling_logo.png\"\u003e\u003cimg src=\"docs/images/nf-core-illuminavariantcalling_logo.png\" alt=\"nf-core/illuminavariantcalling\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eIllumina paired end reads variant calling pipeline\u003c/strong\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/nf-core/illuminavariantcalling/actions\"\u003e\u003cimg src=\"https://github.com/nf-core/illuminavariantcalling/workflows/nf-core%20CI/badge.svg\" alt=\"GitHub Actions CI Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/nf-core/illuminavariantcalling/actions\"\u003e\u003cimg src=\"https://github.com/nf-core/illuminavariantcalling/workflows/nf-core%20linting/badge.svg\" alt=\"GitHub Actions Linting Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1a7b876aea11f8490a824ae9376e2b0108e8b19b424effa1b67d0a7afcfe096e/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d25453225383925413531392e31302e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A519.10.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/illuminavariantcalling\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/609e7a6579baf2276f34ef713d9cc0b55f7fd62e2c5c7618d40423779d41fd44/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f696c6c756d696e6176617269616e7463616c6c696e672e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/illuminavariantcalling.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-hidden=\"true\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h2\u003e\n\u003cp\u003ei. Install \u003ca href=\"https://nf-co.re/usage/installation\" rel=\"nofollow\"\u003e\u003ccode\u003enextflow\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eii. Install either \u003ca href=\"https://docs.docker.com/engine/installation/\" rel=\"nofollow\"\u003e\u003ccode\u003eDocker\u003c/code\u003e\u003c/a\u003e or \u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/\" rel=\"nofollow\"\u003e\u003ccode\u003eSingularity\u003c/code\u003e\u003c/a\u003e for full pipeline reproducibility (please only use \u003ca href=\"https://conda.io/miniconda.html\" rel=\"nofollow\"\u003e\u003ccode\u003eConda\u003c/code\u003e\u003c/a\u003e as a last resort; see \u003ca href=\"https://nf-co.re/usage/configuration#basic-configuration-profiles\" rel=\"nofollow\"\u003edocs\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003eiii. Download the pipeline and test it on a minimal dataset with a single command\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run nf-core/illuminavariantcalling -profile test,\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edocker/singularity/conda/institute\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003ePlease check \u003ca href=\"https://github.com/nf-core/configs#documentation\"\u003enf-core/configs\u003c/a\u003e to see if a custom config file to run nf-core pipelines already exists for your Institute. If so, you can simply use \u003ccode\u003e-profile \u0026lt;institute\u0026gt;\u003c/code\u003e in your command. This will enable either \u003ccode\u003edocker\u003c/code\u003e or \u003ccode\u003esingularity\u003c/code\u003e and set the appropriate execution settings for your local compute environment.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eiv. Start running your own analysis!\u003c/p\u003e\n\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run nf-core/illuminavariantcalling -profile \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edocker/singularity/conda/institute\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e --reads \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e*_R{1,2}.fastq.gz\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --genome GRCh37\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eSee \u003ca href=\"docs/usage.md\"\u003eusage docs\u003c/a\u003e for all of the available options when running the pipeline.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eThe nf-core/illuminavariantcalling pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"https://nf-co.re/usage/installation\" rel=\"nofollow\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://nf-co.re/usage/local_installation\" rel=\"nofollow\"\u003eLocal installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://nf-co.re/usage/adding_own_config\" rel=\"nofollow\"\u003eAdding your own system config\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://nf-co.re/usage/reference_genomes\" rel=\"nofollow\"\u003eReference genomes\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://nf-co.re/usage/troubleshooting\" rel=\"nofollow\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003enf-core/illuminavariantcalling was originally written by Drew Davies.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributions-and-support\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributions-and-support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributions and Support\u003c/h2\u003e\n\u003cp\u003eIf you would like to contribute to this pipeline, please see the \u003ca href=\".github/CONTRIBUTING.md\"\u003econtributing guidelines\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor further information or help, don\u0027t hesitate to get in touch on \u003ca href=\"https://nfcore.slack.com/channels/illuminavariantcalling\" rel=\"nofollow\"\u003eSlack\u003c/a\u003e (you can join with \u003ca href=\"https://nf-co.re/join/slack\" rel=\"nofollow\"\u003ethis invite\u003c/a\u003e).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\n\n\u003cp\u003eYou can cite the \u003ccode\u003enf-core\u003c/code\u003e publication as follows:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eThe nf-core framework for community-curated bioinformatics pipelines.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003ePhilip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso \u0026amp; Sven Nahnsen.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNat Biotechnol.\u003c/em\u003e 2020 Feb 13. doi: \u003ca href=\"https://dx.doi.org/10.1038/s41587-020-0439-x\" rel=\"nofollow\"\u003e10.1038/s41587-020-0439-x\u003c/a\u003e.\u003cbr\u003e\nReadCube: \u003ca href=\"https://rdcu.be/b1GjZ\" rel=\"nofollow\"\u003eFull Access Link\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fastqc-nf\" class=\"anchor\" href=\"#fastqc-nf\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efastqc-nf\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quality-control-of-raw-sequencing-reads\" class=\"anchor\" href=\"#quality-control-of-raw-sequencing-reads\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuality control of raw sequencing reads\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://circleci.com/gh/IARCbioinfo/fastqc-nf\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d355ed64b381b5e3e497a32c3b032d9becd558aebd39a0da28073fbe613dfd81/68747470733a2f2f636972636c6563692e636f6d2f67682f4941524362696f696e666f2f6661737471632d6e662e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/IARCbioinfo/fastqc-nf.svg?style=svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/iarcbioinfo/fastqc-nf/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c5d5383ee3d6248c7d31b5fcaa21fc7d689b53ecb330dbfe628cd1fae38c853/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d72656164792d626c75652e737667\" alt=\"Docker Hub\" data-canonical-src=\"https://img.shields.io/badge/docker-ready-blue.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/4559\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/IARCbioinfo/fastqc-nf/blob/master/fastqc-nf.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/IARCbioinfo/fastqc-nf/raw/master/fastqc-nf.png\" alt=\"fastqc-nf\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-description\" class=\"anchor\" href=\"#description\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h2\u003e\n\u003cp\u003ePerform quality control of Fasta files.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eThis pipeline is based on \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003enextflow\u003c/a\u003e. As we have several nextflow pipelines, we have centralized the common information in the \u003ca href=\"https://github.com/IARCbioinfo/IARC-nf\"\u003eIARC-nf\u003c/a\u003e repository. Please read it carefully as it contains essential information for the installation, basic usage and configuration of nextflow and our pipelines.\u003c/li\u003e\n\u003cli\u003eFastQC: see official installation \u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. You can avoid installing all the external software by only installing Docker (not available yet). See the \u003ca href=\"https://github.com/IARCbioinfo/IARC-nf\"\u003eIARC-nf\u003c/a\u003e repository for more information.)\u003c/li\u003e\n\u003cli\u003eMultiqc: see official installation \u003ca href=\"http://multiqc.info\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. You can avoid installing all the external software by only installing Docker (not available yet). See the \u003ca href=\"https://github.com/IARCbioinfo/IARC-nf\"\u003eIARC-nf\u003c/a\u003e repository for more information.)\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-bam-input-files\" class=\"anchor\" href=\"#bam-input-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBAM input files\u003c/h3\u003e\n\u003cp\u003eIn order to process BAM files, we convert fastq files to bam files with:\u003c/p\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003e\u003ca href=\"http://samtools.sourceforge.net/\" rel=\"nofollow\"\u003e\u003cem\u003esamtools\u003c/em\u003e\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-input\" class=\"anchor\" href=\"#input\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003e\u003cstrong\u003eName\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003eDescription\u003c/strong\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--input_folder\u003c/td\u003e\n\u003ctd\u003eFolder containing FASTQ files\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--output_folder\u003c/td\u003e\n\u003ctd\u003ePath to output folder\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-parameters\" class=\"anchor\" href=\"#parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParameters\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-optional\" class=\"anchor\" href=\"#optional\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOptional\u003c/h3\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003e\u003cstrong\u003eName\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003eExample value\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003eDescription\u003c/strong\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--ext\u003c/td\u003e\n\u003ctd\u003efastq.gz\u003c/td\u003e\n\u003ctd\u003eExtension of files\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--multiqc_config\u003c/td\u003e\n\u003ctd\u003enone\u003c/td\u003e\n\u003ctd\u003econfig yaml file for multiqc\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--cpu\u003c/td\u003e\n\u003ctd\u003e2\u003c/td\u003e\n\u003ctd\u003eNumber of cpu used by fastqc\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--mem\u003c/td\u003e\n\u003ctd\u003e10\u003c/td\u003e\n\u003ctd\u003eSize of memory used for mapping (in GB)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-flags\" class=\"anchor\" href=\"#flags\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFlags\u003c/h3\u003e\n\u003cp\u003eFlags are special parameters without value.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003e\u003cstrong\u003eName\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003eDescription\u003c/strong\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--help\u003c/td\u003e\n\u003ctd\u003eDisplay help\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003enextflow run IARCbioinfo/fastqc-nf -r v1.1 -profile singularity --input_folder input --output_folder results\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTo run the pipeline with docker or conda instead of singularity, just replace \"-profile singularity\" with \"-profile docker\" or \"-profile conda\", respectively. To run with your own local installation of softwares, just remove \"-profile singularity\"\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-output\" class=\"anchor\" href=\"#output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eType\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003emultiqc_fastqc_report.html\u003c/td\u003e\n\u003ctd\u003emultiQC report for fastQC\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emultiqc_fastqc_report_data\u003c/td\u003e\n\u003ctd\u003edata used for the multiQC report HTMLs\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributions\" class=\"anchor\" href=\"#contributions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributions\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eEmail\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eNicolas Alcala*\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"mailto:AlcalaN@fellows.iarc.fr\"\u003eAlcalaN@fellows.iarc.fr\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eDeveloper to contact for support\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTiffany Delhomme\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eDeveloper\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1593036214.0
+ "updated_at": 1644245739.0
},
{
"data_format": 2,
- "description": "Rnnotator is an automated software pipeline that generates transcript models by de novo assembly of RNA-Seq data without the need for a reference genome.",
+ "description": null,
"filenames": [
- "Singularity"
+ "SingularityFile"
],
- "full_name": "sghignone/Rnnotator",
+ "full_name": "AMarinhoSN/tutorial-cCC",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-rnnotator\" class=\"anchor\" aria-hidden=\"true\" href=\"#rnnotator\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRnnotator\u003c/h1\u003e\n\u003cp\u003eRnnotator is an automated software pipeline that generates transcript models by de novo assembly of RNA-Seq data without the need for a reference genome.\u003c/p\u003e\n\u003cp\u003eRnnotator must be run on a 64-bit Linux architecture. Before running Rnnotator the\nfollowing prerequisites must be installed:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBlat v. 34 (\u003ca href=\"http://genome.ucsc.edu/FAQ/FAQblat.html#blat3\" rel=\"nofollow\"\u003ehttp://genome.ucsc.edu/FAQ/FAQblat.html#blat3\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003cli\u003eVelvet 1.0.15 (\u003ca href=\"http://www.ebi.ac.uk/~zerbino/velvet/\" rel=\"nofollow\"\u003ehttp://www.ebi.ac.uk/~zerbino/velvet/\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003cli\u003eAMOS (\u003ca href=\"http://sourceforge.net/apps/mediawiki/amos/index.php\" rel=\"nofollow\"\u003ehttp://sourceforge.net/apps/mediawiki/amos/index.php\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003cli\u003eVmatch 2.0 (\u003ca href=\"http://www.vmatch.de/\" rel=\"nofollow\"\u003ehttp://www.vmatch.de/\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003cli\u003ebwa 0.5.8c (\u003ca href=\"http://bio-bwa.sourceforge.net/\" rel=\"nofollow\"\u003ehttp://bio-bwa.sourceforge.net/\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003cli\u003eMUMmer (\u003ca href=\"http://sourceforge.net/projects/mummer/\" rel=\"nofollow\"\u003ehttp://sourceforge.net/projects/mummer/\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003cli\u003eBioPerl (\u003ca href=\"http://www.bioperl.org\" rel=\"nofollow\"\u003ehttp://www.bioperl.org\u003c/a\u003e) -- base system\u003c/li\u003e\n\u003cli\u003ePerl modules: Parallel::ForkManager, Tree (\u003ca href=\"http://search.cpan.org/\" rel=\"nofollow\"\u003ehttp://search.cpan.org/\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOptional prerequisites are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOases 0.1.18 (\u003ca href=\"http://www.ebi.ac.uk/~zerbino/oases/\" rel=\"nofollow\"\u003ehttp://www.ebi.ac.uk/~zerbino/oases/\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003cli\u003eBambus 2.33 (\u003ca href=\"http://www.cbcb.umd.edu/software/bambus/\" rel=\"nofollow\"\u003ehttp://www.cbcb.umd.edu/software/bambus/\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eSopra 1.0 (\u003ca href=\"mailto:dayarian@physics.rutgers.edu\"\u003edayarian@physics.rutgers.edu\u003c/a\u003e) x1 \u2013 x4 scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003esg\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-tutorial-ccc\" class=\"anchor\" href=\"#tutorial-ccc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etutorial-cCC\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1643312784.0
+ },
+ {
+ "data_format": 2,
+ "description": "BEDOPS is an open-source command-line toolkit that performs highly efficient and scalable Boolean and other set operations, statistical calculations, archiving, conversion and other management of genomic data of arbitrary scale.",
+ "filenames": [
+ "2.4.40/Singularity",
+ "2.4.39/Singularity"
+ ],
+ "full_name": "pscedu/singularity-bedops",
+ "latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-bedops/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bedops/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-bedops/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bedops/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/046e5d2f53345f56b267b5b3fb70cf631199ba19ea8a20c754afd1fd5cae6098/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6265646f7073\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/046e5d2f53345f56b267b5b3fb70cf631199ba19ea8a20c754afd1fd5cae6098/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6265646f7073\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bedops\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/1fd7fd2c301c82aa5c557690a7df3c9c3565a7badad9f11502e8fe21f7bcfbf5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6265646f7073\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1fd7fd2c301c82aa5c557690a7df3c9c3565a7badad9f11502e8fe21f7bcfbf5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6265646f7073\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bedops\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/2b60ce6402987813ce63df1d7f2cdedee3f8108e37c69d00089eb9e576b81249/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6265646f7073\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2b60ce6402987813ce63df1d7f2cdedee3f8108e37c69d00089eb9e576b81249/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6265646f7073\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bedops\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/9e0c74991471aaa28ae5b127672f0979c5a9e3e79e590771d4df28ad0b47fad3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6265646f7073\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9e0c74991471aaa28ae5b127672f0979c5a9e3e79e590771d4df28ad0b47fad3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6265646f7073\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bedops\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-bedops\" class=\"anchor\" href=\"#singularity-bedops\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bedops\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/fcce2433d40cda32c9340a2c9e3b2d6c1ebd0bbb8e1361a72ae3ecd2514681ad/68747470733a2f2f6265646f70732e72656164746865646f63732e696f2f656e2f6c61746573742f5f7374617469632f6c6f676f5f776974685f6c6162656c5f76332e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fcce2433d40cda32c9340a2c9e3b2d6c1ebd0bbb8e1361a72ae3ecd2514681ad/68747470733a2f2f6265646f70732e72656164746865646f63732e696f2f656e2f6c61746573742f5f7374617469632f6c6f676f5f776974685f6c6162656c5f76332e706e67\" width=\"75%\" data-canonical-src=\"https://bedops.readthedocs.io/en/latest/_static/logo_with_label_v3.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for BEDOPS.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebedops\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/BEDOPS/2.4.40\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/BEDOPS\u003c/code\u003e as \u003ccode\u003e2.4.40.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 3,
"topics": [
- "pipeline",
"singularity",
- "singularity-recipe",
- "rnaseq",
- "docker",
- "dockerfile"
+ "bioinformatics"
],
- "updated_at": 1612716290.0
+ "updated_at": 1631926426.0
},
{
"data_format": 2,
- "description": null,
+ "description": "BLAST-Like Alignment Tool.",
"filenames": [
- "Singularity.kepler"
+ "36/Singularity"
],
- "full_name": "ternaustralia/coesra-singularity-kepler",
+ "full_name": "pscedu/singularity-blat",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-coesra-singularity-kepler\" class=\"anchor\" aria-hidden=\"true\" href=\"#coesra-singularity-kepler\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-kepler\u003c/h1\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-blat/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-blat/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-blat/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-blat/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/fde072f38ccaf86b9b38a5136b7663dd158f14a4e1cf1278108e06da76103d06/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626c6174\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fde072f38ccaf86b9b38a5136b7663dd158f14a4e1cf1278108e06da76103d06/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626c6174\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-blat\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/af4ec22e9ffbf62e6d73e3a37e86694f53da06d4e9bb1f1340e3229c13ef3bb7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626c6174\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/af4ec22e9ffbf62e6d73e3a37e86694f53da06d4e9bb1f1340e3229c13ef3bb7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626c6174\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-blat\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c1a11abb9c1ade82245064c947accad2be8fb585c711780038651614310a9e2f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626c6174\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c1a11abb9c1ade82245064c947accad2be8fb585c711780038651614310a9e2f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626c6174\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-blat\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/fcaf031a92e8a29f5eef49aae1244a4d6365b34bcc206de848f3405b25751c32/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626c6174\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fcaf031a92e8a29f5eef49aae1244a4d6365b34bcc206de848f3405b25751c32/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626c6174\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-blat\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-blat\" class=\"anchor\" href=\"#singularity-blat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-blat\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/djhshih/blat\"\u003eBLAT\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eblat\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/BLAT/36\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/BLAT\u003c/code\u003e as \u003ccode\u003e36.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [
- "coesra"
+ "singularity",
+ "bioinformatics"
],
- "updated_at": 1610425796.0
+ "updated_at": 1631929745.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for vg (https://github.com/vgteam/vg)",
+ "description": "FLASH (Fast Length Adjustment of SHort reads) is a very fast and accurate software tool to merge paired-end reads from next-generation sequencing experiments. ",
"filenames": [
- "Singularity.1.8.0",
- "Singularity",
- "Singularity.1.12.0",
- "Singularity.1.12.1",
- "Singularity.1.9.0",
- "Singularity.1.11.0",
- "Singularity.1.13.0",
- "Singularity.1.10.0"
+ "1.2.11/Singularity"
],
- "full_name": "powerPlant/vg-srf",
+ "full_name": "pscedu/singularity-flash",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2311\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the vg tools for working with genome variation graphs\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-flash/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-flash/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-flash/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-flash/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/86a31ece843f2a6eac62c15a795deb81ca5d718c06548f2c2a47b1da60ac0398/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d666c617368\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/86a31ece843f2a6eac62c15a795deb81ca5d718c06548f2c2a47b1da60ac0398/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d666c617368\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-flash\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/8438148a71d5669e7f72c44baa07c726adaf97954d4d37637024d1ad4ffe1838/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d666c617368\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8438148a71d5669e7f72c44baa07c726adaf97954d4d37637024d1ad4ffe1838/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d666c617368\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-flash\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c561b50b92370071ff56fae3c65507316dd34d582f558974abcac0f51a9fe052/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d666c617368\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c561b50b92370071ff56fae3c65507316dd34d582f558974abcac0f51a9fe052/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d666c617368\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-flash\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/b15c615f56761a00ff252428c0c999278f063be89c1895fc26e7d55f2a9417fc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d666c617368\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b15c615f56761a00ff252428c0c999278f063be89c1895fc26e7d55f2a9417fc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d666c617368\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-flash\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-flash\" class=\"anchor\" href=\"#singularity-flash\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-flash\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"http://ccb.jhu.edu/software/FLASH/\" rel=\"nofollow\"\u003eFLASH\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eflash\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/flash/1.2.11\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/flash\u003c/code\u003e as \u003ccode\u003e1.2.11.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1549578706.0
+ "subscribers_count": 3,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1631930117.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.1.3.1-py36",
- "Singularity.1.0.0-py36"
+ "Singularity"
],
- "full_name": "arcsUVA/pytorch",
+ "full_name": "oogasawa/singularity-img-gridengine-master",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-pytorch\" class=\"anchor\" aria-hidden=\"true\" href=\"#pytorch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epytorch\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-img-gridengine-master\" class=\"anchor\" href=\"#singularity-img-gridengine-master\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-img-gridengine-master\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1573410610.0
+ "updated_at": 1631970804.0
},
{
"data_format": 2,
- "description": "singularity scripts for cellprofiler",
+ "description": null,
"filenames": [
- "Singularity.3.1.8",
- "Singularity.2.2.0",
- "Singularity.3.0.0"
+ "Singularity"
],
- "full_name": "arcsUVA/cellprofiler",
+ "full_name": "oogasawa/singularity-img-gridengine-client",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-img-ubuntu16-gridengine-client\" class=\"anchor\" href=\"#singularity-img-ubuntu16-gridengine-client\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-img-ubuntu16-gridengine-client\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1556734065.0
+ "updated_at": 1631971328.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for Bismark (https://github.com/FelixKrueger/Bismark)",
+ "description": "MAXCUT Simulation Code",
"filenames": [
- "Singularity",
- "Singularity.0.19.1",
- "Singularity.0.23.0",
- "Singularity.0.23.1",
- "Singularity.0.20.0"
+ "SingularityFile.def"
],
- "full_name": "powerPlant/bismark-srf",
+ "full_name": "fenellamcandrew/aqc-maxcut",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2263\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the Bismark bisulfite mapping and methylation calling program\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-adiabatic-quantum-computing-for-maxcut\" class=\"anchor\" href=\"#adiabatic-quantum-computing-for-maxcut\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAdiabatic Quantum Computing for MAXCUT\u003c/h1\u003e\n\u003cp\u003eMAXCUT Simulation Code\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003essh -i \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.ssh/experimentr.pem ubuntu@\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eMY_IP_ADDRESS\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1635284848.0
+ "updated_at": 1632103728.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for Portcullis (https://github.com/maplesond/portcullis)",
+ "description": null,
"filenames": [
- "Singularity.1.1.0",
- "Singularity",
- "Singularity.1.1.1",
- "Singularity.1.1.2"
+ "Singularity"
],
- "full_name": "powerPlant/portcullis-srf",
+ "full_name": "truatpasteurdotfr/singularity-docker-stream8-chrome",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2267\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for Portcullis, a program for PORTable CULLing of Invalid Splice junctions from pre-aligned RNA-seq data\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-docker-stream8-chrome\" class=\"anchor\" href=\"#singularity-docker-stream8-chrome\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-docker-stream8-chrome\u003c/h1\u003e\n\u003cp\u003eGoogle Chrome container based on a CentOS Stream 8 x86_64 docker image built from github actions\u003c/p\u003e\n\u003cp\u003e(toy) singularity image produced by github actions available at \u003ccode\u003eghcr.io/truatpasteurdotfr/singularity-docker-stream8-chrome:latest\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why\" class=\"anchor\" href=\"#why\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eworkaround solution when a Chrome release is not running on CentOS-7 because the required glibc is not satisfied\n(yes, I know... CentOS-7 is not on the list of approved OS).\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-without-installation-\" class=\"anchor\" href=\"#running-without-installation-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning without installation: \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-stream8-chrome/actions/workflows/singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-stream8-chrome/actions/workflows/singularity-publish.yml/badge.svg\" alt=\"Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /run oras://ghcr.io/truatpasteurdotfr/singularity-docker-stream8-chrome:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building\" class=\"anchor\" href=\"#building\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding:\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build singularity-docker-stream8-chrome.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1549336366.0
+ "updated_at": 1638391965.0
},
{
"data_format": 2,
- "description": "Snakemake workflow for analysis and assembly of viral genomes from IonTorrent AmpliSeq data.",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "peterk87/viral-ampliseq-assembly",
- "latest_release": "v1.0.0",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-snakemake-workflow-viral-ampliseq-assembly\" class=\"anchor\" aria-hidden=\"true\" href=\"#snakemake-workflow-viral-ampliseq-assembly\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSnakemake workflow: viral-ampliseq-assembly\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://snakemake.bitbucket.io\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/de7b3ae9d2ddd7970750ed14a267d738217987e5635a19380de6f3b2ec3216e6/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f736e616b656d616b652d254532253839254135352e352e342d627269676874677265656e2e737667\" alt=\"Snakemake\" data-canonical-src=\"https://img.shields.io/badge/snakemake-%E2%89%A55.5.4-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://travis-ci.com/peterk87/viral-ampliseq-assembly\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9ca62ba99cb6a38032432759aa450c99bf81b9671bab9e21e2492c47bf7cf065/68747470733a2f2f7472617669732d63692e6f72672f70657465726b38372f766972616c2d616d706c697365712d617373656d626c792e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/peterk87/viral-ampliseq-assembly.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/3359\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://snakemake.readthedocs.io/en/stable/\" rel=\"nofollow\"\u003eSnakemake\u003c/a\u003e workflow for analysis and assembly of viral genomes such as Classical Swine Fever Virus (\u003ca href=\"https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=11096\" rel=\"nofollow\"\u003eCSFV\u003c/a\u003e) from IonTorrent AmpliSeq data.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-hidden=\"true\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOverview\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003ePreprocessing\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDuplicate reads were removed using \u003ca href=\"https://broadinstitute.github.io/picard/\" rel=\"nofollow\"\u003ePicard\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReads were trimmed with \u003ca href=\"http://www.usadellab.org/cms/?page=trimmomatic\" rel=\"nofollow\"\u003eTrimmomatic\u003c/a\u003e prior to \u003ca href=\"http://cab.spbu.ru/software/spades/\" rel=\"nofollow\"\u003eSPAdes\u003c/a\u003e assembly\u003c/li\u003e\n\u003cli\u003eBAM file stats computed using \u003ca href=\"https://samtools.github.io/\" rel=\"nofollow\"\u003eSamtools\u003c/a\u003e (coverage depth, extent, extent per genome, # of reads mapped)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eReference Genome Selection\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDownloading of all Classical swine fever virus (\u003ca href=\"https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=11096\" rel=\"nofollow\"\u003eCSFV\u003c/a\u003e) (or FMDV, Ebola, Zika) virus genomes from \u003ca href=\"https://www.ncbi.nlm.nih.gov/books/NBK25501/\" rel=\"nofollow\"\u003eNCBI Entrez API\u003c/a\u003e using \u003ca href=\"https://biopython.org/\" rel=\"nofollow\"\u003eBioPython\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://mash.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003eMash\u003c/a\u003e screen of deduplicated reads against all reference genomes with sketch size of 10000 and sketch k-mer size of 16, sorting by Mash screen identity to find top reference genome for read mapping and variant calling\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRead Mapping \u0026amp; Variant Calling\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eRead mapping with \u003ca href=\"https://github.com/lh3/bwa\"\u003eBWA MEM\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eRemoval of duplicate reads with \u003ca href=\"https://samtools.github.io/\" rel=\"nofollow\"\u003eSamtools\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eVariant calling with \u003ca href=\"https://github.com/ekg/freebayes\"\u003eFreeBayes\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://snpeff.sourceforge.net/SnpEff.html\" rel=\"nofollow\"\u003eSnpEff\u003c/a\u003e was used to predict and report variant effects using reference genome annotation\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDe Novo Assembly\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"http://cab.spbu.ru/software/spades/\" rel=\"nofollow\"\u003eSPAdes\u003c/a\u003e de novo assembly of trimmed deduplicated reads.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://quast.sourceforge.net/quast.html\" rel=\"nofollow\"\u003eQUAST\u003c/a\u003e quality assessment of assemblies\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eQuality Control\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://multiqc.info/\" rel=\"nofollow\"\u003eMultiQC\u003c/a\u003e interactive report of \u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003eFastQC\u003c/a\u003e, \u003ca href=\"https://samtools.github.io/\" rel=\"nofollow\"\u003eSamtools\u003c/a\u003e, \u003ca href=\"http://quast.sourceforge.net/quast.html\" rel=\"nofollow\"\u003eQUAST\u003c/a\u003e, \u003ca href=\"http://snpeff.sourceforge.net/SnpEff.html\" rel=\"nofollow\"\u003eSnpEff\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ePhylogenetic Tree\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePhylogenetic tree constructed with \u003ca href=\"http://www.iqtree.org/\" rel=\"nofollow\"\u003eIQ-TREE\u003c/a\u003e (or \u003ca href=\"http://bioinformatics.hungry.com/clearcut/\" rel=\"nofollow\"\u003eClearcut\u003c/a\u003e if a quick and dirty tree is okay)\u003c/li\u003e\n\u003cli\u003eInteractive HTML phylogenetic tree visualization with \u003ca href=\"http://phylocanvas.org/\" rel=\"nofollow\"\u003ePhyloCanvas\u003c/a\u003e using \u003ca href=\"https://github.com/peterk87/shiptv\"\u003eshiptv\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-authors\" class=\"anchor\" aria-hidden=\"true\" href=\"#authors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003ePeter Kruczkiewicz (@peterk87)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-0-install-pre-requisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-0-install-pre-requisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 0: Install pre-requisites\u003c/h3\u003e\n\u003cp\u003eRunning this workflow with \u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e is recommended, but you can use \u003ca href=\"https://conda.io/en/latest/\" rel=\"nofollow\"\u003eConda\u003c/a\u003e if you prefer. The Singularity image will come with all the dependencies bundled together in a single file.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-install-singularity-recommended\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-singularity-recommended\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall \u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e (recommended)\u003c/h4\u003e\n\u003cp\u003eFollow the instructions for installing Singularity \u003ca href=\"https://sylabs.io/guides/3.3/user-guide/quick_start.html#quick-start\" rel=\"nofollow\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-setup-and-activate-the-conda-environment-if-not-using-singularity-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-and-activate-the-conda-environment-if-not-using-singularity-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup and activate the \u003ca href=\"https://conda.io/en/latest/\" rel=\"nofollow\"\u003eConda\u003c/a\u003e environment if not using \u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e (optional)\u003c/h4\u003e\n\u003cp\u003eInstall \u003ca href=\"https://conda.io/en/latest/\" rel=\"nofollow\"\u003eConda\u003c/a\u003e if you haven\u0027t already following \u003ca href=\"https://conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003ethese instructions\u003c/a\u003e and setup the \u003ca href=\"https://bioconda.github.io/user/install.html#set-up-channels\" rel=\"nofollow\"\u003eBioConda channel\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eDownload or \u003ccode\u003egit clone\u003c/code\u003e this repo\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/peterk87/viral-ampliseq-assembly.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e viral-ampliseq-assembly\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e create a conda environment named \"viral-ampliseq-assembly-1.0.0\"\u003c/span\u003e\nconda env create -f environment.yml\nconda activate viral-ampliseq-assembly-1.0.0\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e install snakemake into this env\u003c/span\u003e\nconda install -y snakemake\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e run Snakemake on the test directory\u003c/span\u003e\nsnakemake --directory test/\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-1-install-workflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-1-install-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 1: Install workflow\u003c/h3\u003e\n\u003cp\u003eIf you simply want to use this workflow, download and extract the \u003ca href=\"https://github.com/peterk87/viral-ampliseq-assembly/releases\"\u003elatest release\u003c/a\u003e.\nIf you intend to modify and further develop this workflow, fork this repository. Please consider providing any generally applicable modifications via a pull request.\u003c/p\u003e\n\u003cp\u003eIn any case, if you use this workflow in a paper, don\u0027t forget to give credits to the authors by citing the URL of this repository and, if available, its DOI (see above).\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-2-configure-workflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-2-configure-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 2: Configure workflow\u003c/h3\u003e\n\u003cp\u003eCreate an analysis directory, copy and modify the example \u003ccode\u003econfig.yaml\u003c/code\u003e and \u003ccode\u003esamples.tsv\u003c/code\u003e files to suit your needs.\u003c/p\u003e\n\u003cp\u003ee.g.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emkdir ~/my-ampliseq-analysis\ncp viral-ampliseq-assembly/config.yaml ~/my-ampliseq-analysis/\ncp viral-ampliseq-assembly/samples.tsv ~/my-ampliseq-analysis/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eEdit your \u003ccode\u003econfig.yaml\u003c/code\u003e as needed.\u003c/p\u003e\n\u003cp\u003eAdd sample entries to your \u003ccode\u003esamples.tsv\u003c/code\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esample bam_file\nSample1 bams/Sample1.bam\nSample2 bams/Sample2.bam\nSample3 bams/Sample3.bam\n... \u0026lt;more sample entries\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere \u003ccode\u003ebam_file\u003c/code\u003e can be the relative or absolute path to a sample\u0027s BAM file.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-iq-tree-maximum-likelihood-or-clearcut-rnj-tree\" class=\"anchor\" aria-hidden=\"true\" href=\"#iq-tree-maximum-likelihood-or-clearcut-rnj-tree\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\n\u003ca href=\"http://www.iqtree.org/\" rel=\"nofollow\"\u003eIQ-TREE\u003c/a\u003e maximum-likelihood or \u003ca href=\"http://bioinformatics.hungry.com/clearcut/\" rel=\"nofollow\"\u003eClearcut\u003c/a\u003e RNJ tree\u003c/h4\u003e\n\u003cp\u003eIn your \u003ccode\u003econfig.yaml\u003c/code\u003e the \u003ccode\u003efast_tree\u003c/code\u003e parameter controls which method (ML or RNJ) is used for phylogenetic tree construction.\u003c/p\u003e\n\u003cp\u003eIf you want a quick and dirty tree, set\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003efast_tree\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003etrue\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ein your \u003ccode\u003econfig.yaml\u003c/code\u003e to generate a Relaxed Neighbor Joining (RNJ) tree.\u003c/p\u003e\n\u003cp\u003eOtherwise, if you want a high accuracy phylogenetic tree and are willing to wait for it, then set\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003efast_tree\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003efalse\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eto use \u003ca href=\"http://www.iqtree.org/\" rel=\"nofollow\"\u003eIQ-TREE\u003c/a\u003e to generate a maximum-likelihood phylogenetic tree with 1000 ultrafast bootstraps (UFBoot) (see \u003ca href=\"http://dx.doi.org/10.1093/molbev/mst024\" rel=\"nofollow\"\u003eMinh et al., 2016\u003c/a\u003e for more info on UFBoot).\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-3-execute-workflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-3-execute-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 3: Execute workflow\u003c/h3\u003e\n\u003cp\u003e\u003cem\u003eIf you do not have \u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e installed then remove the \u003ccode\u003e--use-singularity\u003c/code\u003e flag\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eTest your configuration by performing a dry-run via\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake --use-singularity -n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExecute the workflow locally via\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake --use-singularity --cores $N\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eusing \u003ccode\u003e$N\u003c/code\u003e cores.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-cluster-execution\" class=\"anchor\" aria-hidden=\"true\" href=\"#cluster-execution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCluster execution\u003c/h4\u003e\n\u003cp\u003e\u003cem\u003eNote: You may need to install the \u003ccode\u003edrmaa\u003c/code\u003e Python library (\u003ccode\u003epip install drmaa\u003c/code\u003e)\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eYou can execute the workflow on a SLURM/DRMAA cluster environment with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake --directory test --use-singularity --drmaa \" -c 4 -p YourClusterQueueName --mem=4096 \" -j 8 -w 60\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will run the workflow on the test data in the \u003ccode\u003etest/\u003c/code\u003e directory with 4 CPUs and 4G memory per job and 8 jobs at once (\u003ccode\u003e-j 8\u003c/code\u003e) while waiting 60 seconds for output files to appear on the shared filesystem (\u003ccode\u003e-w 60\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eThe cluster partition or queue to schedule jobs to is specified with \u003ccode\u003e-p YourClusterQueueName\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eThe above will run each rule or job with 4 CPUs and 4GB memory each, which may be way more than needed or not enough so you could create a YAML (or JSON) file to specify default and specific resource requirements for some steps:\u003c/p\u003e\n\u003cp\u003eExample \u003ccode\u003ecluster-config.yaml\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003e__default__\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ecpu\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003epartition\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003eYourClusterQueueName\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ememory\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e1024\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003esamtools_index_bam_initial\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ecpu\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e32\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ememory\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e16384\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003espades_assembly\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ecpu\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e32\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ememory\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e16384\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003ebwa_mem\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ecpu\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e32\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ememory\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e4096\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003emafft_msa\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ecpu\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e32\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ememory\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e4096\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003eiqtree\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ecpu\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e8\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ememory\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e4096\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003esnpeff\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ememory\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e4096\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eWith the \u003ccode\u003ecluster-config.yaml\u003c/code\u003e, run the workflow in a cluster environment via\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake --directory test --use-singularity --cluster-config cluster-config.yaml --drmaa \" -c {cluster.cpu} -p {cluster.partition} --mem={cluster.memory} \" -j 8 -w 60\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWith the above command and \u003ccode\u003ecluster-config.yaml\u003c/code\u003e, by default, a rule or step in the workflow will only use 1 CPU and request 1G of memory, while the rules like \u003ccode\u003eiqtree\u003c/code\u003e or \u003ccode\u003espades_assembly\u003c/code\u003e will request more CPUs and memory from the SLURM/DRMAA scheduler.\u003c/p\u003e\n\u003cp\u003eSee the \u003ca href=\"https://snakemake.readthedocs.io\" rel=\"nofollow\"\u003eSnakemake documentation\u003c/a\u003e for further details.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-testing\" class=\"anchor\" aria-hidden=\"true\" href=\"#testing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting\u003c/h2\u003e\n\u003cp\u003eTests cases are in the subfolder \u003ccode\u003etest\u003c/code\u003e. They should be executed via continuous integration with Travis CI.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-output\" class=\"anchor\" aria-hidden=\"true\" href=\"#output\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput\u003c/h2\u003e\n\u003cp\u003eIf you were to copy the files in \u003ccode\u003etest\u003c/code\u003e (\u003ccode\u003esamples.tsv\u003c/code\u003e, \u003ccode\u003ebam/\u003c/code\u003e and \u003ccode\u003econfig.yaml\u003c/code\u003e) to a new directory \u003ccode\u003emy-analysis-directory\u003c/code\u003e and run the workflow on that directory, i.e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esnakemake --directory my-analysis-directory/ \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e other args\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe contents of \u003ccode\u003emy-analysis-directory\u003c/code\u003e should look like:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emy-analysis-directory\n\u251c\u2500\u2500 phylogeny \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Phylogenetic Tree Output\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 genome-metadata.tsv\n\u2502 \u2514\u2500\u2500 tree.html\n\u251c\u2500\u2500 config.yaml \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e INPUT: Workflow Execution Config File \u003c/span\u003e\n\u251c\u2500\u2500 qc \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Quality Control Output\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 multiqc.html \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e MultiQC report file\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 fastqc \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e FastQC Output\u003c/span\u003e\n\u2502 \u2502 \u251c\u2500\u2500 Sample1.html\n\u2502 \u2502 \u2514\u2500\u2500 Sample1_fastqc.zip\n\u2502 \u251c\u2500\u2500 multiqc_data\n\u2502 \u2502 \u251c\u2500\u2500 [Text files]\n\u2502 \u2514\u2500\u2500 quast \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e QUAST Output\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 report.tex\n\u2502 \u251c\u2500\u2500 icarus_viewers\n\u2502 \u2502 \u2514\u2500\u2500 contig_size_viewer.html\n\u2502 \u251c\u2500\u2500 report.html\n\u2502 \u251c\u2500\u2500 basic_stats\n\u2502 \u2502 \u251c\u2500\u2500 [QUAST PDFs]\n\u2502 \u251c\u2500\u2500 icarus.html\n\u2502 \u251c\u2500\u2500 transposed_report.tex\n\u2502 \u251c\u2500\u2500 quast.log\n\u2502 \u251c\u2500\u2500 report.pdf\n\u2502 \u251c\u2500\u2500 report.txt\n\u2502 \u251c\u2500\u2500 .snakemake_timestamp\n\u2502 \u251c\u2500\u2500 report.tsv\n\u2502 \u251c\u2500\u2500 transposed_report.tsv\n\u2502 \u2514\u2500\u2500 transposed_report.txt\n\u251c\u2500\u2500 variant_calling \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Variant Calling Output\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 Sample1-filtered.vcf \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Filtered variants for Sample1 in VCF format\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 Sample1.vcf \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Unfiltered variants for Sample1 in VCF format\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 snpeff \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e SnpEff Output\u003c/span\u003e\n\u2502 \u2502 \u251c\u2500\u2500 Sample1\n\u2502 \u2502 \u2502 \u251c\u2500\u2500 [SnpEff specific files]\n\u2502 \u2502 \u251c\u2500\u2500 Sample1.vcf\n\u2502 \u2502 \u251c\u2500\u2500 Sample1.csv\n\u2502 \u2502 \u251c\u2500\u2500 Sample1.html \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e SnpEff report for Sample1\u003c/span\u003e\n\u2502 \u2502 \u2514\u2500\u2500 Sample1.genes.txt\n\u2502 \u2514\u2500\u2500 Sample1-vcf.tsv \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e SnpEff annotated variants in a tab-delimited table\u003c/span\u003e\n\u251c\u2500\u2500 mapping \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Read Mapping Output\u003c/span\u003e\n\u2502 \u2514\u2500\u2500 Sample1 \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Read mapping output and summary files for Sample1\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 Sample1-extent.tsv\n\u2502 \u251c\u2500\u2500 Sample1-genome_extent.tsv\n\u2502 \u251c\u2500\u2500 Sample1-idxstats.tsv\n\u2502 \u251c\u2500\u2500 Sample1.bam\n\u2502 \u251c\u2500\u2500 Sample1-depth.tsv\n\u2502 \u251c\u2500\u2500 Sample1-idxstats-sorted.tsv\n\u2502 \u251c\u2500\u2500 Sample1-idxstats-top_mapped.txt\n\u2502 \u2514\u2500\u2500 Sample1.bam.bai\n\u251c\u2500\u2500 bam \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Input directory with Sample1 BAM file specified in config.yaml\u003c/span\u003e\n\u2502 \u2514\u2500\u2500 a.bam\n\u251c\u2500\u2500 consensus \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Consensus Sequence Output\u003c/span\u003e\n\u2502 \u2514\u2500\u2500 Sample1.fasta \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Consensus sequence for Sample1 from reference mapping and variant calling\u003c/span\u003e\n\u251c\u2500\u2500 logs \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Log files for various tools\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etool name\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u2502 \u2502 \u2514\u2500\u2500 Sample1.log\n\u251c\u2500\u2500 samples.tsv \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e INPUT: tab-delimited table with 2 fields: \"sample\" and \"bam_file\"\u003c/span\u003e\n\u251c\u2500\u2500 references \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Reference Genomes Downloaded From NCBI\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 Sample1 \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Top Reference Genome\u003c/span\u003e\n\u2502 \u2502 \u251c\u2500\u2500 reference.gff\n\u2502 \u2502 \u251c\u2500\u2500 reference-no_ambig.fasta.bwt\n\u2502 \u2502 \u251c\u2500\u2500 reference-no_ambig.fasta.pac\n\u2502 \u2502 \u251c\u2500\u2500 reference.genbank\n\u2502 \u2502 \u251c\u2500\u2500 reference-no_ambig.fasta.amb\n\u2502 \u2502 \u251c\u2500\u2500 reference-no_ambig.fasta.ann\n\u2502 \u2502 \u251c\u2500\u2500 reference-no_ambig.fasta\n\u2502 \u2502 \u251c\u2500\u2500 reference-no_ambig.fasta.sa\n\u2502 \u2502 \u251c\u2500\u2500 reference.fasta\n\u2502 \u2502 \u2514\u2500\u2500 reference-no_ambig.fasta.fai\n\u2502 \u251c\u2500\u2500 csf.msh \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Mash sketch database from \"csf.fasta\"\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 csf.genbank \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e CSFV genomes downloaded from NCBI in GenBank format\u003c/span\u003e\n\u2502 \u2514\u2500\u2500 csf.fasta \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e CSFV genomes downloaded from NCBI in FASTA format\u003c/span\u003e\n\u251c\u2500\u2500 assembly \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Assembly Output\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 spades \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e SPAdes assembly outputs for each input sample\u003c/span\u003e\n\u2502 \u2502 \u2514\u2500\u2500 Sample1 \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e SPAdes assembly output for Sample1\u003c/span\u003e\n\u2502 \u2502 \u251c\u2500\u2500 before_rr.fasta\n\u2502 \u2502 \u251c\u2500\u2500 params.txt\n\u2502 \u2502 \u251c\u2500\u2500 contigs.paths\n\u2502 \u2502 \u251c\u2500\u2500 input_dataset.yaml\n\u2502 \u2502 \u251c\u2500\u2500 \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eSPAdes specific output directories\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u2502 \u2502 \u251c\u2500\u2500 scaffolds.paths\n\u2502 \u2502 \u251c\u2500\u2500 contigs.fasta\n\u2502 \u2502 \u251c\u2500\u2500 spades.log\n\u2502 \u2502 \u251c\u2500\u2500 assembly_graph.fastg\n\u2502 \u2502 \u251c\u2500\u2500 dataset.info\n\u2502 \u2502 \u251c\u2500\u2500 scaffolds.fasta\n\u2502 \u2502 \u2514\u2500\u2500 assembly_graph_with_scaffolds.gfa\n\u2502 \u2514\u2500\u2500 spades-Sample1.fasta\n\u251c\u2500\u2500 benchmarks \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Benchmark runtime info for tools in workflow\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003ebenchmark tab-delimited files \u003cspan class=\"pl-k\"\u003efor\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003evarious tools\u003c/span\u003e \u003cspan class=\"pl-k\"\u003ein\u003c/span\u003e workflow\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u251c\u2500\u2500 msa \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Multiple sequence alignment (MSA) output and IQ-TREE/Clearcut phylogenetic tree\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 alignment.fasta\n\u2502 \u251c\u2500\u2500 samples-pre-aln.fasta\n\u2502 \u2514\u2500\u2500 alignment.fasta.treefile\n\u2514\u2500\u2500 preprocess \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Preprocessing Output of Input BAM Files \u003c/span\u003e\n \u251c\u2500\u2500 samtools \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Initial BAM file stats output\u003c/span\u003e\n \u2502 \u251c\u2500\u2500 depth\n \u2502 \u2502 \u251c\u2500\u2500 Sample1-extent.tsv\n \u2502 \u2502 \u251c\u2500\u2500 Sample1-genome_extent.tsv\n \u2502 \u2502 \u2514\u2500\u2500 Sample1.tsv\n \u2502 \u251c\u2500\u2500 flagstat\n \u2502 \u2502 \u2514\u2500\u2500 Sample1.flagstat\n \u2502 \u251c\u2500\u2500 index\n \u2502 \u2502 \u2514\u2500\u2500 Sample1.done\n \u2502 \u2514\u2500\u2500 idxstats\n \u2502 \u251c\u2500\u2500 Sample1-top_mapped.txt\n \u2502 \u251c\u2500\u2500 Sample1.tsv\n \u2502 \u2514\u2500\u2500 Sample1-sorted.tsv\n \u251c\u2500\u2500 fastqs \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Deduplicated reads in FASTQ format\u003c/span\u003e\n \u2502 \u2514\u2500\u2500 Sample1.fastq\n \u251c\u2500\u2500 mash \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Mash Screen results\u003c/span\u003e\n \u2502 \u251c\u2500\u2500 Sample1-screen_references-sorted.tsv\n \u2502 \u2514\u2500\u2500 Sample1-screen_references.tsv\n \u251c\u2500\u2500 trimmed_fastqs \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Trimmomatic trimmed reads\u003c/span\u003e\n \u2502 \u2514\u2500\u2500 Sample1.fastq\n \u2514\u2500\u2500 dedup \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Deduplicated BAM files\u003c/span\u003e\n \u251c\u2500\u2500 Sample1.bam\n \u251c\u2500\u2500 Sample1.metrics.txt\n \u2514\u2500\u2500 Sample1.bam.bai\u003c/pre\u003e\u003c/div\u003e\n",
+ "full_name": "truatpasteurdotfr/singularity-c7-openapi-basekit",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-c7-openapi-basekit\" class=\"anchor\" href=\"#singularity-c7-openapi-basekit\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-c7-openapi-basekit\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1566573045.0
+ "updated_at": 1635331812.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Repository containing code for the paper \"Shared neural codes for visual and semantic information about familiar others in a common representational space\"",
"filenames": [
- "Singularity"
+ "singularity/Singularity-neurodocker"
],
- "full_name": "melnel000/Sarek_CBIO",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"\" class=\"anchor\" aria-hidden=\"true\" href=\"#\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"http://sarek.scilifelab.se/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/Sarek_logo.png\" alt=\"Sarek\" title=\"Sarek\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/h1\u003e\n\u003ch4\u003e\u003ca id=\"user-content-an-open-source-analysis-pipeline-to-detect-germline-or-somatic-variants-from-whole-genome-or-targeted-sequencing\" class=\"anchor\" aria-hidden=\"true\" href=\"#an-open-source-analysis-pipeline-to-detect-germline-or-somatic-variants-from-whole-genome-or-targeted-sequencing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAn open-source analysis pipeline to detect germline or somatic variants from whole genome or targeted sequencing\u003c/h4\u003e\n\u003cp\u003e\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8165e759b147d5dfd77c2603211746a0ec20eae5aaea1c6a882604a6093c564c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33322e302d627269676874677265656e2e7376673f6c6f676f3d646174613a696d6167652f7376672b786d6c3b6261736536342c5044393462577767646d567963326c76626a30694d5334774969426c626d4e765a476c755a7a3069565652474c54676949484e305957356b59577876626d5539496d3576496a382b50484e325a794167494868746247357a4f6d526a50534a6f644852774f6938766348567962433576636d63765a474d765a57786c6257567564484d764d5334784c7949674943423462577875637a706a597a30696148523063446f764c324e795a57463061585a6c593239746257397563793576636d6376626e4d6a49694167494868746247357a4f6e4a6b5a6a30696148523063446f764c336433647935334d793576636d63764d546b354f5338774d6938794d6931795a47597463336c75644746344c57357a497949674943423462577875637a707a646d6339496d6830644841364c79393364336375647a4d7562334a6e4c7a49774d44417663335a6e49694167494868746247357a50534a6f644852774f693876643364334c6e637a4c6d39795a7938794d4441774c334e325a7949674943423462577875637a707a623252706347396b615430696148523063446f764c334e765a476c77623252704c6e4e7664584a6a5a575a76636d646c4c6d356c64433945564551766332396b615842765a476b744d43356b644751694943416765473173626e4d366157357263324e6863475539496d6830644841364c793933643363756157357263324e686347557562334a6e4c3235686257567a6347466a5a584d766157357263324e68634755694943416764326c6b64476739496a45794c6a63354f5449794f473174496941674947686c6157646f644430694d5449754f4441304f4441356257306949434167646d6c6c64304a76654430694d434177494451314c6a4d314d5455354e4341304e53347a4e7a457a4e6a6b694943416761575139496e4e325a7a63324e54496949434167646d567963326c76626a30694d5334784969416749476c7561334e6a5958426c4f6e5a6c636e4e7062323439496a41754f544567636a457a4e7a49314969416749484e765a476c77623252704f6d52765932356862575539496d356c6548526d624739334c575a68646d6c6a62323474643268706447557563335a6e496a34674944786b5a575a7a49434167494342705a4430695a47566d637a63324e5451694943382b494341386332396b615842765a476b36626d46745a5752326157563349434167494342705a443069596d467a5a53496749434167494842685a32566a62327876636a306949325a6d5a6d5a6d5a6949674943416749474a76636d526c636d4e76624739795053496a4e6a59324e6a59324969416749434167596d39795a4756796233426859326c30655430694d53347749694167494341676157357263324e68634755366347466e5a57397759574e7064486b39496a41754d4349674943416749476c7561334e6a5958426c4f6e42685a32567a6147466b62336339496a49694943416749434270626d747a593246775a54703662323974505349334c6a6b784f5455354e546b694943416749434270626d747a593246775a54706a654430694d6a41754d54457a4d6a4d3149694167494341676157357263324e686347553659336b39496a497a4c6a45324d7a6b774f4349674943416749476c7561334e6a5958426c4f6d5276593356745a5735304c5856756158527a50534a77654349674943416749476c7561334e6a5958426c4f6d4e31636e4a6c626e5174624746355a584939496d7868655756794d5349674943416749484e6f6233646e636d6c6b50534a6d5957787a5a5349674943416749475a706443317459584a6e61573474644739775053497749694167494341675a6d6c304c573168636d6470626931735a575a305053497749694167494341675a6d6c304c573168636d6470626931796157646f644430694d4349674943416749475a706443317459584a6e61573474596d3930644739745053497749694167494341676157357263324e686347553664326c755a4739334c5864705a48526f505349784f54497749694167494341676157357263324e686347553664326c755a4739334c57686c6157646f644430694d5441784e5349674943416749476c7561334e6a5958426c4f6e6470626d5276647931345053497749694167494341676157357263324e686347553664326c755a4739334c586b39496a41694943416749434270626d747a593246775a5470336157356b623363746257463461573170656d566b5053497849694176506941675047316c6447466b5958526849434167494342705a4430696257563059575268644745334e6a5533496a34674943416750484a6b5a6a70535245592b494341674943416750474e6a4f6c6476636d73674943416749434167494342795a47593659574a76645851394969492b4943416749434167494341385a474d365a6d397962574630506d6c745957646c4c334e325a797434625777384c32526a4f6d5a76636d31686444346749434167494341674944786b597a70306558426c494341674943416749434167494342795a475936636d567a6233567959325539496d6830644841364c79397764584a734c6d39795a79396b5979396b5932317064486c775a53395464476c7362456c745957646c496941765069416749434167494341675047526a4f6e52706447786c506a77765a474d3664476c306247552b49434167494341675043396a597a705862334a7250694167494341384c334a6b5a6a70535245592b494341384c32316c6447466b5958526850694167504763674943416749476c7561334e6a5958426c4f6d7868596d567350534a4d59586c6c6369417849694167494341676157357263324e68634755365a334a76645842746232526c50534a7359586c6c636949674943416749476c6b50534a7359586c6c636a45694943416749434230636d467563325a76636d3039496e52795957357a624746305a5367784d5451754d5441304d7a63734c5451314d6934314d7a4d324e696b6950694167494341386347463061434167494341674943427a64486c735a5430695a6d6c7362446f6a5a6d5a6d5a6d5a6d49694167494341674943426b50534a74494330784d5451754d5441304d7a63734e4455314c6a51324e545979494441734f4334344e6a457a4d7941774c6a49774d7a457a4c4441754d4459774e53426a49444d754f4463794f544d734d5334784d7a6b304d7941344c6a59314d6a55784c4451754d7a677a4d6941784d6934344d4441334f4377344c6a59344e7a55674d4334354d544d324d7977774c6a6b304f444178494445754f5463794e5459304c4449754d5441324f4451674d69347a4e544d314d6a51734d6934314e7a59784f434273494441754e6a6b784e4377774c6a67314d7a5578494330774c6a67324f5445304c4441754e7a63314d7a6b67597941744e4334784f546b354d4451734d7934334e4445354d7941744f4334354e7a45354d4451734e6934334e6a597a4e7941744d5451754d5441314e4463304c4467754f5451784e4445674c5441754d7a41354e7a55734d4334784d7a45794e4341744d4334324f5463794d6977774c6a49344d54497a494330784c6a41334e4449794c4441754e4449334e7a4d67624341774c446b754d7a41304e6a6b67597941794c6a59314f546b7a4c4330774c6a67334e7a6b79494455754d7a41324d7a6b734c5445754f546331494467754d4459774e5455734c544d754d7a55784e5459674e4334794e5459794d7977744d6934784d6a637a4d6941334c6a55304d7a49314e4377744e4334794e5463324e4341784d5334774d7a63784d5451734c5463754d5455324d6a55674d4334354d6a55344d5377744d4334334e6a67774f4341784c6a67794d5441354c4330784c6a55774e7a4179494445754f546b774d6a4d734c5445754e6a51794e5467674d4334794e7a6b7a4d5377744d4334794d6a4d344e4341774c6a51354d7a4d794c4330774c6a41314d5451674d69347a4d6a51794d6977784c6a67334f446b78494459754d6a49794e6a55734e6934314e6a41304d5341784d7934334f444d7a4e7977784d4334334e4451304d7941794d5334354d7a6b304e6977784d6934794d6a49324e534273494441734c5467754f5451784e43426a494330304c6a63354e544d334c4330784c6a45354e546b674c546b754e4449774d7a45734c544d754e6a51314d5445674c54457a4c6a49314e7a67794c4330334c6a41324e445132494330784c6a59344d7a55784c4330784c6a55774d444132494330304c6a49344e6a67784c4330304c6a4d314d444135494330304c6a4d354d6a55344c4330304c6a67774f445535494330774c6a41324f4459734c5441754d6a6b334d7941314c6a51334e4467734c5455754e7a41354e7a63674e7934794f5451354d7977744e7934784d6a4d774e53417a4c6a51344d6a637a4c4330794c6a63774e444930494459754e5467344d6a55734c5451754d5449774e4449674d5441754d6a63314d7a6b734c5451754e6a67314e5451674d4334774d6a63314c4330774c6a41774e4341774c6a41314d6a63734c5441754d444134494441754d4467774d5377744d4334774d544533494777674d4377744f4334334e53426a494330334c6a6b7a4f5449334c4449754d4449784d5451674c5445304c6a67334d4441784c4455754f4463334d7a67674c5449784c6a55734d5445754f54517a4d7a5967624341744d5334324d7a41344e6977784c6a51354d6a4534494330794c6a6b354e6a45734c544d754d4441334f444567597941744d5334324e4463314e6977744d5334324e5451334943307a4c6a63304d4449314c43307a4c6a59774d545533494330304c6a59314d6a4d304c4330304c6a4d794e6a4533494330314c6a41774f4455314e4377744d7934354e7a67354f5341744d5441754d5455794f5455304c4330324c6a51354f54497a494330784e4334314e7a49794e7a51734c5463754d5455324d6a556765694967494341674943416761575139496e4268644767334e6a4977496941674943416749434270626d747a593246775a54706a623235755a574e306233497459335679646d463064584a6c5053497749694167494341674943427a623252706347396b615470756232526c64486c775a584d39496d4e6a59334e6a59324e7a59324e7a63324e7a59324e7a59334e6a59324e6a59324e7a597949674c7a3467494477765a7a34384c334e325a7a343d\" alt=\"Nextflow version\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.32.0-brightgreen.svg?logo=\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://travis-ci.org/SciLifeLab/Sarek\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/63575514d0146dcd6226c111d1293fade62aa93f4946f2afcbb55718f3be5d86/68747470733a2f2f696d672e736869656c64732e696f2f7472617669732f5363694c6966654c61622f536172656b2e7376673f6c6f676f3d747261766973\" alt=\"Travis build status\" data-canonical-src=\"https://img.shields.io/travis/SciLifeLab/Sarek.svg?logo=travis\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://gitter.im/SciLifeLab/Sarek\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/419eea0b1c13bbf50717b250a81b0de7616141e86a5fc88eee2360f003f4c4e6/68747470733a2f2f696d672e736869656c64732e696f2f6769747465722f726f6f6d2f5363694c6966654c61622f536172656b2e7376673f6c6f676f3d676974746572266c6f676f436f6c6f723d776869746526636f6c6f72423d346662393961\" alt=\"Join the chat on https://gitter.im/SciLifeLab/Sarek\" data-canonical-src=\"https://img.shields.io/gitter/room/SciLifeLab/Sarek.svg?logo=gitter\u0026amp;logoColor=white\u0026amp;colorB=4fb99a\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e041bce107aca31eca6dd63a962556bf70d6cef2508c777604eedb99ca049c4b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f5363694c6966654c61622f536172656b2e737667\" alt=\"MIT License\" data-canonical-src=\"https://img.shields.io/github/license/SciLifeLab/Sarek.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/SciLifeLab/Sarek/releases/latest\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/720a0b93892db5c772d24eb7dc2fd6fefb2b556eff92ee7ae6a2963a40a8dd5a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f5363694c6966654c61622f536172656b2e7376673f6c6f676f3d676974687562266c6f676f436f6c6f723d7768697465\" alt=\"Sarek version\" data-canonical-src=\"https://img.shields.io/github/release/SciLifeLab/Sarek.svg?logo=github\u0026amp;logoColor=white\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://zenodo.org/badge/latestdoi/54024046\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2794ec0225017cde71e3ed51dd8393510fe23a950955ef03f7439d7c0f288f83/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f35343032343034362e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/54024046.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cc46d7321290828c574f278466a642896ed85c2338c6062490066479b1e125e6/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e7376673f6c6f676f3d646174613a696d6167652f706e673b6261736536342c6956424f5277304b47676f414141414e53556845556741414144454141414179434159414141443143444f794141414142484e4353565149434167496641686b6941414141416c7753466c7a4141414e3177414144646342516969626541414141426c30525668305532396d64486468636d5541643364334c6d6c7561334e6a5958426c4c6d39795a35767550426f41414161325355524256476942785a70726a4656584663642f653261413655416f5947726b30615a594b765864775741796f44797377527168786d704e6a5146724e4f494854522b614a686f787257426f417a3461477a3830626457437357317171354947536c76445141316155477737424575523464464372565359307146595948352b5748743637347a7a4f48646d3773772f75546e376e4c50325075742f7a397072723758325351776831496e415371414a6d41794d426359446255413763415234486e674f61415a327070544f4471554f41344a617231366d54736a6e553954484c495954366a33715044574e6c50492f5632395833315433715639557836744a2f576c4249703134566c326d316c5a6238546e7177747a2b5848353469376f6c7439656f7265714d544f534f436f6d6f2f6b5674724962796f39556671653371574c565233617a757a672b2b4c5239767a636676712b2f4e524f3462414a457a366b6f4c767057614167516d415675416d3444744b61563259426c7742664249467575636e4f4f41446d414b7343616c4a50447269763678514233775065427839594c2b6850736b6f553468764568547676524350703749666363427034485a2b56346a7342655941537858613441566c584e34437775427265714666516e31536b4a74414c344e3741473241767542562f4c747363426834467269625377414e674d66427034472f7052534f677a63434d776442416d4179344274367252426a744d563669337144646c2b562b546a4c666e344e55747539395141356b4e7632473273512f2b48486e327a65676d77424a67457a41634f4175754234796d6c48566d6d4676674b384246674676425834484a67615572705766567477436a675644354f413934447a4d746a547833412f2f636f7343545074643668766c39395062506670443653323833713137504d536e5632626a656f6938797574776a5557765854686e7575464463574758797a3453722f6d7a7674564e666c3974315a376f6c38666c645278667434336e4c3133785751654d4f776c4634482f574157624d39453975667a2f635a437469664c3361647556536350686b545a63366462576e4f4b344139394454592f4b333867432f39472f56317548314e585a4c6b7231664f47676b445a7379656f54315a415a4635506730785650356f46486c6276564d2b71653951664736766f767146557641636478716e50465354786150664f30395766474b377850316e6f754c704b33574734797476736231494e445a464c7933546f437833717a504b4f7432616c4739516c3673597370474837713954765775304973365450736f4a763477666c6e66365a4c33354c50562b395831326f586d58342b324746576d4f453576316862326548692f4b464d2b7161736f484f4d354b563736676231446e445447524a776264784d656f58314f31473646797266736159477a65554352347767726e684a4a45737566692b6346304e384338695768774433413673426534473767447579574d2b6b464c71474534534f6252347149446f4c4f4374674b346a2f313477584f7879645a5152656979757173613951503145675465784b616b66423634444a67495835742b45504d3433696154476c4e4b4a4553447864734a532b734b2b704c354b524b73414c774f48674b4e456d6555557344716c644b68716d76594439535352665057475978695669703577316c683042704f5a445272713458374d365851646b53665541714f4a33485955554a2b765451534f6a5269445148384f4a6455423139443164623142564f714f416765416a56565272546a4f372b662b36335841395551685941784235674b69424e6b4966416d59704c616c6c49355855394f65594b536a2f5a466f513631546639624e7a6c347a51704370325361764841366c75304e64554d4446506c6b4866425a59525a6a4e484f42695944757744746847354d5a4e774b59523446456b3564324c756c5139616c5170477453726a5372662f575673397a674342562b4c5a58764c4f334f4a546877304d71784c4d354750716176567636767a68356c4145564e536e566d58556d705658794a4b4b45385235764d33344448674765425659436d6c3674397745456a4136674b694c3661556e752f737443617a2b6f44364458573955537a51694b5857475a48752b3671716655593236534a59573935707072472f4d4530396c775665553339684b52782b79624a386f346f4570686c7a7441676175336465706c3662622f3752727057486a63612b77597447356a65365367547138334f4b6f4c6d6e41576f796b58765630316d774c5a2b6656412b704478725a33676131666f674a6a46562f5835434139725a3247525750546d797a74506657616c5439446c683657303959594f2b6749494570526c576c4b4c62616d3874585a7874313248765649376e445039536e636e756a656c505a594b2b6f6e78386b6757737350676330616746644845795876446c58764b3848766b7a45543775497647497530454a736f48546d486d654150774d7a31422b714379705176466239704c6f4e6542423452775738563657555772726f33634d445268486257346b49436d6342757a4d5a6756385349667042344759696b666f557352467a4362472b50413630457446774778486d5479564b2b2f4f4278517973744e384d584a46534f74636e6955796b4166675145627655453373505934685563547877463745674c694a326942594244774e58443043786f7467507a456b70395a65756c71424f5648396c6549796e6a5a4a36752f705659382b695139316c654c493331576371734f744b38624936593044556a5672556b573444586d55704d507474506d3678656d6856333957586e6e305778464a4b75346d643052316c6c79634437795a732f664a3872566f7037485a67626b7070373642484d6b4c304f773054576d3945745276795031554e557a716e726a57637a4e4443434d3133716a6462436b756168356a414c7257706632304752365257666164524a64545376426773576f79777036367142486f6773396a3435714e74674971664d434c6c685136695944306b4b61633668736a446d3467717958546749714342714b4330415363706662545651756d6a72584d396a566b4a2f676645474871754f336a38445141414141424a52553545726b4a6767673d3d\" alt=\"Install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?logo=\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/maxulysse/sarek\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bc3bec2ef3bf857d42e0bff8df09f0e81595bbd7dbc2681d0feadd729acb4bc0/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6d6178756c797373652f736172656b2e7376673f6c6f676f3d646f636b6572\" alt=\"Docker Container available\" data-canonical-src=\"https://img.shields.io/docker/automated/maxulysse/sarek.svg?logo=docker\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/CAW_logo.png\"\u003e\u003cimg align=\"right\" title=\"CAW\" src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/CAW_logo.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003ePreviously known as the Cancer Analysis Workflow (CAW),\nSarek is a workflow designed to run analyses on WGS data from regular samples or tumour / normal pairs, including relapse samples if required.\u003c/p\u003e\n\u003cp\u003eIt\u0027s built using \u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a domain specific language for workflow building.\nSoftware dependencies are handled using \u003ca href=\"https://www.docker.com\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e or \u003ca href=\"https://www.sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e - container technologies that provide excellent reproducibility and ease of use.\nSingularity has been designed specifically for high-performance computing environments.\nThis means that although Sarek has been primarily designed for use with the Swedish \u003ca href=\"https://www.uppmax.uu.se\" rel=\"nofollow\"\u003eUPPMAX HPC systems\u003c/a\u003e, it should be able to run on any system that supports these two tools.\u003c/p\u003e\n\u003cp\u003eSarek was developed at the \u003ca href=\"https://ngisweden.scilifelab.se/\" rel=\"nofollow\"\u003eNational Genomics Infastructure\u003c/a\u003e and \u003ca href=\"https://www.nbis.se/\" rel=\"nofollow\"\u003eNational Bioinformatics Infastructure Sweden\u003c/a\u003e which are both platforms at \u003ca href=\"https://www.scilifelab.se/\" rel=\"nofollow\"\u003eSciLifeLab\u003c/a\u003e.\nIt is listed on the \u003ca href=\"https://bio.tools/Sarek\" rel=\"nofollow\"\u003eElixir - Tools and Data Services Registry\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-workflow-steps\" class=\"anchor\" aria-hidden=\"true\" href=\"#workflow-steps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWorkflow steps\u003c/h2\u003e\n\u003cp\u003eSarek is built with several workflow scripts.\nA wrapper script contained within the repository makes it easy to run the different workflow scripts as a single job.\nTo test your installation, follow the \u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/TESTS.md\"\u003etests documentation.\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eRaw FastQ files or aligned BAM files (with or without realignment \u0026amp; recalibration) can be used as inputs.\nYou can choose which variant callers to use, plus the pipeline is capable of accommodating additional variant calling software or CNV callers if required.\u003c/p\u003e\n\u003cp\u003eThe worflow steps and tools used are as follows:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cstrong\u003ePreprocessing\u003c/strong\u003e - \u003ccode\u003emain.nf\u003c/code\u003e \u003cem\u003e(based on \u003ca href=\"https://software.broadinstitute.org/gatk/best-practices/\" rel=\"nofollow\"\u003eGATK best practices\u003c/a\u003e)\u003c/em\u003e\n\u003cul\u003e\n\u003cli\u003eMap reads to Reference\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://bio-bwa.sourceforge.net/\" rel=\"nofollow\"\u003eBWA\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eMark Duplicates\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eGATK MarkDuplicates\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eBase (Quality Score) Recalibration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eGATK BaseRecalibrator\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eGATK ApplyBQSR\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eGermline variant calling\u003c/strong\u003e - \u003ccode\u003egermlineVC.nf\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eSNVs and small indels\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eGATK HaplotyeCaller\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Illumina/strelka\"\u003eStrelka2\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eStructural variants\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Illumina/manta\"\u003eManta\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eSomatic variant calling\u003c/strong\u003e - \u003ccode\u003esomaticVC.nf\u003c/code\u003e \u003cem\u003e(optional)\u003c/em\u003e\n\u003cul\u003e\n\u003cli\u003eSNVs and small indels\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eMuTect2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/ekg/freebayes\"\u003eFreebayes\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Illumina/strelka\"\u003eStrelka2\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eStructural variants\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Illumina/manta\"\u003eManta\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSample heterogeneity, ploidy and CNVs\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Crick-CancerGenomics/ascat\"\u003eASCAT\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eAnnotation\u003c/strong\u003e - \u003ccode\u003eannotate.nf\u003c/code\u003e \u003cem\u003e(optional)\u003c/em\u003e\n\u003cul\u003e\n\u003cli\u003eVariant annotation\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://snpeff.sourceforge.net/\" rel=\"nofollow\"\u003eSnpEff\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.ensembl.org/info/docs/tools/vep/index.html\" rel=\"nofollow\"\u003eVEP (Variant Effect Predictor)\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eReporting\u003c/strong\u003e - \u003ccode\u003erunMultiQC.nf\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eReporting\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://multiqc.info\" rel=\"nofollow\"\u003eMultiQC\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eThe Sarek pipeline comes with documentation in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INSTALL.md\"\u003eInstallation documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INSTALL_RACKHAM.md\"\u003eInstallation documentation specific for UPPMAX \u003ccode\u003erackham\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INSTALL_BIANCA.md\"\u003eInstallation documentation specific for UPPMAX \u003ccode\u003ebianca\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/TESTS.md\"\u003eTests documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/REFERENCES.md\"\u003eReference files documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/CONFIG.md\"\u003eConfiguration and profiles documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INTERVALS.md\"\u003eIntervals documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/USAGE.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/PARAMETERS.md\"\u003eCommand line parameters\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/USE_CASES.md\"\u003eExamples\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INPUT.md\"\u003eInput files documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/PROCESS.md\"\u003eProcesses documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/CONTAINERS.md\"\u003eDocumentation about containers\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/ASCAT.md\"\u003eMore information about ASCAT\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/OUTPUT.md\"\u003eOutput documentation structure\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributions--support\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributions--support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributions \u0026amp; Support\u003c/h2\u003e\n\u003cp\u003eIf you would like to contribute to this pipeline, please see the \u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/.github/CONTRIBUTING.md\"\u003econtributing guidelines\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor further information or help, don\u0027t hesitate to get in touch on \u003ca href=\"https://gitter.im/SciLifeLab/Sarek\" rel=\"nofollow\"\u003eGitter\u003c/a\u003e or contact us: \u003ca href=\"mailto:maxime.garcia@scilifelab.se\"\u003emaxime.garcia@scilifelab.se\u003c/a\u003e, \u003ca href=\"mailto:szilveszter.juhos@scilifelab.se\"\u003eszilveszter.juhos@scilifelab.se\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-changelog\" class=\"anchor\" aria-hidden=\"true\" href=\"#changelog\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCHANGELOG\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/CHANGELOG.md\"\u003eCHANGELOG\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003eMain authors:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/MaxUlysse\"\u003eMaxime Garcia\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/szilvajuhos\"\u003eSzilveszter Juhos\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eHelpful contributors:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/alneberg\"\u003eJohannes Alneberg\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Sebastian-D\"\u003eSebastian DiLorenzo\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/J35P312\"\u003eJesper Eisfeldt\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/ewels\"\u003ePhil Ewels\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/gulfshores\"\u003eMax K\u00e4ller\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/malinlarsson\"\u003eMalin Larsson\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/marcelm\"\u003eMarcel Martin\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/bjornnystedt\"\u003eBj\u00f6rn Nystedt\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/pallolason\"\u003ePall Olason\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/arontommi\"\u003eAron Skaftason\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cp\u003e\u003ca href=\"https://www.scilifelab.se/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/SciLifeLab_logo.png\" alt=\"SciLifeLab\" title=\"SciLifeLab\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://ngisweden.scilifelab.se/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/NGI_logo.png\" alt=\"NGI\" title=\"NGI\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nbis.se/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/NBIS_logo.png\" alt=\"NBIS\" title=\"NBIS\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "full_name": "mvdoc/identity-decoding",
+ "latest_release": "1.0.0",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-shared-neural-codes-for-visual-and-semantic-information-about-familiar-faces-in-a-common-representational-space\" class=\"anchor\" href=\"#shared-neural-codes-for-visual-and-semantic-information-about-familiar-faces-in-a-common-representational-space\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eShared neural codes for visual and semantic information about familiar faces in a common representational space\u003c/h1\u003e\n\u003cp\u003eThis repository contains the code for the analyses reported in \u003cem\u003eShared neural codes for visual and semantic information about familiar faces in a common representational space\u003c/em\u003e by Matteo Visconti di Oleggio Castello, James V. Haxby, \u0026amp; M. Ida Gobbini published in the \u003cem\u003eProceedings of the National Academy of Sciences\u003c/em\u003e.\u003c/p\u003e\n\u003cp\u003eThe reference for the associated publication is\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eVisconti di Oleggio Castello, M., Haxby, J. V., \u0026amp; Gobbini, M. I. Shared neural codes for visual and semantic information about familiar faces in a common representational space \u003cem\u003eProceedings of the National Academy of Sciences\u003c/em\u003e (2021). \u003ca href=\"https://doi.org/10.1073/pnas.2110474118\" rel=\"nofollow\"\u003ehttps://doi.org/10.1073/pnas.2110474118\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eThis repository can be cited as\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eVisconti di Oleggio Castello, M., Haxby, J. V., \u0026amp; Gobbini, M. I. (2021). mvdoc/identity-decoding. \u003cem\u003eZenodo\u003c/em\u003e. \u003ca href=\"https://doi.org/10.5281/zenodo.5645003\" rel=\"nofollow\"\u003ehttps://doi.org/10.5281/zenodo.5645003\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003e\u003ca href=\"https://zenodo.org/badge/latestdoi/344613702\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/31de84d904523cf98d5215b7c3dac0af54476f3416c24e0ee28469dc04ef9647/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3334343631333730322e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/344613702.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-disclaimer--how-to-get-help\" class=\"anchor\" href=\"#disclaimer--how-to-get-help\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDisclaimer \u0026amp; how to get help\u003c/h2\u003e\n\u003cp\u003eThese scripts are shared in a format that is suitable for archival and review. All analyses were run inside a singularity container (shared in the current repository) on a local cluster and on \u003ca href=\"https://rc.dartmouth.edu/index.php/discovery-overview/\" rel=\"nofollow\"\u003eDiscovery, Dartmouth\u0027s HPC cluster\u003c/a\u003e. The paths listed in these scripts need to be modified in order to run the scripts on a different system.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eIf you have any questions related to the code, please open an issue in this repository or contact us via email (see corresponding author in the publication).\u003c/strong\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-data\" class=\"anchor\" href=\"#data\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData\u003c/h2\u003e\n\u003cp\u003eThe raw data is available on OpenNeuro as the dataset \u003ccode\u003eds003834\u003c/code\u003e: \u003ca href=\"https://openneuro.org/datasets/ds003834\" rel=\"nofollow\"\u003ehttps://openneuro.org/datasets/ds003834\u003c/a\u003e.\nIf you use the data, please cite the corresponding publication:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eVisconti di Oleggio Castello, M., Haxby, J. V., \u0026amp; Gobbini, M. I. Shared neural codes for visual and semantic information about familiar faces in a common representational space. \u003cem\u003eProceedings of the National Academy of Sciences\u003c/em\u003e (2021). \u003ca href=\"https://doi.org/10.5281/zenodo.5645003\" rel=\"nofollow\"\u003ehttps://doi.org/10.5281/zenodo.5645003\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-repository-structure\" class=\"anchor\" href=\"#repository-structure\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRepository structure\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"singularity\"\u003e\u003ccode\u003esingularity\u003c/code\u003e\u003c/a\u003e contains code to generate the singularity image that was used to run all analyses\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"src\"\u003e\u003ccode\u003esrc\u003c/code\u003e\u003c/a\u003e contains a python package (\u003ccode\u003efamfaceangles\u003c/code\u003e) containing various general functions used in the analysis scripts\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts\"\u003e\u003ccode\u003escripts\u003c/code\u003e\u003c/a\u003e contains the scripts used for the analyses reported in the manuscript\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn the following sections we describe each file in detail.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity\u003c/h3\u003e\n\u003cp\u003eThis folder contains the following files\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSingularity-neurodocker\u003c/code\u003e: a singularity definition file for the image used in all analyses\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecreate-image.sh\u003c/code\u003e: a bash script to generate the singularity image. Note that the syntax used in this script is for singularity versions 2.X. New versions of singularity will need a different syntax, and they have not been tested with this definition file.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-src\" class=\"anchor\" href=\"#src\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esrc\u003c/h3\u003e\n\u003cp\u003eThis folder contains the python package \u003ccode\u003efamfaceangles\u003c/code\u003e with helper functions used in the analysis scripts. It can be installed as any other python package (e.g., \u003ccode\u003epip install -e src\u003c/code\u003e)\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-scripts\" class=\"anchor\" href=\"#scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003escripts\u003c/h3\u003e\n\u003cp\u003eThis folder contains the following scripts\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-preprocessing\" class=\"anchor\" href=\"#preprocessing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreprocessing\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/00preproc/run-fmriprep103-singularity.sh\"\u003e\u003ccode\u003e00preproc/run-fmriprep103-singularity.sh\u003c/code\u003e\u003c/a\u003e calls fmriprep to preprocess the data.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/00preproc/prepare-fsaverage6-suma.sh\"\u003e\u003ccode\u003e00preproc/prepare-fsaverage6-suma.sh\u003c/code\u003e\u003c/a\u003e prepares the \u003cem\u003efsaverage6\u003c/em\u003e surfaces to be used with SUMA.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/00preproc/make-maskmedial-fsaverage6.sh\"\u003e\u003ccode\u003e00preproc/make-maskmedial-fsaverage6.sh\u003c/code\u003e\u003c/a\u003e creates a mask in NIML format to remove medial nodes in \u003cem\u003efsaverage6\u003c/em\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-hyperalignment\" class=\"anchor\" href=\"#hyperalignment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHyperalignment\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/01hyperalignment/run_preproc_hpal.py\"\u003e\u003ccode\u003e01hyperalignment/run_preproc_hpal.py\u003c/code\u003e\u003c/a\u003e preprocesses the data from \u003cem\u003eThe Grand Budapest Hotel\u003c/em\u003e to be used for hyperalignment.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/01hyperalignment/run_preproc_hpal_singularity.sh\"\u003e\u003ccode\u003e01hyperalignment/run_preproc_hpal_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/01hyperalignment/run_hpal.py\"\u003e\u003ccode\u003e01hyperalignment/run_hpal.py\u003c/code\u003e\u003c/a\u003e runs the hyperalignment algorithm.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/01hyperalignment/run_hpal_singularity.sh\"\u003e\u003ccode\u003e01hyperalignment/run_hpal_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/01hyperalignment/apply_hpal.py\"\u003e\u003ccode\u003e01hyperalignment/apply_hpal.py\u003c/code\u003e\u003c/a\u003e applies the hyperalignment transformations to the input data.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/01hyperalignment/apply_hpal_singularity.sh\"\u003e\u003ccode\u003e01hyperalignment/apply_hpal_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-glm\" class=\"anchor\" href=\"#glm\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGLM\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/02glm/run_glm_model.py\"\u003e\u003ccode\u003e02glm/run_glm_model.py\u003c/code\u003e\u003c/a\u003e runs a GLM model for the face perception experiment using the specified model.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/02glm/run_glm_blockrun_singularity.sh\"\u003e\u003ccode\u003e02glm/run_glm_blockrun_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity on anatomically-aligned data and a BLOCK model estimated within each run.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/02glm/run_glm_blockrun_hpal_singularity.sh\"\u003e\u003ccode\u003e02glm/run_glm_blockrun_hpal_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity on hyperaligned data and a BLOCK model estimated within each run.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/02glm/run_glm_localizer_bwsj.py\"\u003e\u003ccode\u003e02glm/run_glm_localizer_bwsj.py\u003c/code\u003e\u003c/a\u003e runs the GLM model for the hyperaligned localizer data.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/02glm/run_glm_localizer_bwsj_singularity.sh\"\u003e\u003ccode\u003e02glm/run_glm_localizer_bwsj_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/02glm/workflows.py\"\u003e\u003ccode\u003e02glm/workflows.py\u003c/code\u003e\u003c/a\u003e contains additional functions and Nipype workflows required to run the GLM models.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-mvpa\" class=\"anchor\" href=\"#mvpa\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMVPA\u003c/h4\u003e\n\u003cp\u003eBetween-subject searchlight decoding\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_bwsbj.py\"\u003e\u003ccode\u003e03mvpa/run_sl_bwsbj.py\u003c/code\u003e\u003c/a\u003e runs between-subject whole-brain searchlight decoding.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_bwsbj_singularity.sh\"\u003e\u003ccode\u003e03mvpa/run_sl_bwsbj_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity on hyperaligned data.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_bwsbj_fsaverage6_singularity.sh\"\u003e\u003ccode\u003e03mvpa/run_sl_bwsbj_fsaverage6_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity on anatomically-aligned data.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eBetween-subject ROI decoding\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_bwsj_roi_v2.py\"\u003e\u003ccode\u003e03mvpa/run_bwsj_roi_v2.py\u003c/code\u003e\u003c/a\u003e runs between-subject decoding analyses within manually defined ROIs.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_bwsj_roi_v2_singularity.sh\"\u003e\u003ccode\u003e03mvpa/run_bwsj_roi_v2_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_roi.py\"\u003e\u003ccode\u003e03mvpa/run_sl_roi.py\u003c/code\u003e\u003c/a\u003e contains some additional functions needed for ROI decoding.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eWithin-subject searchlight decoding\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl.py\"\u003e\u003ccode\u003e03mvpa/run_sl.py\u003c/code\u003e\u003c/a\u003e runs within-subject whole-brain searchlight decoding.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_blockrun_singularity.sh\"\u003e\u003ccode\u003e03mvpa/run_sl_blockrun_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_blockrun_permutation_singularity.sh\"\u003e\u003ccode\u003e03mvpa/run_sl_blockrun_permutation_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity to generate permuted maps.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eCross-validated RSA\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_cvrsa.py\"\u003e\u003ccode\u003e03mvpa/run_sl_cvrsa.py\u003c/code\u003e\u003c/a\u003e runs within-subject searchlight cross-validated RSA.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_cvrsa_blockrun_singularity.sh\"\u003e\u003ccode\u003e03mvpa/run_sl_cvrsa_blockrun_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_rsa_target.py\"\u003e\u003ccode\u003e03mvpa/run_rsa_target.py\u003c/code\u003e\u003c/a\u003e runs model-based RSA by comparing the cross-validated brain RDMs with model RDMs.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_rsa_target_singularity.sh\"\u003e\u003ccode\u003e03mvpa/run_rsa_target_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-statistics\" class=\"anchor\" href=\"#statistics\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStatistics\u003c/h4\u003e\n\u003cp\u003ePermutation testing for between-subject MVPC\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/run_permtest_bootstrap.py\"\u003e\u003ccode\u003e04stat/run_permtest_bootstrap.py\u003c/code\u003e\u003c/a\u003e runs permutation testing with bootstrapping.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/run_permtest_bwsbj_bootstrap_singularity.sh\"\u003e\u003ccode\u003e04stat/run_permtest_bwsbj_bootstrap_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/make_fam-diff_bwsj_identity.sh\"\u003e\u003ccode\u003e04stat/make_fam-diff_bwsj_identity.sh\u003c/code\u003e\u003c/a\u003e creates difference maps (familiar - visual) from precomputed accuracy maps.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/run_permtest_famdiff_bwsbj_bootstrap_singularity.sh\"\u003e\u003ccode\u003e04stat/run_permtest_famdiff_bwsbj_bootstrap_singularity.sh\u003c/code\u003e\u003c/a\u003e runs permutation testing on the familiar - visual difference maps.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/make-maskfdrval-diff-identity-bsmvpc.sh\"\u003e\u003ccode\u003e04stat/make-maskfdrval-diff-identity-bsmvpc.sh\u003c/code\u003e\u003c/a\u003e makes a mask that highlights significant nodes for the familiar - visual difference map.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThreshold-Free Cluster Enhancement for within-subject MVPC and RSA\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/run_tfce_fsaverage6_cosmo.m\"\u003e\u003ccode\u003e04stat/run_tfce_fsaverage6_cosmo.m\u003c/code\u003e\u003c/a\u003e runs the CoSMoMVPA TFCE code for within-subject MVPC.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/run_tfce_fsaverage6_cosmo_blockrun_hpalsubjs_singularity.sh\"\u003e\u003ccode\u003e04stat/run_tfce_fsaverage6_cosmo_blockrun_hpalsubjs_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/make_thresholded_avg_blockrun_fsaverage6-hpal.sh\"\u003e\u003ccode\u003e04stat/make_thresholded_avg_blockrun_fsaverage6-hpal.sh\u003c/code\u003e\u003c/a\u003e creates thresholded maps based on the TFCE values.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/make_thresholded_avg_blockrun_fsaverage6-hpal_all.sh\"\u003e\u003ccode\u003e04stat/make_thresholded_avg_blockrun_fsaverage6-hpal_all.sh\u003c/code\u003e\u003c/a\u003e calls the previous script for all comparisons of interest.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/run_tfce_cvrsa_fsaverage6_cosmo.m\"\u003e\u003ccode\u003e04stat/run_tfce_cvrsa_fsaverage6_cosmo.m\u003c/code\u003e\u003c/a\u003e runs the CoSMoMVPA TFCE code for within-subject cross-validated RSA.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/run_tfce_cvrsa_fsaverage6_cosmo_singularity.sh\"\u003e\u003ccode\u003e04stat/run_tfce_cvrsa_fsaverage6_cosmo_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/make_thresholded_avg_cvrsa_fsaverage6.sh\"\u003e\u003ccode\u003e04stat/make_thresholded_avg_cvrsa_fsaverage6.sh\u003c/code\u003e\u003c/a\u003e creates thresholded maps based on the TFCE values.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/make_thresholded_avg_cvrsa_fsaverage6_singularity.sh\"\u003e\u003ccode\u003e04stat/make_thresholded_avg_cvrsa_fsaverage6_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/make_thresholded_avg_cvrsa_fsaverage6_all.sh\"\u003e\u003ccode\u003e04stat/make_thresholded_avg_cvrsa_fsaverage6_all.sh\u003c/code\u003e\u003c/a\u003e calls the previous script for all comparisons of interest.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-visualization\" class=\"anchor\" href=\"#visualization\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVisualization\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/05viz/drive-suma-blockrun-fsaverage6-group-hpal.sh\"\u003e\u003ccode\u003e05viz/drive-suma-blockrun-fsaverage6-group-hpal.sh\u003c/code\u003e\u003c/a\u003e shows an example call to \u003ccode\u003eDriveSuma\u003c/code\u003e to generate surface plots.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-acknowledgements\" class=\"anchor\" href=\"#acknowledgements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgements\u003c/h2\u003e\n\u003cp\u003eThis work was supported by the NSF grant #1835200 to M. Ida Gobbini. We would like to thank Swaroop Guntupalli, Yaroslav Halchenko, Carlo Cipolli, and the members of the Gobbini and Haxby lab for helpful discussions during the development of this project.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1541579046.0
+ "updated_at": 1636025062.0
},
{
"data_format": 2,
@@ -9691,13 +9113,13 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "ResearchIT/scanindel",
+ "full_name": "truatpasteurdotfr/singularity-docker-centos7-openapi-basekit",
"latest_release": null,
- "readme": "\u003ch3\u003e\u003ca id=\"user-content-scanindel-singularity-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#scanindel-singularity-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eScanIndel Singularity recipe\u003c/h3\u003e\n\u003cp\u003eScanIndel is a python program to detect indels (insertions and deletions) from NGS data by re-align and de novo assemble soft clipped reads.\u003c/p\u003e\n\u003cp\u003eOriginal repository \u003ca href=\"https://github.com/cauyrd/ScanIndel\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-docker-c7-openapi-basekit-\" class=\"anchor\" href=\"#docker-c7-openapi-basekit-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edocker-c7-openapi-basekit \u003ca href=\"https://github.com/truatpasteurdotfr/docker-c7-openapi-basekit/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/docker-c7-openapi-basekit/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1539032220.0
+ "updated_at": 1635355882.0
},
{
"data_format": 2,
@@ -9705,281 +9127,277 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "sbutcher/container-setc",
+ "full_name": "anoyaro84/snakemake_ChIPseq",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-container-setc\" class=\"anchor\" aria-hidden=\"true\" href=\"#container-setc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainer-setc\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-chip-seq-analysis-pipeline-based-on-snakemake\" class=\"anchor\" href=\"#chip-seq-analysis-pipeline-based-on-snakemake\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eChIP-seq analysis pipeline based on snakemake\u003c/h1\u003e\n\u003cp\u003eThis is an snakemake-based Peak calling pipeline used in Zwart lab at the Netherlands Cancer Institute.\nThe pipeline obtains ChIP-seq data from diverse sources (remote/local path or GEO) and process them accordingly to produce peak lists in bed format and coverage profiles in tdf format.\u003c/p\u003e\n\u003cp\u003eRoughly, the pipeline takes the following steps to produce the outcome:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDownloading raw data (either bam/fastq files) from the specified locations (local, remote, or GEO) in DataList.csv\u003c/li\u003e\n\u003cli\u003eAlignment with bwa-mem (in case of fastq files)\u003c/li\u003e\n\u003cli\u003eMarking duplicate reads with picard\u003c/li\u003e\n\u003cli\u003eRemoving low-quality reads (retain reads with mapping quality \u0026gt; 20)\u003c/li\u003e\n\u003cli\u003ePeak calling with MACS1.4/MACS2/DFilter (support more than one peak callers)\u003c/li\u003e\n\u003cli\u003eTaking intersection between the peaks\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eNote that PeakPairs.csv is used to specify ChIP-seq vs input pairs, and config.yaml is used for specifiying optional parameters in softwares.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eThe pipeline is preliminary used in linux environment with conda/singularity available. Singularity is used only for DFilter (one of two peak callers used) within the pipeline. Currently, the pipeline is tested with conda version 4.5.4 and singularity version 2.5.1.\u003c/p\u003e\n\u003cp\u003eFor downloading repository \u0026amp; creating evnironment:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/anoyaro84/snakemake_ChIPseq\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e snakemake_ChIPseq\nconda env create --file env/snakemake.yaml\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e install phantompeak tools\u003c/span\u003e\ngit submodule init\ngit submodule update\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe most of softwares used in the pipeline is installed by conda or excuted in wrapper.\nOnly exception is the phantompeak, the software used for estimating the fragment length that can be used by MACS2.\nPhantompeak tools is included as a submodule, for which you can install with the last two commands.\u003c/p\u003e\n\u003cp\u003eWe recommend to run the pipeline from a different location than pipeline path, like below:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esnakemake -s PATH_TO_PIPELINE/Snakefile --use-conda --use-singularity --cores=24\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eWith --use-conda option, the pipeline will create environments to run rules based on .yaml files in env/.\nThe --use-singulairty option applies only to DFilter peak caller. The singularity container holds a virtual environment of Ubuntu with DFilter installed.\u003c/p\u003e\n\u003cp\u003eNote that the pipeline assumes that there is the following three files available at the location where the pipeline is executed:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003econfig.yaml\u003c/li\u003e\n\u003cli\u003eDataList.csv\u003c/li\u003e\n\u003cli\u003ePeakPairs.csv\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSee below for more details on how to prepare these input files.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-preparing-input-files\" class=\"anchor\" href=\"#preparing-input-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreparing Input files\u003c/h2\u003e\n\u003cp\u003eFor DatList.csv, it is expected to have the following structure (in csv format):\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eID\u003c/th\u003e\n\u003cth\u003eSource\u003c/th\u003e\n\u003cth\u003ePath\u003c/th\u003e\n\u003cth\u003eFormat\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eIdentifier of each sequencing data\u003c/td\u003e\n\u003ctd\u003eSource of the files, can either be remote (forge), local, or GEO\u003c/td\u003e\n\u003ctd\u003e(local/remote) path to the file. (ignored if Source is GEO)\u003c/td\u003e\n\u003ctd\u003eEither fastq or bam (ignored if Source is GEO)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eThe pipeline will take either fastq/bam files from GEO, remote/local locations based on the table above.\u003c/p\u003e\n\u003cp\u003eFor GEO, GSM ID is required for ID, which will be used as an quiry to GEO database. For remote/local files, ID should be a part of the file name. The pipeline greps bam/fastq files with ID on the specified path. The pipeline grabs bam/fastq files with ID on the specified path. If there is none or multiple files with the specified ID on the path, it will give an error.\u003c/p\u003e\n\u003cp\u003eFor PeakPairs.csv, signal and input pairs need to be specified in the following format (in csv):\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eSignal\u003c/th\u003e\n\u003cth\u003eInput\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eID of ChIP-seq data\u003c/td\u003e\n\u003ctd\u003eID of Input data\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eNote that IDs used in the PeakPairs.csv should be available in ID column of DataList.csv.\u003c/p\u003e\n\u003cp\u003eFor config.yaml, you can copy it from this repository and modify the parameters based on your need.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1538491698.0
+ "updated_at": 1534943715.0
},
{
"data_format": 2,
- "description": null,
+ "description": "This is a repo which holds the codebase for our class project on NLP.",
"filenames": [
- "Singularity.ubuntu"
+ "singularity/Singularity.debian-unstable-amd64",
+ "singularity/Singularity.debian-unstable-i386"
],
- "full_name": "UNM-CARC/heudiconv",
+ "full_name": "ravisha2396/NLPProject",
"latest_release": null,
- "readme": "\u003cp\u003eNot much\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"/logo_assets/vowpal-wabbits-github-logo@3x.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"/logo_assets/vowpal-wabbits-github-logo@3x.png\" height=\"auto\" width=\"100%\" alt=\"Vowpal Wabbit\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://dev.azure.com/vowpalwabbit/Vowpal%20Wabbit/_build/latest?definitionId=23\u0026amp;branchName=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/58819a50d93dd6bfee30aecaa0f72d7e66623fd462c5ac37bdc427f3058ae723/68747470733a2f2f696d672e736869656c64732e696f2f617a7572652d6465766f70732f6275696c642f766f7770616c7761626269742f33393334313133632d396532622d346462632d383937322d3732616239623962343334322f32333f6c6162656c3d4c696e75782532306275696c64266c6f676f3d417a7572652532304465766f7073\" alt=\"Linux build status\" data-canonical-src=\"https://img.shields.io/azure-devops/build/vowpalwabbit/3934113c-9e2b-4dbc-8972-72ab9b9b4342/23?label=Linux%20build\u0026amp;logo=Azure%20Devops\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://dev.azure.com/vowpalwabbit/Vowpal%20Wabbit/_build/latest?definitionId=14\u0026amp;branchName=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d539f0bca2e4c6aca53fbbbf2a4efb7be920f95b698171172d1af967aa5025d7/68747470733a2f2f696d672e736869656c64732e696f2f617a7572652d6465766f70732f6275696c642f766f7770616c7761626269742f33393334313133632d396532622d346462632d383937322d3732616239623962343334322f31343f6c6162656c3d57696e646f77732532306275696c64266c6f676f3d417a7572652532304465766f7073\" alt=\"Windows build status\" data-canonical-src=\"https://img.shields.io/azure-devops/build/vowpalwabbit/3934113c-9e2b-4dbc-8972-72ab9b9b4342/14?label=Windows%20build\u0026amp;logo=Azure%20Devops\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://dev.azure.com/vowpalwabbit/Vowpal%20Wabbit/_build/latest?definitionId=22\u0026amp;branchName=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/214f203a660ee423d4694b193d4839c0bcd320402462f1030b0d25f33588b0a9/68747470733a2f2f696d672e736869656c64732e696f2f617a7572652d6465766f70732f6275696c642f766f7770616c7761626269742f33393334313133632d396532622d346462632d383937322d3732616239623962343334322f32323f6c6162656c3d4d61634f532532306275696c64266c6f676f3d417a7572652532304465766f7073\" alt=\"MacOS build status\" data-canonical-src=\"https://img.shields.io/azure-devops/build/vowpalwabbit/3934113c-9e2b-4dbc-8972-72ab9b9b4342/22?label=MacOS%20build\u0026amp;logo=Azure%20Devops\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://codecov.io/gh/VowpalWabbit/vowpal_wabbit\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/32898f10a7c61069a273521aea6b4becacfc4d776e96dd0e747f03e286b1b824/68747470733a2f2f636f6465636f762e696f2f67682f566f7770616c5761626269742f766f7770616c5f7761626269742f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"codecov\" data-canonical-src=\"https://codecov.io/gh/VowpalWabbit/vowpal_wabbit/branch/master/graph/badge.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://lgtm.com/projects/g/JohnLangford/vowpal_wabbit/alerts/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4e389698afd7de10a602e5e1a705d05c192a37638521b67a3ca2fac8d937b69e/68747470733a2f2f696d672e736869656c64732e696f2f6c67746d2f616c657274732f672f4a6f686e4c616e67666f72642f766f7770616c5f7761626269742e7376673f6c6f676f3d6c67746d266c6f676f57696474683d3138\" alt=\"Total Alerts\" data-canonical-src=\"https://img.shields.io/lgtm/alerts/g/JohnLangford/vowpal_wabbit.svg?logo=lgtm\u0026amp;logoWidth=18\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://gitter.im/VowpalWabbit\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/64efc8a80a3424a0595bf90fcae3ee2ef1878436f3c22137aef60e11f4ca9126/68747470733a2f2f6261646765732e6769747465722e696d2f566f7770616c5761626269742e737667\" alt=\"Gitter chat\" data-canonical-src=\"https://badges.gitter.im/VowpalWabbit.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis is the \u003cem\u003eVowpal Wabbit\u003c/em\u003e fast online learning code.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-vowpal-wabbit\" class=\"anchor\" href=\"#why-vowpal-wabbit\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy Vowpal Wabbit?\u003c/h2\u003e\n\u003cp\u003eVowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning. There is a specific focus on reinforcement learning with several contextual bandit algorithms implemented and the online nature lending to the problem well. Vowpal Wabbit is a destination for implementing and maturing state of the art algorithms with performance in mind.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eInput Format.\u003c/strong\u003e The input format for the learning algorithm is substantially more flexible than might be expected. Examples can have features consisting of free form text, which is interpreted in a bag-of-words way. There can even be multiple sets of free form text in different namespaces.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eSpeed.\u003c/strong\u003e The learning algorithm is fast -- similar to the few other online algorithm implementations out there. There are several optimization algorithms available with the baseline being sparse gradient descent (GD) on a loss function.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eScalability.\u003c/strong\u003e This is not the same as fast. Instead, the important characteristic here is that the memory footprint of the program is bounded independent of data. This means the training set is not loaded into main memory before learning starts. In addition, the size of the set of features is bounded independent of the amount of training data using the hashing trick.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eFeature Interaction.\u003c/strong\u003e Subsets of features can be internally paired so that the algorithm is linear in the cross-product of the subsets. This is useful for ranking problems. The alternative of explicitly expanding the features before feeding them into the learning algorithm can be both computation and space intensive, depending on how it\u0027s handled.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/VowpalWabbit/vowpal_wabbit/wiki\"\u003eVisit the wiki to learn more.\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-getting-started\" class=\"anchor\" href=\"#getting-started\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003cp\u003eFor the most up to date instructions for getting started on Windows, MacOS or Linux \u003ca href=\"https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Getting-started\"\u003eplease see the wiki\u003c/a\u003e. This includes:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Getting-started\"\u003eInstalling with a package manager\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Dependencies\"\u003eDependencies\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Building\"\u003eBuilding\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Tutorial\"\u003eTutorial\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1536784012.0
+ "updated_at": 1636245564.0
},
{
"data_format": 2,
- "description": null,
+ "description": "repo hosting personal example scripts and notebooks for various pieces of software by OPIG",
"filenames": [
- "ext/Singularity"
+ "webdevel/ubuntu/.singularity.d/Singularity"
],
- "full_name": "OSC/bc_osc_rshiny",
+ "full_name": "broncio123/software_hands-on",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-wip-batch-connect---osc-shiny-app-launcher\" class=\"anchor\" aria-hidden=\"true\" href=\"#wip-batch-connect---osc-shiny-app-launcher\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e[WIP] Batch Connect - OSC Shiny App Launcher\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5e71a5a07e8e6e15f922edb76b5fb68e7ee6087e336807c38095861b8c7f5fc2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f7368696e795f6c61756e636865722e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5e71a5a07e8e6e15f922edb76b5fb68e7ee6087e336807c38095861b8c7f5fc2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f7368696e795f6c61756e636865722e737667\" alt=\"GitHub Release\" data-canonical-src=\"https://img.shields.io/github/release/osc/shiny_launcher.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA Batch Connect app designed for OSC OnDemand that launches a Shiny App within\nan Owens batch job.\u003c/p\u003e\n\u003cp\u003eThe Shiny app is included a submodule and each deployment can modified which\nShiny app to deploy using git config to specify the URL for the submodule. This\nway the launcher code can be reused for multiple apps but the launcher and the\napp itself can be managed separately.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eThis Batch Connect app requires the following software be installed on the\n\u003cstrong\u003ecompute nodes\u003c/strong\u003e that the batch job is intended to run on (\u003cstrong\u003eNOT\u003c/strong\u003e the\nOnDemand node):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://shiny.rstudio.com/\" rel=\"nofollow\"\u003eShiny\u003c/a\u003e x.y.z+\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.tacc.utexas.edu/research-development/tacc-projects/lmod\" rel=\"nofollow\"\u003eLmod\u003c/a\u003e 6.0.1+ or any other \u003ccode\u003emodule purge\u003c/code\u003e and \u003ccode\u003emodule load \u0026lt;modules\u0026gt;\u003c/code\u003e based\nCLI used to load appropriate environments within the batch job\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install\" class=\"anchor\" aria-hidden=\"true\" href=\"#install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eTODO\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eAgain, you do not need to restart the app as it isn\u0027t a Passenger app.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eFork it ( \u003ca href=\"https://github.com/OSC/bc_osc_example_shiny/fork\"\u003ehttps://github.com/OSC/bc_osc_example_shiny/fork\u003c/a\u003e )\u003c/li\u003e\n\u003cli\u003eCreate your feature branch (\u003ccode\u003egit checkout -b my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCommit your changes (\u003ccode\u003egit commit -am \u0027Add some feature\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003ePush to the branch (\u003ccode\u003egit push origin my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a new Pull Request\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003cp\u003esoftware_hands-on\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1628181440.0
+ "updated_at": 1638391053.0
},
{
"data_format": 2,
- "description": "Adapt the BEaST skull stripping method for 7T MRI as a BIDS app",
+ "description": "Based on the original Sregistry: https://github.com/singularityhub/sregistry - Deploy the Singularity Sregistry as rootless containers with podman-compose. Also added data persistence for the PostgreSQL database and rootless setup for SSL and PAM authentication.",
"filenames": [
- "Singularity.v0.0.1a"
+ "Singularity"
],
- "full_name": "Martybird/7TBEaST",
+ "full_name": "hashkeks/sregistry-podman-compose",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-7tbeast\" class=\"anchor\" aria-hidden=\"true\" href=\"#7tbeast\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e7TBEaST\u003c/h1\u003e\n\u003cp\u003eAdapt the BEaST skull stripping method for 7T MRI as a BIDS app\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-registry-server---podman-compose-edition\" class=\"anchor\" href=\"#singularity-registry-server---podman-compose-edition\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Registry Server - podman-compose edition\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-is-podman-compose\" class=\"anchor\" href=\"#what-is-podman-compose\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is podman-compose\u003c/h2\u003e\n\u003cp\u003ePodman-compose is the podman equivalent to docker-compose, using the podman container engine. It allows for the creation of rootless containers running in user namespace. For more information see \u003ca href=\"https://podman.io/\" rel=\"nofollow\"\u003ehttps://podman.io/\u003c/a\u003e and \u003ca href=\"https://github.com/containers/podman-compose\"\u003ehttps://github.com/containers/podman-compose\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-are-the-differences-to-the-original-singularity-registry-server\" class=\"anchor\" href=\"#what-are-the-differences-to-the-original-singularity-registry-server\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat are the differences to the original Singularity Registry Server\u003c/h2\u003e\n\u003cp\u003eThis version of the Singularity Registry Server is set-up to work in a non-root environment.\nI \u003cstrong\u003edid not\u003c/strong\u003e change the code of the applications.\nI \u003cstrong\u003edid\u003c/strong\u003e change the folder structure and the docker-compose.yml file and provide documentation to make this setup run with podman-compose.\nThis setup in it\u0027s current configuration is meant to be run with valid SSL certificates. You can change that by deactivating the corresponding settings in the docker-compose.yml and shub/settings/config.py files.\nIn the end you still have to make your configurations (like setting your services addresses, renaming your instance, enabling authentication, etc.) according to the original documentation which you can find at \u003ca href=\"https://singularityhub.github.io/sregistry/\" rel=\"nofollow\"\u003ehttps://singularityhub.github.io/sregistry/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe differences in detail:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eChanged the docker-compose.yml\n\u003cul\u003e\n\u003cli\u003eVolume paths are not taken from uwsgi directly, but are defined per service. Consquence: You don\u0027t need a nginx user on your host system anymore and don\u0027t have permissions problems after deactivating PAM again.\u003c/li\u003e\n\u003cli\u003eVolume mapping for PAM files changed.\u003c/li\u003e\n\u003cli\u003eVolume mapping for SSL certs changed.\u003c/li\u003e\n\u003cli\u003eVolume mapping for PostgreSQL database added, so it can save data persistently without initiating a backup procedure.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eA PAM folder with a \u0027shadow\u0027 file was added. You need to copy the information of configured users from your /etc/shadow into this file since rootless containers do not have access to the original /etc/shadow.\u003c/li\u003e\n\u003cli\u003eAn SSL directory with subdirectories was added to save and access cert files in the rootless environment.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-to-do-besides-doing-the-usual-configuration\" class=\"anchor\" href=\"#what-to-do-besides-doing-the-usual-configuration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat to do besides doing the usual configuration\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eYou \u003cstrong\u003eneed\u003c/strong\u003e to change the ownership of the sregistry/minio-images folder to the user that is used inside the minio container with the UID and GID 1.\nTo do so, execute the following command inside the sregistry folder:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epodman unshare chown -R 1:1 minio-images\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis will change the ownership to the UID that will be used in user namespace and represents the user with UID 1 inside the minio container.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eYou can put your SSL cert and key into the according folders in the sregistry/ssl folder\u003c/li\u003e\n\u003cli\u003eYou can put your user info from /etc/shadow into sregistry/PAM/shadow\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-who-worked-on-this\" class=\"anchor\" href=\"#who-worked-on-this\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWho worked on this\u003c/h3\u003e\n\u003ctable\u003e\n \u003ctr\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/hashkeks\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/34633191?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eCedric Casper\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/hashkeks\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/kkaftan\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/74317121?v=4\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eKevin Kaftan\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/kkaftan\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003c/tr\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-the-following-section-is-taken-from-the-original-sregistry-repo-itself-and-does-not-have-to-do-with-our-changes\" class=\"anchor\" href=\"#the-following-section-is-taken-from-the-original-sregistry-repo-itself-and-does-not-have-to-do-with-our-changes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThe following section is taken from the original Sregistry repo itself and does not have to do with our changes.\u003c/h2\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-registry-server\" class=\"anchor\" href=\"#singularity-registry-server\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Registry Server\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"http://joss.theoj.org/papers/050362b7e7691d2a5d0ebed8251bc01e\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/77382cd0ef59a3538ed515392195d8541e46ce977b42c3838e930e6ccf221bfb/68747470733a2f2f6a6f73732e7468656f6a2e6f72672f7061706572732f30353033363262376537363931643261356430656265643832353162633031652f7374617475732e737667\" alt=\"status\" data-canonical-src=\"https://joss.theoj.org/papers/050362b7e7691d2a5d0ebed8251bc01e/status.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/singularityhub/sregistry/actions?query=branch%3Amaster+workflow%3Asregistry-ci\"\u003e\u003cimg src=\"https://github.com/singularityhub/sregistry/workflows/sregistry-ci/badge.svg?branch=master\" alt=\"GitHub actions status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://doi.org/10.5281/zenodo.1012531\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/411f713db9ba01edfcb60386aaa1dff3e4ed4464707b95d889900a88d8f54936/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e313031323533312e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.1012531.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://fair-software.eu\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2f835bc9b4458adb32cf016ec029863ab35c3b89d29ecc3a14494909424d38b5/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f666169722d2d736f6674776172652e65752d2545322539372538462532302532302545322539372538462532302532302545322539372538422532302532302545322539372538462532302532302545322539372538422d6f72616e6765\" alt=\"fair-software.eu\" data-canonical-src=\"https://img.shields.io/badge/fair--software.eu-%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8B%20%20%E2%97%8F%20%20%E2%97%8B-orange\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003cp\u003e\u003ca href=\"#contributors-\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/194f21da62ea53d158311e06473f9ec192dea9c1f3f6423c9c3f12aff583b546/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f616c6c5f636f6e7472696275746f72732d32302d6f72616e67652e7376673f7374796c653d666c61742d737175617265\" alt=\"All Contributors\" data-canonical-src=\"https://img.shields.io/badge/all_contributors-20-orange.svg?style=flat-square\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://singularityhub.github.io/sregistry\" rel=\"nofollow\"\u003eDocumentation\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributors\" class=\"anchor\" href=\"#contributors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\n\n\n\u003ctable\u003e\n \u003ctr\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://vsoch.github.io\" rel=\"nofollow\"\u003e\u003cimg src=\"https://avatars0.githubusercontent.com/u/814322?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eVanessasaurus\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=vsoch\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=vsoch\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"tschoonj.github.io\"\u003e\u003cimg src=\"https://avatars0.githubusercontent.com/u/65736?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eTom Schoonjans\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=tschoonj\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=tschoonj\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"antoinecully.com\"\u003e\u003cimg src=\"https://avatars3.githubusercontent.com/u/6448924?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eAntoine Cully\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=Aneoshun\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=Aneoshun\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://dctrud.sdf.org\" rel=\"nofollow\"\u003e\u003cimg src=\"https://avatars1.githubusercontent.com/u/4522799?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eDavid Trudgian\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=dctrud\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/serlophug\"\u003e\u003cimg src=\"https://avatars3.githubusercontent.com/u/20574493?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eSergio L\u00f3pez Huguet\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=serlophug\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=serlophug\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/jbd\"\u003e\u003cimg src=\"https://avatars2.githubusercontent.com/u/169483?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003ejbd\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=jbd\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=jbd\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"http://alex.hirzel.us/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://avatars3.githubusercontent.com/u/324152?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eAlex Hirzel\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=alhirzel\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=alhirzel\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"http://tangiblecomputationalbiology.blogspot.com\" rel=\"nofollow\"\u003e\u003cimg src=\"https://avatars0.githubusercontent.com/u/207407?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eSteffen M\u00f6ller\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=smoe\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=smoe\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"www.onerussian.com\"\u003e\u003cimg src=\"https://avatars3.githubusercontent.com/u/39889?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eYaroslav Halchenko\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=yarikoptic\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=yarikoptic\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"http://sourceforge.net/u/victorsndvg/profile/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://avatars3.githubusercontent.com/u/6474985?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003evictorsndvg\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=victorsndvg\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=victorsndvg\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"arfon.org\"\u003e\u003cimg src=\"https://avatars1.githubusercontent.com/u/4483?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eArfon Smith\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=arfon\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=arfon\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://ransomwareroundup.com\" rel=\"nofollow\"\u003e\u003cimg src=\"https://avatars3.githubusercontent.com/u/9367754?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eBrie Carranza\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=bbbbbrie\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=bbbbbrie\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://orcid.org/0000-0002-6178-3585\" rel=\"nofollow\"\u003e\u003cimg src=\"https://avatars1.githubusercontent.com/u/145659?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eDan Fornika\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=dfornika\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=dfornika\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/RonaldEnsing\"\u003e\u003cimg src=\"https://avatars2.githubusercontent.com/u/8299064?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eRonald Ensing\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=RonaldEnsing\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=RonaldEnsing\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/vladdoster\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/10052309?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003evladdoster\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=vladdoster\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/pini-gh\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/1241814?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003epini-gh\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=pini-gh\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/0nebody\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/26727168?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003e0nebody\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=0nebody\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/dtrudg\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/4522799?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003edtrudg\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=dtrudg\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/craigwindell\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/44250868?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003ecraigwindell\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=craigwindell\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/hashkeks\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/34633191?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eCedric\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=hashkeks\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003c/tr\u003e\n\u003c/table\u003e\n\n\n\n\u003ch2\u003e\n\u003ca id=\"user-content-what-is-singularity-registry\" class=\"anchor\" href=\"#what-is-singularity-registry\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is Singularity Registry\u003c/h2\u003e\n\u003cp\u003eSingularity Registry Server is a server to provide management and storage of\nSingularity images for an institution or user to deploy locally.\nIt does not manage building but serves endpoints to obtain and save containers.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-images-included\" class=\"anchor\" href=\"#images-included\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImages Included\u003c/h2\u003e\n\u003cp\u003eSingularity Registry consists of several Docker images, and they are integrated\nto work together using \u003ca href=\"docker-compose.yml\"\u003edocker-compose.yml\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe images are the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003evanessa/sregistry\u003c/strong\u003e: is the main uWSGI application, which serves a Django (python-based) application.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003enginx\u003c/strong\u003e: pronounced (engine-X) is the webserver. The starter application is configured for HTTP. However, you should follow our \u003ca href=\"https://singularityhub.github.io/sregistry/docs/install/server#ssl\" rel=\"nofollow\"\u003einstructions\u003c/a\u003e to set up HTTPS properly. Note that we build a custom NGINX image that takes advantage of the \u003ca href=\"https://www.nginx.com/resources/wiki/modules/upload/\" rel=\"nofollow\"\u003enginx-upload-module\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eworker\u003c/strong\u003e: is the same uWSGI image, but with a running command for queueing jobs and processing them in the background. These jobs run via \u003ca href=\"https://github.com/rq/django-rq\"\u003edjango-rq\u003c/a\u003e backed by a\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eredis\u003c/strong\u003e: database to organize the jobs themselves.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003escheduler\u003c/strong\u003e jobs can be scheduled using the scheduler.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor more information about Singularity Registry Server, please reference the\n\u003ca href=\"https://singularityhub.github.io/sregistry\" rel=\"nofollow\"\u003edocs\u003c/a\u003e. If you have any issues,\nplease \u003ca href=\"https://github.com/singularityhub/sregistry/issues\"\u003elet me know\u003c/a\u003e!\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThis code is licensed under the MPL 2.0 \u003ca href=\"LICENSE\"\u003eLICENSE\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1530840788.0
+ "updated_at": 1637673514.0
},
{
"data_format": 2,
- "description": null,
+ "description": "A collection of Singularity images",
"filenames": [
- "Singularity.prc-0_8_0"
+ "recipes/diffTF/Singularity.diffTF_conda",
+ "recipes/diffTF/Singularity.diffTF_R",
+ "recipes/RNA-Seq/Singularity.RNA_Seq_R",
+ "recipes/RNA-Seq/Singularity.RNA_seq_conda",
+ "recipes/RNA-Seq/Singularity.RNA_seq_fastqc",
+ "recipes/ATAC-Seq/Singularity.ATAC_seq_conda2",
+ "recipes/ATAC-Seq/Singularity.ATAC_seq_conda",
+ "recipes/ATAC-Seq/Singularity.ATAC_Seq_R",
+ "recipes/VariantCalling/Singularity.Variant-Calling_R",
+ "recipes/VariantCalling/Singularity.Variant-Calling_conda"
],
- "full_name": "d-w-moore/singularity-python-irodsclient",
+ "full_name": "chrarnold/Singularity_images",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity_images\" class=\"anchor\" href=\"#singularity_images\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity_images\u003c/h1\u003e\n\u003cp\u003eA collection of Singularity images\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1530133683.0
+ "updated_at": 1637101837.0
},
{
"data_format": 2,
- "description": "for singularity biuld",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "d-w-moore/singularity-icommands-4.2.1",
- "latest_release": null,
+ "full_name": "hmgu-itg/single-point-analysis-pipeline",
+ "latest_release": "0.0.1",
+ "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-snakefile-order\" class=\"anchor\" href=\"#snakefile-order\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSnakefile order\u003c/h2\u003e\n\u003col start=\"0\"\u003e\n\u003cli\u003eread-config.smk\u003c/li\u003e\n\u003cli\u003evariant-qc.smk\u003c/li\u003e\n\u003cli\u003esingle-cohort.smk\u003c/li\u003e\n\u003cli\u003emeta-analysis.smk\u003c/li\u003e\n\u003cli\u003edetect-peaks.smk\u003c/li\u003e\n\u003cli\u003epeakplot.smk\u003c/li\u003e\n\u003cli\u003ecojo.smk\u003c/li\u003e\n\u003cli\u003equery.smk\u003c/li\u003e\n\u003cli\u003egwas.smk\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-questions\" class=\"anchor\" href=\"#questions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuestions\u003c/h2\u003e\n\u003cp\u003eQ. Why do the \u003ccode\u003efreq\u003c/code\u003e and \u003ccode\u003efreq_geno\u003c/code\u003e column values in the \u003ccode\u003e.jma.cojo\u003c/code\u003e file differ?\nA. \u003ccode\u003efreq_geno\u003c/code\u003e column is the frequency of the \u003ccode\u003erefA\u003c/code\u003e column allele in the input bfile (you can use \u003ccode\u003eplink --freq\u003c/code\u003e to check).\nThe \u003ccode\u003efreq\u003c/code\u003e column value is the exact value extracted from the input cojofile, where the cojofile was created from the corresponding metal file.\nSo the \u003ccode\u003efreq\u003c/code\u003e column value comes from the \u003ccode\u003eAlt_Freq\u003c/code\u003e column value in the metal file, and the \u003ccode\u003eAlt_Freq\u003c/code\u003e column value is the \"weighted average of frequency for Alt allele across all studies\".\nThe \u003ccode\u003efreq_geno\u003c/code\u003e and \u003ccode\u003efreq\u003c/code\u003e column values differ because \u003ccode\u003efreq_geno\u003c/code\u003e is just the allele frequency of the variant from the genotype file (plink bfile) that was combined from all cohorts,\nwhereas \u003ccode\u003efreq\u003c/code\u003e column is the weighted average of frequency across cohorts (calculated by metal).\u003c/p\u003e\n\u003cp\u003eQ. When I try to run a rule, I get an error saying \u003ccode\u003eText file busy\u003c/code\u003e. What do I do?\nA. Delete the script and restore it using \u003ccode\u003egit restore workflow/script/problematic_script.sh\u003c/code\u003e. Your rules should run normally after doing this\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1527027070.0
+ "updated_at": 1636694692.0
},
{
"data_format": 2,
- "description": "Singularity images for deep learning software",
+ "description": "MR preprocessing for the Healthy Brain Ageing clinic at the Thompson Institute, USC.",
"filenames": [
- "Singularity.py3_fast2",
- "Singularity.py3_tf1gnt",
- "Singularity.py3_dmda",
- "Singularity.py3_trch",
- "Singularity.py2_tf17",
- "Singularity.py2_tf110",
- "Singularity.py3_tf2gnt",
- "Singularity.py3_tf"
+ "lesion-segmentation_src/Singularity",
+ "qatools_src/Singularity",
+ "deep-brain-net_src/Singularity"
],
- "full_name": "gnperdue/singularity_imgs",
+ "full_name": "jakepalmer/TI-HBA-MRprep",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity containers (with inspiration from J. Simone, \u003ca href=\"https://github.com/TomaszGolan/mlmpr\"\u003eT. Golan\u003c/a\u003e, and \u003ca href=\"https://github.com/DeepLearnPhysics/larcv2-singularity\"\u003eK. Terao\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/998\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003ePull, e.g. \u003ccode\u003e$ singularity pull shub://gnperdue/singularity_imgs:py2_tf17\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-notes\" class=\"anchor\" aria-hidden=\"true\" href=\"#notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSingularity.py2_tf110\u003c/code\u003e - See \u003ca href=\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/docker/Dockerfile.devel-gpu\"\u003eTF\u003c/a\u003e for base package definition.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ti-hba-mr-preprocessing\" class=\"anchor\" href=\"#ti-hba-mr-preprocessing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTI HBA MR Preprocessing\u003c/h1\u003e\n\u003cp\u003eThis is a basic preprocessing pipeline for MRI data from the Healthy Brain Ageing Clinic at the Thompson Institute, USC.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pipeline-overview\" class=\"anchor\" href=\"#pipeline-overview\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline overview\u003c/h2\u003e\n\u003cp\u003eThese are the steps of the pipeline. These steps are explained in more detail below, along with links to helpful resources/documentation and citations.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDicoms are converted to a BIDS compliant dataset with HeuDiConv.\u003c/li\u003e\n\u003cli\u003eAutomatic QC for the T1-weighted scan using MRIQC.\u003c/li\u003e\n\u003cli\u003eSubcortical segmentation and cortical parcellation with FastSurfer (includes QC).\u003c/li\u003e\n\u003cli\u003eBrain age prediction with DeepBrainNet.\u003c/li\u003e\n\u003cli\u003eWMH segmentation with FSL\u0027s BIANCA.\u003c/li\u003e\n\u003cli\u003eDWI preprocessing with QSIprep.\u003c/li\u003e\n\u003cli\u003ersfMRI preprocessing with fMRIprep.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eEach of these steps should be cited appropriately if used in publication (citations included below).\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-ideas-behind-implementation\" class=\"anchor\" href=\"#ideas-behind-implementation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIdeas behind implementation\u003c/h3\u003e\n\u003cp\u003eThe pipeline was developed with the following ideas in mind:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003esubmit_jobs.sh\u003c/code\u003e orchestrates the pipeline by submitting a job on the HPC for each participant. For regular use, this is the only file that should need editing, e.g. editing paths and PBS parameters.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003erun_pipeline.py\u003c/code\u003e includes the main processing pipeline and simply wraps the Singularity commands for each step.\u003c/li\u003e\n\u003cli\u003eEach step is implemented in its own container on the HPC. Containers can be built from Dockerfile/Singularity files in the \u003ccode\u003e*_src\u003c/code\u003e folders or from published containters (noted in each section below).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo setup it requires building multiple containers, but the idea was for this pipeline to remain \u0027modular\u0027 so that each processing step is independent and can be modified/removed without affecting the rest of the pipeline (with the exception of dicom to BIDS conversion being required for all subsequent steps). Similarly, the pipeline can be extended by adding a container, processing script/command and a function in the \u003ccode\u003erun_pipeline.py\u003c/code\u003e script.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-assumed-input-file-structure\" class=\"anchor\" href=\"#assumed-input-file-structure\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAssumed input file structure\u003c/h2\u003e\n\u003cp\u003eThe pipeline takes dicoms as its input with the assumed file structure before processing being:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u251c\u2500\u2500 bids\n\u251c\u2500\u2500 derivatives\n\u251c\u2500\u2500 dicom\n \u251c\u2500\u2500 HBA_0001_T1\n \u251c\u2500\u2500 RESEARCH_PROTOCOLS_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n \u251c\u2500\u2500 AAHEAD_SCOUT_64CH_HEAD_COIL_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n \u251c\u2500\u2500 MPRAGE_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n \u251c\u2500\u2500 EP2D_DIFF_QBALL96DIR_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n ...\n \u251c\u2500\u2500 HBA_0002_T1\n \u251c\u2500\u2500 RESEARCH_PROTOCOLS_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n \u251c\u2500\u2500 AAHEAD_SCOUT_64CH_HEAD_COIL_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n \u251c\u2500\u2500 MPRAGE_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n \u251c\u2500\u2500 EP2D_DIFF_QBALL96DIR_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n ...\n ...\n\u251c\u2500\u2500 TI-HBA-MRprep\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eWhere...\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003edicom\u003c/code\u003e = where the dicoms will be copied for each participant to be processed\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ebids\u003c/code\u003e = the BIDS compliant data converted from \u003ccode\u003edicom\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ederivatives\u003c/code\u003e = the pipeline outputs\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eTI-HBA-MRprep\u003c/code\u003e = the code in this repository\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-intended-usage\" class=\"anchor\" href=\"#intended-usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntended usage\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eMake sure directory structure exists as shown \u003ca href=\"##Assumed-input-file-structure\"\u003eabove\u003c/a\u003e in the analysis directory on the HPC.\u003c/li\u003e\n\u003cli\u003eClone this repo and move to the HPC.\u003c/li\u003e\n\u003cli\u003eCopy dicoms to process into the \u003ccode\u003edicom\u003c/code\u003e directory.\u003c/li\u003e\n\u003cli\u003eUpdate/check the schedular parameters in \u003ccode\u003esubmit_jobs.sh\u003c/code\u003e. It might take some testing to get these right, afterwhich they most likely won\u0027t need to be changed often.\u003c/li\u003e\n\u003cli\u003eUpdate/check the file paths in \u003ccode\u003esubmit_jobs.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eWhen ready to run the pipeline, type the following in terminal:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e /path/on/HPC\n\u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e submit_jobs.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e...where \u003ccode\u003e/path/on/HPC\u003c/code\u003e is the appropriate path to the data and code on the HPC.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-detailed-processing-steps\" class=\"anchor\" href=\"#detailed-processing-steps\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDetailed processing steps\u003c/h2\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eNOTE:\u003c/strong\u003e FastSurfer, QSIprep and fMRIprep require a FreeSurfer license, which can be obtained for free from \u003ca href=\"https://surfer.nmr.mgh.harvard.edu/fswiki/License\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. The file needs to be passed to the \u003ccode\u003esubmit_jobs.sh\u003c/code\u003e script.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-dicom-to-bids\" class=\"anchor\" href=\"#dicom-to-bids\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDicom to BIDS\u003c/h3\u003e\n\u003cp\u003eBIDS is a standard for structuring neuroimaging datasets that is being increasingly implemented that allows a consistent interface and documentation of datasets. A number of open source pipelines expect input to be in BIDS format.\u003c/p\u003e\n\u003cp\u003eHeuDiConv has been developed to automate the conversion from dicom to BIDS. It requires some setup (i.e. putting together a \u003ccode\u003eheuristic.py\u003c/code\u003e file to provide the rules for conversion), however this will generally only need to be setup once and has been done (see \u003ccode\u003eheudiconv_src/heuristic.py\u003c/code\u003e). This would need updating if the MRI sequences change. Example commands to help with the setup are included in the comments in the docstring for the \u003ccode\u003erunDcm2BIDS\u003c/code\u003e function in the \u003ccode\u003erun_pipeline.py\u003c/code\u003e file.\u003c/p\u003e\n\u003cp\u003eFor more info see \u003ca href=\"https://bids.neuroimaging.io/\" rel=\"nofollow\"\u003eBIDS\u003c/a\u003e and \u003ca href=\"https://heudiconv.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003eHeuDiConv\u003c/a\u003e documentation, also this HeuDiConv \u003ca href=\"https://reproducibility.stanford.edu/bids-tutorial-series-part-2a/\" rel=\"nofollow\"\u003ewalkthrough\u003c/a\u003e and \u003ca href=\"https://github.com/bids-standard/bids-starter-kit/wiki/\"\u003ewiki\u003c/a\u003e. The HeuDiConv \u003ca href=\"https://heudiconv.readthedocs.io/en/latest/installation.html#docker\" rel=\"nofollow\"\u003econtainer\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-mriqc\" class=\"anchor\" href=\"#mriqc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMRIQC\u003c/h3\u003e\n\u003cp\u003eThis is an automated QC pipeline for T1-weighted, T2-weighted and fMRI sequences (if present in BIDS folder). It produces visual reports and a range of QC metrics that may be useful for further analysis.\u003c/p\u003e\n\u003cp\u003eSee \u003ca href=\"https://mriqc.readthedocs.io/en/stable/\" rel=\"nofollow\"\u003edocumentation\u003c/a\u003e, \u003ca href=\"https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184661\" rel=\"nofollow\"\u003ecitation\u003c/a\u003e and the \u003ca href=\"https://hub.docker.com/r/poldracklab/mriqc/\" rel=\"nofollow\"\u003econtainer\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-fastsurfer\" class=\"anchor\" href=\"#fastsurfer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFastSurfer\u003c/h3\u003e\n\u003cp\u003eFastSurfer is a deep learning implementation of FreeSurfer. It provides essentially the same output but is faster (as you may have guessed) and more accurate.\u003c/p\u003e\n\u003cp\u003eSee the \u003ca href=\"https://deep-mi.org/research/fastsurfer/\" rel=\"nofollow\"\u003edocumentation\u003c/a\u003e, \u003ca href=\"https://www.sciencedirect.com/science/article/pii/S1053811920304985\" rel=\"nofollow\"\u003ecitation\u003c/a\u003e and the \u003ca href=\"https://github.com/Deep-MI/FastSurfer\"\u003egithub\u003c/a\u003e which also includes \u003ca href=\"https://github.com/Deep-MI/FastSurfer/tree/master/Docker\"\u003eDockerfiles\u003c/a\u003e.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-fastsurfer-qc\" class=\"anchor\" href=\"#fastsurfer-qc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFastSurfer QC\u003c/h4\u003e\n\u003cp\u003eThis is just a quick visual QC step for the output of FastSurfer and is run automatically. It produces a CSV file with some QC metrics (some of which overlap with MRIQC) and screenshots to check the segmentation and cortical parcellation.\u003c/p\u003e\n\u003cp\u003eThis is only designed for quick, preliminary visual QC and full visual QC should be completed before any statistical analysis for publication (see \u003ca href=\"https://www.sciencedirect.com/science/article/pii/S1053811921004511\" rel=\"nofollow\"\u003ehere\u003c/a\u003e for discussion of QC approaches).\u003c/p\u003e\n\u003cp\u003eSee the \u003ca href=\"https://github.com/Deep-MI/qatools-python\"\u003edocumentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-deepbrainnet\" class=\"anchor\" href=\"#deepbrainnet\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeepBrainNet\u003c/h3\u003e\n\u003cp\u003eThis is a deep learning model developed for the prediction of brain age. It produces a single predicted age based on the T1-weighted input, which can then be used to calculate a difference score with chronological age.\u003c/p\u003e\n\u003cp\u003eThe model has been implemented in \u003ca href=\"https://antsx.github.io/ANTsPyNet/docs/build/html/utilities.html\" rel=\"nofollow\"\u003eANTsPyNet\u003c/a\u003e, including the preprocessing steps, which is used in \u003ccode\u003edeep-brain-net_src/run_prediction.py\u003c/code\u003e. The Dockerfile/Singularity file is also included in the \u003ccode\u003edeep-brain-net_src\u003c/code\u003e folder.\u003c/p\u003e\n\u003cp\u003eSee the \u003ca href=\"https://academic.oup.com/brain/article/143/7/2312/5863667?login=true\" rel=\"nofollow\"\u003ecitation\u003c/a\u003e for more info about the model development and interpretation and original \u003ca href=\"https://github.com/vishnubashyam/DeepBrainNet\"\u003ecode\u003c/a\u003e from authors.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-wmh-segmentation-with-bianca\" class=\"anchor\" href=\"#wmh-segmentation-with-bianca\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWMH segmentation with BIANCA\u003c/h3\u003e\n\u003cp\u003eBIANCA requires some pre/post processing. The steps used are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePreprocess T1 and FLAIR with \u003ccode\u003efsl_anat\u003c/code\u003e (see \u003ca href=\"https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat\" rel=\"nofollow\"\u003edocs\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a white matter mask with \u003ccode\u003emake_bianca_mask\u003c/code\u003e (see BIANCA \u003ca href=\"https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA/Userguide#Data_preparation\" rel=\"nofollow\"\u003edocs\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eCreate \u003ccode\u003emasterfile.txt\u003c/code\u003e as input for BIANCA\u003c/li\u003e\n\u003cli\u003eThe BIANCA output is a probability image, so apply thresholding (default to 0.9 here)\u003c/li\u003e\n\u003cli\u003eExtract the total WMH number and volume\u0027\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eBIANCA also requires some manually labeled WMH masks as training data. A recent \u003ca href=\"https://www.sciencedirect.com/science/article/pii/S1053811921004663?via%3Dihub#bib0013\" rel=\"nofollow\"\u003epaper\u003c/a\u003e suggested the use of consistent training labels may be beneficial to avoid inter-rater variability between manual segmentations. Currently, this pipeline makes use of manual segmentations provided by those authors (included in container) for the training labels. This could be changed in future if a sample of HBA participants were manually segmented.\u003c/p\u003e\n\u003cp\u003eBIANCA \u003ca href=\"https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA/Userguide#Data_preparation\" rel=\"nofollow\"\u003edocumentation\u003c/a\u003e, \u003ca href=\"https://fsl.fmrib.ox.ac.uk/fslcourse/lectures/practicals/seg_struc/#bianca\" rel=\"nofollow\"\u003etutorial\u003c/a\u003e and \u003ca href=\"https://www.sciencedirect.com/science/article/pii/S1053811916303251?via%3Dihub\" rel=\"nofollow\"\u003ecitation\u003c/a\u003e, as well as the \u003ca href=\"https://www.sciencedirect.com/science/article/pii/S1053811921004663?via%3Dihub#bib0013\" rel=\"nofollow\"\u003ecitation\u003c/a\u003e and discussion for training labels that can be found \u003ca href=\"https://issues.dpuk.org/eugeneduff/wmh_harmonisation/-/tree/master/BIANCA_training_datasets\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-qsiprep\" class=\"anchor\" href=\"#qsiprep\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQSIprep\u003c/h3\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eIMPORTANT:\u003c/strong\u003e This step has not been tested extensively. The defaults have been used for almost all options, however these should be checked before using this data in any further analysis.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eQSIprep is a BIDS app that runs preprocessing and reconstruction of DWI data. Only preprocessing is completed here but QSIprep is also an excellent tool to use for further analysis. Visual QC reports are also produced which provide and easy way to check the quality of the DWI data.\u003c/p\u003e\n\u003cp\u003eQSIprep utilises a number of software packages that should be references (as well as the QSIprep citation). Example citation information with references in produced as part of processing and can be found in the \u003ccode\u003elogs\u003c/code\u003e folder of the output.\u003c/p\u003e\n\u003cp\u003eSome steps in QSIprep (particularly eddy current correction and disortion correction with TOPUP) are resource intensive. Currently the pipeline is set to allow QSIprep\u0027s underlying workflow manager (\u003ca href=\"https://nipype.readthedocs.io/en/latest/#\" rel=\"nofollow\"\u003eNipype\u003c/a\u003e) to manage the CPU and RAM usage by detecting how many CPUs are available and using 90% of available RAM (see MultiProc section \u003ca href=\"https://miykael.github.io/nipype_tutorial/notebooks/basic_plugins.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://qsiprep.readthedocs.io/en/latest/index.html\" rel=\"nofollow\"\u003eDocumentation\u003c/a\u003e, \u003ca href=\"https://www.nature.com/articles/s41592-021-01185-5\" rel=\"nofollow\"\u003ecitation\u003c/a\u003e, Docker \u003ca href=\"https://hub.docker.com/r/pennbbl/qsiprep/\" rel=\"nofollow\"\u003eimage\u003c/a\u003e and info for using with \u003ca href=\"https://qsiprep.readthedocs.io/en/latest/installation.html#singularity-container\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-fmriprep\" class=\"anchor\" href=\"#fmriprep\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efMRIprep\u003c/h3\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eIMPORTANT:\u003c/strong\u003e This step has not been tested extensively. The defaults have been used for almost all options, however these should be checked before using this data in any further analysis.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003efMRIprep is another BIDS app for preprocessing fMRI data. As for QSIprep, fMRIprep uses several software packages that should also be referenced. Visual QC reports are also produced.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://fmriprep.org/en/latest/index.html\" rel=\"nofollow\"\u003eDocumentation\u003c/a\u003e, \u003ca href=\"https://www.nature.com/articles/s41592-018-0235-4\" rel=\"nofollow\"\u003ecitation\u003c/a\u003e, Docker \u003ca href=\"https://hub.docker.com/r/nipreps/fmriprep\" rel=\"nofollow\"\u003eimage\u003c/a\u003e and info for using with \u003ca href=\"https://fmriprep.org/en/latest/installation.html#containerized-execution-docker-and-singularity\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "singularity",
- "singularity-hub",
- "singularity-container"
- ],
- "updated_at": 1593117348.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1630381276.0
},
{
"data_format": 2,
- "description": "Singularity Recipe for High-Performance GEOS-Chem (GCHP)",
+ "description": "Container for R with libraries for LBNL Energy Technology Area project",
"filenames": [
"Singularity"
],
- "full_name": "geoschem/Singularity_GCHP",
+ "full_name": "tin6150/r4eta",
"latest_release": null,
- "readme": "\u003ch2\u003e\u003ca id=\"user-content-this-repository-is-obsolete-and-has-been-archived\" class=\"anchor\" aria-hidden=\"true\" href=\"#this-repository-is-obsolete-and-has-been-archived\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTHIS REPOSITORY IS OBSOLETE AND HAS BEEN ARCHIVED\u003c/h2\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1674873388.0
+ "updated_at": 1635819130.0
},
{
"data_format": 2,
- "description": " Build for docker and singularity containers for FMRIQA",
+ "description": null,
"filenames": [
- "Singularity",
- "Singularity.4.0.0"
+ "Singularity"
],
- "full_name": "VUIIS/FMRIQA_app",
+ "full_name": "genomic-medicine-sweden/RareDisease_RNA_workflow",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-fmriqa_app\" class=\"anchor\" aria-hidden=\"true\" href=\"#fmriqa_app\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFMRIQA_app\u003c/h1\u003e\n\u003cp\u003eThis includes everything required (except for the \"spm12r6225_with_vbm8r435_compiled\" directory and \"FMRIQA_v4_0_0\" compiled MATLAB executable, which are too large to commit) to build a docker and corresponding singularity container for the FMRIQA pipeline.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://hub.docker.com/r/vuiiscci/fmriqa/tags/\" rel=\"nofollow\"\u003eDocker Hub\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.singularity-hub.org/collections/920\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-build-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild Instructions:\u003c/h1\u003e\n\u003cp\u003eJust clone and run \u003ccode\u003ebuild.sh\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/vuiiscci/FMRIQA_app.git\ncd FMRIQA_app/\n./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNOTE that you must have \"spm12r6225_with_vbm8r435_compiled\" directory and \"FMRIQA_v4_0_0\" compiled MATLAB executable.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Instructions:\u003c/h1\u003e\n\u003cp\u003eFor docker:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo docker run --rm \\\n-v $(pwd)/INPUTS/:/INPUTS/ \\\n-v $(pwd)/OUTPUTS:/OUTPUTS/ \\\n--user $(id -u):$(id -g) \\\nvuiiscci/fmriqa\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor singularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -e \\\n-B INPUTS/:/INPUTS \\\n-B OUTPUTS/:/OUTPUTS \\\nshub://vuiiscci/FMRIQA_app\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-raredisease_rna_workflow\" class=\"anchor\" href=\"#raredisease_rna_workflow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRareDisease_RNA_workflow\u003c/h1\u003e\n\u003cp\u003enextflow main.nf --help\u003c/p\u003e\n\u003cp\u003erun a single sample:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow main.nf -profile singularity --r1 read1.fq.gz --r2 --read2.fq.gz --sample sampleID --output output_directory -c config.conf\n\noptionally, a vcf file may be provided:\n\nnextflow main.nf -profile singularity --samplesheet sample.csv --output output_directory --vcf input.vcf -c config.conf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003erun all samples in a samplesheet:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow main.nf -profile singularity --samplesheet sample.csv --output output_directory -c config.conf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ethe samplesheet is a comma-separated file with the following header:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esample,r1,r2,vcf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe sample, r1 and r2 are mandatory, the vcf column may be left empty\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-setup\" class=\"anchor\" href=\"#setup\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esetup\u003c/h1\u003e\n\u003cp\u003eModify the config file:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ereference_dir : specify the folder with all your references \n\nSTAR_ref_dir : the star reference index folder\n\nref :the reference fasta file (dict and fai file required)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe pipeline will automatically download and cache the latest singularity image.\u003c/p\u003e\n\u003cp\u003eAlternatively you can download the singularity collection:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://J35P312/RareDisease_RNA_workflow\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOr install all dependencies, as listed in dependencies\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edependencies\u003c/h1\u003e\n\u003cp\u003eWhen using singularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow\nsingularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eotherwise:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow\nsamtools\nSTAR\ngatk\nstringtie\npicard\nstar-fusion\nfusioncatcher\nArriba\t\nmultiQC\nfastQC\nBootstrapAnn (https://github.com/J35P312/BootstrapAnn)\nucsc-wigtobigwig\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 9,
"topics": [],
- "updated_at": 1674914637.0
+ "updated_at": 1630424912.0
},
{
"data_format": 2,
- "description": "Singularity recipe for NMRPipe",
+ "description": null,
"filenames": [
- "Singularity",
- "Singularity.212_64"
+ "Singularity"
],
- "full_name": "ResearchIT/NMRPipe",
+ "full_name": "dcgc-bfx/singularity-sc-rhapsody",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-recipe-for-nmrpipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-recipe-for-nmrpipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Recipe for NMRPipe\u003c/h1\u003e\n\u003cp\u003eThis repo contains the recipe to run \u003ca href=\"https://www.ibbr.umd.edu/nmrpipe/\" rel=\"nofollow\"\u003eNMRPipe\u003c/a\u003e\nwithin a \u003ca href=\"https://singularity.lbl.gov\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e container, which can be built using \u003ca href=\"https://singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eVersions:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e212_64 - NMRPipe linux212_64 built on centos7.4\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singlecell-sc-rhapsody\" class=\"anchor\" href=\"#singlecell-sc-rhapsody\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esinglecell-sc-rhapsody\u003c/h1\u003e\n\u003cp\u003eDCGC singularity recipe for containerized versions of the BD Rhapsody Targeted Analysis and Whole Transcriptome Analysis (WTA) pipelines (available at \u003ca href=\"https://bitbucket.org/CRSwDev/cwl/src/master/\" rel=\"nofollow\"\u003ehttps://bitbucket.org/CRSwDev/cwl/src/master/\u003c/a\u003e).\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 6,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1523030864.0
+ "updated_at": 1630594642.0
},
{
"data_format": 2,
- "description": " Build for docker and singularity containers for temporal lobe segmentation",
+ "description": null,
"filenames": [
- "Singularity.3.1.0",
"Singularity"
],
- "full_name": "VUIIS/Temporal_Lobe_app",
+ "full_name": "tsgoten/multi-agent-tc",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-temporal_lobe_app\" class=\"anchor\" aria-hidden=\"true\" href=\"#temporal_lobe_app\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTemporal_Lobe_app\u003c/h1\u003e\n\u003cp\u003eThis includes everything required to build a docker and corresponding singularity container for the Temporal Lobe pipeline.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://hub.docker.com/r/vuiiscci/temporal_lobe/tags/\" rel=\"nofollow\"\u003eDocker Hub\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.singularity-hub.org/collections/828\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-build-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild Instructions:\u003c/h1\u003e\n\u003cp\u003eJust clone and run \u003ccode\u003ebuild.sh\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/vuiiscci/Temporal_Lobe_app.git\ncd Temporal_Lobe_app/\n./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Instructions:\u003c/h1\u003e\n\u003cp\u003eFor docker:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo docker run --rm \\\n-v $(pwd)/INPUTS/:/INPUTS/ \\\n-v $(pwd)/OUTPUTS:/OUTPUTS/ \\\n--user $(id -u):$(id -g) \\\nvuiiscci/temporal_lobe\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor singularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -e \\\n-B INPUTS/:/INPUTS \\\n-B OUTPUTS/:/OUTPUTS \\\nshub://vuiiscci/Temporal_Lobe_app\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-transactive_control\" class=\"anchor\" href=\"#transactive_control\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etransactive_control\u003c/h1\u003e\n\u003cp\u003eCode meant to support and simulate the Social Game that will be launched in 2020. Elements of transactive control and behavioral engineering will be tested and designed here\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eClone the repo\u003c/li\u003e\n\u003cli\u003eInstall \u003ca href=\"https://dvc.org/doc/install\" rel=\"nofollow\"\u003edvc\u003c/a\u003e (with google drive support)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eOn linux this is \u003ccode\u003epip install \u0027dvc[gdrive]\u0027\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eInstall Docker, if you have not already.\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003epython3 -m dvc remote add -d gdrive gdrive://1qaTn6IYd3cpiyJegDwwEhZ3LwrujK3_x\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003epython3 -m dvc pull\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eRun \u003ccode\u003e./run.sh\u003c/code\u003e from the root of the repo. This will put you in a shell in the docker container with the \u003ccode\u003erl_algos/logs\u003c/code\u003e directory mounted\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003epython3 StableBaselines.py sac test_experiment\u003c/code\u003e in the docker container to start an experiment with the name \u003ccode\u003etest_experiment\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003etensorboard --logdir rl_algos/logs\u003c/code\u003e from outside the docker container to view the logs\u003c/li\u003e\n\u003c/ol\u003e\n\u003chr\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-12202020\" class=\"anchor\" href=\"#12202020\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e12/20/2020\u003c/h3\u003e\n\u003cp\u003eThis repository has been cleaned and updated for use. It contains: (1) The OpenAI gym environment \"OfficeLearn\", in the \"gym-socialgame\" folder, and (2) implementations of Reinforcement learning algorithms in \"rl_algos\" folder. In the \"simulations\" folder are various datasets for setting up and training models associated with the gym simulation.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-912020\" class=\"anchor\" href=\"#912020\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e9/1/2020\u003c/h3\u003e\n\u003cp\u003eThe most recent running of the code involves navigating to the rl_algos/ directory, then running the python command for the vanilla version:\u003c/p\u003e\n\u003cp\u003epython StableBaselines.py sac\u003c/p\u003e\n\u003cp\u003eAdding in the planning model can be done with the following flags:\u003c/p\u003e\n\u003cp\u003epython StableBaselines.py sac --planning_steps=10 --planning_model=Oracle --num_steps=10000\u003c/p\u003e\n\u003cp\u003ePlease see transactive_control/gym-socialgame/gym_socialgame/envs for files pertaining to the setup of the environment. The socialgame_env.py contains a lot of the information necessary for understanding how the agent steps through the environment. The reward.py file contains information on the variety of reward types available for testing. agents.py contains information on the deterministic people that we created for our simulation.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-gym-socialgame\" class=\"anchor\" href=\"#gym-socialgame\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egym-socialgame\u003c/h3\u003e\n\u003cp\u003eOpenAI Gym environment for a social game.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1592512741.0
+ "updated_at": 1630639192.0
},
{
"data_format": 2,
- "description": null,
+ "description": "R docker container for scanem",
"filenames": [
"Singularity"
],
- "full_name": "thehyve/singularity-jupyter",
+ "full_name": "jacobhepkema/scanem-r",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-jupyter\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-jupyter\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-jupyter\u003c/h1\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://quay.io/repository/jacobhepkema/scanem-r\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/85a1c7b34a5e0ff0bab3c5a2d59f5bdb663afbcd0fecbe64eeaea4d3cb247771/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6a61636f626865706b656d612f7363616e656d2d722f737461747573\" alt=\"Docker Repository on Quay\" title=\"Docker Repository on Quay\" data-canonical-src=\"https://quay.io/repository/jacobhepkema/scanem-r/status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-scanem-r\" class=\"anchor\" href=\"#scanem-r\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003escanem-r\u003c/h1\u003e\n\u003cp\u003eR docker/singularity container for scanem. Docker container on quay.io (see above), singularity container at \u003ccode\u003eshub://jacobhepkema/scanem-r:latest\u003c/code\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1674903596.0
+ "updated_at": 1630677641.0
},
{
"data_format": 2,
- "description": "This is a github MIRROR of the main ocellaris repo on bitbucket (https://bitbucket.org/ocellarisproject/ocellaris). NO pull request or issues should go to this repo, please! This repository is only here to support Singularity Hub which lacks bitbucket support. The code in this repository may be severely out of date! It is synced with bitbucket manually and may be months or years behind!",
+ "description": "D\u00e9mo conteneur PRECIS",
"filenames": [
- "containers/Singularity"
+ "Singularity"
],
- "full_name": "TormodLandet/Ocellaris",
+ "full_name": "cclerget/demo-precis",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1553974960.0
+ "updated_at": 1494259937.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity",
- "IHEC/Singularity.ihec"
+ "Singularity"
],
- "full_name": "pranit123-hub/gemBS",
+ "full_name": "cclerget/test-wh",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-news\" class=\"anchor\" aria-hidden=\"true\" href=\"#news\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNews\u003c/h1\u003e\n\u003cp\u003eFirst release of gemBS-rs, a complete rewrite of the gemBS pipeline (apart from the mapper) in Rust bringing increased\nstability while maintaining the high performance of gemBS: \u003ca href=\"https://github.com/heathsc/gemBS-rs.git\"\u003ehttps://github.com/heathsc/gemBS-rs.git\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-gembs\" class=\"anchor\" aria-hidden=\"true\" href=\"#gembs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egemBS\u003c/h1\u003e\n\u003cp\u003egemBS is a high performance bioinformatic pipeline designed for highthroughput analysis\nof DNA methylation data from whole genome bisulfites sequencing data\n(WGBS). It combines GEM3, a high performance read aligner and\nbs_call, a high performance variant and methyation caller, into a streamlined and efficient pipeline for\nbisulfite sueqnce analysis.\u003c/p\u003e\n\u003cp\u003eThe manuscript describing the pipeline is available \u003ca href=\"https://www.biorxiv.org/content/early/2017/10/11/201988\" rel=\"nofollow\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-licensing\" class=\"anchor\" aria-hidden=\"true\" href=\"#licensing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicensing\u003c/h2\u003e\n\u003cp\u003egemBS is licensed under GPL.\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-download\" class=\"anchor\" aria-hidden=\"true\" href=\"#download\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownload\u003c/h2\u003e\n\u003cp\u003eUse \u003ccode\u003egit clone --recursive\u003c/code\u003e to retrieve the complete source code including the code from external projects such as \u003ccode\u003ebs_call\u003c/code\u003e and \u003ccode\u003egem3-mapper\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone --recursive https://github.com/heathsc/gemBS.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eBefore starting the installation of gemBS, you will need to install\nor check the installation of several packages.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003ea) gcc with development libraries\nb) python3, pip3, matplotlib, multiprocess\nc) zlib, lzma, openssl, libcurl, libncurses, wget, pigz\u003c/p\u003e\n\u003cp\u003eIf you are working on a clean (fairly recent) Ubuntu installation, you\ncan install everything required with the followiwg commands:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo apt-get update\nsudo apt-get install -y python3 build-essential git python3-pip wget pigz\nsudo apt-get install -y zlib1g-dev libbz2-dev\nsudo apt-get install -y libncurses5-dev liblzma-dev libssl-dev libcurl4-openssl-dev\npip3 install matplotlib multiprocess\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003e\n\u003cp\u003eDownload the gemBS distribution if you haven\u0027t already done so:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003egit clone --recursive https://github.com/heathsc/gemBS.git\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUse python install command:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eTo install to the standard system location (i.e., so that all users\ncan use gemBS):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e``python3 setup.py install``\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo install to the user\u0027s home directory:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e``python3 setup.py install --user``\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-check-your-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#check-your-installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCheck your installation\u003c/h2\u003e\n\u003cp\u003eFor checking your installation follow this\n\u003ca href=\"http://statgen.cnag.cat/gemBS/v3/UserGuide/_build/html/example.html\" rel=\"nofollow\"\u003eworked example\u003c/a\u003e.\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eDocumentation can be found at\n\u003ca href=\"http://statgen.cnag.cat/gemBS/v3/UserGuide/_build/html/index.html\" rel=\"nofollow\"\u003egemBS\u003c/a\u003e.\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-changelog\" class=\"anchor\" aria-hidden=\"true\" href=\"#changelog\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eChangelog:\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e3.5.5 Fix logging bug caused by trimming change in 3.5.3\n3.5.4 Fix bug in the output of strand specific cpg txt files (not\n encode Bed files) where the \u0027C\u0027 entry was not being printed\n3.5.3 Allow for read end specific trimming in bs_call\n3.5.3 Enable range checks and asserts in bs_call all target; add bs_call debug target\n3.5.2 Correct problems with gcc10. Move to htslib/samtools/bcftools version 1.11\n3.5.1 Check if C compiler requires --std=c99 flag for standards conformant behaviour\n3.5.1 Make sure bgzip is copied correctly during installation\n3.5.0 Make bs_call process contig pools from largest to smallest (this change alters the sqlite db format so\n if you have a previously started gemBS run you should (a) remove the .gemBS directory, (b) redo the\n \u0027gemBS prepare\u0027 step to recreate the db file and (3) run \u0027gemBS db-sync\u0027. \n3.5.0 Switch bs_call and snpxtr to use the new dbSNP index format\n3.5.0 Add ability of dbSNP to read the new JSON and VCF dbSNP format files\n that are now used for human and non-human species respectively\n3.5.0 Add multithreading to dbSNP_idx\n3.5.0 Change format of dbSNP index to allow (a) efficient loading\n of SNP data for individual contigs and (b) parallel index creation \n3.5.0 Rewrite mextr and snpxtr as standalone tools rather than\n bcftools plugins. Now multithreaded and (relatively) memoryefficient\n3.5.0 Replace bedToBigBed and wigToBigWig to reduce memory usage\n and improve speed\n3.4.5 Fix crash when using the -k (keep-mismatch) flag, and fix rare hangs at end of processing\n3.4.4 Sort input bcf files to bcftools concat stage to ensure reproducibility.\n3.4.4 Add extra sort keys when generating pools to ensure stability of pool membership in the event of multiple contigs\n having the same size\n3.4.3 Remove calculation of the goodness of filter (GOF) as this is expensive, non-standard and unreliable. Removing this\n removes the dependency on GSL.\n3.4.3 Add autodetection of output format to bs_call (unless explicitly specified on the command line)\n3.4.2 Add CRAM support (via make_cram option in configuration file)\n3.4.1 Add benchmark-mode that does not write date or program version numbers into SAM/BAM or VCF/BCF files\n Switch to samtools, bcftools and htslib v1.10\n3.4.0 Move to new bs_call version (2.1.0) which is more efficient\n in memory use and can read BAMs and write BCFs natively.\n The new bs_call requires a faidx indexed reference, so gemBS\n no creates this during indexing.\n3.4.0 Add switches to give more control to threads and memory\n usage in mapping and calling stages\n3.3.3 Remove legacy pathway for config files with no header line (fix issue \u0027error in gemBS index #65)\n3.3.2 Fix error where header line for wig files could be omitted\n3.3.2 Fix generation of non_cpg files\n3.3.1 Fix Attribute error bug due to not checking if conversion is a list\n3.3.0 Make new release for IHEC\n3.3.0 Switch conversion default in IHEC_standard configuration to 0.01,0.05 rather than auto, which can give odd results if conversion controls not present or not working correctly\n3.3.0 Fix bug where conversion parameters could be ignored\n3.2.13 Fix formatting bug in mextr with multiple samples (not triggered in normal gemBS use)\n3.2.12 Ensure that conversion statistics are correctly calculated for non-stranded or reverse conversion protocols\n3.2.11 Introduce reverse_conversion option for mapping where read 1 is G2A converted and read 2 is C2T converted\n3.2.10 Correct regex patch for single end reads\n3.2.9 Update Singularity and Dockerfile recipes to allow kemp utils to be built correctly\n3.2.9 Make setup.py and gemBS/commands.py read the version information from gemBS/version.py, so ensuring consistency\n3.2.9 Fix bug added in last version where options in config file were not being taken into account\n3.2.8 Fix mis specification errors in long options for mextr. \n3.2.8 Fix bug where mextr (methyl extract plugin for bcftools) would crash if cpg output option was not set.\n3.2.7 Apply patches for bugs in handling single end reads (suggested by I. Moghul)\n3.2.7 Changed regex for filenames to make it more general (suggested by I. Moghul)\n3.2.7 Fixed bug (reported by chhylp123) where zero arguments to some options were being ignored\n3.2.6 Cleaned up compilation and cleaning of gemBS tools\n3.2.6 Fixed python error if either the over conversion reference sequence was not defined\n3.2.6 Added check in bs_call that conversion parameters are valid (between 0 and 1)\n3.2.6 Perform more stringent sanity checking on conversion vaalues when autocomputed by gemBS\n3.2.6 Use --diasble-lzma configuration flag for samtools and bcftools as we don\u0027t need it and it removes an unneccesary dependency\n3.2.6 Add install options --disable-cuda (on by default) and --enable-cuda that affect GEM3 comppilation\n3.2.6 Bug fix with incorrect handling of duplicate reads\n3.2.5 Minor bug fix - correct error with non-paired end non-bisulfite reads\n3.2.4 Modify the bisulfite processing in gem-mapper to be more efficient (in particular for the non-stranded option)\n3.2.4 Modify gemBS to use the new conversion options for gem-mapper\n3.2.4 Switch gem-mapper to use option --underconversion-sequence and --overconversion-sequence rather than --underconversion_sequence to be consistent with other options\n3.2.3 Fixed bug if conversion parameters were not set\n3.2.2 Rework non-stranded mode so that both possible conversions are tried and the results merged\n3.2.2 Fix bug where non-stranded flag was not being passed to mapper in paired end mode\n3.2.1 Move warning message from bscall from stdout to stderr\n3.2.1 Switch Singularity build to use Ubuntu 16.04 rather than 18.04 to allow the image to work in CentOS 6 (Docker build changed as well to keep the two in sync)\n3.2.1 Fix undeclared variable bugs and missing --ignore-deps option in merge-bcfs\n3.2.1 Add default for dbSNP_index if dbSNP_files is set\n3.2.1 Add gsl-path install option\n3.2.0 Make new release\n3.1.0 Make installation process more modular. Allow for sub-installs\n3.1.0 Add support for reading config from ${index_dir}/gemBS.json if it exists\n3.1.0 Add --reference-bias option to mextr and gemBS extract\n3.1.0 Add support for non-bisulfite mapping of individual datasets\n3.1.0 Allow white space in variable values\n3.1.0 Allow fallback to gzip if pigz not present\n3.1.0 Add --dry-run, --json, --ignore-db and --ignore-dep to extract command\n3.1.0 Add --ignore-dep option to call and merge-bcfs commands\n3.1.0 Add SNP extraction function to extract command\n3.0 Make v3.0 release\n3.0 Merge with master branch.\n3.0 Bump samtools sort memory limit to 2G\n3.0 Add extra_references option for reference generation\n3.0 Allow input files to mapping to be shell commands\n3.0 Add links to documentation\n3.0 Upload new yeast example and add documentation\n3.0 Add --dir option to gemBS\n3.0 Add --ignore-db options for --dry-run / --json\n3.0 Add --json output option for dry runs\n3.0 Update help text to match new functions\n3.0 Introduce standard analysis configurations stored within distribution\n3.0 Switch gem3-mapper distribution to gembs branch on official gem3-mapper repo\n3.0 Removal of incomplete files and roll back of db in the event of pipeline failure\n3.0 Automatic removal of individual BAMs and BCFs after successful merging\n3.0 Prevent pipelines hanging in event of failure\n3.0 Generate ENCODE bed and bigbed files\n3.0 Switch to python 3\n3.0 Switch to mextr for BCF filtering\n3.0 Include fetch and build of samtools / bcftools during build process\n3.0 Add dry-run capability to map and call commands\n3.0 Introduce contig pools to automatically group small contigs\n3.0 Automatic generation of contig.size files from index build\n3.0 Allow use of in memory sqlite3 db as an option\n3.0 Allow multiple instances of gemBS (possible on different hosts) to work \n simultaneously on the same analysis\n3.0 Reduce and simply commands\n3.0 Add Dockerfile\n3.0 Add multi-threading and multi-processing options for most commands\n3.0 Use sqlite3 to track progress of analyses, file paths etc.\n3.0 Added more flexible configuration options (new csv format + new configuration file)\n3.0 Remove test dataset from distribution (distribute from web site)\n2.1.0 Ensure commands run during pipeline come from installation\n2.1.0 Added Singularity build recipe\n2.1.0 Add new command gemBS direct-mapping\n2.1.0 Fixed Makefile clean in tools\n2.0.2 Fixed bug related with the percentage of High Quality Variant in Variants summary report.\n2.0.2 Check temporary directory existence.\n2.0.2 Fixed QualityNonRefCpg sample name in png image.\n2.0.2 Fixed mapper issues related with aligning performace.\n2.0.2 Fixed arguments for Under/Over Conversion sequence name in gem3-mapper\n2.0.1 On bscall repository, fixed argument -k about discarded reads that do not form proper pairs.\n2.0 Check tmp folder before starting mapping process.\n2.0 Added Left and Right Trimming optional arguments to gemBS bscall.\n2.0 Added GC Coverage correlation value to BS Call Stats Summary.\n2.0 Fixed error when reporting complete path to not found bam files.\n2.0 Fixed iteration over sampleBams dictionary in MergeAll method.\n2.0 Updated: Avoid redo indexing when merging just one file.\n2.0 Changed conversion formula.\n2.0 Added parameter for dbSNP.\n2.0 Added threads to bscall.\n2.0 Removed CpGs reports. Already done from bscall report.\n2.0 Fixed bs_call makefile for the gcc to be used.\n2.0 New bscall version. Generates JSON report.\n2.0 Removed gemBS options snp-stats,cpg-report,cpg-stats.\n2.0 Added summary report from the bs_call json stats\n2.0 New BSCall Report. From bscall son file generates three types of reports:\n Mapping and Coverage Report\n Bs-Genotypes Calls Report\n Methylation Statistics report\n1.7 Added non stranded read conversion parameter\n1.7 Fixed SE crash when estimating overlapped bases.\n1.7 Fixed gem-index (gem3) to follow fastq and SAM specifications. \n Modified gem3-mapper repository external module.\n New external module https://github.com/heathsc/gem3-mapper.git\n1.7 Fixed threads parameter to samtools merge\n1.7 Fixed threads parameter to gem-mapper\n1.7 Removed Indels Field on Variants Report.\n1.7 Added Overlapping Bases at Mapping Report\n1.7 Modified Base Counts Overall, removed Base Counts general and Base Counts Overall\n1.7 New Dinucleotide CpGs Report\n New table dinucleotide stats\n New plots for Informative Reads and CpGs\n Methylation levels plots for different types of CpGs\n Summary Table\n1.7 New Readme file to inform about report test\n1.7 New basic statis table for Variants Report\n1.7 Removed parameter -r (reference length) parameter for mapping reports command (gemBS bsMap).\n1.6 New CpGs Density plot, include box plos, bar plot and fitting curve\n1.6 Change name at CpG report:\n \"Heterozygous\" for \"Alternative CX\"\n \"De Novo CpGs Methylation Status\" for \"Non Reference CpGs\"\n \"CpGs with SNP\" for \"SNPs (CX) at Reference CpGs\"\n1.6 CpGs Report Simplified to Q\u0026gt;20\n1.6 BigWig Default parameters for filtering CpG per a given quality and a total number of supported informative reads \n1.5 Initial Release \n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-developers\" class=\"anchor\" aria-hidden=\"true\" href=\"#developers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopers\u003c/h2\u003e\n\u003cp\u003egemBS:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMarcos Fernandez-Callejo - \u003ca href=\"mailto:marcos.fernandez@cnag.crg.eu\"\u003emarcos.fernandez@cnag.crg.eu\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eSimon Heath - \u003ca href=\"mailto:simon.heath@gmail.com\"\u003esimon.heath@gmail.com\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003egem mapper:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSantiago Marco-Sola - \u003ca href=\"mailto:santiagomsola@gmail.com\"\u003esantiagomsola@gmail.com\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ebisulfite caller and filtering:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSimon Heath - \u003ca href=\"mailto:simon.heath@gmail.com\"\u003esimon.heath@gmail.com\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1664976329.0
+ "updated_at": 1547670364.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity",
- "Singularity.0.4"
+ "Singularity"
],
- "full_name": "Altava/tfd_time",
- "latest_release": "0.4",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-temporalfastdownward\" class=\"anchor\" aria-hidden=\"true\" href=\"#temporalfastdownward\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTemporalFastDownward\u003c/h1\u003e\n\u003cp\u003eThe version of Temporal Fast Downward.\nThis version has been ported to Python3 (tested with Python3.8)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-information\" class=\"anchor\" aria-hidden=\"true\" href=\"#information\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInformation\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://gki.informatik.uni-freiburg.de/tools/tfd/\" rel=\"nofollow\"\u003ehttp://gki.informatik.uni-freiburg.de/tools/tfd/\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003e$ ./build\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\u003cp\u003ePatrick Eyerich, Robert Mattm\u00fcller and Gabriele R\u00f6ger.\nUsing the Context-enhanced Additive Heuristic for Temporal and Numeric Planning.\nIn Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS 2009), 2009.\u003c/p\u003e\n",
+ "full_name": "vigo332/singularity-rstudio-r4",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-rstudio-server\" class=\"anchor\" href=\"#singularity-rstudio-server\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity RStudio Server\u003c/h1\u003e\n\u003cp\u003eR 4.0.3\nRStudio 1.3.1903\u003c/p\u003e\n\u003cp\u003eBased on repo \u003ca href=\"https://github.com/nickjer/singularity-rstudio\"\u003ehttps://github.com/nickjer/singularity-rstudio\u003c/a\u003e\nSingularity image for \u003ca href=\"https://www.rstudio.com/products/rstudio/\" rel=\"nofollow\"\u003eRStudio Server\u003c/a\u003e. It was built on top of the base\nSingularity image \u003ca href=\"https://github.com/nickjer/singularity-r\"\u003enickjer/singularity-r\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThis is still a work in progress.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-build\" class=\"anchor\" href=\"#build\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild\u003c/h2\u003e\n\u003cp\u003eYou can build a local Singularity image named \u003ccode\u003esingularity-rstudio.simg\u003c/code\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build singularity-rstudio.simg rstudio.def\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-deploy\" class=\"anchor\" href=\"#deploy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeploy\u003c/h2\u003e\n\u003cp\u003eInstead of building it yourself you can download the pre-built image from\n\u003ca href=\"https://www.singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --arch amd64 library://vigo332/default/singularity-rstudio-r4:v0.01\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-run\" class=\"anchor\" href=\"#run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-rstudio-server\" class=\"anchor\" href=\"#rstudio-server\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRStudio Server\u003c/h3\u003e\n\u003cp\u003eThe \u003ccode\u003erserver\u003c/code\u003e command is launched using the default run command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run singularity-rstudio.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor as an explicit app:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --app rserver singularity-rstudio.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003esingularity run --app rserver singularity-rstudio.simg --help\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ecommand-line options:\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003everify:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --verify-installation arg (=0) verify the current installation\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eserver:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-working-dir arg (=/) program working directory\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-user arg (=rstudio-server) program user\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-daemonize arg (=0) run program as daemon\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-app-armor-enabled arg (=1) is app armor enabled for this session\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-set-umask arg (=1) set the umask to 022 on startup\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003e...\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-simple-password-authentication\" class=\"anchor\" href=\"#simple-password-authentication\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSimple Password Authentication\u003c/h4\u003e\n\u003cp\u003eTo secure the RStudio Server you will need to:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eLaunch the container with the environment variable \u003ccode\u003eRSTUDIO_PASSWORD\u003c/code\u003e set to\na password of your choosing.\u003c/li\u003e\n\u003cli\u003eLaunch the \u003ccode\u003erserver\u003c/code\u003e command with the PAM helper script \u003ccode\u003erstudio_auth\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eAn example is given as:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eRSTUDIO_PASSWORD=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003epassword\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e singularity run singularity-rstudio.simg \\\n --auth-none 0 \\\n --auth-pam-helper-path=pam-helper \\\n --server-data-dir=/tmp\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNow when you attempt to access the RStudio Server you will be presented with a\nlog in form. You can log in with your current user name and password you set in\n\u003ccode\u003eRSTUDIO_PASSWORD\u003c/code\u003e.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-ldap-authentication----to-be-verified\" class=\"anchor\" href=\"#ldap-authentication----to-be-verified\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLDAP Authentication -- To be verified\u003c/h4\u003e\n\u003cp\u003eAnother option is using an LDAP (or Active Directory) server for\nauthentication. Configuration of the LDAP authentication script \u003ccode\u003eldap_auth\u003c/code\u003e is\nhandled through the following environment variables:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eLDAP_HOST\u003c/code\u003e - the host name of the LDAP server\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eLDAP_USER_DN\u003c/code\u003e - the formatted string (where \u003ccode\u003e%s\u003c/code\u003e is replaced with the\nusername supplied during log in) of the bind DN used for LDAP authentication\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eLDAP_CERT_FILE\u003c/code\u003e - the file containing the CA certificates used by\nthe LDAP server (default: use system CA certificates)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAn example for an LDAP server with signed SSL certificate from a trusted CA:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_HOST=ldap.example.com\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_USER_DN=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ecn=%s,dc=example,dc=com\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\nsingularity run singularity-rstudio.simg \\\n --auth-none 0 \\\n --auth-pam-helper-path ldap_auth\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAn example for an LDAP server with a self-signed SSL certificate:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_HOST=ldap.example.com\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_USER_DN=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ecn=%s,dc=example,dc=com\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_CERT_FILE=/ca-certs.pem\nsingularity run \\\n --bind /path/to/ca-certs.pem:/ca-certs.pem \\\n singularity-rstudio.simg \\\n --auth-none 0 \\\n --auth-pam-helper-path ldap_auth\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNote that we had to bind mount the CA certificates file from the host machine\ninto the container and specify the container\u0027s path in \u003ccode\u003eLDAP_CERT_FILE\u003c/code\u003e (not\nthe host\u0027s path).\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-r-and-rscript\" class=\"anchor\" href=\"#r-and-rscript\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR and Rscript\u003c/h3\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/nickjer/singularity-r\"\u003enickjer/singularity-r\u003c/a\u003e for more information on how to run \u003ccode\u003eR\u003c/code\u003e and\n\u003ccode\u003eRscript\u003c/code\u003e from within this Singularity image.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributing\" class=\"anchor\" href=\"#contributing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003cp\u003eBug reports and pull requests are welcome on GitHub at\n\u003ca href=\"https://github.com/nickjer/singularity-rstudio\"\u003ehttps://github.com/nickjer/singularity-rstudio\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe code is available as open source under the terms of the \u003ca href=\"http://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003eMIT License\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1665578634.0
+ "updated_at": 1631568351.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "bc3.10-rs125042r362/Singularity",
- "bc3.12-r405rs125/Singularity",
- "bc3.15-r421tv132rs2022072.576/Singularity"
+ "rstudio_server_app/Singularity"
],
- "full_name": "yh549848/singularity-rstudio-rnaseq",
+ "full_name": "CHPC-UofU/OOD-pe-apps",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ood-apps\" class=\"anchor\" href=\"#ood-apps\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOOD-apps\u003c/h1\u003e\n\u003cp\u003eRepository of CHPC\u0027s PE Open OnDemand apps\u003c/p\u003e\n\u003cp\u003eThis is a repository of interactive apps used at CHPC Protected Environment with Open OnDemand.\u003c/p\u003e\n\u003cp\u003eEach subdirectory has its own README.md which contains information about this particular app.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1665633331.0
+ "updated_at": 1631895259.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "waveunet/Singularity"
+ "Singularity"
],
- "full_name": "bbaysal/BSS",
+ "full_name": "truatpasteurdotfr/singularity-docker-centos8-warewulf4-builder",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-bss\" class=\"anchor\" aria-hidden=\"true\" href=\"#bss\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBSS\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-docker-centos8-warewulf4-builder-\" class=\"anchor\" href=\"#singularity-docker-centos8-warewulf4-builder-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-docker-centos8-warewulf4-builder \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-centos8-warewulf4-builder/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-centos8-warewulf4-builder/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003ewarewulf4 builder container based on a CentOS 8 x86_64 docker image built from github actions\u003c/p\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why\" class=\"anchor\" href=\"#why\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eprovide a minimal builder for warewulf4\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-docker\" class=\"anchor\" href=\"#docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -ti ghcr.io/truatpasteurdotfr/singularity-docker-centos8-warewulf4-builder:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec oras://ghcr.io/truatpasteurdotfr/singularity-docker-centos8-warewulf4-builder:latest rpmbuild -ta warewulf-4.2.0.tar.gz \n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1666637248.0
+ "updated_at": 1635198514.0
},
{
"data_format": 2,
- "description": "OpenHPC recipe for NVIDIA\u0027s container maker",
+ "description": "Markdown Files to Explain Running anvi\u0027o in Singularity",
"filenames": [
- "Singularity.def",
- "container-backups/Singularity.def"
+ "anvio-pangenomics/Singularity"
],
- "full_name": "kaisucode/ohpc-container-recipe",
+ "full_name": "rbartelme/anvio-singularity",
"latest_release": null,
- "readme": "\u003ch2\u003e\u003ca id=\"user-content-openhpc-container-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#openhpc-container-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOpenHPC Container Recipe\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003esingularity exec ohpc-recipe4.simg python /benchmark.py\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003enote: scale down the memory usage in \u003ccode\u003eVagrantfile\u003c/code\u003e if your system can\u0027t support the specified amount (4096)\u003c/p\u003e\n\u003cp\u003eThis is a container recipe for \u003ca href=\"https://github.com/NVIDIA/hpc-container-maker\"\u003eNVIDIA\u0027s HPC container maker\u003c/a\u003e. The base image is \u003ca href=\"https://quay.io/repository/ohpc/ohpc-gnu9\" rel=\"nofollow\"\u003eOpenHPC\u0027s development environment\u003c/a\u003e, with added Python, TensorFlow, and Keras support\u003c/p\u003e\n\u003chr\u003e\n\u003cp\u003e[share]$ nvcc --version\nnvcc: NVIDIA (R) Cuda compiler driver\nCopyright (c) 2005-2015 NVIDIA Corporation\nBuilt on Tue_Aug_11_14:27:32_CDT_2015\nCuda compilation tools, release 7.5, V7.5.17\u003c/p\u003e\n\u003cp\u003emodule: loading \u0027cuda/7.5.18\u0027\u003c/p\u003e\n\u003chr\u003e\n\u003cp\u003etensorflow-2.6.0\ncuDNN 8.1\ncuda 11.2\u003c/p\u003e\n\u003cp\u003ein sbatch script,\nmodule load cuda/11.3.1\nmodule load cudnn/8.1.0\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.tensorflow.org/install/source\" rel=\"nofollow\"\u003ehttps://www.tensorflow.org/install/source\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage-examples\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage-examples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage examples\u003c/h2\u003e\n\u003ch4\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h4\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ehpccm --recipe ohpc-recipe.py --format docker \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e Dockerfile\ndocker build -t ohpc-recipe -f Dockerfile \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\ndocker run -v \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e/python_scripts/:/mnt/python_scripts/ -it --rm ohpc-recipe python3.7 /mnt/python_scripts/test.py\u003c/pre\u003e\u003c/div\u003e\n\u003ch4\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h4\u003e\n\u003cp\u003eNote: For singularity builds, root access is required. If you are on MacOS or Windows, please check out the instructions \u003ca href=\"https://docs.sylabs.io/guides/3.0/user-guide/installation.html#mac\" rel=\"nofollow\"\u003ehere\u003c/a\u003e on how to use Vagrant to build a Singularity virtual machine\u003c/p\u003e\n\u003cp\u003ehpccm --recipe ohpc-recipe.py --singularity-version=3.8 --format singularity \u0026gt; Singularity.def\nversion 3.8 for multistage\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ehpccm --recipe ohpc-recipe.py --format singularity \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e Singularity.def\nsudo singularity build ohpc-recipe.simg Singularity.def\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e --nv ohpc-recipe.simg python3 \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e/python_scripts/benchmark.py\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAn alternate solution is to build using Docker, then rebuild as singularity\n\u003ccode\u003esingularity build ohpc-recipe.simg docker://kevinhsuk/ohpc-recipe\u003c/code\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-running-anvio-in-singularity-containers\" class=\"anchor\" href=\"#running-anvio-in-singularity-containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning anvi\u0027o in Singularity containers\u003c/h1\u003e\n\u003cp\u003eRyan Bartelme, PhD\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-preparation\" class=\"anchor\" href=\"#preparation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreparation\u003c/h2\u003e\n\u003cp\u003eIf you want to test anvi\u0027o on an HPC system, here are a few strategies:\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-pulling-anvio-docker-image-into-singularity\" class=\"anchor\" href=\"#pulling-anvio-docker-image-into-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePulling anvi\u0027o docker image into Singularity\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003eStart by using singularity to pull the latest version of the anvi\u0027o image from dockerhub:\u003c/strong\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull docker://meren/anvio\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eAfter seeing the standard output of the docker pull command, Singularity will print out something like:\u003c/strong\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eINFO: Creating SIF file...\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eAnd the \u003ccode\u003e*.sif\u003c/code\u003e file should appear in the directory:\u003c/strong\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ls\nanvio_latest.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eThe latest docker image of anvi\u0027o will \u003cstrong\u003eNOT\u003c/strong\u003e have the databases configured. This is also an opportune time to create your own customized docker image from the \u003ccode\u003emeren/anvio:latest\u003c/code\u003e docker image tag.\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-making-your-own-dockerfile-to-customize-your-anvio-runtime\" class=\"anchor\" href=\"#making-your-own-dockerfile-to-customize-your-anvio-runtime\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMaking your own Dockerfile to customize your anvi\u0027o runtime\u003c/h2\u003e\n\u003cp\u003eSee an example: \u003ca href=\"anvio-dbconfig/Dockerfile\"\u003eDockerfile\u003c/a\u003e this runs through the database configurations for anvi\u0027o. (As of 03-25-21 this does not properly compile the 3d structure db\u0027s)\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-configuring-anvio-singularity-containers\" class=\"anchor\" href=\"#configuring-anvio-singularity-containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguring anvi\u0027o Singularity containers\u003c/h2\u003e\n\u003chr\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-docker-container-image-customization\" class=\"anchor\" href=\"#docker-container-image-customization\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker container image customization\u003c/h3\u003e\n\u003cp\u003eIn this case I used a \u003ca href=\"anvio-pangenomics/Dockerfile\"\u003eDockerfile\u003c/a\u003e, where I am building off the \u003ccode\u003eanvio-dbconfig\u003c/code\u003e \u003ca href=\"anvio-dbconfig/Dockerfile\"\u003eimage\u003c/a\u003e. The modifications include an installation of \u003ca href=\"https://github.com/kblin/ncbi-genome-download\"\u003encbi-genome-download\u003c/a\u003e using the anvio conda environment \u003ca href=\"https://github.com/rbartelme/anvio-singularity/blob/bacaaec5130fdb188647c4cdac72aaa275e277b8/anvio-pangenomics/Dockerfile#L4\"\u003epip\u003c/a\u003e and setting the \u003ca href=\"anvio-pangenomics/entrypoint.sh\"\u003eentrypoint\u003c/a\u003e to the conda environment of anvio for the docker runtime. Note \u003ca href=\"anvio-pangenomics/profile\"\u003eprofile\u003c/a\u003e is included to make sure the container sources the \u003ccode\u003e.bashrc\u003c/code\u003e for the conda path.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-building-singularity-images\" class=\"anchor\" href=\"#building-singularity-images\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding Singularity images\u003c/h3\u003e\n\u003cp\u003eOur local cluster singularity version:\u003c/p\u003e\n\u003cpre lang=\"[rbartelme@gpu06\"\u003e\u003ccode\u003esingularity-ce version 3.8.0\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eBuilding from the Docker image above:\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNOTE:\u003c/strong\u003e \u003cem\u003eThis required \u003ccode\u003esudo su\u003c/code\u003e on our local cluster, which I have access to, this has not been tested with \u003ccode\u003e--fakeroot\u003c/code\u003e yet.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esudo su\u003c/code\u003e\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity build statement, using Singularity \u003ca href=\"anvio-pangenomics/Singularity\"\u003erecipe\u003c/a\u003e:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity build anvio-pangenomics.sif Singularity\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGet ownership of Singularity \u003ccode\u003e*.sif\u003c/code\u003e file and set group permissions.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esudo chown rbartelme:iplant-everyone anvio-pangenomics.sif\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRead up on job scheduling with your HPC\u0027s IT team documentation\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-example-with-slurm-singularity-and-snakemake\" class=\"anchor\" href=\"#example-with-slurm-singularity-and-snakemake\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample with SLURM, Singularity, and Snakemake\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-snakemake-workflows-with-singularity\" class=\"anchor\" href=\"#snakemake-workflows-with-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSnakemake Workflows with Singularity\u003c/h3\u003e\n\u003cp\u003eAnvi\u0027o has awesome snakemake \u003ca href=\"\"\u003eworkflows\u003c/a\u003e built in! This is the \"end-to-end\" approach for all your HPC or cloud compute needs.\u003c/p\u003e\n\u003chr\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-comparative-genomics\" class=\"anchor\" href=\"#comparative-genomics\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eComparative Genomics\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003eExample json input for Comparative Genomics Workflow:\u003c/strong\u003e\u003c/p\u003e\n\u003chr\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1667364910.0
+ "updated_at": 1628704470.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Multi-Label Multi/Single-Class Image Segmentation",
"filenames": [
- "Singularity-mpi.def",
- "Singularity-test.def",
- "Singularity.def"
+ "Singularity"
],
- "full_name": "lalilalalalu/fuchs-and-local-container",
+ "full_name": "kbronik2017/Multi_Label_Segmentation_UCL",
"latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/UCLBrain/MSLS/issues\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f9cab98cc8f1052f0c0096b8b462cf9b2280a706b1adc0895d8a4859f3743314/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f55434c427261696e2f4d534c53\" alt=\"GitHub issues\" data-canonical-src=\"https://img.shields.io/github/issues/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/UCLBrain/MSLS/network\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b6c7a087c43d2a65a6ee22ec8ce2e004a29212c4b9619b117f4b2bbabf98a6c5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f55434c427261696e2f4d534c53\" alt=\"GitHub forks\" data-canonical-src=\"https://img.shields.io/github/forks/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/UCLBrain/MSLS/stargazers\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/10fab859502fd8c9b24dde937e50fecba7449e94ea057774713238ab3ec754fc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f55434c427261696e2f4d534c53\" alt=\"GitHub stars\" data-canonical-src=\"https://img.shields.io/github/stars/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/UCLBrain/MSLS/blob/master/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0d525d837b03e3b7a24b6322fc2197a134fa12e6a96188e5f18d6cd92236aa47/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f55434c427261696e2f4d534c53\" alt=\"GitHub license\" data-canonical-src=\"https://img.shields.io/github/license/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-multi-label-multisingle-class-image-segmentation\" class=\"anchor\" href=\"#multi-label-multisingle-class-image-segmentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMulti-Label Multi/Single-Class Image Segmentation\u003c/h1\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/diag.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/diag.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-publication\" class=\"anchor\" href=\"#publication\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePublication\u003c/h1\u003e\n\u003cp\u003eLe Zhang, Ryutaro Tanno, Kevin Bronik, Chen Jin, Parashkev Nachev, Frederik Barkhof, Olga Ciccarelli, and Daniel C. Alexander, Learning to Segment When Experts Disagree, International Conference on Medical image computing and Computer-Assisted Intervention (MICCAI). Springer, Cham, 2020.\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/Miccai_2020_abs.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg align=\"center\" height=\"1000\" src=\"images/Miccai_2020_abs.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\n \n \u003cp\u003eClick here to see full pdf file: \u003ca href=\"https://github.com/UCLBrain/MSLS/blob/master/MICCAI_2020.pdf\"\u003eLink to PDF\u003c/a\u003e\u003c/p\u003e\n \n\n\u003ch1\u003e\n\u003ca id=\"user-content-running-the-gui-program\" class=\"anchor\" href=\"#running-the-gui-program\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the GUI Program!\u003c/h1\u003e\n\u003cp\u003eFirst, user needs to install Anaconda \u003ca href=\"https://www.anaconda.com/\" rel=\"nofollow\"\u003ehttps://www.anaconda.com/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThen\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda env create -f conda_environment_Training_Inference.yml \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eand\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda activate traintestenv \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003efinally\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - python Training_Inference_GUI.py \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAfter lunching the graphical user interface, user will need to provide necessary information to start training/testing as follows:\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/GUI.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/GUI.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-running-the-program-from-the-command-line\" class=\"anchor\" href=\"#running-the-program-from-the-command-line\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the Program from the command line!\u003c/h1\u003e\n\u003cp\u003eFirst\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda activate traintestenv \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ethen for training\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - python segmentation_network_Training_without_GUI.py [or annotation_network_Training_without_GUI.py]\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003efor testing\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - python segmentation_network_Inference_without_GUI.py [or annotation_network_Inference_without_GUI.py]\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-testing-the-program\" class=\"anchor\" href=\"#testing-the-program\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting the Program!\u003c/h1\u003e\n\u003cp\u003eExamples of Training and Testing subjects can be found in: \u003ca href=\"https://github.com/UCLBrain/MSLS/tree/master/examples\"\u003ehttps://github.com/UCLBrain/MSLS/tree/master/examples\u003c/a\u003e (which will allow users to quickly and easily train and test the program)\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/bin_seg_ex.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/bin_seg_ex.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003cp\u003e..................................................................................................................................................................\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/multi_seg_ex.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/multi_seg_ex.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [],
- "updated_at": 1667539488.0
+ "topics": [
+ "segmentation",
+ "multi-label"
+ ],
+ "updated_at": 1628544698.0
},
{
"data_format": 2,
@@ -9987,567 +9405,550 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-docker-miniconda-py39-cuda11.2-cudnn81-tf-gpu28",
+ "full_name": "caoky8989/LVAD",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-a-miniconda-based--container-with-python-39-with-cudnn-81-cuda-112-with-tensorflow-gpu-28\" class=\"anchor\" aria-hidden=\"true\" href=\"#a-miniconda-based--container-with-python-39-with-cudnn-81-cuda-112-with-tensorflow-gpu-28\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ea miniconda based container with python 3.9 with cudnn 8.1 cuda 11.2 with tensorflow-gpu 2.8\u003c/h1\u003e\n\u003cp\u003edocker: \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-miniconda-py39-cuda11.2-cudnn81-tf-gpu28/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-miniconda-py39-cuda11.2-cudnn81-tf-gpu28/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-miniconda-py39-cuda11.2-cudnn81-tf-gpu28:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003esingularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv oras://ghcr.io/truatpasteurdotfr/singularity-docker-miniconda-py39-cuda11.2-cudnn81-tf-gpu28:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1667825933.0
+ "updated_at": 1628703776.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Implements GA-DQN tuner which consists of a genetic algorithm that uses two deep Q-network agents.",
"filenames": [
"Singularity"
],
- "full_name": "pranavad/tipsytowers",
+ "full_name": "lhutton1/ga-dqn-tuner",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-tipsytowers\" class=\"anchor\" aria-hidden=\"true\" href=\"#tipsytowers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etipsytowers\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-generating-high-performance-code-for-deep-learning-workloads-a-reinforcement-learning-based-approach\" class=\"anchor\" href=\"#generating-high-performance-code-for-deep-learning-workloads-a-reinforcement-learning-based-approach\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGenerating high-performance code for deep learning workloads: a reinforcement learning based approach.\u003c/h1\u003e\n\u003cp\u003e\u003cem\u003eImplemented as part of a final year dissertation. Should not be considered for production use.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eThis project aims to apply reinforcement learning to auto-tuning in AutoTVM (part of the TVM machine learning compiler),\nin order to improve the experience of the end user. Currently, reinforcement learning is applied to the GATuner - a genetic algorithm\nthat repeatedly applies elitism, 2-point crossover and mutation to a population. Named \u003cstrong\u003eGA-DQN\u003c/strong\u003e, the new tuner uses two independent\ndeep Q-network (DQN)\u0027s that are applied to crossover and mutation. Crossover is completed by allowing DQN to suggest the point at\nwhich to crossover a gene, while, mutation is completed by allowing DQN to select which detail to randomly mutate. In addition, an evaluation\nframework is provided to assess the performance of GA-DQN.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"/assets/ga-dqn-pipeline.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"/assets/ga-dqn-pipeline.png\" alt=\"GA-DQN tuning pipeline\" title=\"GA-DQN tuning pipeline\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003eTo use the tuner, TVM must be installed and visible within your python environment. Due to needing additional features not available in a released\nversion of TVM, a forked version of TVM is used which applies a small amount debugging code and a fix to the PyTorch front-end parser. A pinned\nversion is also used as TVM is mostly in a development stage and the API\u0027s used are unstable. Consequently, the GA-DQN tuner has only been tested\nwith this specific commit, along with small modifications ontop. The required version can be pulled from git like so:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone --recursive https://github.com/lhutton1/tvm.git tvm\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e tvm\ngit checkout autotvm-measure-remote-time\ngit checkout d2452502b9486a7993d9dec3d04e449efdd81cf7\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTVM also requires a number of dependencies such as: Cuda, Python3.6, LLVM, XGBoost (for the XGBTuner) and PyTorch (for the GA-DQN tuner). As such, we recommend using a containerised environment powered by Singularity. Similar to docker, an image must be built from which containers can be run based on the image. First install Singularity, then build the image using a simple script provided:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install Singularity\u003c/span\u003e\nsudo wget -O- http://neuro.debian.net/lists/xenial.us-ca.full \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e sudo tee /etc/apt/sources.list.d/neurodebian.sources.list \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \\\n sudo apt-key adv --recv-keys --keyserver hkp://pool.sks-keyservers.net:80 0xA5D32F012649A5A9 \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \\\n sudo apt-get update\n \nsudo apt-get install -y singularity-container\n \n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Build image\u003c/span\u003e\n./create_image.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFrom this a container can be created and GA-DQN can be run from within this container using the presented shell:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./create_container.sh rl-tuner.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNow in the shell, test your container works correctly by attempting to run the evaluation framework help prompt:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython driver.py --help\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cem\u003eNote: This has been tested on a Ubuntu 18.04 setup and is not guaranteed to work with other operating systems. These scripts have also been tested on the University of Leeds HPC cluster, ARC.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNote: it is possible to build TVM and install its dependencies from scratch, although this is not recommended due to the number of packages required. The process required should be similar to that provided in \u003ccode\u003ecreate_image.sh\u003c/code\u003e script. However, it is recommended you create a new virtual environment for python in this process.\u003c/em\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-rl-tuner\" class=\"anchor\" href=\"#rl-tuner\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRL Tuner\u003c/h2\u003e\n\u003cp\u003eGA-DQN is a tuner that combines advancements in reinforcement learning and the genetic algorithm tuner that currently exists in TVM. Two independent deep Q-network (DQN)\u0027s are used to suggest where to crossover genes and which detail of a gene to mutate.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-ga-tuner\" class=\"anchor\" href=\"#ga-tuner\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGA Tuner\u003c/h2\u003e\n\u003cp\u003eThe GA tuner is code obtained from the open source TVM compiler. It is here for convenience and to allow a small amount of debug code to be added so that it can be evaluated. This work is not my own.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-evaluation-framework-tools\" class=\"anchor\" href=\"#evaluation-framework-tools\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEvaluation framework (tools)\u003c/h2\u003e\n\u003cp\u003eProvides a series of tools and experiments to quickly test various tuning algorithms in AutoTVM. Use tune and benchmark commands on a series of pre-trained models to evaluate random, genetic algorithm, extreme gradient boost and GA-DQN algorithms. Use the experiment framework to evaluate various aspects of GA-DQN, with graphical monitoring.\u003c/p\u003e\n\u003cp\u003eA command line driver is provided for this framework:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython driver.py -m=tune -c=../config-example.json\npython driver.py -m=benchmark -c=../config-example.json\npython driver.py -m=experiment -c=../config-example.json\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-ga-dqn-pipeline-example\" class=\"anchor\" href=\"#ga-dqn-pipeline-example\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGA-DQN pipeline example\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"/assets/ga-dqn-pipeline-example.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"/assets/ga-dqn-pipeline-example.png\" alt=\"GA-DQN pipeline example\" title=\"GA-DQN pipeline example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1665153756.0
+ "updated_at": 1628544168.0
},
{
"data_format": 2,
- "description": null,
+ "description": "nextflow pipeline for cellranger atac 10x analysis and qc",
"filenames": [
- "Singularity"
+ "container/Singularity_sc-atac-10x-builder"
],
- "full_name": "psadil/cat12_app",
+ "full_name": "perllb/ctg-sc-atac-10x",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-cat12_app\" class=\"anchor\" aria-hidden=\"true\" href=\"#cat12_app\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecat12_app\u003c/h1\u003e\n\u003cp\u003eBundle cat12 as prefect workflow\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ pip install cat12_app\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eTODO\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003cp\u003eInterested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003ecat12_app\u003c/code\u003e was created by Patrick Sadil. It is licensed under the terms of the MIT license.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003ecat12_app\u003c/code\u003e was created with \u003ca href=\"https://cookiecutter.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003e\u003ccode\u003ecookiecutter\u003c/code\u003e\u003c/a\u003e and the \u003ccode\u003epy-pkgs-cookiecutter\u003c/code\u003e \u003ca href=\"https://github.com/py-pkgs/py-pkgs-cookiecutter\"\u003etemplate\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ctg-sc-atac-10x\" class=\"anchor\" href=\"#ctg-sc-atac-10x\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ectg-sc-atac-10x\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-nextflow-pipeline-for-preprocessing-of-10x-chromium-sc-atac-data-with-cellranger\" class=\"anchor\" href=\"#nextflow-pipeline-for-preprocessing-of-10x-chromium-sc-atac-data-with-cellranger\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNextflow pipeline for preprocessing of 10x chromium sc-ATAC data with cellranger.\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDesigned to handle multiple projects in one sequencing run (but also works with only one project)\u003c/li\u003e\n\u003cli\u003eSupports mm10 and hg38 references, but can also be run with custom reference genome and annotation (must be added via nextflow.config). See custom genome below.\u003c/li\u003e\n\u003cli\u003eSupports nuclei samples\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUSAGE\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eClone and build the Singularity container for this pipeline: \u003ca href=\"https://github.com/perllb/ctg-sc-atac-10x/tree/master/container/ctg-sc-atac-10x\"\u003ehttps://github.com/perllb/ctg-sc-atac-10x/tree/master/container/ctg-sc-atac-10x\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eEdit your samplesheet to match the example samplesheet. See section \u003ccode\u003eSampleSheet\u003c/code\u003e below\u003c/li\u003e\n\u003cli\u003eEdit the nextflow.config file to fit your project and system.\u003c/li\u003e\n\u003cli\u003eRun pipeline\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enohup nextflow run pipe-sc-atac-10x.nf \u0026gt; log.pipe-sc-atac-10x.txt \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-input-files\" class=\"anchor\" href=\"#input-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput files\u003c/h2\u003e\n\u003cp\u003eThe following files must be in the runfolder to start pipeline successfully.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSamplesheet (\u003ccode\u003eCTG_SampleSheet.sc-atac-10x.csv\u003c/code\u003e)\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-samplesheet-requirements\" class=\"anchor\" href=\"#samplesheet-requirements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSamplesheet requirements:\u003c/h3\u003e\n\u003cp\u003eNote: no header! only the rows shown below, starting with the column names.\nNote: Must be in comma-separated values format (.csv)\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eSample_ID\u003c/th\u003e\n\u003cth\u003eindex\u003c/th\u003e\n\u003cth\u003eSample_Project\u003c/th\u003e\n\u003cth\u003eSample_Species\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eSi1\u003c/td\u003e\n\u003ctd\u003eSI-GA-D9\u003c/td\u003e\n\u003ctd\u003e2021_012\u003c/td\u003e\n\u003ctd\u003ehuman\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSi2\u003c/td\u003e\n\u003ctd\u003eSI-GA-H9\u003c/td\u003e\n\u003ctd\u003e2021_012\u003c/td\u003e\n\u003ctd\u003ehuman\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSample1\u003c/td\u003e\n\u003ctd\u003eSI-GA-C9\u003c/td\u003e\n\u003ctd\u003e2021_013\u003c/td\u003e\n\u003ctd\u003emouse\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSample2\u003c/td\u003e\n\u003ctd\u003eSI-GA-C9\u003c/td\u003e\n\u003ctd\u003e2021_013\u003c/td\u003e\n\u003ctd\u003emouse\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-the-nf-pipeline-takes-the-following-columns-from-samplesheet-to-use-in-channels\" class=\"anchor\" href=\"#the-nf-pipeline-takes-the-following-columns-from-samplesheet-to-use-in-channels\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThe nf-pipeline takes the following Columns from samplesheet to use in channels:\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSample_ID\u003c/code\u003e : ID of sample. Sample_ID can only contain a-z, A-Z and \"_\". E.g space and hyphen (\"-\") are not allowed! If \u0027Sample_Name\u0027 is present, it will be ignored.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eindex\u003c/code\u003e : Must use index ID (10x ID) if dual index. For single index, the index sequence works too.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eSample_Project\u003c/code\u003e : Project ID. E.g. 2021_033, 2021_192.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eSample_Species\u003c/code\u003e : Only \u0027human\u0027/\u0027mouse\u0027/\u0027custom\u0027 are accepted. If species is not human or mouse, set \u0027custom\u0027. This custom reference genome has to be specified in the nextflow config file. See below how to edit the config file.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-samplesheet-template\" class=\"anchor\" href=\"#samplesheet-template\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSamplesheet template\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eSamplesheet name \u003ccode\u003eCTG_SampleSheet.sc-atac-10x.csv\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003eSample_ID,index,Sample_Project,Sample_Species \nSi1,Sn1,SI-GA-D9,2021_012,human \nSi2,Sn2,SI-GA-H9,2021_012,human \nSample1,S1,SI-GA-C9,2021_013,mouse \nSample2,S23,SI-GA-C9,2021_013,mouse\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pipeline-steps\" class=\"anchor\" href=\"#pipeline-steps\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline steps:\u003c/h2\u003e\n\u003cp\u003eCellranger version: cellranger atac v2.0.0\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eDemultiplexing\u003c/code\u003e (cellranger mkfastq): Converts raw basecalls to fastq, and demultiplex samples based on index (\u003ca href=\"https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/mkfastq\" rel=\"nofollow\"\u003ehttps://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/mkfastq\u003c/a\u003e).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eFastQC\u003c/code\u003e: FastQC calculates quality metrics on raw sequencing reads (\u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003ehttps://www.bioinformatics.babraham.ac.uk/projects/fastqc/\u003c/a\u003e). MultiQC summarizes FastQC reports into one document (\u003ca href=\"https://multiqc.info/\" rel=\"nofollow\"\u003ehttps://multiqc.info/\u003c/a\u003e).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eAlign\u003c/code\u003e + \u003ccode\u003eCounts\u003c/code\u003e (cellranger count): Aligns fastq files to reference genome, counts genes for each cell/barcode, perform secondary analysis such as clustering and generates the cloupe files (\u003ca href=\"https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/count\" rel=\"nofollow\"\u003ehttps://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/count\u003c/a\u003e).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eAggregation\u003c/code\u003e (cellranger aggr): Automatically creates the input csv pointing to molecule_info.h5 files for each sample to be aggregated and executes aggregation (\u003ca href=\"https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/aggr\" rel=\"nofollow\"\u003ehttps://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/aggr\u003c/a\u003e). This is only run if there is more than one sample pr project.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eCellranger count metrics\u003c/code\u003e (bin/ctg-sc-count-metrics-concat.py): Collects main count metrics (#cells and #reads/cell etc.) from each sample and collect in table\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emultiQC\u003c/code\u003e: Compile fastQC and cellranger count metrics in multiqc report\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emd5sum\u003c/code\u003e: md5sum of all generated files\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-output\" class=\"anchor\" href=\"#output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003ectg-PROJ_ID-output\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eqc\u003c/code\u003e: Quality control output.\n\u003cul\u003e\n\u003cli\u003ecellranger metrics: Main metrics summarising the count / cell output\u003c/li\u003e\n\u003cli\u003efastqc output (\u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003ehttps://www.bioinformatics.babraham.ac.uk/projects/fastqc/\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003emultiqc output: Summarizing FastQC output and demultiplexing (\u003ca href=\"https://multiqc.info/\" rel=\"nofollow\"\u003ehttps://multiqc.info/\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003efastq\u003c/code\u003e: Contains raw fastq files from cellranger mkfastq.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecount-cr\u003c/code\u003e: Cellranger count output. Here you find gene/cell count matrices, secondary analysis output, and more. See (\u003ca href=\"https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/count\" rel=\"nofollow\"\u003ehttps://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/count\u003c/a\u003e) for more information on the output files.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esummaries\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eweb-summary files which provide an overview of essential metrics from the 10x run.\u003c/li\u003e\n\u003cli\u003ecloupe files which can be used to explore the data interactively in the Loupe browser (\u003ca href=\"https://support.10xgenomics.com/single-cell-atac/software/visualization/latest/what-is-loupe-cell-browser\" rel=\"nofollow\"\u003ehttps://support.10xgenomics.com/single-cell-atac/software/visualization/latest/what-is-loupe-cell-browser\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eaggregate\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eOutput from cellranger aggregation. This is only run if there is more than one sample pr project.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ectg-md5.PROJ_ID.txt\u003c/code\u003e: text file with md5sum recursively from output dir root\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-container\" class=\"anchor\" href=\"#container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainer\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-custom-genome\" class=\"anchor\" href=\"#custom-genome\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCustom genome\u003c/h2\u003e\n\u003cp\u003eIf custom genome (not hg38 or mm10) is used\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSet \"Sample_Species\" column to \u0027custom\u0027 in samplesheet:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eSample_ID\u003c/th\u003e\n\u003cth\u003eSample_Name\u003c/th\u003e\n\u003cth\u003eindex\u003c/th\u003e\n\u003cth\u003eSample_Project\u003c/th\u003e\n\u003cth\u003eSample_Species\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eSi1\u003c/td\u003e\n\u003ctd\u003eSn1\u003c/td\u003e\n\u003ctd\u003eSI-GA-D9\u003c/td\u003e\n\u003ctd\u003eproj_2021_012\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003ecustom\u003c/strong\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSi2\u003c/td\u003e\n\u003ctd\u003eSn2\u003c/td\u003e\n\u003ctd\u003eSI-GA-H9\u003c/td\u003e\n\u003ctd\u003eproj_2021_012\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003ecustom\u003c/strong\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eIn nextflow.config, set\n\u003ccode\u003ecustom_genome=/PATH/TO/CUSTOMGENOME\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-add-custom-genes-eg-reporters-to-cellranger-annotation\" class=\"anchor\" href=\"#add-custom-genes-eg-reporters-to-cellranger-annotation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAdd custom genes (e.g. reporters) to cellranger annotation\u003c/h3\u003e\n\u003cp\u003eYou can use this script to add custom genes to the cellranger ref\n\u003ca href=\"https://github.com/perllb/ctg-cellranger-add2ref\"\u003ehttps://github.com/perllb/ctg-cellranger-add2ref\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003enextflow version 19.04.1.5072\u003c/li\u003e\n\u003cli\u003eSingularity (v 3.7.0-1.el7)\u003c/li\u003e\n\u003cli\u003ejava (openjdk version \"10.0.2\" 2018-07-17)\u003c/li\u003e\n\u003cli\u003eOpenJDK Runtime Environment Zulu10.3+5 (build 10.0.2+13)\u003c/li\u003e\n\u003cli\u003eOpenJDK 64-Bit Server VM Zulu10.3+5 (build 10.0.2+13, mixed mode)\u003c/li\u003e\n\u003cli\u003eSingularity container (\u003ca href=\"https://github.com/perllb/ctg-sc-atac-10x/blob/main/container/Singularity_sc-atac-10x-builder\"\u003ehttps://github.com/perllb/ctg-sc-atac-10x/blob/main/container/Singularity_sc-atac-10x-builder\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eCellranger 10x ATAC or ARC references (e.g. refdata-cellranger-arc-GRCh38-2020-A-2.0.0 and refdata-cellranger-arc-mm10-2020-A-2.0.0)\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1668356057.0
+ "updated_at": 1629907530.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Code and scripts for the bluebird bio technical exam",
"filenames": [
- "controllers/PythonBlocks/downward/misc/releases/19.12/Singularity.19.12",
- "controllers/PythonBlocks/downward/misc/releases/21.12/Singularity.21.12",
- "controllers/PythonBlocks/downward/misc/releases/20.06/Singularity.20.06",
- "controllers/PythonBlocks/downward/misc/releases/22.06/Singularity.22.06",
- "controllers/PythonBlocks/downward/misc/releases/latest/Singularity",
- "controllers/PythonBlocks/downward/misc/releases/19.06/Singularity.19.06"
+ "question_1/RNAseq_DE_analysis/environments/Singularity"
],
- "full_name": "dylankrieg/block-stacking",
+ "full_name": "esha-joshi/bluebird_bio_exam",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-bluebird_bio_exam\" class=\"anchor\" href=\"#bluebird_bio_exam\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebluebird_bio_exam\u003c/h1\u003e\n\u003cp\u003eCode and scripts for the bluebird bio technical exam taken on 2021-07-21\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-question_1\" class=\"anchor\" href=\"#question_1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003equestion_1\u003c/h2\u003e\n\u003cp\u003eThis directory contains the Nextflow file, Singularity config files, R script for DE analysis and additional bash scripts for pre-processing for the implementation to analyze the cancer cell-lines. There is README describing the software requirements, dependencies and running of the program as well.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-question_2\" class=\"anchor\" href=\"#question_2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003equestion_2\u003c/h2\u003e\n\u003cp\u003eThis directory contains the R script for making the SQL queries to the UCSC database to generate a BED file for BRCA1 and BRCA2.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1668580222.0
+ "updated_at": 1628654340.0
},
{
"data_format": 2,
- "description": "Resource monitor that shows usage and stats for processor, memory, disks, network and processes.",
+ "description": "R and bioinformatic packages Singularity container",
"filenames": [
- "1.0.68/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-bpytop",
- "latest_release": "v1.0.68",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-bpytop/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bpytop/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-bpytop/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bpytop/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/6086d29389cadd3479a8523980b1ec9dd37bee0ee7f391f6e84294e38555ec6b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d627079746f70\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6086d29389cadd3479a8523980b1ec9dd37bee0ee7f391f6e84294e38555ec6b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d627079746f70\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bpytop\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/1dcdee2b45c87cb810de1b868a733f10f65a3a4a6ccf69522c58b89d6da6cae2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d627079746f70\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1dcdee2b45c87cb810de1b868a733f10f65a3a4a6ccf69522c58b89d6da6cae2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d627079746f70\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bpytop\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/33f6a11260743e3ce7aaa7df6f4f4605ae789e6bac5ed0488e1e3b17338a5e64/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d627079746f70\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/33f6a11260743e3ce7aaa7df6f4f4605ae789e6bac5ed0488e1e3b17338a5e64/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d627079746f70\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bpytop\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/c6693f25e42eaf97446bdc6be30ff9d42dab77028422ec377407a7c3f33c4635/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d627079746f70\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c6693f25e42eaf97446bdc6be30ff9d42dab77028422ec377407a7c3f33c4635/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d627079746f70\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bpytop\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-bpytop\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-bpytop\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bpytop\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for bpytop.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebpytop\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bpytop/1.2.13\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bpytop\u003c/code\u003e as \u003ccode\u003e1.2.13.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "sylvainschmitt/singularity-r-bioinfo",
+ "latest_release": "0.0.3",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-r-and-bioinformatic-packages-singularity-container\" class=\"anchor\" href=\"#r-and-bioinformatic-packages-singularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR and bioinformatic packages Singularity container\u003c/h1\u003e\n\u003cp\u003eSylvain Schmitt\nAugust 6, 2021\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eR and bioinformatic packages\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eThis container includes:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eR\u003c/code\u003e 4.0.3\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003etidyverse\u003c/code\u003e 1.3.0\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eBiostrings\u003c/code\u003e 2.58.0\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003evcfR\u003c/code\u003e 1.12.0\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003evroom\u003c/code\u003e 1.3.2\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecsv2sql\u003c/code\u003e 0.1.0\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ereshape2\u003c/code\u003e 1.4.4\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe \u003ccode\u003etidyverse\u003c/code\u003e is an opinionated collection of R packages designed for\ndata science. All packages share an underlying design philosophy,\ngrammar, and data structures.\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://www.tidyverse.org/\" rel=\"nofollow\"\u003ehttps://www.tidyverse.org/\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eBiostrings\u003c/code\u003e is a memory efficient string containers, string matching\nalgorithms, and other utilities, for fast manipulation of large\nbiological sequences or sets of sequences.\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://bioconductor.org/packages/release/bioc/html/Biostrings.html\" rel=\"nofollow\"\u003ehttps://bioconductor.org/packages/release/bioc/html/Biostrings.html\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003eThe R package \u003ccode\u003evcfR\u003c/code\u003e is a set of tools designed to read, write,\nmanipulate and analyze VCF data.\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://knausb.github.io/vcfR_documentation/\" rel=\"nofollow\"\u003ehttps://knausb.github.io/vcfR_documentation/\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003evroom\u003c/code\u003e is the fastest delimited reader for R, 1.23 GB/sec.\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://vroom.r-lib.org/\" rel=\"nofollow\"\u003ehttps://vroom.r-lib.org/\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003ecsv2sql\u003c/code\u003e is a wrapper to convert csv files to sql database.\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://github.com/kcf-jackson/csv2sql\"\u003ehttps://github.com/kcf-jackson/csv2sql\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ereshape2\u003c/code\u003e is an R package written by Hadley Wickham that makes it easy\nto transform data between wide and long formats.\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://seananderson.ca/2013/10/19/reshape/\" rel=\"nofollow\"\u003ehttps://seananderson.ca/2013/10/19/reshape/\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003eSingularity container based on the recipe:\n\u003ca href=\"https://github.com/sylvainschmitt/singularity-r-bioinfo/blob/main/Singularity\"\u003e\u003ccode\u003eSingularity\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eImage singularity (V\u0026gt;=3.3) is automatically test and built and pushed\non the registry using\n\u003ca href=\"https://github.com/sylvainschmitt/singularity-template/blob/main/.github/workflows/test.yml\"\u003etest.yml\u003c/a\u003e\n\u0026amp;\n\u003ca href=\"https://github.com/sylvainschmitt/singularity-template/blob/main/.github/workflows/builder.yml\"\u003ebuilder.yml\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ebuild\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build Biostrings.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003epull\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull https://github.com/sylvainschmitt/singularity-r-bioinfo/releases/download/0.0.3/sylvainschmitt-singularity-r-bioinfo.latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003esnakemake\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e \u003cspan class=\"pl-s1\"\u003esingularity\u003c/span\u003e: \n \u003cspan class=\"pl-s\"\u003e\"https://github.com/sylvainschmitt/singularity-r-bioinfo/releases/download/0.0.3/sylvainschmitt-singularity-r-bioinfo.latest.sif\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1628683690.0
+ },
+ {
+ "data_format": 2,
+ "description": "Examples of Dockerfiles and Singularity recipes",
+ "filenames": [
+ "python-env/Singularity"
+ ],
+ "full_name": "kaczmarj/container-examples",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-container-examples\" class=\"anchor\" href=\"#container-examples\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainer examples\u003c/h1\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-build-with-docker\" class=\"anchor\" href=\"#build-with-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuild with docker\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-bedtoolsdockerfile\" class=\"anchor\" href=\"#bedtoolsdockerfile\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebedtools.Dockerfile\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --tag bedtools --file bedtools.Dockerfile .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-condadockerfile\" class=\"anchor\" href=\"#condadockerfile\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econda.Dockerfile\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --tag conda --file conda.Dockerfile .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-running-jupyter-notebook\" class=\"anchor\" href=\"#running-jupyter-notebook\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003erunning jupyter notebook\u003c/h3\u003e\n\u003cp\u003eplease note that we set \u003ccode\u003e--ip 0.0.0.0\u003c/code\u003e. and we need to publish the port from the\ncontainer onto the host. otherwise, the port is only accessible inside the container\nand will not be seen by our web browser (which is outside of the container).\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --rm -it --publish 8888:8888 conda --port 8888 --ip 0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-tensorflow24dockerfile\" class=\"anchor\" href=\"#tensorflow24dockerfile\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etensorflow24.Dockerfile\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --tag tensorflow:2.4 --file tensorflow24.Dockerfile .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-python-env\" class=\"anchor\" href=\"#python-env\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epython-env\u003c/h2\u003e\n\u003cp\u003ethis is an example of building a docker image for a python environment. that directory\nincludes a \u003ccode\u003erequirements.txt\u003c/code\u003e file, which lists dependencies. we copy that file into\nthe docker image when it is being built, and we install the python packages listed\nthere.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --tag mypyenv python-env\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-build-with-singularity\" class=\"anchor\" href=\"#build-with-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuild with singularity\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-python-env-1\" class=\"anchor\" href=\"#python-env-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epython-env\u003c/h2\u003e\n\u003cp\u003ethis example builds a singularity image of \u003ccode\u003epython-env\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd python-env\nsudo singularity build python-env.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eexample of running the image. arguments after the image name are passed to the\nentrypoint. because our entrypoint is \u003ccode\u003epython\u003c/code\u003e, the command-line arguments are passed\nto that.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run python-env.sif -c \u0027import numpy; print(numpy.__version__)\u0027\n1.21.1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand here\u0027s an example to show that users stay themselves in containers...\u003c/p\u003e\n\u003cp\u003eremember, just be yourself.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec python-env.sif whoami\njakub\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ethis is not the case in docker. you need \u003ccode\u003esudo\u003c/code\u003e to run the containers, so inside the\ncontainer, you can be root. this is not ideal, especially on shared clusters.\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1628778703.0
+ },
+ {
+ "data_format": 2,
+ "description": "The FASTX-Toolkit is a collection of command line tools for Short-Reads FASTA/FASTQ files preprocessing.",
+ "filenames": [
+ "0.0.14/Singularity"
+ ],
+ "full_name": "pscedu/singularity-fastx-toolkit",
+ "latest_release": null,
+ "stargazers_count": 0,
+ "subscribers_count": 2,
"topics": [
"singularity",
- "utilities"
+ "bioinformatics"
],
- "updated_at": 1670890527.0
+ "updated_at": 1628888079.0
},
{
"data_format": 2,
- "description": "Docker and Singularity images to run Biodiverse software",
+ "description": "Command line ASCII boxes unlimited!",
"filenames": [
- "SingularityDef.def",
- "SingularityDef_NoPerlbrew.def"
+ "1.3/Singularity"
],
- "full_name": "vmikk/biodiverse-docker",
- "latest_release": "v.1.0.0",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-biodiverse\" class=\"anchor\" aria-hidden=\"true\" href=\"#biodiverse\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBiodiverse\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/vmikk/biodiverse-docker/blob/main/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1491d736cc21d494e4262c1cd8e116d4f865ff2f4bd64a2d79fa990778e324c8/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f766d696b6b2f62696f646976657273652d646f636b6572\" alt=\"GitHub license\" data-canonical-src=\"https://img.shields.io/github/license/vmikk/biodiverse-docker\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/vmikk/biodiverse\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ae1010d045b7a869f8b06b818b364a2ec0227e7f3d7fe3ab8cb4f280c386b732/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f486f737465642d446f636b65724875622d626c7565\" alt=\"Hosted_DockerHub\" data-canonical-src=\"https://img.shields.io/badge/Hosted-DockerHub-blue\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://cloud.sylabs.io/library/vmiks/gbif/biodiverse\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fe9171fa5097d0f35af6c0988f42c6d6571880fc954aea1ee3a4259dc7603ae8/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f486f737465642d53696e67756c61726974794c6962726172792d626c7565\" alt=\"Hosted_SingularityLibrary\" data-canonical-src=\"https://img.shields.io/badge/Hosted-SingularityLibrary-blue\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis repository contains definition files the \u003ca href=\"https://shawnlaffan.github.io/biodiverse/\" rel=\"nofollow\"\u003eBiodiverse\u003c/a\u003e (Laffan et al., 2010) containers.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-docker-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker image\u003c/h1\u003e\n\u003cp\u003eTo build the \u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e image with Biodiverse run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --tag biodiverse --file Dockerfile_NoPerlbrew . \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003eDockerfile_NoPerlbrew\u003c/code\u003e should be present in the current directory.\u003c/p\u003e\n\u003cp\u003eA ready-to-use image is available at \u003ca href=\"https://hub.docker.com/r/vmikk/biodiverse\" rel=\"nofollow\"\u003eDocker Hub\u003c/a\u003e and can be downloaded with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull vmikk/biodiverse:1.0.0\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity image\u003c/h1\u003e\n\u003cp\u003eTo build the \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e image with Biodiverse run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build Biodiverse.sif SingularityDef_NoPerlbrew.def\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003eSingularityDef_NoPerlbrew.def\u003c/code\u003e should be present in the current directory.\u003c/p\u003e\n\u003cp\u003eA ready-to-use image is available at the \u003ca href=\"https://cloud.sylabs.io/library/vmiks/gbif/biodiverse\" rel=\"nofollow\"\u003eSingularity Library\u003c/a\u003e and can be downloaded with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --arch amd64 library://vmiks/gbif/biodiverse:1-0-0\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h1\u003e\n\u003cp\u003eLaffan SW, Lubarsky E, Rosauer DF (2010) Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography, 33: 643-647. \u003ca href=\"https://onlinelibrary.wiley.com/doi/10.1111/j.1600-0587.2010.06237.x\" rel=\"nofollow\"\u003eDOI: 10.1111/j.1600-0587.2010.06237.x\u003c/a\u003e\u003c/p\u003e\n",
+ "full_name": "icaoberg/singularity-boxes",
+ "latest_release": "1.3",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-boxes/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-boxes/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/icaoberg/singularity-boxes/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-boxes/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a3f198a87deb5330effce45fa5f8a588e4f8f261b175507874e098ebd9458adf/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d626f786573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3f198a87deb5330effce45fa5f8a588e4f8f261b175507874e098ebd9458adf/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d626f786573\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-boxes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/6d68d10803a8f101a59999b34c1be8b23084c82097bd1506f6b69eca3546ed7b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d626f786573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6d68d10803a8f101a59999b34c1be8b23084c82097bd1506f6b69eca3546ed7b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d626f786573\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-boxes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/699ba19f5376b37177283fe5acc1e075c4a846491fedbbedc3fc349b3693bc30/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d626f786573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/699ba19f5376b37177283fe5acc1e075c4a846491fedbbedc3fc349b3693bc30/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d626f786573\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-boxes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0e74e828eef6e3d5d7627cf27223de60469083957af4cdf436c4b767a7e870d6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d626f786573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0e74e828eef6e3d5d7627cf27223de60469083957af4cdf436c4b767a7e870d6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d626f786573\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-boxes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-boxes\" class=\"anchor\" href=\"#singularity-boxes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-boxes\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://boxes.thomasjensen.com/\" rel=\"nofollow\"\u003eboxes\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [
- "biodiversity",
- "docker",
- "endemism",
- "phylogenetic-diversity",
- "singularity"
+ "singularity",
+ "utilities"
],
- "updated_at": 1650613175.0
+ "updated_at": 1631084542.0
},
{
"data_format": 2,
- "description": "Pulsar Timing Environments",
+ "description": "The ViennaRNA Package consists of a C code library and several stand-alone programs for the prediction and comparison of RNA secondary structures.",
"filenames": [
- "containers/Singularity"
+ "2.4.14/Singularity"
],
- "full_name": "ipta/pulsar-env",
- "latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/IPTA/pulsar-env/actions/workflows/test_CondaEnv.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/IPTA/pulsar-env/actions/workflows/test_CondaEnv.yml/badge.svg\" alt=\"Conda Env Test\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/IPTA/pulsar-env/actions/workflows/test_Singularity.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/IPTA/pulsar-env/actions/workflows/test_Singularity.yml/badge.svg\" alt=\"Apptainer Build (Ubuntu)\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-pulsar-timing-environments\" class=\"anchor\" aria-hidden=\"true\" href=\"#pulsar-timing-environments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePulsar Timing Environments\u003c/h1\u003e\n\u003cp\u003eThis repository offers a centeralized location for the IPTA Pulsar Timing \u0026amp; Data Combination Teams\u0027 environment.\u003c/p\u003e\n\u003cp\u003eCurrently, this repository presents the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAn Anaconda Environment for Pulsar Science (\u003ccode\u003eanaconda_env.yml\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eSingularity/Apptainer Container for HPC Resources (\u003ccode\u003econtainers/Singularity\u003c/code\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation-of-the-conda-environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation-of-the-conda-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation of the Conda Environment\u003c/h2\u003e\n\u003cp\u003ePlease note, we highly encourage using a fresh install of \u003ca href=\"https://github.com/conda-forge/miniforge#mambaforge\"\u003eMambaforge\u003c/a\u003e or \u003ca href=\"https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html\" rel=\"nofollow\"\u003eMicroMamba\u003c/a\u003eover a default install of Anaconda/Miniconda. If you must use an Anaconda/Miniconda installation, from a fresh environment install the \u003ca href=\"https://github.com/mamba-org/mamba\"\u003eMamba Environment \u0026amp; Package Handler\u003c/a\u003e via \u003ccode\u003econda install -c conda-forge mamba\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote:\u003c/strong\u003e As of \u003ccode\u003econda\u003c/code\u003e version 22.11, \u003ccode\u003elibmamba\u003c/code\u003e can be used as a solver to speed up basic Anaconda installs (though there are growing pains). You can find out more \u003ca href=\"https://www.anaconda.com/blog/a-faster-conda-for-a-growing-community\" rel=\"nofollow\"\u003eat the official posting\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eTo install this environment in your flavor of Anaconda, proceed through the following steps:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eClone this directory: \u003ccode\u003egit clone https://github.com/ipta/pulsar-env.git\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eEnter the cloned directory: \u003ccode\u003ecd pulsar-env\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eUsing \u003ccode\u003emamba\u003c/code\u003e, install the environment: \u003ccode\u003emamba env create -f anaconda-env.yml\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eActivate the environment: \u003ccode\u003emamba activate IPTA_Env\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\u003ca id=\"user-content-important-note-regarding-the-included-openmpi\" class=\"anchor\" aria-hidden=\"true\" href=\"#important-note-regarding-the-included-openmpi\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImportant Note Regarding the Included OpenMPI\u003c/h3\u003e\n\u003cp\u003eFor Linux 64, Open MPI is built with CUDA awareness but this support is disabled by default. To enable it, please set the environment variable \u003ccode\u003eOMPI_MCA_opal_cuda_support=true\u003c/code\u003e before launching your MPI processes. Equivalently, you can set the MCA parameter in the command line: \u003ccode\u003empiexec --mca opal_cuda_support 1 ...\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eIn addition, the UCX support is also built but disabled by default. To enable it, first install UCX (\u003ccode\u003econda install -c conda-forge ucx\u003c/code\u003e). Then, set the environment variables \u003ccode\u003eOMPI_MCA_pml=\"ucx\"\u003c/code\u003e and \u003ccode\u003eOMPI_MCA_osc=\"ucx\"\u003c/code\u003e before launching your MPI processes. Equivalently, you can set the MCA parameters in the command line: \u003ccode\u003empiexec --mca pml ucx --mca osc ucx ...\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eNote that you might also need to set \u003ccode\u003eUCX_MEMTYPE_CACHE=n\u003c/code\u003e for CUDA awareness via UCX. Please consult UCX\u0027s documentation for detail.\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-viennarna",
+ "latest_release": "v2.4.14",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-viennarna/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-viennarna/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/57ccfd894f989623760a4ef3f10260f771a1fc248f5bf2218fa3c1f6a92ed7b7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/57ccfd894f989623760a4ef3f10260f771a1fc248f5bf2218fa3c1f6a92ed7b7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-viennarna\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/edfc9b50cfd2fd753e7bf402f10073da81e6ac134bb5f9d5c154d8ca266689e2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/edfc9b50cfd2fd753e7bf402f10073da81e6ac134bb5f9d5c154d8ca266689e2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-viennarna\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/db9a3b8ac1a85b49dcb1110778b0b6f49678043557b898cfcf02c5c8ad330245/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/db9a3b8ac1a85b49dcb1110778b0b6f49678043557b898cfcf02c5c8ad330245/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-viennarna\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/09f05ae67886e7f3f5559d192fecf3d45a6bb4495adbb67e1891e55a262309d9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/09f05ae67886e7f3f5559d192fecf3d45a6bb4495adbb67e1891e55a262309d9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-viennarna\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-viennarna\" class=\"anchor\" href=\"#singularity-viennarna\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-viennarna\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"http://rna.tbi.univie.ac.at\" rel=\"nofollow\"\u003eviennarna\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eAnalyseDists\u003c/code\u003e, \u003ccode\u003eAnalyseSeqs\u003c/code\u003e, \u003ccode\u003eKinfold\u003c/code\u003e, \u003ccode\u003eRNA2Dfold\u003c/code\u003e, \u003ccode\u003eRNAaliduplex\u003c/code\u003e, \u003ccode\u003eRNAalifold\u003c/code\u003e, \u003ccode\u003eRNAcofold\u003c/code\u003e, \u003ccode\u003eRNAdistance\u003c/code\u003e, \u003ccode\u003eRNAduplex\u003c/code\u003e, \u003ccode\u003eRNAeval\u003c/code\u003e, \u003ccode\u003eRNAfold\u003c/code\u003e, \u003ccode\u003eRNAforester\u003c/code\u003e, \u003ccode\u003eRNAheat\u003c/code\u003e, \u003ccode\u003eRNAinverse\u003c/code\u003e, \u003ccode\u003eRNALalifold\u003c/code\u003e, \u003ccode\u003eRNALfold\u003c/code\u003e, \u003ccode\u003eRNApaln\u003c/code\u003e, \u003ccode\u003eRNApdist\u003c/code\u003e, \u003ccode\u003eRNAparconv\u003c/code\u003e, \u003ccode\u003eRNAPKplex\u003c/code\u003e, \u003ccode\u003eRNAplex\u003c/code\u003e, \u003ccode\u003eRNAplfold\u003c/code\u003e, \u003ccode\u003eRNAplot\u003c/code\u003e, \u003ccode\u003eRNAsnoop\u003c/code\u003e, \u003ccode\u003eRNAsubopt\u003c/code\u003e, \u003ccode\u003eRNAup\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/viennarna/2.4.14\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/viennarna\u003c/code\u003e as \u003ccode\u003e2.4.14.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
- "topics": [],
- "updated_at": 1669905442.0
+ "subscribers_count": 2,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1631407623.0
},
{
"data_format": 2,
- "description": "libmicropython touch screen OS for nxp mxmrt 1062 and/or a souped up Teensy 4.1",
+ "description": "Aspera Connect helps you securely move file and folders of any size.",
"filenames": [
- "ports/libmicropython/IRIDESCENT/__PYTHONMODULES/music21_deps/pygments-master/tests/examplefiles/singularity/Singularity"
+ "3.11.0.5/Singularity"
],
- "full_name": "8888clockradio/iridescentmicropython",
+ "full_name": "pscedu/singularity-aspera-connect",
"latest_release": null,
- "readme": "\u003cp\u003eiridescentmicropython\nANY COMMERCIAL USE OF ANY IRIDESCENT FILES REQUIRES LICENSING contact \u003ca href=\"mailto:george@georgerosar.com\"\u003egeorge@georgerosar.com\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eplease email \u003ca href=\"mailto:george@georgerosar.com\"\u003egeorge@georgerosar.com\u003c/a\u003e if you want to be a contributer\u003c/p\u003e\n\u003cp\u003eCopyright 2023 George Charles Rosar II\u003c/p\u003e\n\u003cp\u003eTeensy 4.1 should have at least 16MB or more of external RAM soldered into Teensy 4.1 PSRAM pads. Should either be soldered or connected to the Teensy Audio Adapter Card, also Teensy Audio Adapter Card should have an additional 2Gbit of Flash RAM soldered in the Audio Adapter.\u003c/p\u003e\n\u003cp\u003eThe MOST IMPORTANT development issue is getting micropython to recieve and send text to Serial.print() or Serial.read(), mphalport.cpp is not functioning properly.\u003c/p\u003e\n\u003cp\u003einstalling\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emkdir iridescentBUILD; cd iridescentBUILD\ngit clone https://github.com/8888clockradio/iridescentmicropython.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eedit iridescentBUILD/iridescentmicropython/toolchain.mk\u003c/p\u003e\n\u003cp\u003echange LIBPATHFILEDROP, COMPILERPATH, TOOLSPATH and maybe also IS_WINDOWS_TOOLCHAIN_QUESTION_MARK to the proper values. Use absolute paths, works better for the tiered makefile system\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eLIBPATHFILEDROP=\"/Users/iridescent/iridescent/iridescentCoconutSynth2/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64/lib/clang-runtimes/armv7em_hard_fpv5_d16/lib\"\nCOMPILERPATH=\"/Users/iridescent/iridescent/iridescentCoconutSynth2/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64/bin\"\nTOOLSPATH=\"/Applications/Teensyduino.app/Contents/Java/hardware/tools\"\nCROSSCOMPILEPREFIX = clang\nADDITIONAL_TOOLS = llvm\nCLANG_TOOLCHAIN = --config \"$(COMPILERPATH)/armv7em_hard_fpv5_d16.cfg\"\n\nIS_WINDOWS_TOOLCHAIN_QUESTION_MARK=\n#uncomment below if windows\n#IS_WINDOWS_TOOLCHAIN_QUESTION_MARK=.exe\n\nAR := \"$(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ar$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\"\nAS := \"$(COMPILERPATH)/$(ADDITIONAL_TOOLS)-as$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\" $(ASFLAGS)\nCC := \"$(COMPILERPATH)/$(CROSSCOMPILEPREFIX)$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\" $(CLANG_TOOLCHAIN)\nCPP := $(CC) -E\nCXX := \"$(COMPILERPATH)/$(CROSSCOMPILEPREFIX)++$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\" $(CLANG_TOOLCHAIN)\n#GDB = $(CROSS_COMPILE)-gdb\nLD := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ld$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nOBJCOPY := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-objcopy$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nSIZE := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-size$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nSTRIP := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-strip$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nAR := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ar$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nar := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ar$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto the path of your LLVM clang and clang++ toolchain, download LLVM-embedded-toolchain-for-Arm\n\u003ca href=\"https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm/releases/download/release-15.0.2/LLVMEmbeddedToolchainForArm-15.0.2-Windows-x86_64.zip\"\u003ehttps://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm/releases/download/release-15.0.2/LLVMEmbeddedToolchainForArm-15.0.2-Windows-x86_64.zip\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewindows\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor\n\u003ca href=\"https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm/releases/download/release-15.0.2/LLVMEmbeddedToolchainForArm-15.0.2-Linux-x86_64.tar.gz\"\u003ehttps://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm/releases/download/release-15.0.2/LLVMEmbeddedToolchainForArm-15.0.2-Linux-x86_64.tar.gz\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003elinux\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor (PREFERRED)\n\u003ca href=\"https://github.com/8888clockradio/iridescentmicropython/raw/main/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64.tar.gz\"\u003ehttps://github.com/8888clockradio/iridescentmicropython/raw/main/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64.tar.gz\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emacOS x64 Intel\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ekeep lib/clang-runtimes/armv7em_hard_fpv5_d16/lib in the LIBPATHFILEDROP and make sure you add /bin to COMPILERPATH\u003c/p\u003e\n\u003cp\u003echange /Applications/Teensyduino.app in TOOLSPATH if Teensyduino is installed in a non-standard location\u003c/p\u003e\n\u003cp\u003ecopy the .tar.gz file to iridescentBUILD/\nextract the .tar.gz file in iridescentBUILD/\nshould look like\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eiridescentBUILD/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64/...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eexample:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eLIBPATHFILEDROP=\"/Users/iridescent/iridescent/iridescentCoconutSynth2/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64/lib/clang-runtimes/armv7em_hard_fpv5_d16/lib\"\nCOMPILERPATH=\"/Users/iridescent/iridescent/iridescentCoconutSynth2/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64/bin\"\nTOOLSPATH=\"/Applications/Teensyduino.app/Contents/Java/hardware/tools\"\nCROSSCOMPILEPREFIX = clang\nADDITIONAL_TOOLS = llvm\nCLANG_TOOLCHAIN = --config \"$(COMPILERPATH)/armv7em_hard_fpv5_d16.cfg\"\n\nIS_WINDOWS_TOOLCHAIN_QUESTION_MARK=\n#uncomment below if windows\n#IS_WINDOWS_TOOLCHAIN_QUESTION_MARK=.exe\n\nAR := \"$(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ar$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\"\nAS := \"$(COMPILERPATH)/$(ADDITIONAL_TOOLS)-as$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\" $(ASFLAGS)\nCC := \"$(COMPILERPATH)/$(CROSSCOMPILEPREFIX)$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\" $(CLANG_TOOLCHAIN)\nCPP := $(CC) -E\nCXX := \"$(COMPILERPATH)/$(CROSSCOMPILEPREFIX)++$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\" $(CLANG_TOOLCHAIN)\n#GDB = $(CROSS_COMPILE)-gdb\nLD := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ld$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nOBJCOPY := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-objcopy$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nSIZE := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-size$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nSTRIP := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-strip$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nAR := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ar$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nar := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ar$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eyou then need to copy the FPU library for heavy mathematics (specifically needed for audio, which isn\u0027t required yet\u2013 but this step is still required for linking) (THE REGULAR TEENSY LIBRARY USES SOFT FLOAT ON A HARD FLOAT BULD?! \u2013 THIS IS CORRECTED HERE)\ndownload: \u003ca href=\"https://github.com/ARM-software/CMSIS/raw/master/CMSIS/Lib/GCC/libarm_cortexM7lfdp_math.a\"\u003ehttps://github.com/ARM-software/CMSIS/raw/master/CMSIS/Lib/GCC/libarm_cortexM7lfdp_math.a\u003c/a\u003e\nand place into the $(LIBPATHFILEDROP) defined in toolchain.mk so like:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecp ~/Downloads/libarm_cortexM7lfdp_math.a /Users/iridescent/iridescent/iridescentCoconutSynth2/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64/lib/clang-runtimes/armv7em_hard_fpv5_d16/lib/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto build:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd iridescentmicropython/ports/libmicropython\nmake submodules #only need to run make submodules once usually\nmake clean; make V=1 #you can repeat this specific command to rebuild from scratch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eif you want to get daring copy the python modules for kivy, virtual environment, numpy, intelbinhex, pygame, matplotlib, music21, et cetera :\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecp -R iridescentBUILD/iridescentmicropython/ports/libmicropython/modulesTakenOut/* iridescentBUILD/iridescentmicropython/ports/libmicropython/modules/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand build again\ndoubtful there\u0027s any hardware that will support it at the moment, however due to tiny flash ram size on hardware\u003c/p\u003e\n\u003cp\u003ea board is in development for this firmware/OS\u003c/p\u003e\n\u003cp\u003eif you have kdbg installed through brew\nyou can run to debug in a very basic way\nNOTE: probably doesn\u0027t work since addition of clang\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd iridescentmicropython/ports/libmicropython; ./kdbg.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTHIS PROBABLY DOESN\u0027T MATTER ANYMORE\nNOTE: need to add FLASHMEM to all micropython boot up steps and modify startup.c to run boot clock start\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eiridescentBUILD/iridescentmicropython/ports/libmicropython/IRIDESCENT/cores-master/teensy4/startup.c\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003egenerate extern blocks on FLASHMEM with #include \u0026lt;avr/pgmspace.h\u0026gt; from:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eiridescentBUILD/iridescentmicropython/ports/libmicropython/board_init.c\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAND THESE:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eiridescentBUILD/iridescentmicropython/lib/nxp_driver/sdk/devices/MIMXRT1062/system_MIMXRT1062.c\niridescentBUILD/iridescentmicropython/lib/nxp_driver/sdk/devices/MIMXRT1062/system_MIMXRT1062.h\niridescentBUILD/iridescentmicropython/ports/libmicropython/boards/MIMXRT1062_clock_config.c\niridescentBUILD/iridescentmicropython/ports/libmicropython/boards/MIMXRT1062_clock_config.h\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBy inserting in: iridescentBUILD/iridescentmicropython/ports/libmicropython/IRIDESCENT/cores-master/teensy4/startup.c in function void ResetHandler(void)\u003c/p\u003e\n\u003cp\u003eALSO THESE FILES PROBABLY NEED FLASHMEM TOO (just in .h files) on functions (plus #include \u0026lt;avr/pgmspace.h\u0026gt;):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eiridescentBUILD/iridescentmicropython/lib/nxp_driver/sdk/devices/MIMXRT1062/fsl_device_registers.h\niridescentBUILD/iridescentmicropython/lib/nxp_driver/sdk/devices/MIMXRT1062/drivers/fsl_gpio.h\niridescentBUILD/iridescentmicropython/lib/nxp_driver/sdk/devices/MIMXRT1062/drivers/fsl_iomuxc.h\niridescentBUILD/iridescentmicropython/lib/nxp_driver/sdk/devices/MIMXRT1062/drivers/fsl_clock.h\niridescentBUILD/iridescentmicropython/lib/nxp_driver/sdk/devices/MIMXRT1062/drivers/fsl_lpuart.h\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLD Script is located:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eiridescentBUILD/iridescentmicropython/ports/libmicropython/IRIDESCENT/imxmrt_ld/picoimxrt1062_t41.ld\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eTHIS MATTERS THO\nMost of the desktop OS will be based off this concept, as matlibplot and kivy will work together with music21:\nSo either build GUI with matlibplot through kivy or just through kivy\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eiridescentBUILD/iridescentmicropython/ports/libmicropython/modulesTakenOut/kivy/garden/garden/matplotlib/examples\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-aspera-connect/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-aspera-connect/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-aspera-connect/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-aspera-connect/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/9163de09dca2f8ae61af41ff4d7baf31f1a6c6d4b86d2a361d93909e155b3ab5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9163de09dca2f8ae61af41ff4d7baf31f1a6c6d4b86d2a361d93909e155b3ab5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-aspera-connect\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5ec7de4d9f3ea32793203e28d5147d5dc6cc8b9bd7cf2ab08eb5692796de5c23/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5ec7de4d9f3ea32793203e28d5147d5dc6cc8b9bd7cf2ab08eb5692796de5c23/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-aspera-connect\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/adf1ed132e277181fe81068629a01b5494834d8fb83cc84fc3b132e50f6e08ac/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/adf1ed132e277181fe81068629a01b5494834d8fb83cc84fc3b132e50f6e08ac/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-aspera-connect\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ca701dddc8865d68b18f35dbdd6e33054e2977f14c0409a15baeb30435b74962/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ca701dddc8865d68b18f35dbdd6e33054e2977f14c0409a15baeb30435b74962/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-aspera-connect\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-aspera-connect\" class=\"anchor\" href=\"#singularity-aspera-connect\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-aspera-connect\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eascp\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/aspera-connect/3.11.0.5\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/aspera-connect\u003c/code\u003e as \u003ccode\u003e3.11.0.5.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally. As of today, Does not work on MacOSX.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [],
- "updated_at": 1672487253.0
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1629217755.0
},
{
"data_format": 2,
- "description": null,
+ "description": "BWA is a program for aligning sequencing reads against a large reference genome (e.g. human genome). ",
"filenames": [
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/20.06/Singularity.20.06",
- "misc/releases/latest/Singularity",
- "misc/releases/19.06/Singularity.19.06"
+ "0.7.17a/Singularity",
+ "0.7.3a/Singularity"
],
- "full_name": "utop1an/rule-based-heuristic",
- "latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2020 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"http://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttp://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-hidden=\"true\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2017 (MSVC 19.16) and 2019 (MSVC 19.28)\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2020 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2020 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2020 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2020 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2020 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2020 Salome Eriksson\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2018-2020 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2015 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-hidden=\"true\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "pscedu/singularity-bwa",
+ "latest_release": "v0.7.3a",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-bwa/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bwa/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-bwa/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bwa/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/dbf644fd78a6a349b822d2b6db36a3f1ab2e4155f5d67671d27202073ac6cb6a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d627761\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/dbf644fd78a6a349b822d2b6db36a3f1ab2e4155f5d67671d27202073ac6cb6a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d627761\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bwa\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0f4fa8203031531a1e542e55475a3668dbdc3d10e36a3ce505f5f098b465b1ea/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d627761\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0f4fa8203031531a1e542e55475a3668dbdc3d10e36a3ce505f5f098b465b1ea/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d627761\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bwa\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5c10a09139792e339dfd18dbbab5079f2bf2027194d2dcfc6796e85d1bab3b88/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d627761\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c10a09139792e339dfd18dbbab5079f2bf2027194d2dcfc6796e85d1bab3b88/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d627761\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bwa\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a1977c9c08b068aecc0940ff8e8665b3e38fd423b0e217273d28b8ada424e70a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d627761\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a1977c9c08b068aecc0940ff8e8665b3e38fd423b0e217273d28b8ada424e70a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d627761\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bwa\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-bwa\" class=\"anchor\" href=\"#singularity-bwa\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bwa\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/Bwa\"\u003ebwa\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebwa\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bwa/0.7.3a\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bwa\u003c/code\u003e as \u003ccode\u003e0.7.3a.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1672794609.0
+ "subscribers_count": 3,
+ "topics": [
+ "bioinformatics",
+ "singularity"
+ ],
+ "updated_at": 1629083200.0
},
{
"data_format": 2,
- "description": "Nextflow workflow for benchmarking biohansel and Snippy with NCBI SRA genomes",
+ "description": "Container used to run IMI spikeScreen",
"filenames": [
"Singularity"
],
- "full_name": "peterk87/nf-biohansel-sra-benchmark",
+ "full_name": "IMIMF-UNILJSI/spikeScreenContainer",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-nf-biohansel-sra-benchmark\" class=\"anchor\" aria-hidden=\"true\" href=\"#nf-biohansel-sra-benchmark\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enf-biohansel-sra-benchmark\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://dev.azure.com/peterkruczkiewicz0831/nf-biohansel-sra-benchmark/_build/latest?definitionId=2\u0026amp;branchName=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5bffa2b25d6120420c8ab60e72373cb3d1ee278f01b086b8f0abb4d334b9bb23/68747470733a2f2f6465762e617a7572652e636f6d2f70657465726b7275637a6b69657769637a303833312f6e662d62696f68616e73656c2d7372612d62656e63686d61726b2f5f617069732f6275696c642f7374617475732f70657465726b38372e6e662d62696f68616e73656c2d7372612d62656e63686d61726b3f6272616e63684e616d653d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://dev.azure.com/peterkruczkiewicz0831/nf-biohansel-sra-benchmark/_apis/build/status/peterk87.nf-biohansel-sra-benchmark?branchName=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/3444\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eNextflow workflow for benchmarking \u003ca href=\"https://github.com/phac-nml/biohansel\"\u003ebiohansel\u003c/a\u003e and \u003ca href=\"https://github.com/tseemann/snippy/\"\u003eSnippy\u003c/a\u003e with NCBI SRA genomes.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pre-reqs\" class=\"anchor\" aria-hidden=\"true\" href=\"#pre-reqs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePre-reqs\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eInstall \u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eInstall \u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003eConda\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eOne or more directories each with the following files (see \u003ccode\u003eschemes/enteritidis_v1.0.7\u003c/code\u003e for an example)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eaccessions\u003c/code\u003e - List of SRA run accessions (e.g. \u003ccode\u003eSRR8820085\u003c/code\u003e) in a file (one accession per line)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003escheme.fasta\u003c/code\u003e - biohansel scheme definition file\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eref.gb\u003c/code\u003e - Genbank format reference genome\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emetadata.tsv\u003c/code\u003e tab delimited metadata file or empty file\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eInput scheme directory included with this repo:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eschemes\n\u2514\u2500\u2500 enteritidis_v1.0.7\n \u251c\u2500\u2500 accessions\n \u251c\u2500\u2500 metatadata.tsv\n \u251c\u2500\u2500 ref.gb\n \u2514\u2500\u2500 scheme.fasta\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003eShow help message:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run peterk87/nf-biohansel-sra-benchmark --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eShould see something like:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eN E X T F L O W ~ version 19.07.0-edge\nLaunching `main.nf` [drunk_dalembert] - revision: 97a449f5b6\n==================================================================\npeterk87/nf-biohansel-sra-benchmark ~ version 1.0dev\n==================================================================\n\nGit info: null - null [null]\n\nUsage:\n The typical command for running the pipeline is as follows:\n\n nextflow run peterk87/nf-biohansel-sra-benchmark \\\n --outdir results \\\n --schemesdir schemes \\\n --n_genomes 96 \\\n --iterations 10 \\\n -work workdir \\\n -profile standard\n\nOptions:\n --outdir Output directory (default: results)\n --schemesdir Directory with subtyping schemes and accessions to benchmark with biohansel (default: schemes)\n --n_genomes Number of SRA genomes to download and analyze per scheme (default: 96)\n --iterations Number of iterations per biohansel benchmark (default: 10)\n --thread_combos List of integer number of threads to test biohansel and snippy with delimited by comma (default: 1,2,4,8,16,32)\nOther options:\n -w/--work-dir The temporary directory where intermediate data will be saved (default: work)\n -profile Configuration profile to use. [singularity, conda, slurm] (default: standard)\nCluster options:\n -profile Only \"-profile slurm\" is accepted\n --slurm_queue Name of SLURM queue to submit jobs to (e.g. \"HighPriority\").\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun test profile creating Conda environment:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run peterk87/nf-biohansel-sra-benchmark -profile test,conda\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun included benchmark dataset with Singularity and default parameters (i.e. 96 genomes, 10 iterations for biohansel, run Snippy and biohansel with 1,2,4,8,16,32 threads/CPUs):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# clone/download this repo so that the scheme included with this repo can be run with the workflow\ngit clone https://github.com/peterk87/nf-biohansel-sra-benchmark.git\nnextflow run peterk87/nf-biohansel-sra-benchmark -profile singularity --schemesdir nf-biohansel-sra-benchmark/schemes\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun above on a cluster with SLURM:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/peterk87/nf-biohansel-sra-benchmark.git\nnextflow run peterk87/nf-biohansel-sra-benchmark -profile singularity,slurm --slurm_queue \u0026lt;QueueName\u0026gt; --schemesdir nf-biohansel-sra-benchmark/schemes\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pipeline-run-information\" class=\"anchor\" aria-hidden=\"true\" href=\"#pipeline-run-information\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline run information\u003c/h2\u003e\n\u003cp\u003eWithin your output directory (e.g. \u003ccode\u003eresults/\u003c/code\u003e), you should find a \u003ccode\u003epipeline_info\u003c/code\u003e directory with runtime information about your analysis including trace information (see \u003ca href=\"https://www.nextflow.io/docs/latest/tracing.html\" rel=\"nofollow\"\u003ehttps://www.nextflow.io/docs/latest/tracing.html\u003c/a\u003e for more info about these output files)\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-spikescreencontainer\" class=\"anchor\" href=\"#spikescreencontainer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003espikeScreenContainer\u003c/h1\u003e\n\u003cp\u003eContainer used to run IMI spikeScreen\nThis repo is meant to increase portability through automatic automatic container builds on shub.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1566494312.0
+ "updated_at": 1629128736.0
},
{
"data_format": 2,
- "description": "Getting up to speed with Singularity",
+ "description": "ASCIIGenome is a genome browser based on command line interface and designed for console terminals.",
"filenames": [
- "Singularity"
+ "1.16.0/Singularity"
],
- "full_name": "netscruff/SingularityTest",
- "latest_release": null,
+ "full_name": "pscedu/singularity-asciigenome",
+ "latest_release": "v1.16.0",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-asciigenome/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-asciigenome/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-asciigenome/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-asciigenome/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/fc6d0c140fd5a29bf338bd86c146a7c92b4c8062434faaf70ef0f6c0deb67aa6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fc6d0c140fd5a29bf338bd86c146a7c92b4c8062434faaf70ef0f6c0deb67aa6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-asciigenome\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/4ebf7a2007abd25cbc70d78eea4b3e18e84b103736a8a5edb364f1677212c427/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4ebf7a2007abd25cbc70d78eea4b3e18e84b103736a8a5edb364f1677212c427/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-asciigenome\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/6e5331506177fef5e181d308bb0030987e5b6b8ed2eac29c791694f6339a6115/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6e5331506177fef5e181d308bb0030987e5b6b8ed2eac29c791694f6339a6115/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-asciigenome\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/b6afd6a92e3bec558c0c64e9a5bdc6d25c18335230778d4b78f8b2f869f15e4d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b6afd6a92e3bec558c0c64e9a5bdc6d25c18335230778d4b78f8b2f869f15e4d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-asciigenome\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-asciigenome\" class=\"anchor\" href=\"#singularity-asciigenome\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-asciigenome\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/fc29589526166dc2ee7ce341088c93b17e02dca1cf81bba1cf477425249fa4f3/68747470733a2f2f617363696967656e6f6d652e72656164746865646f63732e696f2f656e2f6c61746573742f5f696d616765732f6c656973686d616e69615f7472616e736372697074732e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fc29589526166dc2ee7ce341088c93b17e02dca1cf81bba1cf477425249fa4f3/68747470733a2f2f617363696967656e6f6d652e72656164746865646f63732e696f2f656e2f6c61746573742f5f696d616765732f6c656973686d616e69615f7472616e736372697074732e706e67\" width=\"50%\" data-canonical-src=\"https://asciigenome.readthedocs.io/en/latest/_images/leishmania_transcripts.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/dariober/ASCIIGenome\"\u003easciigenome\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003easciigenome\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/asciigenome/1.16.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/asciigenome\u003c/code\u003e as \u003ccode\u003e1.16.0\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1511296488.0
+ "subscribers_count": 2,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1629217403.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "v4.7.1/Singularity"
+ "Singularity"
],
- "full_name": "yh549848/singularity-code-server",
+ "full_name": "porchard/ATACseq-NextFlow",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nextflow-pipeline-for-atac-seq-data\" class=\"anchor\" href=\"#nextflow-pipeline-for-atac-seq-data\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNextFlow pipeline for ATAC-seq data\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eIf you have Singularity installed, you can use the config provided here (\u0027Singularity\u0027) to build a container with all the dependencies.\u003c/p\u003e\n\u003cp\u003eOtherwise, you\u0027ll need to have the following installed:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003ecta\u003c/li\u003e\n\u003cli\u003ebedtools\u003c/li\u003e\n\u003cli\u003ebwa\u003c/li\u003e\n\u003cli\u003epicardtools\u003c/li\u003e\n\u003cli\u003efastqc\u003c/li\u003e\n\u003cli\u003esamtools\u003c/li\u003e\n\u003cli\u003eataqv\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThis pipeline works with NextFlow versions \u0026gt;= 20.07.1\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-configuration\" class=\"anchor\" href=\"#configuration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguration\u003c/h2\u003e\n\u003cp\u003ePaths to various generic files (e.g., bwa indices) must be included in the nextflow.config file -- check that file and change paths accordingly. These include:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eBlacklist bed files for each genome\u003c/li\u003e\n\u003cli\u003eChrom size files for each genome\u003c/li\u003e\n\u003cli\u003eBWA indices\u003c/li\u003e\n\u003cli\u003eTSS files (BED6 files denoting TSS positions)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eYou\u0027ll also need to set the params.results variable -- either in the nextflow.config file itself, or on the command line when you run the pipeline (\u0027--results /path/to/results\u0027).\u003c/p\u003e\n\u003cp\u003eLastly, you\u0027ll need to include information about each ATAC-seq library, including the genome that each library should be mapped to and the paths to the fastq files for each readgroup. Organize this information in a JSON file, as in library-config.json.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running\" class=\"anchor\" href=\"#running\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning\u003c/h2\u003e\n\u003cp\u003eOnce you have all of the above information, you can run the pipeline as follows (in this case, indicating the path to the results on the command line):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run -with-singularity /path/to/Singularity.simg -with-trace -with-report -with-dag -with-timeline -params-file library-config.json --results /path/to/results /path/to/main.nf\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1675855529.0
+ "updated_at": 1629490022.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity Recipe for accessing GPU"
+ "Singularity"
],
- "full_name": "salammemphis/GPU-and-singularity",
+ "full_name": "baxpr/sct-fmri",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe to access GPU from host machine. It will spin up a jupyter notebook from singularity.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-cuda-110-and-tensorflow-220-and-keras-240\" class=\"anchor\" aria-hidden=\"true\" href=\"#cuda-110-and-tensorflow-220-and-keras-240\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCUDA 11.0 and tensorflow 2.2.0 and keras 2.4.0\u003c/h1\u003e\n\u003cp\u003eBootstrap: docker\n#From: tensorflow/tensorflow:latest-gpu-py3-jupyter\nFrom: nvcr.io/nvidia/tensorflow:20.08-tf2-py3\n%help\nThis container is made by Shahinur Alam (\u003ca href=\"mailto:sajonbuet@gmail.com\"\u003esajonbuet@gmail.com\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e%setup\u003c/p\u003e\n\u003cp\u003e%files\u003c/p\u003e\n\u003cp\u003e%labels\nMaintainer Shahinur\nVersion 1.0\u003c/p\u003e\n\u003cp\u003e%environment\u003c/p\u003e\n\u003cp\u003e%post\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip install numpy pandas sklearn webcolors plotly matplotlib statsmodels factorial pynrrd pillow\npip install torch\npip install scikit-image medpy Tables nilearn SimpleITK h5py glob3 nibabel tifffile scipy opencv-python\npip install --upgrade keras\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e%runscript\necho \"Arguments received: $*\"\nport=$1\nroot_dir=$2\nport=\u003ccode\u003eecho $port| sed \u0027s/ *$//g\u0027\u003c/code\u003e\nroot_dir=\u003ccode\u003eecho $root_dir| sed \u0027s/ *$//g\u0027\u003c/code\u003e\necho $port\njupyter notebook --no-browser --port $port --notebook-dir $root_dir --ip 0.0.0.0\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-works-with-cuda-101\" class=\"anchor\" aria-hidden=\"true\" href=\"#works-with-cuda-101\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWorks with CUDA 10.1\u003c/h1\u003e\n\u003cp\u003eBootstrap: docker\nFrom: tensorflow/tensorflow:latest-gpu-py3-jupyter\n%help\nThis container is made by Shahinur Alam (\u003ca href=\"mailto:sajonbuet@gmail.com\"\u003esajonbuet@gmail.com\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e%setup\u003c/p\u003e\n\u003cp\u003e%files\u003c/p\u003e\n\u003cp\u003e%labels\nMaintainer Shahinur\nVersion 1.0\u003c/p\u003e\n\u003cp\u003e%environment\u003c/p\u003e\n\u003cp\u003e%post\n#pip install numpy pandas sklearn webcolors plotly matplotlib statsmodels factorial pynrrd pillow\n#pip install torch\n#pip install scikit-image medpy Tables tensorflow_addons nilearn SimpleITK h5py glob3 nibabel tifffile scipy opencv-python\npip uninstall -y tensorflow tensorflow-addons tensorflow-estimator tensorflow-gpu tensorboard tensorboard-plugin-wit\npip install --upgrade keras\npip install --upgrade tensorflow\npip install tensorflow-addons==0.11.2\npip install tensorflow-estimator==2.3.0\npip install tensorflow-gpu==2.3.0\npip install tensorboard==2.3.0\npip install tensorboard-plugin-wit==1.7.0\u003c/p\u003e\n\u003cp\u003e%runscript\necho \"Arguments received: $*\"\nport=$1\nroot_dir=$2\nport=\u003ccode\u003eecho $port| sed \u0027s/ *$//g\u0027\u003c/code\u003e\nroot_dir=\u003ccode\u003eecho $root_dir| sed \u0027s/ *$//g\u0027\u003c/code\u003e\necho $port\njupyter notebook --no-browser --port $port --notebook-dir $root_dir --ip 0.0.0.0\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-sct-fmri-processing\" class=\"anchor\" href=\"#sct-fmri-processing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSCT fMRI processing\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-inputs\" class=\"anchor\" href=\"#inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs\u003c/h2\u003e\n\u003cp\u003eSee \u003ccode\u003etest_container.sh\u003c/code\u003e for an example run command.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e--fmri_niigz 4D spinal cord fMRI, fully qualified path and filename\n--masksize Size of mask to create in mm\n--label_info Text to label the PDF, e.g. from XNAT project/subject\n--out_dir Outputs directory (and working directory)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pipeline\" class=\"anchor\" href=\"#pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline\u003c/h2\u003e\n\u003cp\u003eSee \u003ccode\u003esrc/main.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-outputs\" class=\"anchor\" href=\"#outputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003efmri0.nii.gz First volume of fMRI\n\nfmri_mask??.nii.gz Created analysis mask\n\nfmri_centerline.nii.gz Cord centerline\nfmri_centerline.csv\n\nfmri_moco.nii.gz Moco outputs\nfmri_moco_mean.nii.gz\nmoco_params.tsv\nmoco_params_x.nii.gz\nmoco_params_y.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1675440928.0
+ "updated_at": 1629493665.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "planner/downward/misc/releases/19.12/Singularity.19.12",
- "planner/downward/misc/releases/20.06/Singularity.20.06",
- "planner/downward/misc/releases/latest/Singularity",
- "planner/downward/misc/releases/19.06/Singularity.19.06"
+ "1.0.3/Singularity"
],
- "full_name": "drexlerd/downward-hffpi",
+ "full_name": "yh549848/singularity-sicer2",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-downward-hffpi\" class=\"anchor\" aria-hidden=\"true\" href=\"#downward-hffpi\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edownward-hffpi\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eClone recursively\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003egit clone --recursively \u0026lt;link_to_repo\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eCreate python3 virtual environment\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003epython3 -m venv --prompt hffpi .venv\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eActivate virtual environment\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003esource .venv/bin/activate\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eInstall python packages (needed for experimental code)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003epip install -r requirements.txt\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eInstall planner\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e./planner/downward/build.py\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-run-the-planner\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-run-the-planner\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run the planner\u003c/h2\u003e\n\u003cp\u003eSee \u003ccode\u003eexperiments/experiment-hffpi.py\u003c/code\u003e on example callstrings.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-run-the-experiments\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-run-the-experiments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run the experiments\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd experiments\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e./experiment-hffpi.py --all\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1675861881.0
+ "updated_at": 1629665658.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "recipes/single-cell-genomics/mosaic/Singularity.mosaic-v03",
- "recipes/peakcallers/macs2/Singularity.macs2-2271",
- "recipes/peakcallers/hiddendomains/Singularity.hiddendomains-31",
- "recipes/quality-control/fastqc/Singularity.fastqc-0119cv6",
- "recipes/quality-control/fastqc/Singularity.fastqc-0119cv8",
- "recipes/quality-control/fastqc/Singularity.fastqc-0119cv7",
- "recipes/mapping/bowtie2samtools/Singularity.bowtie2samtools-v245v115",
- "recipes/mapping/bowtie2/Singularity.bowtie2-245",
- "recipes/mapping/bowtie2/Singularity.bowtie2-241cv1",
- "recipes/fastq-operations/parallelfastqdump/Singularity.parallelfastqdump-v063",
- "recipes/fastq-operations/trimgalore/Singularity.trimgalore-v067",
- "recipes/os-environments/alpine/Singularity.alpine-3160",
- "recipes/rpackages/bioconductor/genomeinfodb/Singularity.genomeinfodb-1323",
- "recipes/rpackages/bioconductor/genomicranges/Singularity.genomicranges-1480",
- "recipes/rpackages/snakemake-pipelines/chipseq/Singularity.snakemakechipseq-v001",
- "recipes/rpackages/bedtools/Singularity.bedr-107",
- "recipes/image-analysis/deeplabcut/Singularity.deeplabcut-2202",
- "recipes/image-analysis/cellpose/Singularity.cellpose-2.0.5",
- "recipes/image-analysis/chimerax/Singularity.chimerax-1.3",
- "recipes/chipseq/spikchip/Singularity.spikchip-v099",
- "recipes/chipseq/spikchipcustom/Singularity.spikchipcustom-v099",
- "recipes/analysissuites/picardtools/Singularity.picardtools-2221",
- "recipes/analysissuites/picardtools/Singularity.picardtools-2271",
- "recipes/analysissuites/deeptools/Singularity.deeptools-351",
- "recipes/analysissuites/samtools/Singularity.samtools-114",
- "recipes/analysissuites/samtools/Singularity.samtools-115",
- "recipes/analysissuites/bedops/Singularity.bedops-2440"
+ "2.63/Singularity"
],
- "full_name": "descostesn/singularityhub-emblrome",
+ "full_name": "yh549848/singularity-ngsplot",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularityhub-embl-rome-gitlab-version\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularityhub-embl-rome-gitlab-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularityhub EMBL Rome (Gitlab version)\u003c/h1\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"#introduction\"\u003eIntroduction\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#pulling\"\u003ePulling\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#contributing\"\u003eContributing\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003eThis repository aims at sharing singularity images among the EMBL community. We try to follow a strict model to provide uniformly designed singularities. Please let us know if we should modify anything.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eImportant: Since we do not have a premium account, I tried to find some workaround. We cannot secure completely that master will stay green. Please be careful to strictly follow the instructions.\u003c/strong\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pulling\" class=\"anchor\" aria-hidden=\"true\" href=\"#pulling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePulling\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003ePlease read the entire section before trying to pull any singularities\u003c/strong\u003e.\u003c/p\u003e\n\u003cp\u003eTo pull an existing singularity, first have a look at the image of interest in the list \u003ca href=\"https://git.embl.de/descoste/singularityhub-emblrome/container_registry\" rel=\"nofollow\"\u003ehere\u003c/a\u003e or in this \u003ca href=\"https://git.embl.de/descoste/singularityhub-emblrome/-/tree/main/recipes\" rel=\"nofollow\"\u003efolder\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the script below in a \u003ccode\u003edownload.sh\u003c/code\u003e file and run the command: \u003ccode\u003ebash dowload.sh username containername imagename\u003c/code\u003e. For example, \u003ccode\u003ebash download.sh descoste fastqcv0019cv8.sif \u0027fastqc:0119cv8\u0027\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/usr/bin/bash\n\nUSERNAME=$1\nCONTAINERNAME=$2\nIMAGE=$3\n\nsingularity pull --docker-username $USERNAME --docker-password $SINGULARITY_DOCKER_PASSWORD $CONTAINERNAME oras://git.embl.de:4567/descoste/singularityhub-emblrome/$IMAGE\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eImportant\u003c/strong\u003e: You need to define a git token to be able to use the \u003ccode\u003e$SINGULARITY_DOCKER_PASSWORD\u003c/code\u003e variable. Follow these steps:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eClick on your avatar at the top right of your gitlab page.\u003c/li\u003e\n\u003cli\u003eClick on \u003ccode\u003epreferences\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eClick on \u003ccode\u003eAccess Tokens\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eEnter a Token name. ex: \"singularitypull\".\u003c/li\u003e\n\u003cli\u003eIn the \u003ccode\u003eSelect scopes\u003c/code\u003e section, select \u003ccode\u003eread_registry\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eClick \u003ccode\u003eCreate personal access token\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eAt the beginning of the new loaded page, click on the folder icon to copy your new personal access token.\u003c/li\u003e\n\u003cli\u003eEdit your \u003ccode\u003e.bashrc\u003c/code\u003e (\u003ccode\u003eemacs -nw ~/.bashrc\u003c/code\u003e or \u003ccode\u003evim ~/.bashrc\u003c/code\u003e) by adding \u003ccode\u003eexport SINGULARITY_DOCKER_PASSWORD=\"paste_your_copied_access_token_here\"\u003c/code\u003e wherever you like.\u003c/li\u003e\n\u003cli\u003eAfter closing your editor, run \u003ccode\u003eexec bash\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eNow try to pull a particular singularity following the instructions above.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e: Make sure that you do use bash and not something else like zsh.\u003c/p\u003e\n\u003cp\u003eIf it does not work please do:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eAdd the remote: \u003ccode\u003esingularity remote add --no-login embl https://git.embl.de:4567\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eUse the remote: \u003ccode\u003esingularity remote use embl\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eLog to the remote: \u003ccode\u003esingularity remote login oras://git.embl.de:4567\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003cp\u003eThis repository is maintained by Nicolas Descostes.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eImportant: Since we do not have a premium account, I tried to find some workaround. We cannot secure completely that master will stay green. Please be careful to strictly follow the instructions.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eImportant Bis: Each singularity should contain a single tool. Contact me ahead if you plan otherwise.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eTo add a new singularity recipe, you need to:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eClone the repository: \u003ccode\u003egit clone git@git.embl.de:descoste/singularityhub-emblrome.git\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eEnter the folder: \u003ccode\u003ecd singularityhub-emblrome/\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003ePosition yourself on the \"submission\" branch: \u003ccode\u003egit checkout submission\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eMake sure that the content of the branch is up-to-date: \u003ccode\u003egit reset --hard main\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eAdd a singularity recipe inside \u003ccode\u003erecipes\u003c/code\u003e in the adapted folder.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003cstrong\u003eRespect the naming format \u003ccode\u003eSingularity.toolName-tag\u003c/code\u003e (with a upper-case S). Please use common sense to choose the folder\u003c/strong\u003e. If you are not sure, please contact me by email or by chat.\u003c/p\u003e\n\u003cp\u003eFor instance, if you want to submit fastqc version 0119cv8, your file name will be \u003ccode\u003eSingularity.fastqc-0119cv8\u003c/code\u003e.\u003c/p\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003eCommit and push to the repository: `git add myrecipe \u0026amp;\u0026amp; git commit -m \"initial commit\" \u0026amp;\u0026amp; git push origin submission\"\u003c/li\u003e\n\u003cli\u003eModify \u003ccode\u003e.gitlab-ci.yml\u003c/code\u003e in the \"submission area\" using the following template (replace \u003ccode\u003etoolName\u003c/code\u003e, \u003ccode\u003etag\u003c/code\u003e, and \u003ccode\u003epath_to_recipe_folder\u003c/code\u003e):\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003etoolName-tag-test:\n extends: .templateTest\n variables:\n BASENAME: toolName\n TAG: tag\n RECIPE_PATH: recipes/path_to_recipe_folder_without_file\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor instance, if you want to submit fastqc version 0119cv8, your rule name will be \u003ccode\u003efastqc-0119cv8-test\u003c/code\u003e and the path to the recipe \u003ccode\u003erecipes/quality-control/fastqc\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote 1:\u003c/strong\u003e There is no slash at the end of the path and the file name is \u003cstrong\u003enot\u003c/strong\u003e precised.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote 2:\u003c/strong\u003e The BASENAME and the TAG are used to create the file name (Singularity.BASENAME-TAG). Please verify that it matches.\u003c/p\u003e\n\u003col start=\"8\"\u003e\n\u003cli\u003eIn the following instruction, \u003cstrong\u003eplease add toolName-tag-test` as a commit message\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003ePush the file \u003ccode\u003e.gitlab-ci.yml\u003c/code\u003e to the repository: \u003ccode\u003egit add .gitlab-ci.yml \u0026amp;\u0026amp; git commit -m \"toolName-tag-test\" \u0026amp;\u0026amp; git push origin submission\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eVisit this \u003ca href=\"https://git.embl.de/descoste/singularityhub-emblrome/-/merge_requests\" rel=\"nofollow\"\u003epage\u003c/a\u003e to submit a merge request.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eAs title: toolName-tag-test\u003c/li\u003e\n\u003cli\u003edescription: A one-line sentence to explain what the tool is. Please precise any important information as well.\u003c/li\u003e\n\u003cli\u003eReviewer: Choose Nicolas Descostes\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eBe careful:\u003c/strong\u003e Uncheck the \u003ccode\u003eDelete source branch when merge request is accepted.\u003c/code\u003e before submitting.\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"11\"\u003e\n\u003cli\u003eNow it is time to test the build of your singularity. You will see a gear on the right of \u003ccode\u003eDetached merge request pipeline #32160 waiting for manual action for \u003c/code\u003e. Click on it and hit the play button next to your rule.\u003c/li\u003e\n\u003cli\u003eIn the \u003ccode\u003eCI/CD \u0026gt; jobs\u003c/code\u003e (menu on the left), you can see your job running.\u003c/li\u003e\n\u003cli\u003eOnce your job passes the test (green checkmark), I will merge and deploy your singularity. I will let you know when this is done.\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1674643692.0
+ "updated_at": 1629677826.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity image for alienpy",
"filenames": [
"Singularity"
],
- "full_name": "rses-singularity/tfgpu-theano-pytorch-keras",
+ "full_name": "adriansev/alienpy.sing",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-tensorflow-gpu-theano-keras-and-pytorch-gpu-with-opencv\" class=\"anchor\" aria-hidden=\"true\" href=\"#tensorflow-gpu-theano-keras-and-pytorch-gpu-with-opencv\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTensorflow (GPU), Theano, Keras and PyTorch (GPU) with OpenCV\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eSee \u003ca href=\"build.sh\"\u003ebuild.sh\u003c/a\u003e for info on how to build and run the image\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e file for the definition of the image, including\n\u003cul\u003e\n\u003cli\u003eThe (Docker) image it is based on\u003c/li\u003e\n\u003cli\u003eWhat OS packages are installed\u003c/li\u003e\n\u003cli\u003eWhat environment variables are set\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e project website for more info on Singularity in general and detailed documentaiton.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-software-listing\" class=\"anchor\" aria-hidden=\"true\" href=\"#software-listing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSoftware listing\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003ev1\n\u003cul\u003e\n\u003cli\u003eUbuntu 16.04\u003c/li\u003e\n\u003cli\u003eCUDA 8 + cuDNN 6\u003c/li\u003e\n\u003cli\u003ePython 3.5\u003c/li\u003e\n\u003cli\u003eTheano 1.0.0\u003c/li\u003e\n\u003cli\u003eTensorflow (GPU) 1.4.1\u003c/li\u003e\n\u003cli\u003ePyTorch (GPU) 0.3.0\u003c/li\u003e\n\u003cli\u003eOpenCV 3.3.0\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-alienpysing\" class=\"anchor\" href=\"#alienpysing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ealienpy.sing\u003c/h1\u003e\n\u003cp\u003eSingularity image for alienpy\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1674934803.0
+ "updated_at": 1629840214.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Docker recipe for building Interproscan",
"filenames": [
+ "Singularity.open",
"Singularity"
],
- "full_name": "rses-singularity/digits",
- "latest_release": null,
+ "full_name": "biocorecrg/interproscan_docker",
+ "latest_release": "5.48-83.0",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-interproscan_docker\" class=\"anchor\" href=\"#interproscan_docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003einterproscan_docker\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://zenodo.org/badge/latestdoi/150708687\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5867fa2b54b675356b6c4b17144ce558f6902bee46de35012c7bdafc38d90f88/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3135303730383638372e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/150708687.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eContainer recipes for building \u003ca href=\"https://interproscan-docs.readthedocs.io\" rel=\"nofollow\"\u003eInterproscan\u003c/a\u003e. Both \u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e and \u003ca href=\"https://singularity.hpcng.org/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e versions are provided (the latter recomended).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eIf you want to use Interproscan external privative software, these programs must be obtained first with granted academic permissions.\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"http://www.cbs.dtu.dk/services/SignalP/\" rel=\"nofollow\"\u003eSignalP\u003c/a\u003e \u003ccode\u003esignalp-4.1b.Linux.tar.Z\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://www.cbs.dtu.dk/services/TMHMM/\" rel=\"nofollow\"\u003eTMHMM\u003c/a\u003e \u003ccode\u003etmhmm-2.0c.Linux.tar.gz\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://phobius.sbc.su.se/\" rel=\"nofollow\"\u003ePhobious\u003c/a\u003e \u003ccode\u003ephobius101_linux.tar.gz\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eRegarding phobius: \u003ca href=\"https://www.biostars.org/p/238642/\" rel=\"nofollow\"\u003ehttps://www.biostars.org/p/238642/\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eKeep in mind that some other modifications are also needed in those programs above in advance, e. g., replacing \u003ccode\u003e/usr/bin/perl\u003c/code\u003e for \u003ccode\u003e/usr/bin/env perl\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eLast software package versions of Interproscan include the whole data by default. For container performance and distribution, we don\u0027t keep Interproscan data directory.\u003c/p\u003e\n\u003cp\u003eIt is important to ensure that program and data versions match and that this is adequately reflected in \u003ccode\u003einterproscan.properties\u003c/code\u003e or \u003ccode\u003einterproscan.open.properties\u003c/code\u003e files. Otherwise Interproscan is not likely to work.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pregenerated-images\" class=\"anchor\" href=\"#pregenerated-images\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePregenerated images\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://biocore.crg.eu/iprscan/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://hub.docker.com/r/biocorecrg/interproscan\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-from-docker-recipes\" class=\"anchor\" href=\"#building-from-docker-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding from Docker recipes\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e# With privative software\ndocker build -t iprscan:5.48-83.0 -f Dockerfile .\nsudo singularity build iprscan-5.48-83.0.sif docker-daemon://iprscan:5.48-83.0\n# Without privative software\ndocker build -t iprscan-open:5.48-83.0 -f Dockerfile.open .\nsudo singularity build iprscan-5.48-83.0.open.sif docker-daemon://iprscan-open:5.48-83.0\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-from-singularity-recipes\" class=\"anchor\" href=\"#building-from-singularity-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding from Singularity recipes\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e# With privative software\nsudo singularity build iprscan-5.48-83.0.sif Singularity\n# Without privative software\nsudo singularity build iprscan-5.48-83.0.open.sif Singularity.open\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can avoid using \u003ccode\u003esudo\u003c/code\u003e with \u003ccode\u003e--fakeroot\u003c/code\u003e Singularity build option.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running\" class=\"anchor\" href=\"#running\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning\u003c/h2\u003e\n\u003cp\u003eFor running the container images, it is mandatory to mount a data directory that fits the same Interproscan version. Below some example commands:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Docker\ndocker run --volume /path/to/data:/usr/local/interproscan/data --volume /path/to/scratch:/scratch -t biocorecrg/interproscan:5.48-83.0 /usr/local/interproscan/interproscan.sh -i /scratch/test.fa --goterms --iprlookup --pathways -o /scratch/out_interpro -f TSV\n\n# Singularity\nsingularity exec -e iprscan-5.47-82.0.open.sif /usr/local/interproscan/interproscan.sh -i /path/to/test2.fa --goterms --iprlookup --pathways -o /path/to/out_interpro -f TSV\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-notes\" class=\"anchor\" href=\"#notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNOTES\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eMoreover, keep into account that a user with suitable permissions may need first to index \u003ccode\u003e/usr/local/interproscan/data\u003c/code\u003e directory (e.g., with \u003ccode\u003epython3 /usr/local/interproscan/initial_setup.py\u003c/code\u003e). You can use the very container images. Details here: \u003ca href=\"https://interproscan-docs.readthedocs.io/en/5.48-83.0/HowToRun.html\" rel=\"nofollow\"\u003ehttps://interproscan-docs.readthedocs.io/en/5.48-83.0/HowToRun.html\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eDepending on your setup, you may need to change \u003ccode\u003eSINGULARITY_TMPDIR\u003c/code\u003e (and \u003ccode\u003eSINGULARITY_CACHEDIR\u003c/code\u003e) environment variables for pointing to a location with enough space. More details at: \u003ca href=\"https://singularity.hpcng.org/admin-docs/master/installation.html\" rel=\"nofollow\"\u003ehttps://singularity.hpcng.org/admin-docs/master/installation.html\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1674934803.0
+ "updated_at": 1631532581.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Copy of the template_project_escape to test the GitHub CI",
"filenames": [
- "Singularity"
+ "Singularity/Singularity"
],
- "full_name": "rses-singularity/theano",
- "latest_release": null,
+ "full_name": "escape2020/template_project_escape",
+ "latest_release": "v0.1.4",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-template_project_escape\" class=\"anchor\" href=\"#template_project_escape\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etemplate_project_escape\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.5281/zenodo.4923992\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/869b462bf3a319fe4fc2ffa52fb6b0f7c8e42eb4e0ed4bc2482306b9fd5aafab/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e343932333939322e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4923992.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape/-/commits/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a25ea71f12537b69d5aca8b409685333243d4e65ceb91c5a401dadb6eacea20e/68747470733a2f2f6769746c61622e696e3270332e66722f657363617065323032302f7770332f74656d706c6174655f70726f6a6563745f6573636170652f6261646765732f6d61737465722f706970656c696e652e737667\" alt=\"pipeline status\" data-canonical-src=\"https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape/badges/master/pipeline.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fd551ba4b042d89480347a0e74e31af63b356b2cac1116c7b80038f41b04a581/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d4d49542d677265656e2e737667\" alt=\"License: MIT\" data-canonical-src=\"https://img.shields.io/badge/License-MIT-green.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca href=\"https://camo.githubusercontent.com/64f9054d866a78f16e1451647c19b22fc159a58191e004612257ce5277bd6db9/68747470733a2f2f63646e2e65736f2e6f72672f696d616765732f6c617267652f616e6e3138303834612e6a7067\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/64f9054d866a78f16e1451647c19b22fc159a58191e004612257ce5277bd6db9/68747470733a2f2f63646e2e65736f2e6f72672f696d616765732f6c617267652f616e6e3138303834612e6a7067\" width=\"640\" height=\"453\" data-canonical-src=\"https://cdn.eso.org/images/large/ann18084a.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp\u003eA simple template project to provide software to ESCAPE.\u003c/p\u003e\n\u003cp\u003eThis repository shows the \u003cstrong\u003ebasic content\u003c/strong\u003e that should be included in a project (following the\n\u003ca href=\"https://opensource.guide/starting-a-project/\" rel=\"nofollow\"\u003eopensource guide\u003c/a\u003e):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAn \u003ca href=\"https://help.github.com/en/github/creating-cloning-and-archiving-repositories/licensing-a-repository#where-does-the-license-live-on-my-repository\"\u003eopen source\u003c/a\u003e\n\u003cstrong\u003elicense\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003eA \u003ca href=\"https://help.github.com/en/github/getting-started-with-github/create-a-repo#commit-your-first-change\"\u003e\u003cstrong\u003eREADME\u003c/strong\u003e file\u003c/a\u003e,\nsimilar to this one.\u003c/li\u003e\n\u003cli\u003eContributing guidelines.\n\u003cul\u003e\n\u003cli\u003eSee below the general guidelines for the ESCAPE repository.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eA \u003ca href=\"https://opensource.guide/code-of-conduct/\" rel=\"nofollow\"\u003ecode of conduct\u003c/a\u003e.\n\u003cul\u003e\n\u003cli\u003eCheck why is a good idea to add one.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eThe repository itself.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIt would be highly suitable to include too:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eA setup file as well as the basic commands to install the library (see below).\u003c/li\u003e\n\u003cli\u003eA \u003ccode\u003e.gitignore\u003c/code\u003e file.\u003c/li\u003e\n\u003cli\u003eUnitary and integration tests, and ideally a CI pipeline.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003ePlease feel free to clone / fork / template this project!\u003c/strong\u003e (For example, look to left of the\n\u003ccode\u003eClone or download\u003c/code\u003e button in the \u003ca href=\"https://github.com/garciagenrique/template_project_escape\"\u003eGitHub\u003c/a\u003e site).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFor a detailed explanation of how to submit a contribution to a project / repository (Fork, create a branch, make\na pull request...), you can have a look to the \u003ca href=\"https://opensource.guide/how-to-contribute/#how-to-submit-a-contribution\" rel=\"nofollow\"\u003eopensource guide\u003c/a\u003e\nand/or the \u003ca href=\"https://git-scm.com/doc\" rel=\"nofollow\"\u003egit\u0027s documentation\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eNot that if you have login GitLab by using the \u003ccode\u003e[Shibbolenth]\u003c/code\u003e service (eduGAIN, F\u00e9d\u00e9ration d\u0027Identit\u00e9s\nRENATER), you will need to \u003ca href=\"https://gitlab.in2p3.fr/help/ssh/README#generating-a-new-ssh-key-pair\" rel=\"nofollow\"\u003eadd a SSH key\u003c/a\u003e to\nyour GitLab profile if you want to \u0027push\u0027 your changes to the server.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-contribute-to-the-escape-ossr\" class=\"anchor\" href=\"#contribute-to-the-escape-ossr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContribute to the ESCAPE OSSR\u003c/h1\u003e\n\u003cp\u003eIf you want to provide software to the ESCAPE repository:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eCheck the \u003ca href=\"https://escape2020.pages.in2p3.fr/wp3/ossr-pages/page/contribute/contribute_ossr/\" rel=\"nofollow\"\u003eESCAPE OSSR guidelines\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFor ESCAPE members, follow the steps detailed in \u003ca href=\"https://gitlab.in2p3.fr/escape2020/wp3/onboarding\" rel=\"nofollow\"\u003ethe onboarding project\u003c/a\u003e\nto finalise your contribution and the same onboarding process.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eAll the code provided should be uploaded to the \u003ca href=\"https://zenodo.org/communities/escape2020/\" rel=\"nofollow\"\u003eZenodo ESCAPE community\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCheck the following \u003ca href=\"https://escape2020.pages.in2p3.fr/wp3/ossr-pages/page/contribute/publish_tutorial/\" rel=\"nofollow\"\u003etutorial on how to publish content in Zenodo\u003c/a\u003e,\nand how to automatise the upload of each new release of your project.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-this-project-also-includes\" class=\"anchor\" href=\"#this-project-also-includes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThis project also includes\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-1-how-to-automatise-the-building-of-a-singularity-image-and-upload-it-to-zenodo-using-the-gitlab-ci\" class=\"anchor\" href=\"#1-how-to-automatise-the-building-of-a-singularity-image-and-upload-it-to-zenodo-using-the-gitlab-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. How to automatise the building of a Singularity image and upload it to Zenodo using the GitLab-CI\u003c/h2\u003e\n\u003cp\u003eA working example of how to automatise the GitLab-CI to;\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003ecreate a Singularity image / container of your code,\u003c/li\u003e\n\u003cli\u003emake it available as a downloadable artifact within your project and\u003c/li\u003e\n\u003cli\u003eupload it to the \u003ca href=\"https://zenodo.org/communities/escape2020\" rel=\"nofollow\"\u003eESCAPE OSSR\u003c/a\u003e,\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003ecan be found in the \u003ccode\u003e.singularityci\u003c/code\u003e, and \u003ccode\u003eSingularity\u003c/code\u003e directories and in the \u003ccode\u003e.gitlab-ci.yml\u003c/code\u003e file - the\n\u003ccode\u003ebuild_singularity_image\u003c/code\u003e stage. Please read carefully all the README files.\u003c/p\u003e\n\u003cp\u003eFor an easy example of how to create a Singularity receipt from scratch (and its corresponding container when executed),\nplease have a look to the \u003ccode\u003esingularity_utils\u003c/code\u003e directory.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-2-how-to-automatise-the-building-of-a-docker-container-and-upload-it-to-the-gitlab-container-registry\" class=\"anchor\" href=\"#2-how-to-automatise-the-building-of-a-docker-container-and-upload-it-to-the-gitlab-container-registry\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. How to automatise the building of a Docker container and upload it to the GitLab Container Registry\u003c/h2\u003e\n\u003cp\u003eAn example can be found in the \u003ccode\u003eDocker\u003c/code\u003e directory and in the \u003ccode\u003e.gitlab-ci.yml\u003c/code\u003e file - the\n\u003ccode\u003ebuild_docker_image\u003c/code\u003e stage.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-install\" class=\"anchor\" href=\"#install\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h1\u003e\n\u003cp\u003eExample of how to show installing instructions (and indeed the way to install this project).\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e $ git clone https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape.git\n $ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e template_project_escape\n $ pip install \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-citing\" class=\"anchor\" href=\"#citing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCiting\u003c/h1\u003e\n\u003cp\u003eExample of citing (as well as the DOI to cite this project),\u003c/p\u003e\n\u003cp\u003eIn case of citing this repository, use the following DOI:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ev2.2 \u003ca href=\"https://doi.org/10.5281/zenodo.4923992\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/869b462bf3a319fe4fc2ffa52fb6b0f7c8e42eb4e0ed4bc2482306b9fd5aafab/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e343932333939322e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4923992.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev2.1 \u003ca href=\"https://doi.org/10.5281/zenodo.4790629\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c8f54e2f50cdf0c4d1bd5183d6472cae8b708efacd6a1319b443d8e456f41b7f/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e343739303632392e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4790629.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev2.0 \u003ca href=\"https://doi.org/10.5281/zenodo.3884963\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c27201272a77fc3ab3029c8c2c452e02a71736b7adaa0926bc45d3ac825598ed/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e333838343936332e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.3884963.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev1.1 \u003ca href=\"https://doi.org/10.5281/zenodo.3743490\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cbfe31d3a9bd48ef4554b414c3c2325276269a476a79ec0217aa9feccc87cecd/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e333734333439302e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.3743490.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev1.0 \u003ca href=\"https://doi.org/10.5281/zenodo.3572655\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5ec734ee4c1c793eaa8f9c2b189a6eae6d7d2ccb5f2a92adeb8af479409cc7bb/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e333537323635352e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.3572655.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eDo not forget to include your code / container into the \u003ca href=\"https://zenodo.org/communities/escape2020/\" rel=\"nofollow\"\u003eZenodo ESCAPE community\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cem\u003e\u003cstrong\u003eNote that\u003c/strong\u003e\u003c/em\u003e a DOI will be assigned in the moment create a new record/entry in Zenodo.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h1\u003e\n\u003cp\u003ePlease check the licenses of the code within the \u003ccode\u003e.singularityci\u003c/code\u003e directory before adding this template\nto your project.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-report-an-issue--ask-a-question\" class=\"anchor\" href=\"#report-an-issue--ask-a-question\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReport an issue / Ask a question\u003c/h1\u003e\n\u003cp\u003eUse the \u003ca href=\"https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape/-/issues\" rel=\"nofollow\"\u003eGitLab repository Issues\u003c/a\u003e.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-contact\" class=\"anchor\" href=\"#contact\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h1\u003e\n\u003cp\u003eEmail to vuillaume [at] lapp.in2p3.fr / garcia [at] lapp.in2p3.fr.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1674934802.0
+ "updated_at": 1631872285.0
},
{
"data_format": 2,
- "description": " MrBayes, a program for Bayesian inference and model choice across a wide range of phylogenetic and evolutionary models.",
+ "description": null,
"filenames": [
- "Singularity.3.2.7a-mpi"
+ "Singularity.rstudio"
],
- "full_name": "sghignone/MrBayes",
+ "full_name": "ternaustralia/coesra-singularity-rstudio",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-mrbayes\" class=\"anchor\" aria-hidden=\"true\" href=\"#mrbayes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMrBayes\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4216\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eMrBayes v.3.2.7, a program for Bayesian inference and model choice across a wide range of phylogenetic and evolutionary models.\u003c/p\u003e\n\u003cp\u003eThe current release is based on MrBayes version 3.2.7a, released March 6, 2019. This version is compiled with MPI support and without the Beagle library\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-coesra-singularity-rstudio\" class=\"anchor\" href=\"#coesra-singularity-rstudio\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-rstudio\u003c/h1\u003e\n\u003cp\u003eHoang Nguyen\n25 July 2019\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [
- "singularity",
- "container",
- "bayesian-inference",
- "phylogenomics",
- "phylogenetics"
+ "coesra"
],
- "updated_at": 1663758431.0
+ "updated_at": 1610424737.0
},
{
"data_format": 2,
- "description": "Building an online mousetracking tool",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.qgis"
],
- "full_name": "paulstillman/Online-Mousetracking",
+ "full_name": "ternaustralia/coesra-singularity-qgis",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-online-mousetracking\" class=\"anchor\" aria-hidden=\"true\" href=\"#online-mousetracking\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOnline-Mousetracking\u003c/h1\u003e\n\u003cp\u003eBuilding an online mousetracking tool\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-coesra-singularity-qgis\" class=\"anchor\" href=\"#coesra-singularity-qgis\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-qgis\u003c/h1\u003e\n\u003cp\u003eHoang Nguyen 24 July 2019\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1663958736.0
+ "updated_at": 1610427940.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "bc3.10-rs125042r362/Singularity",
- "bc3.12-r405rs125042/Singularity",
- "bc3.15-r421tv132rs2022072.576/Singularity"
+ "Singularity.canopy"
],
- "full_name": "yh549848/singularity-rstudio-methylseq",
+ "full_name": "ternaustralia/coesra-singularity-canopy",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-coesra-singularity-canopy\" class=\"anchor\" href=\"#coesra-singularity-canopy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-canopy\u003c/h1\u003e\n\u003cp\u003eAuthor: Hoang Nguyen\nCreated: 22 July 2019\nThis will create a image with Singularity 2.5.1\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [],
- "updated_at": 1665633405.0
- },
- {
- "data_format": 2,
- "description": "Quantifying the life of pollen.",
- "filenames": [
- "singularity/Singularity"
+ "topics": [
+ "coesra"
],
- "full_name": "cedarwarman/pollen_cv",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-pollen_cv\" class=\"anchor\" aria-hidden=\"true\" href=\"#pollen_cv\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epollen_cv\u003c/h1\u003e\n\u003cp\u003eQuantifying the life of pollen.\u003c/p\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1665173991.0
+ "updated_at": 1610425023.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "analysis/assembly/containers/Singularity.canu"
+ "util/PATRIC/Singularity"
],
- "full_name": "justicengom/head_to_head_pipeline-",
+ "full_name": "adamlabadorf/bf500",
"latest_release": null,
- "readme": "\u003ch3\u003e\u003ca id=\"user-content-preprint\" class=\"anchor\" aria-hidden=\"true\" href=\"#preprint\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreprint\u003c/h3\u003e\n\u003cblockquote\u003e\n\u003cp\u003eHall, M. B. \u003cem\u003eet al\u003c/em\u003e. Nanopore sequencing for \u003cem\u003eMycobacterium tuberculosis\u003c/em\u003e drug susceptibility testing and outbreak investigation. \u003cem\u003eMedrxiv\u003c/em\u003e 2022.03.04.22271870 (2022) \u003ca href=\"https://doi.org/10.1101/2022.03.04.22271870\" rel=\"nofollow\"\u003edoi:10.1101/2022.03.04.22271870\u003c/a\u003e.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003chr\u003e\n\u003cp\u003eThis repository holds the pipelines/scripts used for our paper analysing Illumina and\nNanopore for \u003cem\u003eM.tuberculosis\u003c/em\u003e drug resistance calling and transmission clustering.\u003c/p\u003e\n\u003cp\u003eFor people wanting to analyse their Nanopore data in the same manner as we did in this paper, we would suggest using \u003ca href=\"https://github.com/mbhall88/tbpore\"\u003ehttps://github.com/mbhall88/tbpore\u003c/a\u003e, which is a python program that runs the drug resistance prediction and clustering (with a smaller decontamination database) components of this pipeline. It is actively maintained and much easier to use.\u003c/p\u003e\n\u003cp\u003eAll pipelines require the following dependencies to be installed:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://snakemake.github.io/\" rel=\"nofollow\"\u003eSnakemake\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://docs.conda.io/en/latest/\" rel=\"nofollow\"\u003eConda\u003c/a\u003e (and\n\u003ca href=\"https://github.com/mamba-org/mamba\"\u003eMamba\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://sylabs.io/docs\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003eThe Python library \u003ca href=\"https://pandas.pydata.org/\" rel=\"nofollow\"\u003e\u003ccode\u003epandas\u003c/code\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSee subdirectories for more specific information about different pipelines. They are\nnested according to their dependence on the outputs of each pipeline.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"data/QC\"\u003eQuality Control\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"analysis/assembly\"\u003eAssembly\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"analysis/baseline_variants\"\u003eBaseline variant analysis\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"analysis/transmission_clustering\"\u003eTransmission clustering\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"analysis/resistance_prediction\"\u003eDrug Resistance Prediction\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe following pipelines are not relevant to the work in the final paper.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"data/H37Rv_PRG\"\u003eH37Rv PRG construction\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"analysis/pandora_variants\"\u003ePandora variant analysis\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-data-availability\" class=\"anchor\" aria-hidden=\"true\" href=\"#data-availability\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData availability\u003c/h1\u003e\n\u003cp\u003eAll data is submitted under the Project accession \u003cstrong\u003ePRJEB49093\u003c/strong\u003e.\u003c/p\u003e\n\u003cp\u003eThe accessions and all relevant sample metadata for this study can be found at \u003ca href=\"https://doi.org/10.6084/m9.figshare.19304648\" rel=\"nofollow\"\u003ehttps://doi.org/10.6084/m9.figshare.19304648\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe raw Nanopore data is available to download from: \u003ca href=\"https://ftp.ebi.ac.uk/pub/databases/ont_tb_eval2022/\" rel=\"nofollow\"\u003ehttps://ftp.ebi.ac.uk/pub/databases/ont_tb_eval2022/\u003c/a\u003e. See the sample metadata file for mappings between samples and the relevant Nanopore runs and barcode numbers.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-bf500---bioinformatics-engineering\" class=\"anchor\" href=\"#bf500---bioinformatics-engineering\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBF500 - Bioinformatics Engineering)\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://adamlabadorf.github.io/bf500/\" rel=\"nofollow\"\u003eGo to the Github Pages site\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1671672013.0
+ "updated_at": 1631274450.0
},
{
"data_format": 2,
- "description": null,
+ "description": "One place for all the different container recipes",
"filenames": [
- "Singularity"
+ "uboonecode/Singularity.uboonecode",
+ "ubdl/Singularity.ubdldeps.u16.04_py3.6.11",
+ "ubdl/Singularity.ubdldev",
+ "ubdl/Singularity.ubdldev.python3",
+ "sparseconvnet/Singularity.sparseconvnet"
],
- "full_name": "rhassett-cshl/SimPolv2",
+ "full_name": "LArbys/larbys-containers",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-simpol--simulating-the-dynamics-of-rna-polymerase-rnap-on-dna-template\" class=\"anchor\" aria-hidden=\"true\" href=\"#simpol--simulating-the-dynamics-of-rna-polymerase-rnap-on-dna-template\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSimPol \u2014 Simulating the dynamics of RNA Polymerase (RNAP) on DNA template\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-hidden=\"true\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOverview\u003c/h2\u003e\n\u003cp\u003eSimPol tracks the independent movement of RNAPs along the DNA templates of a large\nnumber of cells. It accepts several key\nuser-specified parameters, including the initiation rate, pause-escape rate,\na constant or variable elongation rate, the mean and variance of pause sites across cells,\nas well as the center-to-center spacing constraint between RNAPs,\nthe number of cells being simulated, the gene length, and the total time of transcription.\nThe simulator simply allows each RNAP to move forward or not,\nin time slices of $10^{-4}$ minutes, according to the specified position-specific\nrate parameters. It assumes that at most one movement of each RNAP can occur per\ntime slice. The simulator monitors for collisions between adjacent RNAPs, prohibiting\none RNAP to advance if it is at the boundary of the allowable distance from the next.\nAfter running for the specified time, SimPol outputs either a file in HDF5 format or files in CSV format that records all RNAP position for the last specified number of steps. See more options and details about parameters and outputs below.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"figures/simulator.png\"\u003e\u003cimg src=\"figures/simulator.png\" alt=\"simulator\" width=\"600\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n\tFig.1 Design of SimPol (\u201cSimulator of Polymerases\u201d)\n\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-setup-environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup Environment\u003c/h2\u003e\n\u003cp\u003eWe provide two different approaches to set up the environment for SimPol, one with\n\u003ca href=\"https://docs.conda.io/projects/conda/en/stable/user-guide/getting-started.html\" rel=\"nofollow\"\u003eConda\u003c/a\u003e\nand the other with \u003ca href=\"https://docs.sylabs.io/guides/latest/user-guide/quick_start.html#\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e.\nPre-built debug and release executables can be found in the bin folder\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-conda\" class=\"anchor\" aria-hidden=\"true\" href=\"#conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConda\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml\n\nconda activate simpol\n\nbin/simPol_Release --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build --fakeroot simPol.sif Singularity\n\nsingularity shell simPol.sif\n\nbin/simPol_Release --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-from-source\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-from-source\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild from source\u003c/h2\u003e\n\u003cp\u003eThere is the option to build in either debug mode with debug symbols or release mode with compiler optimizations (e.g. -O2).\u003c/p\u003e\n\u003cp\u003eTo create a build directory in release mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecmake -S . -B Release/ -D CMAKE_BUILD_TYPE=Release\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo clean the release mode build directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecmake --build Release/ --target clean\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo build in release mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecmake --build Release/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote: Replace all instances of \u0027Release\u0027 with \u0027Debug\u0027 to build in Debug mode\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Locally\u003c/h2\u003e\n\u003cp\u003eSet Number of Threads [By default uses all available threads]\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport OMP_NUM_THREADS=\u0026lt;number of threads to use\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun in Release Mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./Release/simPol [options]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun in Debug Mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./Debug/simPol [options]\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun program with file containing command line arguments\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e ./Release/simPol $(\u0026lt;simPol_arguments.dat)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-with-uge-workload-manager-within-cshl\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-with-uge-workload-manager-within-cshl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun with UGE Workload Manager (within CSHL)\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eqsub -pe OpenMP 5 -cwd -b y ./Release/simPol -n 100 --csv 10\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eNote: This allocates 5 threads for the program in the OpenMP parallel environment\u003c/li\u003e\n\u003cli\u003eCheck available parallel environments: qconf -spl\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eOptions:\n\t-h, --help\n\t\tShow this help message and exit\n\n\t-k INTEGER, --tssLen=INTEGER\n\t\tdefine the mean of pause sites across cells [default 50bp]\n\n\t--kSd=DOUBLE\n\t\tdefine the standard deviation of pause sites across cells [default 0]\n\n\t--kMin=INTEGER\n\t\tupper bound of pause site allowed [default 17bp]\n\n\t--kMax=INTEGER\n\t\tlower bound of pause site allowed [default 200bp]\n\n\t--geneLen=INTEGER\n\t\tdefine the length of the whole gene [default 2000bp]\n\n\t-a DOUBLE, --alpha=DOUBLE\n\t\tinitiation rate [default 1 event per min]\n\n\t-b DOUBLE, --beta=DOUBLE\n\t\tpause release rate [default 1 event per min]\n\n\t-z DOUBLE, --zeta=DOUBLE\n\t\tthe mean of elongation rates across sites [default 2000bp per min]\n\n\t--zetaSd=DOUBLE\n\t\tthe standard deviation of elongation rates across sites [default 1000]\n\n\t--zetaMax=DOUBLE\n\t\tthe maximum of elongation rates allowed [default 2500bp per min]\n\n\t--zetaMin=DOUBLE\n\t\tthe minimum of elongation rates allowed [default 1500bp per min]\n\n\t--zetaVec=CHARACTER\n\t\ta file contains vector to scale elongation rates. All cells share the same set of parameters [default \"\"]\n\n\t-n INTEGER, --cellNum=INTEGER\n\t\tNumber of cells being simulated [default 10]\n\n\t-s INTEGER, --polSize=INTEGER\n\t\tPolymerase II size [default 33bp]\n\n\t--addSpace=INTEGER\n\t\tAdditional space in addition to RNAP size [default 17bp]\n\n\t-t DOUBLE, --time=DOUBLE\n\t\tTotal time of simulating data in a cell [default 0.1 min]\n\n\t--hdf5=INTEGER\n\t\tRecord position matrix to HDF5 file for remaining number of steps specified [default: 0 steps]\n\n\t--csv=INTEGER\n\t\tRecord position matrix to csv file for remaining number of steps specified [default: 1 step]\n\n\t-d CHARACTER, --outputDir=CHARACTER\n\t\tDirectory for saving results [default: \u0027results\u0027]\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cp\u003eAfter simulation, SimPol produces multiple output files:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eprobability_vector.csv\u003c/li\u003e\n\u003cli\u003epause_sites.csv\u003c/li\u003e\n\u003cli\u003ecombined_cell_data.csv: Stores the total # of polymerase at each site across all cells\u003c/li\u003e\n\u003cli\u003eposition_matrices.h5: An HDF5 file containing a group of position matrices for the last number of specified steps. The file can be viewed by importing it into the HDFView app. Download Here: \u003ca href=\"https://www.hdfgroup.org/downloads/hdfview/#download\" rel=\"nofollow\"\u003ehttps://www.hdfgroup.org/downloads/hdfview/#download\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eUsing HighFive interface to generate HDF5 file \u003ca href=\"https://github.com/BlueBrain/HighFive\"\u003ehttps://github.com/BlueBrain/HighFive\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eUses chunking and ZLIB (deflate) compression at level 9\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003epositions/position_matrix_#.csv: CSV files containing the position matrix at a specified step\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-sampling-nascent-rna-sequencing-read-counts\" class=\"anchor\" aria-hidden=\"true\" href=\"#sampling-nascent-rna-sequencing-read-counts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSampling nascent RNA sequencing read counts\u003c/h2\u003e\n\u003cp\u003eIf you prefer to simulate nascent RNA sequencing read counts in addition to the RNAP positions,\nyou can also follow the tutorial in \u003ccode\u003escripts/sample_read_counts.Rmd\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\u003cp\u003eZhao, Y., Liu, L. \u0026amp; Siepel, A. Model-based characterization of the equilibrium dynamics of transcription initiation and promoter-proximal pausing in human cells. 2022.10.19.512929 Preprint at \u003ca href=\"https://doi.org/10.1101/2022.10.19.512929\" rel=\"nofollow\"\u003ebioRxiv\u003c/a\u003e (2022).\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eRepository to hold various Docker and singularity container building scripts\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-are-containers\" class=\"anchor\" href=\"#what-are-containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat are containers?\u003c/h2\u003e\n\u003cp\u003eContainers according to Amazon:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eContainers provide a standard way to package your application\u0027s code, configurations, and dependencies into a single object.\nContainers share an operating system installed on the server and run as resource-isolated processes, ensuring quick,\nreliable, and consistent deployments, regardless of environment.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eAs far as our group is concerned, we use containers to be able to run the same piece of code on\nthe various compute platforms we have access to.\nThis is primary the Tufts cluster, which requires us to put our code into \u003ccode\u003eSingularity\u003c/code\u003e containers.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-whats-the-repo-for\" class=\"anchor\" href=\"#whats-the-repo-for\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat\u0027s the repo for?\u003c/h2\u003e\n\u003cp\u003eWe hold instructions on how to build particularly useful containers for our work.\nIn addition to packing up the code, containers can be built on top of another allow us to build, for example,\na container holding the common dependencies of our different software packages.\u003c/p\u003e\n\u003cp\u003eThis allows one to build a container for a specific analysis without having to repackage the whole stack of code again.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-are-you-going-to-make-me-build-all-of-these-myself\" class=\"anchor\" href=\"#are-you-going-to-make-me-build-all-of-these-myself\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAre you going to make me build all of these myself?\u003c/h2\u003e\n\u003cp\u003eNo! We keep copies of the containers on our \u003ca href=\"dockerhub\"\u003edockerhub\u003c/a\u003e and \u003ca href=\"https://www.singularity-hub.org/collections/2494\" rel=\"nofollow\"\u003esingularity\u003c/a\u003e hub pages.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-containers-and-the-heirarchy\" class=\"anchor\" href=\"#containers-and-the-heirarchy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainers (and the heirarchy)\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/232863cf1838592aed70d01a47bdf2e517095bcbf4637bbf2fccda3c9dc523ab/68747470733a2f2f672e67726176697a6f2e636f6d2f736f757263652f637573746f6d5f6d61726b31303f68747470732533412532462532467261772e67697468756275736572636f6e74656e742e636f6d2532464c41726279732532466c61726279732d636f6e7461696e6572732532466d6173746572253246636f6e7461696e65725f67726170682e646f74\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/232863cf1838592aed70d01a47bdf2e517095bcbf4637bbf2fccda3c9dc523ab/68747470733a2f2f672e67726176697a6f2e636f6d2f736f757263652f637573746f6d5f6d61726b31303f68747470732533412532462532467261772e67697468756275736572636f6e74656e742e636f6d2532464c41726279732532466c61726279732d636f6e7461696e6572732532466d6173746572253246636f6e7461696e65725f67726170682e646f74\" alt=\"Alt text\" data-canonical-src=\"https://g.gravizo.com/source/custom_mark10?https%3A%2F%2Fraw.githubusercontent.com%2FLArbys%2Flarbys-containers%2Fmaster%2Fcontainer_graph.dot\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eContainer\u003c/th\u003e\n\u003cth align=\"left\"\u003eDescripton\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003eubuntu\u003c/td\u003e\n\u003ctd align=\"left\"\u003e\n\u003ca href=\"https://hub.docker.com/r/nvidia/cuda/\" rel=\"nofollow\"\u003envidia containers\u003c/a\u003e which include cuda and cuDNN libraries\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003eROOT\u003c/td\u003e\n\u003ctd align=\"left\"\u003ebuild of CERN\u0027s \u003ca href=\"https://github.com/root-project/root\"\u003eROOT\u003c/a\u003e data-analysis library\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003eOpenCV\u003c/td\u003e\n\u003ctd align=\"left\"\u003eopen source \u003ca href=\"https://github.com/opencv/opencv\"\u003elibrary\u003c/a\u003e of computer vision algorithms\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003ePyTorch\u003c/td\u003e\n\u003ctd align=\"left\"\u003edeep learning \u003ca href=\"https://pytorch.org/\" rel=\"nofollow\"\u003elibrary\u003c/a\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003eSparseConvNet\u003c/td\u003e\n\u003ctd align=\"left\"\u003eincludes submanifold convolution library for pytorch\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003edllee_unified\u003c/td\u003e\n\u003ctd align=\"left\"\u003ecurrent-gen analysis code for MicroBooNE DL low-energy excess analysis\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003eubdl\u003c/td\u003e\n\u003ctd align=\"left\"\u003erepository with next-gen LArbys tools for MicroBooNE DL-working group analysis\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-specific-versions\" class=\"anchor\" href=\"#specific-versions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpecific Versions\u003c/h2\u003e\n\u003cp\u003eHere we list official stack versions to be used for production and analysis studies\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eStack Name\u003c/th\u003e\n\u003cth\u003eubuntu\u003c/th\u003e\n\u003cth\u003epython\u003c/th\u003e\n\u003cth\u003eROOT\u003c/th\u003e\n\u003cth\u003eOpenCV\u003c/th\u003e\n\u003cth\u003ePyTorch\u003c/th\u003e\n\u003cth\u003eSubConvNet (nutufts-fork)\u003c/th\u003e\n\u003cth\u003edllee_unified\u003c/th\u003e\n\u003cth\u003eubdl\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003edllee_unified\u003c/td\u003e\n\u003ctd\u003e16.04 LTS+CUDA 10.0+cuDNN 7\u003c/td\u003e\n\u003ctd\u003e2.7\u003c/td\u003e\n\u003ctd\u003e6.16/00\u003c/td\u003e\n\u003ctd\u003e3.4\u003c/td\u003e\n\u003ctd\u003e1.0.1post2\u003c/td\u003e\n\u003ctd\u003etagXXXXXX\u003c/td\u003e\n\u003ctd\u003etagXXXXXXXX\u003c/td\u003e\n\u003ctd\u003en/a\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003eubdl\u003c/td\u003e\n\u003ctd\u003e16.04 LTS+CUDA 10.0+cuDNN 7\u003c/td\u003e\n\u003ctd\u003e2.7\u003c/td\u003e\n\u003ctd\u003e6.16/00\u003c/td\u003e\n\u003ctd\u003e3.4\u003c/td\u003e\n\u003ctd\u003e1.0.1post2\u003c/td\u003e\n\u003ctd\u003etagXXXXXX\u003c/td\u003e\n\u003ctd\u003en/a\u003c/td\u003e\n\u003ctd\u003etagxxxx\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003eubdl dependences\u003c/td\u003e\n\u003ctd\u003e16.04 LTS+CUDA 11.0+cuDNN 8\u003c/td\u003e\n\u003ctd\u003e3.6.11\u003c/td\u003e\n\u003ctd\u003e6.22/06\u003c/td\u003e\n\u003ctd\u003e3.4.11\u003c/td\u003e\n\u003ctd\u003e1.7.1\u003c/td\u003e\n\u003ctd\u003e7dfbd0f\u003c/td\u003e\n\u003ctd\u003en/a\u003c/td\u003e\n\u003ctd\u003en/a\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eThe \u003ccode\u003eubdl dependencies\u003c/code\u003e container is used to build the \u003ccode\u003eubdl\u003c/code\u003e repository on Tufts.\nThis provides a development environment.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-built-containers-on-tufts\" class=\"anchor\" href=\"#built-containers-on-tufts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilt containers on Tufts\u003c/h2\u003e\n\u003cp\u003eOn the Tufts Cluster you can find the containers at:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e/cluster/tufts/wongjiradlab/larbys/larbys-containers\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-instructions\" class=\"anchor\" href=\"#instructions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstructions\u003c/h1\u003e\n\u003cp\u003eWe use two packages: \u003ca href=\"https://www.docker.com/why-docker\" rel=\"nofollow\"\u003edocker\u003c/a\u003e and \u003ca href=\"https://www.sylabs.io/singularity/\" rel=\"nofollow\"\u003esingularity\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eTypically, we will use \u003ccode\u003edocker\u003c/code\u003e to build the containers and then convert the docker image into a \u003ccode\u003esingularity\u003c/code\u003e container.\u003c/p\u003e\n\u003cp\u003eIn the end, it is not important what tool we use to build the containers (one could use just singularity), but ultimately we must end up with a singularity container to run on the Tufts cluster. (The reason is that docker is not supported on the cluster due to security concerns with docker.)\u003c/p\u003e\n\u003cp\u003eYou can run both docker and singularity from your personal machine. You can also use lab machines at:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eTufts: meitner, rubin\u003c/li\u003e\n\u003cli\u003eMIT: nudot, trex\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto build your containers.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-do-i-need-to-do-to-build-a-container\" class=\"anchor\" href=\"#what-do-i-need-to-do-to-build-a-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat do I need to do to build a container?\u003c/h2\u003e\n\u003cp\u003e(still under construction)\u003c/p\u003e\n\u003cp\u003eIn general, you just need to know the instructions you\u0027d type to install the software in question.\nYou put those instructions into a recipe file and tell docker or singularity to build the container.\u003c/p\u003e\n\u003cp\u003eAs an example, we will use the anticipated most-likely case, which is to make a container with a new version of analysis code (\u003ccode\u003eubdl\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eIn the folder \u003ccode\u003eubdl\u003c/code\u003e, there is the docker recipe file to build this container.\nIt probably looks something like the following (assuming it hasn\u0027t changed too much since the time this README was written):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFROM larbys/sparseconvnet:ubuntu16.04_latest\n\nMAINTAINER taritree.wongjirad@tufts.edu\n\n# UBDL\nRUN apt-get update -y \u0026amp;\u0026amp; apt install -y rsync \u0026amp;\u0026amp; apt-get autoremove -y \u0026amp;\u0026amp; apt-get clean -y\nRUN pip install pyyaml typing figcan zmq\nRUN cd /usr/local \u0026amp;\u0026amp; git clone --recursive https://github.com/larbys/ubdl \u0026amp;\u0026amp; \\\n cd ubdl \u0026amp;\u0026amp; chmod +x setenv.sh \u0026amp;\u0026amp; chmod +x buildall.sh \u0026amp;\u0026amp; chmod +x configure.sh\nRUN cd /usr/local/ubdl/larcv \u0026amp;\u0026amp; cp misc/FindCUDA.cmake /usr/local/share/cmake-3.13/Modules/\nRUN cd /usr/local/ubdl \u0026amp;\u0026amp; bash -c \"source /usr/local/root/build/bin/thisroot.sh \u0026amp;\u0026amp; source setenv.sh \u0026amp;\u0026amp; source configure.sh \u0026amp;\u0026amp; source buildall.sh\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe first line tells docker to build off of an existing image.\nThis happens to be the \u003ccode\u003elarbys/sparseconvnet\u003c/code\u003e image,\nwhich contains the software stack up to the Sparse Convolutional Network library.\nThe SparseConvNet library is the last dependency for the \u003ccode\u003eubdl\u003c/code\u003e code.\nSo all that\u0027s left to finish the container is to build \u003ccode\u003eubdl\u003c/code\u003e into the container.\u003c/p\u003e\n\u003cp\u003eThe docker file is just the list of instructions to install \u003ccode\u003eubdl\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eTo build it, run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build -t larbys/ubdl:dev . -f Dockerfile_ubuntu16.04\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003e-t\u003c/code\u003e flag is to the set the \"name\" or \"tag\" of the image.\n\u003ccode\u003e.\u003c/code\u003e tells Docker where to find the docker recipe file.\nAnd \u0027-f\u0027 is what recipe file to use (in \u0027.\u0027).\u003c/p\u003e\n\u003cp\u003eWith the image with ubdl built, the next step if one wants to create a container to run\nat Tufts, is to create a singularity container.\nLike the docker build file above,\nwe list the commands we would run to configure the computer for \u003ccode\u003eubdl\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eAs an example, in the \u003ccode\u003eubdl\u003c/code\u003e folder,\nyou\u0027ll see a file called \u003ccode\u003eSingularity.ubdl\u003c/code\u003e,\nwhich contains the instructions to build the \u003ccode\u003eubdl\u003c/code\u003e repository.\nIt\u0027ll look something that the following:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebootstrap: docker\nFrom: larbys/ubdl:latest\n\n%post\n mkdir -p /cluster/home\n mkdir -p /cluster/kappa\n mkdir -p /cluster/shared\n mkdir -p /opt/shared\n\n%environment\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-alternative-build-ubdl-outside-the-container\" class=\"anchor\" href=\"#alternative-build-ubdl-outside-the-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAlternative, build \u003ccode\u003eubdl\u003c/code\u003e outside the container\u003c/h2\u003e\n\u003cp\u003eHere, we of course start with the container we built with docker above, \u003ccode\u003elarbys/ubdl:latest\u003c/code\u003e.\nYou can see all we do is create four folders.\nThese folders server to provide a mount point for our container to the network storage area.\nWhen making singularity containers for the Tufts cluster,\nplease include these commands.\u003c/p\u003e\n\u003cp\u003eNote that the instructinos here were about installing \u003ccode\u003eubdl\u003c/code\u003e into the container.\nHowever, an alternative is to clone the \u003ccode\u003eubdl\u003c/code\u003e code into some folder and then compile that source\nusing the libraries found in the container.\nWe provide the \u003ccode\u003eubdl-dependencies\u003c/code\u003e container for this.\u003c/p\u003e\n\u003cp\u003eInstructions on how to do that can be found \u003ca href=\"https://github.com/LArbys/ubdl/wiki/Build-development-copy-of-UBDL-with-container\"\u003ehere\u003c/a\u003e\nas part of the \u003ccode\u003eubdl\u003c/code\u003e wiki.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1673019793.0
+ "updated_at": 1629120346.0
},
{
"data_format": 2,
- "description": "ABC-MK estimations",
+ "description": null,
"filenames": [
- "scripts/singularity/Singularity"
+ "Singularity.mpich33"
],
- "full_name": "jmurga/MKtest.jl",
+ "full_name": "cjknight/singularity_test",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-abc-mk\" class=\"anchor\" aria-hidden=\"true\" href=\"#abc-mk\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eABC-MK\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://jmurga.github.io/MKtest.jl/dev\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/56f8252ba8e9d3f0b810769543f77823d2fe031ce560d4c2d69fb1fcad800383/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f63732d6c61746573742d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/docs-latest-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eMKtest.jl is a Julia package including a fast Approximate Bayesian Computation version of the McDonald-Kreitman test (ABC-MK) presented in \u003ca href=\"https://doi.org/10.1038/s41559-019-0890-6\" rel=\"nofollow\"\u003eUricchio et al. (2019)\u003c/a\u003e. The new ABC-MK implementation significantly improves the efficiency of the population genetics inferences. Following \u003ca href=\"https://doi.org/10.1038/s41559-019-0890-6\" rel=\"nofollow\"\u003eUricchio et al.(2019)\u003c/a\u003e, the analytical estimations were used to explore the effect of background selection and selective interference on weakly beneficial alleles. Nonetheless, we developed a more straightforward and computationally efficient ABC-based inference procedure that accounts for the DFE of deleterious and beneficial alleles and partial recombination between selected genomic elements. Our approach estimates $\\alpha$, $\\alpha_W$, $\\alpha_S$, and the Gamma distribution DFE parameters.\u003c/p\u003e\n\u003cp\u003eIn addition, the package automatizes other MK-like analyses parsing polymorphic and divergence data as well as including several extensions such as \u003ca href=\"https://doi.org/10.1371/journal.pgen.1005774\" rel=\"nofollow\"\u003eGrapes\u003c/a\u003e, \u003ca href=\"https://doi.org/10.1073/pnas.1220835110\" rel=\"nofollow\"\u003eaMK\u003c/a\u003e, \u003ca href=\"https://doi.org/10.1093/g3journal/jkac206\" rel=\"nofollow\"\u003eimputedMK\u003c/a\u003e or \u003ca href=\"https://doi.org/10.1038/4151024a\" rel=\"nofollow\"\u003efwwMK\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eSee the \u003ca href=\"https://jmurga.github.io/MKtest.jl/dev\" rel=\"nofollow\"\u003edocumentation\u003c/a\u003e for details.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity_test\" class=\"anchor\" href=\"#singularity_test\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_test\u003c/h1\u003e\n\u003cp\u003eSimple singularity example originally from here: \u003ca href=\"https://github.com/jtchilders/singularity_image_recipes\"\u003ehttps://github.com/jtchilders/singularity_image_recipes\u003c/a\u003e .\u003c/p\u003e\n\u003cp\u003eTrying to replicate steps here: \u003ca href=\"https://www.alcf.anl.gov/support-center/theta/singularity-theta\" rel=\"nofollow\"\u003ehttps://www.alcf.anl.gov/support-center/theta/singularity-theta\u003c/a\u003e .\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1646232582.0
+ "updated_at": 1627936122.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe for RATTLE.",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity-0.0"
],
- "full_name": "amanmdesai/singularity-python-packages-demo",
+ "full_name": "powerPlant/rattle-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-python-packages\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-python-packages\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-python-packages\u003c/h1\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe for RATTLE : Reference-free reconstruction and quantification of transcriptomes from long-read sequencing\n\u003ca href=\"https://github.com/comprna/RATTLE\"\u003ehttps://github.com/comprna/RATTLE\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 0,
"topics": [],
- "updated_at": 1675056243.0
+ "updated_at": 1627958435.0
},
{
"data_format": 2,
- "description": "Open OnDemand Apps used by the ACCRE Visualization Portal",
+ "description": "TOMTOM docker/singularity container for scanem",
"filenames": [
- "rstudio/Singularity",
- "rstudio_gpu/Singularity"
+ "Singularity"
],
- "full_name": "accre/ood_apps",
+ "full_name": "jacobhepkema/scanem-motif",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-ood_apps\" class=\"anchor\" aria-hidden=\"true\" href=\"#ood_apps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eood_apps\u003c/h1\u003e\n\u003cp\u003eOpen OnDemand Apps used by the ACCRE Visualization Portal\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://quay.io/repository/jacobhepkema/scanem-motif\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f763ec0804bf9dcf1c8c53c453a9add6992333ec5501b757f4c23948408962c5/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6a61636f626865706b656d612f7363616e656d2d6d6f7469662f737461747573\" alt=\"Docker Repository on Quay\" title=\"Docker Repository on Quay\" data-canonical-src=\"https://quay.io/repository/jacobhepkema/scanem-motif/status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-scanem-motif\" class=\"anchor\" href=\"#scanem-motif\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003escanem-motif\u003c/h1\u003e\n\u003cp\u003eTOMTOM docker/singularity container for \u003ca href=\"https://github.com/jacobhepkema/scanem\"\u003e\u003cstrong\u003escanem\u003c/strong\u003e\u003c/a\u003e. Quay.io docker repo at \u003ca href=\"https://quay.io/repository/jacobhepkema/scanem-motif\" rel=\"nofollow\"\u003ehttps://quay.io/repository/jacobhepkema/scanem-motif\u003c/a\u003e (see build status above).\u003c/p\u003e\n\u003cp\u003eUsually this container is used in the Nextflow pipeline for \u003ca href=\"https://github.com/jacobhepkema/scanem\"\u003e\u003cstrong\u003escanem\u003c/strong\u003e\u003c/a\u003e. This container contains the MEME suite, which includes the Tomtom motif comparison tool\u003csup\u003e1\u003c/sup\u003e.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eShobhit Gupta, JA Stamatoyannopolous, Timothy Bailey and William Stafford Noble, \"Quantifying similarity between motifs\", Genome Biology, 8(2):R24, 2007.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eRun tools by prepending \u003ccode\u003e/opt/bin\u003c/code\u003e to your command, e.g. \u003ccode\u003e/opt/bin/tomtom [args]\u003c/code\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 11,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1663612575.0
+ "updated_at": 1627983632.0
},
{
"data_format": 2,
- "description": "A suite for benchmarking sparse format conversions using IntelMKL, SPARSKIT and TACO. The tool uses 14 sparse data sources from https://sparse.tamu.edu/ for benchmarking. It also uses a singularity conrtainer making it easy to run test on various machines.",
+ "description": "Docker image, environent, and scripts to convert dockerfiles to singularity recipes.",
"filenames": [
- "container/Singularity.experiments.def",
- "container/Singularity.intel-mkl.def",
- "container/Singularity.taco-experiments.def",
- "container/Singularity.sparskit.def"
+ "examples/cusignal/Singularity.def",
+ "examples/seti_bl/Singularity.def"
],
- "full_name": "BoiseState-AdaptLab/Sparse_Format_Conversion_Experiments",
+ "full_name": "jeffreyegan/docker2singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-sparse_format_conversion_experiments\" class=\"anchor\" aria-hidden=\"true\" href=\"#sparse_format_conversion_experiments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSparse_Format_Conversion_Experiments\u003c/h1\u003e\n\u003cp\u003eA suite for benchmarking sparse format conversions using IntelMKL, SPARSKIT and TACO. The tool uses 14 sparse data sources from \u003ca href=\"https://sparse.tamu.edu/\" rel=\"nofollow\"\u003ehttps://sparse.tamu.edu/\u003c/a\u003e for benchmarking. It also uses a singularity conrtainer making it easy to run test on various machines.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-docker2singularity\" class=\"anchor\" href=\"#docker2singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edocker2singularity\u003c/h1\u003e\n\u003cp\u003eDocker image, environent, and scripts to convert dockerfiles to singularity recipes.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003eStage the \u003ccode\u003eDockerfile\u003c/code\u003e you wish to convert in the \u003ccode\u003econvert\u003c/code\u003e directory and then run the following at terminal to execute conversion to a \u003ccode\u003eSingularity.def\u003c/code\u003e output file. The output is produced int he same \u003ccode\u003econvert\u003c/code\u003e directory.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -v ~/repos/docker2singularity/convert:/convert -it docker2singularity\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1594315503.0
+ "updated_at": 1628008337.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.root5",
+ "Singularity.17.09",
+ "Singularity.18.02.1",
+ "Singularity.18.02"
],
- "full_name": "rses-singularity/torch",
+ "full_name": "NuWro/builds",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-torch\" class=\"anchor\" aria-hidden=\"true\" href=\"#torch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTorch\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eSee \u003ca href=\"build.sh\"\u003ebuild.sh\u003c/a\u003e for info on how to build and run the image\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e file for the definition of the image, including\n\u003cul\u003e\n\u003cli\u003eThe (Docker) image it is based on\u003c/li\u003e\n\u003cli\u003eWhat OS packages are installed\u003c/li\u003e\n\u003cli\u003eWhat environment variables are set\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e project website for more info on Singularity in general and detailed documentaiton.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nuwro-singularity-recipes\" class=\"anchor\" href=\"#nuwro-singularity-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNuWro Singularity recipes\u003c/h1\u003e\n\u003cp\u003eThis repository contains Singularity recipes for containers with \u003ca href=\"https://github.com/NuWro/nuwro\"\u003eNuWro\u003c/a\u003e releases (starting from 17.09).\u003c/p\u003e\n\u003cp\u003eThe builds can be found in \u003ca href=\"https://singularity-hub.org/collections/265\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eInstructions on how to use NuWro containers can be found in \u003ca href=\"https://nuwro.github.io/user-guide/singularity/\" rel=\"nofollow\"\u003eUser Guide\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor more information about Singularity please visit \u003ca href=\"http://singularity.lbl.gov/user-guide\" rel=\"nofollow\"\u003eSingularity Used Guide\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1542376613.0
+ "updated_at": 1522301666.0
},
{
"data_format": 2,
- "description": "mpi 4.1.4",
+ "description": "Singularity recipe files for bonito (https://github.com/nanoporetech/bonito)",
"filenames": [
- "Singularity"
+ "Singularity.0.3.6",
+ "Singularity",
+ "Singularity.0.4.0"
],
- "full_name": "riro3277/SimvascularSIngularity",
+ "full_name": "powerPlant/bonito-srf",
"latest_release": null,
+ "readme": "\u003cp\u003eSingularity recipe files for bonito, a PyTorch Basecaller for Oxford Nanopore Reads\n\u003ca href=\"https://github.com/nanoporetech/bonito\"\u003ehttps://github.com/nanoporetech/bonito\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1664487305.0
+ "updated_at": 1627353613.0
},
{
"data_format": 2,
- "description": "GNU Octave is software featuring a high-level programming language, primarily intended for numerical computations",
+ "description": null,
"filenames": [
- "6.3.0/Singularity",
- "7.3.0/Singularity",
- "6.2.0/Singularity",
- "7.1.0/Singularity",
- "7.2.0/Singularity",
- "6.4.0/Singularity"
+ "docker/Singularity.snowflake"
],
- "full_name": "pscedu/singularity-octave",
- "latest_release": "v7.2.0",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-octave/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-octave/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-octave/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-octave/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f0eef640ab704754409e5b3805cf764e1ae5c4a70f474b51e86e21ca7c7ce71a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6f6374617665\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f0eef640ab704754409e5b3805cf764e1ae5c4a70f474b51e86e21ca7c7ce71a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6f6374617665\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-octave\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/af95265639886aed45e4f673056ff5d595df2b5d5760eb36abe563365c430bb7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6f6374617665\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/af95265639886aed45e4f673056ff5d595df2b5d5760eb36abe563365c430bb7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6f6374617665\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-octave\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/4f62994add717900b8861b5c16791ebf7c20c850bdd05ed86990f15629ef2696/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6f6374617665\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4f62994add717900b8861b5c16791ebf7c20c850bdd05ed86990f15629ef2696/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6f6374617665\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-octave\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a17a4ce476d76eb74b11af4b5598c58d76785b012ef2ed56b3eb98106a68fdab/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6f6374617665\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a17a4ce476d76eb74b11af4b5598c58d76785b012ef2ed56b3eb98106a68fdab/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6f6374617665\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-octave\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-octave\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-octave\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-octave\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/21d293a8bfd3418f027c62e2ef688e8549d00a26a56b2c3bb9810bc6d5adf754/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f7468756d622f362f36612f476e752d6f63746176652d6c6f676f2e7376672f3139323070782d476e752d6f63746176652d6c6f676f2e7376672e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/21d293a8bfd3418f027c62e2ef688e8549d00a26a56b2c3bb9810bc6d5adf754/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f7468756d622f362f36612f476e752d6f63746176652d6c6f676f2e7376672f3139323070782d476e752d6f63746176652d6c6f676f2e7376672e706e67\" width=\"15%\" data-canonical-src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Gnu-octave-logo.svg/1920px-Gnu-octave-logo.svg.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://www.gnu.org/software/octave/\" rel=\"nofollow\"\u003eOctave\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eoctave-cli\u003c/code\u003e, \u003ccode\u003epandoc\u003c/code\u003e and \u003ccode\u003egnuplot\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/octave/6.3.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/octave\u003c/code\u003e as \u003ccode\u003e6.3.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "nuKs/preprocessing",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-useful-utilities-for-single-cell-processing-with-alevin-fry\" class=\"anchor\" href=\"#useful-utilities-for-single-cell-processing-with-alevin-fry\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUseful utilities for single-cell processing with alevin-fry\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/COMBINE-lab/alevin-fry\"\u003eAlevin-fry\u003c/a\u003e is a fast, accurate and memory-frugal tool for preprocessing single-cell and single-nucleus RNA-seq data. You can read more about alevin-fry in \u003ca href=\"https://www.biorxiv.org/content/10.1101/2021.06.29.450377v1\" rel=\"nofollow\"\u003eits pre-print\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThis respoistory contains scripts, functions and utilities that are useful for preparing data for processing with alevin-fry, as well as for reading alevin-fry data into other packages for downstream analysis.\u003c/p\u003e\n\u003cp\u003eThe different utilities are broken down in this repository by the language in which they are written (right now, Python, R and bash). A brief listing of\nthe available utilities currently in the repository is:\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-r-language\" class=\"anchor\" href=\"#r-language\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR language\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e \u2014 A script to build a spliced + intron (splici) ref for indexing and quantification with \u003ccode\u003ealevin-fry\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esplici.R\u003c/code\u003e \u2014 Contains the \u003ccode\u003emake_splici_txome\u003c/code\u003e function, which is the function called by the \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e wrapper script. If you want to build a splici reference programatically in R code, you can use this function.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecellRangerLikeEmptyDrops.R\u003c/code\u003e \u2014 An implementation of the hybrid UMI count filtering and \u003ca href=\"https://github.com/MarioniLab/DropletUtils\"\u003e\u003ccode\u003eemptyDrops\u003c/code\u003e\u003c/a\u003e used by CellRanger (and subsequently by \u003ca href=\"https://github.com/alexdobin/STAR\"\u003eSTARsolo\u003c/a\u003e). This R implementation is a translation of the implemntation in STARsolo, which itself was reverse-engineered from CellRanger.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eload_fry.R\u003c/code\u003e \u2014 Contains a function to load \u003ccode\u003ealevin-fry\u003c/code\u003e output (including from USA mode quantification) into a \u003ca href=\"https://bioconductor.org/packages/release/bioc/html/SingleCellExperiment.html\" rel=\"nofollow\"\u003e\u003ccode\u003eSingleCellExperiment\u003c/code\u003e\u003c/a\u003e object.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-python-language\" class=\"anchor\" href=\"#python-language\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePython language\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eload_fry.py\u003c/code\u003e \u2014 Contains a Python function \u003ccode\u003eload_fry\u003c/code\u003e which is intended to load \u003ccode\u003ealevin-fry\u003c/code\u003e output (including from USA mode quantification) into a \u003ca href=\"https://github.com/theislab/scanpy\"\u003e\u003ccode\u003eScanpy\u003c/code\u003e\u003c/a\u003e object.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-bash\" class=\"anchor\" href=\"#bash\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBash\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eget_10x_permit_lists.sh\u003c/code\u003e \u2014 Provides a script to download the 10x chromium v2 or v3 permit lists.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esimpleaf\u003c/code\u003e \u2014 Provides a script to run the entire \u003ccode\u003esalmon -\u0026gt; alevin-fry (generate-permit-list \u0026gt; collate \u0026gt; quant)\u003c/code\u003e pipeline, though providing only a simplified set of options.\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-using-simpleaf\" class=\"anchor\" href=\"#using-simpleaf\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing simpleaf\u003c/h2\u003e\n\u003cp\u003eThe \u003ccode\u003esimpleaf\u003c/code\u003e script that resides in the \u003ccode\u003ebash\u003c/code\u003e subdirectory is intended to simply the running of \u003ccode\u003ealevin-fry\u003c/code\u003e in common usage scenarios. By limiting some of the different options that can be set, it provides a streamlined way to build the splici reference and index in a single command, as well as to process an experiment from raw FASTQ files to a count matrix in a single command.\u003c/p\u003e\n\u003cp\u003eTo work properly, \u003ccode\u003esimpleaf\u003c/code\u003e has a few requirements. First, it should be run from \u003cem\u003ewithin\u003c/em\u003e the \u003ccode\u003ebash\u003c/code\u003e subdirectory of this repository. This is because it currently makes assumptions about the relative paths of the scripts \u003ccode\u003eget_10x_permit_lists.sh\u003c/code\u003e and \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e. Additionally, the following environment variables are used within \u003ccode\u003esimpleaf\u003c/code\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eALEVIN_FRY_HOME\u003c/code\u003e \u003cstrong\u003eREQUIRED\u003c/strong\u003e \u2014 This directory will be used for persistent configuration and small file (\u0026lt;1G) storage between runs. If you provide a directory and it doesn\u0027t exist, it will be created. It is easiest to just set this in your enviornment globally so that the same home can be used over many runs without you having to provide the variable explicitly each time. A good choice for this variable might be something like \u003ccode\u003e~/.alevin_fry_home\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eSALMON_BIN\u003c/code\u003e \u003cstrong\u003eOPTIONAL\u003c/strong\u003e \u2014 This should provide the path to a \u003ccode\u003esalmon\u003c/code\u003e executable of version \u0026gt;= 1.5.1. If not provided, the script will assume it can simply invoke \u003ccode\u003esalmon\u003c/code\u003e in the current enviornment.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eFRY_BIN\u003c/code\u003e \u003cstrong\u003eOPTIONAL\u003c/strong\u003e \u2014 This should provide the path to a \u003ccode\u003ealevin-fry\u003c/code\u003e executable of version \u0026gt;= 0.4.0. If not provided, the script will assume it can simply invoke \u003ccode\u003ealevin-fry\u003c/code\u003e in the current enviornment.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eTIME_BIN\u003c/code\u003e \u003cstrong\u003eOPTIONAL\u003c/strong\u003e \u2014 This should provide the path to a \u003ca href=\"https://www.gnu.org/software/time/\" rel=\"nofollow\"\u003eGNU time\u003c/a\u003e executable; this is different from the shell \u003ccode\u003etime\u003c/code\u003e command, and on most linux systems exists at \u003ccode\u003e/usr/bin/time\u003c/code\u003e. If this variable is not provided, the script will assume it can use \u003ccode\u003e/usr/bin/time\u003c/code\u003e. On OSX systems, you should install GNU time explicitly. This can be done with \u003ca href=\"https://anaconda.org/conda-forge/time\" rel=\"nofollow\"\u003econda\u003c/a\u003e or homebrew.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe \u003ccode\u003esimpleaf\u003c/code\u003e script has two sub-commands:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eindex\u003c/code\u003e \u2014 The \u003ccode\u003eindex\u003c/code\u003e command will take a reference genome FASTA and GTF as input, build a splici reference using the \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e script, and then build a sparse \u003ccode\u003esalmon\u003c/code\u003e index on the resulting reference. \u003cstrong\u003eNote\u003c/strong\u003e: The \u003ccode\u003eindex\u003c/code\u003e command requires the \u003ccode\u003eRscript\u003c/code\u003e executable to be in the path, as well as all of theR packages that are required by \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e. The relevant options (which you can obtain by running \u003ccode\u003e./simpleaf index -h\u003c/code\u003e) are:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre lang=\"{bash}\"\u003e\u003ccode\u003eUsage: ./simpleaf index [options]\n options:\n -f, --fasta REQUIRED genome reference FASTA file\n -g, --gtf REQUIRED GTF file with gene annotations\n -l, --rlen REQUIRED the target read length the index will be built for\n -o, --output REQUIRED path to output directory (will be created if it doesn\u0027t exist)\n -s, --spliced OPTIONAL path to FASTA file with extra spliced sequence to add to the index\n -u, --unspliced OPTIONAL path to FASTA file with extra unspliced sequence to add to the index\n -d, --dedup FLAG OPTIONAL deduplicate identical sequences inside the R script when building the splici reference\n -t, --threads OPTIONAL number of threads to use when running [default: min(16, num cores)]\n -h, --help display this help message\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003equant\u003c/code\u003e \u2014 The \u003ccode\u003equant\u003c/code\u003e command takes as input the index, reads, and relevant information about the experiment (e.g. chemistry), and runs all of the steps of the \u003ccode\u003ealevin-fry\u003c/code\u003e pipeline, from mapping with \u003ccode\u003esalmon\u003c/code\u003e through \u003ccode\u003equant\u003c/code\u003e with \u003ccode\u003ealevin-fry\u003c/code\u003e. The relevant options (which you can obtain by running \u003ccode\u003e./simpleaf quant -h\u003c/code\u003e) are:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre lang=\"{bash}\"\u003e\u003ccode\u003eUsage: ./simpleaf quant [options]\n options:\n -1, --r1 REQUIRED comma separated list of left reads\n -2, --r2 REQUIRED comma separated list of right reads\n -i, --index REQUIRED path to a (sparse or dense) salmon splici index\n -o, --output REQUIRED path to output directory (will be created if it doesn\u0027t exist)\n -f, --fmode REQUIRED permit list filter mode, one of {knee, k, unfilt, u}\n -c, --chem REQUIRED chemistry of experiment, one of {v2, v3}\n -r, --res REQUIRED resolution strategy for alevin-fry, one of {cr-like, cr-like-em}\n -m, --t2g REQUIRED three-column txp-to-gene file to pass to alevin-fry quant command\n -t, --threads OPTIONAL number of threads to use when running [default: min(16, num cores)]\n -h, --help display this help message\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "singularity",
- "numerical-computation"
- ],
- "updated_at": 1633062005.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1626495005.0
},
{
"data_format": 2,
- "description": "Gnuplot is a portable command-line driven graphing utility for Linux, OS/2, MS Windows, OSX, VMS, and many other platforms. ",
+ "description": null,
"filenames": [
- "5.4.5/Singularity",
- "5.4/Singularity"
+ "docker/Singularity.snowflake"
],
- "full_name": "pscedu/singularity-gnuplot",
- "latest_release": "v5.4.5",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-gnuplot/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-gnuplot/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-gnuplot/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-gnuplot/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/23d82eb0668fe3492dd30f22157fb3d1c693125f1407bfafe285593dfe346f67/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d676e75706c6f74\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/23d82eb0668fe3492dd30f22157fb3d1c693125f1407bfafe285593dfe346f67/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d676e75706c6f74\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-gnuplot\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/27c0620478c0935ec0cab6420ee06920e72867db97fbb4890da926ece01c51f4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d676e75706c6f74\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/27c0620478c0935ec0cab6420ee06920e72867db97fbb4890da926ece01c51f4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d676e75706c6f74\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-gnuplot\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/2f454c6e98eda6f83fef993dad87279c761ee7b8c6e35dee322338d61fc7c66a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d676e75706c6f74\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2f454c6e98eda6f83fef993dad87279c761ee7b8c6e35dee322338d61fc7c66a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d676e75706c6f74\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-gnuplot\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/74c6e2027d7219588767058a259260a20db37f4dd71ce7104696072751036512/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d676e75706c6f74\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/74c6e2027d7219588767058a259260a20db37f4dd71ce7104696072751036512/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d676e75706c6f74\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-gnuplot\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-gnuplot\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-gnuplot\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-gnuplot\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/d8469d53dc10c159651aa0f44ad8eced294e0cdb843467ee1ec27671a69f551e/687474703a2f2f676e75706c6f742e736f75726365666f7267652e6e65742f64656d6f2f616e696d617465322e312e676966\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d8469d53dc10c159651aa0f44ad8eced294e0cdb843467ee1ec27671a69f551e/687474703a2f2f676e75706c6f742e736f75726365666f7267652e6e65742f64656d6f2f616e696d617465322e312e676966\" alt=\"Plot\" data-canonical-src=\"http://gnuplot.sourceforge.net/demo/animate2.1.gif\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"http://gnuplot.info/\" rel=\"nofollow\"\u003egnuplot\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003egnuplot\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/gnuplot/5.4\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/gnuplot\u003c/code\u003e as \u003ccode\u003e5.4.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "pnplab/preprocessing",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-useful-utilities-for-single-cell-processing-with-alevin-fry\" class=\"anchor\" href=\"#useful-utilities-for-single-cell-processing-with-alevin-fry\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUseful utilities for single-cell processing with alevin-fry\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/COMBINE-lab/alevin-fry\"\u003eAlevin-fry\u003c/a\u003e is a fast, accurate and memory-frugal tool for preprocessing single-cell and single-nucleus RNA-seq data. You can read more about alevin-fry in \u003ca href=\"https://www.biorxiv.org/content/10.1101/2021.06.29.450377v1\" rel=\"nofollow\"\u003eits pre-print\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThis respoistory contains scripts, functions and utilities that are useful for preparing data for processing with alevin-fry, as well as for reading alevin-fry data into other packages for downstream analysis.\u003c/p\u003e\n\u003cp\u003eThe different utilities are broken down in this repository by the language in which they are written (right now, Python, R and bash). A brief listing of\nthe available utilities currently in the repository is:\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-r-language\" class=\"anchor\" href=\"#r-language\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR language\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e \u2014 A script to build a spliced + intron (splici) ref for indexing and quantification with \u003ccode\u003ealevin-fry\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esplici.R\u003c/code\u003e \u2014 Contains the \u003ccode\u003emake_splici_txome\u003c/code\u003e function, which is the function called by the \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e wrapper script. If you want to build a splici reference programatically in R code, you can use this function.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecellRangerLikeEmptyDrops.R\u003c/code\u003e \u2014 An implementation of the hybrid UMI count filtering and \u003ca href=\"https://github.com/MarioniLab/DropletUtils\"\u003e\u003ccode\u003eemptyDrops\u003c/code\u003e\u003c/a\u003e used by CellRanger (and subsequently by \u003ca href=\"https://github.com/alexdobin/STAR\"\u003eSTARsolo\u003c/a\u003e). This R implementation is a translation of the implemntation in STARsolo, which itself was reverse-engineered from CellRanger.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eload_fry.R\u003c/code\u003e \u2014 Contains a function to load \u003ccode\u003ealevin-fry\u003c/code\u003e output (including from USA mode quantification) into a \u003ca href=\"https://bioconductor.org/packages/release/bioc/html/SingleCellExperiment.html\" rel=\"nofollow\"\u003e\u003ccode\u003eSingleCellExperiment\u003c/code\u003e\u003c/a\u003e object.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-python-language\" class=\"anchor\" href=\"#python-language\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePython language\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eload_fry.py\u003c/code\u003e \u2014 Contains a Python function \u003ccode\u003eload_fry\u003c/code\u003e which is intended to load \u003ccode\u003ealevin-fry\u003c/code\u003e output (including from USA mode quantification) into a \u003ca href=\"https://github.com/theislab/scanpy\"\u003e\u003ccode\u003eScanpy\u003c/code\u003e\u003c/a\u003e object.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-bash\" class=\"anchor\" href=\"#bash\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBash\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eget_10x_permit_lists.sh\u003c/code\u003e \u2014 Provides a script to download the 10x chromium v2 or v3 permit lists.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esimpleaf\u003c/code\u003e \u2014 Provides a script to run the entire \u003ccode\u003esalmon -\u0026gt; alevin-fry (generate-permit-list \u0026gt; collate \u0026gt; quant)\u003c/code\u003e pipeline, though providing only a simplified set of options.\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-using-simpleaf\" class=\"anchor\" href=\"#using-simpleaf\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing simpleaf\u003c/h2\u003e\n\u003cp\u003eThe \u003ccode\u003esimpleaf\u003c/code\u003e script that resides in the \u003ccode\u003ebash\u003c/code\u003e subdirectory is intended to simply the running of \u003ccode\u003ealevin-fry\u003c/code\u003e in common usage scenarios. By limiting some of the different options that can be set, it provides a streamlined way to build the splici reference and index in a single command, as well as to process an experiment from raw FASTQ files to a count matrix in a single command.\u003c/p\u003e\n\u003cp\u003eTo work properly, \u003ccode\u003esimpleaf\u003c/code\u003e has a few requirements. First, it should be run from \u003cem\u003ewithin\u003c/em\u003e the \u003ccode\u003ebash\u003c/code\u003e subdirectory of this repository. This is because it currently makes assumptions about the relative paths of the scripts \u003ccode\u003eget_10x_permit_lists.sh\u003c/code\u003e and \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e. Additionally, the following environment variables are used within \u003ccode\u003esimpleaf\u003c/code\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eALEVIN_FRY_HOME\u003c/code\u003e \u003cstrong\u003eREQUIRED\u003c/strong\u003e \u2014 This directory will be used for persistent configuration and small file (\u0026lt;1G) storage between runs. If you provide a directory and it doesn\u0027t exist, it will be created. It is easiest to just set this in your enviornment globally so that the same home can be used over many runs without you having to provide the variable explicitly each time. A good choice for this variable might be something like \u003ccode\u003e~/.alevin_fry_home\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eSALMON_BIN\u003c/code\u003e \u003cstrong\u003eOPTIONAL\u003c/strong\u003e \u2014 This should provide the path to a \u003ccode\u003esalmon\u003c/code\u003e executable of version \u0026gt;= 1.5.1. If not provided, the script will assume it can simply invoke \u003ccode\u003esalmon\u003c/code\u003e in the current enviornment.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eFRY_BIN\u003c/code\u003e \u003cstrong\u003eOPTIONAL\u003c/strong\u003e \u2014 This should provide the path to a \u003ccode\u003ealevin-fry\u003c/code\u003e executable of version \u0026gt;= 0.4.0. If not provided, the script will assume it can simply invoke \u003ccode\u003ealevin-fry\u003c/code\u003e in the current enviornment.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eTIME_BIN\u003c/code\u003e \u003cstrong\u003eOPTIONAL\u003c/strong\u003e \u2014 This should provide the path to a \u003ca href=\"https://www.gnu.org/software/time/\" rel=\"nofollow\"\u003eGNU time\u003c/a\u003e executable; this is different from the shell \u003ccode\u003etime\u003c/code\u003e command, and on most linux systems exists at \u003ccode\u003e/usr/bin/time\u003c/code\u003e. If this variable is not provided, the script will assume it can use \u003ccode\u003e/usr/bin/time\u003c/code\u003e. On OSX systems, you should install GNU time explicitly. This can be done with \u003ca href=\"https://anaconda.org/conda-forge/time\" rel=\"nofollow\"\u003econda\u003c/a\u003e or homebrew.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe \u003ccode\u003esimpleaf\u003c/code\u003e script has two sub-commands:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eindex\u003c/code\u003e \u2014 The \u003ccode\u003eindex\u003c/code\u003e command will take a reference genome FASTA and GTF as input, build a splici reference using the \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e script, and then build a sparse \u003ccode\u003esalmon\u003c/code\u003e index on the resulting reference. \u003cstrong\u003eNote\u003c/strong\u003e: The \u003ccode\u003eindex\u003c/code\u003e command requires the \u003ccode\u003eRscript\u003c/code\u003e executable to be in the path, as well as all of theR packages that are required by \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e. The relevant options (which you can obtain by running \u003ccode\u003e./simpleaf index -h\u003c/code\u003e) are:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre lang=\"{bash}\"\u003e\u003ccode\u003eUsage: ./simpleaf index [options]\n options:\n -f, --fasta REQUIRED genome reference FASTA file\n -g, --gtf REQUIRED GTF file with gene annotations\n -l, --rlen REQUIRED the target read length the index will be built for\n -o, --output REQUIRED path to output directory (will be created if it doesn\u0027t exist)\n -s, --spliced OPTIONAL path to FASTA file with extra spliced sequence to add to the index\n -u, --unspliced OPTIONAL path to FASTA file with extra unspliced sequence to add to the index\n -d, --dedup FLAG OPTIONAL deduplicate identical sequences inside the R script when building the splici reference\n -t, --threads OPTIONAL number of threads to use when running [default: min(16, num cores)]\n -h, --help display this help message\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003equant\u003c/code\u003e \u2014 The \u003ccode\u003equant\u003c/code\u003e command takes as input the index, reads, and relevant information about the experiment (e.g. chemistry), and runs all of the steps of the \u003ccode\u003ealevin-fry\u003c/code\u003e pipeline, from mapping with \u003ccode\u003esalmon\u003c/code\u003e through \u003ccode\u003equant\u003c/code\u003e with \u003ccode\u003ealevin-fry\u003c/code\u003e. The relevant options (which you can obtain by running \u003ccode\u003e./simpleaf quant -h\u003c/code\u003e) are:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre lang=\"{bash}\"\u003e\u003ccode\u003eUsage: ./simpleaf quant [options]\n options:\n -1, --r1 REQUIRED comma separated list of left reads\n -2, --r2 REQUIRED comma separated list of right reads\n -i, --index REQUIRED path to a (sparse or dense) salmon splici index\n -o, --output REQUIRED path to output directory (will be created if it doesn\u0027t exist)\n -f, --fmode REQUIRED permit list filter mode, one of {knee, k, unfilt, u}\n -c, --chem REQUIRED chemistry of experiment, one of {v2, v3}\n -r, --res REQUIRED resolution strategy for alevin-fry, one of {cr-like, cr-like-em}\n -m, --t2g REQUIRED three-column txp-to-gene file to pass to alevin-fry quant command\n -t, --threads OPTIONAL number of threads to use when running [default: min(16, num cores)]\n -h, --help display this help message\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1668307366.0
+ "subscribers_count": 0,
+ "topics": [],
+ "updated_at": 1626495060.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.def"
+ "Singularity.0.1.1",
+ "Singularity.0.1",
+ "Singularity"
],
- "full_name": "paplessix/Recvis22",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-planning-with-diffusion--\" class=\"anchor\" aria-hidden=\"true\" href=\"#planning-with-diffusion--\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePlanning with Diffusion \u00a0\u00a0 \u003ca href=\"https://colab.research.google.com/drive/1YajKhu-CUIGBJeQPehjVPJcK_b38a8Nc?usp=sharing\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667\" alt=\"Open In Colab\" data-canonical-src=\"https://colab.research.google.com/assets/colab-badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003eTraining and visualizing of diffusion models from \u003ca href=\"https://diffusion-planning.github.io/\" rel=\"nofollow\"\u003ePlanning with Diffusion for Flexible Behavior Synthesis\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://github.com/jannerm/diffuser/tree/main\"\u003emain branch\u003c/a\u003e contains code for training diffusion models and planning via value-function guided sampling on the D4RL locomotion environments.\nThe \u003ca href=\"https://github.com/jannerm/diffuser/tree/kuka\"\u003ekuka branch\u003c/a\u003e contains block-stacking experiments.\nThe \u003ca href=\"https://github.com/jannerm/diffuser/tree/maze2d\"\u003emaze2d branch\u003c/a\u003e contains goal-reaching via inpainting in the Maze2D environments.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/184a6bb0418c60d778dcfa9f81dfddfdea0c0a3238b1d0cc4aa8666dd32ad3ca/68747470733a2f2f646966667573696f6e2d706c616e6e696e672e6769746875622e696f2f696d616765732f64696666757365722d636172642e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/184a6bb0418c60d778dcfa9f81dfddfdea0c0a3238b1d0cc4aa8666dd32ad3ca/68747470733a2f2f646966667573696f6e2d706c616e6e696e672e6769746875622e696f2f696d616765732f64696666757365722d636172642e706e67\" width=\"60%\" title=\"Diffuser model\" data-canonical-src=\"https://diffusion-planning.github.io/images/diffuser-card.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eUpdates\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e12/09/2022: Diffuser (the RL model) has been integrated into \u003cg-emoji class=\"g-emoji\" alias=\"hugs\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f917.png\"\u003e\ud83e\udd17\u003c/g-emoji\u003e Diffusers (the Hugging Face diffusion model library)! See \u003ca href=\"https://huggingface.co/docs/diffusers/using-diffusers/rl\" rel=\"nofollow\"\u003ethese docs\u003c/a\u003e for how to run Diffuser using their pipeline.\u003c/li\u003e\n\u003cli\u003e10/17/2022: A bug in the value function scaling has been fixed in \u003ca href=\"https://github.com/jannerm/diffuser/commit/3d7361c2d028473b601cc04f5eecd019e14eb4eb\"\u003ethis commit\u003c/a\u003e. Thanks to \u003ca href=\"https://scholar.google.com/citations?user=Q6UMpRYAAAAJ\u0026amp;hl=en\" rel=\"nofollow\"\u003ePhilemon Brakel\u003c/a\u003e for catching it!\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-quickstart\" class=\"anchor\" aria-hidden=\"true\" href=\"#quickstart\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuickstart\u003c/h2\u003e\n\u003cp\u003eLoad a pretrained diffusion model and sample from it in your browser with \u003ca href=\"https://colab.research.google.com/drive/1YajKhu-CUIGBJeQPehjVPJcK_b38a8Nc?usp=sharing\" rel=\"nofollow\"\u003escripts/diffuser-sample.ipynb\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml\nconda activate diffuser\npip install -e .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-using-pretrained-models\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-pretrained-models\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing pretrained models\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-downloading-weights\" class=\"anchor\" aria-hidden=\"true\" href=\"#downloading-weights\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownloading weights\u003c/h3\u003e\n\u003cp\u003eDownload pretrained diffusion models and value functions with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./scripts/download_pretrained.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis command downloads and extracts a \u003ca href=\"https://drive.google.com/file/d/1wc1m4HLj7btaYDN8ogDIAV9QzgWEckGy/view?usp=share_link\" rel=\"nofollow\"\u003etarfile\u003c/a\u003e containing \u003ca href=\"https://drive.google.com/drive/folders/1ie6z3toz9OjcarJuwjQwXXzDwh1XnS02?usp=sharing\" rel=\"nofollow\"\u003ethis directory\u003c/a\u003e to \u003ccode\u003elogs/pretrained\u003c/code\u003e. The models are organized according to the following structure:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u2514\u2500\u2500 logs/pretrained\n \u251c\u2500\u2500 ${environment_1}\n \u2502 \u251c\u2500\u2500 diffusion\n \u2502 \u2502 \u2514\u2500\u2500 ${experiment_name}\n \u2502 \u2502 \u251c\u2500\u2500 state_${epoch}.pt\n \u2502 \u2502 \u251c\u2500\u2500 sample-${epoch}-*.png\n \u2502 \u2502 \u2514\u2500\u2500 {dataset, diffusion, model, render, trainer}_config.pkl\n \u2502 \u251c\u2500\u2500 values\n \u2502 \u2502 \u2514\u2500\u2500 ${experiment_name}\n \u2502 \u2502 \u251c\u2500\u2500 state_${epoch}.pt\n \u2502 \u2502 \u2514\u2500\u2500 {dataset, diffusion, model, render, trainer}_config.pkl\n \u2502 \u2514\u2500\u2500 plans\n \u2502 \u2514\u2500\u2500 defaults\n \u2502 \u251c\u2500\u2500 0\n \u2502 \u251c\u2500\u2500 1\n \u2502 \u251c\u2500\u2500 ...\n \u2502 \u2514\u2500\u2500 149\n \u2502\n \u251c\u2500\u2500 ${environment_2}\n \u2502 \u2514\u2500\u2500 ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003estate_${epoch}.pt\u003c/code\u003e files contain the network weights and the \u003ccode\u003econfig.pkl\u003c/code\u003e files contain the instantation arguments for the relevant classes.\nThe png files contain samples from different points during training of the diffusion model.\nWithin the \u003ccode\u003eplans\u003c/code\u003e subfolders, there are the results of 150 evaluation trials for each environment using the default hyperparameters.\u003c/p\u003e\n\u003cdetails\u003e\n\u003csummary\u003eTo aggregate the results of the evaluations in the \u003ccode\u003elogs\u003c/code\u003e folder, run \u003ccode\u003epython scripts/read_results.py\u003c/code\u003e. (Expand to view the output of this command on the plans downloaded from Google Drive.)\n\u003c/summary\u003e\n\u003cpre\u003e\u003ccode\u003ehopper-medium-replay-v2 | defaults | logs/pretrained/hopper-medium-replay-v2/plans | 150 scores\n 93.6 +/- 0.37\nhopper-medium-v2 | defaults | logs/pretrained/hopper-medium-v2/plans | 150 scores\n 74.3 +/- 1.36\nhopper-medium-expert-v2 | defaults | logs/pretrained/hopper-medium-expert-v2/plans | 150 scores\n 103.3 +/- 1.30\nwalker2d-medium-replay-v2 | defaults | logs/pretrained/walker2d-medium-replay-v2/plans | 150 scores\n 70.6 +/- 1.60\nwalker2d-medium-v2 | defaults | logs/pretrained/walker2d-medium-v2/plans | 150 scores\n 79.6 +/- 0.55\nwalker2d-medium-expert-v2 | defaults | logs/pretrained/walker2d-medium-expert-v2/plans | 150 scores\n 106.9 +/- 0.24\nhalfcheetah-medium-replay-v2 | defaults | logs/pretrained/halfcheetah-medium-replay-v2/plans | 150 scores\n 37.7 +/- 0.45\nhalfcheetah-medium-v2 | defaults | logs/pretrained/halfcheetah-medium-v2/plans | 150 scores\n 42.8 +/- 0.32\nhalfcheetah-medium-expert-v2 | defaults | logs/pretrained/halfcheetah-medium-expert-v2/plans | 150 scores\n 88.9 +/- 0.25\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/details\u003e\n\u003cdetails\u003e\n\u003csummary\u003eTo create the table of offline RL results from the paper, run \u003ccode\u003epython plotting/table.py\u003c/code\u003e. This will print a table that can be copied into a Latex document. (Expand to view table source.)\u003c/summary\u003e\n\u003cpre\u003e\u003ccode\u003e\\definecolor{tblue}{HTML}{1F77B4}\n\\definecolor{tred}{HTML}{FF6961}\n\\definecolor{tgreen}{HTML}{429E9D}\n\\definecolor{thighlight}{HTML}{000000}\n\\newcolumntype{P}{\u0026gt;{\\raggedleft\\arraybackslash}X}\n\\begin{table*}[hb!]\n\\centering\n\\small\n\\begin{tabularx}{\\textwidth}{llPPPPPPPPr}\n\\toprule\n\\multicolumn{1}{r}{\\bf \\color{black} Dataset} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} Environment} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} BC} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} CQL} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} IQL} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} DT} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} TT} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} MOPO} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} MOReL} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} MBOP} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} Diffuser} \\\\ \n\\midrule\nMedium-Expert \u0026amp; HalfCheetah \u0026amp; $55.2$ \u0026amp; $91.6$ \u0026amp; $86.7$ \u0026amp; $86.8$ \u0026amp; $95.0$ \u0026amp; $63.3$ \u0026amp; $53.3$ \u0026amp; $\\textbf{\\color{thighlight}105.9}$ \u0026amp; $88.9$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.3$}} \\\\ \nMedium-Expert \u0026amp; Hopper \u0026amp; $52.5$ \u0026amp; $\\textbf{\\color{thighlight}105.4}$ \u0026amp; $91.5$ \u0026amp; $\\textbf{\\color{thighlight}107.6}$ \u0026amp; $\\textbf{\\color{thighlight}110.0}$ \u0026amp; $23.7$ \u0026amp; $\\textbf{\\color{thighlight}108.7}$ \u0026amp; $55.1$ \u0026amp; $103.3$ \\scriptsize{\\raisebox{1pt}{$\\pm 1.3$}} \\\\ \nMedium-Expert \u0026amp; Walker2d \u0026amp; $\\textbf{\\color{thighlight}107.5}$ \u0026amp; $\\textbf{\\color{thighlight}108.8}$ \u0026amp; $\\textbf{\\color{thighlight}109.6}$ \u0026amp; $\\textbf{\\color{thighlight}108.1}$ \u0026amp; $101.9$ \u0026amp; $44.6$ \u0026amp; $95.6$ \u0026amp; $70.2$ \u0026amp; $\\textbf{\\color{thighlight}106.9}$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.2$}} \\\\ \n\\midrule\nMedium \u0026amp; HalfCheetah \u0026amp; $42.6$ \u0026amp; $44.0$ \u0026amp; $\\textbf{\\color{thighlight}47.4}$ \u0026amp; $42.6$ \u0026amp; $\\textbf{\\color{thighlight}46.9}$ \u0026amp; $42.3$ \u0026amp; $42.1$ \u0026amp; $44.6$ \u0026amp; $42.8$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.3$}} \\\\ \nMedium \u0026amp; Hopper \u0026amp; $52.9$ \u0026amp; $58.5$ \u0026amp; $66.3$ \u0026amp; $67.6$ \u0026amp; $61.1$ \u0026amp; $28.0$ \u0026amp; $\\textbf{\\color{thighlight}95.4}$ \u0026amp; $48.8$ \u0026amp; $74.3$ \\scriptsize{\\raisebox{1pt}{$\\pm 1.4$}} \\\\ \nMedium \u0026amp; Walker2d \u0026amp; $75.3$ \u0026amp; $72.5$ \u0026amp; $\\textbf{\\color{thighlight}78.3}$ \u0026amp; $74.0$ \u0026amp; $\\textbf{\\color{thighlight}79.0}$ \u0026amp; $17.8$ \u0026amp; $\\textbf{\\color{thighlight}77.8}$ \u0026amp; $41.0$ \u0026amp; $\\textbf{\\color{thighlight}79.6}$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.55$}} \\\\ \n\\midrule\nMedium-Replay \u0026amp; HalfCheetah \u0026amp; $36.6$ \u0026amp; $45.5$ \u0026amp; $44.2$ \u0026amp; $36.6$ \u0026amp; $41.9$ \u0026amp; $\\textbf{\\color{thighlight}53.1}$ \u0026amp; $40.2$ \u0026amp; $42.3$ \u0026amp; $37.7$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.5$}} \\\\ \nMedium-Replay \u0026amp; Hopper \u0026amp; $18.1$ \u0026amp; $\\textbf{\\color{thighlight}95.0}$ \u0026amp; $\\textbf{\\color{thighlight}94.7}$ \u0026amp; $82.7$ \u0026amp; $\\textbf{\\color{thighlight}91.5}$ \u0026amp; $67.5$ \u0026amp; $\\textbf{\\color{thighlight}93.6}$ \u0026amp; $12.4$ \u0026amp; $\\textbf{\\color{thighlight}93.6}$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.4$}} \\\\ \nMedium-Replay \u0026amp; Walker2d \u0026amp; $26.0$ \u0026amp; $77.2$ \u0026amp; $73.9$ \u0026amp; $66.6$ \u0026amp; $\\textbf{\\color{thighlight}82.6}$ \u0026amp; $39.0$ \u0026amp; $49.8$ \u0026amp; $9.7$ \u0026amp; $70.6$ \\scriptsize{\\raisebox{1pt}{$\\pm 1.6$}} \\\\ \n\\midrule\n\\multicolumn{2}{c}{\\bf Average} \u0026amp; 51.9 \u0026amp; \\textbf{\\color{thighlight}77.6} \u0026amp; \\textbf{\\color{thighlight}77.0} \u0026amp; 74.7 \u0026amp; \\textbf{\\color{thighlight}78.9} \u0026amp; 42.1 \u0026amp; 72.9 \u0026amp; 47.8 \u0026amp; \\textbf{\\color{thighlight}77.5} \\hspace{.6cm} \\\\ \n\\bottomrule\n\\end{tabularx}\n\\vspace{-.0cm}\n\\caption{\n}\n\\label{table:locomotion}\n\\end{table*}\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/diffusion-planning/diffusion-planning.github.io/blob/master/images/table.png\"\u003e\u003cimg src=\"https://github.com/diffusion-planning/diffusion-planning.github.io/raw/master/images/table.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003c/details\u003e\n\u003ch3\u003e\u003ca id=\"user-content-planning\" class=\"anchor\" aria-hidden=\"true\" href=\"#planning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePlanning\u003c/h3\u003e\n\u003cp\u003eTo plan with guided sampling, run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/plan_guided.py --dataset halfcheetah-medium-expert-v2 --logbase logs/pretrained\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003e--logbase\u003c/code\u003e flag points the \u003ca href=\"scripts/plan_guided.py#L22-L30\"\u003eexperiment loaders\u003c/a\u003e to the folder containing the pretrained models.\nYou can override planning hyperparameters with flags, such as \u003ccode\u003e--batch_size 8\u003c/code\u003e, but the default\nhyperparameters are a good starting point.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-training-from-scratch\" class=\"anchor\" aria-hidden=\"true\" href=\"#training-from-scratch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTraining from scratch\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eTrain a diffusion model with:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/train.py --dataset halfcheetah-medium-expert-v2\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe default hyperparameters are listed in \u003ca href=\"config/locomotion.py#L22-L65\"\u003elocomotion:diffusion\u003c/a\u003e.\nYou can override any of them with flags, eg, \u003ccode\u003e--n_diffusion_steps 100\u003c/code\u003e.\u003c/p\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eTrain a value function with:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/train_values.py --dataset halfcheetah-medium-expert-v2\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee \u003ca href=\"config/locomotion.py#L67-L108\"\u003elocomotion:values\u003c/a\u003e for the corresponding default hyperparameters.\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003ePlan using your newly-trained models with the same command as in the pretrained planning section, simply replacing the logbase to point to your new models:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/plan_guided.py --dataset halfcheetah-medium-expert-v2 --logbase logs\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee \u003ca href=\"config/locomotion.py#L110-L149\"\u003elocomotion:plans\u003c/a\u003e for the corresponding default hyperparameters.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eDeferred f-strings.\u003c/strong\u003e Note that some planning script arguments, such as \u003ccode\u003e--n_diffusion_steps\u003c/code\u003e or \u003ccode\u003e--discount\u003c/code\u003e,\ndo not actually change any logic during planning, but simply load a different model using a deferred f-string.\nFor example, the following flags:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e---horizon 32 --n_diffusion_steps 20 --discount 0.997\n--value_loadpath \u0027f:values/defaults_H{horizon}_T{n_diffusion_steps}_d{discount}\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewill resolve to a value checkpoint path of \u003ccode\u003evalues/defaults_H32_T20_d0.997\u003c/code\u003e. It is possible to\nchange the horizon of the diffusion model after training (see \u003ca href=\"https://colab.research.google.com/drive/1YajKhu-CUIGBJeQPehjVPJcK_b38a8Nc?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e for an example),\nbut not for the value function.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eBuild the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003edocker build -f Dockerfile . -t diffuser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eTest the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -it --rm --gpus all \\\n --mount type=bind,source=$PWD,target=/home/code \\\n --mount type=bind,source=$HOME/.d4rl,target=/root/.d4rl \\\n diffuser \\\n bash -c \\\n \"export PYTHONPATH=$PYTHONPATH:/home/code \u0026amp;\u0026amp; \\\n python /home/code/scripts/train.py --dataset halfcheetah-medium-expert-v2 --logbase logs\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eBuild the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build --fakeroot diffuser.sif Singularity.def\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eTest the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv --writable-tmpfs diffuser.sif \\\n bash -c \\\n \"pip install -e . \u0026amp;\u0026amp; \\\n python scripts/train.py --dataset halfcheetah-medium-expert-v2 --logbase logs\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-on-azure\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-on-azure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning on Azure\u003c/h2\u003e\n\u003ch4\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003eTag the Docker image (built in the \u003ca href=\"#Docker\"\u003eDocker section\u003c/a\u003e) and push it to Docker Hub:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eexport DOCKER_USERNAME=$(docker info | sed \u0027/Username:/!d;s/.* //\u0027)\ndocker tag diffuser ${DOCKER_USERNAME}/diffuser:latest\ndocker image push ${DOCKER_USERNAME}/diffuser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\n\u003cp\u003eUpdate \u003ca href=\"azure/config.py\"\u003e\u003ccode\u003eazure/config.py\u003c/code\u003e\u003c/a\u003e, either by modifying the file directly or setting the relevant \u003ca href=\"azure/config.py#L47-L52\"\u003eenvironment variables\u003c/a\u003e. To set the \u003ccode\u003eAZURE_STORAGE_CONNECTION\u003c/code\u003e variable, navigate to the \u003ccode\u003eAccess keys\u003c/code\u003e section of your storage account. Click \u003ccode\u003eShow keys\u003c/code\u003e and copy the \u003ccode\u003eConnection string\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDownload \u003ca href=\"https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10\" rel=\"nofollow\"\u003e\u003ccode\u003eazcopy\u003c/code\u003e\u003c/a\u003e: \u003ccode\u003e./azure/download.sh\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch4\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h4\u003e\n\u003cp\u003eLaunch training jobs with \u003ccode\u003epython azure/launch.py\u003c/code\u003e. The launch script takes no command-line arguments; instead, it launches a job for every combination of hyperparameters in \u003ca href=\"azure/launch_train.py#L36-L38\"\u003e\u003ccode\u003eparams_to_sweep\u003c/code\u003e\u003c/a\u003e.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-viewing-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#viewing-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eViewing results\u003c/h4\u003e\n\u003cp\u003eTo rsync the results from the Azure storage container, run \u003ccode\u003e./azure/sync.sh\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eTo mount the storage container:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eCreate a blobfuse config with \u003ccode\u003e./azure/make_fuse_config.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003e./azure/mount.sh\u003c/code\u003e to mount the storage container to \u003ccode\u003e~/azure_mount\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eTo unmount the container, run \u003ccode\u003esudo umount -f ~/azure_mount; rm -r ~/azure_mount\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-reference\" class=\"anchor\" aria-hidden=\"true\" href=\"#reference\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReference\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e@inproceedings{janner2022diffuser,\n title = {Planning with Diffusion for Flexible Behavior Synthesis},\n author = {Michael Janner and Yilun Du and Joshua B. Tenenbaum and Sergey Levine},\n booktitle = {International Conference on Machine Learning},\n year = {2022},\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-acknowledgements\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgements\u003c/h2\u003e\n\u003cp\u003eThe diffusion model implementation is based on Phil Wang\u0027s \u003ca href=\"https://github.com/lucidrains/denoising-diffusion-pytorch\"\u003edenoising-diffusion-pytorch\u003c/a\u003e repo.\nThe organization of this repo and remote launcher is based on the \u003ca href=\"https://github.com/jannerm/trajectory-transformer\"\u003etrajectory-transformer\u003c/a\u003e repo.\u003c/p\u003e\n",
+ "full_name": "dcgc-bfx/singularity-base-conda",
+ "latest_release": "v0.1-alpha",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/dcgc-bfx/dcgc-base-conda/workflows/Build/badge.svg?branch=main\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/dcgc-bfx/dcgc-base-conda/workflows/Build/badge.svg?branch=main\" alt=\"Build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/5252\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-dcgc-base-conda\" class=\"anchor\" href=\"#dcgc-base-conda\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edcgc-base-conda\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1672051619.0
+ "updated_at": 1626686541.0
},
{
"data_format": 2,
- "description": "Singularity bootstrap files inheriting from tensorflow Docker images",
+ "description": "modified version of nicMSlesions",
"filenames": [
"Singularity"
],
- "full_name": "zhaojuanwendy/singularity-tensorflow",
+ "full_name": "jstutters/nicpython36",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-tensorflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-tensorflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-tensorflow\u003c/h1\u003e\n\u003cp\u003eStore singularity bootstrap files for tensorflow with accre mount points included.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ms_cnn\" class=\"anchor\" href=\"#ms_cnn\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMS_CNN\u003c/h1\u003e\n\u003cp\u003e[This is a modified version of nicMSlesions (\u003ca href=\"https://github.com/NIC-VICOROB/nicMSlesions\"\u003ehttps://github.com/NIC-VICOROB/nicMSlesions\u003c/a\u003e)]\n\u003cbr\u003e\n\u003ca href=\"CNN.jpeg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"300\" src=\"CNN.jpeg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-this--version-support-additionally-the-following-functionalities\" class=\"anchor\" href=\"#this--version-support-additionally-the-following-functionalities\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThis version support additionally the following functionalities:\u003c/h1\u003e\n\u003cdl\u003e\n \u003cdt\u003e(1) Runnable on a Mac system/computer\u003c/dt\u003e\n \u003cdt\u003e(2) Cold start and warm start support:\u003c/dt\u003e\n \u003cdd\u003e- Allowing to re-create the architecture of the model\u003c/dd\u003e\n \u003cdd\u003e- Allowing to use the saved weights of the model\u003c/dd\u003e\n \u003cdd\u003e- Allowing to use the training configuration and avoiding to run preprocessing again\u003c/dd\u003e\n \u003cdd\u003e- Allowing to resume training exactly where it left off(interrupting the training is \n allowed throughout the training process)\u003c/dd\u003e\n \u003cdd\u003e- Allowing to use pretrained model\u003c/dd\u003e\n \u003cdt\u003e(3) Supporting Python 3\u003c/dt\u003e\n \u003cdt\u003e(4) Integrated Tensorborad [to provide the measurements and visualisations of TensorFlow execution (to understand, debug, and optimisation of the TensorFlow programs)]\u003c/dt\u003e\n \u003cdt\u003e(5) Checking whether a file or directory is relevant for Training and Testing\u003c/dt\u003e \n \u003cdt\u003e(6) Easy HPC (High Performance Computing) support\u003c/dt\u003e \n \u003cdt\u003e(7) Bias correction of masks using FSL\u003c/dt\u003e\n \u003cdt\u003e(8) Registration, moving all images to the Flair, T1 or Standard space\u003c/dt\u003e\n\u003c/dl\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"BR.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"500\" src=\"BR.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n \n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"note.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"100\" src=\"note.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n \n# Running the Program!\n\u003cp\u003eThis modified version can be run with or without a GUI (similar to original version)\u003c/p\u003e\n\u003cp\u003eAfter lunching the graphical user interface, user will need to provide necessary information to start training/testing as follows:\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"GUI_NM.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"500\" src=\"GUI_NM.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n \n\u003ch1\u003e\u003c/h1\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-running-the-program-on-the-hpc-cluster-using-nvidia-gpuswithout-any-additional-librarydependency-installation\" class=\"anchor\" href=\"#running-the-program-on-the-hpc-cluster-using-nvidia-gpuswithout-any-additional-librarydependency-installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the Program on the HPC cluster using NVIDIA GPUs(without any additional library/dependency installation):\u003c/h1\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"hpc.jpeg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"200\" src=\"hpc.jpeg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n \n\u003cp\u003eFirst, user will need to be sure that \"singularity\"\n\u003ca href=\"https://singularity.lbl.gov/\" rel=\"nofollow\"\u003ehttps://singularity.lbl.gov/\u003c/a\u003e\nis available on local or remote machine.\u003c/p\u003e\n\u003cp\u003eThen:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - singularity pull docker://kbronik/ms_cnn_ucl:latest \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAfter running the above, a singularity image using docker hub (docker://kbronik/ms_cnn_ucl:latest) will be generated:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - path to singularity//..///ms_cnn_ucl_latest.sif \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFinally:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - singularity run --nv (path to singularity)//..///ms_cnn_ucl_latest.sif python (path to nicpython36)/nic_train_network_batch.py (or other nic-python code)\u003c/pre\u003e\u003c/div\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"note_HPC.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"120\" src=\"note_HPC.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n \n\u003ch1\u003e\n\u003ca id=\"user-content-for-an-interactive-session\" class=\"anchor\" href=\"#for-an-interactive-session\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor an interactive session:\u003c/h1\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - singularity shell (path to singularity)//..///ms_cnn_ucl_latest.sif \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - \u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e activate idp\n - python (path to nicpython36)/app.py\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-for-an-interactive-session-tensorflow-on-cpu-only\" class=\"anchor\" href=\"#for-an-interactive-session-tensorflow-on-cpu-only\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor an interactive session (TensorFlow on CPU only):\u003c/h1\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - singularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e docker://kbronik/ms-ucl-cnn-cpu:CPU_Latest python (path to nicpython36)/app.py \u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1646281475.0
+ "updated_at": 1624933808.0
},
{
"data_format": 2,
- "description": "Hello World image for Singularity",
+ "description": "A Nextflow pipeline for automatically running QC on Nano runs",
"filenames": [
- "Singularity"
+ "environments/illumina/Singularity"
],
- "full_name": "amanmdesai/hello-world-singularity",
- "latest_release": "v1.0.0",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-hello-world-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#hello-world-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ehello-world-singularity\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/amanmdesai/hello-world-singularity/actions/workflows/singularity-build-deploy.yml\"\u003e\u003cimg src=\"https://github.com/amanmdesai/hello-world-singularity/actions/workflows/singularity-build-deploy.yml/badge.svg?branch=master\" alt=\"Singularity Build Deploy\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA simple singularity image to demonstrate how to use singularity.\u003c/p\u003e\n\u003cp\u003eTo pull this image:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull oras://ghcr.io/amanmdesai/hello-world-singularity:latest\u003c/pre\u003e\u003c/div\u003e\n",
+ "full_name": "WalesGenePark/NanoSeqQC",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nanoseqqc\" class=\"anchor\" href=\"#nanoseqqc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNanoSeqQC\u003c/h1\u003e\n\u003cp\u003eA Nextflow pipeline for automatically running QC on Nano runs\u003c/p\u003e\n\u003cp\u003eWARNING - UNDER CURRENT DEVELOPMENT AND NOT FULLY FUNCTIONAL\u003c/p\u003e\n\u003cp\u003elarge sections of nextflow coding are based off the excellent ncov2019-artic-nf pipeline \u003ccode\u003econnor-lab/ncov2019-artic-nf\u003c/code\u003e\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h4\u003e\n\u003chr\u003e\n\u003cp\u003eThe running of this will automatically take fastq reads from a Nano sequencing read, run FastP read diagnostics and trimming before performing some comparative statistics based on library metadata such as RIN and concentration.\nAdditionally, reads will be run through Kraken2 to confirm species profile (and lack of contamination!)\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-quick-start\" class=\"anchor\" href=\"#quick-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick-start\u003c/h4\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-illumina\" class=\"anchor\" href=\"#illumina\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIllumina\u003c/h5\u003e\n\u003cp\u003e\u003ccode\u003enextflow run WalesGenePark/NanoSeqQC --profile singularity,slurm --prefix \"job_output\" --directory /path/to/reads --outdir /path/to/outfile\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eOptions\u003cbr\u003e\n--fastpInputVer (paired, single, merged)\u003c/p\u003e\n\u003chr\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h4\u003e\n\u003cp\u003eAn up-to-date version of Nextflow is required because the pipeline is written in DSL2. Following the instructions at \u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003ehttps://www.nextflow.io/\u003c/a\u003e to download and install Nextflow should get you a recent-enough version.\u003c/p\u003e\n\u003cp\u003e1: git clone the repository\u003cbr\u003e\n2: chmod +x the two scripts in NanoSeqQC/scripts/\u003cbr\u003e\n3: run the singularity build\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-executor\" class=\"anchor\" href=\"#executor\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExecutor\u003c/h4\u003e\n\u003cp\u003eBy default, the pipeline runs locally unless specifying \u003ccode\u003e-profile slurm\u003c/code\u003e to send to a SLURM cluster.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-config\" class=\"anchor\" href=\"#config\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfig\u003c/h4\u003e\n\u003cp\u003eCommon config options are set in \u0027conf/base.config\u0027.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1672229206.0
+ "updated_at": 1627380153.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.v1.0.0"
],
- "full_name": "amanmdesai/singularity-python-packages",
+ "full_name": "mchugomk/cat12_long",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-python-packages\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-python-packages\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-python-packages\u003c/h1\u003e\n",
+ "readme": "",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1673367679.0
+ "updated_at": 1627066402.0
},
{
"data_format": 2,
@@ -10555,606 +9956,592 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "rses-singularity/tensorflow-cpu",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-tensorflow-gpu-and-keras\" class=\"anchor\" aria-hidden=\"true\" href=\"#tensorflow-gpu-and-keras\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTensorflow (GPU) and Keras\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eSee \u003ca href=\"build.sh\"\u003ebuild.sh\u003c/a\u003e for info on how to build and run the image\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e file for the definition of the image, including\n\u003cul\u003e\n\u003cli\u003eThe (Docker) image it is based on\u003c/li\u003e\n\u003cli\u003eWhat OS packages are installed\u003c/li\u003e\n\u003cli\u003eWhat environment variables are set\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e project website for more info on Singularity in general and detailed documentaiton.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "baxpr/bedpost-singularity",
+ "latest_release": "v3.0.0",
+ "readme": "\u003cp\u003eRuns FSL\u0027s bedpostx on the input DWI data set, and creates a PDF report of the results.\nQuite simple - see /opt/src/pipeline.sh for the main script.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1542376589.0
+ "updated_at": 1626106357.0
},
{
"data_format": 2,
- "description": null,
+ "description": "FastTree infers approximately-maximum-likelihood phylogenetic trees from alignments of nucleotide or protein sequences. ",
"filenames": [
- "Singularity"
+ "2.1.11/Singularity"
],
- "full_name": "aarandad/ampseq_workflow",
- "latest_release": "v0.0.4",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-ampseq-workflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#ampseq-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAmpSeq Workflow\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-setting-parameters\" class=\"anchor\" aria-hidden=\"true\" href=\"#setting-parameters\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetting Parameters\u003c/h3\u003e\n\u003cp\u003eModify the nextflow.config file:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eParameter\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003ereadDIR\u003c/td\u003e\n\u003ctd\u003eThe folder that contains all the fastq files (\u003cem\u003erequired\u003c/em\u003e)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eoutDIR\u003c/td\u003e\n\u003ctd\u003eThe folder where you want the resulting data to be save (default \u0027results\u0027)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esequencer\u003c/td\u003e\n\u003ctd\u003eThe sequencer used to produce your data (default \u0027nextseq\u0027)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eQC_only\u003c/td\u003e\n\u003ctd\u003eWhether to only run QC related workflows or all workflows\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003erefseq_fasta \u003cstrong\u003eor\u003c/strong\u003e genome\u003c/td\u003e\n\u003ctd\u003ePath to reference sequences \u003cstrong\u003eor\u003c/strong\u003e path to genome (\u003cem\u003eone\u003c/em\u003e is \u003cstrong\u003erequired\u003c/strong\u003e)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eAdditionally, the nextflow parameter \u003ccode\u003e-profile\u003c/code\u003e can be use to target the infrastructure you wish to run the pipeline on. The different profiles are listed below, including any setup that is required.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h3\u003e\n\u003cp\u003eIf using singularity, please run the command below to generate the singularity image.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build ampseq_workflow.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAnd then include the \u003ccode\u003esingularity\u003c/code\u003e profile on the command line.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNote: you should also include executor you wish to run\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf --readDIR single --refseq_fasta v4_refseq.fasta --target v4 -profile sge,singularity -c conf/custom.config\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBelow is an example using the genome parameter:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf --readDIR \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/MAD4HATTER_example_data/single -w \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/work --target v4 -profile sge,singularity --genome PlasmoDB-59_Pfalciparum3D7_Genome.fasta -c conf/custom.config\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h3\u003e\n\u003cp\u003eThe pipeline can be easily run with docker and is the recommended way to run it when not using an HPC.\u003c/p\u003e\n\u003cp\u003eFollow the steps below to setup your docker image:\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNote: \u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003edocker\u003c/a\u003e is a prerequisite.\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker build -t aarandad/ampseq_worfklow \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAnd you\u0027re done! To run the pipeline, simply add \u003ccode\u003e-profile docker\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf --readDIR single --target v4-profile -profile docker\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-conda\" class=\"anchor\" aria-hidden=\"true\" href=\"#conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConda\u003c/h3\u003e\n\u003cp\u003eTo use conda, you must first install either \u003ca href=\"https://docs.conda.io/en/latest/\" rel=\"nofollow\"\u003econda\u003c/a\u003e or \u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003eminiconda\u003c/a\u003e. Once installed, include the \u003ccode\u003econda\u003c/code\u003e profile on the command line.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf --readDIR single --target v3 -profile conda\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-customizing-for-your-institution\" class=\"anchor\" aria-hidden=\"true\" href=\"#customizing-for-your-institution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCustomizing for your institution\u003c/h3\u003e\n\u003cp\u003eThere is a file named \u003ccode\u003ecustom.config\u003c/code\u003e in \u003ccode\u003econf/\u003c/code\u003e that can be used to tailor processes to your environment. By default,\nthis file is used to tailor the pipeline for Wynton HPC at UCSF. This file may be altered to fit your institution\u0027s profile.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-examples\" class=\"anchor\" aria-hidden=\"true\" href=\"#examples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExamples\u003c/h3\u003e\n\u003cp\u003ePotential ways to execute the pipeline:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e local executor\u003c/span\u003e\nnextflow run main.nf --target v3\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e with a profile (currently only supports sge)\u003c/span\u003e\nnextflow run main.nf -profile sge --target v3\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e run with singularity on an HPC with specified reference sequences\u003c/span\u003e\nnextflow run main.nf --readDIR single -profile sge,singularity --refseq_fasta v4_refseq.fasta --target v4\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e or locally with docker\u003c/span\u003e\nnextflow run main.nf --readDIR \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/MAD4HATTER_example_data/single/ --target v4 -profile docker --refseq_fasta v4_refseq.fasta\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e genomes can be provided in lieu of reference sequences, which will be generated with the amplicon table\u003c/span\u003e\nnextflow run main.nf --readDIR \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/MAD4HATTER_example_data/single/ -w \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/work --target v4 -profile docker --genome PlasmoDB-59_Pfalciparum3D7_Genome.fasta\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf you need to resume after some processes were successfully executed, add -resume at the end of it\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-fasttree",
+ "latest_release": "v2.1.11",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-fasttree/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-fasttree/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-fasttree/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-fasttree/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/776c7e7d72b508b47ce8bd555bc38368be7629ae529461cdfcfaf5af2920c141/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6661737474726565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/776c7e7d72b508b47ce8bd555bc38368be7629ae529461cdfcfaf5af2920c141/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6661737474726565\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-fasttree\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/6ba1353dc0bb816d3bca4dafd9f90d560fb7d5234867b2ac4b80d0557d1bdc90/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6661737474726565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6ba1353dc0bb816d3bca4dafd9f90d560fb7d5234867b2ac4b80d0557d1bdc90/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6661737474726565\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-fasttree\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a6aa9ae28b1371a303884250204eea3a43e273bae8eb19f063f732416f9d6bec/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6661737474726565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a6aa9ae28b1371a303884250204eea3a43e273bae8eb19f063f732416f9d6bec/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6661737474726565\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-fasttree\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0cc26b73063b0fb2d5f502b2eeb83e3568bac891ce91b016300d28524b83b564/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6661737474726565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0cc26b73063b0fb2d5f502b2eeb83e3568bac891ce91b016300d28524b83b564/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6661737474726565\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-fasttree\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-fasttree\" class=\"anchor\" href=\"#singularity-fasttree\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-fasttree\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eFastTree\u003c/code\u003e, \u003ccode\u003eFastTreeMP\u003c/code\u003e and \u003ccode\u003eFastTreeDbl\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/FastTree/2.1.11\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/FastTree\u003c/code\u003e as \u003ccode\u003e2.1.11.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1659049973.0
+ "subscribers_count": 2,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1629226128.0
},
{
"data_format": 2,
- "description": "DSL 2 version of https://github.com/jhoneycuttr/nf-wgs ",
+ "description": "Nextflow pipelines for a variety of bioinformatics outputs",
"filenames": [
- "Singularity"
+ "nextstrain/environments/Singularity"
],
- "full_name": "Finterly/nf-wgs-dsl2",
+ "full_name": "matt-sd-watson/nextflow_for_bioinformatics",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-optimized-gatk4-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#optimized-gatk4-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOptimized GATK4 Pipeline\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-part-1-nextflow-dsl-2-workflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#part-1-nextflow-dsl-2-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePart 1 Nextflow DSL 2 Workflow\u003c/h2\u003e\n\u003cp\u003eAdapted from:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/Karaniare/Optimized_GATK4_pipeline\"\u003ehttps://github.com/Karaniare/Optimized_GATK4_pipeline\u003c/a\u003e (shell script)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/jhoneycuttr/nf-wgs\"\u003ehttps://github.com/jhoneycuttr/nf-wgs\u003c/a\u003e (Nextflow DSL 1)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-setting-parameters\" class=\"anchor\" aria-hidden=\"true\" href=\"#setting-parameters\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetting Parameters\u003c/h3\u003e\n\u003cp\u003eModify the nextflow.config file:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eParameters\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003einputdir\u003c/td\u003e\n\u003ctd\u003eThe folder that contains all the fastq files (default \u0027data\u0027)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eoutdir\u003c/td\u003e\n\u003ctd\u003eThe folder where you want the resulting data to be save (default \u0027results\u0027)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003erefdir\u003c/td\u003e\n\u003ctd\u003eThe folder that contains reference genomes and bed files (default \u0027genomes\u0027)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003etrimadapter\u003c/td\u003e\n\u003ctd\u003eThe adapter used for initial trimming of reads (default \u0027TruSeq3-PE.fa\u0027)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOther Parameters\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003ereads\u003c/td\u003e\n\u003ctd\u003eThe fastq files in the inputdir folder\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eref\u003c/td\u003e\n\u003ctd\u003eThe reference genome (default \u0027Pf3D7_human.fa\u0027)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003erscript\u003c/td\u003e\n\u003ctd\u003eThe r script for generating report\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eAdditionally, the nextflow parameter \u003ccode\u003e-profile\u003c/code\u003e can be use to target the infrastructure you wish to run the pipeline on. The different profiles are listed below, including any setup that is required.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h3\u003e\n\u003cp\u003eUnder construction \u003cg-emoji class=\"g-emoji\" alias=\"construction\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f6a7.png\"\u003e\ud83d\udea7\u003c/g-emoji\u003e !\u003c/p\u003e\n\u003cp\u003eIf using singularity, please run the command below to generate the singularity image.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build nf-wgs-dsl2.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAnd then include the \u003ccode\u003esingularity\u003c/code\u003e profile on the command line.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNote: you should also include executor you wish to run\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf -profile sge,singularity -c conf/custom.config\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBelow is an example using the genome parameter:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf --readDIR \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/MAD4HATTER_example_data/single -w \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/work --target v4 -profile sge,singularity --genome PlasmoDB-59_Pfalciparum3D7_Genome.fasta -c conf/custom.config\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h3\u003e\n\u003cp\u003eThe pipeline can be easily run with docker and is the recommended way to run it when not using an HPC.\u003c/p\u003e\n\u003cp\u003eFollow the steps below to setup your docker image:\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNote: \u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003edocker\u003c/a\u003e is a prerequisite.\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker build -t finterly/nf-wgs-dsl2 \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAnd you\u0027re done! To run the pipeline, simply add \u003ccode\u003e-profile docker\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf -profile docker\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-conda\" class=\"anchor\" aria-hidden=\"true\" href=\"#conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConda\u003c/h3\u003e\n\u003cp\u003eUnder construction \u003cg-emoji class=\"g-emoji\" alias=\"construction\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f6a7.png\"\u003e\ud83d\udea7\u003c/g-emoji\u003e !\u003c/p\u003e\n\u003cp\u003eTo use conda, you must first install either \u003ca href=\"https://docs.conda.io/en/latest/\" rel=\"nofollow\"\u003econda\u003c/a\u003e or \u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003eminiconda\u003c/a\u003e. Once installed, include the \u003ccode\u003econda\u003c/code\u003e profile on the command line.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf --readDIR single --target v3 -profile conda\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-customizing-for-your-institution\" class=\"anchor\" aria-hidden=\"true\" href=\"#customizing-for-your-institution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCustomizing for your institution\u003c/h3\u003e\n\u003cp\u003eThere is a file named \u003ccode\u003ecustom.config\u003c/code\u003e in \u003ccode\u003econf/\u003c/code\u003e that can be used to tailor processes to your environment. By default,\nthis file is used to tailor the pipeline for Wynton HPC at UCSF. This file may be altered to fit your institution\u0027s profile.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-examples\" class=\"anchor\" aria-hidden=\"true\" href=\"#examples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExamples\u003c/h3\u003e\n\u003cp\u003eUnder construction \u003cg-emoji class=\"g-emoji\" alias=\"construction\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f6a7.png\"\u003e\ud83d\udea7\u003c/g-emoji\u003e !\u003c/p\u003e\n\u003cp\u003ePotential ways to execute the pipeline:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e local executor\u003c/span\u003e\nnextflow run main.nf\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e with a profile (currently only supports sge)\u003c/span\u003e\nnextflow run main.nf -profile sge\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e run with singularity on an HPC with specified reference sequences\u003c/span\u003e\nnextflow run main.nf --readDIR single -profile sge,singularity --refseq_fasta v4_refseq.fasta --target v4\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e or locally with docker\u003c/span\u003e\nnextflow run main.nf --readDIR \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/MAD4HATTER_example_data/single/ --target v4 -profile docker --refseq_fasta v4_refseq.fasta\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e genomes can be provided in lieu of reference sequences, which will be generated with the amplicon table\u003c/span\u003e\nnextflow run main.nf --readDIR \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/MAD4HATTER_example_data/single/ -w \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/work --target v4 -profile docker --genome PlasmoDB-59_Pfalciparum3D7_Genome.fasta\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf you need to resume after some processes were successfully executed, add -resume at the end of it\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nextflow_for_bioinformatics\" class=\"anchor\" href=\"#nextflow_for_bioinformatics\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enextflow_for_bioinformatics\u003c/h1\u003e\n\u003cp\u003eNextflow pipelines for routine bioinformatics analyses\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-nextstrain\" class=\"anchor\" href=\"#nextstrain\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enextstrain\u003c/h2\u003e\n\u003cp\u003eThe nextstrain workflow is the most up-to-date and maintained pipeline in this repo. It can be used to generate a serie sof parallel nextstrain builds or for parameter testing. A specific README for this pipeline is provided in the named directory.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-rna-seq-and-tree_annotation\" class=\"anchor\" href=\"#rna-seq-and-tree_annotation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003erna-seq and tree_annotation\u003c/h2\u003e\n\u003cp\u003eIn development.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1671034942.0
+ "updated_at": 1629726178.0
},
{
"data_format": 2,
- "description": "Container with Jupyter and rstudio server",
+ "description": "Recipes for docker and singularity containers for COHERENT projects",
"filenames": [
- "Singularity.0.2.0",
- "Singularity.0.2.1",
- "Singularity",
- "Singularity.0.1"
+ "geant4/Singularity_geant4",
+ "geant4/Singularity"
],
- "full_name": "dcgc-bfx/singularity-jupyter-rstudio",
+ "full_name": "NuTufts/coherent-containers",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/dcgc-bfx/dcgc-jupyter-rstudio/workflows/Build/badge.svg?branch=main\"\u003e\u003cimg src=\"https://github.com/dcgc-bfx/dcgc-jupyter-rstudio/workflows/Build/badge.svg?branch=main\" alt=\"Build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/5253\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-dcgc-jupyter-rstudio\" class=\"anchor\" aria-hidden=\"true\" href=\"#dcgc-jupyter-rstudio\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edcgc-jupyter-rstudio\u003c/h1\u003e\n\u003cp\u003eContainer with Jupyter and rstudio server\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-coherent-containers\" class=\"anchor\" href=\"#coherent-containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoherent-containers\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1622118476.0
+ "updated_at": 1626189399.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.4.4.2",
- "Singularity.4.0.14"
+ "Singularity"
],
- "full_name": "sschmeier/fishtank-gpu2",
+ "full_name": "yuma-35/wave-U-guiter",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-fishtank-gpu2\" class=\"anchor\" aria-hidden=\"true\" href=\"#fishtank-gpu2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efishtank-gpu2\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-wave-u-net-pytorch\" class=\"anchor\" href=\"#wave-u-net-pytorch\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWave-U-Net (Pytorch)\u003c/h1\u003e\n\u003cp\u003eImproved version of the \u003ca href=\"https://arxiv.org/abs/1806.03185\" rel=\"nofollow\"\u003eWave-U-Net\u003c/a\u003e for audio source separation, implemented in Pytorch.\u003c/p\u003e\n\u003cp\u003eClick \u003ca href=\"www.github.com/f90/Wave-U-Net\"\u003ehere\u003c/a\u003e for the original Wave-U-Net implementation in Tensorflow.\nYou can find more information about the model and results there as well.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-improvements\" class=\"anchor\" href=\"#improvements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImprovements\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eMulti-instrument separation by default, using a separate standard Wave-U-Net for each source (can be set to one model as well)\u003c/li\u003e\n\u003cli\u003eMore scalable to larger data: A depth parameter D can be set that employs D convolutions for each single convolution in the original Wave-U-Net\u003c/li\u003e\n\u003cli\u003eMore configurable: Layer type, resampling factor at each level etc. can be easily changed (different normalization, residual connections...)\u003c/li\u003e\n\u003cli\u003eFast training: Preprocesses the given dataset by saving the audio into HDF files, which can be read very quickly during training, thereby avoiding slowdown due to resampling and decoding\u003c/li\u003e\n\u003cli\u003eModular thanks to Pytorch: Easily replace components of the model with your own variants/layers/losses\u003c/li\u003e\n\u003cli\u003eBetter output handling: Separate output convolution for each source estimate with linear activation so amplitudes near 1 and -1 can be easily predicted, at test time thresholding to valid amplitude range [-1,1]\u003c/li\u003e\n\u003cli\u003eFixed or dynamic resampling: Either use fixed lowpass filter to avoid aliasing during resampling, or use a learnable convolution\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h1\u003e\n\u003cp\u003eGPU strongly recommended to avoid very long training times.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-option-1-direct-install-recommended\" class=\"anchor\" href=\"#option-1-direct-install-recommended\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOption 1: Direct install (recommended)\u003c/h3\u003e\n\u003cp\u003eSystem requirements:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eLinux-based OS\u003c/li\u003e\n\u003cli\u003ePython 3.6\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://mega-nerd.com/libsndfile/\" rel=\"nofollow\"\u003elibsndfile\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.ffmpeg.org/\" rel=\"nofollow\"\u003effmpeg\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003eCUDA 10.1 for GPU usage\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eClone the repository:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/f90/Wave-U-Net-Pytorch.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRecommended: Create a new virtual environment to install the required Python packages into, then activate the virtual environment:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003evirtualenv --python /usr/bin/python3.6 waveunet-env\nsource waveunet-env/bin/activate\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eInstall all the required packages listed in the \u003ccode\u003erequirements.txt\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip3 install -r requirements.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-option-2-singularity\" class=\"anchor\" href=\"#option-2-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOption 2: Singularity\u003c/h3\u003e\n\u003cp\u003eWe also provide a Singularity container which allows you to avoid installing the correct Python, CUDA and other system libraries, however we don\u0027t provide specific advice on how to run the container and so only do this if you have to or know what you are doing (since you need to mount dataset paths to the container etc.)\u003c/p\u003e\n\u003cp\u003eTo pull the container, run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://f90/Wave-U-Net-Pytorch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen run the container from the directory where you cloned this repository to, using the commands listed further below in this readme.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-download-datasets\" class=\"anchor\" href=\"#download-datasets\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownload datasets\u003c/h1\u003e\n\u003cp\u003eTo directly use the pre-trained models we provide for download to separate your own songs, now skip directly to the \u003ca href=\"#test\"\u003elast section\u003c/a\u003e, since the datasets are not needed in that case.\u003c/p\u003e\n\u003cp\u003eTo start training your own models, download the \u003ca href=\"https://sigsep.github.io/datasets/musdb.html\" rel=\"nofollow\"\u003efull MUSDB18HQ dataset\u003c/a\u003e and extract it into a folder of your choice. It should have two subfolders: \"test\" and \"train\" as well as a README.md file.\u003c/p\u003e\n\u003cp\u003eYou can of course use your own datasets for training, but for this you would need to modify the code manually, which will not be discussed here. However, we provide a loading function for the normal MUSDB18 dataset as well.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-training-the-models\" class=\"anchor\" href=\"#training-the-models\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTraining the models\u003c/h1\u003e\n\u003cp\u003eTo train a Wave-U-Net, the basic command to use is\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython3.6 train.py --dataset_dir /PATH/TO/MUSDB18HQ \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere the path to MUSDB18HQ dataset needs to be specified, which contains the \u003ccode\u003etrain\u003c/code\u003e and \u003ccode\u003etest\u003c/code\u003e subfolders.\u003c/p\u003e\n\u003cp\u003eAdd more command line parameters as needed:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--cuda\u003c/code\u003e to activate GPU usage\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--hdf_dir PATH\u003c/code\u003e to save the preprocessed data (HDF files) to custom location PATH, instead of the default \u003ccode\u003ehdf\u003c/code\u003e subfolder in this repository\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--checkpoint_dir\u003c/code\u003e and \u003ccode\u003e--log_dir\u003c/code\u003e to specify where checkpoint files and logs are saved/loaded\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--load_model checkpoints/model_name/checkpoint_X\u003c/code\u003e to start training with weights given by a certain checkpoint\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor more config options, see \u003ccode\u003etrain.py\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eTraining progress can be monitored by using Tensorboard on the respective \u003ccode\u003elog_dir\u003c/code\u003e.\nAfter training, the model is evaluated on the MUSDB18HQ test set, and SDR/SIR/SAR metrics are reported for all instruments and written into both the Tensorboard, and in more detail also into a \u003ccode\u003eresults.pkl\u003c/code\u003e file in the \u003ccode\u003echeckpoint_dir\u003c/code\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content--test-trained-models-on-songs\" class=\"anchor\" href=\"#-test-trained-models-on-songs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca name=\"user-content-test\"\u003e\u003c/a\u003e Test trained models on songs!\u003c/h1\u003e\n\u003cp\u003eWe provide the default model in a pre-trained form as download so you can separate your own songs right away.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-downloading-our-pretrained-models\" class=\"anchor\" href=\"#downloading-our-pretrained-models\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownloading our pretrained models\u003c/h2\u003e\n\u003cp\u003eDownload our pretrained model \u003ca href=\"https://www.dropbox.com/s/r374hce896g4xlj/models.7z?dl=1\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\nExtract the archive into the \u003ccode\u003echeckpoints\u003c/code\u003e subfolder in this repository, so that you have one subfolder for each model (e.g. \u003ccode\u003eREPO/checkpoints/waveunet\u003c/code\u003e)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-run-pretrained-model\" class=\"anchor\" href=\"#run-pretrained-model\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun pretrained model\u003c/h2\u003e\n\u003cp\u003eTo apply our pretrained model to any of your own songs, simply point to its audio file path using the \u003ccode\u003einput_path\u003c/code\u003e parameter:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython3.6 predict.py --load_model checkpoints/waveunet/model --input \"audio_examples/Cristina Vane - So Easy/mix.mp3\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eAdd \u003ccode\u003e--cuda \u003c/code\u003e when using a GPU, it should be much quicker\u003c/li\u003e\n\u003cli\u003ePoint \u003ccode\u003e--input\u003c/code\u003e to the music file you want to separate\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eBy default, output is written where the input music file is located, using the original file name plus the instrument name as output file name. Use \u003ccode\u003e--output\u003c/code\u003e to customise the output directory.\u003c/p\u003e\n\u003cp\u003eTo run your own model:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePoint \u003ccode\u003e--load_model\u003c/code\u003e to the checkpoint file of the model you are using. If you used non-default hyper-parameters to train your own model, you must specify them here again so the correct model is set up and can receive the weights!\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1614062687.0
+ "updated_at": 1624842105.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for sambamba (https://github.com/biod/sambamba)",
+ "description": "Docker image",
"filenames": [
- "Singularity.0.8.0",
- "Singularity"
+ "Singularity.latest"
],
- "full_name": "powerPlant/sambamba-srf",
+ "full_name": "AdamWilsonLab/docker_geospatial_plus",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for Sambamba, a high performance highly parallel robust and fast tool (and library), written in the D programming language, for working with SAM and BAM files.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-geospatial-plus\" class=\"anchor\" href=\"#geospatial-plus\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGeospatial Plus\u003c/h1\u003e\n\u003cp\u003eBuilding on the versioned geospatial Rocker image.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-github-actions\" class=\"anchor\" href=\"#github-actions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGithub Actions\u003c/h1\u003e\n\u003cp\u003eThis repository uses GitHub Actions to test the docker image prior to making it available as a GitHub package.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1613348079.0
+ "updated_at": 1624971946.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.cosmic_tagging_tf_2010"
+ "Singularity"
],
- "full_name": "maxpkatz/singularity_image_files",
+ "full_name": "mherkazandjian/ismcpak",
"latest_release": null,
- "readme": "",
+ "readme": "\u003cp\u003e\u003ca href=\"https://cloud.sylabs.io/library/_container/5f9bd736bccfe9cf4578f166\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-quickstart\" class=\"anchor\" href=\"#quickstart\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuickstart\u003c/h1\u003e\n\u003cp\u003eTo run a quick example, the following container can be used:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone -b alpha-master https://github.com/mherkazandjian/ismcpak.git ~/ismcpak\n$ cd ~/ismcpak/tests\n$ singularity exec library://mher/default/ismcpak:latest mpiexec python run_singleMesh.py \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis is a package which implements some utilities useful for modelling and\nanalyzing simulation output of PDRs.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ejupyter notebooks\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eTo run a jupyter server inside the container with the full ismcpak environment:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec --scratch /run/user library://mher/default/ismcpak:latest jupyter-lab\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-build-the-container-locally\" class=\"anchor\" href=\"#build-the-container-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild the container locally\u003c/h2\u003e\n\u003cp\u003eThe following command build the singularity container on a local machine. The\nonly prerequisite is to have singularity installed and to have sudo access.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone -b alpha-master https://github.com/mherkazandjian/ismcpak.git ~/ismcpak\n$ cd ~/ismcpak\n$ sudo make singularity\n$ cd tests\n$ singularity exec ../container.sif mpiexec python run_singleMesh.py \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-prerequisites\" class=\"anchor\" href=\"#prerequisites\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h1\u003e\n\u003cp\u003eamuse - mpich\nPyQt4\nipython\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-installing-the-pdr-code\" class=\"anchor\" href=\"#installing-the-pdr-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the PDR code\u003c/h1\u003e\n\u003cp\u003eThe PDR code should be copied into:\namuse/src/amuse/community/pdr\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-compiling-the-pdr-code\" class=\"anchor\" href=\"#compiling-the-pdr-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompiling the PDR code\u003c/h1\u003e\n\u003cp\u003eThe PDR code can be compiled using:\n~\u0026gt; cd amuse/src/amuse/community/pdr\n~\u0026gt; make all\nThe generates the libpdr.a library\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-setting-up-the-working-environment\" class=\"anchor\" href=\"#setting-up-the-working-environment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetting up the working environment\u003c/h1\u003e\n\u003cp\u003eThe path to ismcpak should be added to the PYTHONPATH environment variable. For\nbash, the following line should be added:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport PYTHONPATH=/PATH/TO/ismcpak:$PYTHONPATH\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto tcsh :\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esetenv PYTHONPATH /PATH/TO/ismcpak:$PYTHONPATH\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-running-the-code\" class=\"anchor\" href=\"#running-the-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the code\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-basic-test---single-model\" class=\"anchor\" href=\"#basic-test---single-model\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBasic test - single model\u003c/h2\u003e\n\u003cp\u003eThe PDR code can only be run through the AMUSE ( \u003ca href=\"http://amusecode.org\" rel=\"nofollow\"\u003ehttp://amusecode.org\u003c/a\u003e ).\nDepending on the mpi environment installed with AMUSE, it might be\nnecessary to launch the mpd deamon before executing either:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e~\u0026gt; mpirun -np 1 python run_singleMesh.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor via\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e~\u0026gt; python run_singleMesh.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-running-a-grid-of-models\" class=\"anchor\" href=\"#running-a-grid-of-models\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning a Grid of models\u003c/h1\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-setup-the-working-environment-variables\" class=\"anchor\" href=\"#setup-the-working-environment-variables\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esetup the working environment variables\u003c/h1\u003e\n\u003col\u003e\n\u003cli\u003esource setdev\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-install-the-pdr-code-into-amuse-make-sure-the-correct\" class=\"anchor\" href=\"#install-the-pdr-code-into-amuse-make-sure-the-correct\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003einstall the pdr code into amuse (make sure the correct\u003c/h1\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-path-of-amuse-is-set-in-setenv\" class=\"anchor\" href=\"#path-of-amuse-is-set-in-setenv\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epath of amuse is set in setenv\u003c/h1\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003emake pdr_install\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-after-these-two-steps-the-tests\" class=\"anchor\" href=\"#after-these-two-steps-the-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eafter these two steps, the tests\u003c/h1\u003e\n\u003cp\u003erun_singleMesh.py\nchemical_network_pdr_code.py\nshould run without errors\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\n\u003cp\u003eto run a grid, use the following under ismcpak:\n~\u0026gt; ipython --pylab=qt tests/run_oneSidedGrid.py\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eafter the model data is written to\ntests/oneSidedGrid/meshes\nwe need to construct the database files .db using constructReadArchive.py\n~\u0026gt; ipython --pylab=qt constructReadArchive.py\u003c/p\u003e\n\u003cp\u003eafter the database is constructed we must have the file\nmeshes.db meshes.db.info\nin the output directory and a message\narchive integrity test passed\nmust be displayed\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eafter creating the database, a reference file must be generated which\nstores information about the parameters which have been used in\ngenerating the data. A template of this file is located under\nruns/tests/templateDir/used_params.py\nwhere the parameters used by run_oneSidedGrid.py should be filled in\nby hand. Once the values are changed :\n~\u0026gt; python used_parms.py\ngenerates the pickle file\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eset the desired display parameters in analyzeArchive.py and invoke :\n~\u0026gt; ipython --pylab=qt analyzeArchive.py\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eto generate the radex databases, the bottom part of analyzeArchive.py should be enabled to\nallow radex databases to be computed and written do disk. Set the desired values of\nAv to compute and the species whose emission will be computed and re-run:\n~\u0026gt; ipython --pylab=qt analyzeArchive.py\nAs a check, the data in\ntests/oneSidedGrid/radexDbs\nshould have directories with the Avs we have set and each directory should\nhave files for each species we have specified.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eafter producing the radex database files, we can convert that data to ascii data using :\n~\u0026gt; ipython ismcpak2Ascii.py\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-disclaimer\" class=\"anchor\" href=\"#disclaimer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDisclaimer\u003c/h1\u003e\n\u003cp\u003eTHIS SOFTWARE IS PROVIDED UNDER THE GPL LICENSE BY THE COPYRIGHT HOLDERS AND\nCONTRIBUTORS \u201cAS IS\u201d AND DOES NOT EXPRESS OR PROVIDE IMPLIED WARRANTIES,\nINCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND F\nITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT\nOWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,\nEXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT\nOF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\nINTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT\n, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY\nWAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH\nDAMAGE.\u003c/p\u003e\n\u003cp\u003eSee LICENSE.txt for more information about the GPL license.\u003c/p\u003e\n\u003cp\u003ePlease cite the following papers if any part of this package is used in your\nresearch.\u003c/p\u003e\n\u003cp\u003eKazandjian, M. V., Meijerink, R., Pelupessy, I., Israel, F. P., Spaans, M.,\narXiv:1403.7000\u003c/p\u003e\n\u003cp\u003eKazandjian, M. V., Meijerink, R., Pelupessy, I., Israel, F. P., Spaans, M.,\n2012, A\u0026amp;A, 542, A65, 26\u003c/p\u003e\n\u003cp\u003eMeijerink, R., Spaans, M., \u0026amp; Israel, F. P. 2007, A\u0026amp;A, 461, 793\u003c/p\u003e\n\u003cp\u003eMeijerink, R. \u0026amp; Spaans, M. 2005, A\u0026amp;A, 436, 397\u003c/p\u003e\n\u003cp\u003eIsmpak makes makes use of \"Radex\" internally to compute the line emissions. Please\nreference the RADEX paper as well:\u003c/p\u003e\n\u003cp\u003eVan der Tak, F.F.S., Black, J.H., Sch\u00f6ier, F.L., Jansen, D.J., van Dishoeck, E.F. 2007, A\u0026amp;A 468, 627\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1609779903.0
+ "updated_at": 1625261030.0
},
{
"data_format": 2,
- "description": "definition files for containers used in Hanlab",
+ "description": null,
"filenames": [
- "singularity.R.3.6.3.Bioc/R.3.6.3.Bioc.def",
- "singularity.Rconda/R.3.6.3.def",
- "singularity.mkl/mkl.def",
- "singularity.mkl/mkl.ubuntu.def",
- "singularity.R.4.0.2.Bioc/R.4.0.2.Bioc.def",
- "singularity.py37.ml.openblas/py37.ml.openblas.def",
- "singularity.R.3.6.3.phylo/R.3.6.3.phylo.def",
- "singularity.SAD/SAD.def",
- "singularity.phylo/phylo.def",
- "singularity.py37.ml.mkl/py37.ml.mkl.def",
- "singularity.rnaseq/rnaseq.def"
+ "misc/releases/20.06/Singularity.20.06",
+ "misc/releases/latest/Singularity",
+ "misc/releases/19.12/Singularity.19.12",
+ "misc/releases/19.06/Singularity.19.06"
],
- "full_name": "HanLabUNLV/hanlab_singularity_defs",
+ "full_name": "salome-eriksson/downward-issue751-prototype",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fast-downward\" class=\"anchor\" href=\"#fast-downward\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFast Downward\u003c/h1\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2020 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"http://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttp://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" href=\"#tested-software-versions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2017 (MSVC 19.16) and 2019 (MSVC 19.28)\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributors\" class=\"anchor\" href=\"#contributors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2020 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2020 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2020 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2020 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2020 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2020 Salome Eriksson\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2018-2020 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2015 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-history\" class=\"anchor\" href=\"#history\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1648241982.0
+ "updated_at": 1625214736.0
},
{
"data_format": 2,
- "description": "Singularity definition files for building various software to run on HPC systems",
+ "description": "METHYLPY, is an analysis pipeline for DNA methylation data.",
"filenames": [
- "coinfinder.def",
- "octopus.def",
- "demultiplex.def",
- "sibeliusz.def",
- "orthofinder.def",
- "torstyverse.def",
- "openmpibase.def",
- "amiga.def",
- "panx.def",
- "instrain.def",
- "eggnogmapper.def",
- "motulizer.def",
- "orthofinder_usemem.def",
- "raxspectree.def",
- "tychfinder.def",
- "wgasuite.def",
- "checkm.def",
- "pheniqs.def"
+ "1.4.3/Singularity"
],
- "full_name": "slhogle/singularity_def_files",
- "latest_release": null,
+ "full_name": "pscedu/singularity-methylpy",
+ "latest_release": "v1.4.3",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-methylpy/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-methylpy/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-methylpy/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-methylpy/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/68dce811b911761f8ba92aae500e0e1400720248c31724fc8f3215bead82ab11/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6d657468796c7079\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/68dce811b911761f8ba92aae500e0e1400720248c31724fc8f3215bead82ab11/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6d657468796c7079\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-methylpy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/fe10607a3df63b8791aff64a9cb4897318e187e28b12c3a563a6a0a76bbb8f73/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6d657468796c7079\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fe10607a3df63b8791aff64a9cb4897318e187e28b12c3a563a6a0a76bbb8f73/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6d657468796c7079\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-methylpy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ca28e9dbb4ca3fb891088deca8c37945a3dd96b32bfc0e01a8eef88efa3fe02e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6d657468796c7079\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ca28e9dbb4ca3fb891088deca8c37945a3dd96b32bfc0e01a8eef88efa3fe02e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6d657468796c7079\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-methylpy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c59e0399bb825884a9fa4f45b91bdba428f86d1decc49df207e011187efa29b1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6d657468796c7079\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c59e0399bb825884a9fa4f45b91bdba428f86d1decc49df207e011187efa29b1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6d657468796c7079\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-methylpy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-methylpy\" class=\"anchor\" href=\"#singularity-methylpy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-methylpy\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/METHYLPY\"\u003eMETHYLPY\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the Perl scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/methylpy/1.4.3\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/methylpy\u003c/code\u003e as \u003ccode\u003e1.4.3.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1639279998.0
+ "subscribers_count": 1,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1629218072.0
},
{
"data_format": 2,
- "description": "patroon with openms singularity image",
+ "description": null,
"filenames": [
- "Singularity"
+ "volsung-cudnn8-runtime-ubuntu18.04/Singularity",
+ "vdt_base/Singularity"
],
- "full_name": "romxero/patroonOpenmsSingularity",
+ "full_name": "AvciRecep/chaste_nesi",
"latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4539\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eUsing conventions described here.\n\u003ca href=\"https://singularityhub.github.io/singularityhub-docs/docs/getting-started/naming\" rel=\"nofollow\"\u003ehttps://singularityhub.github.io/singularityhub-docs/docs/getting-started/naming\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1659137230.0
+ "updated_at": 1625528992.0
},
{
"data_format": 2,
- "description": "Recipes and definition files for building singularity",
+ "description": "Command Line Interface and Python API for Forskalle",
"filenames": [
- "flameshot/Singularity",
- "ansible/Singularity"
+ "Singularity"
],
- "full_name": "serheang/singularity",
+ "full_name": "csf-ngs/forskalle-api",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"https://sylabs.io/guides/3.6/user-guide/introduction.html\" rel=\"nofollow\"\u003esingularity\u003c/a\u003e\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-build\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to build\u003c/h2\u003e\n\u003cp\u003eThe simplest way to build a singularity container is to build from docker:\n\u003ccode\u003esingularity pull docker://centos:latest\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eHowever, if you have a definition file like this:\ndocker.def:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap: docker\nFrom: centos:7\n\n%labels\n\tAUTHOR SerTan\n\tVERSION 1.0\n\n%environment\n\texport PATH=/usr/local/bin:$PATH\n\texport LANG=en_US.UTF-8\n\texport LC_ALL=C\n\n%files\n\n%post\n\tyum -y install emacs\n\n%runscript\n\techo \"This is a container\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen, you can build the SIF from it:\n\u003ccode\u003esudo singularity build test.sif docker.def\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eYou can refer to this \u003ca href=\"https://sylabs.io/guides/3.6/user-guide/quick_start.html\" rel=\"nofollow\"\u003equickstart guide\u003c/a\u003e to have more information.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-run-the-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-run-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run the image?\u003c/h2\u003e\n\u003cp\u003eTo run a SIF:\n\u003ccode\u003esingularity run -B $XDG_RUNTIME_DIR \u0026lt;sif file\u0026gt;\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eIt require to bind $XDG_RUNTIME_DIR into the container so that we can utilize the host\u0027s X session capacity.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fsk-api--cli\" class=\"anchor\" href=\"#fsk-api--cli\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFSK API + cli\u003c/h1\u003e\n\u003cp\u003ePython library for Fsk3 API. Will add functionality as needed.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eInstall from the VBCF.NGS repository:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip3 install git+https://ngs.vbcf.ac.at/repo/software/forskalle-api.git\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e or github\u003c/span\u003e\npip3 install git+https://github.com/csf-ngs/forskalle-api.git\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-cli\" class=\"anchor\" href=\"#cli\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCLI\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003efsk-cli [command] [options] etc\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePoint it at your favorite Forskalle instance either by\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esetting environment variables: \u003ccode\u003eFSK_API_BASE\u003c/code\u003e and \u003ccode\u003eFSK_API_KEY\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eusing a config file in \u003ccode\u003e~/.fsk_api.yml\u003c/code\u003e, please see \u003ca href=\"doc/\"\u003edoc/\u003c/a\u003e for an example\u003c/li\u003e\n\u003cli\u003eproviding \u003ccode\u003e--base\u003c/code\u003e and \u003ccode\u003e--key\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTry \u003ccode\u003efsk-cli --help\u003c/code\u003e for some hints!\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-examples\" class=\"anchor\" href=\"#examples\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExamples\u003c/h4\u003e\n\u003cp\u003eSet all sequenced samples of a multiplex to Ok:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003efsk-cli multi get M4711 \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e jq \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e.multiplex_samples[].sample_id\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \\\n \u003cspan class=\"pl-k\"\u003ewhile\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003eread\u003c/span\u003e sample_id\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003edo\u003c/span\u003e \n fsk-cli set-sequencing-status \u003cspan class=\"pl-smi\"\u003e$sample_id\u003c/span\u003e --status Ok\n \u003cspan class=\"pl-k\"\u003edone\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIn place editing with jq and updating:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e update all request lanes to status Ready\u003c/span\u003e\nfsk-cli request get R4711 \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \\\n jq \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e.request_lanes[].status=\"Ready\"\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \\\n fsk-cli request update R4711\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-library\" class=\"anchor\" href=\"#library\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLibrary\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003efrom forskalle_api import FskApi\n\nfsk_api = FskApi()\nsample_json = fsk_api.get_sample(54321)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003efrom forskalle_api import FskApi\nfrom forskalle_api.auto.queryparams import IlluminaRunFilters\nfrom forskalle_api.fsk_query import FskQuery\n\nfsk_api = FskApi()\nirf = IlluminaRunFilters(sequenced_after=\"2020-05-01\")\nq = FskQuery(filters=irf)\nruns = fsk_api.get_runs_illumina(q)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThere is no API-doc or similar, but we all love reading python source code!\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-models\" class=\"anchor\" href=\"#models\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModels\u003c/h3\u003e\n\u003cp\u003eModels and Query Parameters are autogenerated from forskalle. Return values of most api calls are thin class layers with type hints, e.g. forskalle_api.auto.models.Sample with all properties and relationships to allow easy navigation in your source code editor.\u003c/p\u003e\n\u003cp\u003eYou can also find de/serialization helpers (serializeSample from Class to dict, plainToSample from dict to Class).\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1660644642.0
+ "updated_at": 1625599328.0
},
{
"data_format": 2,
- "description": "Eugene is an integrative genome annotation software",
+ "description": null,
"filenames": [
- "eugene/singularity/4.3/Singularity"
+ "ext/Singularity"
],
- "full_name": "tschiex/eugene",
- "latest_release": "v4.3a",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-welcome-to-eugene\" class=\"anchor\" aria-hidden=\"true\" href=\"#welcome-to-eugene\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWelcome to eugene\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-an-integrative-gene-finder-for-eukaryotic-and-prokaryotic-genomes\" class=\"anchor\" aria-hidden=\"true\" href=\"#an-integrative-gene-finder-for-eukaryotic-and-prokaryotic-genomes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAn integrative gene finder for eukaryotic and prokaryotic genomes\u003c/h2\u003e\n\u003cp\u003eThis software is OSI Certified Open Source Software. OSI Certified is\na certification mark of the Open Source Initiative. eugene is\ngoverned by the ARTISTIC LICENSE (see \u003ca href=\"http://www.opensource.org\" rel=\"nofollow\"\u003ewww.opensource.org\u003c/a\u003e). Please see\nthe file COPYING for details. For documentation, please see the files\nin the doc subdirectory. For building and installation instructions\nplease see the INSTALL file. For creating a new eugene release, please\nsee the RELEASE file.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-for-more-information\" class=\"anchor\" aria-hidden=\"true\" href=\"#for-more-information\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor more information\u003c/h2\u003e\n\u003cp\u003eVisit eugene\u0027s web site at \u003ca href=\"http://eugene.toulouse.inrae.fr\" rel=\"nofollow\"\u003eINRAE\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "OSC/shiny_launcher",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-wip-batch-connect---osc-shiny-app-launcher\" class=\"anchor\" href=\"#wip-batch-connect---osc-shiny-app-launcher\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e[WIP] Batch Connect - OSC Shiny App Launcher\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/5e71a5a07e8e6e15f922edb76b5fb68e7ee6087e336807c38095861b8c7f5fc2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f7368696e795f6c61756e636865722e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5e71a5a07e8e6e15f922edb76b5fb68e7ee6087e336807c38095861b8c7f5fc2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f7368696e795f6c61756e636865722e737667\" alt=\"GitHub Release\" data-canonical-src=\"https://img.shields.io/github/release/osc/shiny_launcher.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA Batch Connect app designed for OSC OnDemand that launches a Shiny App within\nan Owens batch job.\u003c/p\u003e\n\u003cp\u003eThe Shiny app is included a submodule and each deployment can modified which\nShiny app to deploy using git config to specify the URL for the submodule. This\nway the launcher code can be reused for multiple apps but the launcher and the\napp itself can be managed separately.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-prerequisites\" class=\"anchor\" href=\"#prerequisites\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eThis Batch Connect app requires the following software be installed on the\n\u003cstrong\u003ecompute nodes\u003c/strong\u003e that the batch job is intended to run on (\u003cstrong\u003eNOT\u003c/strong\u003e the\nOnDemand node):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://shiny.rstudio.com/\" rel=\"nofollow\"\u003eShiny\u003c/a\u003e x.y.z+\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.tacc.utexas.edu/research-development/tacc-projects/lmod\" rel=\"nofollow\"\u003eLmod\u003c/a\u003e 6.0.1+ or any other \u003ccode\u003emodule purge\u003c/code\u003e and \u003ccode\u003emodule load \u0026lt;modules\u0026gt;\u003c/code\u003e based\nCLI used to load appropriate environments within the batch job\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-install\" class=\"anchor\" href=\"#install\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eTODO\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eAgain, you do not need to restart the app as it isn\u0027t a Passenger app.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributing\" class=\"anchor\" href=\"#contributing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eFork it ( \u003ca href=\"https://github.com/OSC/bc_osc_example_shiny/fork\"\u003ehttps://github.com/OSC/bc_osc_example_shiny/fork\u003c/a\u003e )\u003c/li\u003e\n\u003cli\u003eCreate your feature branch (\u003ccode\u003egit checkout -b my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCommit your changes (\u003ccode\u003egit commit -am \u0027Add some feature\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003ePush to the branch (\u003ccode\u003egit push origin my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a new Pull Request\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1660811863.0
+ "updated_at": 1569007230.0
},
{
"data_format": 2,
- "description": "Code repository for my Masters thesis with the title \"Temporal Planning for Droplet Routing on Microfluidic Biochips\".",
+ "description": "Singularity recipe for singularity-term-img-cli",
"filenames": [
- "Singularity"
+ "4.1.0/Singularity"
],
- "full_name": "Altava/droplet-routing",
+ "full_name": "icaoberg/singularity-term-img-cli",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-droplet-routing\" class=\"anchor\" aria-hidden=\"true\" href=\"#droplet-routing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edroplet-routing\u003c/h1\u003e\n\u003cp\u003eCode repository for my Masters thesis with the title \"Temporal Planning for Droplet Routing on Microfluidic Biochips\".\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-term-img-cli\" class=\"anchor\" href=\"#singularity-term-img-cli\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-term-img-cli\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/sindresorhus/term-img-cli/raw/main/screenshot.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/sindresorhus/term-img-cli/raw/main/screenshot.jpg\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sindresorhus/term-img-cli\"\u003eterm-img\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eterm-img\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/term-img/3.0.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/term-img\u003c/code\u003e as \u003ccode\u003e3.0.0\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1654011059.0
+ "updated_at": 1622923859.0
},
{
"data_format": 2,
- "description": "This is the Singularity file for build singularity image of biomarkers module",
+ "description": null,
"filenames": [
- "Biomarkers/Singularity"
+ "containers/Singularity"
],
- "full_name": "tperezdevelopment/Singularity-Tools",
- "latest_release": "1.0.0",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-tools\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity-Tools\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://zenodo.org/badge/latestdoi/270368691\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b74d900bff6714a691edb3ec8bc54abcbf1653a66cc2dfeb1eb05e5e3f452b05/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3237303336383639312e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/270368691.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eList of Singularity file to build Tools\u003c/p\u003e\n",
+ "full_name": "bananaeat/Cinnamon_assembly",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-cinnamon\" class=\"anchor\" href=\"#cinnamon\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCinnamon\u003c/h1\u003e\n\u003cp\u003eThis directory contains the code for the Cinnamon language compiler. This compiler is described in the paper:\u003c/p\u003e\n\u003cp\u003eCinnamon: A Domain-Specific Language for Binary Profiling and Monitoring,\nMahwish Arif, Ruoyu Zhou, Hsi-Ming Ho and Timothy M. Jones,\nCGO 2021\u003c/p\u003e\n\u003cp\u003ePlease cite this paper if you produce any work that builds upon this code and / or data.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-licence\" class=\"anchor\" href=\"#licence\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicence\u003c/h2\u003e\n\u003cp\u003eCinnamon is released under an Apache licence.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-cinnamon\" class=\"anchor\" href=\"#building-cinnamon\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding Cinnamon\u003c/h2\u003e\n\u003cp\u003eCinnamon can currently target three different binary frameworks; Janus, Pin and Dyninst. To build the compiler:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003eexport CINNAMON_ROOT = /path/to/cinnamon-source\ncd $(CINNAMON_ROOT)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo build the Cinnamon backend for Janus:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003emake TARGET=janus\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo build the Cinnamon backend for Pin:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003emake TARGET=pin\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo build the Cinnamon backend for Dyninst:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003emake TARGET=dyninst\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-compiling-a-sample-program\" class=\"anchor\" href=\"#compiling-a-sample-program\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompiling a sample program\u003c/h2\u003e\n\u003cp\u003eCinnamon sample programs are available in the \u003ccode\u003etests\u003c/code\u003e directory. The following commands will compile the Cinnamon program \u003ccode\u003eins.dsl\u003c/code\u003e and integrate the resulting code into one of the target frameworks. You will need to set the path to your target framework installation in the respective scripts:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003e$(CINNAMON_ROOT)/Scripts/compileToJanus.py $CINNAMON_ROOT/tests/ins.dsl\n$(CINNAMON_ROOT)/Scripts/compileToPin.py $CINNAMON_ROOT/tests/ins.dsl\n$(CINNAMON_ROOT)/Scripts/compileToDyn.py $CINNAMON_ROOT/tests/ins.dsl\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAfter this, the final tool can be built and run using the target framework\u0027s build instructions.\u003c/p\u003e\n\u003cp\u003eIf you just want to compile the Cinnamon DSL code and not yet integrate it into a target framework, run the following command. This will generate a number of different files containing relevant code for the cinnamon program:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003ecd $CINNAMON_ROOT\n./bdc $CINNAMON_ROOT/tests/ins.dsl\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-target-frameworks\" class=\"anchor\" href=\"#target-frameworks\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTarget frameworks\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-janus\" class=\"anchor\" href=\"#janus\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eJanus\u003c/h3\u003e\n\u003cp\u003eYou can get the Janus implementation with placeholders, templates and utility libraries for Cinnamon from the main Janus repository at \u003ca href=\"https://github.com/timothymjones/Janus.git\"\u003ehttps://github.com/timothymjones/Janus.git\u003c/a\u003e, then switch to the \u003ccode\u003ecinnamon\u003c/code\u003e branch.\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003egit clone https://github.com/timothymjones/Janus.git\ncd Janus\ngit checkout -b cinnamon origin/cinnamon\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNext set \u003ccode\u003eJanusPATH\u003c/code\u003e in \u003ccode\u003ecompileToJanus.py\u003c/code\u003e to be the location that you have cloned Janus.\u003c/p\u003e\n\u003cp\u003eOnce the code for Janus has been generated and integrated (after running the \u003ccode\u003ecompileToJanus.py\u003c/code\u003e script from above), you can build the final tool using the following commands:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003e(cd build; cmake ..; make -j8)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run the final tool on the target binary:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003e./janus/jdsl_run \u0026lt;target_binary\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-pin\" class=\"anchor\" href=\"#pin\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePin\u003c/h3\u003e\n\u003cp\u003eEverything required for Pin is contained within the \u003ccode\u003etargets/Pin\u003c/code\u003e directory. Copy the \u003ccode\u003eMyDSLTool\u003c/code\u003e directory to \u003ccode\u003epath-to-your-pin-root-dir/source/tools\u003c/code\u003e, where \u003ccode\u003epath-to-your-pin-root\u003c/code\u003e should be self-explanatory.\u003c/p\u003e\n\u003cp\u003eNext set \u003ccode\u003ePinPATH=your-pin-root-dir/source/tools/MyDSLTool\u003c/code\u003e in \u003ccode\u003ecompileToPin.py\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eOnce the code for Pin has been generated and integrated (after running the \u003ccode\u003ecompileToPin.py\u003c/code\u003e script from above), you can build the final tool using the following commands:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003ecd your-pin-root-dir/source/tools/MyDSLTool\nmake obj-intel64/MyDSLTool.so\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run the final tool on the target binary:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003eyour-pin-root-dir/pin -t obj-intel64/MyDSLTool.so -- \u0026lt;target_binary\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-dyninst\" class=\"anchor\" href=\"#dyninst\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDyninst\u003c/h3\u003e\n\u003cp\u003eYou can obtain Dyninst version 10.1.0 as follows:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003ewget https://github.com/dyninst/dyninst/archive/v10.1.0.tar.gz``\ntar xzvf v10.1.0.tar.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce extracted, add \u003ccode\u003ec_LoadInsn\u003c/code\u003e and \u003ccode\u003ec_StoreInsn\u003c/code\u003e into \u003ccode\u003eenum InsnCategory\u003c/code\u003e in \u003ccode\u003edyninst-10.1.0/instructionAPI/h/InstructionCategories.h\u003c/code\u003e and then build by following the Dyninst build instructions.\u003c/p\u003e\n\u003cp\u003eEverything else required for Dyninst is contained within the \u003ccode\u003etargets/Dyninst\u003c/code\u003e directory. Copy the \u003ccode\u003eMyDSLTool\u003c/code\u003e directory to \u003ccode\u003epath-to-your-dyn-root-dir/examples\u003c/code\u003e, where \u003ccode\u003epath-to-your-dyn-root-dir\u003c/code\u003e should be self-explanatory.\u003c/p\u003e\n\u003cp\u003eNext set \u003ccode\u003eDynPATH=path-to-your-dyn-root-dir/examples/MyDSLTool\u003c/code\u003e in \u003ccode\u003ecompileToDyn.py\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eOnce the code for Dyninst has been generated and integrated (after running the \u003ccode\u003ecompileToDyn.py\u003c/code\u003e script from above), you can build the final tool using the following commands:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003ecd path-to-your-dyn-root-dir/examples/MyDSLTool\nmake\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run the final tool on the target binary:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003epath-to-your-dyn-root-dir/examples/MyDSLTool/DSLtool -m static -o \u0026lt;output_binary\u0026gt; \u0026lt;input_binary\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1661186876.0
+ "updated_at": 1625671641.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Simple terminal UI for git commands.",
"filenames": [
- "Singularity.cellranger"
+ "0.28.2/Singularity",
+ "0.23.1/Singularity"
],
- "full_name": "georgia-katsoula/cellranger",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-deploy\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-deploy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Deploy\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/shpc.png\"\u003e\u003cimg src=\"img/shpc.png\" alt=\"img/shpc.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWouldn\u0027t it be nice to build Singularity images without a registry proper,\nand just keep them alongside the GitHub codebase? This is now possible!\nThis small repository provides an example to get you started. It will\nbuild one or more images (whatever Singularity.* files that are present at\nthe root) and then release them as assets to your GitHub repository so\nthat they can be programatically obtained. It is associated with\n\u003ca href=\"https://github.com/singularityhub/singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e to allow\nyou to then define LMOD modules for these same containers.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eCan I upload the largest of chonkers?\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eYes and no. Note that assets are limited to 2 GB in size, which is still fairly good. You can use\nit as a template for your own recipes as is, or modify it for your custom\nuse case. Instructions are below!\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e Currently recipe extensions are associated with tags, and the GitHub release is\nassociated with a digest. We likely will change this in the next few weeks so that GitHub\nreleases are tags, and the \"digests\" are flie names. Stay tuned for updates!\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-hidden=\"true\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-template-or-fork\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-template-or-fork\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Template or Fork\u003c/h3\u003e\n\u003cp\u003eIf you haven\u0027t already, template or fork this repository. You can then clone\nyour fork:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git clone git@github.com:\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eusername\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/singularity-deploy\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou likely want to name the repository by the container. For example, if I would\nhave created a container on Docker Hub or similar with the name \u003ccode\u003evsoch/salad\u003c/code\u003e,\nhere I\u0027d call the repository \u003ccode\u003esalad\u003c/code\u003e. You obviously are limited to your username\nor an organizational namespace.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-write-your-singularity-recipes\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-write-your-singularity-recipes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Write your Singularity Recipe(s)\u003c/h3\u003e\n\u003cp\u003eFirst, you should write your container recipe(s) in the present working directory.\nFor good practice, when you are updating recipes you should checkout a new branch\nand open a pull request, as the repository comes with a workflow to trigger on a PR\nto \u003ca href=\".github/workflows/test.yml\"\u003etest your container build\u003c/a\u003e. Note that in the main workflow\nthat deploys the releases, the current branch is set to be \u003ccode\u003emain-branch\u003c/code\u003e. You should\nupdate this to be your main \"production\" branch that you want to deploy releases on merge.\nYou are also free to choose a different trigger and release strategy. You can add any additional\ntests that that you might need. By default, any Singularity.* file will be automatically detected.\nIf there is no extension (the name Singularity), the name used will be \"latest.\"\nYou can use these tags across multiple releases of your containers. For example,\nthese files would generate packages with sifs named as follows:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.pokemon\"\u003eSingularity.pokemon\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.salad\"\u003eSingularity.salad\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor each name, you can see the direct download URL contains the repository (singularityhub/singularity-deploy),\nYou should not use any \u003ccode\u003e:\u003c/code\u003e characters in either your container tag (the GitHub extension) or\nthe GitHub tags (the release tags) as this might interfere with parsing.\nThe GitHub release tag (0.0.1 in the example above) is discussed next.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-2-update-the-version-file\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-update-the-version-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Update the VERSION file\u003c/h3\u003e\n\u003cp\u003eAny time that you prepare new container recipes, you should update the \u003ca href=\"VERSION\"\u003eVERSION\u003c/a\u003e\nfile. The way that this repository works is to generate a release based on the\nstring in \u003ccode\u003eVERSION\u003c/code\u003e. A version is just a tag, so it could be something like\n\u003ccode\u003e0.0.1\u003c/code\u003e or \u003ccode\u003e0.0.1-slim\u003c/code\u003e. Keep in mind that GitHub releases cannot have duplicated\nnames, so you should not repeat the same tag. Do not use \u003ccode\u003e:\u003c/code\u003e in your tag names.\nIf you do need to re-release a tag (not recommended if a user might be using it and then it\u0027s changed) you can manually delete\nthe release and the tag in the GitHub interface. This is a nice structure because it\nmeans you can have containers with different names under the same tag. In the example\nabove, we have each of \"pokemon,\" \"latest,\" and \"salad\" released under tag 0.0.1.\nThis is how it looks on GitHub:\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/releases.png\"\u003e\u003cimg src=\"img/releases.png\" alt=\"img/releases.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-3-how-to-develop\" class=\"anchor\" aria-hidden=\"true\" href=\"#3-how-to-develop\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. How to Develop\u003c/h3\u003e\n\u003cp\u003eAs we mentioned previously, the container builds will be tested on a pull request,\nand the release will trigger on merge into your main branch (main). See the \u003ca href=\".github/workflows/builder.yml\"\u003e.github/workflows/builder.yml\u003c/a\u003e)\nto edit this. The idea is that you can:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDevelop your container via a development branch\u003c/li\u003e\n\u003cli\u003eOpen a pull request to test the container (the \u003ca href=\".github/workflows/test.yml\"\u003e.github/workflows/test.yml\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eOn merge, your container will be released!\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\u003ca id=\"user-content-4-how-to-pull\" class=\"anchor\" aria-hidden=\"true\" href=\"#4-how-to-pull\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. How to pull\u003c/h3\u003e\n\u003cp\u003eTechnically, Singularity can pull just knowing the URL. For example:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eHowever, the \u003ca href=\"singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e tool (will be) designed to be able to parse and handle\nthese container uris automatically. For the containers here, you could do:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:latest\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:salad\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:pokemon\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor write the container URI into a registry entry:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egh: singularityhub/singularity-deploy\nlatest:\n latest: \"0.0.1\"\ntags:\n \"latest\": \"0.0.1\"\n \"salad\": \"0.0.1\"\n \"pokemon\": \"0.0.1\"\nmaintainer: \"@vsoch\"\nurl: https://github.com/singularityhub/singularity-deploy\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(This part is still under development!)\u003c/p\u003e\n",
+ "full_name": "icaoberg/singularity-lazygit",
+ "latest_release": "v0.28.2",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-lazygit/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-lazygit/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ce43f9f05edc280dcb72fb4ca8be46c0dab1ad9b88f48b7c2d9b8273288d266f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d6c617a79676974\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ce43f9f05edc280dcb72fb4ca8be46c0dab1ad9b88f48b7c2d9b8273288d266f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d6c617a79676974\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-lazygit\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7fdf306f4f7e4fcc9fc77bc1030ff82b19deed57ab2965e952d30b70fb7b674a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d6c617a79676974\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7fdf306f4f7e4fcc9fc77bc1030ff82b19deed57ab2965e952d30b70fb7b674a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d6c617a79676974\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-lazygit\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/e8240aa02d92e2a9a5ee84af2261f39ed2c8fc86a0c2f54f6e1f6bab629e0fe5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d6c617a79676974\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e8240aa02d92e2a9a5ee84af2261f39ed2c8fc86a0c2f54f6e1f6bab629e0fe5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d6c617a79676974\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-lazygit\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/cef5da0642ce33fb4fb6a644a1c76721ffe638963e959e6812c008aa8c6ce693/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d6c617a79676974\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cef5da0642ce33fb4fb6a644a1c76721ffe638963e959e6812c008aa8c6ce693/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d6c617a79676974\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-lazygit\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-lazygit\" class=\"anchor\" href=\"#singularity-lazygit\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-lazygit\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"images/screenshot.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/screenshot.png\" alt=\"Screenshot\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\nSingularity recipe for \u003ca href=\"https://github.com/jesseduffield/lazygit\"\u003elazygit\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003elazygit\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/lazygit/4.8.25\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/lazygit\u003c/code\u003e as \u003ccode\u003e4.8.25.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/lazygits/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [],
- "updated_at": 1661761753.0
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1625268998.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "singularity/Singularity"
+ "Singularity"
],
- "full_name": "sequana/variant_calling",
- "latest_release": "v0.12.0",
+ "full_name": "baxpr/demo-singularity-matlab-fsl",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-demo-singularity-container-for-matlab-plus-fsl\" class=\"anchor\" href=\"#demo-singularity-container-for-matlab-plus-fsl\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDemo singularity container for Matlab plus FSL\u003c/h1\u003e\n\u003cp\u003eThis example container takes a Nifti image as input, zeroes out a hole in it of\nthe specified diameter, and saves the result to a new Nifti file. Quick,\npointless, and easy to tell whether it worked right.\u003c/p\u003e\n\u003cp\u003eThis is one way to organize a Matlab-based Singularity container -\nperhaps most easily conceived of as a series of wrappers around the main\ncodebase. Done this way, it\u0027s fairly easy to work on each piece in isolation,\nproblem-solving from the inside out.\u003c/p\u003e\n\u003cp\u003eThis container also includes an installation of FSL, which has a lot of handy\ntools including fsleyes to make the QA PDF. The FSL parts could be removed from\nthe Singularity file if FSL isn\u0027t used, to end up with a smaller container.\nContrariwise, all the Matlab parts could be removed to end up with an FSL-only\ncontainer.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity container\n| Primary entrypoint (shell script)\n| | X11 wrapper\n| | | Shell script preprocessing\n| | | Matlab processing (compiled)\n| | | | Matlab entrypoint\n| | | | Matlab main function\n| | | \\ Matlab sub-functions / codebase\n\\ \\ \\ Shell script postprocessing\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDependencies in terms of the actual files:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity\n src/pipeline_entrypoint.sh\n src/pipeline_main.sh\n src/copy_inputs.sh\n src/preprocessing.sh\n matlab/bin/run_matlab_entrypoint.sh\n matlab/bin/matlab_entrypoint\n / matlab/src/matlab_entrypoint.m \\ Used for compilation,\n | matlab/src/matlab_main.m | but not at container\n \\ matlab/src/* / runtime\n src/postprocessing.sh\n src/make_pdf.sh\n src/finalize.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe process of putting it together is described below. The scripts and code in\nthis repository are extensively commented, so if something isn\u0027t clear here,\nit\u0027s probably explained in the Singularity file or the example code.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-matlab-part\" class=\"anchor\" href=\"#matlab-part\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMatlab part\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-write-the-basic-matlab-code\" class=\"anchor\" href=\"#write-the-basic-matlab-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWrite the basic Matlab code\u003c/h3\u003e\n\u003cp\u003eWrite Matlab code that does what\u0027s needed. Put it in \u003ccode\u003ematlab/src\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eA popular toolbox for reading and writing Nifti files that\u0027s available on Matlab\nCentral has a lot of insidious bugs and is not being maintained. Matlab\u0027s own\nfunctions for Nifti files are quite limited. Here is an alternative, which is\nused in this example:\n\u003ca href=\"https://github.com/VUIIS/spm_readwrite_nii\"\u003ehttps://github.com/VUIIS/spm_readwrite_nii\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-write-the-matlab-entrypoint\" class=\"anchor\" href=\"#write-the-matlab-entrypoint\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWrite the Matlab entrypoint\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003ematlab/src/matlab_entrypoint.m\u003c/code\u003e exists to take command line arguments, parse\nthem, and call the main code. A convenient way to set things up is to write a\nmain function that takes a structure as its sole input, with the structure\ncontaining whatever inputs are needed. See \u003ccode\u003ematlab/src/matlab_main.m\u003c/code\u003e for an\nexample of this.\u003c/p\u003e\n\u003cp\u003eCouple of things to note in the entrypoint code are the quit/exit sections at\nbeginning and end. The bit at the beginning allows the executable to run during\nthe container build, without actually doing anything - this is needed to extract\nthe CTF archive into the container at the only time the container is writeable\n(h/t \u003ca href=\"https://twitter.com/annash128\" rel=\"nofollow\"\u003ehttps://twitter.com/annash128\u003c/a\u003e for figuring that one out). The bit at the\nend exits matlab when the function is finished. Without it, the running Matlab\nprocess won\u0027t release execution back to the calling script when it\u0027s done.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-test-the-matlab-entrypoint\" class=\"anchor\" href=\"#test-the-matlab-entrypoint\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest the Matlab entrypoint\u003c/h3\u003e\n\u003cp\u003eThe script \u003ccode\u003ematlab/src/test_matlab_entrypoint.m\u003c/code\u003e is an example of how to do\nthis. The appropriate Matlab must be installed on the testing computer.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-compile-the-matlab-code\" class=\"anchor\" href=\"#compile-the-matlab-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompile the Matlab code\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003ematlab/compile_matlab.sh\u003c/code\u003e shows how. Many compiled executables are likely to be\ntoo large to store on github. Git LFS may be a solution.\n\u003ca href=\"https://docs.github.com/en/github/managing-large-files/working-with-large-files\"\u003ehttps://docs.github.com/en/github/managing-large-files/working-with-large-files\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-test-the-compiled-matlab-code\" class=\"anchor\" href=\"#test-the-compiled-matlab-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest the compiled Matlab code\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003ematlab/test_compiled_matlab.sh\u003c/code\u003e. The appropriate Matlab Runtime must be\ninstalled on the testing computer.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-shell-script-part\" class=\"anchor\" href=\"#shell-script-part\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eShell script part\u003c/h2\u003e\n\u003cp\u003eAll of the below procedures could be done in the matlab part, if desired,\ninstead of in shell script. If so, parsing inputs should be done following the\nexample in \u003ccode\u003ematlab/src/matlab_entrypoint.m\u003c/code\u003e. But it\u0027s often easier to move\nfiles, create the QA PDF, etc using shell script and FSL. So that\u0027s what we are\ndoing in this example. All this code is in the \u003ccode\u003esrc\u003c/code\u003e directory.\u003c/p\u003e\n\u003cp\u003eAll the shell scripts called from \u003ccode\u003esrc/pipeline_entrypoint.sh\u003c/code\u003e \"know\" the\nenvironment variables that are exported there. This is a very convenient way to\npass along the input arguments, although it isn\u0027t entirely transparent, because\nthere\u0027s no hint in the shell scripts where the variables\u0027 values are coming from\nunless we explain it in the comments.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-main-entrypoint\" class=\"anchor\" href=\"#main-entrypoint\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMain entrypoint\u003c/h3\u003e\n\u003cp\u003eThis is \u003ccode\u003esrc/pipeline_entrypoint.sh\u003c/code\u003e. It uses bash to parse the command line\ninputs and export them to environment variables so they\u0027re accessible. Then it\ncalls the primary shell script \u003ccode\u003esrc/pipeline_main.sh\u003c/code\u003e which in turn calls\neverything else. The main script is run in xvfb to provide a virtual display,\noften needed by matlab and required for fsleyes.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-copy-inputs\" class=\"anchor\" href=\"#copy-inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCopy inputs\u003c/h3\u003e\n\u003cp\u003eWe copy input files to the output/working directory so we don\u0027t mess them up.\nThis also is an opportunity to rename them to something consistent. It\u0027s very\nconvenient to hard-code the filenames so we don\u0027t have to store and manipulate\nfilenames in environment variables or the like. Also, this makes it easy to\nproduce output files with consistent names - outputs of one pipeline may serve\nas inputs to another, and it\u0027s much easier to manage this if filenames are the\nsame for every run, or at least consistent.\u003c/p\u003e\n\u003cp\u003eWe generally assume the output directory starts out empty and will not be\ninterfered with by any other processes - this is true for XNAT/DAX, but\nimportant to be aware of in other contexts.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-preprocessing\" class=\"anchor\" href=\"#preprocessing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreprocessing\u003c/h3\u003e\n\u003cp\u003eFor this example, there is no preprocessing before the matlab part. But initial\nFSL steps or similar could be put here: \u003ccode\u003esrc/preprocessing.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-postprocessing\" class=\"anchor\" href=\"#postprocessing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePostprocessing\u003c/h3\u003e\n\u003cp\u003eThere isn\u0027t any postprocessing for this example either, but there could be:\n\u003ccode\u003esrc/postprocessing.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-pdf-creation\" class=\"anchor\" href=\"#pdf-creation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePDF creation\u003c/h3\u003e\n\u003cp\u003eAll assessors on VUIIS XNAT require a PDF QA report of some sort. For this\nexample, a display of the segmented ROIs overlaid on the T1 is created using\nfsleyes and ImageMagick, \u003ccode\u003esrc/make_pdf.sh\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003ePDF creation can be done in Matlab instead. It\u0027s hard to make these look good.\nAn example with some tricks, including a \u003ccode\u003e.fig\u003c/code\u003e file painstakingly made with\nMatlab\u0027s GUIDE, is\n\u003ca href=\"https://github.com/baxpr/connprep/blob/855dadc/src/connectivity_filter.m#L271\"\u003ehttps://github.com/baxpr/connprep/blob/855dadc/src/connectivity_filter.m#L271\u003c/a\u003e\nA way to show slices of functional images with a nice red/blue colormap is\n\u003ca href=\"https://github.com/baxpr/connprep/blob/855dadc/src/make_network_maps.m\"\u003ehttps://github.com/baxpr/connprep/blob/855dadc/src/make_network_maps.m\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-finalizing-the-output\" class=\"anchor\" href=\"#finalizing-the-output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFinalizing the output\u003c/h3\u003e\n\u003cp\u003eAll Niftis must be compressed for storage on XNAT, and outputs can be organized\nin an easily understandable way: \u003ccode\u003esrc/finalize.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eWrite an informative README - so tedious, yet so helpful. Include the\nappropriate citations for all the methods and software you have used. Even\nessentially write the methods section for a paper that uses the pipeline. Here\u0027s\nan excellent example: \u003ca href=\"https://github.com/MASILab/PreQual\"\u003ehttps://github.com/MASILab/PreQual\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAlternatively, git-ify some documentation like this:\n\u003ca href=\"https://github.com/VUIIS/dax/tree/main/docs\"\u003ehttps://github.com/VUIIS/dax/tree/main/docs\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eto get something like this:\n\u003ca href=\"https://dax.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003ehttps://dax.readthedocs.io/en/latest/\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-container\" class=\"anchor\" href=\"#building-the-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the container\u003c/h2\u003e\n\u003cp\u003eBe sure the Matlab code is newly compiled, see above. You can run\n\u003ccode\u003ematlab/check_for_compilation.sh\u003c/code\u003e first to make sure there\u0027s no source code\nnewer than the compiled executable.\u003c/p\u003e\n\u003cp\u003eThen from the root directory of the working copy of the repo, run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build \u0026lt;container_name\u0026gt;.simg Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eGood practice: before you build, create a release on github (if using github) or\nat least tag the commit you are about to build. Give the container a versioned\nname like \u003ccode\u003edemo-singularity-matlab-fsl_v1.0.0.simg\u003c/code\u003e that matches the repository\nname and release version/tag.\u003c/p\u003e\n\u003cp\u003eExternal binaries such as Matlab Runtime and FSL can be included by copying\nlocal copies into the container in the Singularity file\u0027s \u003ccode\u003e%files\u003c/code\u003e section. This\ntends to be a little faster when multiple builds are needed during debugging,\nor necessary for files that are not available to download, and this is what\u0027s\nbeing done in the example Singularity file. Alternatively, binaries or install\nfiles can be downloaded from their source at build time - there are some\ncommented-out sections in the Singularity file showing how that is done. (Thanks\n\u003ca href=\"https://github.com/praitayini\"\u003ehttps://github.com/praitayini\u003c/a\u003e for exploring this in detail)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-the-container\" class=\"anchor\" href=\"#running-the-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the container\u003c/h2\u003e\n\u003cp\u003eSee \u003ccode\u003etest_singularity_container.sh\u003c/code\u003e for an example run command and some\nimportant info.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-inputs\" class=\"anchor\" href=\"#inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs\u003c/h3\u003e\n\u003cp\u003ePaths to files are relative to the container.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e--t1_niigz A T1 image\n--seg_niigz Its corresponding segmentation from e.g. slant pipeline\n--diameter_mm Diameter of the hole to zero out, in mm (default 30)\n\n--project Labels from XNAT, used only to annotate the QA PDF\n--subject (default UNK_*)\n--session\n--scan\n\n--out_dir Where outputs will be stored (default /OUTPUTS)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-outputs\" class=\"anchor\" href=\"#outputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003ePDF/holed_image.pdf QA report\nHOLED_T1/holed_t1.nii.gz T1 image with a hole in it\nHOLED_SEG/holed_seg.nii.gz Segmentation with a hole in it\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1646920385.0
+ "updated_at": 1625430481.0
},
{
"data_format": 2,
- "description": "ENIGMA CHR DTI repository",
+ "description": "Singularity recipe for bat",
"filenames": [
- "singularity/Singularity.def"
+ "0.17.1/Singularity"
],
- "full_name": "kcho/ENIGMA_CHR_DTI",
- "latest_release": "example_dwi_data_light",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-enigma-chr-dti-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#enigma-chr-dti-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eENIGMA CHR DTI pipeline\u003c/h1\u003e\n\u003cp\u003eKevin Cho and Yoobin Kwak\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"mailto:kevincho@bwh.harvard.edu\"\u003ekevincho@bwh.harvard.edu\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"mailto:yoobinkwak@gmail.com\"\u003eyoobinkwak@gmail.com\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contents\" class=\"anchor\" aria-hidden=\"true\" href=\"#contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContents\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eIntroduction\u003c/li\u003e\n\u003cli\u003eCitation\u003c/li\u003e\n\u003cli\u003eInstallation\u003c/li\u003e\n\u003cli\u003eArranging data for the pipeline\u003c/li\u003e\n\u003cli\u003eRunning the ENIGMA CHR DTI Pipeline\u003c/li\u003e\n\u003cli\u003eSharing outputs to other teams\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003eENIGMA CHR DTI pipeline is a toolbox for analyzing diffusion weighted imaging (DWI) data developed for ENIGMA-CHR DTI project. The pipeline expects dicom files of a single DWI scan arranged in a required structure (decribed in \"Arranging data for the pipeline\") and automatically processes available data.\u003c/p\u003e\n\u003cp\u003eThe dicom files will be converted to a Nifti file, bval, and bvec file along with the BIDS sidecar json file. Then the following steps will be applied to each subject data.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eGibbs unring (FSL)\u003c/li\u003e\n\u003cli\u003eFSL Eddy (6.0.4)\u003c/li\u003e\n\u003cli\u003eTensor decomposition to create fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) maps.\u003c/li\u003e\n\u003cli\u003eSkeletonization of the FA, AD, MD and RD maps using PNL-TBSS.\u003c/li\u003e\n\u003cli\u003eExtraction of mean diffusion measures in the major JHU bundles.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo increase the homogeneity of the diffusion acquisition parameters within the site, the pipeline curates the following dicom tags from all data, and highlight in the report if there is any deviation in dicom tags within a site.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSeriesDescription\u003c/li\u003e\n\u003cli\u003eImageType\u003c/li\u003e\n\u003cli\u003eAcquisitionMatrix\u003c/li\u003e\n\u003cli\u003eDeviceSerialNumber\u003c/li\u003e\n\u003cli\u003eEchoTime\u003c/li\u003e\n\u003cli\u003eFlipAngle\u003c/li\u003e\n\u003cli\u003eInPlanePhaseEncodingDirection\u003c/li\u003e\n\u003cli\u003eMagneticFieldStrength\u003c/li\u003e\n\u003cli\u003eManufacturer\u003c/li\u003e\n\u003cli\u003eManufacturerModelName\u003c/li\u003e\n\u003cli\u003eProtocolName\u003c/li\u003e\n\u003cli\u003eRepetitionTime\u003c/li\u003e\n\u003cli\u003eSequenceName\u003c/li\u003e\n\u003cli\u003eSliceThickness\u003c/li\u003e\n\u003cli\u003eSoftwareVersions\u003c/li\u003e\n\u003cli\u003eSpacingBetweenSlices\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAlthough it\u0027s recommended to provide dicom data as the input to the pipeline, you can also provide diffusion files in the nifti format if your DWI data requires a specific dicom to nifti conversion or if the dicom files not available by some reason. You would need to provide DWI nifti file, bvector file, bvalue file in a structure that the pipeline expects. Pleaes make sure you are providing the raw nifti file without any preprocessing. If any of the three files is missing, the pipeline will raise an error. (See \u003ccode\u003eArranging data for the pipeline\u003c/code\u003e section.) Please let the study coordinator know your situation, and the study coordinate will guide you.\u003c/p\u003e\n\u003cp\u003eThe toolbox is deployed in a container, so as long as either Docker or Singularity is installed on the server, the toolbox should be functional regardless of the operating system.\nPlease note the pipeline does not support Apple Mac with M1 Chips yet, due to an issue with tensorflow installation on M1 Chip machines. Also, since this pipeline is specifically developed for ENIGMA-CHR DTI project, it does not support EPI distortion correction using reverse-encoding maps or field maps. If your data for ENIGMA-CHR project has multiple DWI series, blip-up / blip-down, fieldmaps, or other reverse-encoding diffusion scans, please reach out to the coordinating team.\u003c/p\u003e\n\u003cp\u003ePlease let the study coordinator know if you don\u0027t have powerful enough servers to process your diffusion data. The study coordinator will arrange a cloud server for you to run the pipeline.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\u003cp\u003eThis toolbox uses the following softwares. Please cite them if you use this pipeline in your study.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/rordenlab/dcm2niix\"\u003e\u003ccode\u003edcm2niix\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/pnlbwh/CNN-Diffusion-MRIBrain-Segmentation\"\u003eCNN based diffusion MRI brain segmentation tool\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://fsl.fmrib.ox.ac.uk/\" rel=\"nofollow\"\u003eFSL (and FSL unring)\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/ANTsX/ANTs\"\u003eANTs\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/pnlbwh/TBSS\"\u003ePNL TBSS\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/kcho/objPipe\"\u003e\u003ccode\u003eobjPipe\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/pnlbwh/eddy-squeeze\"\u003e\u003ccode\u003eeddy-squeeze\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/pnlbwh/nifti-snapshot\"\u003e\u003ccode\u003enifti-snapshot\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-with-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#with-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ewith Docker\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003eInstall and configure Docker Desktop\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.docker.com/products/docker-desktop/\" rel=\"nofollow\"\u003eDownload Docker Desktop\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003ewith at least 4 cores (12 cores preferably) and 4 GB RAM (16 GB preferably)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eDownload ENIGMA CHR DTI docker image.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eIn terminal or power-shell, type\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ docker pull kcho/enigma-chr-pipeline\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-with-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ewith Singularity\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity build enigma-chr-pipeline.simg docker://kcho/enigma-chr-pipeline\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\u003ca href=\"how_to_test_pipeline.md\"\u003eTest the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-arranging-data-for-the-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#arranging-data-for-the-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eArranging data for the pipeline\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-if-you-are-providing-dicom-files-to-the-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#if-you-are-providing-dicom-files-to-the-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIf you are providing dicom files to the pipeline\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e/Users/kc244/enigma_chr_data \u0026lt;- it could be somewhere else\n\u2514\u2500\u2500 sourcedata\n \u251c\u2500\u2500 subject_01\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 MR.1.3.12.2.1107.5.2.43.166239.2022042610335278017249630.dcm\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 MR.1.3.12.2.1107.5.2.43.166239.2022042610335278017249631.dcm\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 ...\n \u2502 \u2514\u2500\u2500 MR.1.3.12.2.1107.5.2.43.166239.2022042610431388254021154.dcm\n \u251c\u2500\u2500 subject_02\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 MR.1.3.12.2.1107.5.2.43.166239.2022042610335278017239630.dcm\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 MR.1.3.12.2.1107.5.2.43.166239.2022042610335278011723631.dcm\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 ...\n \u2502 \u2514\u2500\u2500 MR.1.3.12.2.1107.5.2.43.166239.202204261043138825403154.dcm\n \u2514\u2500\u2500 subject_XX\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-if-you-are-providing-nifti-files-to-the-pipeline-as-the-raw-input\" class=\"anchor\" aria-hidden=\"true\" href=\"#if-you-are-providing-nifti-files-to-the-pipeline-as-the-raw-input\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIf you are providing nifti files to the pipeline as the raw input\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e/Users/kc244/enigma_chr_data \u0026lt;- it could be somewhere else\n\u2514\u2500\u2500 rawdata\n \u00a0\u00a0 \u251c\u2500\u2500 subject_01\n \u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 subject_01.nii.gz\n \u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 subject_01.bvec\n \u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 subject_01.bval\n \u00a0\u00a0 \u251c\u2500\u2500 subject_02\n \u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 subject_02.nii.gz\n \u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 subject_02.bvec\n \u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 subject_02.bval\n \u00a0\u00a0 \u251c\u2500\u2500 ...\n \u00a0\u00a0 \u2514\u2500\u2500 subject_XX\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-the-enigma-chr-dti-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-the-enigma-chr-dti-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the ENIGMA CHR DTI Pipeline\u003c/h2\u003e\n\u003cp\u003eOnce you have your dicom files arranged for each subject, run following command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ enigma_chr_dir=/Users/kc244/enigma_chr_data # set this to your data location\n$ docker run -it -v ${enigma_chr_dir}:/data kcho/enigma-chr-pipeline\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor singularity,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ enigma_chr_dir=/Users/kc244/enigma_chr_data # set this to your data location\n$ singularity run -e -B ${enigma_chr_dir}:/data:rw enigma-chr-pipeline.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eThe pipeline is expected to take about 2~3 hours to process a single subject data.\u003c/strong\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-if-you-are-providing-nifti-data-to-the-pipeline-follow-the-steps-below\" class=\"anchor\" aria-hidden=\"true\" href=\"#if-you-are-providing-nifti-data-to-the-pipeline-follow-the-steps-below\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIf you are providing nifti data to the pipeline, follow the steps below.\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e$ enigma_chr_dir=/Users/kc244/enigma_chr_data # set this to your data location\n$ docker run -it \\\n -v ${enigma_chr_dir}:/data \\\n enigma_chr_pipeline xvfb-run -a python /opt/ENIGMA_CHR_DTI/scripts/enigma_chr_pipeline.py -b /data --nifti_input\n\n# for singularity\n$ singularity shell -e -B ${enigma_chr_dir}:/data \\\n enigma_chr_pipeline.simg xvfb-run -a python /opt/ENIGMA_CHR_DTI/scripts/enigma_chr_pipeline.py -b /data --nifti_input\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-sharing-outputs-to-other-teams\" class=\"anchor\" aria-hidden=\"true\" href=\"#sharing-outputs-to-other-teams\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSharing outputs to other teams\u003c/h2\u003e\n\u003cp\u003eRun the code below to collect and compress the files to share.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ docker run -it -v ${enigma_chr_dir}:/data kcho/enigma-chr-pipeline collect_outputs.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor singularity,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run -e -B ${enigma_chr_dir}:/data:rw enigma-chr-pipeline.simg collect_outputs.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHere is the list of files collected by \u003ccode\u003ecollect_outputs.py\u003c/code\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e/Users/kc244/enigma_chr_data\n derivatives/\n \u251c\u2500\u2500 eddy_qc\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 subject_01\n \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 eddy_summary.html\n \u2502\u00a0\u00a0 \u2514\u2500\u2500 subject_02\n \u2502\u00a0\u00a0 \u2514\u2500\u2500 eddy_summary.html\n \u251c\u2500\u2500 screenshots\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 subject_01\n \u2502\u00a0\u00a0 \u2514\u2500\u2500 subject_02\n \u251c\u2500\u2500 tbss\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 snapshots\n \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 ENIGMA\\ Template\\ FA\\ skeleton.jpg\n \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 ENIGMA\\ Template\\ FA.jpg\n \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 Mean\\ FA\\ skeleton.jpg\n \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 mean\\ FA.jpg\n \u2502\u00a0\u00a0 \u2514\u2500\u2500 stats\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u251c\u2500\u2500 AD_combined_roi.csv\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u251c\u2500\u2500 AD_combined_roi_avg.csv\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u251c\u2500\u2500 FA_combined_roi.csv\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u251c\u2500\u2500 FA_combined_roi_avg.csv\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u251c\u2500\u2500 MD_combined_roi.csv\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u251c\u2500\u2500 MD_combined_roi_avg.csv\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u251c\u2500\u2500 RD_combined_roi.csv\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u2514\u2500\u2500 RD_combined_roi_avg.csv\n \u2514\u2500\u2500 web_summary\n \u251c\u2500\u2500 Study.html\n \u251c\u2500\u2500 Study.pdf\n \u251c\u2500\u2500 subject_01\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 subject_01.html\n \u2502\u00a0\u00a0 \u2514\u2500\u2500 subject_01.pdf\n \u2514\u2500\u2500 subject_02\n \u251c\u2500\u2500 subject_02.html\n \u2514\u2500\u2500 subject_02.pdf\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-enter-into-the-image-shell\" class=\"anchor\" aria-hidden=\"true\" href=\"#enter-into-the-image-shell\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEnter into the image shell\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e$ enigma_chr_dir=/Users/kc244/enigma_chr_data # set this to your data location\n$ docker run -it \\\n -v ${enigma_chr_dir}:/data \\\n enigma_chr_pipeline /bin/bash\n\n# for singularity\n$ singularity shell -e -B ${enigma_chr_dir}:/data \\\n enigma_chr_pipeline.simg /bin/bash\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "icaoberg/singularity-bat",
+ "latest_release": "v0.17.1",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-bat\" class=\"anchor\" href=\"#singularity-bat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bat\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/7b7c397acc5b91b4c4cf7756015185fe3c5f700f70d256a212de51294a0cf673/68747470733a2f2f696d6775722e636f6d2f724773646e44652e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7b7c397acc5b91b4c4cf7756015185fe3c5f700f70d256a212de51294a0cf673/68747470733a2f2f696d6775722e636f6d2f724773646e44652e706e67\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sharkdp/bat\"\u003ebat\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebat\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bat/0.17.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modules/bat\u003c/code\u003e as \u003ccode\u003e0.17.1\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [],
- "updated_at": 1651669505.0
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1622870361.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "misc/releases/20.06/Singularity.20.06",
- "misc/releases/19.06/Singularity.19.06",
- "misc/releases/21.12/Singularity.21.12",
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/latest/Singularity"
+ "Singularity.def"
],
- "full_name": "silvansievers/pddl-symmetry-reduction",
+ "full_name": "granek/jupyter-MIC-2021",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"http://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttp://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-hidden=\"true\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2017 (MSVC 19.16) and 2019 (MSVC 19.28)\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2015, 2021 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-hidden=\"true\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-hts-jupyter-notebook-container\" class=\"anchor\" href=\"#hts-jupyter-notebook-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHTS Jupyter notebook container\u003c/h1\u003e\n\u003cp\u003eWe are offering a series of 6 workshops on biological assays and data analysis for HIV researchers.\nThis series is funded by an R25 grand from the National Institute of Allergies and Infectious Disease (NIAID).\nOur goal is to provide educational enrichment for HIV researchers on current assay technologies and the statistical and bioinformatic analysis techniques necessary to process such data.\u003c/p\u003e\n\u003cp\u003eThis is the source for the Docker container used to run the course Jupyter\nnotebooks.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-using-the-image\" class=\"anchor\" href=\"#using-the-image\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing the image\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-install-docker\" class=\"anchor\" href=\"#install-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall docker\u003c/h2\u003e\n\u003cp\u003eTo run a container on your local machine or laptop, download the docker program from \u003ca href=\"https://www.docker.com\" rel=\"nofollow\"\u003ehttps://www.docker.com\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-run-image-on-your-local-computer\" class=\"anchor\" href=\"#run-image-on-your-local-computer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun image on your local computer\u003c/h2\u003e\n\u003cp\u003eOnce you have the docker program installed, open the program (you should get a terminal screen with command line). Enter the command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull dukehtscourse/jupyter-hts-2019\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will pull down the course docker image from dockerhub. It may take a few minutes. Next, run the command to start a container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --name hts-course -v YOUR_DIRECTORY_WITH_COURSE_MATERIAL:/home/jovyan/work \\\n-d -p 127.0.0.1\\:9999\\:8888 \\\n-e PASSWORD=\"YOUR_CHOSEN_NOTEBOOK_PASSWORD\" \\\n-e NB_UID=1000 \\\n-t dukehtscourse/jupyter-hts-2019\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe most important parts of this verbiage are the \u003ccode\u003eYOUR_DIRECTORY_WITH_COURSE_MATERIALS\u003c/code\u003e and \u003ccode\u003eYOUR_CHOSEN_NOTEBOOK_PASSWORD\u003c/code\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eYOUR_DIRECTORY_WITH_COURSE_MATERIALS\u003c/code\u003e (Bind mounting): The directory name is the one you extracted your course materials into. So, if you put them in your home directory, it might look something like: \u003ccode\u003e-v /home/janice/HTS2019-notebooks:/home/jovyan/work\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eYOUR_CHOSEN_NOTEBOOK_PASSWORD\u003c/code\u003e: The password is whatever you want to use to password protect your notebook. Now, this command is running the notebook so that it is only \u0027seen\u0027 by your local computer - no one else on the internet can access it, and you cannot access it remotely, so the password is a bit of overkill. Use it anyway. An example might be: \u003ccode\u003e-e PASSWORD=\"Pssst_this_is_Secret\"\u003c/code\u003e except that this is a terrible password and you should follow standard rules of not using words, include a mix of capital and lowercase and special symbols. etc.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-d -p 127.0.0.1\\:9999\\:8888\u003c/code\u003e part of the command is telling docker to run the notebook so that it is only visible to the local machine. It is absolutely possible to run it as a server to be accessed across the web - but there are some security risks associated, so if you want to do this proceed with great caution and get help.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOf course, it would be better either configure HTTPS (see the options section below) or run an Nginx proxy in front of the container instance so you get https (encryption) instead of http.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-open-the-jupyter-in-your-browser\" class=\"anchor\" href=\"#open-the-jupyter-in-your-browser\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOpen the Jupyter in your browser\u003c/h3\u003e\n\u003cp\u003eOpen a browser and point it to \u003ca href=\"http://127.0.0.1:9999\" rel=\"nofollow\"\u003ehttp://127.0.0.1:9999\u003c/a\u003e\nYou should get to a Jupyter screen asking for a password. This is the password you created in the docker run command.\nNow, you should be able to run anything you like from the course. Depending on your laptop\u0027s resources (RAM, cores), this might be slow, so be aware and start by testing only one file (vs the entire course data set).\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-stopping-docker\" class=\"anchor\" href=\"#stopping-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStopping Docker\u003c/h3\u003e\n\u003cp\u003eThe container will continue running, even if you do not have Jupyter open in a web browser. If you don\u0027t plan to use it for a while, you might want to shut it down so it isn\u0027t using resources on your computer. Here are two ways to do that:\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-kitematic\" class=\"anchor\" href=\"#kitematic\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eKitematic\u003c/h4\u003e\n\u003cp\u003eIncluded in the \u003ca href=\"https://docs.docker.com/docker-for-mac/\" rel=\"nofollow\"\u003eDocker for Mac\u003c/a\u003e and the \u003ca href=\"https://docs.docker.com/docker-for-windows/\" rel=\"nofollow\"\u003eDocker for Windows\u003c/a\u003e installations.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-commandline\" class=\"anchor\" href=\"#commandline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCommandline\u003c/h4\u003e\n\u003cp\u003eYou may want to familiarize yourself with the following Docker commands.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003edocker stop\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003edocker rm\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003edocker ps -a\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003edocker images\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003edocker rmi\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-windows-note\" class=\"anchor\" href=\"#windows-note\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWindows Note\u003c/h3\u003e\n\u003cp\u003eThese instructions have not been tested in a Windows environment. If you have problems with them, please give us feedback\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-run-image-on-a-server\" class=\"anchor\" href=\"#run-image-on-a-server\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun image on a server\u003c/h2\u003e\n\u003cp\u003eTo run on a remote server you will want to use a slightly different command from above, because you \u003cem\u003ewill need to connect remotely\u003c/em\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --name hts-course \\\n-v YOUR_DIRECTORY_WITH_COURSE_MATERIAL:/home/jovyan/work \\\n-d -p 8888:8888 \\\n-e USE_HTTPS=\"yes\" \\\n-e PASSWORD=\"YOUR_CHOSEN_NOTEBOOK_PASSWORD\" \\\n-e NB_UID=1000 \\\n-t dukehtscourse/jupyter-hts-2019\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-options\" class=\"anchor\" href=\"#options\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOptions\u003c/h2\u003e\n\u003cp\u003eYou may customize the execution of the Docker container and the Notebook server it contains with the following optional arguments.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e-e PASSWORD=\"YOURPASS\"\u003c/code\u003e - Configures Jupyter Notebook to require the given password. Should be conbined with \u003ccode\u003eUSE_HTTPS\u003c/code\u003e on untrusted networks.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-e USE_HTTPS=yes\u003c/code\u003e - Configures Jupyter Notebook to accept encrypted HTTPS connections. If a \u003ccode\u003epem\u003c/code\u003e file containing a SSL certificate and key is not provided (see below), the container will generate a self-signed certificate for you.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e(v4.0.x)\u003c/strong\u003e \u003ccode\u003e-e NB_UID=1000\u003c/code\u003e - Specify the uid of the \u003ccode\u003ejovyan\u003c/code\u003e user. Useful to mount host volumes with specific file ownership.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-e GRANT_SUDO=yes\u003c/code\u003e - Gives the \u003ccode\u003ejovyan\u003c/code\u003e user passwordless \u003ccode\u003esudo\u003c/code\u003e capability. Useful for installing OS packages. \u003cstrong\u003eYou should only enable \u003ccode\u003esudo\u003c/code\u003e if you trust the user or if the container is running on an isolated host.\u003c/strong\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-v /some/host/folder/for/work:/home/jovyan/work\u003c/code\u003e - Host mounts the default working directory on the host to preserve work even when the container is destroyed and recreated (e.g., during an upgrade).\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e(v3.2.x)\u003c/strong\u003e \u003ccode\u003e-v /some/host/folder/for/server.pem:/home/jovyan/.ipython/profile_default/security/notebook.pem\u003c/code\u003e - Mounts a SSL certificate plus key for \u003ccode\u003eUSE_HTTPS\u003c/code\u003e. Useful if you have a real certificate for the domain under which you are running the Notebook server.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e(v4.0.x)\u003c/strong\u003e \u003ccode\u003e-v /some/host/folder/for/server.pem:/home/jovyan/.local/share/jupyter/notebook.pem\u003c/code\u003e - Mounts a SSL certificate plus key for \u003ccode\u003eUSE_HTTPS\u003c/code\u003e. Useful if you have a real certificate for the domain under which you are running the Notebook server.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-e INTERFACE=10.10.10.10\u003c/code\u003e - Configures Jupyter Notebook to listen on the given interface. Defaults to \u0027*\u0027, all interfaces, which is appropriate when running using default bridged Docker networking. When using Docker\u0027s \u003ccode\u003e--net=host\u003c/code\u003e, you may wish to use this option to specify a particular network interface.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-e PORT=8888\u003c/code\u003e - Configures Jupyter Notebook to listen on the given port. Defaults to 8888, which is the port exposed within the Dockerfile for the image. When using Docker\u0027s \u003ccode\u003e--net=host\u003c/code\u003e, you may wish to use this option to specify a particular port.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-the-course-image-with-singularity\" class=\"anchor\" href=\"#running-the-course-image-with-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the Course Image with Singularity\u003c/h2\u003e\n\u003cp\u003eDocker requires root permissions to run, so you are unlikely to be able to run Docker on a computer that you are not fully in control of. As an alternative you can run the course image with \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e, another container system. Singularity is similar to Docker, and can run Docker images, but you do not need special permissions to run Singularity images \u003cem\u003eor\u003c/em\u003e Docker images with Singularity (as long as Singularity is actually installed on the computer).\u003c/p\u003e\n\u003cp\u003eThe following command uses Singularity to start up a container from the course Jupyter image.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec docker://dukehtscourse/jupyter-hts-2019 /usr/local/bin/start.sh jupyter notebook --ip=0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-running-the-course-image-on-a-slurm-cluster\" class=\"anchor\" href=\"#running-the-course-image-on-a-slurm-cluster\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the Course Image on a SLURM cluster\u003c/h3\u003e\n\u003cp\u003eWe will use the example of the Duke Computer Cluster, but these instructions should be easily adaptable to other clusters\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eFrom your computer run this to connect to DCC:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003essh NetID@dcc-login-03.oit.duke.edu\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eOnce you are connected run this to start a tmux session:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003etmux new -s jupyter\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eOnce you have started a tmux session you can start up Jupyter with this command:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esrun singularity exec docker://dukehtscourse/jupyter-hts-2019 /usr/local/bin/start.sh jupyter notebook --ip=0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003cblockquote\u003e\n\u003cp\u003eNote: the first time you run this, it might take a VERY long time to download the Docker image and build the Singularity image from it\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eRunning this command will print a bunch of stuff. You can ignore everything except the last two lines, which will say something like:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ehttp://dcc-chsi-01:8889/?token=08172007896ad29bb5fbd92f6f3f516a8b2f7303ed7f1df3\nor http://127.0.0.1:8889/?token=08172007896ad29bb5fbd92f6f3f516a8b2f7303ed7f1df3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou need this information for the next few steps. For the next step you need the \u201cdcc-chsi-01:8889\u201d part.\n\u201cdcc-chsi-01\u201d is the compute node that Jupyter is running on and \u201c8889\u201d is the port it is listening on. You may get a different value every time you start the container.\u003c/p\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eYou want to run the following command in another terminal on your computer to set up port forwarding.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003essh -L PORT:NODE.rc.duke.edu:PORT NetID@dcc-login-03.oit.duke.edu\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIn this command you want to replace \u201cPORT\u201d with the value you got for port from the srun command and replace \u201cNODE\u201d with the compute node that was printed by the srun command. So for the example above, the ssh port forwarding command would be:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003essh -L 8889:dcc-chsi-01.rc.duke.edu:8889 NetID@dcc-login-03.oit.duke.edu\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eNow you can put the last line that the srun command printed in your web browser and it should open your Jupyter instance running on DCC.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-notes\" class=\"anchor\" href=\"#notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eThe Jupyter session keeps running until you explicitly shut it down. If the port forwarding SSH connection drops you will need to restart SSH with the same command, but you don\u2019t need to restart Jupyter.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThere are two ways to explicitly shut down Jupyter:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eWithin Jupyter, click on the \u003cem\u003eJupyter\u003c/em\u003e logo in the top left to go to the main Jupyter page, then click \"Quit\" in the top right\u003c/li\u003e\n\u003cli\u003eDo control-C twice in the terminal where you started Jupyter. If this connection dropped, you can reconnect to it with:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003essh NetID@dcc-login-03.oit.duke.edu\ntmux a -t jupyter\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAfter shutting down the Jupyter session you can type \u003ccode\u003eexit\u003c/code\u003e at the terminal to close the tmux session.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eIf you need more memory or more cpus you can use the \u003ccode\u003e--mem\u003c/code\u003e and/or \u003ccode\u003e--cpus-per-task\u003c/code\u003e arguments to in the \u201csrun\u201d, for example to request 4 CPUs and 10GB of RAM:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esrun --cpus-per-task=4 --mem=10G singularity exec docker://dukehtscourse/jupyter-hts-2019 /usr/local/bin/start.sh jupyter notebook --ip=0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eIf you have high priority access to a partition you can request that partition be used with the \u003ccode\u003e-A\u003c/code\u003e and \u003ccode\u003e-p\u003c/code\u003e arguments to \u003ccode\u003esrun\u003c/code\u003e:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esrun -A chsi -p chsi singularity exec docker://dukehtscourse/jupyter-hts-2019 /usr/local/bin/start.sh jupyter notebook --ip=0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eYou might want to access files that are outside of your home directory. Within a singularity container your access to the host computer is\nlimited: by default, from inside the container you can only access your home directory. If you want to access directories that are outside your home\ndirectory, you have to tell \u003cem\u003eSingularity\u003c/em\u003e when you start the container with the \u003ccode\u003e--bind\u003c/code\u003e command line argument. For example:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esrun singularity --bind /work/josh:/work/josh exec docker://dukehtscourse/jupyter-hts-2019 /usr/local/bin/start.sh jupyter notebook --ip=0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003eYou can combine several of these command line flags:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esrun -A chsi -p chsi --cpus-per-task=4 --mem=10G singularity exec --bind /work/josh:/work/josh docker://dukehtscourse/jupyter-hts-2019 /usr/local/bin/start.sh jupyter notebook --ip=0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003eIt is strongly recommended to set the \u003ccode\u003eSINGULARITY_CACHEDIR\u003c/code\u003e environment variables in your .bashrc or when running \u003ccode\u003esrun\u003c/code\u003e. This environment variable specifies where the Docker image (and the Singularity image built from it) are saved. If this variable is not specified, singularity will cache images in \u003ccode\u003e$HOME/.singularity/cache\u003c/code\u003e, which can fill up quickly. This is discussed in the \u003ca href=\"https://sylabs.io/guides/3.7/user-guide/build_env.html#cache-folders\" rel=\"nofollow\"\u003eSingularity Documentation\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eexport SINGULARITY_CACHEDIR=\"/work/josh/singularity_cache\"; srun -A chsi -p chsi --cpus-per-task=4 --mem=10G singularity exec --bind /work/josh:/work/josh docker://dukehtscourse/jupyter-hts-2019 /usr/local/bin/start.sh jupyter notebook --ip=0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-install-singularity\" class=\"anchor\" href=\"#install-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall Singularity\u003c/h3\u003e\n\u003cp\u003eHere are instructions for installing:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://sylabs.io/guides/2.6/user-guide/quick_start.html#quick-installation-steps\" rel=\"nofollow\"\u003eSingularity version 2.6\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://sylabs.io/guides/3.2/user-guide/quick_start.html#quick-installation-steps\" rel=\"nofollow\"\u003eSingularity version 3.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://sylabs.io/singularity-desktop-macos/\" rel=\"nofollow\"\u003eSingularity Desktop for macOS (Alpha Preview)\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1657796847.0
+ "updated_at": 1623704048.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "2.2.1/Singularity"
],
- "full_name": "ddbj/singularity_omegafold",
+ "full_name": "icaoberg/singularity-hisat2",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_omegafold\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity_omegafold\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_omegafold\u003c/h1\u003e\n\u003cp\u003eUbuntu 20.04\u306bomegafold v1.1.0\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305fsingularity image\u3092\u4f5c\u6210\u3059\u308b\u305f\u3081\u306eSingularity definition file\u3067\u3059\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-image\u306e\u30d3\u30eb\u30c9\" class=\"anchor\" aria-hidden=\"true\" href=\"#image\u306e\u30d3\u30eb\u30c9\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eimage\u306e\u30d3\u30eb\u30c9\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity build omegafold-1.1.0.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u907a\u4f1d\u7814\u30b9\u30d1\u30b3\u30f3-login_gpuq\u3067\u306e\u5b9f\u884c\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u907a\u4f1d\u7814\u30b9\u30d1\u30b3\u30f3-login_gpuq\u3067\u306e\u5b9f\u884c\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u907a\u4f1d\u7814\u30b9\u30d1\u30b3\u30f3 login_gpu.q\u3067\u306e\u5b9f\u884c\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv omegafold-1.1.0.sif python3 /opt/OmegaFold/main.py input.fasta output_dir\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u30ab\u30ec\u30f3\u30c8\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b output_dir \u304c\u4f5c\u6210\u3055\u308c\u3001\u305d\u306e\u4e2d\u306b\u7d50\u679c\u304c\u51fa\u529b\u3055\u308c\u307e\u3059\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u907a\u4f1d\u7814\u30b9\u30d1\u30b3\u30f3-intelq\u3067\u306e\u5b9f\u884c\u7528\u30b8\u30e7\u30d6\u30b9\u30af\u30ea\u30d7\u30c8\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u907a\u4f1d\u7814\u30b9\u30d1\u30b3\u30f3-intelq\u3067\u306e\u5b9f\u884c\u7528\u30b8\u30e7\u30d6\u30b9\u30af\u30ea\u30d7\u30c8\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u907a\u4f1d\u7814\u30b9\u30d1\u30b3\u30f3 intel.q\u3067\u306e\u5b9f\u884c\u7528\u30b8\u30e7\u30d6\u30b9\u30af\u30ea\u30d7\u30c8\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\n#$ -S /bin/sh\n#$ -cwd\n#$ -l s_vmem=2G\n#$ -l mem_req=2G\n#$ -l intel\n#$ -pe def_slot 16\nN=16\nsingularity exec /home/y-okuda/singularity/omegafold/omegafold-1.1.0.sif \\\nsh -c \"\\\nexport OMP_NUM_THREADS=${N}; \\\npython3 /opt/OmegaFold/main.py \\\n--device cpu \\\n/home/y-okuda/singularity/omegafold/input.fasta \\\n/home/y-okuda/singularity/omegafold/output_dir \\\n\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eN\u306b\u8a2d\u5b9a\u3057\u305f\u6570\u306eCPU\u30b3\u30a2\u3092\u4f7f\u7528\u3057\u307e\u3059\u3002\u540c\u3058\u5024\u3092 -pe def_slot \u306b\u3082\u8a2d\u5b9a\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-hisat2/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hisat2/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ea61f9228ca14a66e58889a560447e0b7c8ba73ddbaa594055242ace96eb0a84/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ea61f9228ca14a66e58889a560447e0b7c8ba73ddbaa594055242ace96eb0a84/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/4796300b08f76b423ee0574c15e8bd8ad15b0a389a36fd3f58549b8bb5df8690/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4796300b08f76b423ee0574c15e8bd8ad15b0a389a36fd3f58549b8bb5df8690/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/25eeccddaeb5bf9a3f7053b646f9b7bf540d33b801c371db1850d745da46fc95/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/25eeccddaeb5bf9a3f7053b646f9b7bf540d33b801c371db1850d745da46fc95/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f14a5cb988478f36746bb17a364f669ee4d02a32a6f6fddfbccaff9dc50a8379/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f14a5cb988478f36746bb17a364f669ee4d02a32a6f6fddfbccaff9dc50a8379/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-hisat\" class=\"anchor\" href=\"#singularity-hisat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-hisat\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://daehwankimlab.github.io/hisat2/\" rel=\"nofollow\"\u003ehisat2\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the scripts \u003ccode\u003ehisat2*\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hisat2/2.2.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hisat2\u003c/code\u003e as \u003ccode\u003e2.2.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-singularity-definition-file\" class=\"anchor\" href=\"#building-the-image-using-the-singularity-definition-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the Singularity definition file\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1661924246.0
+ "updated_at": 1624060173.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe for graphviz",
"filenames": [
- "Singularity.def"
+ "2.44.0/Singularity"
],
- "full_name": "roitberg-group/lammps-ani",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-lammps-ani\" class=\"anchor\" aria-hidden=\"true\" href=\"#lammps-ani\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLAMMPS-ANI\u003c/h1\u003e\n\u003cp\u003eA plugin to run torchani on LAMMPS.\u003cbr\u003e\nOn hipergator, the compiled program and a working example script could be found at \u003ccode\u003e/blue/roitberg/apps/lammps-ani/examples/water/submit.sh\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requirement\" class=\"anchor\" aria-hidden=\"true\" href=\"#requirement\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirement\u003c/h2\u003e\n\u003cp\u003eRun an interactive session\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esrun --qos=roitberg --account=roitberg --nodes=1 --ntasks=2 --cpus-per-task=2 --mem=20gb --gres=gpu:2 --partition=hpg-ai -t 10:00:00 --pty /bin/bash -i\nmodule load cuda/11.4.3 gcc/9.3.0 openmpi/4.0.5 cmake/3.21.3 git/2.30.1 singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003epytorch and cudnn\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge\nconda install -c conda-forge cudnn=8.3.2\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-singularity--docker-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity--docker-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity \u0026amp; Docker Container\u003c/h2\u003e\n\u003cp\u003eYou could use the pre-built \u003ca href=\"https://github.com/roitberg-group/lammps-ani/pkgs/container/lammps-ani\"\u003edocker container\u003c/a\u003e to avoid compiling the program by yourself.\u003c/p\u003e\n\u003cp\u003eSome HPCs provide Singularity instead of Docker. The following shows the instruction for Singularity usage:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone --recursive git@github.com:roitberg-group/lammps-ani.git\nsingularity pull -F docker://ghcr.io/roitberg-group/lammps-ani:master\nmkdir -p \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/singularity-home\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e exec into container\u003c/span\u003e\nSINGULARITYENV_CUDA_VISIBLE_DEVICES=\u003cspan class=\"pl-smi\"\u003e$CUDA_VISIBLE_DEVICES\u003c/span\u003e singularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e --cleanenv -H \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/singularity-home:/home --nv lammps-ani_master.sif /bin/bash\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e test\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e lammps-ani\nnvidia-smi \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e external/torchani_sandbox \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e python setup.py install --ext --user \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e ../../ \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e tests/ \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e python save_ani.py \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e ./test_all.sh\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-hidden=\"true\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./build.sh\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-example\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-example\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun example\u003c/h2\u003e\n\u003cp\u003emake sure \u003ccode\u003eLAMMPS_PLUGIN_PATH\u003c/code\u003e and \u003ccode\u003eLAMMPS_ROOT\u003c/code\u003e are set correctly\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport LAMMPS_PLUGIN_PATH=/blue/roitberg/apps/lammps-ani/build/\ncd examples/water/\nmpirun -np 8 ${LAMMPS_ROOT}/build/lmp_mpi -in in.lammps\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "icaoberg/singularity-graphviz",
+ "latest_release": "v2.44.0",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-graphviz\" class=\"anchor\" href=\"#singularity-graphviz\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-graphviz\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/960789693fa68a8f442f9c6cc7d6a117639f1a792ec84c96648ad4764c385fcf/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f656e2f342f34382f477261706876697a4c6f676f2e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/960789693fa68a8f442f9c6cc7d6a117639f1a792ec84c96648ad4764c385fcf/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f656e2f342f34382f477261706876697a4c6f676f2e706e67\" alt=\"Logo\" data-canonical-src=\"https://upload.wikimedia.org/wikipedia/en/4/48/GraphvizLogo.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://graphviz.org/\" rel=\"nofollow\"\u003egraphviz \u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003egraphviz \u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/graphviz/2.44.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modules/graphviz \u003c/code\u003e as \u003ccode\u003e 2.44.0\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [],
- "updated_at": 1649451939.0
+ "subscribers_count": 1,
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1622859227.0
},
{
"data_format": 2,
- "description": "Use SNP genotype information pulled from single cell RNA-seq data to predict ancestries",
+ "description": "Singularity recipe for dust",
"filenames": [
- "Singularity.ancestry_prediction_scRNAseq"
+ "0.5.4/Singularity"
],
- "full_name": "powellgenomicslab/ancestry_prediction_scRNAseq",
+ "full_name": "icaoberg/singularity-dust",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-ancestry_prediction_scrnaseq\" class=\"anchor\" aria-hidden=\"true\" href=\"#ancestry_prediction_scrnaseq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eancestry_prediction_scRNAseq\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-dust\" class=\"anchor\" href=\"#singularity-dust\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-dust\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/bootandy/dust/raw/master/media/snap.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/bootandy/dust/raw/master/media/snap.png\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/bootandy/dust\"\u003edust\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003edust\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/dust/0.5.4\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/dust\u003c/code\u003e as \u003ccode\u003e0.5.4\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [],
- "updated_at": 1661089200.0
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1622860644.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe for hyperfine",
"filenames": [
- "program/HiC-Pro_3.1.0/Singularity"
+ "1.11.0/Singularity"
],
- "full_name": "hermanzhaozzzz/snakepipes_Hi-C",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-snakepipes_hi-c\" class=\"anchor\" aria-hidden=\"true\" href=\"#snakepipes_hi-c\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esnakepipes_Hi-C\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003e\u987b\u77e5\u003c/strong\u003e\uff1a\u672c\u4ed3\u5e93\u8fd8\u5728\u6784\u5efa\u4e2d\uff0c\u6682\u65f6\u53ea\u4f5c\u53c2\u8003\uff01\uff01\u003c/p\u003e\n\u003cp\u003e\u53c2\u8003\u548c\u5f15\u7528\u4e86\u4e00\u4e9b\u003ca href=\"https://github.com/nservant/HiC-Pro\"\u003eHiC Pro\u003c/a\u003e\u7684\u4ee3\u7801\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u73af\u5883\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u73af\u5883\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u73af\u5883\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda install python r-base bowtie2 samtools iced r-ggplot2 r-rcolorbrewer\nconda install -c bioconda java-jdk hicexplorer\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u6211\u7528\u7684\u7248\u672c\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e python=3.9.13\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e R=4.0.5\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e bowtie2=2.4.5\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e samtools=1.15.1\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e iced=0.5.10\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e java-jdk=1.8 # java openjdk version \"1.8.0_312\"\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e hicexplorer=3.7.2\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u7528\u6cd5\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u7528\u6cd5\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u7528\u6cd5\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-0-\u6d4b\u5e8f\u8d28\u91cf\u63a7\u5236\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-0-\u6d4b\u5e8f\u8d28\u91cf\u63a7\u5236\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003estep 0 \u6d4b\u5e8f\u8d28\u91cf\u63a7\u5236\u003c/h3\u003e\n\u003cp\u003e\u4f7f\u7528 \u003ca href=\"https://github.com/hermanzhaozzzz/snakepipes_fastqc-multiqc\"\u003esnakepipes_fastqc-multiqc\u003c/a\u003e\u8fdb\u884c\u8d28\u91cf\u63a7\u5236\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-1-\u8fd0\u884csnakemake-pipeline\u751f\u6210hi-c-contact-matrix\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-1-\u8fd0\u884csnakemake-pipeline\u751f\u6210hi-c-contact-matrix\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003estep 1 \u8fd0\u884cSnakemake Pipeline\uff0c\u751f\u6210Hi-C contact matrix\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cstrong\u003e\u56de\u8d34Hi-C reads\u4ee5\u53ca\u751f\u6210RAW\u77e9\u9635ICE\u6821\u6b63\u77e9\u9635\u003c/strong\u003e\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003evalidPairs convert to .hic file(Juicer)\u003c/strong\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e HiC\ngit clone https://github.com/hermanzhaozzzz/snakepipes_fastqc-multiqc.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e snakepipes_fastqc-multiqc\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e then\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e use jupyterlab or runipy to run step01_generate_samples.ipynb\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e get samples.json and check it\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e then\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e dry run, rm -n to run pipeline\u003c/span\u003e\nsnakemake -pr -j 8 -s step02_run_mapping_and_generate_matrix.py -n\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e output as below\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e HiC|\u21d2 tree . -L 1\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e .\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 bam\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 fastq\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 hic_file\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 matrix\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 qc\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 quality_checks\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 snakepipes_fastqc-multiqc\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 snakepipes_Hi-C\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 temp_files\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u2514\u2500\u2500 valid_pairs\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-2-convert-validpairs-to-juicer-hic\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-2-convert-validpairs-to-juicer-hic\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003estep 2 Convert ValidPairs to Juicer .hic\u00b6\u003c/h3\u003e\n",
+ "full_name": "icaoberg/singularity-hyperfine",
+ "latest_release": "v1.11.0",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-hyperfine\" class=\"anchor\" href=\"#singularity-hyperfine\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-hyperfine\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sharkdp/hyperfine\"\u003ehyperfine\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ehyperfine\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hyperfine/1.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hyperfine\u003c/code\u003e as \u003ccode\u003e1.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [],
- "updated_at": 1658684345.0
- },
- {
- "data_format": 2,
- "description": "Singularity recipe files for DeepVariant (https://github.com/google/deepvariant)",
- "filenames": [
- "Singularity.1.0.0",
- "Singularity",
- "Singularity.1.4.0-gpu",
- "Singularity.1.4.0"
+ "topics": [
+ "singularity",
+ "utilities"
],
- "full_name": "powerPlant/deepvariant-srf",
- "latest_release": null,
- "readme": "\u003ch2\u003e\u003ca id=\"user-content-singularity-recipe-files-for-deepvariant\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-recipe-files-for-deepvariant\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity recipe files for Deepvariant\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/google/deepvariant\"\u003ehttps://github.com/google/deepvariant\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eGenerate symlinks for executables\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec deepvariant.1.4.0.sif find /opt/deepvariant/bin -type f -executable -printf \"%f\\n\" | xargs -L1 ln -s deepvariant.1.4.0.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-gpu-support\" class=\"anchor\" aria-hidden=\"true\" href=\"#gpu-support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGPU support\u003c/h2\u003e\n\u003cp\u003eSet \u003ccode\u003eSINGULARITY_NV=true\u003c/code\u003e to enable GPU support where required. Useful in environment modules, like,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Required to enable GPU\nsetenv SINGULARITY_NV true\n\u003c/code\u003e\u003c/pre\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 0,
- "topics": [],
- "updated_at": 1657769856.0
+ "updated_at": 1624059711.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe for methylpy",
"filenames": [
- "Singularity"
+ "1.4.3/Singularity"
],
- "full_name": "baxpr/makerois-PMAT-fs",
- "latest_release": "v1.0.0",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-create-study-specific-roi-image-in-mni-space\" class=\"anchor\" aria-hidden=\"true\" href=\"#create-study-specific-roi-image-in-mni-space\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreate study-specific ROI image in MNI space\u003c/h1\u003e\n\u003cp\u003ePMAT resting state connectivity study. Freesurfer-based ROIs for followup analysis.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-inputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs:\u003c/h2\u003e\n\u003cp\u003eAll should be matched to the same T1 image.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eT1 image in atlas space (typically BIAS_NORM resource of cat12 assessor)\u003c/li\u003e\n\u003cli\u003eDeformation from T1 subject space to atlas space (typically DEF_FWD resource of cat12 assessor)\u003c/li\u003e\n\u003cli\u003eSUBJECT directory of Freesurfer output (typically SUBJECT resource of freesurfer_dev assessor)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003erois_PMAT_fs.nii.gz Region of interest image\nrois_PMAT_fs-labels.csv Region labels and volumes\nmakerois-PMAT-fs.pdf Visual report of final ROI image\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-regions-of-interest\" class=\"anchor\" aria-hidden=\"true\" href=\"#regions-of-interest\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRegions of interest\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-visual-regions-subject-space-warped\" class=\"anchor\" aria-hidden=\"true\" href=\"#visual-regions-subject-space-warped\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVisual regions (Subject space, warped)\u003c/h3\u003e\n\u003cp\u003eGenerated by Freesurfer 6. Region indices in \u003ccode\u003esrc/rois-visual-a2009s.csv\u003c/code\u003e. Method: \u003cem\u003eBruce Fischl, Andre van der Kouwe, Christophe Destrieux, Eric Halgren, Florent Segonne, David H. Salat, Evelina Busa, Larry J. Seidman, Jill Goldstein, David Kennedy, Verne Caviness, Nikos Makris, Bruce Rosen, and Anders M. Dale. Automatically Parcellating the Human Cerebral Cortex. Cerebral Cortex January 2004; 14:11-22.\u003c/em\u003e\u003c/p\u003e\n",
+ "full_name": "icaoberg/singularity-methylpy",
+ "latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-hyperfine\" class=\"anchor\" href=\"#singularity-hyperfine\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-hyperfine\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sharkdp/hyperfine\"\u003ehyperfine\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ehyperfine\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hyperfine/1.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hyperfine\u003c/code\u003e as \u003ccode\u003e1.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1658942371.0
+ "updated_at": 1622730662.0
},
{
"data_format": 2,
- "description": "\u62ff\u6765\u505a\u6027\u80fd\u4f18\u5316...fork from https://github.com/ot4f/stgcn_gan",
+ "description": "Singularity recipe for ABySS",
"filenames": [
- "Singularity"
+ "2.1.5/Singularity"
],
- "full_name": "asifreal/stgcn_gan",
+ "full_name": "icaoberg/singularity-abyss",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-stgcn_gan\" class=\"anchor\" aria-hidden=\"true\" href=\"#stgcn_gan\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003estgcn_gan\u003c/h1\u003e\n\u003cp\u003eTraining STGCN with WGAN\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-hyperfine\" class=\"anchor\" href=\"#singularity-hyperfine\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-hyperfine\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sharkdp/hyperfine\"\u003ehyperfine\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ehyperfine\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hyperfine/1.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hyperfine\u003c/code\u003e as \u003ccode\u003e1.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1658914223.0
+ "updated_at": 1622730467.0
},
{
"data_format": 2,
- "description": "Script allowing to convert a NIfTI file with ROIs to the DICOM SEG format.",
+ "description": "Singularity recipe for shellcheck",
"filenames": [
- "Singularity.nifti-to-seg"
+ "0.5.0/Singularity"
],
- "full_name": "roger-schaer/nifti-to-seg",
+ "full_name": "icaoberg/singularity-shellcheck",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-nifti-to-seg-converter\" class=\"anchor\" aria-hidden=\"true\" href=\"#nifti-to-seg-converter\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNIfTI to SEG Converter\u003c/h1\u003e\n\u003cp\u003eThis project allows you to convert a NIfTI file containing\none or more non-overlapping regions-of-interest (ROIs)\ninto the DICOM Segmentation (SEG) format.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-hidden=\"true\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003cp\u003eThe following instructions will help you to perform your\nfirst NIfTI to SEG conversion.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h3\u003e\n\u003cp\u003eYou can either run the project directly with Python, or\nuse Docker instead. If you want to run it directly with\nPython, you need to install the dependencies listed in\nrequirements.txt:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enumpy\ngit+https://github.com/roger-schaer/pydicom-seg.git#egg=pydicom-seg\nSimpleITK\npalettable\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-general-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#general-usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGeneral usage\u003c/h3\u003e\n\u003cp\u003eThe script expects the following arguments:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e-i, --dicom_input\u003c/code\u003e : The path of the folder with the\noriginal DICOM images (from which ROIs were extracted)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-n, --nifti_roi\u003c/code\u003e : The path of the NIfTI file containing\nthe ROI(s) to convert to DICOM SEG\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-o, --output_seg\u003c/code\u003e : The path where the created DICOM SEG\nfile should be saved\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-l, --label_map\u003c/code\u003e : \u003cem\u003e(OPTIONAL)\u003c/em\u003e The path to a CSV file containing\npairs of \u003ccode\u003e\u0026lt;label_id\u0026gt;,\u0026lt;label_name\u0026gt;\u003c/code\u003e entries\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-d, --match-orientation\u003c/code\u003e : \u003cem\u003e(OPTIONAL)\u003c/em\u003e No value;\npresence of argument indicates that orientation of NIfTI file will be matched to DICOM images\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-s, --match-size\u003c/code\u003e : \u003cem\u003e(OPTIONAL)\u003c/em\u003e No value;\npresence of argument indicates that size of NIfTI file will be matched to DICOM images.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo execute the script, run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython nifti_to_seg.py -i /path/to/dicom/images -n /path/to/nifti.nii -o /path/to/seg.dcm\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhen the script is executed, it will analyze the provided\nNIfTI file to identify the various ROIs saved within. This\nis done by detecting the \u003cstrong\u003eunique\u003c/strong\u003e pixel values present in\nthe image.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-without-a-label-map-file-manual-label-name-entry\" class=\"anchor\" aria-hidden=\"true\" href=\"#without-a-label-map-file-manual-label-name-entry\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWithout a label map file (manual label name entry)\u003c/h4\u003e\n\u003cp\u003eIf you have not provided a label map file path, you will then\nbe prompted to map each of these values to a string describing\nthe content of the associated ROI. To know which pixel value\ncorresponds to which ROI, you may need to refer to the software\nthat generated the NIfTI file (e.g. ITK-SNAP, which uses label\nnumbers starting from 1).\u003c/p\u003e\n\u003cp\u003eThe output looks like this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFound X regions in the NIfTI file, please input a name for each of them.\n(1/X) - Please insert a name for the region with the assigned number N: ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce the names have been input, the SEG file will be\ngenerated and saved at the path provided in the \u003ccode\u003e-o\u003c/code\u003e\nargument.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-with-a-label-map-file-bulk-processing\" class=\"anchor\" aria-hidden=\"true\" href=\"#with-a-label-map-file-bulk-processing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWith a label map file (bulk processing)\u003c/h4\u003e\n\u003cp\u003eInstead of inputting the label mappings manually, you can also provide\nthe \u003ccode\u003e-l\u003c/code\u003e / \u003ccode\u003e--label_map\u003c/code\u003e parameter pointing to a CSV file containing\npairs of \u003ccode\u003e\u0026lt;label_id\u0026gt;,\u0026lt;label_name\u0026gt;\u003c/code\u003e entries.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNOTE :\u003c/strong\u003e This methods requires you to know in advance the existing\npixel values in the NIfTI segmentation file. Only exhaustive files\ncontaining a label for each identified pixel value are accepted.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage-with-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage-with-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage with Docker\u003c/h2\u003e\n\u003cp\u003eTo run the script using docker, use the following syntax:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --rm -it \\\n-v /path/to/data/on/host:/data \\\nmedgift/nifti-to-seg:latest \\\n--dicom_input=/data/dicom_folder \\\n--nifti_roi=/data/seg.nii \\\n--output_seg=/data/seg.dcm \\\n--label_map=/data/labels.csv (OPTIONAL)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe parameters are the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--rm\u003c/code\u003e removes the container once the script completes.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-it\u003c/code\u003e allows interacting with the container in the console.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emedgift/nifti-to-seg:latest\u003c/code\u003e is the Docker image.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-v\u003c/code\u003e maps a folder from your computer to the container (on \u003ccode\u003e/data\u003c/code\u003e).\nPut all necessary files in that folder (DICOM \u0026amp; NIfTI), and the\noutput will be written there as well.\u003c/li\u003e\n\u003cli\u003eThe other parameters are the same as for general Python usage.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage-with-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage with Singularity\u003c/h2\u003e\n\u003cp\u003eSee the \u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003esingularity\u003c/a\u003e pages for setup.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-building-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding Image\u003c/h3\u003e\n\u003cp\u003eEnter the directory where this readme file is located.\nBuild the singularity image with name \u003cem\u003emeshtool.sif\u003c/em\u003e by\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e sudo singularity build nifti_to_seg.sif Singularity.nifti-to-seg\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-meshtool-from-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-meshtool-from-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning MeshTool from Singularity Image\u003c/h3\u003e\n\u003cp\u003eYou can enter a shell in the singularity container by\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell -e /path/to/nifti_to_seg.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLeave the singularity shell again with \u003ccode\u003eexit\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-authors\" class=\"anchor\" aria-hidden=\"true\" href=\"#authors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eRoger Schaer\u003c/strong\u003e - \u003cem\u003eInitial work\u003c/em\u003e - \u003ca href=\"https://github.com/roger-schaer\"\u003eroger-schaer\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThis project is licensed under the MIT License - see the \u003ca href=\"LICENSE.md\"\u003eLICENSE.md\u003c/a\u003e file for details\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-acknowledgments\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgments\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/razorx89\"\u003erazorx89\u003c/a\u003e for the great work\non \u003ca href=\"https://github.com/razorx89/pydicom-seg\"\u003epydicom-seg\u003c/a\u003e,\nwhich is the core of this script\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cp align=\"center\"\u003e\n \u003ca href=\"https://camo.githubusercontent.com/762c1129f266494bbbb3faff3d673040cf7b1f19d45c6e13f49b08de12f5116a/68747470733a2f2f692e70617374652e706963732f38373031383966616466363638613935386338616163383366333865373939632e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/762c1129f266494bbbb3faff3d673040cf7b1f19d45c6e13f49b08de12f5116a/68747470733a2f2f692e70617374652e706963732f38373031383966616466363638613935386338616163383366333865373939632e706e67\" width=\"300\" align=\"left\" data-canonical-src=\"https://i.paste.pics/870189fadf668a958c8aac83f38e799c.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-pema\" class=\"anchor\" href=\"#pema\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePEMA:\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-a-flexible-pipeline-for-environmental-dna-metabarcoding-analysis-of-the-16s18s-rrna-its-and-coi-marker-genes\" class=\"anchor\" href=\"#a-flexible-pipeline-for-environmental-dna-metabarcoding-analysis-of-the-16s18s-rrna-its-and-coi-marker-genes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ea flexible Pipeline for Environmental DNA Metabarcoding Analysis of the 16S/18S rRNA, ITS and COI marker genes\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003ePEMA is reposited in\u003c/em\u003e \u003ca href=\"https://hub.docker.com/r/hariszaf/pema\" rel=\"nofollow\"\u003e\u003cem\u003eDocker Hub\u003c/em\u003e\u003c/a\u003e \u003cem\u003eas well as in\u003c/em\u003e \u003ca href=\"https://singularity-hub.org/collections/2295\" rel=\"nofollow\"\u003e\u003cem\u003eSingularity Hub\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-a-pema-tutorial-can-be-found-here\" class=\"anchor\" href=\"#a-pema-tutorial-can-be-found-here\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eA PEMA tutorial can be found \u003ca href=\"https://docs.google.com/presentation/d/1lVH23DPa2NDNBhVvOTRoip8mraw8zfw8VQwbK4vkB1U/edit?fbclid=IwAR14PpWfPtxB8lLBBnoxs7UbG3IJfkArrJBS5f2kRA__kvGDUb8wiJ2Cy_s#slide=id.g57f092f54d_1_21\" rel=\"nofollow\"\u003e\u003cstrong\u003ehere\u003c/strong\u003e\u003c/a\u003e.\u003c/h4\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-for-any-troubles-you-may-have-when-running-pema-or-for-any-potential-improvevments-you-would-like-to-suggest-please-share-on-the-pema-gitter-community\" class=\"anchor\" href=\"#for-any-troubles-you-may-have-when-running-pema-or-for-any-potential-improvevments-you-would-like-to-suggest-please-share-on-the-pema-gitter-community\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor any troubles you may have when running PEMA or for any potential improvevments you would like to suggest, please share on the \u003ca href=\"https://gitter.im/pema-helpdesk/community\" rel=\"nofollow\"\u003ePEMA Gitter community\u003c/a\u003e.\u003c/h4\u003e\n\n\u003cp\u003e\u003ca href=\"https://gitter.im/pema-helpdesk/community?utm_source=badge\u0026amp;utm_medium=badge\u0026amp;utm_campaign=pr-badge\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7385c04b449351f12fb57a4bd6f9791ebd68a483493399e50a8f096fadde4246/68747470733a2f2f6261646765732e6769747465722e696d2f70656d612d68656c706465736b2f636f6d6d756e6974792e737667\" alt=\"Gitter\" data-canonical-src=\"https://badges.gitter.im/pema-helpdesk/community.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.gnu.org/licenses/gpl-3.0\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/400c4e52df43f6a0ab8a89b74b1a78d1a64da56a7848b9110c9d2991bb7c3105/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d47504c76332d626c75652e737667\" alt=\"License: GPL v3\" data-canonical-src=\"https://img.shields.io/badge/License-GPLv3-blue.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" href=\"#table-of-contents\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTable of Contents\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#pema-biodiversity-in-all-its-different-levels\"\u003ePEMA: biodiversity in all its different levels\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#a-container-based-tool\"\u003e A container-based tool\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#how-to-run-pema\"\u003eHow to run PEMA\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#parameters-file\"\u003eParameters\u0027 file\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#pema-on-hpc\"\u003ePEMA on HPC\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#prerequisites-1\"\u003ePrerequisites\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#installing-1\"\u003eInstalling\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#running-pema-1\"\u003eRunning PEMA\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#example\"\u003eExample\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#pema-on-a-simple-pc\"\u003ePEMA on a simple PC\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#prerequisites\"\u003ePrerequisites\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#installing\"\u003eInstalling\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#running-pema\"\u003eRunning PEMA\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#step-1---build-a-docker-container\"\u003eStep 1 - Build a Docker container\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#step-2---run-pema\"\u003eStep 2 - Run PEMA\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#the-phyloseq-r-package\"\u003ephyloseq - for a downstream ecological analysis\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#acknowledgments\"\u003eAcknowledgments\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#license\"\u003eLicense\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#citation\"\u003eCitation\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-diff\"\u003e\u003cpre\u003e\u003cspan class=\"pl-mi1\"\u003e\u003cspan class=\"pl-mi1\"\u003e+\u003c/span\u003e convertion of the Illumina raw data is now implemented in the framework of PEMA\u003c/span\u003e\n\u003cspan class=\"pl-mi1\"\u003e\u003cspan class=\"pl-mi1\"\u003e+\u003c/span\u003e PEMA now supports 2 extra marker genes, 18S rRNA and ITS. \u003c/span\u003e\n\u003cspan class=\"pl-mi1\"\u003e\u003cspan class=\"pl-mi1\"\u003e+\u003c/span\u003e PEMA is now available for macOS!\u003c/span\u003e\n\u003cspan class=\"pl-mi1\"\u003e\u003cspan class=\"pl-mi1\"\u003e+\u003c/span\u003e for anything feel free to contact me at: haris-zaf@hcmr.gr\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-pema-biodiversity-in-all-its-different-levels\" class=\"anchor\" href=\"#pema-biodiversity-in-all-its-different-levels\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePEMA: biodiversity in all its different levels\u003c/h1\u003e\n\u003cp\u003ePEMA supports the metabarcoding analysis of four marker genes, \u003cstrong\u003e16S rRNA\u003c/strong\u003e (Bacteria), \u003cstrong\u003eITS\u003c/strong\u003e (Fungi) as well as \u003cstrong\u003eCOI\u003c/strong\u003e and \u003cstrong\u003e18S rRNA\u003c/strong\u003e (metazoa). As input, PEMA accepts .fastq.gz files as returned by Illumina sequencing platforms.\u003c/p\u003e\n\u003cp\u003ePEMA processes the reads from each sample and \u003cstrong\u003ereturns an OTU- or an ASV-table with the taxonomies\u003c/strong\u003e of the taxa found and their abundances in each sample. It also returns statistics and a FASTQC diagram about the quality of the reads for each sample. Finally, PEMA supports \u003cstrong\u003edownstream ecological analysis\u003c/strong\u003e of the profiles retrieved, facilitated by the \u003ca href=\"http://joey711.github.io/phyloseq/index.html\" rel=\"nofollow\"\u003ephyloseq\u003c/a\u003e R package.\u003c/p\u003e\n\u003cp\u003ePEMA supports both OTU clustering (thanks to VSEARCH and CROP algorithms) and ASV inference (via SWARM) for all four marker genes.\u003c/p\u003e\n\u003cp\u003eFor the case of the 16S rRNA marker gene, PEMA includes two separate approaches for taxonomy assignment: alignment-based and phylogenetic-based. For the latter, a reference tree of 1000 taxa was created using SILVA_132_SSURef, EPA-ng and RaxML-ng.\u003c/p\u003e\n\u003cp\u003ePEMA has been implemented in \u003ca href=\"https://pcingola.github.io/BigDataScript/\" rel=\"nofollow\"\u003eBigDataScript\u003c/a\u003e programming language. BDS\u2019s ad hoc task parallelism and task synchronization, supports heavyweight computation. Thus, PEMA inherits such features and it also supports roll-back checkpoints and on-demand partial pipeline execution. In addition, PEMA takes advantage of all the computational power available on a specific machine; for example, if PEMA is executed on a personal laptop with 4 cores, it is going to use all four of them.\u003c/p\u003e\n\u003cp\u003eFinally, container-based technologies such as Docker and Singularity, make PEMA easy accessible for all operating systems.\nAs you can see in the \u003ca href=\"https://github.com/hariszaf/pema/blob/master/help_files/GitHub%20tutorial.pdf\"\u003ePEMA_tutorial.pdf\u003c/a\u003e, once you have either Docker or Singularity on your computational environment (see below which suits your case better), running PEMA is cakewalk. You can also find the \u003ca href=\"https://docs.google.com/presentation/d/1lVH23DPa2NDNBhVvOTRoip8mraw8zfw8VQwbK4vkB1U/edit?usp=sharing\" rel=\"nofollow\"\u003e\u003cstrong\u003ePEMA tutorial\u003c/strong\u003e\u003c/a\u003e as a Google Slides file.\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-a-container-based-tool\" class=\"anchor\" href=\"#a-container-based-tool\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eA container-based tool\u003c/h1\u003e\n\u003cp\u003ePEMA can run either on a HPC environment (server, cluster etc) or on a simple PC. However, we definitely suggest to run it on an HPC environment to exploit the full potential of PEMA. Running on a powerful server or a cluster can be time-saving since it would require significantly less computational time than in a common PC. However, for analyses with a small number of samples, a common PC can suffice.\u003c/p\u003e\n\u003cp\u003eThere is one \u003cstrong\u003emajor difference\u003c/strong\u003e between running PEMA on a common PC than running it on a HPC environment. In the first case, PEMA runs through \u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003e\u003cstrong\u003eDocker\u003c/strong\u003e\u003c/a\u003e, while in the latter one, it runs through \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003e\u003cstrong\u003eSingularity\u003c/strong\u003e\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eOn the following chapters, you can find how to install PEMA both in Docker and Singlularity including examples.\u003c/p\u003e\n\u003cp\u003eRunning PEMA is exactly \u003cstrong\u003ethe same\u003c/strong\u003e procedure in both of those cases.\u003c/p\u003e\n\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to-run-pema\" class=\"anchor\" href=\"#how-to-run-pema\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run PEMA\u003c/h2\u003e\n\u003cp\u003eAssuming you have either Docker or Singularity on your system (see below how to get them).\nYou need to create a directory where you will have everything PEMA needs - we will call it \u003cem\u003e\u003cstrong\u003eanalysis directory\u003c/strong\u003e\u003c/em\u003e.\u003c/p\u003e\n\u003cp\u003eIn this directory, you need to add the following \u003cstrong\u003emandatory\u003c/strong\u003e files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe \u003ca href=\"https://github.com/hariszaf/pema/blob/master/analysis_directory/parameters.tsv\"\u003e\u003cem\u003e\u003cstrong\u003eparameters.tsv\u003c/strong\u003e\u003c/em\u003e\u003c/a\u003e file (you can download it from this repository and then \u003cstrong\u003ecomplete it\u003c/strong\u003e according to the needs of your analysis)\u003c/li\u003e\n\u003cli\u003ea subdirectory called \u003cem\u003e\u003cstrong\u003emydata\u003c/strong\u003e\u003c/em\u003e where your .fastq.gz files will be located \u003cbr\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIf your need to perform phyloseq, in the analysis directory you also need to add the following \u003cstrong\u003eoptionally\u003c/strong\u003e files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe \u003ca href=\"https://github.com/hariszaf/pema/blob/master/analysis_directory/phyloseq_in_PEMA.R\"\u003e\u003cem\u003e\u003cstrong\u003ephyloseq_in_PEMA.R\u003c/strong\u003e\u003c/em\u003e\u003c/a\u003e which you can also download from this repository and set it the way you want (that is an R script which we have implemented and has some main features that need to stay always the same in order to be executed as part of PEMA and some parts where the user can set what exactly needs to get from the phyloseq package)\u003c/li\u003e\n\u003cli\u003ethe \u003ca href=\"https://raw.githubusercontent.com/hariszaf/pema/master/analysis_directory/metadata.csv\" rel=\"nofollow\"\u003e\u003cem\u003e\u003cstrong\u003emetadata.csv\u003c/strong\u003e\u003c/em\u003e\u003c/a\u003e file which has to be in a \u003cstrong\u003ecomma separated\u003c/strong\u003e format (you can find an example of this file on PEMA\u0027s GitHub repository).\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-attention--\" class=\"anchor\" href=\"#attention--\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003cstrong\u003eAttention!\u003c/strong\u003e \u003cbr\u003e\n\u003c/h3\u003e\n\u003cp\u003ePEMA will \u003cstrong\u003efail\u003c/strong\u003e unless you name the aforementioned files and directories \u003cstrong\u003eexactly\u003c/strong\u003e as described above.\n\u003cbr\u003e\u003c/p\u003e\n\u003cp\u003eHere is an example of how your \u003cem\u003eanalysis directory\u003c/em\u003e should be in case you do want a phyloseq analysis:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003euser@home-PC:~/Desktop/analysis_directory$ ls\nmydata parameters.tsv phyloseq_in_PEMA.R metadata.csv\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand in case you do not:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003euser@home-PC:~/Desktop/analysis_directory$ ls\nmydata parameters.tsv \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/hariszaf/pema/tree/master/analysis_directory\"\u003e\u003cstrong\u003eHere\u003c/strong\u003e\u003c/a\u003e you can find an example of an \u003cem\u003eanalysis directory\u003c/em\u003e.\u003c/p\u003e\n\u003cp\u003eAfter you have prepared this \u003cem\u003eanalysis directory\u003c/em\u003e you are ready to run PEMA (see below).\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eAn extended list with PEMA\u0027s ouput can be found \u003ca href=\"https://github.com/hariszaf/pema/blob/master/help_files/PEMA\u0027s%20output%20files.md\"\u003e\u003cstrong\u003ehere\u003c/strong\u003e\u003c/a\u003e.\u003c/strong\u003e\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-parameters-file\" class=\"anchor\" href=\"#parameters-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParameters\u0027 file\u003c/h1\u003e\n\u003cp\u003eThe most crucial component in running PEMA is the parameters file. This file must be located \u003cstrong\u003ein\u003c/strong\u003e the \u003cem\u003eanalysis directory\u003c/em\u003e and the user needs to fill it \u003cstrong\u003eevery time\u003c/strong\u003e PEMA is about to be called. If you need more than one analyses to run, then you need to make copies of the parameters\u0027 file and have one of those in eah of the analysis directrories you create.\u003c/p\u003e\n\u003cp\u003eSo, here is the \u003ca href=\"https://github.com/hariszaf/pema/blob/master/analysis_directory/parameters.tsv\"\u003e\u003cem\u003e\u003cstrong\u003eparameters.tsv\u003c/strong\u003e\u003c/em\u003e\u003c/a\u003e file as it looks like, in a study case of our own.\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-pema-on-hpc\" class=\"anchor\" href=\"#pema-on-hpc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePEMA on HPC\u003c/h1\u003e\n\u003cp\u003ePEMA is best to run on HPC (server, cluster, cloud). Usually environmental data are quite large and the whole process has huge computational demands. To get PEMA running on your HPC you (actually your system administrator) need to install Singularity as described below.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-prerequisites\" class=\"anchor\" href=\"#prerequisites\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003e\u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/quick_start.html#quick-installation-steps\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e\u003c/strong\u003e is a free, cross-platform and open-source computer program that performs operating-system-level virtualization also known as containerization. One of the main uses of Singularity is to bring containers and reproducibility to scientific computing and the high-performance computing (HPC) world.\u003c/p\u003e\n\u003cp\u003eSingularity needs a Linux/Unix system to run.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing\" class=\"anchor\" href=\"#installing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling\u003c/h2\u003e\n\u003cp\u003eAfter you install Singularity in your environment and open it, you need to download PEMA\u0027s image from Singularity Hub, by running the command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity pull shub://hariszaf/pema:v.1.1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNow you have PEMA on your environment. But there is still one really \u003cstrong\u003eimportant\u003c/strong\u003e thing that you need to do! Please \u003cstrong\u003edownload\u003c/strong\u003e the \u003ca href=\"https://github.com/hariszaf/pema/blob/master/analysis_directory/parameters.tsv\"\u003e\u003cem\u003eparameters.tsv\u003c/em\u003e\u003c/a\u003e file and move it or copy it to the same directory with your raw data.\u003c/p\u003e\n\u003cp\u003eNow you are ready to go!\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-pema\" class=\"anchor\" href=\"#running-pema\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning PEMA\u003c/h2\u003e\n\u003cp\u003eSingularity permits the use of a job scheduler that allocates computional resources on clusters and at the same time, works as a queuing system, as \u003cstrong\u003e\u003ca href=\"https://slurm.schedmd.com/overview.html\" rel=\"nofollow\"\u003eSlurm\u003c/a\u003e\u003c/strong\u003e. This way you are able to create a job as you usually do in your system and after editing the parameters file as needed, run PEMA as a job on your cluster.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-example\" class=\"anchor\" href=\"#example\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e#SBATCH --partition=batch\n#SBATCH --nodes=1\n#SBATCH --ntasks-per-node=20\n#SBATCH --mem=\n# Memory per node specification is in MB. It is optional.\n# The default limit is 3000MB per core.\n#SBATCH --job-name=\"testPema\"\n#SBATCH --output=PEMA.output\n#SBATCH --mail-user=haris-zafr@hcmr.gr\n#SBATCH --mail-type=ALL\n#SBATCH --requeue\n\n\nsingularity run -B /\u0026lt;path\u0026gt;/\u0026lt;of\u0026gt;/\u0026lt;input\u0026gt;/\u0026lt;directory\u0026gt;/:/mnt/analysis /\u0026lt;path\u0026gt;/\u0026lt;of\u0026gt;/\u0026lt;PEMA_container\u0026gt;\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIn the above example, we set the cluster \"Zorba\", to run PEMA in 1 node, with 20 cores.\u003c/p\u003e\n\u003cp\u003eFor further information, you can always check \u003ca href=\"https://docs.google.com/presentation/d/1lVH23DPa2NDNBhVvOTRoip8mraw8zfw8VQwbK4vkB1U/edit?fbclid=IwAR14PpWfPtxB8lLBBnoxs7UbG3IJfkArrJBS5f2kRA__kvGDUb8wiJ2Cy_s#slide=id.g57f092f54d_1_21\" rel=\"nofollow\"\u003ePEMA\u0027s tutorial\u003c/a\u003e.\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-pema-on-a-simple-pc\" class=\"anchor\" href=\"#pema-on-a-simple-pc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePEMA on a simple PC\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-prerequisites-1\" class=\"anchor\" href=\"#prerequisites-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eTo run PEMA in a simple PC on your own environment, you first need to install \u003ca href=\"https://docs.docker.com/install/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e, in case you do not already have it.\u003c/p\u003e\n\u003cp\u003eYou should check your software version. A version of Docker is avalable for all Windows, Mac and Linux. If you have Windows 10 Pro or your Mac\u0027s hardware in after 2010, then you can insall Docker straightforward. Otherwise, you need to install the \u003ca href=\"https://docs.docker.com/toolbox/\" rel=\"nofollow\"\u003eDocker toolbox\u003c/a\u003e instead. You can check if your System Requirements are according to the ones mentioned below in order to be sure what you need to do.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eSystem Requirements\u003c/strong\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e**__Windows 10 64bit__**:\nPro, Enterprise or Education (1607 Anniversary Update, Build 14393 or later).\nVirtualization is enabled in BIOS. Typically, virtualization is enabled by default.\nThis is different from having Hyper-V enabled. For more detail see Virtualization must be enabled in Troubleshooting.\nCPU SLAT-capable feature.\nAt least 4GB of RAM.\n\n**__Mac__**\nMac hardware must be a 2010 or newer model, with Intel\u2019s hardware support for memory management unit (MMU)\nvirtualization, including Extended Page Tables (EPT) and Unrestricted Mode. You can check to see if your machine\nhas this support by running the following command in a terminal:\nsysctl kern.hv_support macOS El Capitan 10.11 and newer macOS releases are supported.\nWe recommend upgrading to the latest version of macOS.\nAt least 4GB of RAM\nVirtualBox prior to version 4.3.30 must NOT be installed (it is incompatible with Docker for Mac).\nIf you have a newer version of VirtualBox installed, it\u2019s fine.\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-1\" class=\"anchor\" href=\"#installing-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling\u003c/h2\u003e\n\u003cp\u003eAfter you install Docker in your environment and run it, the only thing you need to do, is to download PEMA\u0027s image, by running the command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull hariszaf/pema\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe PEMA image file is a quite large (~3Gb), so it will take a while until it is downloaded in your computer system.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-pema-1\" class=\"anchor\" href=\"#running-pema-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning PEMA\u003c/h2\u003e\n\u003cp\u003eRunning PEMA has two discrete steps.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-step-1---build-a-docker-container\" class=\"anchor\" href=\"#step-1---build-a-docker-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 1 - Build a Docker container\u003c/h3\u003e\n\u003cp\u003eAt first, you need to let Docker have access in your dataset. To provide access you need to run the following command and specifying the path to where your data is stored, i.e. changing the \u0026lt;path_to_analysis_directory\u0026gt; accordingly:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -it -v /\u0026lt;path_to_analysis_directory\u0026gt;/:/mnt/analysis hariszaf/pema\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAfter you run the command above, you have now built a Docker container, in which you can run PEMA!\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-step-2---run-pema\" class=\"anchor\" href=\"#step-2---run-pema\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 2 - Run PEMA\u003c/h3\u003e\n\u003cp\u003eNow, being inside the PEMA container, the only thing remaining to do, is to run PEMA\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./PEMA_v1.bds\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePEMA is now running. The runtime of PEMA depends on the computational features of your environment, on the size of your data, as well as the parameters you chose.\u003c/p\u003e\n\u003cp\u003ePlease, keep in mind that when you need to copy a whole directory, then you always have to put \"/\" in the end of the path that describes where the directory is located.\u003c/p\u003e\n\u003cp\u003eFinally, you will find the PEMA output in the analysis directory on your computer. \u003cbr\u003e\nAs the output directory is mounted into the built Docker container, you can copy its contents wherever you want. However, in case you want to remove it permanently, you need to do this as a sudo user.\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-the-phyloseq-r-package\" class=\"anchor\" href=\"#the-phyloseq-r-package\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThe \"phyloseq\" R package\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003efor a downstream ecological analysis of OTUs/ASVs retrieved\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003ePEMA performs all the basic functions of the \"phyloseq\" R package. In addition, it performs certain functions of the \u003ca href=\"https://cran.r-project.org/web/packages/vegan/index.html\" rel=\"nofollow\"\u003e\u003cem\u003e\u003cstrong\u003evegan\u003c/strong\u003e\u003c/em\u003e\u003c/a\u003e R package.\u003c/p\u003e\n\u003cp\u003eWhen the user asks for a downstream analysis using the \"phyloseq\" R package, then an extra input file called \u003ca href=\"https://github.com/hariszaf/pema/blob/master/analysis_directory/phyloseq_in_PEMA.R\"\u003e\u003cem\u003e\u003cstrong\u003e\"phyloseq_script.R\"\u003c/strong\u003e\u003c/em\u003e\u003c/a\u003e needs to be imported in the \"analysis_directory\". In PEMA\u0027s main repository, you can find a template of this file; this file needs to be as it would run on your own computer, as you would run \u003cem\u003ephyloseq\u003c/em\u003e in any case. PEMA will create the \u003cem\u003e\"phyloseq object\"\u003c/em\u003e automatically and then it will perform the analysis as asked. The output will be placed in an extra subfolder in the main output directory of PEMA called \u003cem\u003ephyloseq_analysis\u003c/em\u003e.\u003c/p\u003e\n\u003cp\u003eIn addition, the \u003cem\u003e\u003cstrong\u003emetadata.tsv\u003c/strong\u003e\u003c/em\u003e file is also required when the phyloseq option has been selected. An example of this file you can find \u003ca href=\"https://raw.githubusercontent.com/hariszaf/pema/master/analysis_directory/metadata.csv\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-acknowledgments\" class=\"anchor\" href=\"#acknowledgments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgments\u003c/h1\u003e\n\u003cp\u003ePEMA uses a series of tools, datasets as well as Big Data Script language. We thank all the groups that developed them.\nThe tools \u0026amp; databases that PEMA uses are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBigDataScript programming language - \u003ca href=\"https://pcingola.github.io/BigDataScript/\" rel=\"nofollow\"\u003ehttps://pcingola.github.io/BigDataScript/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFASTQC - \u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003ehttps://www.bioinformatics.babraham.ac.uk/projects/fastqc/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\u03a4rimmomatic - \u003ca href=\"http://www.usadellab.org/cms/?page=trimmomatic\" rel=\"nofollow\"\u003ehttp://www.usadellab.org/cms/?page=trimmomatic\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eCutadapt - \u003ca href=\"https://cutadapt.readthedocs.io/en/stable/\" rel=\"nofollow\"\u003ehttps://cutadapt.readthedocs.io/en/stable/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eBayesHammer - included in SPAdes - \u003ca href=\"http://cab.spbu.ru/software/spades/\" rel=\"nofollow\"\u003ehttp://cab.spbu.ru/software/spades/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ePANDAseq - \u003ca href=\"https://github.com/neufeld/pandaseq\"\u003ehttps://github.com/neufeld/pandaseq\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eOBITools - \u003ca href=\"https://pythonhosted.org/OBITools/welcome.html\" rel=\"nofollow\"\u003ehttps://pythonhosted.org/OBITools/welcome.html\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eBLAST Command Line Applications - \u003ca href=\"https://www.ncbi.nlm.nih.gov/books/NBK52640/\" rel=\"nofollow\"\u003ehttps://www.ncbi.nlm.nih.gov/books/NBK52640/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eVSEARCH-2.9.1 - \u003ca href=\"https://github.com/torognes/vsearch/releases/tag/v2.9.1\"\u003ehttps://github.com/torognes/vsearch/releases/tag/v2.9.1\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eSWARM - \u003ca href=\"https://github.com/torognes/swarm\"\u003ehttps://github.com/torognes/swarm\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eCROP - \u003ca href=\"https://github.com/tingchenlab/CROP\"\u003ehttps://github.com/tingchenlab/CROP\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eCREST - \u003ca href=\"https://github.com/lanzen/CREST\"\u003ehttps://github.com/lanzen/CREST\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eRDPClassifier - \u003ca href=\"https://github.com/rdpstaff/classifier\"\u003ehttps://github.com/rdpstaff/classifier\u003c/a\u003e\n(RPDtools are required in order to execute RDPClassifier)\u003c/li\u003e\n\u003cli\u003eSILVA db - \u003ca href=\"https://www.arb-silva.de/no_cache/download/archive/current/Exports/\" rel=\"nofollow\"\u003ehttps://www.arb-silva.de/no_cache/download/archive/current/Exports/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eMIDORI db - \u003ca href=\"http://reference-midori.info/index.html\" rel=\"nofollow\"\u003ehttp://reference-midori.info/index.html\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\"phat\" algorithm, from the \"gappa\" package - \u003ca href=\"https://github.com/lczech/gappa/wiki/Subcommand:-phat\"\u003ehttps://github.com/lczech/gappa/wiki/Subcommand:-phat\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eMAFFT - \u003ca href=\"https://mafft.cbrc.jp/alignment/software/\" rel=\"nofollow\"\u003ehttps://mafft.cbrc.jp/alignment/software/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eRAxML -ng - \u003ca href=\"https://github.com/amkozlov/raxml-ng\"\u003ehttps://github.com/amkozlov/raxml-ng\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ePaPaRa - \u003ca href=\"https://cme.h-its.org/exelixis/web/software/papara/index.html\" rel=\"nofollow\"\u003ehttps://cme.h-its.org/exelixis/web/software/papara/index.html\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eEPA-ng - \u003ca href=\"https://github.com/Pbdas/epa-ng\"\u003ehttps://github.com/Pbdas/epa-ng\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ephyloseq R package - \u003ca href=\"http://joey711.github.io/phyloseq/index.html\" rel=\"nofollow\"\u003ehttp://joey711.github.io/phyloseq/index.html\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003evegan R package - \u003ca href=\"https://cran.r-project.org/web/packages/vegan/index.html\" rel=\"nofollow\"\u003ehttps://cran.r-project.org/web/packages/vegan/index.html\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAnd of course the container-based technologies:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDocker - \u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003ehttps://www.docker.com/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eSingularity - \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003ehttps://sylabs.io/singularity/\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h1\u003e\n\u003cp\u003ePEMA is under the GNU GPLv3 license (for 3rd party components separate licenses apply).\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-citation\" class=\"anchor\" href=\"#citation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h1\u003e\n\u003cp\u003eHaris Zafeiropoulos, Ha Quoc Viet, Katerina Vasileiadou, Antonis Potirakis, Christos Arvanitidis, Pantelis Topalis, Christina Pavloudi, Evangelos Pafilis, PEMA: a flexible Pipeline for Environmental DNA Metabarcoding Analysis of the 16S/18S ribosomal RNA, ITS, and COI marker genes, GigaScience, Volume 9, Issue 3, March 2020, giaa022, \u003ca href=\"https://doi.org/10.1093/gigascience/giaa022\" rel=\"nofollow\"\u003ehttps://doi.org/10.1093/gigascience/giaa022\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1654849338.0
+ "updated_at": 1622859451.0
},
{
"data_format": 2,
- "description": "Final year Major Project",
+ "description": null,
"filenames": [
- "gdown.pl/Singularity"
+ "Singularity"
],
- "full_name": "arshagarwal/FA-GAN",
+ "full_name": "baxpr/demo-singularity-spm-freeview",
"latest_release": null,
- "readme": "\u003ch2\u003e\u003ca id=\"user-content-official-implementation-of-the-paper-titled-fa-gan-high-resolution-face-aging\" class=\"anchor\" aria-hidden=\"true\" href=\"#official-implementation-of-the-paper-titled-fa-gan-high-resolution-face-aging\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOfficial Implementation of the paper titled \u003ca href=\"https://ieeexplore.ieee.org/document/9514090\" rel=\"nofollow\"\u003eFA-GAN: High Resolution Face-Aging\u003c/a\u003e\n\u003c/h2\u003e\n\u003ch2\u003e\u003ca id=\"user-content-steps-to-run-using-docker-using-nvidia-gpus\" class=\"anchor\" aria-hidden=\"true\" href=\"#steps-to-run-using-docker-using-nvidia-gpus\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSteps to run using docker using Nvidia gpus:\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eInstall docker using \u003ca href=\"https://docs.docker.com/engine/install/ubuntu/\" rel=\"nofollow\"\u003edocker installation guide\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eInstall nvidia-docker2 using \u003ca href=\"https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker\" rel=\"nofollow\"\u003envidia-docker2 installation guide\u003c/a\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003cstrong\u003eNote: Ensure to check the latest versions of nvidia cuda runtime and coroborrate with pytorch cuda requirements , this guide was uploaded on 4/9/2020.\u003c/strong\u003e\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eBuild the image using \u003ccode\u003edocker build -f docker -t slimgan:gpu\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eRun the Container using \u003ccode\u003edocker run --gpus all --shm-size 10G -it slimgan:gpu\u003c/code\u003e.\n5.Run the \u003ccode\u003envidia-smi\u003c/code\u003e to check if gpus work.\u003c/li\u003e\n\u003cli\u003eRun thr command \u003ccode\u003epython main.py --rafd_image_dir Big_slim --num_iters 30000 --sample_step 500 --c_dim 2 --log_step 100 --model_save_step 5000 --batch_size 64 --n_critic 2 --rafd_crop_size 128 --image_size 128 --resume_iters 20000 --num_workers 5\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-steps-to-run-the-code-on-google-colab-just-3-lines-of-code\" class=\"anchor\" aria-hidden=\"true\" href=\"#steps-to-run-the-code-on-google-colab-just-3-lines-of-code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSteps to run the code on Google colab (just 3 lines of code):\u003c/h2\u003e\n\u003col start=\"0\"\u003e\n\u003cli\u003eClone the code by running the command \u003ccode\u003e!git clone https://username:password@github.com/arshagarwal/C_slim_gan.git -b arsh_spectral\u003c/code\u003e .\n\u003cstrong\u003eReplace the username and password with your github username and password respectively.\u003c/strong\u003e\n\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003ecd C_slim_gan\u003c/code\u003e to navigate to the \u003cstrong\u003eC_slim_gan\u003c/strong\u003e directory.\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003e!bash import_dataset.sh\u003c/code\u003e to import the \u003cstrong\u003eBig slim dataset\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003e! python main.py --rafd_image_dir Big_slim --num_iters 20000 --sample_step 500 --c_dim 2 --log_step 100 --model_save_step 5000 --batch_size 64 --n_critic 2 --rafd_crop_size 128 --image_size 128 \u003c/code\u003e to train on the \u003cstrong\u003eBig_slim_dataset\u003c/strong\u003e.\n\u003cstrong\u003eAlternatively to train on custom dataset replace the \u003ccode\u003eslim_dataset/Train_dataset\u003c/code\u003e string with the path of your custom dataset.\u003c/strong\u003e\u003cbr\u003e\nFor further options such as \u003cstrong\u003enumber of epochs, batch_size etc\u003c/strong\u003e refer \u003cstrong\u003emain.py\u003c/strong\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\u003ca id=\"user-content-note-after-running-step-3-after-every-sample-stepth-iteration-generated-samples-will-be-stored-in-stargansamples-folder-for-performance-evaluation\" class=\"anchor\" aria-hidden=\"true\" href=\"#note-after-running-step-3-after-every-sample-stepth-iteration-generated-samples-will-be-stored-in-stargansamples-folder-for-performance-evaluation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNote: After running step 3 after every sample stepth iteration generated samples will be stored in stargan/samples folder for performance evaluation.\u003c/h3\u003e\n\u003ch2\u003e\u003ca id=\"user-content-for-continuing-training-from-20000-iteration-to-30000-iteration-follow\" class=\"anchor\" aria-hidden=\"true\" href=\"#for-continuing-training-from-20000-iteration-to-30000-iteration-follow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor Continuing training from 20000 iteration to 30000 iteration follow:\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ccode\u003epython main.py --rafd_image_dir Big_slim --num_iters 30000 --sample_step 500 --c_dim 2 --log_step 100 --model_save_step 5000 --batch_size 64 --n_critic 2 --rafd_crop_size 128 --image_size 128 --resume_iters 20000\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-demo-singularity-container-with-spm12-and-freeview\" class=\"anchor\" href=\"#demo-singularity-container-with-spm12-and-freeview\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDemo singularity container with SPM12 and Freeview\u003c/h1\u003e\n\u003cp\u003eSPM12-based pipelines require a little extra work to get them compiled and working in a\ncontainer. Freesurfer\u0027s Freeview is also included here, as it\u0027s very handy for creating\nthe PDF QA report.\u003c/p\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/baxpr/demo-singularity-matlab-fsl\"\u003ehttps://github.com/baxpr/demo-singularity-matlab-fsl\u003c/a\u003e for a lot of detailed info about\nputting Matlab code into singularity containers. This example uses the same structure.\u003c/p\u003e\n\u003cp\u003eA licensed Matlab installation is required to compile the Matlab code, but is not needed\nto run the compiled executable in the container.\u003c/p\u003e\n\u003cp\u003eSPM12 (\u003ca href=\"https://www.fil.ion.ucl.ac.uk/spm/software/spm12/\" rel=\"nofollow\"\u003ehttps://www.fil.ion.ucl.ac.uk/spm/software/spm12/\u003c/a\u003e) is not in this repository and must\nbe installed separately on the compilation host. Edit \u003ccode\u003ematlab/compile_matlab.sh\u003c/code\u003e to point\nto it.\u003c/p\u003e\n\u003cp\u003eSPM requires jumping an extra hurdle at the compilation step - we use a modified version\nof SPM\u0027s own compiler function \u003ccode\u003espm_make_standalone.m\u003c/code\u003e, found at\n\u003ccode\u003ematlab/spm_make_standalone_local.m\u003c/code\u003e. This process captures a lot of dependencies that\ncould otherwise easily be left out of the executable, with the resulting symptom that it\ncompiles just fine but fails at run time with various cryptic error messages. In addition\nto SPM12, everything in the \u003ccode\u003ematlab/src\u003c/code\u003e directory is included in the path at compile time.\nIf Matlab toolboxes are used, they will need to be added to the list of included toolboxes\nin \u003ccode\u003ematlab/spm_make_standalone_local.m\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eThe compiled Matlab executable is stored on github using git LFS. A regular git clone will\ndownload a pointer text file instead of the executable binary. The result of building a\ncontainer from that will be a cryptic error message - so, compile it yourself. Or, if\nstoring on github, download it manually and replace the pointer text file, or include this\nstep in the Singularity file if helpful - example here:\n\u003ca href=\"https://github.com/baxpr/gf-fmri/blob/master/Singularity.v1.3.4#L65\"\u003ehttps://github.com/baxpr/gf-fmri/blob/master/Singularity.v1.3.4#L65\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFreesurfer requires a license to run:\n\u003ca href=\"https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall#License\" rel=\"nofollow\"\u003ehttps://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall#License\u003c/a\u003e\nBest practice is to store your license file on the host that will run the container, and\nbind it to the container at runtime - NOT to include your own license file in the\ncontainer itself.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1654958671.0
+ "updated_at": 1625615789.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Hosts DockerFiles to build MRtrix3 containers",
"filenames": [
"Singularity"
],
- "full_name": "dcgc-bfx/singularity-base",
+ "full_name": "MRtrix3/containers",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-dcgc-base\" class=\"anchor\" aria-hidden=\"true\" href=\"#dcgc-base\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edcgc-base\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-containers-for-mrtrix3\" class=\"anchor\" href=\"#containers-for-mrtrix3\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainers for \u003cem\u003eMRtrix3\u003c/em\u003e\n\u003c/h1\u003e\n\u003cp\u003eHosts recipe files to build \u003cem\u003eMRtrix3\u003c/em\u003e containers\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-using-docker\" class=\"anchor\" href=\"#using-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing Docker\u003c/h2\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-run-terminal-command\" class=\"anchor\" href=\"#run-terminal-command\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun terminal command\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --rm -it mrtrix3 \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf not built locally, \u003ccode\u003edocker\u003c/code\u003e will download the latest image from DockerHub.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-run-gui\" class=\"anchor\" href=\"#run-gui\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun GUI\u003c/h4\u003e\n\u003cp\u003eThese instructions are for Linux.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003exhost +local:root\ndocker run --rm -it -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=$DISPLAY mrtrix3 mrview\nxhost -local:root # Run this when finished.\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-locally-build-docker-image\" class=\"anchor\" href=\"#locally-build-docker-image\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLocally build Docker image\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --tag mrtrix3 .\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSet \u003ccode\u003eDOCKER_BUILDKIT=1\u003c/code\u003e to build parts of the Docker image in parallel, which can speed up build time.\nUse \u003ccode\u003e--build-arg MAKE_JOBS=4\u003c/code\u003e to build \u003cem\u003eMRtrix3\u003c/em\u003e with 4 processors (can substitute this with any number of processors \u0026gt; 0); if omitted, \u003cem\u003eMRtrix3\u003c/em\u003e will be built using a single thread only.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-using-singularity\" class=\"anchor\" href=\"#using-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing Singularity\u003c/h2\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-build-container-natively\" class=\"anchor\" href=\"#build-container-natively\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild container natively\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build MRtrix3_\u0026lt;version\u0026gt;.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-convert-from-docker-container\" class=\"anchor\" href=\"#convert-from-docker-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConvert from Docker container\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build MRtrix3_\u0026lt;version\u0026gt;.sif docker://mrtrix/mrtrix3:\u0026lt;version\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-run-terminal-command-1\" class=\"anchor\" href=\"#run-terminal-command-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun terminal command\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003eMRtrix3_\u0026lt;version\u0026gt;.sif \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-run-gui-1\" class=\"anchor\" href=\"#run-gui-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun GUI\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec -B /run MRtrix3_\u0026lt;version\u0026gt;.sif mrview\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-developers-update-minified-external-dependencies\" class=\"anchor\" href=\"#developers-update-minified-external-dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopers: Update minified external dependencies\u003c/h2\u003e\n\u003cp\u003eThis process can only be completed by those with write access to the \u003ca href=\"https://osf.io/5rwp3/\" rel=\"nofollow\"\u003e\"\u003cem\u003eMRtrix3\u003c/em\u003e container dependencies\" OSF project\u003c/a\u003e.\nThese files contain \"minified\" versions of external neuroimaging software package dependencies, containing only those components that are utilised by \u003cem\u003eMRtrix3\u003c/em\u003e scripts.\nThese files should only need to be updated if:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAn \u003cem\u003eMRtrix3\u003c/em\u003e update introduces a new feature that invokes some new external software tool not previously utilised;\u003c/li\u003e\n\u003cli\u003eA requisite update occurs in one of these external softwares.\u003c/li\u003e\n\u003c/ul\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eInstall the \u003ccode\u003edocker\u003c/code\u003e and \u003ccode\u003eneurodocker\u003c/code\u003e Python packages.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip install docker neurodocker\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDownload the ART ACPCdetect tool from NITRC into the working directory.\u003c/p\u003e\n\u003cp\u003eThis cannot be downloaded directly via e.g. \u003ccode\u003ewget\u003c/code\u003e, as it requires logging in to NITRC; instead, visit the following link with a web browser:\n\u003ca href=\"https://www.nitrc.org/frs/download.php/10595/acpcdetect_v2.0_LinuxCentOS6.7.tar.gz\" rel=\"nofollow\"\u003e\u003ccode\u003ehttps://www.nitrc.org/frs/download.php/10595/acpcdetect_v2.0_LinuxCentOS6.7.tar.gz\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDownload test data necessary for minification process.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecurl -fL -# https://github.com/MRtrix3/script_test_data/archive/master.tar.gz | tar xz\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUpdate file \u003ccode\u003eminify.Dockerfile\u003c/code\u003e to install the desired versions of external software packages.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBuild Docker image for \u003ccode\u003eneurodocker-minify\u003c/code\u003e, with complete installations of external packages.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eDOCKER_BUILDKIT=1 docker build --tag mrtrix3:minify --file minify.Dockerfile --build-arg MAKE_JOBS=4 .\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ccode\u003eDOCKER_BUILDKIT=1\u003c/code\u003e enables BuildKit, which builds separate build stages in parallel.\nThis can speed up Docker build times in some circumstances.\nIn this case, ANTs and \u003cem\u003eMRtrix3\u003c/em\u003e will be compiled in parallel, and other downloads will be performed at the same time as well.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003eMAKE_JOBS\u003c/code\u003e argument controls how many cores are used for compilation of ANTs and \u003cem\u003eMRtrix3\u003c/em\u003e.\nIf BuildKit is utilised, do not specify all of the available threads; specify half or fewer, so that threads are not unnecessarily split across jobs and RAM usage is not excessive.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCreate a minified version of the Docker image.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --rm -itd --name mrtrix3 --security-opt=seccomp:unconfined --volume $(pwd)/script_test_data-master:/mnt mrtrix3:minify\nneurodocker-minify --dirs-to-prune /opt --container mrtrix3 --commands \"bash cmds-to-minify.sh\"\ndocker export mrtrix3 | docker import - mrtrix3:minified\ndocker stop mrtrix3\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGenerate tarballs for each of the utilised dependencies.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emkdir -p tarballs\ndocker run --rm -itd --workdir /opt --name mrtrix3 \\\n --volume $(pwd)/tarballs:/output mrtrix3:minified bash\ndocker exec mrtrix3 bash -c \"tar c art | pigz -9 \u0026gt; /output/acpcdetect_\u0026lt;version\u0026gt;.tar.gz\"\ndocker exec mrtrix3 bash -c \"tar c ants | pigz -9 \u0026gt; /output/ants_\u0026lt;version\u0026gt;.tar.gz\"\ndocker exec mrtrix3 bash -c \"tar c fsl | pigz -9 \u0026gt; /output/fsl_\u0026lt;version\u0026gt;.tar.gz\"\ndocker stop mrtrix3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor each tarball, manually replace text \"\u003ccode\u003e\u0026lt;version\u0026gt;\u003c/code\u003e\" with the version number of that particular software that was installed in the container.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUpload these files to \u003ca href=\"https://osf.io/nfx85/\" rel=\"nofollow\"\u003eOSF\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eFile \u003ccode\u003eDockerfile\u003c/code\u003e can then be modified to download the desired versions of external software packages.\nAs OSF file download links do not contain file names, which would otherwise indicate the version of each software to be downloaded, please ensure that comments within that file are updated to indicate the version of that software within the tarball.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 10,
"topics": [],
- "updated_at": 1633510107.0
+ "updated_at": 1612696118.0
},
{
"data_format": 2,
- "description": "Docker image for MGKit",
+ "description": null,
"filenames": [
- "Singularity.def"
+ "BlueprintPipeline/Resource/gemBS-2.1.1/Singularity"
],
- "full_name": "frubino/mgkit-docker-repo",
+ "full_name": "Irfanwustl/Research_code",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-docker-image-for-mgkit\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker-image-for-mgkit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker Image for MGKit\u003c/h1\u003e\n\u003cp\u003eThis is a new Dockerfile that allows the use of MGKit using a container. You can run the scripts directly, for example:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003edocker run --rm -i frubino/mgkit:latest sampling-utils rand_seq\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eWill run the \u003ccode\u003esampling-utils rand_seq\u003c/code\u003e to create some randome FASTA sequences. Commands can be piped as well:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003edocker run --rm -i frubino/mgkit:latest sampling-utils rand_seq | docker run --rm -i frubino/mgkit:latest fasta-utils translate\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eWill translate the random sequneces from the first command. Highly suggested to use an alias, such as:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ealias mgkit=\u0027docker run --rm -i frubino/mgkit:latest\u0027\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThis way the above command becomes:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003emgkit sampling-utils rand_seq | mgkit fasta-utils translate\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eIf you want to run interactively a series of commands you can use \u003ccode\u003ebash\u003c/code\u003e instead of another command, but remember to add the \u003ccode\u003e-t\u003c/code\u003e option:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003edocker run --rm -it frubino/mgkit:latest bash\u003c/code\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-build-branch\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-branch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild branch\u003c/h1\u003e\n\u003cp\u003eA \u003ccode\u003efrubino/mgkit:build\u003c/code\u003e branch is present to allow the creation of Conda packages. Checkout the branch with \u003ccode\u003egit checkout build\u003c/code\u003e. A script is included to build the image and environment are used to specify output directory inside the container, the Python version to use to build and the MGKit version to use\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h1\u003e\n\u003cblockquote\u003e\n\u003cp\u003eYou need to modify the version of MGKit manually with a tag or commit id (after the \u003ccode\u003e@\u003c/code\u003e in the \u003ccode\u003epip\u003c/code\u003e line)\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eThere are 2 options to use this image with \u003cem\u003eSingularity\u003c/em\u003e, 1) create a Docker image using the \u003ccode\u003eDockerfile.singularity\u003c/code\u003e and then pull it or 2) building it with \u003cem\u003eSingularity\u003c/em\u003e, for example with \u003ca href=\"https://cloud.sylabs.io/\" rel=\"nofollow\"\u003ehttps://cloud.sylabs.io/\u003c/a\u003e (command \u003ccode\u003esingularity build --remote\u003c/code\u003e) if \u003ccode\u003eroot\u003c/code\u003e access is not available.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-docker-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker Image\u003c/h2\u003e\n\u003cp\u003eThe main difference between the 2 \u003ccode\u003eDockerfile\u003c/code\u003e is that the Singularity version removes any use of a specific user, because that is mostly done to mount a directory in the image. Also instead of using a version of MGKit in \u003ccode\u003econda\u003c/code\u003e PyPI is used instead.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-test\" class=\"anchor\" aria-hidden=\"true\" href=\"#test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest\u003c/h2\u003e\n\u003cp\u003eTry to run: \u003ccode\u003esingularity exec mgkit_0.6.0.sif sampling-utils rand_seq | singularity exec mgkit_0.6.0.sif fasta-utils info\u003c/code\u003e\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eCorrect for the image name used in the build process\u003c/p\u003e\n\u003c/blockquote\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-research_code\" class=\"anchor\" href=\"#research_code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResearch_code\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [
- "mgkit",
- "bioinformatics",
- "metagenomics",
- "metagenomic-analysis",
- "evolution"
- ],
- "updated_at": 1635513477.0
+ "topics": [],
+ "updated_at": 1627949747.0
},
{
"data_format": 2,
- "description": "Test species and lineage calls made by mykrobe",
+ "description": null,
"filenames": [
- "Python/Singularity.def"
+ "Singularity_fastqc",
+ "Singularity_multiqc",
+ "Singularity_trimmomatic"
],
- "full_name": "Mykrobe-tools/mykrobe-lineage-test",
+ "full_name": "uf-icbr-bioinformatics/biocontainers",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-mykrobe-lineage-test\" class=\"anchor\" aria-hidden=\"true\" href=\"#mykrobe-lineage-test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emykrobe-lineage-test\u003c/h1\u003e\n\u003cp\u003eThis repository contains code for testing mykrobe species and lineage calls,\nand results of the testing.\nIt is intended for mykrobe developers, for testing mykrobe species/lineage calls\nand tracking the results.\u003c/p\u003e\n\u003cp\u003eThere are two directories:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ccode\u003ePython/\u003c/code\u003e: this contains the code, and a Singularity definition file that\nmakes a container with the code plus the dependencies.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eAnalysis/\u003c/code\u003e: contains results of testing mykrobe species and lineage calls.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eFor results, please see the readme in the \u003ccode\u003eAnalysis/\u003c/code\u003e directory.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eThis repository has a main script called \u003ccode\u003emlt\u003c/code\u003e (acronym for \"mykrobe lineage\ntest\", yes we are testing species calls as well but\n\"mykrobe lineage species test\" seemed like a bad name!).\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h3\u003e\n\u003cp\u003eThe easiest way is to build a singularity container.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd Python\nsudo singularity build mlt Singularity.def\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun like that, singularity will make a container file called \u003ccode\u003emlt\u003c/code\u003e.\nYou can just treat it as an normal executable, no need to run\n\u003ccode\u003esingularity exec mlt\u003c/code\u003e unless you want to.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-source\" class=\"anchor\" aria-hidden=\"true\" href=\"#source\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSource\u003c/h3\u003e\n\u003cp\u003eIf you want to run locally, then you will need these in your \u003ccode\u003e$PATH\u003c/code\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eenaDataGet\u003c/code\u003e, which is from enaBrowserTools (have a look in \u003ccode\u003eSingularity.def\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emykrobe\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e(also \u003ccode\u003efastaq\u003c/code\u003e and \u003ccode\u003encbi-genome-download\u003c/code\u003e are required, but are installed when\nyou install \u003ccode\u003emlt\u003c/code\u003e because they are in the requirements file.)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThen run \u003ccode\u003epip install .\u003c/code\u003e from the \u003ccode\u003ePython/\u003c/code\u003e directory. The required python\npackages will be installed (they are in \u003ccode\u003erequirements.txt\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eAlternatively, you could not do pip install, and instead do this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ePYTHONPATH=/path_to/mykrobe-lineage-test/Python /path_to/mykrobe-lineage-test/Python/mlt/__main__.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThat command is equivalent to running the script \u003ccode\u003emlt\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-testing-lineage-calls\" class=\"anchor\" aria-hidden=\"true\" href=\"#testing-lineage-calls\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting lineage calls\u003c/h2\u003e\n\u003cp\u003eIn short, the process is:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003ePut your sample info in a TSV file.\u003c/li\u003e\n\u003cli\u003eDownload reads using \u003ccode\u003emlt download_data\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun mykrobe on all samples using \u003ccode\u003emlt run_mykrobe\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eMake a summary of the results using \u003ccode\u003emlt summary\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\u003ca id=\"user-content-sample-tsv\" class=\"anchor\" aria-hidden=\"true\" href=\"#sample-tsv\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esample TSV\u003c/h3\u003e\n\u003cp\u003eAll the commands need a TSV of sample information. The format is like\nthis (this is made up data!):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eaccession source species lineage\nSRR12345678 ena Mycobacterium_tuberculosis lineage1.2.3\nGCF_1234567 genbank Mycobacterium_tuberculosis lineage2.3.4\nXY123456 refseq Mycobacterium_tuberculosis lineage3.4\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou must have columns \u003ccode\u003eaccession\u003c/code\u003e, \u003ccode\u003esource\u003c/code\u003e, \u003ccode\u003especies\u003c/code\u003e and \u003ccode\u003elineage\u003c/code\u003e. They\ncan be in any order (and any extra columns are ignored). The lineage can\nbe \"NA\" if there is no lineage call and you just want to test the species\ncall.\u003c/p\u003e\n\u003cp\u003eThe source must be \u003ccode\u003eena\u003c/code\u003e, \u003ccode\u003egenbank\u003c/code\u003e, or \u003ccode\u003erefseq\u003c/code\u003e, and the \u003ccode\u003eaccession\u003c/code\u003e column\nshould have the corresponding ENA run ID, or genbank/refseq genome accession.\nSince reads are needed for mykrobe, reads are simulated from genomes using\n\u003ccode\u003efastaq to_perfect_reads\u003c/code\u003e, making perfect reads (ie no snp/indel errors)\nof length 75bp, fragment size 200, and depth 20X.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-download-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#download-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownload data\u003c/h3\u003e\n\u003cp\u003eWith a TSV file of samples \u003ccode\u003esamples.tsv\u003c/code\u003e in the above format, run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emlt download_data --cpus 3 samples.tsv Reads\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThat example downloads 3 samples in parallel. It makes a directory called\n\u003ccode\u003eReads\u003c/code\u003e containing the downloaded data. It will (well, \u003cem\u003eshould\u003c/em\u003e) not crash\non failed downloads, but carry on and get all the samples it can. Check\nstderr to see what happened.\u003c/p\u003e\n\u003cp\u003eYou can rerun on an existing directory and it will only try to get data\nthat is missing and skip the samples that are already downloaded.\nThis also means you can do hacks like different sample TSV files run\nagainst the same directory of a superset of reads, if you\u0027re feeling\nfancy.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-run-mykrobe\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-mykrobe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun mykrobe\u003c/h3\u003e\n\u003cp\u003eAssuming you have a directory of downloaded reads from \u003ccode\u003emlt download_data\u003c/code\u003e\ncalled \u003ccode\u003eReads/\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emlt run_mykrobe --cpus 10 samples.tsv Reads Results\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThat will run 10 samples in parallel. It makes a new directory (if it\ndoesn\u0027t exit already) called \u003ccode\u003eResults\u003c/code\u003e. As for \u003ccode\u003edownload_data\u003c/code\u003e, you can\nrerun against the same directory and it will only run samples that do not\nalready have a mykrobe json file of results. It will ignore samples in the TSV\nwith no reads in \u003ccode\u003eReads/\u003c/code\u003e. It\u0027s up to you to use the right TSV file/Reads\ndirectory/results directory - there is no sanity checking. This does allow\nfor more hacking and testing of samples.\u003c/p\u003e\n\u003cp\u003eIMPORTANT: the first time a sample is run in \u003ccode\u003eResults/\u003c/code\u003e, there is no\nskeletons file. If you ask for more than one CPU, the first sample will be\nrun on its own, making the skeletons file. Then the remaining samples are\nrun using multiprocessing, since they can then all use the skeletons file,\ninstead of all trying to make one at the same time and crashing.\u003c/p\u003e\n\u003cp\u003eThere is an option \u003ccode\u003e--panels_dir\u003c/code\u003e, which will use that option with mykrobe,\nso that you can override the default panels directory and use your own.\nYou probably want this, since the point here is to test species/lineage calls.\nIt is not recommended to change the panel and then use an existing results\ndirectory because the skeletons file that is already might be used!\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-summarise-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#summarise-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSummarise results\u003c/h3\u003e\n\u003cp\u003eAssuming you have a samples TSV file \u003ccode\u003esamples.tsv\u003c/code\u003e, a directory of reads\ncalled \u003ccode\u003eReads/\u003c/code\u003e, and a directory of mykrobe runs called \u003ccode\u003eResults/\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emlt summary samples.tsv Reads Results summary.tsv\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThat makes a new TSV file called \u003ccode\u003esummary.tsv\u003c/code\u003e. It is the same as \u003ccode\u003esamples.tsv\u003c/code\u003e,\nbut with added columns:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ecalled_species\u003c/code\u003e and \u003ccode\u003ecalled_lineage\u003c/code\u003e. These are the calls made by mykrobe.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecorrect\u003c/code\u003e: this is \u003ccode\u003etrue|false\u003c/code\u003e, showing if the both the called species and\nlineage were correct. If the expected lineage is \"NA\", then the true/false\ncall only depends on the species.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eNow be good and record the results in the \u003ccode\u003eAnalysis/\u003c/code\u003e directory and push\nto github.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-biocontainers\" class=\"anchor\" href=\"#biocontainers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebiocontainers\u003c/h1\u003e\n\u003cp\u003eThis repository contains recipes for containers used to perform QC, summary statistics, and pre-processing on NGS datasets.\u003c/p\u003e\n\u003cp\u003eIn the future, we may provide the containers themselves. Stay tuned. Work in progress.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1655217767.0
+ "updated_at": 1623019187.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Biobb_structure_utils is the Biobb module collection to modify or extract information from a PDB structure file, such as pulling out a particular model or chain, removing water molecules or ligands, or renumbering or sorting atoms or residues.",
"filenames": [
- "Singularity",
- "Singularity_flipped",
- "Singularity_test",
- "Singularity_backup",
- "Singularity2"
+ "Singularity.latest"
],
- "full_name": "mwanakijiji/rrlfe",
+ "full_name": "bioexcel/biobb_structure_utils",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-rrlfe\" class=\"anchor\" aria-hidden=\"true\" href=\"#rrlfe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003errlfe\u003c/h1\u003e\n\u003cp\u003eA code base for generating and applying calibrations for retrieving [Fe/H] from low-res spectra of RR Lyrae variable stars. See \u003ca href=\"https://rrlfe.readthedocs.io/\" rel=\"nofollow\"\u003ehttps://rrlfe.readthedocs.io/\u003c/a\u003e for documentation.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://coveralls.io/github/mwanakijiji/rrlfe?branch=main\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c783f25af909dcd1dc513f24cbf780405955d2d29da614210ef15dc39a291c35/68747470733a2f2f636f766572616c6c732e696f2f7265706f732f6769746875622f6d77616e616b696a696a692f72726c66652f62616467652e7376673f6272616e63683d6d61696e\" alt=\"Coverage Status\" data-canonical-src=\"https://coveralls.io/repos/github/mwanakijiji/rrlfe/badge.svg?branch=main\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-attribution\" class=\"anchor\" aria-hidden=\"true\" href=\"#attribution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAttribution\u003c/h2\u003e\n\u003cp\u003eIf this code has been useful for your work, please cite the source in the following BibTeX entry:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@article{esposito2018,\n Adsurl = {},\n Author = {},\n Doi = {},\n Eid = {},\n Journal = {},\n Keywords = {},\n Month = ,\n Pages = {},\n Title = {{}},\n Volume = ,\n Year = ,\n Bdsk-Url-1 = {}\n}\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://biobb-structure-utils.readthedocs.io/en/latest/?badge=latest\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d7c1b5de86a2921c1f759b175820fb443eba3f18bbf45e56e42f2cee72844627/68747470733a2f2f72656164746865646f63732e6f72672f70726f6a656374732f62696f62622d7374727563747572652d7574696c732f62616467652f3f76657273696f6e3d6c6174657374\" alt=\"\" data-canonical-src=\"https://readthedocs.org/projects/biobb-structure-utils/badge/?version=latest\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://anaconda.org/bioconda/biobb_structure_utils\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a477fdb1fd9bc9eb7ffa6cae6a019c6d4c3902fd468b3126f1b78e56c7dcff83/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e7376673f7374796c653d666c6174\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://quay.io/repository/biocontainers/biobb_structure_utils\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ca418e4db0b3de91a09a5df4a59446da015b6164598a8bc255918e911484f84f/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d517561792e696f2d626c7565\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/docker-Quay.io-blue\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/3836\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/Apache-2.0\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2a2157c971b7ae1deb8eb095799440551c33dcf61ea3d965d86b496a5a65df55/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d417061636865253230322e302d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/License-Apache%202.0-blue.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-biobb_structure_utils\" class=\"anchor\" href=\"#biobb_structure_utils\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebiobb_structure_utils\u003c/h1\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eBiobb_structure_utils is the Biobb module collection to modify or extract information from a PDB structure file, such as pulling out a particular model or chain, removing water molecules or ligands, or renumbering or sorting atoms or residues. Biobb (BioExcel building blocks) packages are Python building blocks that create new layer of compatibility and interoperability over popular bioinformatics tools. The latest documentation of this package can be found in our readthedocs site:\n\u003ca href=\"https://biobb-structure-utils.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003elatest API documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-version\" class=\"anchor\" href=\"#version\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVersion\u003c/h3\u003e\n\u003cp\u003ev3.6.1 2021.2\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cp\u003eUsing PIP:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eImportant:\u003c/strong\u003e PIP only installs the package. All the dependencies must be installed separately. To perform a complete installation, please use ANACONDA, DOCKER or SINGULARITY.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e pip install \"biobb_structure_utils\u0026gt;=3.6.1\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage: \u003ca href=\"https://biobb-structure-utils.readthedocs.io/en/latest/modules.html\" rel=\"nofollow\"\u003ePython API documentation\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing ANACONDA:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e conda install -c bioconda \"biobb_structure_utils\u0026gt;=3.6.1\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage: With conda installation BioBBs can be used with the \u003ca href=\"https://biobb-structure-utils.readthedocs.io/en/latest/modules.html\" rel=\"nofollow\"\u003ePython API documentation\u003c/a\u003e and the \u003ca href=\"https://biobb-structure-utils.readthedocs.io/en/latest/command_line.html\" rel=\"nofollow\"\u003eCommand Line documentation\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing DOCKER:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker pull quay.io/biocontainers/biobb_structure_utils:3.6.1--pyhdfd78af_0\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker run quay.io/biocontainers/biobb_structure_utils:3.6.1--pyhdfd78af_0 \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing SINGULARITY:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eMacOS users\u003c/strong\u003e: it\u0027s strongly recommended to avoid Singularity and use \u003cstrong\u003eDocker\u003c/strong\u003e as containerization system.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity pull --name biobb_structure_utils.sif shub://bioexcel/biobb_structure_utils\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity exec biobb_structure_utils.sif \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe command list and specification can be found at the \u003ca href=\"https://biobb-structure-utils.readthedocs.io/en/latest/command_line.html\" rel=\"nofollow\"\u003eCommand Line documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-copyright--licensing\" class=\"anchor\" href=\"#copyright--licensing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCopyright \u0026amp; Licensing\u003c/h3\u003e\n\u003cp\u003eThis software has been developed in the \u003ca href=\"http://mmb.irbbarcelona.org\" rel=\"nofollow\"\u003eMMB group\u003c/a\u003e at the \u003ca href=\"http://www.bsc.es/\" rel=\"nofollow\"\u003eBSC\u003c/a\u003e \u0026amp; \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eIRB\u003c/a\u003e for the \u003ca href=\"http://bioexcel.eu/\" rel=\"nofollow\"\u003eEuropean BioExcel\u003c/a\u003e, funded by the European Commission (EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/823830\" rel=\"nofollow\"\u003e823830\u003c/a\u003e, EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/675728\" rel=\"nofollow\"\u003e675728\u003c/a\u003e).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e(c) 2015-2021 \u003ca href=\"https://www.bsc.es/\" rel=\"nofollow\"\u003eBarcelona Supercomputing Center\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e(c) 2015-2021 \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eInstitute for Research in Biomedicine\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eLicensed under the\n\u003ca href=\"https://www.apache.org/licenses/LICENSE-2.0\" rel=\"nofollow\"\u003eApache License 2.0\u003c/a\u003e, see the file LICENSE for details.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-acknolegements\" class=\"anchor\" href=\"#acknolegements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknolegements\u003c/h3\u003e\n\u003cp\u003eThis software uses functions to read and modify GRO files based in the \u003ca href=\"https://github.com/caizkun/gropy\"\u003eGROPY\u003c/a\u003e library created by Zhikun Cai (\u003ca href=\"mailto:caizkun@gmail.com\"\u003ecaizkun@gmail.com\u003c/a\u003e) under the \u003ca href=\"https://github.com/caizkun/gropy/blob/master/LICENSE\"\u003eMIT\u003c/a\u003e. In this project \u003ca href=\"https://github.com/caizkun/gropy\"\u003eGROPY\u003c/a\u003e has been adapted to Python 3 and our own needs.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/39c04282e694d49ea0d56c716a27845cd25b9931f791484540f625dcecf68af2/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/39c04282e694d49ea0d56c716a27845cd25b9931f791484540f625dcecf68af2/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\" alt=\"\" title=\"Bioexcel\" data-canonical-src=\"https://bioexcel.eu/wp-content/uploads/2019/04/Bioexcell_logo_1080px_transp.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 8,
"topics": [],
- "updated_at": 1648070883.0
+ "updated_at": 1625224033.0
},
{
"data_format": 2,
- "description": "Parametric face image generator for mooney faces",
+ "description": null,
"filenames": [
- "Singularity"
+ "bc3.10--rstudio125042r362/Singularity",
+ "bc3.12--rstudio125042r405/Singularity"
],
- "full_name": "ShreyaKapoor18/parametric-face-image-generator",
+ "full_name": "yh549848/singularity-rstudio-rnaseqde",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-parametric-face-image-generator\" class=\"anchor\" aria-hidden=\"true\" href=\"#parametric-face-image-generator\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eparametric-face-image-generator\u003c/h1\u003e\n\u003cp\u003eThis software enables you to generate fully parametric face images from the Basel Face Model 2017 as proposed in:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e[1] Adam Kortylewski, Bernhard Egger, Andreas Schneider, Thomas Gerig, Andreas Morel-Forster and Thomas Vetter\n\u003ca href=\"http://openaccess.thecvf.com/content_CVPRW_2019/papers/BEFA/Kortylewski_Analyzing_and_Reducing_the_Damage_of_Dataset_Bias_to_Face_CVPRW_2019_paper.pdf\" rel=\"nofollow\"\u003e\"Analyzing and Reducing the Damage of Dataset Bias to Face Recognition With Synthetic Data\"\u003c/a\u003e,\nIN: CVPRW (2019)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[2] Adam Kortylewski, Andreas Schneider, Thomas Gerig, Bernhard Egger, Andreas Morel-Forster and Thomas Vetter\n\u003ca href=\"https://arxiv.org/abs/1802.05891\" rel=\"nofollow\"\u003e\"Training Deep Face Recognition Systems with Synthetic Data\"\u003c/a\u003e,\nIN: arXiv preprint (2018)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[3] Adam Kortylewski, Bernhard Egger, Andreas Schneider, Thomas Gerig, Andreas Morel-Forster and Thomas Vetter\n\u003ca href=\"http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w41/Kortylewski_Empirically_Analyzing_the_CVPR_2018_paper.pdf\" rel=\"nofollow\"\u003e\"Empirically Analyzing the Effect of Dataset Biases on Deep Face Recognition Systems\"\u003c/a\u003e,\nIN: CVPRW (2018)\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou can control the variation of parameters such as pose, shape, color, camera and illumination based on your demand and application.\nThis dataset can be used for training and comparing machine learning techniques such as CNNs on a common ground as proposed in [1,3] by generating fully controlled training and test data.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-rendering-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#rendering-setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRendering Setup\u003c/h3\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_0.png\"\u003e\u003cimg src=\"data/example_images/0_0.png\" alt=\"0_0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_1.png\"\u003e\u003cimg src=\"data/example_images/0_1.png\" alt=\"0_1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_2.png\"\u003e\u003cimg src=\"data/example_images/0_2.png\" alt=\"0_2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/1_0.png\"\u003e\u003cimg src=\"data/example_images/1_0.png\" alt=\"1_0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/1_1.png\"\u003e\u003cimg src=\"data/example_images/1_1.png\" alt=\"1_1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/1_2.png\"\u003e\u003cimg src=\"data/example_images/1_2.png\" alt=\"1_2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAbove you can see example face images sampled from this data generator. Each row shows different images of the same facial identity.\u003c/p\u003e\n\u003cp\u003eIn the \"controlled\" setup (top row), the model parameters are sampled at equidistant positions along a certain parameter , e.g. the yaw pose.\u003c/p\u003e\n\u003cp\u003eIn the \"random\" setup (bottom row), the model parameters are sampled randomly from a custom distribution.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-rendering-different-image-modalities\" class=\"anchor\" aria-hidden=\"true\" href=\"#rendering-different-image-modalities\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRendering Different Image Modalities\u003c/h3\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_1_depth.png\"\u003e\u003cimg src=\"data/example_images/0_1_depth.png\" alt=\"0_0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_2_depth.png\"\u003e\u003cimg src=\"data/example_images/0_2_depth.png\" alt=\"0_1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_3_depth.png\"\u003e\u003cimg src=\"data/example_images/0_3_depth.png\" alt=\"0_2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_1_correspondence.png\"\u003e\u003cimg src=\"data/example_images/0_1_correspondence.png\" alt=\"1_0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_2_correspondence.png\"\u003e\u003cimg src=\"data/example_images/0_2_correspondence.png\" alt=\"1_1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_3_correspondence.png\"\u003e\u003cimg src=\"data/example_images/0_3_correspondence.png\" alt=\"1_2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eYou can render different image modalities such as e.g. depth images (top row), color coded correspondence images (bottom row), normals, albedo or illumination.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-rendering-face-regions\" class=\"anchor\" aria-hidden=\"true\" href=\"#rendering-face-regions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRendering Face Regions\u003c/h3\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_1_region_mask.png\"\u003e\u003cimg src=\"data/example_images/0_1_region_mask.png\" alt=\"0_0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_2_region_mask.png\"\u003e\u003cimg src=\"data/example_images/0_2_region_mask.png\" alt=\"0_1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_3_region_mask.png\"\u003e\u003cimg src=\"data/example_images/0_3_region_mask.png\" alt=\"0_2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_1_region_mask_bfm09.png\"\u003e\u003cimg src=\"data/example_images/0_1_region_mask_bfm09.png\" alt=\"0_0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_2_region_mask_bfm09.png\"\u003e\u003cimg src=\"data/example_images/0_2_region_mask_bfm09.png\" alt=\"0_1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_3_region_mask_bfm09.png\"\u003e\u003cimg src=\"data/example_images/0_3_region_mask_bfm09.png\" alt=\"0_2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eYou can render different region maps, while we provide two default ones.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-facial-landmarks\" class=\"anchor\" aria-hidden=\"true\" href=\"#facial-landmarks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFacial Landmarks\u003c/h3\u003e\n\u003cp\u003eFor each face image the location and visibilty of 19 facial landmarks is written in a .tlms file in the following format:\u003c/p\u003e\n\u003cp\u003e\"facial landmark name\" \"visibility\" \"x-position\" \"y-position\"\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003einstalled \u003ca href=\"http://www.oracle.com/technetwork/java/javase/downloads/index.html\" rel=\"nofollow\"\u003eJava\u003c/a\u003e (Version 8.0 or higher recommended)\u003c/li\u003e\n\u003cli\u003edownload jar and config file under \u003ca href=\"https://github.com/unibas-gravis/parametric-face-image-generator/releases\"\u003e\u003ccode\u003erelease\u003c/code\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://gravis.dmi.unibas.ch/PMM/\" rel=\"nofollow\"\u003edownload\u003c/a\u003e Basel Face Model 2017\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://gravis.dmi.unibas.ch/PMM/\" rel=\"nofollow\"\u003edownload\u003c/a\u003e Basel Illumination Prior 2017\u003c/li\u003e\n\u003cli\u003eget a dataset with backgrounds, e.g. the \u003ca href=\"http://www.robots.ox.ac.uk/~vgg/data/dtd/\" rel=\"nofollow\"\u003eDescribable Textures Dataset\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eadapt paths and configuration in \u003ccode\u003edata/config_files/example_config_controlled.json\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eFor generating images in the controlled setup execute:\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003ejava -Xmx2g -cp generator.jar faces.apps.ControlledFaces -c data/config_files/example_config_controlled.json\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003eFor generating images in the random setup execute:\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003ejava -Xmx2g -cp generator.jar faces.apps.RandomFaces -c data/config_files/example_config_random.json\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-for-developers\" class=\"anchor\" aria-hidden=\"true\" href=\"#for-developers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor Developers:\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003einstalled \u003ca href=\"http://www.oracle.com/technetwork/java/javase/downloads/index.html\" rel=\"nofollow\"\u003eJava\u003c/a\u003e (Version 8.0 or higher recommended)\u003c/li\u003e\n\u003cli\u003einstalled \u003ca href=\"http://www.scala-sbt.org/release/tutorial/Setup.html\" rel=\"nofollow\"\u003esbt\u003c/a\u003e (only for compiling from sources)\u003c/li\u003e\n\u003cli\u003eclone repository\u003c/li\u003e\n\u003cli\u003ecompile and run using \u003ccode\u003esbt run -mem 2000\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity:\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003ewe provide a singularity container recipe file to run the data generator directly on compute servers\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-help-needed\" class=\"anchor\" aria-hidden=\"true\" href=\"#help-needed\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHelp needed\u003c/h2\u003e\n\u003cp\u003eThere is a \u003ca href=\"https://groups.google.com/forum/#!forum/scalismo-faces\" rel=\"nofollow\"\u003escalismo-faces google group\u003c/a\u003e for general questions and discussion.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-background\" class=\"anchor\" aria-hidden=\"true\" href=\"#background\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBackground\u003c/h2\u003e\n\u003cp\u003eBesides the publications listed next, we have also freely available \u003ca href=\"http://gravis.dmi.unibas.ch/PMM/lectures/overview/\" rel=\"nofollow\"\u003electures and tutorials\u003c/a\u003e. Some of the topics covered are statistical shape modeling and model-based image analysis as part of our research about \u003ca href=\"http://gravis.dmi.unibas.ch/PMM/\" rel=\"nofollow\"\u003eProbabilistic Morphable Models\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-publications\" class=\"anchor\" aria-hidden=\"true\" href=\"#publications\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePublications\u003c/h2\u003e\n\u003cp\u003eIf you use this software you will need the Basel Face Model 2017, the Basel Illumination Prior 2017 and a dataset of backgrounds. Please cite the following papers:\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-data-generator---random-mode\" class=\"anchor\" aria-hidden=\"true\" href=\"#data-generator---random-mode\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData Generator - Random Mode\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e[1] Adam Kortylewski, Bernhard Egger, Andreas Schneider, Thomas Gerig, Andreas Morel-Forster and Thomas Vetter\n\u003ca href=\"http://openaccess.thecvf.com/content_CVPRW_2019/papers/BEFA/Kortylewski_Analyzing_and_Reducing_the_Damage_of_Dataset_Bias_to_Face_CVPRW_2019_paper.pdf\" rel=\"nofollow\"\u003e\"Analyzing and Reducing the Damage of Dataset Bias to Face Recognition With Synthetic Data\"\u003c/a\u003e,\nIN: CVPRW (2019)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[2] Adam Kortylewski, Andreas Schneider, Thomas Gerig, Bernhard Egger, Andreas Morel-Forster and Thomas Vetter\n\u003ca href=\"https://arxiv.org/abs/1802.05891\" rel=\"nofollow\"\u003e\"Training Deep Face Recognition Systems with Synthetic Data\"\u003c/a\u003e,\nIN: arXiv preprint (2018)\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-data-generator---controlled-mode\" class=\"anchor\" aria-hidden=\"true\" href=\"#data-generator---controlled-mode\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData Generator - Controlled Mode\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e[3] Adam Kortylewski, Bernhard Egger, Andreas Schneider, Thomas Gerig, Andreas Morel-Forster and Thomas Vetter\n\u003ca href=\"http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w41/Kortylewski_Empirically_Analyzing_the_CVPR_2018_paper.pdf\" rel=\"nofollow\"\u003e\"Empirically Analyzing the Effect of Dataset Biases on Deep Face Recognition Systems\"\u003c/a\u003e,\nIN: CVPRW (2018)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-basel-face-model-2017\" class=\"anchor\" aria-hidden=\"true\" href=\"#basel-face-model-2017\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBasel Face Model 2017\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e[4] Thomas Gerig, Andreas Morel-Forster, Clemens Blumer, Bernhard Egger, Marcel Luethi, Sandro Schoenborn and Thomas Vetter\n\u003ca href=\"https://arxiv.org/abs/1709.08398\" rel=\"nofollow\"\u003e\" Morphable Face Models - An Open Framework\"\u003c/a\u003e,\nIN: 13th IEEE Conference on Automatic Face and Gesture Recognition (FG 2018)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-basel-illumination-prior-2017\" class=\"anchor\" aria-hidden=\"true\" href=\"#basel-illumination-prior-2017\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBasel Illumination Prior 2017\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e[5] Bernhard Egger, Sandro Schoenborn, Andreas Schneider, Adam Kortylewski, Andreas Morel-Forster, Clemens Blumer and Thomas Vetter\n\u003ca href=\"http://gravis.dmi.unibas.ch/publications/2018/2018_Egger_IJCV.pdf\" rel=\"nofollow\"\u003e\"Occlusion-aware 3D Morphable Models and an Illumination Prior for Face Image Analysis\"\u003c/a\u003e,\nIN: International Journal of Computer Vision, 2018\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-background-dataset\" class=\"anchor\" aria-hidden=\"true\" href=\"#background-dataset\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBackground Dataset\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eA background dataset of your choice\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eBernhard Egger\u003c/li\u003e\n\u003cli\u003eAdam Kortylewski\u003c/li\u003e\n\u003cli\u003eAndreas Morel-Forster\u003c/li\u003e\n\u003cli\u003eAndreas Schneider\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-maintainers\" class=\"anchor\" aria-hidden=\"true\" href=\"#maintainers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMaintainers\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eUniversity of Basel, Graphics and Vision research: \u003ca href=\"https://github.com/unibas-gravis\"\u003e@unibas-gravis\u003c/a\u003e, \u003ca href=\"http://gravis.cs.unibas.ch\" rel=\"nofollow\"\u003ehomepage\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://www.apache.org/licenses/LICENSE-2.0\" rel=\"nofollow\"\u003eApache License, Version 2.0\u003c/a\u003e, details see LICENSE\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eCopyright 2017, University of Basel, Graphics and Vision Research\n\nLicensed under the Apache License, Version 2.0 (the \"License\");\nyou may not use this file except in compliance with the License.\nYou may obtain a copy of the License at\n\n http://www.apache.org/licenses/LICENSE-2.0\n\nUnless required by applicable law or agreed to in writing, software\ndistributed under the License is distributed on an \"AS IS\" BASIS,\nWITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\nSee the License for the specific language governing permissions and\nlimitations under the License.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-running-rstudio-server-in-a-conda-environment\" class=\"anchor\" href=\"#running-rstudio-server-in-a-conda-environment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Rstudio Server in a Conda Environment\u003c/h1\u003e\n\u003cp\u003eI usually rely on the \u003ca href=\"https://docs.conda.io/en/latest/\" rel=\"nofollow\"\u003econda package manager\u003c/a\u003e to manage my environments during development. Thanks to \u003ca href=\"https://conda-forge.org/\" rel=\"nofollow\"\u003econda-forge\u003c/a\u003e and \u003ca href=\"https://bioconda.github.io/\" rel=\"nofollow\"\u003ebioconda\u003c/a\u003e most R packages are now also available through conda. For production,\nI \u003ca href=\"https://github.com/grst/containerize-conda\"\u003econvert them to containers\u003c/a\u003e as these are easier to share.\u003c/p\u003e\n\u003cp\u003eUnfortunately, there seems to be \u003ca href=\"https://community.rstudio.com/t/start-rstudio-server-session-in-conda-environment/12516/15\" rel=\"nofollow\"\u003eno straightforward way\u003c/a\u003e to use conda envs in Rstudio server. This repository provides three approaches to make rstudio server work with conda envs.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#running-rstudio-server-with-singularity\"\u003eRunning Rstudio Server in a Singularity Container\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#running-rstudio-server-with-podmandocker\"\u003eRunning Rstudio Server in a Docker/Podman Container\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#running-locally\"\u003eRunning Rstudio Server locally\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-rstudio-server-with-singularity\" class=\"anchor\" href=\"#running-rstudio-server-with-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Rstudio Server with Singularity\u003c/h2\u003e\n\u003cp\u003eWith this approach Rstudio Server runs in a Singularity container (based on \u003ca href=\"https://hub.docker.com/r/rocker/rstudio\" rel=\"nofollow\"\u003erocker/rstudio\u003c/a\u003e).\u003cbr\u003e\nThe conda environment gets mounted into the container - like that there\u0027s no need to rebuild the container to add a package and\n\u003ccode\u003einstall.packages\u003c/code\u003e can be used without issues. The container-based approach has the following benefits:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAuthentication works (\u003ca href=\"https://github.com/grst/rstudio-server-conda/issues/3\"\u003e#3\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eSeveral separate instances of Rstudio server can run in parallel, even without the \u003cem\u003ePro\u003c/em\u003e version.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-prerequisites\" class=\"anchor\" href=\"#prerequisites\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://sylabs.io/guides/3.0/user-guide/quick_start.html\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003econda\u003c/a\u003e or \u003ca href=\"https://github.com/conda-forge/miniforge#mambaforge\"\u003emamba\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eClone this repository\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone git@github.com:grst/rstudio-server-conda.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e rstudio-server-conda/singularity\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eActivate the target conda env or set the environment variable \u003ccode\u003eCONDA_PREFIX\u003c/code\u003e\nto point to the location of the conda env.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCheck the \u003ccode\u003erun_singularity.sh\u003c/code\u003e script. In particular, you may need to add additional bind mounts\n(e.g. a global data directory).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eExecute the \u003ccode\u003erun_singularity.sh\u003c/code\u003e script. It will automatically build the container if it is not available.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ePORT=8787 PASSWORD=notsafe ./run_singularity.sh\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eLog into Rstudio\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eopen rstudio server at \u003ccode\u003ehttp://localhost:8787\u003c/code\u003e (or whatever port you specified)\u003c/li\u003e\n\u003cli\u003elogin with your default username and the password you specified via the \u003ccode\u003ePASSWORD\u003c/code\u003e environment variable.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-rstudio-server-with-podmandocker\" class=\"anchor\" href=\"#running-rstudio-server-with-podmandocker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Rstudio Server with Podman/Docker\u003c/h2\u003e\n\u003cp\u003eThis approach is similar to \u003ca href=\"#running-rstudio-server-with-singularity\"\u003eSingularity\u003c/a\u003e, but uses\nDocker or Podman and a \u003ccode\u003edocker-compose.yml\u003c/code\u003e file instead.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-known-limitations\" class=\"anchor\" href=\"#known-limitations\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eKnown limitations\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eNo access to shared group directories (\u003ca href=\"https://github.com/grst/rstudio-server-conda/issues/14\"\u003e#14\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-prerequisites-1\" class=\"anchor\" href=\"#prerequisites-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e or \u003ca href=\"https://podman.io/\" rel=\"nofollow\"\u003ePodman\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/docker/compose\"\u003edocker-compose\u003c/a\u003e or \u003ca href=\"https://github.com/containers/podman-compose\"\u003epodman-compose\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003econda\u003c/a\u003e or \u003ca href=\"https://github.com/conda-forge/miniforge#mambaforge\"\u003emamba\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-usage-1\" class=\"anchor\" href=\"#usage-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eClone this repository\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone git@github.com:grst/rstudio-server-conda.git\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBuild the rstudio container (fetches the latest version of \u003ca href=\"https://hub.docker.com/r/rocker/rstudio\" rel=\"nofollow\"\u003erocker/rstudio\u003c/a\u003e and adds some custom scripts)\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e rstudio-server-conda/docker\ndocker-compose build \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e or podman-compose\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCopy the docker-compose.yml file into your project directory and adjust the paths.\u003c/p\u003e\n\u003cp\u003eYou may want to add additional volumes with your data.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s\"\u003e[...]\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003eports\u003c/span\u003e:\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e port on the host : port in the container (the latter is always 8787)\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e8889:8787\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003evolumes\u003c/span\u003e:\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e mount conda env into exactely the same path as on the host system - some paths are hardcoded in the env.\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003e/home/sturm/anaconda3/envs/R400:/home/sturm/anaconda3/envs/R400\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Share settings between rstudio instances\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003e/home/sturm/.local/share/rstudio/monitored/user-settings:/root/.local/share/rstudio/monitored/user-settings\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e mount the working directory containing your R project.\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003e/home/sturm/projects:/projects\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003eenvironment\u003c/span\u003e:\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e password used for authentication\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003ePASSWORD=notsafe\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e repeat the path of the conda environment (must be identical to the path in \"volumes\")\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003eCONDAENV=/home/sturm/anaconda3/envs/R400\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun your project-specific instance of Rstudio-server\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker-compose up \u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eLog into Rstudio\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eOpen your server at \u003ccode\u003ehttp://localhost:8889\u003c/code\u003e (or whatever port you specified)\u003c/li\u003e\n\u003cli\u003eLogin with the user \u003ccode\u003erstudio\u003c/code\u003e (when using Docker) or \u003ccode\u003eroot\u003c/code\u003e (when using Podman) and the password you specified\nin the \u003ccode\u003edocker-compose.yml\u003c/code\u003e. If you are using Podman and login with \u003ccode\u003erstudio\u003c/code\u003e you won\u0027t have permissions to\naccess the mounted volumes.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-locally\" class=\"anchor\" href=\"#running-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Locally\u003c/h2\u003e\n\u003cp\u003eWith this approach a locally installed Rstudio server is ran such that it uses the conda env.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-known-limitations-1\" class=\"anchor\" href=\"#known-limitations-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eKnown limitations\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eno authentication (\u003ca href=\"https://github.com/grst/rstudio-server-conda/issues/3\"\u003e#3\u003c/a\u003e). Use this approach only in a secure network!\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-prerequisites-2\" class=\"anchor\" href=\"#prerequisites-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.rstudio.com/products/rstudio/download-server/\" rel=\"nofollow\"\u003erstudio server\u003c/a\u003e installed locally\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003econda\u003c/a\u003e or \u003ca href=\"https://github.com/conda-forge/miniforge#mambaforge\"\u003emamba\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-usage-2\" class=\"anchor\" href=\"#usage-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eClone this repo\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/grst/rstudio-server-conda.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun rstudio server in the conda env\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd rstudio-server-conda/local\nconda activate my_project\n./start_rstudio_server.sh 8787 # use any free port number here. \n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eConnect to Rstudio\u003c/p\u003e\n\u003cp\u003eYou should now be able to connect to rstudio server on the port you specify.\n\u003cstrong\u003eIf an R Session has previously been running, you\u0027ll need to rstart the Rsession now\u003c/strong\u003e.\u003c/p\u003e\n\u003cp\u003eObviously, if your env does not have a version of \u003ccode\u003eR\u003c/code\u003e installed, this will either not\nwork at all, or fall back to the system-wide R installation.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-how-it-works\" class=\"anchor\" href=\"#how-it-works\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow it works\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eRstudio server, can be started in non-daemonized mode by each user individually on a custom port (similar to a jupyter notebook). This instance can then run in a conda environment:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; conda activate my_project\n\u0026gt; /usr/lib/rstudio-server/bin/rserver \\\n --server-daemonize=0 \\\n --www-port 8787 \\\n --rsession-which-r=$(which R) \\\n --rsession-ld-library-path=$CONDA_PREFIX/lib\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eTo avoid additional problems with library paths, also \u003ccode\u003ersession\u003c/code\u003e needs to run within the conda environment. This is achieved by wrapping \u003ccode\u003ersession\u003c/code\u003e into the \u003ca href=\"https://github.com/grst/rstudio-server-conda/blob/master/local/rsession.sh\"\u003ersession.sh\u003c/a\u003e script. The path to the wrapped \u003ccode\u003ersession\u003c/code\u003e executable can be passed to \u003ccode\u003erserver\u003c/code\u003e as command line argument.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erserver # ...\n --rsession-path=rsession.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eWhen using multiple users a unique \u003ccode\u003esecret-cookie-key\u003c/code\u003e has to be generated for each user. The path to the secret cookie key can be passed to \u003ccode\u003erserver\u003c/code\u003e as a command line parameter.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003euuid \u0026gt; /tmp/rstudio-server/${USER}_secure-cookie-key\nrserver # ...\n --secure-cookie-key-file /tmp/rstudio-server/${USER}_secure-cookie-key\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1667551934.0
+ "updated_at": 1623388496.0
},
{
"data_format": 2,
- "description": null,
+ "description": "A template project to provide software to ESCAPE.",
"filenames": [
- "Singularity.def"
+ "Singularity/Singularity"
],
- "full_name": "bsande6/fa1p1_luo",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-fa1p1_luo\" class=\"anchor\" aria-hidden=\"true\" href=\"#fa1p1_luo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFA1p1_Luo\u003c/h1\u003e\n\u003cp\u003eRepository for Dr. Luo\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h1\u003e\n\u003cp\u003eBefore adding to this repo it is recommended to set up a .gitignore file and add the pycache folder\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-baseline-driving-network\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-baseline-driving-network\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun baseline driving network\u003c/h1\u003e\n\u003cp\u003eCheck that the config file for the assocated folder and configuration has the IMAGE_TRANSLATION config set to False\u003c/p\u003e\n\u003cp\u003epython coiltraine.py --gpus 0 --folder nocrash --exp resnet34imnet10S1 --single-process drive -de NocrashTraining_Town01 --docker carlagear\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-translation\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-translation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun translation\u003c/h1\u003e\n\u003cp\u003eCheck that the config file for the assocated folder and configuration has the IMAGE_TRANSLATION config set to True and the STYLE and AERIAL configs are False.\u003c/p\u003e\n\u003cp\u003eChoose translation checkpoint via the -name and --which_epoch parameters.\u003c/p\u003e\n\u003cp\u003epython coiltraine.py --gpus 0 --folder nocrash --exp resnet34imnet10S1 --single-process drive -de NocrashTraining_Town01 --docker carlagear --name finetune_fromEpoch400_episodes_1000epoch_weight2000.0 --which_epoch 200 --no_instance --n_downsample_global 2\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-translation-with-stylegan\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-translation-with-stylegan\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun translation with styleGan\u003c/h1\u003e\n\u003cp\u003eThis is the model which is used for the aerial translation.\u003c/p\u003e\n\u003cp\u003eEnsure that the configuration file correctly set STYLE_TRANSLATION and AERIAL_TRANSLATION. You may also have to change these files in coil_global.py if they are not correctly adjusted.\u003c/p\u003e\n\u003cp\u003eBe sure to replace checkpoint path with the desired checkpoint\u003c/p\u003e\n\u003cp\u003epython coiltraine.py --gpus 0 --folder nocrash --exp resnet34imnet10S1 --single-process drive -de NocrashTraining_Town01 --docker carlagear --checkpoint_path pixel2style2pixel/checkpoints/carla_AtoG/checkpoints/iteration_1000000.pt\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-data_collector\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-data_collector\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun data_collector\u003c/h1\u003e\n\u003cp\u003eThe data collection must be run under the old translation environment pix2pix\u003c/p\u003e\n\u003cp\u003epython multi_gpu_collection.py -pt /path/to/data/folder -d dataset_configuration_file\u003c/p\u003e\n",
+ "full_name": "garciagenrique/template_project_escape",
+ "latest_release": "v0.0.3-dev",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-template_project_escape\" class=\"anchor\" href=\"#template_project_escape\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etemplate_project_escape\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.5281/zenodo.4923992\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/869b462bf3a319fe4fc2ffa52fb6b0f7c8e42eb4e0ed4bc2482306b9fd5aafab/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e343932333939322e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4923992.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape/-/commits/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a25ea71f12537b69d5aca8b409685333243d4e65ceb91c5a401dadb6eacea20e/68747470733a2f2f6769746c61622e696e3270332e66722f657363617065323032302f7770332f74656d706c6174655f70726f6a6563745f6573636170652f6261646765732f6d61737465722f706970656c696e652e737667\" alt=\"pipeline status\" data-canonical-src=\"https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape/badges/master/pipeline.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fd551ba4b042d89480347a0e74e31af63b356b2cac1116c7b80038f41b04a581/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d4d49542d677265656e2e737667\" alt=\"License: MIT\" data-canonical-src=\"https://img.shields.io/badge/License-MIT-green.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca href=\"https://camo.githubusercontent.com/64f9054d866a78f16e1451647c19b22fc159a58191e004612257ce5277bd6db9/68747470733a2f2f63646e2e65736f2e6f72672f696d616765732f6c617267652f616e6e3138303834612e6a7067\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/64f9054d866a78f16e1451647c19b22fc159a58191e004612257ce5277bd6db9/68747470733a2f2f63646e2e65736f2e6f72672f696d616765732f6c617267652f616e6e3138303834612e6a7067\" width=\"640\" height=\"453\" data-canonical-src=\"https://cdn.eso.org/images/large/ann18084a.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp\u003eA simple template project to provide software to ESCAPE.\u003c/p\u003e\n\u003cp\u003eThis repository shows the \u003cstrong\u003ebasic content\u003c/strong\u003e that should be included in a project (following the\n\u003ca href=\"https://opensource.guide/starting-a-project/\" rel=\"nofollow\"\u003eopensource guide\u003c/a\u003e):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAn \u003ca href=\"https://help.github.com/en/github/creating-cloning-and-archiving-repositories/licensing-a-repository#where-does-the-license-live-on-my-repository\"\u003eopen source\u003c/a\u003e\n\u003cstrong\u003elicense\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003eA \u003ca href=\"https://help.github.com/en/github/getting-started-with-github/create-a-repo#commit-your-first-change\"\u003e\u003cstrong\u003eREADME\u003c/strong\u003e file\u003c/a\u003e,\nsimilar to this one.\u003c/li\u003e\n\u003cli\u003eContributing guidelines.\n\u003cul\u003e\n\u003cli\u003eSee below the general guidelines for the ESCAPE repository.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eA \u003ca href=\"https://opensource.guide/code-of-conduct/\" rel=\"nofollow\"\u003ecode of conduct\u003c/a\u003e.\n\u003cul\u003e\n\u003cli\u003eCheck why is a good idea to add one.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eThe repository itself.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIt would be highly suitable to include too:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eA setup file as well as the basic commands to install the library (see below).\u003c/li\u003e\n\u003cli\u003eA \u003ccode\u003e.gitignore\u003c/code\u003e file.\u003c/li\u003e\n\u003cli\u003eUnitary and integration tests, and ideally a CI pipeline.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003ePlease feel free to clone / fork / template this project!\u003c/strong\u003e (For example, look to left of the\n\u003ccode\u003eClone or download\u003c/code\u003e button in the \u003ca href=\"https://github.com/garciagenrique/template_project_escape\"\u003eGitHub\u003c/a\u003e site).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFor a detailed explanation of how to submit a contribution to a project / repository (Fork, create a branch, make\na pull request...), you can have a look to the \u003ca href=\"https://opensource.guide/how-to-contribute/#how-to-submit-a-contribution\" rel=\"nofollow\"\u003eopensource guide\u003c/a\u003e\nand/or the \u003ca href=\"https://git-scm.com/doc\" rel=\"nofollow\"\u003egit\u0027s documentation\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eNot that if you have login GitLab by using the \u003ccode\u003e[Shibbolenth]\u003c/code\u003e service (eduGAIN, F\u00e9d\u00e9ration d\u0027Identit\u00e9s\nRENATER), you will need to \u003ca href=\"https://gitlab.in2p3.fr/help/ssh/README#generating-a-new-ssh-key-pair\" rel=\"nofollow\"\u003eadd a SSH key\u003c/a\u003e to\nyour GitLab profile if you want to \u0027push\u0027 your changes to the server.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-contribute-to-the-escape-ossr\" class=\"anchor\" href=\"#contribute-to-the-escape-ossr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContribute to the ESCAPE OSSR\u003c/h1\u003e\n\u003cp\u003eIf you want to provide software to the ESCAPE repository:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eCheck the \u003ca href=\"https://escape2020.pages.in2p3.fr/wp3/ossr-pages/page/contribute/contribute_ossr/\" rel=\"nofollow\"\u003eESCAPE OSSR guidelines\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFor ESCAPE members, follow the steps detailed in \u003ca href=\"https://gitlab.in2p3.fr/escape2020/wp3/onboarding\" rel=\"nofollow\"\u003ethe onboarding project\u003c/a\u003e\nto finalise your contribution and the same onboarding process.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eAll the code provided should be uploaded to the \u003ca href=\"https://zenodo.org/communities/escape2020/\" rel=\"nofollow\"\u003eZenodo ESCAPE community\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCheck the following \u003ca href=\"https://escape2020.pages.in2p3.fr/wp3/ossr-pages/page/contribute/publish_tutorial/\" rel=\"nofollow\"\u003etutorial on how to publish content in Zenodo\u003c/a\u003e,\nand how to automatise the upload of each new release of your project.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-this-project-also-includes\" class=\"anchor\" href=\"#this-project-also-includes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThis project also includes\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-1-how-to-automatise-the-building-of-a-singularity-image-and-upload-it-to-zenodo-using-the-gitlab-ci\" class=\"anchor\" href=\"#1-how-to-automatise-the-building-of-a-singularity-image-and-upload-it-to-zenodo-using-the-gitlab-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. How to automatise the building of a Singularity image and upload it to Zenodo using the GitLab-CI\u003c/h2\u003e\n\u003cp\u003eA working example of how to automatise the GitLab-CI to;\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003ecreate a Singularity image / container of your code,\u003c/li\u003e\n\u003cli\u003emake it available as a downloadable artifact within your project and\u003c/li\u003e\n\u003cli\u003eupload it to the \u003ca href=\"https://zenodo.org/communities/escape2020\" rel=\"nofollow\"\u003eESCAPE OSSR\u003c/a\u003e,\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003ecan be found in the \u003ccode\u003e.singularityci\u003c/code\u003e, and \u003ccode\u003eSingularity\u003c/code\u003e directories and in the \u003ccode\u003e.gitlab-ci.yml\u003c/code\u003e file - the\n\u003ccode\u003ebuild_singularity_image\u003c/code\u003e stage. Please read carefully all the README files.\u003c/p\u003e\n\u003cp\u003eFor an easy example of how to create a Singularity receipt from scratch (and its corresponding container when executed),\nplease have a look to the \u003ccode\u003esingularity_utils\u003c/code\u003e directory.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-2-how-to-automatise-the-building-of-a-docker-container-and-upload-it-to-the-gitlab-container-registry\" class=\"anchor\" href=\"#2-how-to-automatise-the-building-of-a-docker-container-and-upload-it-to-the-gitlab-container-registry\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. How to automatise the building of a Docker container and upload it to the GitLab Container Registry\u003c/h2\u003e\n\u003cp\u003eAn example can be found in the \u003ccode\u003eDocker\u003c/code\u003e directory and in the \u003ccode\u003e.gitlab-ci.yml\u003c/code\u003e file - the\n\u003ccode\u003ebuild_docker_image\u003c/code\u003e stage.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-install\" class=\"anchor\" href=\"#install\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h1\u003e\n\u003cp\u003eExample of how to show installing instructions (and indeed the way to install this project).\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e $ git clone https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape.git\n $ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e template_project_escape\n $ pip install \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-citing\" class=\"anchor\" href=\"#citing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCiting\u003c/h1\u003e\n\u003cp\u003eExample of citing (as well as the DOI to cite this project),\u003c/p\u003e\n\u003cp\u003eIn case of citing this repository, use the following DOI:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ev2.2 \u003ca href=\"https://doi.org/10.5281/zenodo.4923992\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/869b462bf3a319fe4fc2ffa52fb6b0f7c8e42eb4e0ed4bc2482306b9fd5aafab/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e343932333939322e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4923992.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev2.1 \u003ca href=\"https://doi.org/10.5281/zenodo.4790629\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c8f54e2f50cdf0c4d1bd5183d6472cae8b708efacd6a1319b443d8e456f41b7f/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e343739303632392e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4790629.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev2.0 \u003ca href=\"https://doi.org/10.5281/zenodo.3884963\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c27201272a77fc3ab3029c8c2c452e02a71736b7adaa0926bc45d3ac825598ed/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e333838343936332e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.3884963.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev1.1 \u003ca href=\"https://doi.org/10.5281/zenodo.3743490\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cbfe31d3a9bd48ef4554b414c3c2325276269a476a79ec0217aa9feccc87cecd/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e333734333439302e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.3743490.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev1.0 \u003ca href=\"https://doi.org/10.5281/zenodo.3572655\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5ec734ee4c1c793eaa8f9c2b189a6eae6d7d2ccb5f2a92adeb8af479409cc7bb/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e333537323635352e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.3572655.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eDo not forget to include your code / container into the \u003ca href=\"https://zenodo.org/communities/escape2020/\" rel=\"nofollow\"\u003eZenodo ESCAPE community\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cem\u003e\u003cstrong\u003eNote that\u003c/strong\u003e\u003c/em\u003e a DOI will be assigned in the moment create a new record/entry in Zenodo.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h1\u003e\n\u003cp\u003ePlease check the licenses of the code within the \u003ccode\u003e.singularityci\u003c/code\u003e directory before adding this template\nto your project.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-report-an-issue--ask-a-question\" class=\"anchor\" href=\"#report-an-issue--ask-a-question\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReport an issue / Ask a question\u003c/h1\u003e\n\u003cp\u003eUse the \u003ca href=\"https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape/-/issues\" rel=\"nofollow\"\u003eGitLab repository Issues\u003c/a\u003e.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-contact\" class=\"anchor\" href=\"#contact\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h1\u003e\n\u003cp\u003eEmail to vuillaume [at] lapp.in2p3.fr / garcia [at] lapp.in2p3.fr.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1668106102.0
+ "updated_at": 1623346169.0
},
{
"data_format": 2,
- "description": "Source code, installation, configuration and submission scripts for exascale in situ visualization with ISAAC and PIConGPU",
+ "description": "container for gatk tools",
"filenames": [
- "sources/crusher/picongpu/share/picongpu/dockerfiles/ubuntu-2004/Singularity",
- "sources/summit/picongpu/share/picongpu/dockerfiles/ubuntu-2004/Singularity"
+ "Singularity"
],
- "full_name": "benjha/sc2022_ISAAC_artifact",
+ "full_name": "aseetharam/gatk",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-sc2022-artifact-description\" class=\"anchor\" aria-hidden=\"true\" href=\"#sc2022-artifact-description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSC\u00272022 Artifact Description\u003c/h1\u003e\n\u003cp\u003eWe reported the results of six experiments to evaluate the performance characteristics and portability of our in situ visualization solution. Three were run on Summit (\u003ccode\u003e64_gpus\u003c/code\u003e, \u003ccode\u003estrong_scaling\u003c/code\u003e, \u003ccode\u003eweak_scaling\u003c/code\u003e) and the other three on Crusher (\u003ccode\u003efirst_experiment\u003c/code\u003e, \u003ccode\u003esecond_experiment\u003c/code\u003e, \u003ccode\u003eweak_scaling\u003c/code\u003e). General simulations parameters:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eKelvin-Helmholtz instability simulation.\u003c/li\u003e\n\u003cli\u003e256x256x256 cells per GPU, additionally on Crusher: 512x512x512 cells per GPU.\u003c/li\u003e\n\u003cli\u003eFour particles per cell resulting in 134,217,728 macroparticles per GPU.\u003c/li\u003e\n\u003cli\u003eVolume, isosurface, particles and vector field visualization of three data sources. The threshold for isosurface visualization is set to the maximum of 1 for all sources to prevent any kind of early ray termination due to a valid isosurface.\u003c/li\u003e\n\u003cli\u003eTrilinear Interpolation is enabled, and the step size is set to the default of 0.5.\u003c/li\u003e\n\u003cli\u003eHalo exchange enabled.\u003c/li\u003e\n\u003cli\u003eTimings are averaged from 1440 time steps. Starting simulation time step is 10 to allow stabilization.\u003c/li\u003e\n\u003cli\u003eCamera view\u0027s animation is divided into four stages, each with 360 steps and a rotation around a different axis to cover most of the viewing angles.\u003c/li\u003e\n\u003cli\u003eISAAC streaming capabilities are disabled including image compression.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe interested reader can check the PIConGPU\u2019s documentation under this \u003ca href=\"https://picongpu.readthedocs.io\" rel=\"nofollow\"\u003elink\u003c/a\u003e for details on how to set up a simulation and a experiment. The configuration files used for the experiments are available following the next links:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSummit\n\u003cul\u003e\n\u003cli\u003e256x256x256 \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/simulation/summit/KelvinHelmholtz\"\u003eSimulation\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eExperiment: \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/summit/64_gpus\"\u003e64_gpus\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eExperiment: \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/summit/strong_scaling\"\u003estrong_scaling\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eExperiment: \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/summit/weak_scaling\"\u003eweak_scaling\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eCrusher\n\u003cul\u003e\n\u003cli\u003e256x256x256 \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/simulation/crusher/KelvinHelmholtz\"\u003eSimulation\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e512x512x512 \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/simulation/crusher/KelvinHelmholtz_large\"\u003eSimulation\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eExperiment: \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/crusher/first_experiment\"\u003efirst_experiment\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eExperiment: \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/crusher/second_experiment\"\u003esecond_experiment\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eExperiment: \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/crusher/weak_scaling\"\u003eweak_scaling\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eExperiments are reproduced following the instructions of the next section.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-installation--running-experiments\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation--running-experiments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation \u0026amp; Running Experiments\u003c/h1\u003e\n\u003cp\u003eWe include three scripts to deploy the experiments in Summit and Crusher systems:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/blob/main/config_vars.sh\"\u003e\u003ccode\u003econfig_vars.sh\u003c/code\u003e\u003c/a\u003e. This script includes the configuration variables that should be set by the user to install, configure and submit the experiments to the batch system. This script is modifiable by the user and is used by the \u003ccode\u003einstall.sh\u003c/code\u003e and \u003ccode\u003erun_experimen.sh\u003c/code\u003e scripts.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/blob/main/install.sh\"\u003e\u003ccode\u003einstall.sh\u003c/code\u003e\u003c/a\u003e. This script compiles and installs ISAAC, and the Kelvin-Helmholtz instability simulation. This script is only runnable by the user and should not be modified.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/blob/main/run_experiment.sh\"\u003e\u003ccode\u003erun_experiment.sh\u003c/code\u003e\u003c/a\u003e. This script submits to the batch system the experiments described previously. This script is only runnable by the user and should not be modified.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThe configuration variables defined in \u003ccode\u003econfig_vars.sh\u003c/code\u003e are described next:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eMAIL\u003c/code\u003e. Specifies what e-mail will receive a notification when a submitted experiment is running. This variable is optional.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ePROJ_ID\u003c/code\u003e. Specifies what project id to use to submit a job. This variable is mandatory.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eMY_INSTALLATION_PATH\u003c/code\u003e. Indicates the installation path of all software stack. Make sure \u003ccode\u003eMY_INSTALLATION_PATH\u003c/code\u003e is under \u003ccode\u003e$PROJWORK/\u0026lt;proj_id\u0026gt;/\u0026lt;user_id\u0026gt;\u003c/code\u003e. This variable is mandatory.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eMY_ISAAC_LOG_PATH\u003c/code\u003e. Specifies the path of the performance files generated when running the code. Make sure \u003ccode\u003eMY_ISAAC_LOG_PATH\u003c/code\u003e is under \u003ccode\u003eMY_INSTALLATION_PATH\u003c/code\u003e. This variable is mandatory.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eMY_SIMULATIONS_PATH\u003c/code\u003e. Sets the simulations\u0027 path. Make sure it is under \u003ccode\u003eMY_INSTALLATION_PATH\u003c/code\u003e. This variable is mandatory.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eMY_SIMULATION_NAME\u003c/code\u003e. Indicates the name of the simulation. This variable is mandatory.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eSYSTEM\u003c/code\u003e. Specifies the target cluster to install and execute the experiments. Available options are: \u003ccode\u003esummit\u003c/code\u003e, \u003ccode\u003ecrusher\u003c/code\u003e. This variable is mandatory\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eEXPERIMENT_NAME\u003c/code\u003e. Sets the experiment name that will be submitted to the batch system.\n\u003cul\u003e\n\u003cli\u003eOptions for summit are: \u003ccode\u003e64_gpus\u003c/code\u003e, \u003ccode\u003estrong_scaling\u003c/code\u003e, \u003ccode\u003eweak_scaling\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eOptions for crusher are: \u003ccode\u003efirst_experiment\u003c/code\u003e, \u003ccode\u003esecond_experiment\u003c/code\u003e, \u003ccode\u003eweak_scaling\u003c/code\u003e. This variable is mandatory.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eFRAMEBUFFER\u003c/code\u003e. Sets the framebuffer resolution. This option is only used on \u003ccode\u003eSYSTEM=summit\u003c/code\u003e and \u003ccode\u003eEXPERIMENT_NAME=64_gpus\u003c/code\u003e.\n\u003cul\u003e\n\u003cli\u003eAvailable options: 720 , 1080 , 1440 , 2160.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eN_GPUS\u003c/code\u003e. Sets the number of GPUs for strong scaling and weak scaling experiments.\n\u003cul\u003e\n\u003cli\u003eOptions for \u003ccode\u003eSYSTEM=summit\u003c/code\u003e and \u003ccode\u003eEXPERIMENT_NAME=strong_scaling\u003c/code\u003e: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512.\u003c/li\u003e\n\u003cli\u003eOptions for \u003ccode\u003eSYSTEM=summit\u003c/code\u003e and \u003ccode\u003eEXPERIMENT_NAME=weak_scaling\u003c/code\u003e: 1, 8, 64, 512, 1000, 2755, 4096, 5832, 8000, 10648, 13824.\u003c/li\u003e\n\u003cli\u003eOptions for \u003ccode\u003eSYSTEM=crusher\u003c/code\u003e and \u003ccode\u003eEXPERIMENT_NAME=weak_scaling\u003c/code\u003e: 1 , 8 , 64 , 216 , 512 , 1000.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eInstallation steps are as follows:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eLogin to Summit or Crusher.\u003c/li\u003e\n\u003cli\u003eClone this repository:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/benjha/sc2022_ISAAC_artifact.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eGo to \u003ccode\u003esc2022_ISAAC_artifact\u003c/code\u003e directory.\u003c/li\u003e\n\u003cli\u003eSet executable the permissions for \u003ccode\u003einstall.sh\u003c/code\u003e and \u003ccode\u003erun_experiment.sh\u003c/code\u003e scripts:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003echmod +x install.sh\nchmod +x run_experiment.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eSet the next variables according to your preferences in config_vars.sh script:\n\u003ccode\u003eMAIL\u003c/code\u003e, \u003ccode\u003ePROJ_ID\u003c/code\u003e, \u003ccode\u003eMY_INSTALLATION_PATH\u003c/code\u003e, \u003ccode\u003eMY_ISAAC_LOG_PATH\u003c/code\u003e, \u003ccode\u003eMY_SIMULATIONS_PATH\u003c/code\u003e, \u003ccode\u003eMY_SIMULATION_NAME\u003c/code\u003e,\u003ccode\u003eSYSTEM\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eFor example:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport MAIL=\"mymail@myserver.com\"\nexport PROJ_ID=ABC123\nexport MY_INSTALLATION_PATH=$PROJWORK/ABC123/myuserid/sc2022_AD/summit\nexport MY_ISAAC_LOG_PATH=$MY_INSTALLATION_PATH/isaac_logs\nexport MY_SIMULATIONS_PATH=$MY_INSTALLATION_PATH/simulations\nexport MY_SIMULATION_NAME=kh_isaac_test\nexport SYSTEM=summit\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote this example installs the software stack on Summit.\u003c/p\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003eExecute the installation script only once per system:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003e./install.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-an-experiment\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-an-experiment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning an experiment\u003c/h2\u003e\n\u003cp\u003eFor example, to run the weak_scaling experiment on Summit with 512 GPUs based on the previous section, follow the next steps:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSet the next variables in config_vars.sh script:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eexport EXPERIMENT_NAME=weak_scaling\nexport N_GPUS=512\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eRun the run_experiment.sh script:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003e./run_experiment.s\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe complete definition of variables in \u003ccode\u003econfig_vars.sh\u003c/code\u003e script for the 512 GPU weak scaling experiment on Summit is:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport MAIL=\"mymail@myserver.com\"\nexport PROJ_ID=ABC123\nexport MY_INSTALLATION_PATH=$PROJWORK/ABC123/myuserid/sc2022_AD/summit\nexport MY_ISAAC_LOG_PATH=$MY_INSTALLATION_PATH/isaac_logs\nexport MY_SIMULATIONS_PATH=$MY_INSTALLATION_PATH/simulations\nexport MY_SIMULATION_NAME=kh_isaac_test\nexport SYSTEM=summit\nexport EXPERIMENT_NAME=weak_scaling\nexport N_GPUS=512\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor completeness, a \u003ccode\u003econfig_vars.sh\u003c/code\u003e script example that is used to install the software stack and run the Crusher\u0027s \u003ccode\u003esecond_experiment\u003c/code\u003e is shown next:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport MAIL=\"mymail@myserver.com\"\nexport PROJ_ID=ABC123\nexport MY_INSTALLATION_PATH=$PROJWORK/ABC123/myuserid/sc2022_AD/crusher\nexport MY_ISAAC_LOG_PATH=$MY_INSTALLATION_PATH/isaac_logs\nexport MY_SIMULATIONS_PATH=$MY_INSTALLATION_PATH/simulations\nexport MY_SIMULATION_NAME=kh_isaac_test\nexport SYSTEM=crusher\nexport EXPERIMENT_NAME=second_experiment\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4700\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-container-for-the-gatk\" class=\"anchor\" href=\"#container-for-the-gatk\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainer for the GATK\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-tools-included\" class=\"anchor\" href=\"#tools-included\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTools included\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"http://www.htslib.org/\" rel=\"nofollow\"\u003eSamTools\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://bio-bwa.sourceforge.net/\" rel=\"nofollow\"\u003eBWA\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.gnu.org/software/datamash/\" rel=\"nofollow\"\u003eDatamash\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://gatk.broadinstitute.org/hc/en-us\" rel=\"nofollow\"\u003eGATK\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://broadinstitute.github.io/picard/\" rel=\"nofollow\"\u003ePicard Tools\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/lh3/bioawk\"\u003eBioAWK\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://bedtools.readthedocs.io\" rel=\"nofollow\"\u003eBedTools\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003ePlease be sure to cite all the programs if you use this container.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h2\u003e\n\u003cp\u003eto pull the image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name gatk.sif shub://aseetharam/gatk:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto use the image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec gatk.sif samtools\nsingularity exec gatk.sif bwa\nsingularity exec gatk.sif datamash\nsingularity exec gatk.sif java -jar /gatk/gatk-package-4.1.8.1-local.jar\nsingularity exec gatk.sif java -jar /picard/picard.jar\nsingularity exec gatk.sif bioawk\nsingularity exec gatk.sif bedtools\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1649690153.0
+ "updated_at": 1623344768.0
},
{
"data_format": 2,
- "description": "code accompanying \"Nanopore sequencing of a monkeypox virus strain isolated from a pustular lesion in the Central African Republic\"",
+ "description": "octopus Singularity container ",
"filenames": [
"Singularity"
],
- "full_name": "mvdenbog/MPXV_NanoPoreSeq",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-mpxv_nanoporeseq\" class=\"anchor\" aria-hidden=\"true\" href=\"#mpxv_nanoporeseq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMPXV_NanoPoreSeq\u003c/h1\u003e\n\u003cp\u003eThis is snakefile code accompanying \"Nanopore sequencing of a monkeypox virus strain isolated from a pustular lesion in the Central African Republic\".\u003c/p\u003e\n\u003cp\u003eVandenbogaert M, Kwasiborski A, Gonofio E, Descorps-Decl\u00e8re S, Selekon B, Nkili Meyong AA, Ouilibona RS, Gessain A, Manuguerra JC, Caro V, Nakoune E, Berthet N. Nanopore sequencing of a monkeypox virus strain isolated from a pustular lesion in the Central African Republic. Sci Rep. 2022 Jun 24;12(1):10768. doi: 10.1038/s41598-022-15073-1. PMID: 35750759; PMCID: PMC9232561.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232561/\" rel=\"nofollow\"\u003ehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232561/\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation--usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation--usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation \u0026amp; Usage\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cp\u003eUsing Docker/Singularity.\u003c/p\u003e\n\u003cp\u003eAll conda/python dependencies are defined in accompanying dependency files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003econda_installed_packages_base.txt\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003econda_installed_packages_homopolish.txt\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003epip38_installed_packages.txt\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe provided Singularity file is illustrative of the dependency definitions, and on building a target docker/singularity instance.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-preparation-of-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#preparation-of-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreparation of data\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-basecalling\" class=\"anchor\" aria-hidden=\"true\" href=\"#basecalling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBasecalling\u003c/h3\u003e\n\u003cp\u003eInput data is supposed to be basecalled, prior to using the provided snakemake file.\u003c/p\u003e\n\u003cp\u003eExample basecalling instructions (below instructions are uinsg Guppy v 3.2.4, and are indicative only):\u003c/p\u003e\n\u003cp\u003eExample using CPUs:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edir=/opt/Guppy/ont-guppy-cpu_3.4.4/ont-guppy-cpu/bin\n\n${dir}/guppy_basecaller --kit ${kit} --flowcell ${flowcell} --barcode_kits ${barcode_kit} -i ${indir}/ -s ${outdir} --num_callers 4 --cpu_threads_per_caller 20 -q 4000 --qscore_filtering --min_qscore ${min_qscore} --disable_pings --trim_barcodes\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExample using GPUs:\u003c/p\u003e\n\u003cp\u003eWorks on Tesla P100 only.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e${dir}/guppy_basecaller -i /data/fast5_pass/ --save_path /scratch/out/ --flowcell ${flowcell} --kit ${barcode_kit} --gpu_runners_per_device 8 -r --qscore_filtering --min_qscore 7 -x auto --disable_pings --trim_barcodes\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-organization-of-fastq-files\" class=\"anchor\" aria-hidden=\"true\" href=\"#organization-of-fastq-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOrganization of FASTQ files\u003c/h3\u003e\n\u003cp\u003eand reference genome (here reference NC_003310).\u003c/p\u003e\n\u003cp\u003eWorking directory will be \u003ccode\u003e/scratch/\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd /scratch/\nln ~/RawData/*.fastq .\nln ~/NC_003310.fasta .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-execution\" class=\"anchor\" aria-hidden=\"true\" href=\"#execution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExecution\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -j10 -s Snakefile\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eJupyter python/R notebooks for downstream analysis will be added shortly.\u003c/p\u003e\n",
+ "full_name": "sylvainschmitt/singularity-octopus",
+ "latest_release": "0.0.1",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-octopussingularity-container\" class=\"anchor\" href=\"#octopussingularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"https://github.com/luntergroup/octopus\"\u003eOctopus\u003c/a\u003e\n\u003ca href=\"https://github.com/hpcng/singularity\"\u003eSingularity\u003c/a\u003e container\u003c/h1\u003e\n\u003cp\u003eSylvain Schmitt\nApril 28, 2021\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eBionformatics software Octopus\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eOctopus is a mapping-based variant caller that implements several\ncalling models within a unified haplotype-aware framework. Octopus takes\ninspiration from particle filtering by constructing a tree of haplotypes\nand dynamically pruning and extending the tree based on haplotype\nposterior probabilities in a sequential manner. This allows octopus to\nimplicitly consider all possible haplotypes at a given loci in\nreasonable time.\u003c/p\u003e\n\u003cp\u003eOctopus Version: 0.7.4\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://github.com/luntergroup/octopus\"\u003ehttps://github.com/luntergroup/octopus\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003eSingularity container based on the recipe: Singularity.template.def\u003c/p\u003e\n\u003cp\u003ePackage installation using Miniconda3 V4.7.12\u003c/p\u003e\n\u003cp\u003eImage singularity (V\u0026gt;=3.3) is automatically test and built and pushed\non the registry using\n\u003ca href=\"https://github.com/sylvainschmitt/singularity-template/blob/main/.github/workflows/test.yml\"\u003etest.yml\u003c/a\u003e\n\u0026amp;\n\u003ca href=\"https://github.com/sylvainschmitt/singularity-template/blob/main/.github/workflows/builder.yml\"\u003ebuilder.yml\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ebuild\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build octopus.sif Singularity\nsingularity run octopus.sif\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e octopus.sif octopus -h\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003epull\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull https://github.com/sylvainschmitt/singularity-octopus/releases/download/0.0.1/sylvainschmitt-singularity-octopus.latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003esnakemake\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e \u003cspan class=\"pl-s1\"\u003esingularity\u003c/span\u003e: \n \u003cspan class=\"pl-s\"\u003e\"https://github.com/sylvainschmitt/singularity-octopus/releases/download/0.0.1/sylvainschmitt-singularity-octopus.latest.sif\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1658744372.0
+ "updated_at": 1623243296.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.7",
+ "Singularity.12",
+ "Singularity.121",
+ "Singularity.11",
+ "Singularity.8",
+ "Singularity.5",
+ "Singularity.10",
+ "Singularity.9",
+ "Singularity.111",
+ "Singularity.15",
+ "Singularity.14",
+ "Singularity.6",
+ "Singularity.4",
+ "Singularity.3",
+ "Singularity.13"
],
- "full_name": "kh11kim/kstar_rev",
+ "full_name": "masoudrezai/Singularity",
"latest_release": null,
- "readme": "\u003ch2\u003e\u003ca id=\"user-content-welcome-to-the-page-of-k-planner----a-state-of-the-art-top-k-planner-integrating-the-k-algorithm-into-fast-downward\" class=\"anchor\" aria-hidden=\"true\" href=\"#welcome-to-the-page-of-k-planner----a-state-of-the-art-top-k-planner-integrating-the-k-algorithm-into-fast-downward\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWelcome to the page of K* planner -- a state of the art Top-k planner integrating the K* algorithm into Fast Downward.\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-building\" class=\"anchor\" aria-hidden=\"true\" href=\"#building\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e./build.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e# ./fast-downward.py \u0026lt;domain_file\u0026gt; \u0026lt;problem_file\u0026gt; --search \"kstar(heuristic,k=\u0026lt;number-of-plans\u0026gt;)\"\n\n./fast-downward.py examples/gripper/domain.pddl examples/gripper/prob01.pddl --search \"kstar(blind(),k=100)\"\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cem\u003eheurisitic\u003c/em\u003e: any heuristic provided by Fast Downward\u003cbr\u003e\n(\u003ca href=\"http://www.fast-downward.org/Doc/Heuristic\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org/Doc/Heuristic\u003c/a\u003e).\u003cbr\u003e\n\u003cstrong\u003eDisclaimer\u003c/strong\u003e: Optimality of K* is only guaranteed with an admissible and consistent heuristic.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h3\u003e\n\u003cp\u003eMichael Katz, Shirin Sohrabi, Octavian Udrea and Dominik Winterer\u003cbr\u003e\n\u003cstrong\u003eA Novel Iterative Approach to Top-k Planning\u003c/strong\u003e \u003ca href=\"https://www.aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/download/17749/16971\" rel=\"nofollow\"\u003e[pdf]\u003c/a\u003e \u003ca href=\"/top_k.bib\"\u003e[bib]\u003c/a\u003e\u003cbr\u003e\n\u003cem\u003eIn ICAPS 2018\u003c/em\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-contact\" class=\"anchor\" aria-hidden=\"true\" href=\"#contact\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h3\u003e\n\u003cp\u003eFor questions and comments please get in touch with Michael Katz (\u003ca href=\"mailto:michael.katz1@ibm.com\"\u003emichael.katz1@ibm.com\u003c/a\u003e).\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-octopussingularity-container\" class=\"anchor\" href=\"#octopussingularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"https://github.com/luntergroup/octopus\"\u003eOctopus\u003c/a\u003e\n\u003ca href=\"https://github.com/hpcng/singularity\"\u003eSingularity\u003c/a\u003e container\u003c/h1\u003e\n\u003cp\u003eSylvain Schmitt\nApril 28, 2021\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eBionformatics software Octopus\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eOctopus is a mapping-based variant caller that implements several\ncalling models within a unified haplotype-aware framework. Octopus takes\ninspiration from particle filtering by constructing a tree of haplotypes\nand dynamically pruning and extending the tree based on haplotype\nposterior probabilities in a sequential manner. This allows octopus to\nimplicitly consider all possible haplotypes at a given loci in\nreasonable time.\u003c/p\u003e\n\u003cp\u003eOctopus Version: 0.7.4\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://github.com/luntergroup/octopus\"\u003ehttps://github.com/luntergroup/octopus\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003eSingularity container based on the recipe: Singularity.template.def\u003c/p\u003e\n\u003cp\u003ePackage installation using Miniconda3 V4.7.12\u003c/p\u003e\n\u003cp\u003eImage singularity (V\u0026gt;=3.3) is automatically test and built and pushed\non the registry using\n\u003ca href=\"https://github.com/sylvainschmitt/singularity-template/blob/main/.github/workflows/test.yml\"\u003etest.yml\u003c/a\u003e\n\u0026amp;\n\u003ca href=\"https://github.com/sylvainschmitt/singularity-template/blob/main/.github/workflows/builder.yml\"\u003ebuilder.yml\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ebuild\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build octopus.sif Singularity\nsingularity run octopus.sif\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e octopus.sif octopus -h\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003epull\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull https://github.com/sylvainschmitt/singularity-octopus/releases/download/0.0.1/sylvainschmitt-singularity-octopus.latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003esnakemake\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e \u003cspan class=\"pl-s1\"\u003esingularity\u003c/span\u003e: \n \u003cspan class=\"pl-s\"\u003e\"https://github.com/sylvainschmitt/singularity-octopus/releases/download/0.0.1/sylvainschmitt-singularity-octopus.latest.sif\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1659371898.0
+ "updated_at": 1623238419.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "docker/Singularity.def"
+ "singularity_environment/Singularity"
],
- "full_name": "benjrise/flood-detetection",
+ "full_name": "cpezzato/discrete_active_inference",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-discrete_active_inference-for-robotics\" class=\"anchor\" href=\"#discrete_active_inference-for-robotics\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ediscrete_active_inference for robotics\u003c/h1\u003e\n\u003cp\u003eRepository for active inference and behavior trees for discrete decision making. This repository relies on a TIAGo simulation in a simplified retail store. Please read the associated paper for more theorethical considerations about the algorithms.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\"Active Inference and Behavior Trees for Reactive Action Planning and Execution in Robotics\"\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eCorrado Pezzato, Carlos Hernandez, Stefan Bonhof, Martijn Wisse, \u003ca href=\"https://arxiv.org/abs/2011.09756\" rel=\"nofollow\"\u003ehttps://arxiv.org/abs/2011.09756\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-content\" class=\"anchor\" href=\"#content\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContent\u003c/h2\u003e\n\u003cp\u003eThis repositiry contains a Matlab examples and a ROS package for active inference for task planning and execution.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-main-files\" class=\"anchor\" href=\"#main-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMain files\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003eMatlab:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cem\u003eaip.m\u003c/em\u003e the active inference algorithm for decision making is illustrated in the case of heterogeneous states and actions.\u003c/li\u003e\n\u003cli\u003e\n\u003cem\u003eexample.m\u003c/em\u003e example of use of active inference for discrete decision making in a robotic case where conflicts and preconditions checks are required. A robot is assumed to be able to navigate to a point (MoveBase), reach a location with its end effector (Move MPC), and pick and place things. Actions have preconditions and are assumed not instantaneous\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eROS:\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eThe other folders are related to the ROS package containing a Python implementation of active inference and behavior trees. You can run an example use case with TIAGo in a simplified retail store after installation of the package ad dependancies.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eSimulation Environment\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eA singularity image can be downloaded from \u003ca href=\"https://drive.google.com/drive/folders/1DYuRWgCiiHCG4ck_7Pf_Kw4Kn-ZpZ-Oy?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eAlternatively, you can build the singularity yourself:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003ecreate a sub directory called \u0027pkgs\u0027 (in the \u003ccode\u003esingularity_environment\u003c/code\u003e directory)\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e mkdir pkgs\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003euse \u003ccode\u003evcstool\u003c/code\u003e (or \u003ccode\u003ewstool\u003c/code\u003e) to clone/download the dependencies (as specified in \u003ccode\u003eretail_store_lightweight_sim.repos\u003c/code\u003e).\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e vcs import \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003e retail_store_lightweight_sim.repos pkgs\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAdding packages to \u003ccode\u003epkg\u003c/code\u003e will allow \u003ccode\u003erosdep\u003c/code\u003e to install all required build and run dependencies into the image, so students can then proceed to build those packages in their own workspaces (otherwise builds would fail due to missing dependencies).\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e Packages in \u003ccode\u003epkg\u003c/code\u003e will be installed on the image, their source will \u003cstrong\u003enot\u003c/strong\u003e be included in the image itself, so there may be some elements that are not installed. So far I\u0027ve only noticed one required change.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eModify the \u003ccode\u003eCMakeList.txt\u003c/code\u003e file from the \u003ccode\u003epal_navigation_sm\u003c/code\u003e inside the \u003ccode\u003epkgs\u003c/code\u003e folder.\u003c/p\u003e\n\u003cp\u003eChange the \u003ccode\u003einstall\u003c/code\u003e instruction (starts at line 10) by adding some scripts as follows.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003einstall(\nPROGRAMS\n scripts/map_setup.py\n scripts/pal_navigation_main_sm.py\n scripts/navigation.sh\n scripts/base_maps_symlink.sh\n scripts/cp_maps_to_home.sh\n scripts/cp_pose_to_home.sh\n DESTINATION \u003cspan class=\"pl-smi\"\u003e${CATKIN_PACKAGE_BIN_DESTINATION}\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003echeck the \u003ccode\u003eVERSION\u003c/code\u003e variable inside the \u003ccode\u003edocker_build.sh\u003c/code\u003e, \u003ccode\u003ebuild.sh\u003c/code\u003e and \u003ccode\u003eSingularity\u003c/code\u003e files. This version should match the version of your singularity install (\u003ccode\u003esingularity -v\u003c/code\u003e)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003erun \u003ccode\u003edocker_build.sh\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e ./docker_build.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAfter some time and a successful build, a new docker image will be created. This requires Docker to be installed and configured.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003erun \u003ccode\u003ebuild.sh\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e ./build.sh\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eAfter some time and a successful build, a new \u003ccode\u003e.simg\u003c/code\u003e should be generated by \u003ccode\u003esingularity\u003c/code\u003e in the \u003ccode\u003ecwd\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eBehavior trees library\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eInstall the BT library to use this package (tested in Ubuntu 18.04 with ROS Melodic). Before proceeding, it is recommended to to install the following dependencies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo apt-get install libzmq3-dev libboost-dev\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can also easily install the \u003ca href=\"https://github.com/BehaviorTree/BehaviorTree.CPP\"\u003eBehavior Tree library\u003c/a\u003e with the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo apt-get install ros-$ROS_DISTRO-behaviortree-cpp-v3\nsudo apt-get update \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-the-code\" class=\"anchor\" href=\"#running-the-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the code\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eUsing the virtual environment\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eAccess the simngularity image by using the regular Singularity \u003ccode\u003eshell\u003c/code\u003e action:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity shell /path/to/discrete_ai_tiago.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUse the flag for nvidia drivers if applicable to your machine:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity shell --nv /path/to/discrete_ai_tiago.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen source \u003ccode\u003e/opt/ros/melodic/setup.bash\u003c/code\u003e to access all the TIAGo dependencies installed on the image.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e /opt/ros/melodic/setup.bash\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eHow to run a simple example with TIAGo\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eCreate a new workspace and clone this repository in the \u003ccode\u003esrc\u003c/code\u003e folder. Build the package using \u003ccode\u003ecatkin build\u003c/code\u003e. Run the three commands below from within the singularity image after sourcing \u003ccode\u003esource/devel/setup.bash\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eroslaunch retail_store_simulation tiago_simulation.launch\nrosrun discrete_ai tiago_perception.py\nrosrun discrete_ai active_inference_server.py\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFrom a terminal outside the singularity image run the behavior tree:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003erosrun discrete_ai demo_executeBT\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe expected outcome is the following:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"tiago_sim.gif\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"tiago_sim.gif\" alt=\"\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e: The sills used in this simulation are based on standard moveBase and moveIt actions, thus robustness (especially of IK solutions) might make TIAGo fail the grasp. Aruco detection can also imprecise and will be improved over time.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1660656835.0
+ "updated_at": 1623232591.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for glnexus (https://github.com/dnanexus-rnd/GLnexus)",
+ "description": "Multi-Label Multi/Single-Class Image Segmentation",
"filenames": [
- "Singularity",
- "Singularity.1.4.3"
+ "Singularity"
],
- "full_name": "powerPlant/glnexus-srf",
+ "full_name": "kbronik2017/Multi_Label_Segmentation",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for GLnexus (\u003ca href=\"https://github.com/dnanexus-rnd/GLnexus\"\u003ehttps://github.com/dnanexus-rnd/GLnexus\u003c/a\u003e)\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/UCLBrain/MSLS/issues\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f9cab98cc8f1052f0c0096b8b462cf9b2280a706b1adc0895d8a4859f3743314/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f55434c427261696e2f4d534c53\" alt=\"GitHub issues\" data-canonical-src=\"https://img.shields.io/github/issues/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/UCLBrain/MSLS/network\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b6c7a087c43d2a65a6ee22ec8ce2e004a29212c4b9619b117f4b2bbabf98a6c5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f55434c427261696e2f4d534c53\" alt=\"GitHub forks\" data-canonical-src=\"https://img.shields.io/github/forks/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/UCLBrain/MSLS/stargazers\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/10fab859502fd8c9b24dde937e50fecba7449e94ea057774713238ab3ec754fc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f55434c427261696e2f4d534c53\" alt=\"GitHub stars\" data-canonical-src=\"https://img.shields.io/github/stars/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/UCLBrain/MSLS/blob/master/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0d525d837b03e3b7a24b6322fc2197a134fa12e6a96188e5f18d6cd92236aa47/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f55434c427261696e2f4d534c53\" alt=\"GitHub license\" data-canonical-src=\"https://img.shields.io/github/license/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-multi-label-multisingle-class-image-segmentation\" class=\"anchor\" href=\"#multi-label-multisingle-class-image-segmentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMulti-Label Multi/Single-Class Image Segmentation\u003c/h1\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/diag.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/diag.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-publication\" class=\"anchor\" href=\"#publication\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePublication\u003c/h1\u003e\n\u003cp\u003eLe Zhang, Ryutaro Tanno, Kevin Bronik, Chen Jin, Parashkev Nachev, Frederik Barkhof, Olga Ciccarelli, and Daniel C. Alexander, Learning to Segment When Experts Disagree, International Conference on Medical image computing and Computer-Assisted Intervention (MICCAI). Springer, Cham, 2020.\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/Miccai_2020_abs.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg align=\"center\" height=\"1000\" src=\"images/Miccai_2020_abs.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\n \n \u003cp\u003eClick here to see full pdf file: \u003ca href=\"https://github.com/UCLBrain/MSLS/blob/master/MICCAI_2020.pdf\"\u003eLink to PDF\u003c/a\u003e\u003c/p\u003e\n \n\n\u003ch1\u003e\n\u003ca id=\"user-content-running-the-gui-program\" class=\"anchor\" href=\"#running-the-gui-program\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the GUI Program!\u003c/h1\u003e\n\u003cp\u003eFirst, user needs to install Anaconda \u003ca href=\"https://www.anaconda.com/\" rel=\"nofollow\"\u003ehttps://www.anaconda.com/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThen\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda env create -f conda_environment_Training_Inference.yml \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eand\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda activate traintestenv \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003efinally\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - python Training_Inference_GUI.py \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAfter lunching the graphical user interface, user will need to provide necessary information to start training/testing as follows:\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/GUI.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/GUI.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-running-the-program-from-the-command-line\" class=\"anchor\" href=\"#running-the-program-from-the-command-line\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the Program from the command line!\u003c/h1\u003e\n\u003cp\u003eFirst\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda activate traintestenv \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ethen for training\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - python segmentation_network_Training_without_GUI.py [or annotation_network_Training_without_GUI.py]\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003efor testing\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - python segmentation_network_Inference_without_GUI.py [or annotation_network_Inference_without_GUI.py]\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-testing-the-program\" class=\"anchor\" href=\"#testing-the-program\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting the Program!\u003c/h1\u003e\n\u003cp\u003eExamples of Training and Testing subjects can be found in: \u003ca href=\"https://github.com/UCLBrain/MSLS/tree/master/examples\"\u003ehttps://github.com/UCLBrain/MSLS/tree/master/examples\u003c/a\u003e (which will allow users to quickly and easily train and test the program)\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/bin_seg_ex.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/bin_seg_ex.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003cp\u003e..................................................................................................................................................................\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/multi_seg_ex.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/multi_seg_ex.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n",
"stargazers_count": 0,
- "subscribers_count": 0,
- "topics": [],
- "updated_at": 1659481676.0
+ "subscribers_count": 1,
+ "topics": [
+ "segmentation",
+ "multi-label"
+ ],
+ "updated_at": 1628469613.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for kraken-biom (https://github.com/smdabdoub/kraken-biom)",
+ "description": null,
"filenames": [
- "Singularity",
- "Singularity.1.2.0"
+ "util/PATRIC/Singularity"
],
- "full_name": "powerPlant/kraken-biom-srf",
+ "full_name": "adamlabadorf/bf550",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for kraken-biom (\u003ca href=\"https://github.com/smdabdoub/kraken-biom\"\u003ehttps://github.com/smdabdoub/kraken-biom\u003c/a\u003e)\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-bf550---foundations-in-programming-data-analytics-and-machine-learning-in-python\" class=\"anchor\" href=\"#bf550---foundations-in-programming-data-analytics-and-machine-learning-in-python\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBF550 - Foundations in Programming, Data Analytics, and Machine Learning in Python\u003c/h1\u003e\n\u003cp\u003e(unofficial title: Bioinformatics Engineering)\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://adamlabadorf.github.io/bf550/\" rel=\"nofollow\"\u003eGo to the Github Pages site\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1659482439.0
+ "updated_at": 1628214043.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Validate and submit reads using Webin-CLI in batch.",
"filenames": [
"Singularity"
],
- "full_name": "cschu/profile_me_ci",
+ "full_name": "enasequence/ena-bulk-webincli",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ena-webin-cli-bulk-submission-tool\" class=\"anchor\" href=\"#ena-webin-cli-bulk-submission-tool\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eENA Webin-CLI Bulk Submission Tool\u003c/h1\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThis tool is a wrapper to bulk submit read, un-annotated genome, targeted sequence or taxonomic reference data to the ENA using Webin-CLI.\u003c/p\u003e\n\u003cp\u003eThe tool requires an appropriate metadata spreadsheet which it uses to generate manifest files for the user and validate or submit their submission. The tool does not handle study and sample registration, therefore visit \u003ca href=\"https://ena-docs.readthedocs.io/en/latest/submit/general-guide.html\" rel=\"nofollow\"\u003eENA Submissions Documentation\u003c/a\u003e for more information on this. The documentation also provides information on manifest file fields for your type of submission (which correlate to the headers in the spreadsheet file).\u003c/p\u003e\n\u003cp\u003eAn example template spreadsheet has been provided (example_template_input.txt). This file is a tab-delimited text file, however the script also consumes spreadsheets in native MS Excel formats (e.g. .xslx) or comma-separated (.csv).\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-docker\" class=\"anchor\" href=\"#docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h4\u003e\n\u003cp\u003eTo ease in usage, the tool has been containerised using \u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e. The only requirement is to have Docker \u003ca href=\"https://docs.docker.com/get-docker/\" rel=\"nofollow\"\u003einstalled\u003c/a\u003e. Once installed, run the following commands to setup:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eClone the repository:\n\u003ccode\u003egit clone https://github.com/nadimm-rahman/ena-bulk-webincli.git \u0026amp;\u0026amp; cd ena-bulk-webincli\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eBuild the docker image:\n\u003ccode\u003edocker build --tag ena-bulk-webincli .\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eReady to go! Run the tool using docker using the following command:\n\u003ccode\u003edocker run --rm -v \u0026lt;LOCAL_DATA_DIRECTORY\u0026gt;:/data ena-bulk-webincli -h\u003c/code\u003e (for help)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u0026lt;LOCAL_DATA_DIRECTORY\u0026gt; is recommended to be the directory or parent directory on your machine containing your data files to submit. Below is an example command which would submit read data to the test server:\n\u003ccode\u003edocker run --rm -v pathto/data:/data ena-bulk-webincli -u Webin-XXXX -p XXXX -g reads -s example_template_read.txt -d /data -m submit -t\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eNote: For data files to be submitted, relative file paths in accordance to \u003ccode\u003e\u0026lt;LOCAL_DATA_DIRECTORY\u0026gt;\u003c/code\u003e must be provided within the input spreadsheet.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-other\" class=\"anchor\" href=\"#other\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOther\u003c/h4\u003e\n\u003cp\u003eTo use the tool without Docker:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eClone the repository:\n\u003ccode\u003egit clone https://github.com/nadimm-rahman/ena-bulk-webincli.git \u0026amp;\u0026amp; cd ena-bulk-webincli\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eDownload the latest version of \u003ca href=\"https://github.com/enasequence/webin-cli/releases\"\u003eWebin-CLI\u003c/a\u003e installed.\u003c/li\u003e\n\u003cli\u003eDownload tool dependencies listed below.\u003c/li\u003e\n\u003cli\u003eEdit the \u0027Configuration\u0027 section at the top of bulk_webincli.py to include the full path to the Webin-CLI jar file and whether parallel processing should be carried out.\u003c/li\u003e\n\u003cli\u003eRun the tool using \u003ccode\u003epython bulk_webincli.py --help\u003c/code\u003e(for help)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThe script accepts full paths to files (to be submitted e.g. fastq/fasta) within the input spreadsheet. To control location of outputs, a specific directory can be provided using the \u003ccode\u003e--directory/-d\u003c/code\u003e parameter, where the folders listed below will be generated.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003cp\u003eMandatory arguments include Webin submission account username and password, genetic context and metadata spreadsheet. Note that the \u003ccode\u003e--test/-t\u003c/code\u003e flag can be specified to use Webin test submission services.\u003c/p\u003e\n\u003cp\u003eBy default, the script utilises two additional directories:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u0027manifests\u0027 - which houses all generated manifest files and report files.\u003c/li\u003e\n\u003cli\u003e\u0027submissions\u0027 - housing all validation and submission related reports and files, includes analysis and receipt XMLs of submissions.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h3\u003e\n\u003cp\u003eThe tool runs using \u003ca href=\"https://www.python.org/downloads/\" rel=\"nofollow\"\u003ePython3.6+\u003c/a\u003e and requires installation of \u003ca href=\"https://pandas.pydata.org/\" rel=\"nofollow\"\u003ePython Pandas\u003c/a\u003e and \u003ca href=\"https://joblib.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003ejoblib\u003c/a\u003e. This can be installed in a \u003ca href=\"https://docs.python.org/3/tutorial/venv.html\" rel=\"nofollow\"\u003evirtual environment\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1636023839.0
+ "updated_at": 1625847484.0
},
{
"data_format": 2,
@@ -11162,665 +10549,685 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "psadil/cat12",
+ "full_name": "MontrealSergiy/deformation",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-cat12\" class=\"anchor\" aria-hidden=\"true\" href=\"#cat12\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecat12\u003c/h1\u003e\n\u003cp\u003eTo build, run \u003ccode\u003ebuild_singularity\u003c/code\u003e as root e.g.,\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo ./build_singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNote that the build expects to find a few files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003e./code/main\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e./CAT12.zip (zipped standalone copy of CAT12, \u003ca href=\"https://www.jiscmail.ac.uk/cgi-bin/wa-jisc.exe?A2=ind2102\u0026amp;L=SPM\u0026amp;P=R8713\" rel=\"nofollow\"\u003ehttps://www.jiscmail.ac.uk/cgi-bin/wa-jisc.exe?A2=ind2102\u0026amp;L=SPM\u0026amp;P=R8713\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003e./MCR_R2017b_glnxa64_installer.zip (e.g., \u003ccode\u003ewget https://ssd.mathworks.com/supportfiles/downloads/R2017b/deployment_files/R2017b/installers/glnxa64/MCR_R2017b_glnxa64_installer.zip\u003c/code\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe script \u003ccode\u003erun_a2cps_segment\u003c/code\u003e provides a minimal wrapper around the container.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./run_a2cps_segment T1w.nii.gz\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTo run cat_standalone with a different template, \u003ccode\u003e\u0026lt;template\u0026gt;\u003c/code\u003e, on T1w image, \u003ccode\u003e\u0026lt;data\u0026gt;\u003c/code\u003e, try\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --cleanenv cat12.sif -b \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etemplate\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edata\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUse the \u003ccode\u003e--cleanenv\u003c/code\u003e flag may not be necessary, depending on your host. When running with host Ubuntu 20.04, there were environment variables associated with Java that interfered with MATLAB. See the Singularity documentation on \u003ca href=\"https://sylabs.io/guides/3.8/user-guide/environment_and_metadata.html?highlight=cleanenv#environment-overview\" rel=\"nofollow\"\u003eenvironment variables\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-prebuilt-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#prebuilt-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrebuilt container\u003c/h2\u003e\n\u003cp\u003eA verison of the container has been prebuilt and shared on \u003ca href=\"https://cloud.sylabs.io\" rel=\"nofollow\"\u003ehttps://cloud.sylabs.io\u003c/a\u003e. To use it, replace the container definition with \u003ccode\u003elibrary://psadil/default/cat\u003c/code\u003e, e. g.,\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --cleanenv library://psadil/default/cat:0.0.1 -b \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etemplate\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edata\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-deformation-field\" class=\"anchor\" href=\"#deformation-field\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeformation field\u003c/h1\u003e\n\u003cp\u003eThis PERL script is a wrapper that is calling sequence of commands for generating deformation fields scrips\n\u003ca href=\"https://wiki.mouseimaging.ca/display/MICePub/Generating+deformation+fields\" rel=\"nofollow\"\u003ehttps://wiki.mouseimaging.ca/display/MICePub/Generating+deformation+fields\u003c/a\u003e\nSource code for deformation pipeline and dependencies (MINC):\n\u003ca href=\"https://github.com/Mouse-Imaging-Centre/generate_deformation_fields\"\u003ehttps://github.com/Mouse-Imaging-Centre/generate_deformation_fields\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eUsage\u003c/p\u003e\n\u003cp\u003edeformation_2.pl -input ICBM_00100_t1_final.mnc \u0026lt;\u0026lt;this could be any anatomical minc file, for a collection of minc files\u0026gt;\u0026gt; -output dummy_hoho -deformation_ratio 0.6 -coordinate 70 100 70 10 10 10 -tolerance_space 4 \u0026lt;\u0026gt; -blur_determinant 0.25 \u0026lt;\u0026gt; -error 0.00001 \u0026lt;\u0026gt; -iteration 100\u003c/p\u003e\n\u003cp\u003eThe output of running this command looks like this:\nICBM_00100_t1_final_deformed_by_0.4atROIx70-y100-z70dimx10.dimy10.dimz10.mnc. \u003c/p\u003e\n\u003cp\u003eWe will also have a directory dummy_hoho/TMP that will contain the in-between-files.\u003c/p\u003e\n\u003cp\u003e$:/dummy_hoho/TMP$ ls\u003c/p\u003e\n\u003cp\u003eblock.mnc\u003c/p\u003e\n\u003cp\u003eblurred0.25determinant_r_0.4x70-y100-z70dimx10.dimy10.dimz10.mnc\u003c/p\u003e\n\u003cp\u003eDDDDdilated.mnc\u003c/p\u003e\n\u003cp\u003eDDDDring.mnc\u003c/p\u003e\n\u003cp\u003edeterminant_r_0.4_grid.mnc\u003c/p\u003e\n\u003cp\u003edeterminant_r_0.4x70-y100-z70dimx10.dimy10.dimz10.mnc\u003c/p\u003e\n\u003cp\u003edeterminant_r_0.4.xfm\u003c/p\u003e\n\u003cp\u003emask.mnc\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1659538764.0
+ "updated_at": 1623632255.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for gatk (https://github.com/broadinstitute/gatk)",
+ "description": "Massively Parallel, Portable, and Reproducible Tractography",
"filenames": [
- "Singularity",
- "Singularity.4.2.6.1"
+ "container/Singularity"
],
- "full_name": "powerPlant/gatk-srf",
+ "full_name": "LLNL/MaPPeRTrac",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for gatk (\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003ehttps://github.com/broadinstitute/gatk\u003c/a\u003e)\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-mappertrac\" class=\"anchor\" href=\"#mappertrac\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMaPPeRTrac\u003c/h1\u003e\n\u003cp\u003eMassively Parallel, Portable, and Reproducible Tractography (MaPPeRTrac) is a brain tractography workflow for high performance computing. It incorporates novel technologies to simplify and accelerate neuroimaging research.\n\u003cbr\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-setup\" class=\"anchor\" href=\"#setup\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h3\u003e\n\u003cp\u003eRequirements:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePython 3.5+\u003c/li\u003e\n\u003cli\u003eSLURM job scheduling on a multi-node system\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cb\u003e1. Install NumPy and Parsl\u003c/b\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003epip3 install parsl numpy scipy\u003c/code\u003e\u003cbr\u003e\n(\u003ccode\u003epip3 install parsl numpy scipy --user\u003c/code\u003e for non-root systems)\u003c/p\u003e\n\u003cp\u003e\u003cb\u003e2. Clone repository\u003c/b\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003egit clone git@github.com:LLNL/MaPPeRTrac.git\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003ecd MaPPeRTrac/\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003cb\u003e3. Load a Singularity container\u003c/b\u003e\u003c/p\u003e\n\u003cp\u003eRequirements:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity 3.0+ (\u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/\" rel=\"nofollow\"\u003ehttps://www.sylabs.io/guides/3.0/user-guide/\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eBuilding the container:\u003cbr\u003e\ni. Obtain root access (you can copy and run the image in a non-root system afterwards).\u003cbr\u003e\nii. Place a Freesurfer \u003ccode\u003elicense.txt\u003c/code\u003e in the repo directory (\u003ca href=\"https://surfer.nmr.mgh.harvard.edu/fswiki/License\" rel=\"nofollow\"\u003ehttps://surfer.nmr.mgh.harvard.edu/fswiki/License\u003c/a\u003e).\u003cbr\u003e\niii. \u003ccode\u003e./container/build.sh\u003c/code\u003e\n\u003cbr\u003e\nNotes:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMake sure to set \u003ccode\u003econtainer_path\u003c/code\u003e to the Singularity container\u0027s location.\u003c/li\u003e\n\u003cli\u003eIf you are having trouble building the container, try branch \u003ccode\u003eno_viz\u003c/code\u003e. This will disable render functionality.\u003c/li\u003e\n\u003cli\u003eAlternatively, download the image \u003ca href=\"https://drive.google.com/file/d/1lh0_5GO6-7qIznjvIcSMY-Ua8iBpZ4DJ/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\n\u003cbr\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cb\u003e4. Specify your DICOM or NIfTI data\u003c/b\u003e\u003c/p\u003e\n\u003cp\u003ePlace your data in the same filesystem as the repository.\u003c/p\u003e\n\u003cp\u003eYou can download the example data \u003ca href=\"https://drive.google.com/file/d/1YC0QzWNohq173_zJaqZfnI5d6EPb9On2/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-launch\" class=\"anchor\" href=\"#launch\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLaunch\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003e./s_run_all.py \u0026lt;config_json\u0026gt;\u003c/code\u003e\n\u003cbr\u003e\nSee \u003ccode\u003eexamples/dummy_config.json\u003c/code\u003e for example parameters.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-file-overview\" class=\"anchor\" href=\"#file-overview\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFile Overview\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003eTracktographyScripts/\n+- container/\n| +- build.sh\n| +- Singularity # Singularity build recipe\n|\n+- examples\n| +- dataset_description.json # Example of the BIDS dataset description\n| +- dummy_config.json # Example of the config JSON\n| +- dummy_dicom/\n| +- dummy_nifti/\n| +- dummy_subjects.json # Example of the subjects JSON\n|\n+- license.txt # Freesurfer license. NOTE: not included, required to build Singularity container\n+- LICENSE # MaPPeRTrac license.\n|\n+- lists/\n| +- connectome_idxs.txt # Brain region indices for .mat connectome files\n| +- list_edges_reduced.txt # Default edges to compute with Probtrackx and EDI (930 edges)\n| +- list_edges_all.txt # All possible edges (6643 edges)\n| +- render_targets.txt # NiFTI files to visualize with s4_render\n|\n+- README.md\n|\n+- s_run_all.py # Main script\n|\n+- subscripts/\n +- __init__.py\n +- maskseeds.py # Helper functions for s2b_freesurfer.py\n +- run_vtk.py # Helper script for s4_render.py\n +- s_debug.py # For debugging\n +- s1_dti_preproc.py\n +- s2a_bedpostx.py\n +- s2b_freesurfer.py\n +- s3_probtrackx.py\n +- s4_render.py\n +- utilities.py # General utility functions\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cbr\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-output-overview\" class=\"anchor\" href=\"#output-overview\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput Overview\u003c/h3\u003e\n\u003cp\u003eThe following are the most important output files. This list is not comprehensive.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026lt;OUTPUT DIRECTORY\u0026gt;/\n+- sourcedata/ # DICOM preprocessing data\n+- rawdata/ # BIDS-compliant NiFTI imaging data\n+- derivatives/\n +- sub-\u0026lt;SUBJECT NAME\u0026gt;\n +- [ses-\u0026lt;SESSION NAME\u0026gt;] # If session name specified, outputs will be in a session directory\n +- connectome_idxs.txt # Brain region indices for .mat connectome files\n +- connectome_#samples_oneway.txt # Oneway connectome in list form. Each edge has four columns:\n Column 1 is the source region\n Column 2 is the destination region\n Column 3 is number of fibers (NOF): the total count of successful streamlines between the two regions\n Column 4 is normalized NOF: the average density of successful streamlines the target region.\n +- connectome_#samples_twoway.txt # Twoway connectome in list form\n +- connectome_#samples_oneway_nof.mat # Oneway NOF connectome in matrix form\n +- connectome_#samples_twoway_nof.mat # Twoway NOF connectome in matrix form (should be symmetric)\n +- connectome_#samples_oneway_nof_normalized.mat # Oneway normalized NOF connectome in matrix form\n +- connectome_#samples_twoway_nof_normalized.mat # Twoway normalized NOF connectome in matrix form (should be symmetric)\n |\n +- EDI/\n | +- EDImaps/\n | +- FAtractsumsRaw.nii.gz # NiFTI image of total streamline density\n | +- FAtractsumsTwoway.nii.gz # NiFTI image of edge density (EDI). See Payabvash et al. (2019) for details.\n |\n +- log/ # Directory containing stdout and performance logs\n |\n +- render/ # Directory containing NiFTI image renders from step s4_render\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cbr\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-config-parameterscommand-line-arguments\" class=\"anchor\" href=\"#config-parameterscommand-line-arguments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfig Parameters/Command Line Arguments\u003c/h3\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eRequired Parameter\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003esubjects_json\u003c/td\u003e\n\u003ctd\u003eJSON file with input directories for each subject\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eoutput_dir\u003c/td\u003e\n\u003ctd\u003eThe super-directory that will contain output directories for each subject.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003escheduler_name\u003c/td\u003e\n\u003ctd\u003eScheduler to be used for running jobs. Value is \"slurm\" for LLNL, \"cobalt\" for ANL, and \"grid_engine\" for UCSF.\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e\u003cbr\u003e\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOptional Parameter\u003c/th\u003e\n\u003cth\u003eDefault\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003esteps\u003c/td\u003e\n\u003ctd\u003es1 s2a s2b s3 s4\u003c/td\u003e\n\u003ctd\u003eSteps to run\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003egpu_steps\u003c/td\u003e\n\u003ctd\u003es2a\u003c/td\u003e\n\u003ctd\u003eSteps to enable CUDA-enabled binaries\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003escheduler_bank\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eScheduler bank to charge for jobs. Required for slurm and cobalt.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003escheduler_partition\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eScheduler partition to assign jobs. Required for slurm and cobalt.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003escheduler_options\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eString to prepend to the submit script to the scheduler\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003egpu_options\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eString to prepend to the submit blocks for GPU-enabled steps, such as \u0027module load cuda/8.0;\u0027\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eworker_init\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eString to run before starting a worker, such as \u2018module load Anaconda; source activate env;\u2019\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003econtainer_path\u003c/td\u003e\n\u003ctd\u003econtainer/image.simg\u003c/td\u003e\n\u003ctd\u003ePath to Singularity container image\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eunix_username\u003c/td\u003e\n\u003ctd\u003e[[current user]]\u003c/td\u003e\n\u003ctd\u003eUnix username for Parsl job requests\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eunix_group\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eUnix group to assign file permissions\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eforce\u003c/td\u003e\n\u003ctd\u003eFalse\u003c/td\u003e\n\u003ctd\u003eForce re-compute if checkpoints already exist\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003egssapi\u003c/td\u003e\n\u003ctd\u003eFalse\u003c/td\u003e\n\u003ctd\u003eUse Kerberos GSS-API authentication\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003elocal_host_only\u003c/td\u003e\n\u003ctd\u003eTrue\u003c/td\u003e\n\u003ctd\u003eRequest all jobs on local machine, ignoring other hostnames\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eparsl_path\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003ePath to Parsl binaries, if not installed in /usr/bin or /usr/sbin\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003erender_list\u003c/td\u003e\n\u003ctd\u003elists/render_targets.txt\u003c/td\u003e\n\u003ctd\u003eText file list of NIfTI outputs for s4_render (relative to each subject output directory)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003epbtx_sample_count\u003c/td\u003e\n\u003ctd\u003e1000\u003c/td\u003e\n\u003ctd\u003eNumber of streamlines per seed voxel in s3_probtrackx\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003epbtx_random_seed\u003c/td\u003e\n\u003ctd\u003e[[random number]]\u003c/td\u003e\n\u003ctd\u003eRandom seed in s3_probtrackx\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003epbtx_max_memory\u003c/td\u003e\n\u003ctd\u003e0\u003c/td\u003e\n\u003ctd\u003eMaximum memory per node (in GB) for s3_probtrackx. Default value of 0 indicates unlimited memory bound\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003econnectome_idx_list\u003c/td\u003e\n\u003ctd\u003elists/connectome_idxs.txt\u003c/td\u003e\n\u003ctd\u003eText file with pairs of volumes and connectome indices\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ehistogram_bin_count\u003c/td\u003e\n\u003ctd\u003e256\u003c/td\u003e\n\u003ctd\u003eNumber of bins in NiFTI image histograms\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003epbtx_edge_list\u003c/td\u003e\n\u003ctd\u003elists/list_edges_reduced.txt\u003c/td\u003e\n\u003ctd\u003eText file list of edges for steps s3_probtrackx\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ecompress_pbtx_results\u003c/td\u003e\n\u003ctd\u003eTrue\u003c/td\u003e\n\u003ctd\u003eCompress probtrackx outputs to reduce inode and disk space usage\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003edynamic_walltime\u003c/td\u003e\n\u003ctd\u003eFalse\u003c/td\u003e\n\u003ctd\u003eRequest dynamically shortened walltimes, to gain priority on job queue\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es1_job_time\u003c/td\u003e\n\u003ctd\u003e00:15:00\u003c/td\u003e\n\u003ctd\u003eMax time to finish s1 on 1 subject with 1 node, if dynamic_walltime is true\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2a_job_time\u003c/td\u003e\n\u003ctd\u003e00:45:00\u003c/td\u003e\n\u003ctd\u003eMax time to finish s2a on 1 subject with 1 node, if dynamic_walltime is true\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2b_job_time\u003c/td\u003e\n\u003ctd\u003e10:00:00\u003c/td\u003e\n\u003ctd\u003eMax time to finish s2b on 1 subject with 1 node, if dynamic_walltime is true\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es3_job_time\u003c/td\u003e\n\u003ctd\u003e23:59:00\u003c/td\u003e\n\u003ctd\u003eMax time to finish s3 on 1 subject with 1 node, if dynamic_walltime is true\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es4_job_time\u003c/td\u003e\n\u003ctd\u003e00:15:00\u003c/td\u003e\n\u003ctd\u003eMax time to finish s4 on 1 subject with 1 node, if dynamic_walltime is true\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es1_cores_per_task\u003c/td\u003e\n\u003ctd\u003e1\u003c/td\u003e\n\u003ctd\u003eNumber of cores to assign each task for step s1_dti_preproc\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2a_cores_per_task\u003c/td\u003e\n\u003ctd\u003e[[core count on head node]]\u003c/td\u003e\n\u003ctd\u003eNumber of cores to assign each task for step s2a_bedpostx\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2b_cores_per_task\u003c/td\u003e\n\u003ctd\u003e[[core count on head node]]\u003c/td\u003e\n\u003ctd\u003eNumber of cores to assign each task for step s2b_freesurfer\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es3_cores_per_task\u003c/td\u003e\n\u003ctd\u003e1\u003c/td\u003e\n\u003ctd\u003eNumber of cores to assign each task for step s3_probtrackx\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es4_cores_per_task\u003c/td\u003e\n\u003ctd\u003e1\u003c/td\u003e\n\u003ctd\u003eNumber of cores to assign each task for step s4_render\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es1_hostname\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eHostname of machine to run step s1_dti_preproc, if local_host_only is false\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2a_hostname\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eHostname of machine to run step s2a_bedpostx, if local_host_only is false\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2b_hostname\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eHostname of machine to run step s2b_freesurfer, if local_host_only is false\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es3_hostname\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eHostname of machine to run step s3_probtrackx, if local_host_only is false\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es4_hostname\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eHostname of machine to run step s4_render, if local_host_only is false\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es1_walltime\u003c/td\u003e\n\u003ctd\u003e23:59:00\u003c/td\u003e\n\u003ctd\u003eWalltime for step s1\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2a_walltime\u003c/td\u003e\n\u003ctd\u003e23:59:00\u003c/td\u003e\n\u003ctd\u003eWalltime for step s2a\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2b_walltime\u003c/td\u003e\n\u003ctd\u003e23:59:00\u003c/td\u003e\n\u003ctd\u003eWalltime for step s2b\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es3_walltime\u003c/td\u003e\n\u003ctd\u003e23:59:00\u003c/td\u003e\n\u003ctd\u003eWalltime for step s3\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es4_walltime\u003c/td\u003e\n\u003ctd\u003e23:59:00\u003c/td\u003e\n\u003ctd\u003eWalltime for step s4\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es1_nodes\u003c/td\u003e\n\u003ctd\u003e[[floor(0.2 * num_subjects)]]\u003c/td\u003e\n\u003ctd\u003eNode count for step s1\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2a_nodes\u003c/td\u003e\n\u003ctd\u003e[[floor(1.0 * num_subjects)]]\u003c/td\u003e\n\u003ctd\u003eNode count for step s2a\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2b_nodes\u003c/td\u003e\n\u003ctd\u003e[[floor(1.0 * num_subjects)]]\u003c/td\u003e\n\u003ctd\u003eNode count for step s2b\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es3_nodes\u003c/td\u003e\n\u003ctd\u003e[[floor(1.0 * num_subjects)]]\u003c/td\u003e\n\u003ctd\u003eNode count for step s3\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es4_nodes\u003c/td\u003e\n\u003ctd\u003e[[floor(0.1 * num_subjects)]]\u003c/td\u003e\n\u003ctd\u003eNode count for step s4\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es1_cores\u003c/td\u003e\n\u003ctd\u003e[[core count on head node]]\u003c/td\u003e\n\u003ctd\u003eCores per node for step s1\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2a_cores\u003c/td\u003e\n\u003ctd\u003e[[core count on head node]]\u003c/td\u003e\n\u003ctd\u003eCores per node for step s2a\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2b_cores\u003c/td\u003e\n\u003ctd\u003e[[core count on head node]]\u003c/td\u003e\n\u003ctd\u003eCores per node for step s2b\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es3_cores\u003c/td\u003e\n\u003ctd\u003e[[core count on head node]]\u003c/td\u003e\n\u003ctd\u003eCores per node for step s3\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es4_cores\u003c/td\u003e\n\u003ctd\u003e[[core count on head node]]\u003c/td\u003e\n\u003ctd\u003eCores per node for step s4\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ebids_json\u003c/td\u003e\n\u003ctd\u003eexamples/dummy_bids_desc.json\u003c/td\u003e\n\u003ctd\u003eDescription file dataset_description.json, as specified at \u003ca href=\"https://bids-specification.readthedocs.io/en/stable/03-modality-agnostic-files.html\" rel=\"nofollow\"\u003ehttps://bids-specification.readthedocs.io/en/stable/03-modality-agnostic-files.html\u003c/a\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ebids_readme\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eFree form text file describing the dataset in more detail\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ebids_session_name\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eName for the session timepoint (e.g. 2weeks)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-download-mri-images-from-openneuro\" class=\"anchor\" href=\"#download-mri-images-from-openneuro\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownload MRI Images from OpenNeuro\u003c/h3\u003e\n\u003cp\u003eDownload MRI images from OpenNeuro repository by providing path to install data and accession ID of the MRI image.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eusage: subscripts/download_openneuro.py [-h] [--install-directory INSTALL_DIR] [-a ACC_NUM]\n\narguments:\n -h, --help show this help message and exit\n --install-directory INSTALL_DIR\n Path where data will be installed\n -a ACC_NUM, --accession ACC_NUM\n MRI Accession ID from OpenNeuro\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRequirements:\npython package datalad, git-annex\nInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install -c conda-forge datalad\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eon mac:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebrew install git-annex\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eon linux:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install -c conda-forge git-annex\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h3\u003e\n\u003cp\u003eMaPPeRTrac is distributed under the terms of the BSD-3 License.\u003c/p\u003e\n\u003cp\u003eLLNL-CODE-811655\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1659582311.0
+ "updated_at": 1627333260.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "fsl/singularity/Singularity.fsl"
+ "Singularity"
],
- "full_name": "nikhil153/brain-diff",
+ "full_name": "QsingularityAi/polar-pfc-master_active-crystel",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-brain-diff\" class=\"anchor\" aria-hidden=\"true\" href=\"#brain-diff\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebrain-diff\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-goal-brainage-prediction-with-two-timepoints\" class=\"anchor\" aria-hidden=\"true\" href=\"#goal-brainage-prediction-with-two-timepoints\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGoal: Brainage prediction with two timepoints\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-replication\" class=\"anchor\" aria-hidden=\"true\" href=\"#replication\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReplication\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e- [Paper](https://doi.org/10.1016/j.media.2020.101871): Accurate brain age prediction with lightweight deep neural networks Han Peng, Weikang Gong, Christian F. Beckmann, Andrea Vedaldi, Stephen M Smith Medical Image Analysis (2021)\n- Code [repo](https://github.com/ha-ha-ha-han/UKBiobank_deep_pretrain)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-datasets\" class=\"anchor\" aria-hidden=\"true\" href=\"#datasets\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDatasets\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e- UKBB: notebooks/1_ukb_follow_up.ipynb\n- ADNI: notebooks/2_adni_follow_up.ipynb\n- Simulations: notebooks/7_brain_diff_sim.ipynb\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResults\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e- Brainage replication: notebooks/4_brain_age.ipynb\n- Simulation: notebooks/8_brain_diff_sim_results.ipynb\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-ukb-data-wrangling\" class=\"anchor\" aria-hidden=\"true\" href=\"#ukb-data-wrangling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUKB data wrangling\u003c/h3\u003e\n\u003ch4\u003e\u003ca id=\"user-content-step-1\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 1\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003ecopy files from squashfs on Beluga\nSes-2 (n=40681): \u0026lt;neurohub_ukbb_t1w_bids_derivatives.squashfs\u0026gt;:/neurohub/ukbb/imaging/T1\nSes-3 (n=3208): \u0026lt;neurohub_ukbb_t1w_ses3_0_derivatives.squashfs\u0026gt;:/neurohub/ukbb/imaging\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\u003ca id=\"user-content-step-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 2\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003e## move them in psudo-bids\nfor i in `ls | grep sub- | grep -v json`; do \n mkdir -p ../`echo $i | cut -d \"_\" -f1`/ses-2/anat; \n mv `echo $i | cut -d \"_\" -f1`* ../`echo $i | cut -d \"_\" -f1`/ses-2/anat/; \ndone\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-adni-data-wrangling\" class=\"anchor\" aria-hidden=\"true\" href=\"#adni-data-wrangling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eADNI data wrangling\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003euse src/generate_adni_bids.py\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun instructions\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-simulations\" class=\"anchor\" aria-hidden=\"true\" href=\"#simulations\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSimulations:\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e- Simple interactive runs: notebooks/7_brain_diff_sim.ipynb\n- Batch runs: src/run_simul.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-sfcn-replication\" class=\"anchor\" aria-hidden=\"true\" href=\"#sfcn-replication\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSFCN replication:\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e- src/run_SFCN.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-slurm-setup-for-training-lsn\" class=\"anchor\" aria-hidden=\"true\" href=\"#slurm-setup-for-training-lsn\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eslurm setup for training LSN\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003emodule load singularity/3.8\u003c/li\u003e\n\u003cli\u003esingularity shell --overlay /project/rpp-aevans-ab/neurohub/ukbb/imaging/neurohub_ukbb_t1w_bids_derivatives.squashfs:ro --overlay /project/rpp-aevans-ab/neurohub/ukbb/imaging/neurohub_ukbb_t1w_bids_derivatives_ses3_0_bids.squashfs /home/nikhil/scratch/FastSurfer.sif\u003c/li\u003e\n\u003cli\u003e./run_LSN.sh\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-polar-pfc-master_active-crystel\" class=\"anchor\" href=\"#polar-pfc-master_active-crystel\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epolar-pfc-master_active-crystel\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1654635361.0
+ "updated_at": 1624399268.0
},
{
"data_format": 2,
- "description": "A simple utility to convert a bunch of input fastq files into their reverse complement",
+ "description": null,
"filenames": [
- "singularity/Singularity"
+ "Singularity"
],
- "full_name": "sequana/revcomp",
- "latest_release": "v0.9.0",
+ "full_name": "shrutir11/lolcow",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-lolcow\" class=\"anchor\" href=\"#lolcow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003elolcow\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1661892371.0
+ "updated_at": 1624383824.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Talking to Hinkskalle",
"filenames": [
"Singularity"
],
- "full_name": "baxpr/cersuit",
- "latest_release": "v2.1.0",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-cersuit\" class=\"anchor\" aria-hidden=\"true\" href=\"#cersuit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecersuit\u003c/h1\u003e\n\u003cp\u003eCerebellar segmentation with the \u003ca href=\"http://diedrichsenlab.org/imaging/suit.htm\" rel=\"nofollow\"\u003eSUIT atlas and toolbox\u003c/a\u003e. In the container, the pipeline is installed in the \u003ccode\u003e/opt/cersuit\u003c/code\u003e directory. Matlab code is in the \u003ccode\u003esrc\u003c/code\u003e directory, and the entrypoint is \u003ccode\u003esrc/cersuit.m\u003c/code\u003e. Compiled Matlab code for use in the singularity container without a Matlab license is in \u003ccode\u003ebin\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eSee the \u003ccode\u003eexternal\u003c/code\u003e directory for links, references, and license information for the underlying SPM12 and SUIT Matlab software. \u003ca href=\"https://fsl.fmrib.ox.ac.uk/fsl/fslwiki\" rel=\"nofollow\"\u003eFSL version 6.0.2\u003c/a\u003e is also used for image file manipulation and creating the QA PDF.\u003c/p\u003e\n\u003cp\u003eThe container has a full installation of both SPM12 (compiled) and FSL.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-references-for-suit\" class=\"anchor\" aria-hidden=\"true\" href=\"#references-for-suit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences for SUIT\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.1016/j.neuroimage.2006.05.056\" rel=\"nofollow\"\u003eDiedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. Neuroimage, 33, 1, p. 127-138.\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.1016/j.neuroimage.2009.01.045\" rel=\"nofollow\"\u003eDiedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., \u0026amp; Ramnani, N. (2009). A probabilistic atlas of the human cerebellum. Neuroimage 46(1):39-46.\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.1016/j.neuroimage.2010.10.035\" rel=\"nofollow\"\u003eDiedrichsen, J., Maderwald, S., Kuper, M., Thurling, M., Rabe, K., Gizewski, E. R., et al. (2011). Imaging the deep cerebellar nuclei: A probabilistic atlas and normalization procedure. Neuroimage 54(3):1786-94\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.1371/journal.pone.0133402\" rel=\"nofollow\"\u003eDiedrichsen, J. \u0026amp; Zotow, E. (2015). Surface-based display of volume-averaged cerebellar data. PLoS One, 7, e0133402.\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eAdjustment of the source T1 file to axial data ordering using fslreorient2std, to meet a requirement of the SUIT toolbox.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eTranslation-only alignment of the supplied gray matter image to SPM12\u0027s gray matter probabilistic atlas (TPM.nii). This is accomplished by aligning the centers of mass. Rotations are not estimated, to avoid an issue with SUIT\u0027s bounding box computation. The supplied gray matter image must be in register with the supplied T1. The estimated registration is saved to file and also applied to the T1.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSUIT estimation of the affine transformation and warp of the cerebellar area of the T1 to the SUIT atlas.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eResampling of the T1 and related images to the SUIT atlas space. Gray matter and white matter images are resampled both with and without modulation by the Jacobian.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eResampling of the SUIT-supplied atlases to the original T1 native space.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eComputation of regional volumes for the Lobules_SUIT atlas in the native T1 space.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage-of-the-singularity-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage-of-the-singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage of the singularity container\u003c/h2\u003e\n\u003cp\u003eSee \u003ccode\u003esingularity_examples.sh\u003c/code\u003e for examples of using the container for SUIT warp estimation, and transformation from native to SUIT space and back using an existing estimated warp. The transformations can also be done directly from matlab with the \u003ccode\u003etransform_???.m\u003c/code\u003e functions in \u003ccode\u003esrc\u003c/code\u003e).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-parameters-and-inputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#parameters-and-inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParameters and inputs\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026lt;temporary-home-dir\u0026gt; Matlab will use this for temp files\n\u0026lt;tmp-dir\u0026gt; Other location for temp files \n\u0026lt;input-dir\u0026gt; Directory containing the input T1 image file\n\u0026lt;output-dir\u0026gt; Outputs will be stored here\n\u0026lt;t1-niigz-filename\u0026gt; Filename of the input T1 - expecting \u0026lt;something\u0026gt;.nii.gz\n\u0026lt;mask-threshold\u0026gt; SPM mask threshold for separating brain from background\n\u0026lt;project-name\u0026gt; Project/subject/session/scan names from XNAT, if XNAT is\n\u0026lt;subject-name\u0026gt; used. These are only used to decorate the PDF report.\n\u0026lt;session-name\u0026gt; \n\u0026lt;scan-name\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cp\u003ePDF report for quality assurance\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ePDF cersuit.pdf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTransformation from native to atlas space. Apply in this order\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRIGID coreg_t1_to_mni.mat\nAFFINE Affine_c_t1_seg1.mat\nFLOWFIELD u_a_c_t1_seg1.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eCropped T1 in both spaces\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eT1_CROP_NATIVE c_t1.nii.gz\nT1_CROP_SUIT wc_t1.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eCerebellum mask, segmented gray matter and white matter volume fraction images in native and atlas space\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eMASK_NATIVE c_t1_pcereb.nii.gz\nGRAY_NATIVE c_t1_seg1.nii.gz\nWHITE_NATIVE c_t1_seg2.nii.gz\nMASK_SUIT wc_t1_pcereb.nii.gz\nGRAY_SUIT wc_t1_seg1.nii.gz\nWHITE_SUIT wc_t1_seg2.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eJacobian-modulated gray and white matter images in atlas space\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eGRAYMOD_SUIT wdc_t1_seg1.nii.gz\nWHITEMOD_SUIT wdc_t1_seg2.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSegmented regions in native and atlas space, with lookup table\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eATLASES_NATIVE SUIT-supplied atlases resampled to original T1 space\nATLASES_SUIT The SUIT-supplied atlases themselves\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eVolumetry of segmented regions, computed from native space images. The \"Total\" is the volume of the atlas region after transformation to native space. The \"Gray\" is the sum of voxel gray matter fraction within the atlas region, in native space; similar for \"White\".\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eNATIVE_VOLS iw_Lobules-SUIT_u_a_c_t1_seg1-volumes.csv\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "csf-ngs/hinkskalle-api",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-hinkskalle-api\" class=\"anchor\" href=\"#hinkskalle-api\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHinkskalle API\u003c/h1\u003e\n\u003cp\u003eTalking to \u003ca href=\"https://github.com/csf-ngs/hinkskalle\"\u003eHinkskalle\u003c/a\u003e made easy\u003c/p\u003e\n\u003cp\u003eUse me to\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003elist available downloads\u003c/li\u003e\n\u003cli\u003edownload data\u003c/li\u003e\n\u003cli\u003eupload data\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-getting-started\" class=\"anchor\" href=\"#getting-started\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003cp\u003ehinkskalle-api provides\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ea small library with a thin wrapper over the JSON API\u003c/li\u003e\n\u003cli\u003ea CLI (\u003ccode\u003ehinkli\u003c/code\u003e: short for hink-cli, get it?)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cp\u003eYou will need python3 and pip. Then you can run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip3 install git+https://github.com/csf-ngs/hinkskalle-api\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-command-line-interface\" class=\"anchor\" href=\"#command-line-interface\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCommand Line Interface\u003c/h3\u003e\n\u003cp\u003eGet a list of available commands and options:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ehinkli --help\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYour first step should be logging in:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e non-VBCF.NGS users get your own instance!\u003c/span\u003e\nhinkli --base https://singularity.ngs.vbcf.ac.at/ login\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e answer prompt for username and password\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe registry and token should now be stored in \u003ccode\u003e~/.hink_api.yml\u003c/code\u003e and available for further use.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-discovering--downloading-data\" class=\"anchor\" href=\"#discovering--downloading-data\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDiscovering \u0026amp; Downloading Data\u003c/h4\u003e\n\u003cp\u003eYour most likely use case will be downloading data provided via Hinkskalle.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e shows available collections of containers\u003c/span\u003e\nhinkli list-collections\nhinkli list-containers [collection]\nhinkli list-downloads [collection]/[container]\nhinkli pull [collection]/[container]:[tag]\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e username is optional, but can be provided, too:\u003c/span\u003e\nhinkli list-collections test.hase\nhinkli list-containers test.hase/[collection]\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e etc\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBasic structure:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eA Collection holds a bunch of containers (topic, type, ...)\u003c/li\u003e\n\u003cli\u003eContainers hold tagged data\u003c/li\u003e\n\u003cli\u003eEach tag points to some data (some tags point to the same data)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIf Hinkskalle shows you these downloads in your container \u003ccode\u003etest.hase/example/FAQ4711\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e- \u003cspan class=\"pl-ent\"\u003efilename\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003ebunch_of_reads.fastq.gz\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003esize\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e41.5 MB\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003etags\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003ebasecalled,20210621\u003c/span\u003e\n- \u003cspan class=\"pl-ent\"\u003efilename\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003erawdata.tar.gz\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003esize\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e41.5 TB\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003etags\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003eraw\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can use these commands to download:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e either one fetches bunch_of_reads.fastq\u003c/span\u003e\nhinkli pull example/FAQ4711:basecalled\nhinkli pull example/FAQ4711:20210621\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e fetches rawdata.tar.gz\u003c/span\u003e\nhinkli pull example/FAQ4711:raw\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eHinkli will even check the sha256 checksum for you!\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-api\" class=\"anchor\" href=\"#api\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAPI\u003c/h3\u003e\n\u003cp\u003eNot documented - use at your own risk!\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ehinkskalle_api\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eHinkApi\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eapi\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eHinkApi\u003c/span\u003e()\n\u003cspan class=\"pl-s1\"\u003ecollections\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eapi\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003elist_collections\u003c/span\u003e()\n\u003cspan class=\"pl-c\"\u003e# etc\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-configuration\" class=\"anchor\" href=\"#configuration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguration\u003c/h2\u003e\n\u003cp\u003eBy default, hinkli reads its config from \u003ccode\u003e~/.hink_api.yml\u003c/code\u003e. This file should look like this:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003ehink_api_base\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003ehttps://singularity.ngs.vbcf.ac.at\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003ehink_api_key\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003eyour_super_secret_token\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can use these env variables to override:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003eHINK_API_BASE\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eHINK_API_KEY\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eHINK_API_CFG\u003c/code\u003e - to look for the config file in a different location\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-development\" class=\"anchor\" href=\"#development\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopment\u003c/h1\u003e\n\u003cp\u003eYou can regenerate the models from the Hinkskalle swagger/openapi definition:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip3 install git+https://ngs.vbcf.ac.at/repo/software/swagspotta.git\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e from pkg.ngs.vbcf.ac.at production:\u003c/span\u003e\nshare/create_models.sh\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e from your local hinkskalle dev server:\u003c/span\u003e\nshare/create_models.sh http://localhost:7660/swagger\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1659018685.0
+ "updated_at": 1626991307.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "SMiRL_Code/Singularity"
+ "Singularity.isafe",
+ "Singularity.breakseq",
+ "Singularity.pophuman",
+ "Singularity.abcmk"
],
- "full_name": "KBoumghar/IFT4055-RL",
+ "full_name": "jmurga/bgd-pic",
"latest_release": null,
- "readme": "\u003cp\u003e#IFT4055 - Journal\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-02-05-2022\" class=\"anchor\" aria-hidden=\"true\" href=\"#02-05-2022\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e02-05-2022\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eLearned about MDP and Q-function (see MDP.pdf)\u003c/li\u003e\n\u003cli\u003eSMiRL paper up to page 6 (see Smirl.pdf).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eQuestions I need to answer :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAuxiliary objective, what is this exactly?\u003c/li\u003e\n\u003cli\u003eMinimizing the R.H.S to get maximum reward\u003c/li\u003e\n\u003cli\u003eEstimate of state marginal (cannot seem to find reference for that)\u003c/li\u003e\n\u003cli\u003eHow / how fast can we find the distribution that fits our p_{\\theta_t}(s)\u003c/li\u003e\n\u003cli\u003eMaximum likelihood estimation : OK. Maximum likelihood state density estimation process???\u003c/li\u003e\n\u003cli\u003eWe can\u0027t assume independence of states like what I\u0027ve seen. What is used for Maximum likelihood?\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eWhat I (think) I need to do next :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMore reading/watching on maximum likelihood in machine learning context\u003c/li\u003e\n\u003cli\u003eRead paper about DQN algorithm : \u003ca href=\"https://arxiv.org/pdf/1312.5602.pdf\" rel=\"nofollow\"\u003ehttps://arxiv.org/pdf/1312.5602.pdf\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eRead paper about TRPO algorithm\u003c/li\u003e\n\u003cli\u003ePart with Density estimation with learned representations?\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fast-downward\" class=\"anchor\" href=\"#fast-downward\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFast Downward\u003c/h1\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2020 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"http://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttp://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" href=\"#tested-software-versions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2017 (MSVC 19.16) and 2019 (MSVC 19.28)\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributors\" class=\"anchor\" href=\"#contributors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2020 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2020 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2020 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2020 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2020 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2020 Salome Eriksson\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2018-2020 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2015 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-history\" class=\"anchor\" href=\"#history\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1652813085.0
+ "updated_at": 1624197047.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "_profiler/Singularity"
+ "Singularity.3.0"
],
- "full_name": "mozhgan-kch/HPC_Bootcamp",
+ "full_name": "onuryukselen/singularity",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://opensource.org/licenses/Apache-2.0\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2a2157c971b7ae1deb8eb095799440551c33dcf61ea3d965d86b496a5a65df55/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d417061636865253230322e302d626c75652e737667\" alt=\"License\" data-canonical-src=\"https://img.shields.io/badge/License-Apache%202.0-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-hpc_bootcamp\" class=\"anchor\" aria-hidden=\"true\" href=\"#hpc_bootcamp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHPC_Bootcamp\u003c/h1\u003e\n\u003cp\u003eThis repository contains training content for the HPC_Bootcamp materials. This repository includes the following file structure in the initial two levels:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e _advanced\n\u2502 \u251c\u2500\u2500 cuda_advanced\n\u2502 \u251c\u2500\u2500 multigpu\n\u2502 \u2514\u2500\u2500 openacc_advanced\n\u251c\u2500\u2500 _basic\n\u2502 \u251c\u2500\u2500 cuda_basic\n\u2502 \u251c\u2500\u2500 iso\n\u2502 \u251c\u2500\u2500 openacc_basic\n\u2502 \u2514\u2500\u2500 openmp\n\u251c\u2500\u2500 _profiler\n\u2502 \u251c\u2500\u2500 jupyter_notebook\n\u2502 \u251c\u2500\u2500 Presentations\n\u2502 \u2514\u2500\u2500 source_code\n\u251c\u2500\u2500 LICENSE\n\u251c\u2500\u2500 bootstrap.sh\n\u251c\u2500\u2500 README.md\n\u251c\u2500\u2500 _scripts\n\u2514\u2500\u2500 start_notebook\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eThe _\u003cem\u003eadvanced\u003c/em\u003e directory contains all of the advanced training materials for CUDA, OpenACC, and multiGPU.\u003c/li\u003e\n\u003cli\u003eThe _\u003cem\u003ebasic\u003c/em\u003e directory contains all of the introductory training materials for CUDA, Standard Languages, OpenMP Offloading, and OpenACC.\u003c/li\u003e\n\u003cli\u003eThe _\u003cem\u003eprofiler\u003c/em\u003e directory contains content on NVIDIA Nsight Systems and Compute.\u003c/li\u003e\n\u003cli\u003e_scripts directory contains container defintion files for each bootcamp type.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ePlease note there is a container definition file for each content in \u003ccode\u003e_advanced\u003c/code\u003e, \u003ccode\u003e_basic\u003c/code\u003e, and \u003ccode\u003e_profiler\u003c/code\u003e directory and those can be used on their own without mixing with other contents. Please check the \u003ccode\u003eREADME.md\u003c/code\u003e file inside of each for more information.\u003c/p\u003e\n\u003cp\u003eYou can either clone the whole repository and isolate contents or you can only clone without any of the directories. Please follow below steps for each method.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-cloning-the-repo-with-all-the-direcotires-and-isolate-later-using-git-sparse-checkout\" class=\"anchor\" aria-hidden=\"true\" href=\"#cloning-the-repo-with-all-the-direcotires-and-isolate-later-using-git-sparse-checkout\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCloning the repo with all the direcotires and isolate later using \u003ccode\u003egit sparse-checkout\u003c/code\u003e\n\u003c/h3\u003e\n\u003cp\u003eYou can use the \u003ccode\u003eboostrap.sh\u003c/code\u003e script at the root of the repository to isolate the content. For example, by running \u003ccode\u003ebash ./bootstrap.sh openacc\u003c/code\u003e, your working directory will include all the content related to the OpenACC Bootcamp from basic to advanced. Now, you can run the \u003ccode\u003ebootstrap.sh\u003c/code\u003e command using one of the following pre-defined bootcamp contents: \u003ccode\u003enways-basic\u003c/code\u003e, \u003ccode\u003eopenacc\u003c/code\u003e, \u003ccode\u003eprofiling\u003c/code\u003e,\u003ccode\u003ecuda\u003c/code\u003e, \u003ccode\u003emultigpu\u003c/code\u003e. See example below:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eStep 1: clone the whole repository via \u003ccode\u003egit@github.com:mozhgan-kch/HPC_Bootcamp.git\u003c/code\u003e or \u003ccode\u003ehttps://github.com/mozhgan-kch/HPC_Bootcamp.git\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eStep 2: Navigate to the bootcamp folder via \u003ccode\u003ecd HPC_Bootcamp\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eStep 3: Run \u003ccode\u003ebash ./bootstrap.sh profiling\u003c/code\u003e , this example will isolate files required for the profiling material.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-cloning-the-repo-without-directories\" class=\"anchor\" aria-hidden=\"true\" href=\"#cloning-the-repo-without-directories\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCloning the repo without directories\u003c/h3\u003e\n\u003cp\u003eYou can clone the repository and avoid filling in the working directory with the huge list of files by using the \u003ccode\u003e--no-checkout\u003c/code\u003e option as you clone. Try the below:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone --no-checkout git@github.com:mozhgan-kch/HPC_Bootcamp.git\ncd HPC_Bootcamp\ngit sparse-checkout init --cone\ngit checkout main\nbash ./bootstrap.sh profiling\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce done, navigate to \u003ccode\u003e_scripts\u003c/code\u003e via \u003ccode\u003ecd _scripts\u003c/code\u003e and build the container by following below steps.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-building-the-container-using-the-def-files-inside-the-_script-folder\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-container-using-the-def-files-inside-the-_script-folder\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the container using the def files inside the \u003ccode\u003e_script\u003c/code\u003e folder\u003c/h3\u003e\n\u003cp\u003eTo build the singularity container, run:\n\u003ccode\u003esudo singularity build miniapp.simg {Name of the content}_Singularity\u003c/code\u003e , alternatively you can use \u003ccode\u003esingularity build --fakeroot miniapp.simg {Name of the content}_Singularity\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eand copy the files to your local machine to make sure changes are stored locally:\n\u003ccode\u003esingularity run miniapp.simg cp -rT /labs ~/labs\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThen, run the container:\n\u003ccode\u003esingularity run --nv miniapp.simg jupyter-lab --notebook-dir=~/labs\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eOnce inside the container, open the jupyter lab in browser: \u003ca href=\"http://localhost:8888\" rel=\"nofollow\"\u003ehttp://localhost:8888\u003c/a\u003e, and start the lab by clicking on the \u003ccode\u003e_{Name of the content}.ipynb\u003c/code\u003e notebook. \u003ccode\u003e{Name of the content}\u003c/code\u003e can be \u003ccode\u003eprofiling\u003c/code\u003e. More alternatives will be added.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-building-the-container-using-the-def-files-inside-the-content-folder\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-container-using-the-def-files-inside-the-content-folder\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the container using the def files inside the content folder\u003c/h3\u003e\n\u003cp\u003eAlternatively, you can build containers for each content by using the recipe inside of each content.\nExample : Build container for the \u003cem\u003e_profiler\u003c/em\u003e content. Navigate to \u003ccode\u003e_profiler\u003c/code\u003e directory and read the \u003ccode\u003eREADME.md\u003c/code\u003e file for more information.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity\u003c/h1\u003e\n\u003cp\u003eDevelopment Branch\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1662909782.0
+ "updated_at": 1623903591.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "1.3.1/Singularity",
+ "1.3.3/Singularity"
],
- "full_name": "anastasiadoulab/machaon",
+ "full_name": "yh549848/singularity-rsem",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-machaon\" class=\"anchor\" aria-hidden=\"true\" href=\"#machaon\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMachaon\u003c/h1\u003e\n\u003cbr\u003e\nThis repository contains an implementation for the method presented in the paper \"Identifying and \nprofiling structural similarities between Spike of SARS-CoV-2 and other viral or host proteins with \nMachaon\".\n\u003cp\u003ePlease consult this time-saving manual before you use Machaon. It contains an in-depth explanation\u003cbr\u003e\nabout installing, setting up and using this method.\u003cbr\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-system-requirements\" class=\"anchor\" aria-hidden=\"true\" href=\"#system-requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSystem Requirements\u003c/h2\u003e\n\u003cbr\u003e\n\u003cp\u003eThe target system for Machaon\u0027s development is Ubuntu 20.4. Machaon has limited functionality\u003cbr\u003e\non Windows and MacOS. Some post-processing modules utilize TM-Align and DSSP which are not\u003cbr\u003e\ncross-platform implementations. DSSP data might also be used for setting the targets of constrained\u003cbr\u003e\ncomparisons, which is Machaon\u0027s default behaviour.\u003c/p\u003e\n\u003cp\u003eThe recommended ways to use Machaon is either by working inside a Docker container or a Singularity\u003cbr\u003e\ncontainer or by working in an Ubuntu 20.4 environment with Anaconda (see instructions in the \u0027Installation\u0027\u003cbr\u003e\nsection below). On Windows, you could try WSL in order to get access to a UNIX environment (not tested):\u003cbr\u003e\n\u003ca href=\"https://docs.microsoft.com/en-us/windows/wsl/install\" rel=\"nofollow\"\u003ehttps://docs.microsoft.com/en-us/windows/wsl/install\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eMachaon is an I/O (input/output) intensive implementation and the performance is depended on the\u003cbr\u003e\nstorage hardware and the storage optimizations of the host operating and file systems. For every\u003cbr\u003e\nPDB file that is analyzed, there is a corresponding set of serialized data objects in the form of\u003cbr\u003e\nbinary files (pickle Python package) which hold the necessary data for the calculation of each\u003cbr\u003e\nmetric. NVMe storage is highly recommended.\u003c/p\u003e\n\u003cp\u003eMachaon is a multi-core CPU application with moderate demands on RAM memory only for\u003cbr\u003e\npost-processing and target setup for constrained comparisons due to the required alignments\u003cbr\u003e\n(especially alignments in parallel).\u003c/p\u003e\n\u003cbr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-repository-contents\" class=\"anchor\" aria-hidden=\"true\" href=\"#repository-contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRepository contents\u003c/h2\u003e\n\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eassess: this folder contains scripts for Machaon\u0027s benchmarking, evaluation and assessment\u003c/li\u003e\n\u003cli\u003econfig: configuration files\u003c/li\u003e\n\u003cli\u003edocs: It contains programming-related documentation and diagrams.\n\u003cul\u003e\n\u003cli\u003edocs/classes: Extensive API documentation for all the classes of this implementation.\u003cbr\u003e\nEach class has a dedicated HTML file with thorough description.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003esetup: Scripts for downloading and preparing some (optional) related data sources.\u003c/li\u003e\n\u003cli\u003esrc: source code\u003c/li\u003e\n\u003cli\u003etest: It contains an integrity test with testing data and expected outputs.\u003c/li\u003e\n\u003cli\u003edocker-compose.yml : A file used by Docker Compose tool.\u003c/li\u003e\n\u003cli\u003eDockerfile: A file with the commands needed to set up Machaon in a Docker container.\u003c/li\u003e\n\u003cli\u003eenvironment.yml: A file used by Anaconda Python package manager.\u003c/li\u003e\n\u003cli\u003eLICENSE.md: The license of this implementation.\u003c/li\u003e\n\u003cli\u003eREADME.md: Machaon\u0027s manual (the one you are reading).\u003c/li\u003e\n\u003cli\u003eSingularity: A file used to set up a Singularity container.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cbr\u003e \n\u003ch2\u003e\u003ca id=\"user-content-setup-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup instructions\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-local-data-sources\" class=\"anchor\" aria-hidden=\"true\" href=\"#local-data-sources\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLocal data sources\u003c/h3\u003e\n\u003cbr\u003e\nEnrichment and meta-analysis stages rely on external data sources. There are fallbacks in place for \nsome of them (webservice calls) but it is strongly recommended utilizing the available static resources. \nThis will minimize network activity, greatly speed up the process and protect the respective third party \nweb services from burden. Be sure to have enough available disk space (at least 30GB) for the initial \ndownloads (at least 12GB after the preparation).\n\u003cp\u003e\u003cb\u003eNote\u003c/b\u003e: You can use the \u003cb\u003e\u0027noThirdPartyData\u0027\u003c/b\u003e flag in the configuration, ending up only with the comparison\u003cbr\u003e\nresults. This mode does not require the set up of local data sources or other external data access. The metrics\u003cbr\u003e\n\u003cb\u003edo not rely on external information \u003c/b\u003e apart from the PDB file. Therefore, you only need to collect a set of\u003cbr\u003e\nPDB files to compare with your PDB of choice . However, you will miss enrichment and gene ID-based filtering\u003cbr\u003e\nof the results along with the functionality of the evaluation, meta-analysis, presentation modules.\u003cbr\u003e\nAlso, you will not able to perform the domain scanning since it requires the residue positions of the domains\u003cbr\u003e\n(information found in UniProt data).\u003c/p\u003e\n\u003cp\u003eChoose a folder that will be the root data \u0026amp; cache folder of Machaon and \u003cb\u003ecopy\u003c/b\u003e there the .sh files located\u003cbr\u003e\nin the setup folder. You can use symbolic links if you need to have some resources in separate locations\u003cbr\u003e\n(\u003ca href=\"https://en.wikipedia.org/wiki/Symbolic_link\" rel=\"nofollow\"\u003ehttps://en.wikipedia.org/wiki/Symbolic_link\u003c/a\u003e). Make sure the scripts have adequate execution permissions:\u003cbr\u003e\n\u003ccode\u003echmod 770 *.sh\u003c/code\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-pdb-files\" class=\"anchor\" aria-hidden=\"true\" href=\"#pdb-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePDB files:\u003c/h4\u003e\n\u003cp\u003eThere are two ways that you can obtain multiple PDB files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://www.rcsb.org/downloads\" rel=\"nofollow\"\u003ehttps://www.rcsb.org/downloads\u003c/a\u003e\u003cbr\u003e\nThe downloaded files need to be decompressed and renamed (execute in the downloaded files\u0027 folder):\u003cbr\u003e\n\u003ccode\u003els *.gz | parallel gunzip\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003efor f in *.ent; do mv -- \"$f\" \"${f%.ent}.pdb\"; done\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e(Unix or MacOS only) \u003ca href=\"https://www.rcsb.org/docs/programmatic-access/batch-downloads-with-shell-script\" rel=\"nofollow\"\u003ehttps://www.rcsb.org/docs/programmatic-access/batch-downloads-with-shell-script\u003c/a\u003e\u003cbr\u003e\nThe downloaded files need to be decompressed (execute in the downloaded files\u0027 folder):\u003cbr\u003e\n\u003ccode\u003els *.gz | parallel gunzip\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOf course, you can use RCSB search and retrieve relevant PDB IDs by a query of choice.\u003c/p\u003e\n\u003cp\u003e\u003cb\u003eNote\u003c/b\u003e: PDB files from AlphaFold\u0027s predictions are \u003cb\u003e fully \u003c/b\u003e supported. You can download them from here:\u003cbr\u003e\n\u003ca href=\"https://alphafold.ebi.ac.uk/download\" rel=\"nofollow\"\u003ehttps://alphafold.ebi.ac.uk/download\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eYou can manage the files as below:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003emkdir AF\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003etar -xvf UP000005640_9606_HUMAN_v3.tar -C AF\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003ecd AF\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003erm -rf *.cif.gz\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003els *.gz | parallel gunzip\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003cb\u003eImportant:\u003c/b\u003e Avoid underscores in custom PDB filenames. For example, in Ubuntu you can run:\u003cbr\u003e\n\u003ccode\u003erename.ul \u0027_\u0027 \u0027\u0027 *.pdb\u003c/code\u003e and remove an underscores from every filename in the folder.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-refseq\" class=\"anchor\" aria-hidden=\"true\" href=\"#refseq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRefSeq:\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003eExecute \u003ccode\u003e./download_refseq_resources.sh\u003c/code\u003e\u003cbr\u003e\nIf there are any errors during the downloads, you could try to run the script a while\nlater (\u003ca href=\"https://www.biostars.org/p/493656\" rel=\"nofollow\"\u003ehttps://www.biostars.org/p/493656\u003c/a\u003e).\u003c/li\u003e\n\u003cli\u003eExecute \u003ccode\u003e./download_refseq_resources.sh\u003c/code\u003e again for a final verification of the\ndownloaded files\u0027 integrity and then execute:\u003cbr\u003e\n\u003ccode\u003e./prepare_refseq_resources.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\u003ca id=\"user-content-uniprot-mapping\" class=\"anchor\" aria-hidden=\"true\" href=\"#uniprot-mapping\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUniprot mapping:\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003eIt is recommended to use a dedicated FTP transferring program than a browser for the following large\u003cbr\u003e\ndownloads (e.g. FileZilla: \u003ca href=\"https://filezilla-project.org/download.php\" rel=\"nofollow\"\u003ehttps://filezilla-project.org/download.php\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eVisit the following directory : \u003ca href=\"https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping\" rel=\"nofollow\"\u003ehttps://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eDownload the following files: idmapping_selected.tab.gz, idmapping.dat.gz (Be sure to have enough space for the downloads)\u003c/li\u003e\n\u003cli\u003eExecute \u003ccode\u003e./prepare_uniprot_resources.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cbr\u003e\n\u003ch3\u003e\u003ca id=\"user-content-installation-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation (Containers)\u003c/h3\u003e\n\u003ch4\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h4\u003e\n\u003cp\u003eIf you are going to use Docker, you only need to specify your data storage in docker-compose.yml file:\u003cbr\u003e\n\u003ccode\u003e- MY_BIG_STORAGE_PATH:/opt/storage\u003c/code\u003e\u003cbr\u003e\n(replace MY_BIG_STORAGE_PATH with your path of choice)\u003c/p\u003e\n\u003cp\u003eand run the following command to build and launch a Machaon-ready container:\u003cbr\u003e\n\u003ccode\u003esudo docker-compose up -d\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eYou can enter into the container and start working:\u003cbr\u003e\n\u003ccode\u003esudo docker exec -it \u0026lt;container\u0027s name\u0026gt; bash\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003econda activate machaon\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003ecd /opt/src\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003epython run.py -h\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe folder with the configurations (config) is the shared between the host system\u003cbr\u003e\nand container for ease of use (you can read and edit configuration files outside of\u003cbr\u003e\nthe container).\u003c/p\u003e\n\u003cp\u003eAlternatively, if you plan to run it in a Cloud VM instance, you need to modify the\u003cbr\u003e\nDocker configurations:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003edocker-compose.yml: Set your mounts accordingly (or remove the volume directive)\u003c/li\u003e\n\u003cli\u003eDockerfile: Add the following line before WORKDIR command:\u003cbr\u003e\n\u003ccode\u003eADD ./config /opt/machaon/config\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h4\u003e\n\u003cp\u003eThese are the instructions for creating a container with Singularity (\u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003ehttps://sylabs.io/docs/\u003c/a\u003e):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDownload the latest version from here: \u003ca href=\"https://github.com/sylabs/singularity/releases\"\u003ehttps://github.com/sylabs/singularity/releases\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eExecute:\u003cbr\u003e\n\u003ccode\u003esingularity build --fakeroot machaon.sif Singularity\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003esingularity run machaon.sif\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003econda activate machaon\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003ecd /opt/src\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003epython run.py -h\u003c/code\u003e\n\u003cbr\u003e\u003cbr\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-manual-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#manual-installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eManual Installation\u003c/h3\u003e\n\u003cbr\u003e \nThis section is a walkthrough for manual installation (please also check Dockerfile, it contains all \nneeded commands but it is recommended to execute them separately). \n\u003ch4\u003e\u003ca id=\"user-content-modified-tm-align-compilation\" class=\"anchor\" aria-hidden=\"true\" href=\"#modified-tm-align-compilation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModified TM-Align compilation\u003c/h4\u003e\n\u003cp\u003eThis well-established method is used for 3D similarity computation by the evaluation module.\u003cbr\u003e\nMachaon can run without the presence of this executable but you will miss the 3D similarity\u003cbr\u003e\nevaluation of the final candidates in the Machaon\u0027s results.\u003c/p\u003e\n\u003cp\u003eAccording to the original documentation, TM-Align is compiled as:\u003cbr\u003e\n\u003ccode\u003eg++ -static -O3 -ffast-math -lm -o TMalign TMalign.cpp\u003c/code\u003e\u003cbr\u003e\n(You might need to install g++ first: \u003ccode\u003esudo apt-get install build-essential\u003c/code\u003e )\u003cbr\u003e\nMacOS users should omit \u0027-static\u0027 option.\nFor more, you can check: \u003ca href=\"https://zhanggroup.org/TM-align\" rel=\"nofollow\"\u003ehttps://zhanggroup.org/TM-align\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-dssp\" class=\"anchor\" aria-hidden=\"true\" href=\"#dssp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDSSP\u003c/h4\u003e\n\u003cp\u003eThis well-known method is used for protein secondary structure assignment, employed in constrained\u003cbr\u003e\nsearch mode and the Gene Ontology meta-analysis process of Machaon. Alternatively, you could use\u003cbr\u003e\nprotein or hydrophobicity-focused sequences that do not require this program otherwise Machaon\u003cbr\u003e\nwill use STRIDE instead (see next section).\u003c/p\u003e\n\u003cp\u003eBelow are the steps for the compilation of DSSP 4.0 in \u003cb\u003eUbuntu 20.4\u003c/b\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eCMake:\u003cbr\u003e\n\u003ccode\u003esudo apt-get install cmake\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBoost:\u003cbr\u003e\n\u003ccode\u003esudo apt-get install libboost-all-dev\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eFor Ubuntu versions lower than 20.04, you need to install Boost from source if your latest version is lower than 1.70:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eRemove previous Boost version:\u003cbr\u003e\n\u003ccode\u003eapt remove \u0027libboost.*-dev\u0027\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eDownload and extract the latest version from: \u003ca href=\"https://www.boost.org/\" rel=\"nofollow\"\u003ehttps://www.boost.org/\u003c/a\u003e (greater than 1.70)\u003c/li\u003e\n\u003cli\u003eInstall:\u003cbr\u003e\n\u003ccode\u003echmod +x bootstrap.sh\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003e./boostrap.sh\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003esudo ./b2 link=static install\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBZIP2:\u003cbr\u003e\n\u003ccode\u003esudo apt-get install libbz2-dev\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ecifpp:\nMake sure you have cmake (\u003ccode\u003esudo apt install cmake \u003c/code\u003e) and follow the instructions in \u003ca href=\"https://github.com/PDB-REDO/libcifpp\"\u003ehttps://github.com/PDB-REDO/libcifpp\u003c/a\u003e\u003cbr\u003e\nYou might need also to install this before: \u003ca href=\"https://github.com/mhekkel/mrc\"\u003ehttps://github.com/mhekkel/mrc\u003c/a\u003e (\u003ca href=\"https://github.com/PDB-REDO/dssp/issues/4\"\u003ehttps://github.com/PDB-REDO/dssp/issues/4\u003c/a\u003e)\u003cbr\u003e\nFor Ubuntu 18.04 you also need to install these first of all:\u003cbr\u003e\n\u003ccode\u003esudo add-apt-repository ppa:ubuntu-toolchain-r/test\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003esudo apt update\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003esudo apt install gcc-9 g++-9\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003eexport CC=/usr/bin/gcc-9\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003eexport CXX=/usr/bin/g++-9\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDSSP: Please follow the instructions in \u003ca href=\"https://github.com/PDB-REDO/dssp\"\u003ehttps://github.com/PDB-REDO/dssp\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cb\u003eNote:\u003c/b\u003eThere are also other options to obtain DSSP files without setting up the program: \u003ca href=\"https://swift.cmbi.umcn.nl/gv/dssp/\" rel=\"nofollow\"\u003ehttps://swift.cmbi.umcn.nl/gv/dssp/\u003c/a\u003e\u003cbr\u003e\nIn that case, you should add them in a folder named \u0027dssp_cache\u0027 located in your specified root data \u0026amp; cache folder\u003cbr\u003e\n(\u0027rootDisk\u0027 parameter, more in \u0027Execution\u0027 section) .\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-stride\" class=\"anchor\" aria-hidden=\"true\" href=\"#stride\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSTRIDE\u003c/h4\u003e\n\u003cp\u003eSTRIDE is an established method for determining the protein secondary structure from PDB files.\nIt is used as a fallback solution for custom PDB files that do not fully follow the standard PDB\nformat and lack annotations. Please follow the instructions in \u003ca href=\"http://webclu.bio.wzw.tum.de/stride/\" rel=\"nofollow\"\u003ehttp://webclu.bio.wzw.tum.de/stride/\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-using-the-executables\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-the-executables\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing the executables\u003c/h4\u003e\n\u003cp\u003eAfter the compilations, you have to copy the mkdssp, stride, TM-Align executables\u003cbr\u003e\ninto the directory of Machaon and give them the required execute permissions:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ecd machaon/src\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003ecp /home/\u0026lt;user\u0026gt;/.local/bin/mkdssp .\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003ecp /home/\u0026lt;user\u0026gt;/.local/bin/stride .\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003echmod 770 mkdssp \u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003echmod 770 stride \u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003echmod 770 TMalign \u003c/code\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-required-system-libraries\" class=\"anchor\" aria-hidden=\"true\" href=\"#required-system-libraries\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequired system libraries:\u003c/h4\u003e\n\u003cp\u003eYou need the poppler library in order to export the figures in the EPS format\nwith Python plotly library:\u003cbr\u003e\n\u003ccode\u003esudo apt-get install libpoppler-cpp-dev\u003c/code\u003e\nThis a graphics related library for Open3D:\n\u003ccode\u003esudo apt-get install libgl1-mesa-dev\u003c/code\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-python-environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#python-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePython environment:\u003c/h4\u003e\n\u003cp\u003eAn environment setup of Anaconda Python distribution is needed : \u003ca href=\"https://www.anaconda.com\" rel=\"nofollow\"\u003ehttps://www.anaconda.com\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis distribution allows easy setup of all the requisites for Machaon.\u003c/p\u003e\n\u003cp\u003eOnce you have an operational Anaconda-enabled terminal, move into the setup folder and execute\u003cbr\u003e\nthe following command to install all the required packages:\u003cbr\u003e\n\u003ccode\u003econda env create -f environment.yml\u003c/code\u003e\u003cbr\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-testing-your-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#testing-your-installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting your installation:\u003c/h3\u003e\n\u003cp\u003eRun the test script in the /test folder:\n\u003ccode\u003epython integrity_test.py\u003c/code\u003e\u003cbr\u003e\nIf there are no differences reported at the end, than your installation should be successful.\u003cbr\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-execution\" class=\"anchor\" aria-hidden=\"true\" href=\"#execution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExecution\u003c/h2\u003e\n\u003cbr\u003e\n\u003cp\u003eAt first, you need to activate the previously installed environment in an Anaconda-enabled terminal:\u003cbr\u003e\n\u003ccode\u003econda activate machaon\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-hidden=\"true\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick start:\u003c/h3\u003e\n\u003cp\u003eExecute the following script which is located in the src folder: \u003ccode\u003e run.py -h\u003c/code\u003e\u003cbr\u003e\nThis will display all the available options and their descriptions.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-batch-jobs-recommended\" class=\"anchor\" aria-hidden=\"true\" href=\"#batch-jobs-recommended\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBatch jobs (recommended):\u003c/h3\u003e\n\u003cp\u003eEdit \u003cb\u003econfig.yaml\u003c/b\u003e file in the src folder and run \u003cb\u003e batch_run.py\u003c/b\u003e. Below is an example entry with the default\u003cbr\u003e\nvalues. You could copy it and modify it according to your needs. Configurations with \"ignore : True\" field\u003cbr\u003e\nare ignored. You could also consult with the example configurations used for the Spike protein of SARS-CoV-2.\u003c/p\u003e\n\u003cpre\u003e - rootDisk: \"\" \n referencePDBID: \"\"\n overridePDBID: \"\"\n referenceChainID: \"\"\n referenceGeneID: \"\"\n referenceSequenceLength: 0\n comparisonMode: \"\"\n pdbDatasetPath: \"\"\n outputPath: \"\"\n excludedOrganisms: []\n excludedGeneNames: []\n excludedPDBIDs: []\n isReferenceViral: False\n GOProperty: \"\"\n GOTargetProperties: []\n GOSearch: \"\"\n GOAlignmentLevel: \"secondary\"\n noThirdPartyData: False\n pdbValidation: False\n GOAnalysisOnly: False \n\u003c/pre\u003e\n\u003cp\u003eAll the options are presented below:\u003c/p\u003e\n\u003cpre\u003e\u0027rootDisk\u0027: This will also be the caching location for the extracted features.\n\u0027referencePDBID\u0027: Choose the reference PDB IDs (1 search per reference)\n\u0027overridePDBID\u0027: Override the reference PDBID for Uniprot ID retrieval (for renamed reference PDB files, e.g. 6VXX_processed.pdb)\n\u0027referenceChainID\u0027: Choose the chain of the reference PDB\n\u0027referenceGeneID\u0027: Provide the gene id (Entrez) of the reference PDB\n\u0027referenceSequenceLength\u0027: Provide the protein sequence length of the reference protein\n\u0027comparisonMode\u0027: Choose \u0027whole\u0027, \u0027domain\u0027 or \u0027segment\u0027\n\u0027alignmentLevel\u0027: Choose \u0027primary\u0027, \u0027secondary\u0027, \u0027mixed\u0027, \u0027hydrophobicity\u0027. Default is \u0027mixed\u0027. (Only from segment scans)\n\u0027pdbDatasetPath\u0027: Relative path for PDB data folder\n\u0027outputPath\u0027: The location of the outputs (can be relative or full path)\n\u0027excludedOrganisms\u0027: Filtering out structures originating from the same organism as the reference one\n\u0027excludedGeneNames\u0027: Filtering out structures originating from the same gene as the reference one\n\u0027excludedPDBIDs\u0027: Exclude PDB IDs\n\u0027isReferenceViral\u0027: Meta-analysis skips the search in viral genome data for the reference, if it is not a viral protein\n\u0027GOProperty\u0027: Choose a property type for analysis: \u0027biologicalProcess\u0027, \u0027molecularFunction\u0027, \u0027cellularComponent\u0027\n\u0027GOTargetProperties\u0027: Choose properties for analysis\n\u0027GOSearch\u0027: Choose a term to be searched in all available GO Terms belonging to the results e.g. \u0027ubiquit\u0027 (could be a stem of a word)\n\u0027GOAlignmentLevel\u0027: Choose target alignment level : [\u0027primary\u0027, \u0027secondary\u0027, \u0027mixed\u0027, \u0027hydrophobicity\u0027. Default is \u0027secondary\u0027]\n\u0027noThirdPartyData\u0027: Do not use external local or online resources. PDB data only.\n\u0027GOAnalysisOnly\u0027: Perform only GO Meta-analysis (for completed searches).\n\u0027pdbValidation\u0027: Validation for PDB files. Every file assessed as invalid is skipped from the search (very strict and slow). \n\u0027ignore\u0027: If set to True, the configuration will be ignored. Useful for storing previous job details.\n\u0027*whatever*\u0027: You can include fields of your own, like tags or notes (e.g. \u0027date\u0027 : 14-4-2003). These are not considered by the program. \n\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-constrained-mode-segments\" class=\"anchor\" aria-hidden=\"true\" href=\"#constrained-mode-segments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConstrained mode (segments):\u003c/h4\u003e\n\u003cp\u003eConstrained search on segments requires also preset about the reference segment. This is set in\u003cbr\u003e\n\u003cb\u003esegments.yaml\u003c/b\u003e file in the src folder. Below is an empty template entry. You could also consult with\u003cbr\u003e\nthe example segment definitions used for the Spike protein of SARS-CoV-2.\u003c/p\u003e\n\u003cpre\u003e- referencePDBChain: \"\"\n residues: []\n residueRanges: \"\"\n known: False\n\u003c/pre\u003e\n\u003cp\u003eAll the options are presented below:\u003c/p\u003e\n\u003cpre\u003e\u0027referencePDBChain\u0027: The reference PDB ID and chain ID separated by a dot, \u0026lt;PDB ID\u0026gt;.\u0026lt;CHAIN ID\u0026gt; e.g. \"\"6VXX.A\"\n\u0027residues\u0027: List of residue positions (one-based indexing), e.g. [1, 2, 3, 4, 5]\n\u0027residueRanges\u0027: Range definitions separated by comma, e.g. \u00271-50,70-78\u0027\n\u0027known\u0027: Select True if the segment belongs to a known site like a binding site (considered by GO Meta-analysis module).\n\u0027ignore\u0027: If set to True, the configuration will be ignored. Useful for storing past segment presets.\n\u0027*whatever*\u0027: You can include fields of your own, like tags or notes (e.g. \u0027doi\u0027 : \u0027123.3456/1234.123\u0027). These are not considered by the program. \n\nNote: \u0027residues\u0027 and \u0027residueRanges\u0027 definitions are combined, e.g. [12, 15, 59] \nand \u002713-40, 47-52\u0027 would result to the selection of residue positions from 12 to 40, \nfrom 47 to 52 and 59 (duplicate definitions are removed).\n\u003c/pre\u003e\u003cbr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-data-directory-structures\" class=\"anchor\" aria-hidden=\"true\" href=\"#data-directory-structures\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData directory structures\u003c/h2\u003e\n\u003cbr\u003e \n\u003ch4\u003e\u003ca id=\"user-content-output-folder-structure\" class=\"anchor\" aria-hidden=\"true\" href=\"#output-folder-structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput folder structure\u003c/h4\u003e\n\u003cpre\u003e (a user-specified output folder)\n |\n |__ (a user-specified top directory name)\n |\n |__metrics/ (directory for the computed metrics for all structures in the dataset)\n |\n |__candidates/ (directory for the selected final set of candidate entries, \n | the final report is saved here [HTML file])\n |\n |__plots/ (directory for plots regarding the final set)\n |\n |__go/ (directory for GO meta-analysis, mini reports and related visualizations)\n\u003c/pre\u003e\n\u003cp\u003e\u003cb\u003eNote for constrained mode search on segments\u003c/b\u003e:The corresponding output files contain a suffix\u003cbr\u003e\n\"site\u0026lt;segment index\u0026gt;\" that signify the results for a particular segment. The index comes from the\u003cbr\u003e\nconfiguration order. In the \"metrics\" folder, there is a \"*_site\u0026lt;segment index\u0026gt;-parts.csv\" file that contains\u003cbr\u003e\nthe contiguous parts of the segment as determined by the method.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-root-folder-source-data--cache-full-structure\" class=\"anchor\" aria-hidden=\"true\" href=\"#root-folder-source-data--cache-full-structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRoot folder (source data \u0026amp; cache), full structure\u003c/h4\u003e\n\u003cpre\u003e (a user-specified \u003cb\u003eroot\u003c/b\u003e folder)\n |\n |--DATA_\u0026lt;PDB directory name\u0026gt;_\u0026lt;whole or domain\u0026gt;/ \n | (directory for storing the extracted features of a PDB directory)\n |\n |--domains/ (directory for caching domain information by UniProt online requests)\n |\n |--dssp_cache/ (directory for caching DSSP results)\n |\n |--enrichment/ (directory for caching data enrichment of PDB chain entries)\n |\n |__entrez/ (cache directory for NCBI Entrez online requests)\n |\n |--pdbinfo/ (directory for caching extracted PDB meta-data)\n |\n |--prot_sec/ (directory for caching PDB sequence/secondary structure data)\n |\n |__refseq/ (RefSeq resources directory)\n |\n |--rcsbenrich/ (cache directory for RCSB enrichment data) \n |\n |--(user created PDB folders, \u003cb\u003eeach folder corresponds to a target dataset for a search\u003c/b\u003e)\n |\n |__idmapping_selected.tab.gz (UniProt idmapping resources)\n\u003c/pre\u003e\n\u003cp\u003eThere is also a cache file that is generated besides the scripts in src folder (go_cache.csv) that holds\u003cbr\u003e\nGene Ontology data.\u003cbr\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-output-format\" class=\"anchor\" aria-hidden=\"true\" href=\"#output-format\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput format\u003c/h2\u003e\n\u003cbr\u003e\nThe outputs are human interpretable CSV files with headers:\n\u003cul\u003e\n\u003cli\u003emetrics directory has comma separated CSV files\u003c/li\u003e\n\u003cli\u003ecandidates directory has tab separated CSV files\u003c/li\u003e\n\u003cli\u003eoutputs of constrained searches include columns with serialized list contents which can be parsed with eval()\u003c/li\u003e\n\u003c/ul\u003e\n\u003cbr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-special-cases\" class=\"anchor\" aria-hidden=\"true\" href=\"#special-cases\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpecial Cases\u003c/h2\u003e\n\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eIf you want to compare a polymer as a whole structure you could use pdb-tools :\n\u003ca href=\"https://github.com/haddocking/pdb-tools\"\u003ehttps://github.com/haddocking/pdb-tools\u003c/a\u003e\u003cbr\u003e\nand combine multiple chains to one. You should remove any pre-computed features of the old PDB\u003cbr\u003e\n(*_angles.pkl, *_distances.pkl, *_triangles.pkl) and the original PDB from the dataset (you could\u003cbr\u003e\nkeep these files in a separate location as back up). You need to decide which original \u0026lt;PDB ID\u0026gt; and\u003cbr\u003e\n\u0026lt;PDB chain ID\u0026gt; you will use as a reference for the third-party resources.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eIn case you encounter warnings about empty chain identifiers or missing chains, use pdb_chain\u003cbr\u003e\ncommand from pdb-tools: \u003ccode\u003epdb_chain -A no_chains.pdb \u0026gt; corrected.pdb\u003c/code\u003e to put a dummy identifier\nto a problematic PDB file.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSecondary structure data cannot be extracted from PDBs that lack experimental information so you may have to\nchange the target alignment level to primary or hydrophobicity (recommended) for constrained mode search on\nsegments (default is \u0027mixed\u0027) or GO metanalysis (default is 2D).\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cbr\u003e\n\u003ch3\u003e\u003ca id=\"user-content-trivia\" class=\"anchor\" aria-hidden=\"true\" href=\"#trivia\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTrivia\u003c/h3\u003e\n\u003cp\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Machaon_(mythology)\" rel=\"nofollow\"\u003ehttps://en.wikipedia.org/wiki/Machaon_(mythology)\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-bamtools/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bamtools/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/43cc1554b9e51a28dfa82673f6a9629d4b3f4151419378b68631040a1a5f52a2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/43cc1554b9e51a28dfa82673f6a9629d4b3f4151419378b68631040a1a5f52a2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bamtools\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/bb25827e818656bc2a93d95c923b954c29792611568e2828cee62c6501555455/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bb25827e818656bc2a93d95c923b954c29792611568e2828cee62c6501555455/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bamtools\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/30cf5022df93f7c848ab5284b476648b2a424ac87e287144bfdbc9460bb75256/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/30cf5022df93f7c848ab5284b476648b2a424ac87e287144bfdbc9460bb75256/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bamtools\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/72066080adaa298a3f65d9ad3d27681498685739defe4d4061e06d30f8bf5277/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/72066080adaa298a3f65d9ad3d27681498685739defe4d4061e06d30f8bf5277/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bamtools\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-bamtools\" class=\"anchor\" href=\"#singularity-bamtools\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bamtools\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/pezmaster31/bamtools\"\u003ebamtools\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebamtools\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bamtools/2.5.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bamtools\u003c/code\u003e as \u003ccode\u003e2.5.1\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1655488848.0
+ "updated_at": 1623772549.0
},
{
"data_format": 2,
- "description": "blastfoam-CI-docker",
+ "description": "FLAC (/fl\u00e6k/; Free Lossless Audio Codec) is an audio coding format for lossless compression of digital audio.",
"filenames": [
- "Singularity-openfoam.def"
+ "1.3.3/Singularity"
],
- "full_name": "jiaqiwang969/blastfoam-project",
+ "full_name": "pscedu/singularity-flac",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-blastfoam-project\" class=\"anchor\" aria-hidden=\"true\" href=\"#blastfoam-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eblastfoam-project\u003c/h1\u003e\n\u003cp\u003eAim: High resolution fvm simulation using \u003ca href=\"https://github.com/synthetik-technologies/blastfoam\"\u003eblastfoam\u003c/a\u003e scheme\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003emv Dockerfile.step01 Dockerfile\ndocker build jiaqiknight/openfoam-blastfoam:v1 .\nmv Dockerfile.step02 Dockerfile\ndocker build jiaqiknight/openfoam-blastfoam:v2 .\nsingularity build openfoam-blastfoam-v2012.sif Singularity-openfoam.def\nsingularity shell openfoam-blastfoam-v2012.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-use-action-to-dockerhub\" class=\"anchor\" aria-hidden=\"true\" href=\"#use-action-to-dockerhub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUse Action to dockerhub\u003c/h3\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-flac/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-flac/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/37fadb899e2280d332672dd4ff8c55c77b6d1da4314ad56fb36c15142413fbda/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d666c6163\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/37fadb899e2280d332672dd4ff8c55c77b6d1da4314ad56fb36c15142413fbda/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d666c6163\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-flac\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5ccca52861f2fb4e7486645f35b923f2cbc790f1e7ed709d7422b0c9f2dc19d7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d666c6163\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5ccca52861f2fb4e7486645f35b923f2cbc790f1e7ed709d7422b0c9f2dc19d7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d666c6163\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-flac\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/e8f82abbc9bacec399c48512a0390d8b4d29091355a9ce463d889ecb16cd4775/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d666c6163\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e8f82abbc9bacec399c48512a0390d8b4d29091355a9ce463d889ecb16cd4775/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d666c6163\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-flac\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5325f2a609a18c54057940e4962347ba4f1beeef88a23a92c7149e8016cf4e13/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d666c6163\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5325f2a609a18c54057940e4962347ba4f1beeef88a23a92c7149e8016cf4e13/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d666c6163\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-flac\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-flac\" class=\"anchor\" href=\"#singularity-flac\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-flac\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/flac\"\u003eflac\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-about-this-repository\" class=\"anchor\" href=\"#about-this-repository\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAbout this repository\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/4d9e61b063851d778ce9938e3f7bb848d158ebf589dbcd68bf21c5d5eeef6d40/68747470733a2f2f6d65646961322e67697068792e636f6d2f6d656469612f31334867774773584630616947592f67697068792e6769663f6369643d6563663035653437396d61316e736b74386d786278726c323076377375656868343931687532306b6973786878636265267269643d67697068792e6769662663743d67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4d9e61b063851d778ce9938e3f7bb848d158ebf589dbcd68bf21c5d5eeef6d40/68747470733a2f2f6d65646961322e67697068792e636f6d2f6d656469612f31334867774773584630616947592f67697068792e6769663f6369643d6563663035653437396d61316e736b74386d786278726c323076377375656868343931687532306b6973786878636265267269643d67697068792e6769662663743d67\" alt=\"DANGER\" data-canonical-src=\"https://media2.giphy.com/media/13HgwGsXF0aiGY/giphy.gif?cid=ecf05e479ma1nskt8mxbxrl20v7suehh491hu20kisxhxcbe\u0026amp;rid=giphy.gif\u0026amp;ct=g\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe purpose of this repository is to highlight how to deploy a Singularity and Spack together.\u003c/li\u003e\n\u003cli\u003eAt this moment, the workflow is expected to fail as we have not found a good solution to deploying the images (yet).\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCOMMENT: \u003cstrong\u003eDo not deploy on any system.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the Perl scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/flac/1.3.3\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/flac\u003c/code\u003e as \u003ccode\u003e1.3.3.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1655572084.0
+ "subscribers_count": 2,
+ "topics": [
+ "utilities",
+ "singularity"
+ ],
+ "updated_at": 1628186027.0
},
{
"data_format": 2,
- "description": null,
+ "description": "QSYM - Concolic Execution Engine (https://github.com/sslab-gatech/qsym)",
"filenames": [
- "Singularity"
+ "Singularity.1604",
+ "Singularity.1804"
],
- "full_name": "kirsho/conda2sing",
- "latest_release": null,
+ "full_name": "shub-fuzz/qsym",
+ "latest_release": "0.0.2",
+ "readme": "\u003cp\u003eSingularity Image for QSYM (\u003ca href=\"https://github.com/sslab-gatech/qsym\"\u003ehttps://github.com/sslab-gatech/qsym\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/shub-fuzz/qsym/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/shub-fuzz/qsym/actions/workflows/builder.yml/badge.svg?branch=main\" alt=\"singularity-deploy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/3625\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eWhat\u003c/strong\u003e is \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e?\u003cbr\u003e\nA containerization system primarily used by the scientific community on high-performance computing (HPC).\nOn many University HPC systems, docker is not allowed, but singularity is availble because it runs with\nuser level permisions.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eWhy\u003c/strong\u003e?\u003cbr\u003e\nFuzzing on HPC!\u003cbr\u003e\nUniversities have trememdous resources available in HPC clusters that can be used to support\nlarge-scale fuzzing evaluations.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eQSYM - Concolic Execution Engine (\u003ca href=\"https://github.com/sslab-gatech/qsym\"\u003ehttps://github.com/sslab-gatech/qsym\u003c/a\u003e)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eusage:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name qsym.sif https://github.com/shub-fuzz/qsym/releases/download/0.0.2/shub-fuzz-qsym.1604.sif\n\nsingularity shell qsym.sif\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1656054479.0
- },
- {
- "data_format": 2,
- "description": "Spatially explicit individual based model that simulates Coffee Leaf Rust epidemics on a coffee farm",
- "filenames": [
- "Singularity.def"
- ],
- "full_name": "comses-education/spatialrust-model",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-spatialrust-coffee-leaf-rust-epidemic-model\" class=\"anchor\" aria-hidden=\"true\" href=\"#spatialrust-coffee-leaf-rust-epidemic-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpatialRust: Coffee Leaf Rust Epidemic Model\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://fair-software.eu\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/06a717d034624fa1ef05f60d027c62477e5fb10c3803b2e488c18839125fa828/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f666169722d2d736f6674776172652e65752d2545322539372538462532302532302545322539372538462532302532302545322539372538422532302532302545322539372538422532302532302545322539372538422d6f72616e6765\" alt=\"fair-software.eu\" data-canonical-src=\"https://img.shields.io/badge/fair--software.eu-%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8B%20%20%E2%97%8B%20%20%E2%97%8B-orange\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/comses-education/spatialrust-model/actions/workflows/docker-image.yml\"\u003e\u003cimg src=\"https://github.com/comses-education/spatialrust-model/actions/workflows/docker-image.yml/badge.svg\" alt=\"Docker Build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/comses-education/spatialrust-model/actions/workflows/singularity-image.yml\"\u003e\u003cimg src=\"https://github.com/comses-education/spatialrust-model/actions/workflows/singularity-image.yml/badge.svg\" alt=\"Singularity Build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSpatialRust is an individual based model that simulates Coffee Leaf Rust epidemics within a coffee farm.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-installing-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling dependencies\u003c/h3\u003e\n\u003cp\u003eMove to this project\u0027s directory and run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ julia install.jl\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-the-model\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-the-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the model\u003c/h3\u003e\n\u003cp\u003eThere are two script files available. You can run a single simulation using a fixed parameter set using \u003ccode\u003escripts/OneRun.jl\u003c/code\u003e as follows:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ julia scripts/OneRun.jl\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eResults from this single run will be saved in a \u003ccode\u003eresults\u003c/code\u003e folder as \u003ccode\u003esinglerun.csv\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eThe second option, \u003ccode\u003escripts/ParameterRuns.jl\u003c/code\u003e, lets you run a parameter exploration experiment. The default setup of this experiment will run 2700 simulations. To modify the parameter values to be evaluated or the replicates for each combination, open \u003ccode\u003escripts/ParameterRuns.jl\u003c/code\u003e and edit lines 11 to 14. Like the first option, you can run the script from bash:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ julia scripts/ParameterRuns.jl\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eResults from this experiment will be saved in a \u003ccode\u003eresults\u003c/code\u003e folder as \u003ccode\u003eparameterexp.csv\u003c/code\u003e. Both scripts take care of creating the \u003ccode\u003eresults\u003c/code\u003e folder if it has not been created yet.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-on-open-science-grid\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-on-open-science-grid\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning on Open Science Grid\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003eEstablish an account on Open Science Grid\n\u003ca href=\"https://osg-htc.org/research-facilitation/accounts-and-projects/general/index.html\" rel=\"nofollow\"\u003ehttps://osg-htc.org/research-facilitation/accounts-and-projects/general/index.html\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eCreate a host alias for your OSG account (\u003ca href=\"https://github.com/comses-education/fair-osg-template#set-up-your-user-account-on-the-open-science-grid\"\u003ehttps://github.com/comses-education/fair-osg-template#set-up-your-user-account-on-the-open-science-grid\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eBuild a singularity image and deploy it to your OSG \u003ccode\u003e/public/\u0026lt;username\u0026gt;\u003c/code\u003e directory via \u003ccode\u003e$ make OSG_USERNAME=\u0026lt;your-osg-username\u0026gt; deploy\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003essh into the OSG login node, cd into the \u003ccode\u003espatialrust\u003c/code\u003e directory and submit the generated \u003ccode\u003espatialrust.submit\u003c/code\u003e via \u003ccode\u003e$ condor_submit spatialrust.submit\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003ethis runs the ParameterRuns.jl on OSG and should drop off a \u003ccode\u003eresults.zip\u003c/code\u003e file with the data in the same directory you submitted the job script.\u003c/li\u003e\n\u003c/ol\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 5,
- "topics": [
- "agent-based-model",
- "computational-model",
- "julia",
- "simulation"
- ],
- "updated_at": 1655789345.0
+ "updated_at": 1623682731.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity image for Angora (https://github.com/AngoraFuzzer/Angora)",
"filenames": [
- "Singularity"
+ "Singularity.1604",
+ "Singularity.1804"
],
- "full_name": "touala/MUMmer",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-mummer\" class=\"anchor\" aria-hidden=\"true\" href=\"#mummer\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMUMmer\u003c/h1\u003e\n\u003cp\u003eAdapted from \u003ca href=\"https://forgemia.inra.fr/gafl/singularity/mummer/\" rel=\"nofollow\"\u003ehttps://forgemia.inra.fr/gafl/singularity/mummer/\u003c/a\u003e\u003c/p\u003e\n",
+ "full_name": "shub-fuzz/angora",
+ "latest_release": "0.0.2",
+ "readme": "\u003cp\u003eSingularity image for Angora (\u003ca href=\"https://github.com/AngoraFuzzer/Angora\"\u003ehttps://github.com/AngoraFuzzer/Angora\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/shub-fuzz/angora/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/shub-fuzz/angora/actions/workflows/builder.yml/badge.svg?branch=main\" alt=\"singularity-deploy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/3645\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhat\u003c/strong\u003e is \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e?\u003cbr\u003e\nA containerization system primarily used by the scientific community on high-performance computing (HPC).\nOn many University HPC systems, docker is not allowed, but singularity is availble because it runs with\nuser level permisions.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhy\u003c/strong\u003e?\u003cbr\u003e\nFuzzing on HPC!\u003cbr\u003e\nUniversities have trememdous resources available in HPC clusters that can be used to support\nlarge-scale fuzzing evaluations.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eusage:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name angora.sif https://github.com/shub-fuzz/angora/releases/download/0.0.2/shub-fuzz-angora.1604.sif\n\nsingularity shell angora.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003einteractive session:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell angora.sif \n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003estart fuzzing\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec angora.sif /start_fuzzing [[ -n \u0026lt;# instances\u0026gt; ] -t ] \u0026lt;target_path\u0026gt; \n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1656321189.0
+ "updated_at": 1623682691.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity image for Ankou (https://github.com/SoftSec-KAIST/Ankou)",
"filenames": [
- "Singularity"
+ "Singularity.1604"
],
- "full_name": "VUIIS/examcardtotxt",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-examcard-conversion-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#examcard-conversion-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExamcard Conversion Pipeline\u003c/h1\u003e\n\u003cp\u003eThis spider converts Philips examcards from DICOM format to PDF, HTML, and TXT formats. Special thanks goes to Sha Zhao from Manchester University.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-inputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs:\u003c/h2\u003e\n\u003cp\u003eExamcard (.dcm)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs:\u003c/h2\u003e\n\u003cp\u003eExamcard (.pdf)\nExamcard (.html)\nExamcard (.txt)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-version-2212021\" class=\"anchor\" aria-hidden=\"true\" href=\"#version-2212021\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVersion 22.1.2021\u003c/h2\u003e\n",
+ "full_name": "shub-fuzz/ankou",
+ "latest_release": "0.0.2",
+ "readme": "\u003cp\u003eSingularity image for Ankou (\u003ca href=\"https://github.com/SoftSec-KAIST/Ankou\"\u003ehttps://github.com/SoftSec-KAIST/Ankou\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/shub-fuzz/ankou/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/shub-fuzz/ankou/actions/workflows/builder.yml/badge.svg?branch=main\" alt=\"singularity-deploy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/4173\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhat\u003c/strong\u003e is \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e?\u003cbr\u003e\nA containerization system primarily used by the scientific community on high-performance computing (HPC).\nOn many University HPC systems, docker is not allowed, but singularity is availble because it runs with\nuser level permisions.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhy\u003c/strong\u003e?\u003cbr\u003e\nFuzzing on HPC!\u003cbr\u003e\nUniversities have trememdous resources available in HPC clusters that can be used to support\nlarge-scale fuzzing evaluations.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eusage:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name ankou.sif https://github.com/shub-fuzz/ankou/releases/download/0.0.2/shub-fuzz-ankou.1604.sif\n\nsingularity shell ankou.sif\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1655221055.0
+ "updated_at": 1623682696.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity image for Eclipser (https://github.com/SoftSec-KAIST/Eclipser)",
"filenames": [
- "Singularity"
+ "Singularity.1604"
],
- "full_name": "kirsho/yml2sing",
- "latest_release": null,
+ "full_name": "shub-fuzz/eclipser",
+ "latest_release": "0.0.2",
+ "readme": "\u003cp\u003eSingularity image for Eclipser (\u003ca href=\"https://github.com/SoftSec-KAIST/Eclipser\"\u003ehttps://github.com/SoftSec-KAIST/Eclipser\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/shub-fuzz/eclipser/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/shub-fuzz/eclipser/actions/workflows/builder.yml/badge.svg?branch=main\" alt=\"singularity-deploy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhat\u003c/strong\u003e is \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e?\u003cbr\u003e\nA containerization system primarily used by the scientific community on high-performance computing (HPC).\nOn many University HPC systems, docker is not allowed, but singularity is availble because it runs with\nuser level permisions.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhy\u003c/strong\u003e?\u003cbr\u003e\nFuzzing on HPC!\u003cbr\u003e\nUniversities have trememdous resources available in HPC clusters that can be used to support\nlarge-scale fuzzing evaluations.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eusage:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name eclipser.sif https://github.com/shub-fuzz/eclipser/releases/download/0.0.2/shub-fuzz-eclipser.1604.sif\n\nsingularity shell eclipser.sif\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1655971591.0
+ "updated_at": 1623682705.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity Image for AFL (https://github.com/google/AFL)",
"filenames": [
- "Singularity.v1"
+ "Singularity.i386",
+ "Singularity.1604",
+ "Singularity.1804"
],
- "full_name": "cschu/duk_singularity",
- "latest_release": null,
+ "full_name": "shub-fuzz/afl",
+ "latest_release": "0.0.2",
+ "readme": "\u003cp\u003eSingularity Image for AFL (\u003ca href=\"https://github.com/google/AFL\"\u003ehttps://github.com/google/AFL\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/shub-fuzz/afl/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/shub-fuzz/afl/actions/workflows/builder.yml/badge.svg?branch=main\" alt=\"singularity-deploy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhat\u003c/strong\u003e is \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e?\u003cbr\u003e\nA containerization system primarily used by the scientific community on high-performance computing (HPC).\nOn many University HPC systems, docker is not allowed, but singularity is availble because it runs with\nuser level permisions.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhy\u003c/strong\u003e?\u003cbr\u003e\nFuzzing on HPC!\u003cbr\u003e\nUniversities have trememdous resources available in HPC clusters that can be used to support\nlarge-scale fuzzing evaluations.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eusage:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name afl.sif https://github.com/shub-fuzz/afl/releases/download/0.0.2/shub-fuzz-afl.1604.sif\n\nsingularity shell afl.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003epull Ubuntu 18.04 container\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name afl.1804.sif https://github.com/shub-fuzz/afl/releases/download/0.0.2/shub-fuzz-afl.1804.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003epull Ubuntu 16.04 i386 container\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name afl_i386.sif https://github.com/shub-fuzz/afl/releases/download/0.0.2/shub-fuzz-afl.i386.sif\n\nsingularity pull --name afl_i386.sif shub://shub-fuzz/afl:i386\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1656415847.0
+ "updated_at": 1623682579.0
},
{
"data_format": 2,
- "description": "Dockerfile for an image containing Conda, open-ssh and java-ready for installing IBM products",
+ "description": "Singularity image for honggfuzz (https://github.com/google/honggfuzz)",
"filenames": [
- "Singularity"
+ "Singularity.i386",
+ "Singularity.1604",
+ "Singularity.1804",
+ "v21/Singularity.v21"
],
- "full_name": "cfrioux/docker_conda_ssh",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-docker_conda_ssh\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker_conda_ssh\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edocker_conda_ssh\u003c/h1\u003e\n\u003cp\u003eDockerfile for an image containing Conda, open-ssh and java-ready for installing IBM products\u003c/p\u003e\n",
+ "full_name": "shub-fuzz/honggfuzz",
+ "latest_release": "0.0.2",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/shub-fuzz/honggfuzz/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/shub-fuzz/honggfuzz/actions/workflows/builder.yml/badge.svg?branch=main\" alt=\"singularity-deploy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/3641\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eWhat\u003c/strong\u003e is \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e?\u003cbr\u003e\nA containerization system primarily used by the scientific community on high-performance computing (HPC).\nOn many University HPC systems, docker is not allowed, but singularity is availble because it runs with\nuser level permisions.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eWhy\u003c/strong\u003e?\u003cbr\u003e\nFuzzing on HPC!\u003cbr\u003e\nUniversities have trememdous resources available in HPC clusters that can be used to support\nlarge-scale fuzzing evaluations.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSingularity image for honggfuzz (\u003ca href=\"https://github.com/google/honggfuzz\"\u003ehttps://github.com/google/honggfuzz\u003c/a\u003e)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eusage:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name honggfuzz.sif https://github.com/shub-fuzz/honggfuzz/releases/download/0.0.2/shub-fuzz-honggfuzz.1604.sif\n\nsingularity shell honggfuzz.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003epull Ubuntu 18.04 container\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name honggfuzz.1804.sif https://github.com/shub-fuzz/honggfuzz/releases/download/0.0.2/shub-fuzz-honggfuzz.1804.sif\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1656509993.0
+ "updated_at": 1623682711.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "planner/symk/Singularity",
- "planner/symk/misc/releases/19.06/Singularity.19.06",
- "planner/symk/misc/releases/19.12/Singularity.19.12",
- "planner/symk/misc/releases/latest/Singularity"
+ "Singularity.openrefine"
],
- "full_name": "zihangs/GRACE",
+ "full_name": "ternaustralia/coesra-singularity-openrefine",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-grace\" class=\"anchor\" aria-hidden=\"true\" href=\"#grace\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGRACE\u003c/h1\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Environment\u003c/h3\u003e\n\u003cp\u003eThe docker image can be found \u003ca href=\"https://hub.docker.com/r/suzihang/grace\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003edocker run -it -v PathToGRACE:/mnt suzihang/grace /bin/bash\u003c/p\u003e\n\u003cp\u003eThe container should contain all dependency libraries (you can install other tools into the container). Then, build the planner with all the required dependencies in the container.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-coesra-singularity-openrefine\" class=\"anchor\" href=\"#coesra-singularity-openrefine\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-openrefine\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1659585039.0
+ "subscribers_count": 2,
+ "topics": [
+ "coesra"
+ ],
+ "updated_at": 1610426463.0
},
{
"data_format": 2,
- "description": "A singularity container for `fastqsplit`: https://github.com/supernifty/fastqsplit",
+ "description": "HISAT2 is a fast and sensitive alignment program for mapping next-generation sequencing reads (both DNA and RNA) to a population of human genomes as well as to a single reference genome. ",
"filenames": [
- "Singularity.fastqsplit"
+ "2.2.1/Singularity"
],
- "full_name": "mjakobs/fastqsplit_singularity",
- "latest_release": "v1.0.3",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-fastqsplit-singularity-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#fastqsplit-singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFastqSplit Singularity Container\u003c/h1\u003e\n\u003cp\u003eA Singularity container for \u003ccode\u003efastqsplit\u003c/code\u003e by \u003ca href=\"https://github.com/supernifty/fastqsplit\"\u003ehttps://github.com/supernifty/fastqsplit\u003c/a\u003e .\u003c/p\u003e\n\u003cp\u003eBased on a template by \u003ca href=\"https://github.com/singularityhub/singularity-deploy\"\u003ehttps://github.com/singularityhub/singularity-deploy\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-instructions-for-use\" class=\"anchor\" aria-hidden=\"true\" href=\"#instructions-for-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstructions for use\u003c/h2\u003e\n\u003cp\u003eTo pull this singularity container please run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity pull https://github.com/mjakobs/fastqsplit_singularity/releases/download/v1.0.2/mjakobs-fastqsplit_singularity.fastqsplit.sif\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "pscedu/singularity-hisat2",
+ "latest_release": "v2.2.1",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-hisat2/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hisat2/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/icaoberg/singularity-hisat2/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hisat2/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ea61f9228ca14a66e58889a560447e0b7c8ba73ddbaa594055242ace96eb0a84/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ea61f9228ca14a66e58889a560447e0b7c8ba73ddbaa594055242ace96eb0a84/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/4796300b08f76b423ee0574c15e8bd8ad15b0a389a36fd3f58549b8bb5df8690/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4796300b08f76b423ee0574c15e8bd8ad15b0a389a36fd3f58549b8bb5df8690/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/25eeccddaeb5bf9a3f7053b646f9b7bf540d33b801c371db1850d745da46fc95/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/25eeccddaeb5bf9a3f7053b646f9b7bf540d33b801c371db1850d745da46fc95/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f14a5cb988478f36746bb17a364f669ee4d02a32a6f6fddfbccaff9dc50a8379/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f14a5cb988478f36746bb17a364f669ee4d02a32a6f6fddfbccaff9dc50a8379/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-hisat\" class=\"anchor\" href=\"#singularity-hisat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-hisat\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://daehwankimlab.github.io/hisat2/\" rel=\"nofollow\"\u003ehisat2\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the scripts \u003ccode\u003ehisat2\u003c/code\u003e, \u003ccode\u003ehisat2-build\u003c/code\u003e and \u003ccode\u003ehisat2-inspect\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hisat2/2.2.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hisat2\u003c/code\u003e as \u003ccode\u003e2.2.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-singularity-definition-file\" class=\"anchor\" href=\"#building-the-image-using-the-singularity-definition-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the Singularity definition file\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [],
- "updated_at": 1652199670.0
+ "topics": [
+ "bioinformatics",
+ "singularity"
+ ],
+ "updated_at": 1629078604.0
},
{
"data_format": 2,
- "description": "FAIR+ template repository with support and scaffolding for Docker, Singularity, and the Open Science Grid",
+ "description": "bowtie2 is an ultrafast and memory-efficient tool for aligning sequencing reads to long reference sequences.",
"filenames": [
- "Singularity.def"
+ "2.4.4/Singularity",
+ "2.2.5/Singularity",
+ "2.4.1/Singularity",
+ "2.4.2/Singularity"
],
- "full_name": "comses-education/fair-osg-template",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-fair-osg-template\" class=\"anchor\" aria-hidden=\"true\" href=\"#fair-osg-template\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efair-osg-template\u003c/h1\u003e\n\u003cp\u003eThis template repository provides scaffolding and support for adopting the \u003ca href=\"https://doi.org/10.15497/RDA00068\" rel=\"nofollow\"\u003eFAIR4RS Principles\u003c/a\u003e and containerization support for \u003ca href=\"https://docs.docker.com\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e, \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e, and the \u003ca href=\"https://opensciencegrid.org/\" rel=\"nofollow\"\u003eOpen Science Grid (OSG)\u003c/a\u003e. A basic Makefile is included to be customized with basic \u003ccode\u003ebuild | deploy | clean\u003c/code\u003e targets to build container images in Docker and Singularity and copy the generated Singularity image and model files to an OSG login node.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-fair4rs-principles\" class=\"anchor\" aria-hidden=\"true\" href=\"#fair4rs-principles\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFAIR4RS Principles\u003c/h2\u003e\n\u003cp\u003eMore details at \u003ca href=\"https://github.com/comses-education/fair-osg-template/wiki/FAIR-Principles-for-Research-Software\"\u003ethis template repository\u0027s wiki\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] \u003cstrong\u003eFindable\u003c/strong\u003e: create a persistent identifier for each released / published version of the software\u003c/li\u003e\n\u003cli\u003e[ ] \u003cstrong\u003eAccessible\u003c/strong\u003e: make your software open source (good start, using this!), ensure that it is well documented with descriptive metadata and narrative documentation, and make sure that this metadata remains accessible even if the software is not\u003c/li\u003e\n\u003cli\u003e[ ] \u003cstrong\u003eInteroperable\u003c/strong\u003e: your software should read, write, and exchange data using domain-relevant \u003cem\u003eopen\u003c/em\u003e community standards (e.g., netCDF, HDF, domain-specific controlled vocabularies or ontologies, etc.)*\u003c/li\u003e\n\u003cli\u003e[ ] \u003cstrong\u003eReusable\u003c/strong\u003e: Software can be executed and understood, modified, built upon, or incorporated into other software - a clear and accessible license, detailed provenance metadata, qualified persistent references to other software dependencies, domain-relevant community standards*\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] add narrative documentation in durable text formats (e.g., PDF with no special extensions, .odt OpenOffice Document file, Markdown / plaintext) about your computational model ideally with visual diagrams, flowcharts, etc., that describe expected inputs, outputs, assumptions, and consider adhering to a structured, domain-specific protocols like the \u003ca href=\"https://www.jasss.org/23/2/7.html\" rel=\"nofollow\"\u003eODD Protocol for Describing Agent-Based and other Simulation Models\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] include a README.md with a quick start for new users that addresses the following basic concerns:\u003c/li\u003e\n\u003cli\u003e[ ] What assumptions if any are embedded in the model?\u003c/li\u003e\n\u003cli\u003e[ ] Is it possible to change or extend the model?\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-containerization-and-scripts\" class=\"anchor\" aria-hidden=\"true\" href=\"#containerization-and-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainerization and Scripts\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] specify pinned software and system dependencies to be installed in Docker and Singularity\u003c/li\u003e\n\u003cli\u003e[ ] identify an appropriate base image. You can use base images prefixed with \u003ccode\u003eosg-\u003c/code\u003e for common platforms\nlike NetLogo, Julia, Python, and R at \u003ca href=\"https://hub.docker.com/u/comses\" rel=\"nofollow\"\u003ehttps://hub.docker.com/u/comses\u003c/a\u003e or create your own based on an OSG blessed\nimage (e.g., \u003ca href=\"https://github.com/opensciencegrid/osgvo-ubuntu-20.04\"\u003ehttps://github.com/opensciencegrid/osgvo-ubuntu-20.04\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] customize job-wrapper.sh\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-run-this-model\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-run-this-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run this model\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] What does this model do?\u003c/li\u003e\n\u003cli\u003e[ ] How do I run it?\u003c/li\u003e\n\u003cli\u003e[ ] What are some example inputs? What are the expected outputs for those example inputs? Where do they live?\u003c/li\u003e\n\u003cli\u003e[ ] How do I analyze or understand the outputs?\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-on-the-open-science-grid\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-on-the-open-science-grid\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning on the Open Science Grid\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-set-up-your-user-account-on-the-open-science-grid\" class=\"anchor\" aria-hidden=\"true\" href=\"#set-up-your-user-account-on-the-open-science-grid\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSet up your user account on the Open Science Grid\u003c/h3\u003e\n\u003cp\u003e\u003ca href=\"https://osg-htc.org/research-facilitation/accounts-and-projects/general/index.html\" rel=\"nofollow\"\u003ehttps://osg-htc.org/research-facilitation/accounts-and-projects/general/index.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eYou must have already gone through the OSG facilitation process with access to an Open Science Grid login node before\n\u003ccode\u003e% make deploy\u003c/code\u003e will work and you should create an alias in your \u003ccode\u003e.ssh/config\u003c/code\u003e that assigns the name \u003ccode\u003eosg\u003c/code\u003e to your OSG\nlogin node.\u003c/p\u003e\n\u003cp\u003eFor example,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eHost osg\n HostName login02.osgconnect.net\n User \u0026lt;your-assigned-osg-username\u0026gt;\n IdentityFile ~/.ssh/a-private-ssh-key that you generated and added to your OSG profile\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor more information on connecting to OSG and generating SSH keys, please see\n\u003ca href=\"https://support.opensciencegrid.org/support/solutions/articles/12000027675-generate-ssh-keys-and-activate-your-osg-login\" rel=\"nofollow\"\u003ehttps://support.opensciencegrid.org/support/solutions/articles/12000027675-generate-ssh-keys-and-activate-your-osg-login\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-customize-entry-point-scripts-and-model-metadata\" class=\"anchor\" aria-hidden=\"true\" href=\"#customize-entry-point-scripts-and-model-metadata\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCustomize entry point scripts and model metadata\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e# user to connect to OSG as\nOSG_USERNAME := ${USER}\n# name of this computational model, used as the namespace (for singularity, Docker, and as a folder to keep things\n# organized on the OSG filesystem login node). recommend that you use all lowercase alphanumeric with - or _ to\n# separate words, e.g., chime-abm or spatial-rust-model\nMODEL_NAME := ${OSG_MODEL_NAME}\n# the directory (in the container) where the computational model source\n# code or executable can be called, e.g., main.py | netlogo-headless.sh\nMODEL_CODE_DIRECTORY := /code\n# entrypoint script to be called by job-wrapper.sh\nENTRYPOINT_SCRIPT := /srv/run.sh\n# entrypoint script language\nENTRYPOINT_SCRIPT_EXECUTABLE := bash\n# the OSG output file to be transferred\nOSG_OUTPUT_FILES := output,results\n# the submit file to be executed on OSG via `condor_submit ${OSG_SUBMIT_FILE}`\nOSG_SUBMIT_FILENAME := ${OSG_MODEL_NAME}.submit\n# the initial entrypoint for the OSG job, calls ENTRYPOINT_SCRIPT\nOSG_JOB_SCRIPT := job-wrapper.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(TODO: set data via cookiecutter and cookiecutter.json in cookiecutter project + document further)\u003c/p\u003e\n\u003cp\u003eThese can be customized in the make command.\u003c/p\u003e\n\u003cp\u003eThen run\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003emake OSG_USERNAME=\u0026lt;your-username\u0026gt; build\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eto build Docker + Singularity images with the model + dependencies embedded or\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003emake OSG_USERNAME=\u0026lt;your-username\u0026gt; clean deploy\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eto build and then copy the images to your OSG login node and public directory.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-input-and-output-files\" class=\"anchor\" aria-hidden=\"true\" href=\"#input-and-output-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput and Output Files\u003c/h2\u003e\n\u003cp\u003eOSG defaults transfer all generated output files. If your model generates all files in a given directory, say \u003ccode\u003eoutput\u003c/code\u003e and/or \u003ccode\u003eresults\u003c/code\u003e, something like\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003etransfer_output_files = output,results\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eshould work, e.g., a comma separated list of\u003c/p\u003e\n\u003cp\u003eFor more information, see \u003ca href=\"https://htcondor.readthedocs.io/en/latest/users-manual/file-transfer.html#specifying-what-files-to-transfer\" rel=\"nofollow\"\u003ehttps://htcondor.readthedocs.io/en/latest/users-manual/file-transfer.html#specifying-what-files-to-transfer\u003c/a\u003e\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-bowtie2",
+ "latest_release": "v2.4.4",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-bowtie2/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bowtie2/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/78e679d7d4d533686856a3aabf05836e6e4c4332ede5b3be04e448bcb0af367d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626f7774696532\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/78e679d7d4d533686856a3aabf05836e6e4c4332ede5b3be04e448bcb0af367d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626f7774696532\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bowtie2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/1de77fb074acfa00a23f3b57ec7ee2899825e96179ba08e9726d43d479a8d305/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626f7774696532\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1de77fb074acfa00a23f3b57ec7ee2899825e96179ba08e9726d43d479a8d305/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626f7774696532\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bowtie2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/022a36667f17e7d4a64d83341d6f9b3ef4e8e2ca7bbb26a5e59ea5d45b8bd4ca/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626f7774696532\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/022a36667f17e7d4a64d83341d6f9b3ef4e8e2ca7bbb26a5e59ea5d45b8bd4ca/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626f7774696532\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bowtie2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/6a118105cb6b5b857541ef5a71ff99144f58396c20ec65334f65aef06d79ae43/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626f7774696532\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6a118105cb6b5b857541ef5a71ff99144f58396c20ec65334f65aef06d79ae43/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626f7774696532\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bowtie2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-bowtie2\" class=\"anchor\" href=\"#singularity-bowtie2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bowtie2\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/bowtie2\"\u003ebowtie2\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the Perl scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bowtie2/2.4.4\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bowtie2\u003c/code\u003e as \u003ccode\u003e2.4.4.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
- "topics": [],
- "updated_at": 1657275644.0
+ "subscribers_count": 3,
+ "topics": [
+ "bioinformatics",
+ "singularity"
+ ],
+ "updated_at": 1628991557.0
},
{
"data_format": 2,
- "description": "R package for nsphs_ml_qt",
+ "description": "PHYLIP is a free package of programs for inferring phylogenies.",
"filenames": [
- "Singularity",
- "scripts_local/issue_61/Singularity",
- "scripts_bianca/Singularity"
+ "3.697/Singularity"
],
- "full_name": "AJResearchGroup/nsphs_ml_qt",
- "latest_release": "v0.3",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-nsphs_ml_qt\" class=\"anchor\" aria-hidden=\"true\" href=\"#nsphs_ml_qt\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ensphs_ml_qt\u003c/h1\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eBranch\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://github.com/richelbilderbeek/nsphs_ml_qt/actions\"\u003e\u003cimg src=\"man/figures/GitHubActions.png\" alt=\"GitHub Actions logo\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://www.codecov.io\" rel=\"nofollow\"\u003e\u003cimg src=\"man/figures/Codecov.png\" alt=\"Codecov logo\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emaster\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=master\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=master\" alt=\"R-CMD-check\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt?branch=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/be413dbe544678e8710f09ecb2ee97d7a26b0a853e40a539069148252157700f/68747470733a2f2f636f6465636f762e696f2f67682f72696368656c62696c6465726265656b2f6e737068735f6d6c5f71742f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"Codecov test coverage\" data-canonical-src=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt/branch/master/graph/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003edevelop\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=develop\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=develop\" alt=\"R-CMD-check\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt?branch=develop\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d51e07e8b43e2d93b35336c3c0437fdb29a65ac9e5d54406d980daf81cd2567f/68747470733a2f2f636f6465636f762e696f2f67682f72696368656c62696c6465726265656b2f6e737068735f6d6c5f71742f6272616e63682f646576656c6f702f67726170682f62616467652e737667\" alt=\"Codecov test coverage\" data-canonical-src=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt/branch/develop/graph/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eAll code for \u003cg-emoji class=\"g-emoji\" alias=\"lock\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f512.png\"\u003e\ud83d\udd12\u003c/g-emoji\u003e \u003ca href=\"https://github.com/AJResearchGroup/article_nsphs_ml_qt\"\u003earticle_nsphs_ml_qt\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eVideo on workflow: \u003ca href=\"https://youtu.be/FSh6i0Vsf54\" rel=\"nofollow\"\u003eYouTube\u003c/a\u003e \u003ca href=\"https://richelbilderbeek.nl/nsphs_ml_qt_workflow.ogv\" rel=\"nofollow\"\u003edownload\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"scripts_bianca/README.md\"\u003eWorkflow on Bianca\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"scripts_rackham/README.md\"\u003eWorkflow on Rackham\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"scripts_local/README.md\"\u003eWorkflow on local computer\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eResults: \u003ca href=\"https://github.com/richelbilderbeek/nsphs_ml_qt_results\"\u003esee the \u0027nsphs_ml_qt_results\u0027 repository\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"man/figures/example_architecture.png\"\u003e\u003cimg src=\"man/figures/example_architecture.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"man/figures/example_dimred.png\"\u003e\u003cimg src=\"man/figures/example_dimred.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"man/figures/legend_HO_tiny.png\"\u003e\u003cimg src=\"man/figures/legend_HO_tiny.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-phylip-suite",
+ "latest_release": "v3.697",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-phylip-suite/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-phylip-suite/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-phylip-suite/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-phylip-suite/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c170f91fccaa5cf129589585cae304316c06a6c4926ef489d6ae6cec8639c69d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c170f91fccaa5cf129589585cae304316c06a6c4926ef489d6ae6cec8639c69d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-phylip-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5e02750234489a3b6681aab63cc8c7dee07d7b579324265bc6a45b0d56dad6d6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5e02750234489a3b6681aab63cc8c7dee07d7b579324265bc6a45b0d56dad6d6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-phylip-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a77ca9fdcc58325c1ddfe94710d8ad36e21b307dbe40570153f1e80be6cac559/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a77ca9fdcc58325c1ddfe94710d8ad36e21b307dbe40570153f1e80be6cac559/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-phylip-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/50a0a1f8e6d29153411b82f9caaa4f006a72cf5b55af95c617d808d70a1588b9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/50a0a1f8e6d29153411b82f9caaa4f006a72cf5b55af95c617d808d70a1588b9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-phylip-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-phylip-suite\" class=\"anchor\" href=\"#singularity-phylip-suite\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-phylip-suite\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/b55efde725f14299bbb17335a6c6f17cde58bd9f451a128b97c0cfb8fe5b4edc/68747470733a2f2f65766f6c7574696f6e2e67656e65746963732e77617368696e67746f6e2e6564752f7068796c69702e676966\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b55efde725f14299bbb17335a6c6f17cde58bd9f451a128b97c0cfb8fe5b4edc/68747470733a2f2f65766f6c7574696f6e2e67656e65746963732e77617368696e67746f6e2e6564752f7068796c69702e676966\" alt=\"Logo\" data-canonical-src=\"https://evolution.genetics.washington.edu/phylip.gif\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://evolution.genetics.washington.edu/phylip.html\" rel=\"nofollow\"\u003ePHYLIP\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/phylip-suite/3.697\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/phylip-suite\u003c/code\u003e as \u003ccode\u003e3.697.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1657465920.0
+ "subscribers_count": 3,
+ "topics": [
+ "bioinformatics",
+ "singularity"
+ ],
+ "updated_at": 1629217939.0
},
{
"data_format": 2,
- "description": null,
+ "description": "FastANI is developed for fast alignment-free computation of whole-genome Average Nucleotide Identity (ANI)",
"filenames": [
- "r4.1.3-bc3.14-cgrtextbook20200930/Singularity",
- "r4.1.0-bc3.13-cgrtextbook20200930/Singularity"
+ "1.33/Singularity"
],
- "full_name": "yh549848/singularity-r-notebook",
- "latest_release": null,
+ "full_name": "pscedu/singularity-fastani",
+ "latest_release": "v1.3.3",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-fastani/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-fastani/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/8dc34ff6e6f588edb478bbdd040070223d6309ed57ff692ec669a99a4ce3c044/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d66617374616e69\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8dc34ff6e6f588edb478bbdd040070223d6309ed57ff692ec669a99a4ce3c044/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d66617374616e69\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-fastani\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/eee7b443f78bf774c4336377ac5dee69d66644752fb8ba1f4c38931628d44fb4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d66617374616e69\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/eee7b443f78bf774c4336377ac5dee69d66644752fb8ba1f4c38931628d44fb4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d66617374616e69\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-fastani\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/27c0f180ef8bc2d2094b529129fd31169bf0e10b3a965f25fb6ef0d8b8311868/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d66617374616e69\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/27c0f180ef8bc2d2094b529129fd31169bf0e10b3a965f25fb6ef0d8b8311868/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d66617374616e69\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-fastani\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/86bc49a261c15fbea5000ea905a561248a21175c8d281a5949cf47e66c9eae71/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d66617374616e69\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/86bc49a261c15fbea5000ea905a561248a21175c8d281a5949cf47e66c9eae71/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d66617374616e69\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-fastani\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-fastani\" class=\"anchor\" href=\"#singularity-fastani\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-fastani\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"github.com/parbliss/fastani\"\u003efastANI\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003efastANI\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/fastANI/1.33\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/fastANI\u003c/code\u003e as \u003ccode\u003e1.33.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1637718305.0
+ "subscribers_count": 1,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1628991664.0
},
{
"data_format": 2,
- "description": "Unofficial Sniffles repository for singularity container",
+ "description": null,
"filenames": [
- "Singularity"
+ "misc/releases/20.06/Singularity.20.06",
+ "misc/releases/latest/Singularity",
+ "misc/releases/19.12/Singularity.19.12",
+ "misc/releases/19.06/Singularity.19.06"
],
- "full_name": "touala/Sniffles",
+ "full_name": "No-Diehl/FD-SAT",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-sniffles\" class=\"anchor\" aria-hidden=\"true\" href=\"#sniffles\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSniffles\u003c/h1\u003e\n\u003cp\u003eUnofficial Sniffles repository for singularity container\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fast-downward\" class=\"anchor\" href=\"#fast-downward\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFast Downward\u003c/h1\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2020 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"http://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttp://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributors\" class=\"anchor\" href=\"#contributors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2020 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2020 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2020 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2020 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2020 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2020 Salome Eriksson\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2018-2020 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2015 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-history\" class=\"anchor\" href=\"#history\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1657955196.0
+ "updated_at": 1625821718.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "misc/releases/19.06/Singularity.19.06",
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/20.06/Singularity.20.06",
- "misc/releases/22.06/Singularity.22.06",
- "misc/releases/21.12/Singularity.21.12",
- "misc/releases/latest/Singularity"
+ "Singularity"
],
- "full_name": "silvansievers/symmetric-lookups",
- "latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-hidden=\"true\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2015, 2021 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-hidden=\"true\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "VUIIS/demo-singularity-spm-freeview",
+ "latest_release": "v1.0.1",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-demo-singularity-container-with-spm12-and-freeview\" class=\"anchor\" href=\"#demo-singularity-container-with-spm12-and-freeview\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDemo singularity container with SPM12 and Freeview\u003c/h1\u003e\n\u003cp\u003eSPM12-based pipelines require a little extra work to get them compiled and working in a\ncontainer. Freesurfer\u0027s Freeview is also included here, as it\u0027s very handy for creating\nthe PDF QA report. This example shows three different ways of creating image displays for\nthe QA PDF.\u003c/p\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/baxpr/demo-singularity-matlab-fsl\"\u003ehttps://github.com/baxpr/demo-singularity-matlab-fsl\u003c/a\u003e for a lot of detailed info about\nputting Matlab code into singularity containers. This example uses the same structure.\u003c/p\u003e\n\u003cp\u003eA licensed Matlab installation is required to compile the Matlab code, but is not needed\nto run the compiled executable in the container.\u003c/p\u003e\n\u003cp\u003eSPM12 (\u003ca href=\"https://www.fil.ion.ucl.ac.uk/spm/software/spm12/\" rel=\"nofollow\"\u003ehttps://www.fil.ion.ucl.ac.uk/spm/software/spm12/\u003c/a\u003e) is not in this repository and must\nbe installed separately on the compilation host. Edit \u003ccode\u003ematlab/compile_matlab.sh\u003c/code\u003e to point\nto it.\u003c/p\u003e\n\u003cp\u003eSPM requires jumping an extra hurdle at the compilation step - we use a modified version\nof SPM\u0027s own compiler function \u003ccode\u003espm_make_standalone.m\u003c/code\u003e, found at\n\u003ccode\u003ematlab/spm_make_standalone_local.m\u003c/code\u003e. This process captures a lot of dependencies that\ncould otherwise easily be left out of the executable, with the resulting symptom that it\ncompiles just fine but fails at run time with various cryptic error messages. In addition\nto SPM12, everything in the \u003ccode\u003ematlab/src\u003c/code\u003e directory is included in the path at compile time.\nIf Matlab toolboxes are used, they will need to be added to the list of included toolboxes\nin \u003ccode\u003ematlab/spm_make_standalone_local.m\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eThe compiled Matlab executable is stored on github using git LFS. A regular git clone will\ndownload a pointer text file instead of the executable binary. The result of building a\ncontainer from that will be a cryptic error message - so, compile it yourself. Or, if\nstoring on github, download it manually and replace the pointer text file, or include this\nstep in the Singularity file if helpful - example here:\n\u003ca href=\"https://github.com/baxpr/gf-fmri/blob/47b0552/Singularity.v1.3.4#L65\"\u003ehttps://github.com/baxpr/gf-fmri/blob/47b0552/Singularity.v1.3.4#L65\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFreesurfer requires a license to run:\n\u003ca href=\"https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall#License\" rel=\"nofollow\"\u003ehttps://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall#License\u003c/a\u003e\nBest practice is to store your license file on the host that will run the container, and\nbind it to the container at runtime - NOT to include your own license file in the\ncontainer itself.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1659363562.0
+ "updated_at": 1625837739.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Notebook template using Fink API for the LSST broker workshop",
"filenames": [
- "misc/releases/19.06/Singularity.19.06",
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/20.06/Singularity.20.06",
- "misc/releases/22.06/Singularity.22.06",
- "misc/releases/21.12/Singularity.21.12",
- "misc/releases/latest/Singularity"
+ "Singularity"
],
- "full_name": "silvansievers/merge-strategies",
+ "full_name": "astrolabsoftware/fink-notebook-template",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-hidden=\"true\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2015, 2021 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-hidden=\"true\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fink-broker-tutorials\" class=\"anchor\" href=\"#fink-broker-tutorials\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFink broker tutorials\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://colab.research.google.com/github/astrolabsoftware/fink-notebook-template/blob/main\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667\" alt=\"Open In Colab\" data-canonical-src=\"https://colab.research.google.com/assets/colab-badge.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis repository contains materials (notebooks \u0026amp; presentation) to explore the \u003ca href=\"https://fink-broker.org\" rel=\"nofollow\"\u003eFink broker\u003c/a\u003e alert data. As of April 2021, Fink has collected more than 80 million alerts from the ZTF public stream, and processed more than 30 millions (after quality cuts). Among these, you will find extragalatic sources (supernovae, AGN, ...), galactic sources (many classes of transients incl. variables stars from our galaxy or gravitational microlensing events, ...) and moving objects from our Solar System (asteroids, comets, and made-man objects like space-debris!). Some sources are already confirmed, many are candidates!\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-materials\" class=\"anchor\" href=\"#materials\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMaterials\u003c/h2\u003e\n\u003cp\u003eThe repository contains a number of notebooks focusing on the use of the Fink REST API. We shortly present different science cases:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eExtragalactic science: AGN \u0026amp; supernovae (\u003ca href=\"extragalactic/extragalactic.ipynb\"\u003esee notebook\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eGalactic science: variable stars \u0026amp; microlensing (\u003ca href=\"galactic/galactic.ipynb\"\u003esee notebook\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eSolar system science: asteroids, comets \u0026amp; space debris (\u003ca href=\"sso/sso.ipynb\"\u003esee notebook\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eMulti-messenger astronomy: searching for kilonovae (\u003ca href=\"MMA/MMA.ipynb\"\u003esee notebook\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eBroker interfaces: presentation on the livestream service, the Science Portal and its API, and the Fink TOM module (\u003ca href=\"interfaces/README.md\"\u003esee the presentation\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThese sciences are not exhaustive and we welcome new collaborations to expand them!\u003c/p\u003e\n\u003cp\u003eYou can try the notebooks using Google Colab (follow the link above). You can also clone the repo, and try it locally (very little external libraries are required).\u003c/p\u003e\n\u003cp\u003eWe also provide a Singularity script to work in a contained environment (thanks @bregeon):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBuild with \u003ccode\u003esingularity build --fakeroot fink.sif Singularity\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun with \u003ccode\u003esingularity run fink.sif\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eOpen the link in your browser (from the host)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to-contribute\" class=\"anchor\" href=\"#how-to-contribute\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to contribute\u003c/h2\u003e\n\u003cp\u003eHow to contribute:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eClone (or fork) this repo, and open a new branch.\u003c/li\u003e\n\u003cli\u003eCreate a new folder with a meaningful name (e.g. \u003ccode\u003esupernovae\u003c/code\u003e, \u003ccode\u003egrb\u003c/code\u003e, ...)\u003c/li\u003e\n\u003cli\u003eRead and copy an existing notebook to get an idea of the structure of a tutorial.\u003c/li\u003e\n\u003cli\u003eOnce your notebook is finished, open a Pull Request such that we review the tutorial and merge it!\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1651653962.0
+ "updated_at": 1625729812.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for multiqc (https://github.com/ewels/MultiQC)",
"filenames": [
- "misc/releases/19.06/Singularity.19.06",
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/20.06/Singularity.20.06",
- "misc/releases/22.06/Singularity.22.06",
- "misc/releases/21.12/Singularity.21.12",
- "misc/releases/latest/Singularity"
+ "Singularity.1.6",
+ "Singularity.1.9",
+ "Singularity.1.11",
+ "Singularity.1.5",
+ "Singularity",
+ "Singularity.1.8",
+ "Singularity.1.7"
],
- "full_name": "silvansievers/weak-stubborn-sets",
+ "full_name": "powerPlant/multiqc-srf",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-hidden=\"true\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2015, 2021 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-hidden=\"true\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for the MultiQC tool to aggregate results from bioinformatics analyses across many samples into a single report.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1659517719.0
+ "updated_at": 1625703839.0
},
{
"data_format": 2,
- "description": "Singularity image for the scikit-hep software ecosystem",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "amanmdesai/singularity-scikit-hep",
- "latest_release": "v1.0.0",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-scikit-hep\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-scikit-hep\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-scikit-hep\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/amanmdesai/singularity-scikit-hep/actions/workflows/singularity-build-deploy.yml\"\u003e\u003cimg src=\"https://github.com/amanmdesai/singularity-scikit-hep/actions/workflows/singularity-build-deploy.yml/badge.svg?branch=master\" alt=\"Singularity Build Deploy\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://zenodo.org/badge/latestdoi/533611076\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fce93d17667e5605dd27f08f48424292886536d8ac123c1441b6e3a51b801dc4/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3533333631313037362e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/533611076.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA singularity container for scikit-hep with python packages\u003c/p\u003e\n\u003cp\u003eTo pull this image:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull oras://ghcr.io/amanmdesai/singularity-scikit-hep:latest\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis image contains the python packages.\u003c/p\u003e\n\u003cp\u003enumpy, awkward, uproot4, scikit-hep-testdata, hist, particle, hepunits, matplotlib, boost-histogram, iminuit, zfit, vector, fastjet\u003c/p\u003e\n",
+ "full_name": "baxpr/conncalc",
+ "latest_release": "v1.0.4",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-conncalc\" class=\"anchor\" href=\"#conncalc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econncalc\u003c/h1\u003e\n\u003cp\u003eComputes functional connectivity maps and matrices for a specified set of ROIs.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-inputs\" class=\"anchor\" href=\"#inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eremovegm_niigz\u003c/code\u003e, \u003ccode\u003ekeepgm_niigz\u003c/code\u003e, \u003ccode\u003emeanfmri_niigz\u003c/code\u003e. Preprocessed fMRI data from\n\u003ca href=\"https://github.com/baxpr/connprep\"\u003econnprep\u003c/a\u003e. This may be supplied in atlas space or\nsubject native space. The first two are 4D time series, the last a single 3D image.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eroi_niigz\u003c/code\u003e. ROI image. This may be an image existing within the container (e.g. the\nMNI space \u0027AABHHIP_LR.nii.gz\u0027, see src/rois/README.md). Or, it may be any supplied\nimage. In the latter case, \u003ccode\u003eroilabel_csv\u003c/code\u003e must also be supplied; this file must contain\nLabel and Region columns, or may be the STATS output of a slant assessor. The ROI\nimage must be already be aligned with the T1 and the fMRI (though needn\u0027t be sampled to\nthe same voxel grid or field of view) - no coregistration or warp is performed on any\nof the images.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003et1_niigz\u003c/code\u003e. T1 image for the PDF report.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003emask_niigz\u003c/code\u003e. Brain mask - will be binarized and dilated and used to exclude any clearly\nex-brain voxels in the stored connectivity maps. Supply \u0027none\u0027 to mask to the entire\nvolume (i.e. no masking).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003econnmaps_out\u003c/code\u003e. \u0027yes\u0027 or \u0027no\u0027 to choose whether to additionally store voxelwise\nconnectivity images for each ROI in the ROI image.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pipeline\" class=\"anchor\" href=\"#pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eResample the ROI image to match the fMRI voxel sampling. It\u0027s assumed both are already\naligned.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eExtract mean time series from the supplied fMRI for each ROI in the ROI image.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCompute functional connectivity. The ROI-to-ROI connectivity matrix is computed, and also\nvoxelwise connectivity Z maps if requested.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eR\u003c/code\u003e, the correlation coefficient\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eZ\u003c/code\u003e, the Fisher transformed correlation, \u003ccode\u003eatanh(R) * sqrt(N-3)\u003c/code\u003e where \u003ccode\u003eN\u003c/code\u003e is number of time points\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eVdf\u003c/code\u003e, \u003ccode\u003ePdf\u003c/code\u003e, \u003ccode\u003eZdf\u003c/code\u003e autocorrelation-adjusted connectivity metrics from \u003ca href=\"https://github.com/asoroosh/xDF\"\u003ehttps://github.com/asoroosh/xDF\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGenerate a PDF report and organize outputs for XNAT.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1662637680.0
+ "updated_at": 1625759471.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity",
- "openfoam/Singularity.of-7-from-docker"
+ "Singularity"
],
- "full_name": "ggruszczynski/singularity_recipies",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-recipies\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-recipies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity recipies\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4746\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eOfficial Documentation:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularityhub.github.io/singularityhub-docs/docs/getting-started/recipes\" rel=\"nofollow\"\u003ehttps://singularityhub.github.io/singularityhub-docs/docs/getting-started/recipes\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-diy\" class=\"anchor\" aria-hidden=\"true\" href=\"#diy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDIY\u003c/h2\u003e\n\u003cp\u003eHow to run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e to build\u003c/span\u003e\nsudo singularity build image.sif recipe.def\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e to run \u003c/span\u003e\nsingularity shell --cleanenv lolcow_latest.sif \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Without the --cleanenv flag, the environment on the host system will be present within the container at run time.\u003c/span\u003e\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e lolcow_latest.sif cowsay moo\nsingularity run lolcow_latest.sif\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e to download\u003c/span\u003e\nsingularity pull shub://ggruszczynski/singularity_recipies\nsingularity run singularity_recipies_latest.sif\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e to build from docker hub\u003c/span\u003e\nsingularity pull docker://openfoam/openfoam7-paraview56\nsingularity shell --cleanenv openfoam7-paraview56_latest.sif\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e --cleanenv cat /etc/os-release\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e to build from docker file\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e https://www.nas.nasa.gov/hecc/support/kb/converting-docker-images-to-singularity-for-use-on-pleiades_643.html\u003c/span\u003e\n\n$ sudo docker build -t ood-rstudio-bio.4.1.2 - \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003e Dockerfile.4.1.2\n\n$ docker images\nREPOSITORY TAG IMAGE ID CREATED SIZE\nood-rstudio-bio.4.1.2 latest 9ab18b041cba 27 minutes ago 7.05GB\n\n$ docker save 9ab18b041cba -o ood_rstudio_bio_docker_412.tar\n$ singularity build ood_rstudio_bio_singularity_412.sif docker-archive://ood_rstudio_bio_docker_412.tar\n\n$ singularity build --sandbox lolcow docker-archive://lolcow.tar\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-openfoam-notes\" class=\"anchor\" aria-hidden=\"true\" href=\"#openfoam-notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOpenFoam notes\u003c/h3\u003e\n\u003cp\u003eOF fundation: vX versioning + third party\nOF org: vYYMM versioning\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-mpi-notes\" class=\"anchor\" aria-hidden=\"true\" href=\"#mpi-notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMPI notes\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://singularity.lbl.gov/faq\" rel=\"nofollow\"\u003ehttps://singularity.lbl.gov/faq\u003c/a\u003e\nWhy do we call \u2018mpirun\u2019 from outside the container (rather than inside)?\nWith Singularity, the MPI usage model is to call \u2018mpirun\u2019 from outside the container, and reference the container from your \u2018mpirun\u2019 command. Usage would look like this:\u003c/p\u003e\n\u003cp\u003e$ mpirun -np 20 singularity exec container.img /path/to/contained_mpi_prog\nBy calling \u2018mpirun\u2019 outside the container, we solve several very complicated work-flow aspects. For example, if \u2018mpirun\u2019 is called from within the container it must have a method for spawning processes on remote nodes. Historically ssh is used for this which means that there must be an sshd running within the container on the remote nodes, and this sshd process must not conflict with the sshd running on that host! It is also possible for the resource manager to launch the job and (in Open MPI\u2019s case) the Orted processes on the remote system, but that then requires resource manager modification and container awareness.\u003c/p\u003e\n\u003cp\u003eIn the end, we do not gain anything by calling \u2018mpirun\u2019 from within the container except for increasing the complexity levels and possibly losing out on some added performance benefits (e.g. if a container wasn\u2019t built with the proper OFED as the host).\u003c/p\u003e\n\u003cp\u003eSee the Singularity on HPC page for more details.\u003c/p\u003e\n",
+ "full_name": "VUIIS/demo-singularity-matlab-fsl",
+ "latest_release": "v1.0.1",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-demo-singularity-container-for-matlab-plus-fsl\" class=\"anchor\" href=\"#demo-singularity-container-for-matlab-plus-fsl\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDemo singularity container for Matlab plus FSL\u003c/h1\u003e\n\u003cp\u003eThis example container takes a Nifti image as input, zeroes out a hole in it of\nthe specified diameter, and saves the result to a new Nifti file. Quick,\npointless, and easy to tell whether it worked right.\u003c/p\u003e\n\u003cp\u003eThis is one way to organize a Matlab-based Singularity container -\nperhaps most easily conceived of as a series of wrappers around the main\ncodebase. Done this way, it\u0027s fairly easy to work on each piece in isolation,\nproblem-solving from the inside out.\u003c/p\u003e\n\u003cp\u003eThis container also includes an installation of FSL, which has a lot of handy\ntools including fsleyes to make the QA PDF. The FSL parts could be removed from\nthe Singularity file if FSL isn\u0027t used, to end up with a smaller container.\nContrariwise, all the Matlab parts could be removed to end up with an FSL-only\ncontainer.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity container\n| Primary entrypoint (shell script)\n| | X11 wrapper\n| | | Shell script preprocessing\n| | | Matlab processing (compiled)\n| | | | Matlab entrypoint\n| | | | Matlab main function\n| | | \\ Matlab sub-functions / codebase\n\\ \\ \\ Shell script postprocessing\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDependencies in terms of the actual files:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity\n src/pipeline_entrypoint.sh\n src/pipeline_main.sh\n src/copy_inputs.sh\n src/preprocessing.sh\n matlab/bin/run_matlab_entrypoint.sh\n matlab/bin/matlab_entrypoint\n / matlab/src/matlab_entrypoint.m \\ Used for compilation,\n | matlab/src/matlab_main.m | but not at container\n \\ matlab/src/* / runtime\n src/postprocessing.sh\n src/make_pdf.sh\n src/finalize.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe process of putting it together is described below. The scripts and code in\nthis repository are extensively commented, so if something isn\u0027t clear here,\nit\u0027s probably explained in the Singularity file or the example code.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-this-container-before-editing-anything\" class=\"anchor\" href=\"#building-this-container-before-editing-anything\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding this container before editing anything\u003c/h2\u003e\n\u003cp\u003eTry building this from scratch, to find any immediate issues:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eGet the installers for Matlab Compiled Runtime and FSL and place them in the\n\u003ccode\u003eexternal\u003c/code\u003e directory. URLs for these are in the \u003ccode\u003eSingularity\u003c/code\u003e file. Alternatively,\ncomment out the installer files in the \u0027%files\u0027 section and uncomment the download\nlines (\u0027wget\u0027) later - this way they will be downloaded as part of the build.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBuild the container, following the instructions below\n\u003ca href=\"https://github.com/baxpr/demo-singularity-matlab-fsl#building-the-container\"\u003ehttps://github.com/baxpr/demo-singularity-matlab-fsl#building-the-container\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-matlab-part\" class=\"anchor\" href=\"#matlab-part\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMatlab part\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-write-the-basic-matlab-code\" class=\"anchor\" href=\"#write-the-basic-matlab-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWrite the basic Matlab code\u003c/h3\u003e\n\u003cp\u003eWrite Matlab code that does what\u0027s needed. Put it in \u003ccode\u003ematlab/src\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eA popular toolbox for reading and writing Nifti files that\u0027s available on Matlab\nCentral has a lot of insidious bugs and is not being maintained. Matlab\u0027s own\nfunctions for Nifti files are quite limited. Here is an alternative, which is\nused in this example:\n\u003ca href=\"https://github.com/VUIIS/spm_readwrite_nii\"\u003ehttps://github.com/VUIIS/spm_readwrite_nii\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-write-the-matlab-entrypoint\" class=\"anchor\" href=\"#write-the-matlab-entrypoint\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWrite the Matlab entrypoint\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003ematlab/src/matlab_entrypoint.m\u003c/code\u003e exists to take command line arguments, parse\nthem, and call the main code. A convenient way to set things up is to write a\nmain function that takes a structure as its sole input, with the structure\ncontaining whatever inputs are needed. See \u003ccode\u003ematlab/src/matlab_main.m\u003c/code\u003e for an\nexample of this.\u003c/p\u003e\n\u003cp\u003eCouple of things to note in the entrypoint code are the quit/exit sections at\nbeginning and end. The bit at the beginning allows the executable to run during\nthe container build, without actually doing anything - this is needed to extract\nthe CTF archive into the container at the only time the container is writeable\n(h/t \u003ca href=\"https://twitter.com/annash128\" rel=\"nofollow\"\u003ehttps://twitter.com/annash128\u003c/a\u003e for figuring that one out). The bit at the\nend exits matlab when the function is finished. Without it, the running Matlab\nprocess won\u0027t release execution back to the calling script when it\u0027s done.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-test-the-matlab-entrypoint\" class=\"anchor\" href=\"#test-the-matlab-entrypoint\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest the Matlab entrypoint\u003c/h3\u003e\n\u003cp\u003eThe script \u003ccode\u003ematlab/src/test_matlab_entrypoint.m\u003c/code\u003e is an example of how to do\nthis. The appropriate Matlab must be installed on the testing computer.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-compile-the-matlab-code\" class=\"anchor\" href=\"#compile-the-matlab-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompile the Matlab code\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003ematlab/compile_matlab.sh\u003c/code\u003e shows how. Many compiled executables are likely to be\ntoo large to store on github. Git LFS may be a solution.\n\u003ca href=\"https://docs.github.com/en/github/managing-large-files/working-with-large-files\"\u003ehttps://docs.github.com/en/github/managing-large-files/working-with-large-files\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-test-the-compiled-matlab-code\" class=\"anchor\" href=\"#test-the-compiled-matlab-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest the compiled Matlab code\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003ematlab/test_compiled_matlab.sh\u003c/code\u003e. The appropriate Matlab Runtime must be\ninstalled on the testing computer.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-shell-script-part\" class=\"anchor\" href=\"#shell-script-part\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eShell script part\u003c/h2\u003e\n\u003cp\u003eAll of the below procedures could be done in the matlab part, if desired,\ninstead of in shell script. If so, parsing inputs should be done following the\nexample in \u003ccode\u003ematlab/src/matlab_entrypoint.m\u003c/code\u003e. But it\u0027s often easier to move\nfiles, create the QA PDF, etc using shell script and FSL. So that\u0027s what we are\ndoing in this example. All this code is in the \u003ccode\u003esrc\u003c/code\u003e directory.\u003c/p\u003e\n\u003cp\u003eAll the shell scripts called from \u003ccode\u003esrc/pipeline_entrypoint.sh\u003c/code\u003e \"know\" the\nenvironment variables that are exported there. This is a very convenient way to\npass along the input arguments, although it isn\u0027t entirely transparent, because\nthere\u0027s no hint in the shell scripts where the variables\u0027 values are coming from\nunless we explain it in the comments.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-main-entrypoint\" class=\"anchor\" href=\"#main-entrypoint\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMain entrypoint\u003c/h3\u003e\n\u003cp\u003eThis is \u003ccode\u003esrc/pipeline_entrypoint.sh\u003c/code\u003e. It uses bash to parse the command line\ninputs and export them to environment variables so they\u0027re accessible. Then it\ncalls the primary shell script \u003ccode\u003esrc/pipeline_main.sh\u003c/code\u003e which in turn calls\neverything else. The main script is run in xvfb to provide a virtual display,\noften needed by matlab and required for fsleyes.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-copy-inputs\" class=\"anchor\" href=\"#copy-inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCopy inputs\u003c/h3\u003e\n\u003cp\u003eWe copy input files to the output/working directory so we don\u0027t mess them up.\nThis also is an opportunity to rename them to something consistent. It\u0027s very\nconvenient to hard-code the filenames so we don\u0027t have to store and manipulate\nfilenames in environment variables or the like. Also, this makes it easy to\nproduce output files with consistent names - outputs of one pipeline may serve\nas inputs to another, and it\u0027s much easier to manage this if filenames are the\nsame for every run, or at least consistent.\u003c/p\u003e\n\u003cp\u003eWe generally assume the output directory starts out empty and will not be\ninterfered with by any other processes - this is true for XNAT/DAX, but\nimportant to be aware of in other contexts.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-preprocessing\" class=\"anchor\" href=\"#preprocessing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreprocessing\u003c/h3\u003e\n\u003cp\u003eFor this example, there is no preprocessing before the matlab part. But initial\nFSL steps or similar could be put here: \u003ccode\u003esrc/preprocessing.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-postprocessing\" class=\"anchor\" href=\"#postprocessing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePostprocessing\u003c/h3\u003e\n\u003cp\u003eThere isn\u0027t any postprocessing for this example either, but there could be:\n\u003ccode\u003esrc/postprocessing.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-pdf-creation\" class=\"anchor\" href=\"#pdf-creation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePDF creation\u003c/h3\u003e\n\u003cp\u003eAll assessors on VUIIS XNAT require a PDF QA report of some sort. For this\nexample, a display of the segmented ROIs overlaid on the T1 is created using\nfsleyes and ImageMagick, \u003ccode\u003esrc/make_pdf.sh\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003ePDF creation can be done in Matlab instead. It\u0027s hard to make these look good.\nAn example with some tricks, including a \u003ccode\u003e.fig\u003c/code\u003e file painstakingly made with\nMatlab\u0027s GUIDE, is\n\u003ca href=\"https://github.com/baxpr/connprep/blob/855dadc/src/connectivity_filter.m#L271\"\u003ehttps://github.com/baxpr/connprep/blob/855dadc/src/connectivity_filter.m#L271\u003c/a\u003e\nA way to show slices of functional images with a nice red/blue colormap is\n\u003ca href=\"https://github.com/baxpr/connprep/blob/855dadc/src/make_network_maps.m\"\u003ehttps://github.com/baxpr/connprep/blob/855dadc/src/make_network_maps.m\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-finalizing-the-output\" class=\"anchor\" href=\"#finalizing-the-output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFinalizing the output\u003c/h3\u003e\n\u003cp\u003eAll Niftis must be compressed for storage on XNAT, and outputs can be organized\nin an easily understandable way: \u003ccode\u003esrc/finalize.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eWrite an informative README - so tedious, yet so helpful. Include the\nappropriate citations for all the methods and software you have used. Even\nessentially write the methods section for a paper that uses the pipeline. Here\u0027s\nan excellent example: \u003ca href=\"https://github.com/MASILab/PreQual\"\u003ehttps://github.com/MASILab/PreQual\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAlternatively, git-ify some documentation like this:\n\u003ca href=\"https://github.com/VUIIS/dax/tree/main/docs\"\u003ehttps://github.com/VUIIS/dax/tree/main/docs\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eto get something like this:\n\u003ca href=\"https://dax.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003ehttps://dax.readthedocs.io/en/latest/\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-container\" class=\"anchor\" href=\"#building-the-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the container\u003c/h2\u003e\n\u003cp\u003eBe sure the Matlab code is newly compiled, see above. You can run\n\u003ccode\u003ematlab/check_for_compilation.sh\u003c/code\u003e first to make sure there\u0027s no source code\nnewer than the compiled executable.\u003c/p\u003e\n\u003cp\u003eThen from the root directory of the working copy of the repo, run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build \u0026lt;container_name\u0026gt;.simg Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eGood practice: before you build, create a release on github (if using github) or\nat least tag the commit you are about to build. Give the container a versioned\nname like \u003ccode\u003edemo-singularity-matlab-fsl_v1.0.0.simg\u003c/code\u003e that matches the repository\nname and release version/tag.\u003c/p\u003e\n\u003cp\u003eExternal binaries such as Matlab Runtime and FSL can be included by copying\nlocal copies into the container in the Singularity file\u0027s \u003ccode\u003e%files\u003c/code\u003e section. This\ntends to be a little faster when multiple builds are needed during debugging,\nor necessary for files that are not available to download, and this is what\u0027s\nbeing done in the example Singularity file. Alternatively, binaries or install\nfiles can be downloaded from their source at build time - there are some\ncommented-out sections in the Singularity file showing how that is done. (Thanks\n\u003ca href=\"https://github.com/praitayini\"\u003ehttps://github.com/praitayini\u003c/a\u003e for exploring this in detail)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-the-container\" class=\"anchor\" href=\"#running-the-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the container\u003c/h2\u003e\n\u003cp\u003eSee \u003ccode\u003etest_singularity_container.sh\u003c/code\u003e for an example run command and some\nimportant info.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-inputs\" class=\"anchor\" href=\"#inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs\u003c/h3\u003e\n\u003cp\u003ePaths to files are relative to the container.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e--t1_niigz A T1 image\n--seg_niigz Its corresponding segmentation from e.g. slant pipeline\n--diameter_mm Diameter of the hole to zero out, in mm (default 30)\n\n--label_info A label to annotate the QA PDF, e.g. info from XNAT\n\n--out_dir Where outputs will be stored (default /OUTPUTS)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-outputs\" class=\"anchor\" href=\"#outputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003ePDF/holed_image.pdf QA report\nHOLED_T1/holed_t1.nii.gz T1 image with a hole in it\nHOLED_SEG/holed_seg.nii.gz Segmentation with a hole in it\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-the-container-with-dax\" class=\"anchor\" href=\"#running-the-container-with-dax\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the container with DAX\u003c/h2\u003e\n\u003cp\u003eWith a suitable configuration file, DAX (\u003ca href=\"https://github.com/VUIIS/dax\"\u003ehttps://github.com/VUIIS/dax\u003c/a\u003e) can run this on a cluster.\u003c/p\u003e\n\u003cp\u003eInstructions are here: \u003ca href=\"https://dax.readthedocs.io/en/latest/processors.html\" rel=\"nofollow\"\u003ehttps://dax.readthedocs.io/en/latest/processors.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAn example is here:\n\u003ca href=\"https://github.com/VUIIS/dax_yaml_processor_examples/blob/master/demo-matfsl_v1.0.0_processor.yaml\"\u003ehttps://github.com/VUIIS/dax_yaml_processor_examples/blob/master/demo-matfsl_v1.0.0_processor.yaml\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1655827541.0
+ "updated_at": 1626126045.0
},
{
"data_format": 2,
- "description": "Standalone scripts to assist with intermediate tasks in GeoEDF workflows",
+ "description": "Target/Integrative Genetic Element Retriever",
"filenames": [
- "Singularity"
+ "5.32.1/Singularity"
],
- "full_name": "geoedf/workflow-utils",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-geoedf-workflow-utilities\" class=\"anchor\" aria-hidden=\"true\" href=\"#geoedf-workflow-utilities\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGeoEDF Workflow Utilities\u003c/h1\u003e\n\u003cp\u003eStandalone scripts to assist with intermediate tasks in GeoEDF workflows\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-tiger",
+ "latest_release": "v5.32.1",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-tiger/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-tiger/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-tiger/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-tiger/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/45b51fb9658ca6d66b992d887a9258c238463b14dc9fb58c4ed17ba4e75f2efc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7469676572\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b51fb9658ca6d66b992d887a9258c238463b14dc9fb58c4ed17ba4e75f2efc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7469676572\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-tiger\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/266d33a01bfbc88af8ef713b4ab3f12e4207aea6a693420544c401bcc4687384/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7469676572\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/266d33a01bfbc88af8ef713b4ab3f12e4207aea6a693420544c401bcc4687384/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7469676572\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-tiger\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/cd42640e858ab21849faf7ea1ae7b80b386fea232400bb8666ab226125727f09/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7469676572\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cd42640e858ab21849faf7ea1ae7b80b386fea232400bb8666ab226125727f09/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7469676572\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-tiger\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/049f66af13d64dfd0fc9fb6af0dd2b62c6d9f524419d096508747447c1c661ac/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7469676572\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/049f66af13d64dfd0fc9fb6af0dd2b62c6d9f524419d096508747447c1c661ac/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7469676572\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-tiger\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-tiger\" class=\"anchor\" href=\"#singularity-tiger\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-tiger\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/tiger\"\u003etiger\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ednaStats.pl\u003c/code\u003e, \u003ccode\u003eislander.pl\u003c/code\u003e, \u003ccode\u003eresolve.pl\u003c/code\u003e, \u003ccode\u003etater.pl\u003c/code\u003e and \u003ccode\u003etiger.pl\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/tiger/4.8.25\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/tiger\u003c/code\u003e as \u003ccode\u003e4.8.25.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/tigers/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [],
- "updated_at": 1655911232.0
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1629218294.0
},
{
"data_format": 2,
- "description": "Old copy of the nf-core methylseq workflow including hacked in NuGen/Tecan support",
+ "description": "Trimmomatic performs a variety of useful trimming tasks for illumina paired-end and single ended data",
"filenames": [
- "Singularity"
+ "0.39/Singularity"
],
- "full_name": "HPCBio/methylseq-old",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"\" class=\"anchor\" aria-hidden=\"true\" href=\"#\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/images/methylseq_logo.png\"\u003e\u003cimg src=\"docs/images/methylseq_logo.png\" alt=\"nf-core/methylseq\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nf-core/methylseq\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a1e11b31de3d567f647c562b736ad6e010ef787d1a8aa35dce459aba5b4587ed/68747470733a2f2f7472617669732d63692e6f72672f6e662d636f72652f6d657468796c7365712e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nf-core/methylseq.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/17df893666bfa5cad487466d4476ab773ea5def560c04c50f45795017865e81c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33302e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.30.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://zenodo.org/badge/latestdoi/124913037\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/89f01223dd3cce114d92a5764aa2e589ddd0915df7208e879ab1d88a5cee4b31/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3132343931333033372e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/124913037.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://gitter.im/nf-core/Lobby\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/75a58bd7ba3966d16ebf50e1d2d55a4d21c67fa281370f9b823c2f4e53532b03/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6769747465722d2532306a6f696e253230636861742532302545322538362539322d3466623939612e737667\" alt=\"Gitter\" data-canonical-src=\"https://img.shields.io/badge/gitter-%20join%20chat%20%E2%86%92-4fb99a.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/methylseq/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fbe9131f0a48ef34c529ac997f1ac04e3b5df4586ceb45fcda42c1568a761456/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f6d657468796c7365712e737667\" alt=\"Docker Container available\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/methylseq.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/1091\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"Singularity Container\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003enf-core/methylseq\u003c/strong\u003e is a bioinformatics best-practice analysis pipeline used for Methylation (BS-Seq) data analysis.\u003c/p\u003e\n\u003cp\u003eThe pipeline uses \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a bioinformatics workflow tool. It pre-processes raw data from FastQ inputs, aligns the reads and performs extensive quality-control on the results.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-pipeline-steps\" class=\"anchor\" aria-hidden=\"true\" href=\"#pipeline-steps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline Steps\u003c/h3\u003e\n\u003cp\u003eThe pipeline allows you to choose between running either \u003ca href=\"https://github.com/FelixKrueger/Bismark\"\u003eBismark\u003c/a\u003e or \u003ca href=\"https://github.com/brentp/bwa-meth\"\u003ebwa-meth\u003c/a\u003e / \u003ca href=\"https://github.com/dpryan79/methyldackel\"\u003eMethylDackel\u003c/a\u003e.\nChoose between workflows by using \u003ccode\u003e--aligner bismark\u003c/code\u003e (default) or \u003ccode\u003e--aligner bwameth\u003c/code\u003e.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eStep\u003c/th\u003e\n\u003cth\u003eBismark workflow\u003c/th\u003e\n\u003cth\u003ebwa-meth workflow\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eGenerate Reference Genome Index \u003cem\u003e(optional)\u003c/em\u003e\n\u003c/td\u003e\n\u003ctd\u003eBismark\u003c/td\u003e\n\u003ctd\u003ebwa-meth\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eRaw data QC\u003c/td\u003e\n\u003ctd\u003eFastQC\u003c/td\u003e\n\u003ctd\u003eFastQC\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAdapter sequence trimming\u003c/td\u003e\n\u003ctd\u003eTrim Galore!\u003c/td\u003e\n\u003ctd\u003eTrim Galore!\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAlign Reads\u003c/td\u003e\n\u003ctd\u003eBismark\u003c/td\u003e\n\u003ctd\u003ebwa-meth\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDeduplicate Alignments\u003c/td\u003e\n\u003ctd\u003eBismark\u003c/td\u003e\n\u003ctd\u003ePicard MarkDuplicates\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eExtract methylation calls\u003c/td\u003e\n\u003ctd\u003eBismark\u003c/td\u003e\n\u003ctd\u003eMethylDackel\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSample report\u003c/td\u003e\n\u003ctd\u003eBismark\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSummary Report\u003c/td\u003e\n\u003ctd\u003eBismark\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAlignment QC\u003c/td\u003e\n\u003ctd\u003eQualimap\u003c/td\u003e\n\u003ctd\u003eQualimap\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eProject Report\u003c/td\u003e\n\u003ctd\u003eMultiQC\u003c/td\u003e\n\u003ctd\u003eMultiQC\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eThe nf-core/methylseq pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation and configuration\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h3\u003e\n\u003cp\u003eThese scripts were originally written for use at the \u003ca href=\"https://portal.scilifelab.se/genomics/\" rel=\"nofollow\"\u003eNational Genomics Infrastructure\u003c/a\u003e at \u003ca href=\"http://www.scilifelab.se/\" rel=\"nofollow\"\u003eSciLifeLab\u003c/a\u003e in Stockholm, Sweden.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMain author:\n\u003cul\u003e\n\u003cli\u003ePhil Ewels (\u003ca href=\"https://github.com/ewels/\"\u003e@ewels\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eContributors:\n\u003cul\u003e\n\u003cli\u003eRickard Hammar\u00e9n (\u003ca href=\"https://github.com/Hammarn/\"\u003e@Hammarn\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eAlexander Peltzer (\u003ca href=\"https://github.com/apeltzer/\"\u003e@apeltzer\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "pscedu/singularity-trimmomatic",
+ "latest_release": "0.39",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-trimmomatic/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-trimmomatic/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/886b78ddfce96f64ae6be83548b2b219652f30a8ab8e6f78413fcf5c763a5fe3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/886b78ddfce96f64ae6be83548b2b219652f30a8ab8e6f78413fcf5c763a5fe3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-trimmomatic\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f83a71da75047a61c081c63788b045654ea1befe0da1eccfc4e3d46b96c656e5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f83a71da75047a61c081c63788b045654ea1befe0da1eccfc4e3d46b96c656e5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-trimmomatic\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/42de55829ff65764902a5aa22015e62165ede512bd9503a795afe4c4815d9e61/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/42de55829ff65764902a5aa22015e62165ede512bd9503a795afe4c4815d9e61/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-trimmomatic\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/77a4e6c187943c941ff1ee8267ebe7f72b3e5d5723a03d3ac4e91e826dc35c98/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/77a4e6c187943c941ff1ee8267ebe7f72b3e5d5723a03d3ac4e91e826dc35c98/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-trimmomatic\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-trimmomatic\" class=\"anchor\" href=\"#singularity-trimmomatic\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-trimmomatic\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/usadellab/Trimmomatic\"\u003eTrimmomatic\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003etrimmomatic\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/trimmomatic/0.39\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/trimmomatic\u003c/code\u003e as \u003ccode\u003e0.39.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
- "topics": [],
- "updated_at": 1655919157.0
+ "subscribers_count": 1,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1628992066.0
},
{
"data_format": 2,
- "description": "SPAdes \u2013 St. Petersburg genome assembler \u2013 is intended for both standard isolates and single-cell MDA bacteria assemblies.",
+ "description": "ABySS is a de novo sequence assembler that is designed for very short reads",
"filenames": [
- "3.15.5/Singularity",
- "3.15.3/Singularity",
- "3.15.4/Singularity",
- "3.14.1/Singularity"
+ "2.1.5/Singularity"
],
- "full_name": "pscedu/singularity-spades",
- "latest_release": "v3.15.5",
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-spades/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-spades/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/11b78f1cdc09fbfab0186e430a46591d3424481741a5bf3fd4ba85e5fdf6ab64/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d737061646573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/11b78f1cdc09fbfab0186e430a46591d3424481741a5bf3fd4ba85e5fdf6ab64/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d737061646573\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-spades\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/4e45c3ef27ec17192287b575ac775bc38996f5ef4371b5c3d60a832ce806669e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d737061646573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4e45c3ef27ec17192287b575ac775bc38996f5ef4371b5c3d60a832ce806669e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d737061646573\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-spades\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/1df46e77d3f98a8380250f3dc06ab84e8496724d7526816114756b5e5115363b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d737061646573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1df46e77d3f98a8380250f3dc06ab84e8496724d7526816114756b5e5115363b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d737061646573\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-spades\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/4819979457ec016fbbbd524e8046081eef419b6669035f155038c378d436a9dc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d737061646573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4819979457ec016fbbbd524e8046081eef419b6669035f155038c378d436a9dc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d737061646573\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-spades\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-singularity-spades\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-spades\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-spades\u003c/h2\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/spades/3.15.3\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/spades\u003c/code\u003e as \u003ccode\u003e3.15.3.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-abyss",
+ "latest_release": "v2.1.5",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-abyss/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-abyss/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/61f7c02135e022542644bca33ec90a8b6bdc9cbb8ec4b0e3ec8b5480f035beaa/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6162797373\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/61f7c02135e022542644bca33ec90a8b6bdc9cbb8ec4b0e3ec8b5480f035beaa/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6162797373\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-abyss\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/e1d01eb58e3d5d47f45f00fffe4ab16909d1541fcb3cf25e0c01bf5f9d0c8028/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6162797373\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e1d01eb58e3d5d47f45f00fffe4ab16909d1541fcb3cf25e0c01bf5f9d0c8028/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6162797373\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-abyss\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/b5bcaa1865f5b4c8a6901097150a4b2915c2e0a967f27a5cd175b8cd7c653ce3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6162797373\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b5bcaa1865f5b4c8a6901097150a4b2915c2e0a967f27a5cd175b8cd7c653ce3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6162797373\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-abyss\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/1d51b6d070f927bea877c0ebb5437d326390ba7459fc3a1baa9ecefc8c1f63ea/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6162797373\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1d51b6d070f927bea877c0ebb5437d326390ba7459fc3a1baa9ecefc8c1f63ea/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6162797373\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-abyss\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-abyss\" class=\"anchor\" href=\"#singularity-abyss\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-abyss\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/ABYSS\"\u003eABySS\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/ABySS/2.1.5\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/ABySS\u003c/code\u003e as \u003ccode\u003e2.1.5.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [
"singularity",
"bioinformatics"
],
- "updated_at": 1658280597.0
+ "updated_at": 1628991345.0
},
{
"data_format": 2,
- "description": "Demonstration workflow with Alphafold in a Jupyter notebook",
+ "description": "This repository will hold: the build script to install singularity and other dependencies for it, and a definition file for the singularity container for HPC.",
"filenames": [
- "container/Singularity.def"
+ "SingularitySC",
+ "Singularity"
],
- "full_name": "parallelworks/alphafold-notebook-demo",
+ "full_name": "perminaa/SingularityHPC",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-alphafold-notebook-demo\" class=\"anchor\" aria-hidden=\"true\" href=\"#alphafold-notebook-demo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ealphafold-notebook-demo\u003c/h1\u003e\n\u003cp\u003eDemonstration workflow with Alphafold in a Jupyter notebook\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h2\u003e\n\u003cp\u003eThe following components are necessary for setting up this workflow:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eAn Alphafold Singularity container. Please see instructions in \u003ccode\u003e./container\u003c/code\u003e for how to build an Alphafold container. Currently, it is assumed that this container is available at a \u003cstrong\u003ehard coded path\u003c/strong\u003e in \u003ccode\u003e./container/run_singularity_container.py\u003c/code\u003e in this line of code:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity_image = Client.load(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e/public/apps/alphafold/alphafold.sif\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eA Conda (or pip) environment that has the \u003ccode\u003eabsl-py\u003c/code\u003e and \u003ccode\u003espython\u003c/code\u003e packages to launch the container. This workflow also uses \u003ccode\u003eparsl\u003c/code\u003e (but it is not required for using the container itself). For a cluster with Conda in a module, here is an example for how to create a local environment:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emodule load conda3\n\u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e /gs/gsfs0/hpc01/rhel8/apps/conda3/etc/profile.d/conda.sh\nconda create -y -p /gs/gsfs0/users/gstefan/work/alphafold/env -c conda-forge absl-py==0.13.0 spython=0.1.16 parsl\nconda activate /gs/gsfs0/users/gstefan/work/alphafold/env\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ewhere \u003ccode\u003e/gs/gsfs0/users/gstefan/\u003c/code\u003e is your home directory.\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\n\u003cp\u003ePull this workflow code into your PW environment.\n\u003cstrong\u003eTODO: Add instructions here.\u003c/strong\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun the workflow from PW.\n\u003cstrong\u003eTODO: Add instructions here.\u003c/strong\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-interactive-runs\" class=\"anchor\" aria-hidden=\"true\" href=\"#interactive-runs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInteractive runs\u003c/h2\u003e\n\u003cp\u003eFor the purposes of testing Alphafold, it is possible to\nstart interactive Alphafold runs (i.e. manually launch the\napplication for an instance). Instructions for launching\nan interactive run are in \u003ccode\u003e./container\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-batch-runs\" class=\"anchor\" aria-hidden=\"true\" href=\"#batch-runs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBatch runs\u003c/h2\u003e\n\u003cp\u003eWhen you want to run many proteins with Alphafold, there are\ntwo options:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003ethe workflow form (under construction) can be used to launch a batch run or\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emain.ipynb\u003c/code\u003e, the Jupyter notebook that contains the workflow code.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eWhen users opt for the first option (the workflow form), the form simply\ngrabs the code out of \u003ccode\u003emain.ipynb\u003c/code\u003e and executes it. Users can use\n\u003ccode\u003emain.ipynb\u003c/code\u003e as a template for more complicated Alphafold workflows\nand/or directly modify some of the Alphafold options that are not\navailable in the workflow form. Jupyter notebooks (\u003ccode\u003e*.ipynb\u003c/code\u003e files)\ncan be opened, edited, and run on the platform by double clicking on\nthe file in the file browser pane.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-colabfold\" class=\"anchor\" aria-hidden=\"true\" href=\"#colabfold\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eColabFold\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/sokrypton/ColabFold\"\u003eColabFold\u003c/a\u003e is a community-driven\nupdate to Alphafold underpinned by \u003ca href=\"https://colabfold.mmseqs.com/\" rel=\"nofollow\"\u003enew/updated databases\u003c/a\u003e\nand the MSA search process is accelerated by \u003ca href=\"https://github.com/soedinglab/MMseqs2\"\u003eMMseqs2\u003c/a\u003e.\nPlease see the colabfold directory for more information.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularityhpc\" class=\"anchor\" href=\"#singularityhpc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularityHPC\u003c/h1\u003e\n\u003cp\u003eThis repository will hold: the build script to install singularity and other dependencies for it, and a definition file for the singularity container for HPC.\u003c/p\u003e\n\u003cp\u003eTo install, run \u003ccode\u003egit clone https://github.com/perminaa/SingularityHPC.git \u0026amp;\u0026amp; cd SingularityHPC \u0026amp;\u0026amp; bash buildscript.sh\u003c/code\u003e. This will install and configure singularity\nand build a container called \u003ccode\u003eContainer.sif\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTo run the container, you can use \u003ccode\u003esingularity shell Container.sif\u003c/code\u003e to run in the singularity shell or \u003ccode\u003esingularity exec Container.sif \u0026lt;command\u0026gt;\u003c/code\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1659444272.0
+ "updated_at": 1626501688.0
},
{
"data_format": 2,
- "description": null,
+ "description": "R server within singularity container on HPC",
"filenames": [
- "Recipes/Singularity_spark_full",
- "Recipes/Singularity_numpy",
- "Recipes/Singularity_pytorch",
- "Recipes/Singularity_ompi",
- "Recipes/Singularity_GPU",
- "Recipes/Singularity_tensorflow",
- "Recipes/Singularity_Python",
- "Recipes/Singularity_mpich",
- "Recipes/Singularity_pytorch_full",
- "Recipes/Singularity_spark",
- "Recipes/Singularity_sklearn",
- "Recipes/Singularity_example"
+ "Singularity_bioc_python"
],
- "full_name": "Gab0410/Cluster-HPC",
+ "full_name": "retogerber/singularity_rserver",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-pr\u00e9-requisitos\" class=\"anchor\" aria-hidden=\"true\" href=\"#pr\u00e9-requisitos\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePr\u00e9-requisitos\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-sele\u00e7\u00e3o-do-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#sele\u00e7\u00e3o-do-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSele\u00e7\u00e3o do Recipe\u003c/h2\u003e\n\u003cp\u003eAdicione o caminho do \u003cem\u003esingularity recipe\u003c/em\u003e desejado na vari\u00e1vel RECIPE no github (projeto \u0026gt;\u0026gt; Settings \u0026gt;\u0026gt; Secrets \u0026gt;\u0026gt; New Secret).\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-template-integra\u00e7\u00e3o-cont\u00ednua-github\" class=\"anchor\" aria-hidden=\"true\" href=\"#template-integra\u00e7\u00e3o-cont\u00ednua-github\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTemplate Integra\u00e7\u00e3o Cont\u00ednua Github\u003c/h1\u003e\n\u003cp\u003eEsse projeto o template para uso do cluster da UFSCar, contendo integra\u00e7\u00e3o cont\u00ednua com o Google Drive e Amazon S3.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requisitos-para-google-drive\" class=\"anchor\" aria-hidden=\"true\" href=\"#requisitos-para-google-drive\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequisitos para Google Drive\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eEntre no \u003ca href=\"https://console.developers.google.com/apis/credentials\" rel=\"nofollow\"\u003econsole de credenciais de API do Google\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eSe ainda n\u00e3o houver um projeto, crie um com permiss\u00e3o para a \"Google Drive API\" (Dashboard).\u003c/li\u003e\n\u003cli\u003eEm \"Tela de consentimento OAuth\", marque \"Interno\" na primeira p\u00e1gina, preencha os campos obrigat\u00f3rios na segunda, n\u00e3o preencha nada na terceira,\u003c/li\u003e\n\u003cli\u003eClique em Credenciais \u0026gt; Criar credenciais.\u003c/li\u003e\n\u003cli\u003eSelecione \"ID do cliente do OAuth\".\u003c/li\u003e\n\u003cli\u003eEm \"Tipo de aplicativo\", selecione \"App para computador\".\u003c/li\u003e\n\u003cli\u003eD\u00ea um nome de identifica\u00e7\u00e3o para as credenciais e clique em \"criar\". V\u00e3o aparecer dois dados (\"Seu ID de cliente\" e \"Sua chave secreta de cliente\"), precisaremos dos dois no passo seguinte.\u003c/li\u003e\n\u003cli\u003eAcesse o \u003cem\u003ecluster\u003c/em\u003e, execute o comando \u003ccode\u003erclone config\u003c/code\u003e e forne\u00e7a as seguintes informa\u00e7\u00f5es quando solicitado:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003en/s/q\u0026gt; n\nname\u0026gt; cloud\nStorage\u0026gt; 17 # selecione aqui o n\u00famero correspondente a op\u00e7\u00e3o \"Google Drive\"\nclient_id\u0026gt; conte\u00fado de \"Seu ID de cliente\"\nclient_secret\u0026gt; conte\u00fado de \"Sua chave secreta de cliente\"\nscope\u0026gt; 1 # Full access all files, excluding Application Data Folder\nroot_folder_id\u0026gt; deixe em branco\nservice_account_file\u0026gt; deixe em branco\ny/n\u0026gt; deixe em branco\ny/n\u0026gt; n\n\nSe j\u00e1 tiver o rclone instalado em seu computador, execute o comando exibido, caso contr\u00e1rio, o instale conforme indicado na p\u00e1gina oficial do rclone dependendo do seu sistema operacional (https://rclone.org/install/). A Seguir insira o resultado do comando exibido:\n\nconfig_token\u0026gt; c\u00f3digo fornecido pelo terminal ap\u00f3s autoriza\u00e7\u00e3o\ny/n\u0026gt; deixe em branco\ny/e/d\u0026gt; deixe em branco\ne/n/d/r/c/s/q\u0026gt; q\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA configura\u00e7\u00e3o at\u00e9 agora servir\u00e1 para transfer\u00eancia de dados do \u003cem\u003ecluster\u003c/em\u003e para a nuvem e vice-e-versa. A partir de agora vamos configurar a integra\u00e7\u00e3o cont\u00ednua no github.\u003c/p\u003e\n\u003col start=\"8\"\u003e\n\u003cli\u003eExecute o comando:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eecho $(cat ~/.config/rclone/rclone.conf | base64 --wrap=0)\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"9\"\u003e\n\u003cli\u003eCopie a sa\u00edda e adicione \u00e0 vari\u00e1vel RCLONE_CONF no github.\u003c/li\u003e\n\u003cli\u003eAdicione no github \u00e0 vari\u00e1vel COLLECTION_CONTAINER \u003ccode\u003e/path/to/project\u003c/code\u003e, esse ser\u00e1 o caminho cujo container vai ser disponibilizado no seu Google Drive no formato \u003ccode\u003erecipe_name_DateTime.simg\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requisitos-para-amazon-s3\" class=\"anchor\" aria-hidden=\"true\" href=\"#requisitos-para-amazon-s3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequisitos para Amazon S3\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eEntre na \u003ca href=\"console.aws.amazon.com\"\u003eAWS\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eClique na seta ao lado de seu nome de usu\u00e1rio e em \"My Security Credentials\".\u003c/li\u003e\n\u003cli\u003eNa se\u00e7\u00e3o \"Access Keys\", clique em \"Create New Access Key\".\u003c/li\u003e\n\u003cli\u003eNa janela que aparece, clique em \"Show Access Key\".\u003c/li\u003e\n\u003cli\u003eAcesse o \u003cem\u003ecluster\u003c/em\u003e, execute o comando \u003ccode\u003erclone config\u003c/code\u003e e forne\u00e7a as seguintes informa\u00e7\u00f5es quando solicitado:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003en/s/q\u0026gt; n\nname\u0026gt; cloud\nStorage\u0026gt; 4\nprovider\u0026gt; 1\nenv_auth\u0026gt; 1\naccess_key_id\u0026gt; conte\u00fado de \"Access Key ID\"\nsecret_access_key\u0026gt; conte\u00fado de \"Secret Access Key\"\nregion\u0026gt; 16\nendpoint\u0026gt; deixe em branco\nlocation_constraint\u0026gt; 16\nacl\u0026gt; deixe em branco\nserver_side_encryption\u0026gt; deixe em branco\nsse_kms_key_id\u0026gt; deixe em branco\nstorage_class\u0026gt; deixe em branco\ny/n\u0026gt; deixe em branco\ny/e/d\u0026gt; deixe em branco\ne/n/d/r/c/s/q\u0026gt; q\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA configura\u00e7\u00e3o at\u00e9 agora servir\u00e1 para transfer\u00eancia de dados do \u003cem\u003ecluster\u003c/em\u003e para a nuvem e vice-e-versa. A partir de agora vamos configurar a integra\u00e7\u00e3o cont\u00ednua no github.\u003c/p\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003eExecute o comando:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eecho $(cat ~/.config/rclone/rclone.conf | base64 --wrap=0)\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"7\"\u003e\n\u003cli\u003eCopie a sa\u00edda e adicione \u00e0 vari\u00e1vel RCLONE_CONF no github.\u003c/li\u003e\n\u003cli\u003eAdicione no github \u00e0 vari\u00e1vel COLLECTION_CONTAINER \u003ccode\u003e/path/to/project\u003c/code\u003e, esse ser\u00e1 o caminho cujo container vai ser disponibilizado no seu Google Drive no formato \u003ccode\u003erecipe_name_DateTime.simg\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-r-server-in-singularity\" class=\"anchor\" href=\"#r-server-in-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR server in singularity\u003c/h1\u003e\n\u003cp\u003eThis workflow together with the script \u003ccode\u003esingRstudio.sh\u003c/code\u003e facilitates setting up an R server running in a singularity container on a HPC and accessing it on a local PC.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-workflow\" class=\"anchor\" href=\"#workflow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWorkflow\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-prepare-only-first-time\" class=\"anchor\" href=\"#prepare-only-first-time\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrepare (only first time)\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-on-local-pc\" class=\"anchor\" href=\"#on-local-pc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOn local PC\u003c/h3\u003e\n\u003cp\u003eSince building a singularity image requires root privilege it is often not possible to directly build on your HPC. A simple workaround is to build in on your local PC and the copy to the server.\nBuild Singularity image file:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build singularity_container.sif Singularity_bioc_python\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe given Singularity build file is just an example, to customize for your needs have a look at the \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/build_a_container.html\" rel=\"nofollow\"\u003esingularity documentation\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eAfter building the image copy to server, e.g.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003escp singularity_container.sif SERVERNAME:/some/location\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAlternatively there is the possibily to build without sudo using the \u003ccode\u003e--remote\u003c/code\u003e flage. \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/cloud_library.html\" rel=\"nofollow\"\u003eSingularity documentation\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-setup\" class=\"anchor\" href=\"#setup\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-on-server\" class=\"anchor\" href=\"#on-server\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOn server\u003c/h3\u003e\n\u003cp\u003eMake sure a suitable temporary directory is available, e.g. \u003ccode\u003e~/tmp\u003c/code\u003e (the default).\u003c/p\u003e\n\u003cp\u003eDecide on the port you want to use, the default is 8788.\u003c/p\u003e\n\u003cp\u003eRun rserver with singularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash singRstudio.sh -c singularity_container.sif -t ~/tmp -p 8789\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-on-local-pc-1\" class=\"anchor\" href=\"#on-local-pc-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOn local PC\u003c/h3\u003e\n\u003cp\u003eRedirect traffic from port on server to local port via ssh:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003essh -Nf -L LOCALPORT:localhost:SERVERPORT SERVERNAME\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ereplacing \u003ccode\u003eLOCALPORT\u003c/code\u003e with the port you want to use on your local pc, \u003ccode\u003eSERVERPORT\u003c/code\u003e with the above specified port (default 8788) and \u003ccode\u003eSERVERNAME\u003c/code\u003e with the address of the server.\ne.g:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003essh -Nf -L 8787:localhost:8788 user@myserver.com\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen open a browser and go to \u003ccode\u003ehttp://localhost:LOCALPORT\u003c/code\u003e again replacing \u003ccode\u003eLOCALPORT\u003c/code\u003e. Login with your server username and passwort (as specified with the \u003ccode\u003e-a\u003c/code\u003e argument, default: \u003ccode\u003epassword\u003c/code\u003e).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-other-options\" class=\"anchor\" href=\"#other-options\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOther options:\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-bind-local-directories-to-container\" class=\"anchor\" href=\"#bind-local-directories-to-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBind local directories to container\u003c/h3\u003e\n\u003cp\u003eTo connect directories to the container in a specific manner set the \u003ccode\u003e-b\u003c/code\u003e argument:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash singRstudio.sh -c singularity_container.sif -b \"local/dir/1:/absolute/container/dir/1,local/dir/2:/absolute/container/dir/2\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-local-r-library\" class=\"anchor\" href=\"#local-r-library\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003elocal R library\u003c/h3\u003e\n\u003cp\u003eSince singularity containers are read-only, installing R packages is not possible. For reproducibility this is great as it is always clear what packages were used,\nbut sometimes it can be a nuissance when testing stuff. A workaround is to specify a local directory in which the packages are installed. This can be done setting\nthe \u003ccode\u003e-r\u003c/code\u003e argument:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash singRstudio.sh -c singularity_container.sif -r ~/my/R/library\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-dry-run\" class=\"anchor\" href=\"#dry-run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDry run\u003c/h3\u003e\n\u003cp\u003eTo just show the \"built\" singularity command without executing it add \u003ccode\u003e-d\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash singRstudio.sh -c singularity_container.sif -d\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1663111689.0
+ "updated_at": 1626332421.0
},
{
"data_format": 2,
- "description": "Work in progress: A cookiecutter for singularity images",
+ "description": "msee is a command-line tool to read markdown file.",
"filenames": [
- "{{cookiecutter.project_name}}/Singularity"
+ "0.3.5/Singularity"
],
- "full_name": "amanmdesai/cookiecutter-singularity",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-cookiecutter-project-for-singularity-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#cookiecutter-project-for-singularity-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCookiecutter Project for Singularity images\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/amanmdesai/cookiecutter-docker-singularity/blob/master/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/486e44f0e9c09c6186d86e72c96fdfc6574e09d8885cf0fe2b912e9cdbff847e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f616d616e6d64657361692f636f6f6b69656375747465722d646f636b65722d73696e67756c6172697479\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/amanmdesai/cookiecutter-docker-singularity\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-purpose\" class=\"anchor\" aria-hidden=\"true\" href=\"#purpose\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePurpose\u003c/h2\u003e\n\u003cp\u003eCreate Singularity image definition files\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-hidden=\"true\" href=\"#features\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFeatures\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eEasily write customized singularity images\u003c/li\u003e\n\u003cli\u003eDeploy easily to github packages\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eInstructions will be added\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-it\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-it\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning it!\u003c/h2\u003e\n\u003ch2\u003e\u003ca id=\"user-content-extension\" class=\"anchor\" aria-hidden=\"true\" href=\"#extension\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExtension:\u003c/h2\u003e\n\u003cp\u003eAn extension either to include docker images here, or elsewhere is foreseen.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eWORK in Progress\nContributions are welcome and can be made by opening a PR or bug report.\u003c/p\u003e\n",
+ "full_name": "icaoberg/singularity-msee",
+ "latest_release": "v0.3.5",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-msee/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-msee/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/8f15c74b6b0c9b138f9da5b4933fe28294369dc8e7eb93b731dc2ce072de357e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d6d736565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8f15c74b6b0c9b138f9da5b4933fe28294369dc8e7eb93b731dc2ce072de357e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d6d736565\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-msee\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/dc49ece7c14937e5c2802e8ab4824bc9c4606e21bd4f04eede89efffab599a2d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d6d736565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/dc49ece7c14937e5c2802e8ab4824bc9c4606e21bd4f04eede89efffab599a2d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d6d736565\" alt=\"Forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-msee\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/bc6a9157f824c9765da6596c0beb4a82c4f71d7a27b46cec8e32781fb8c3faad/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d6d736565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bc6a9157f824c9765da6596c0beb4a82c4f71d7a27b46cec8e32781fb8c3faad/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d6d736565\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-msee\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5858470ac4cc23a618c46e8f874d611a5c2ba2762846b37cae4b6767e4e8784f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d6d736565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5858470ac4cc23a618c46e8f874d611a5c2ba2762846b37cae4b6767e4e8784f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d6d736565\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-msee\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-msee\" class=\"anchor\" href=\"#singularity-msee\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-msee\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://cloud.githubusercontent.com/assets/157338/10902801/531ba216-823d-11e5-87ac-986b8d5ea4cc.png\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://cloud.githubusercontent.com/assets/157338/10902801/531ba216-823d-11e5-87ac-986b8d5ea4cc.png\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\nSingularity recipe for \u003ca href=\"https://www.npmjs.com/package/msee\" rel=\"nofollow\"\u003emsee\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/msees/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [],
- "updated_at": 1663515196.0
+ "topics": [
+ "singularity",
+ "utilties"
+ ],
+ "updated_at": 1627585753.0
},
{
"data_format": 2,
- "description": "ffmpeg and pysoundfile in a Singularity image",
+ "description": "Repo for recipes to put on singularity hub",
"filenames": [
- "Singularity"
+ "Singularity.dbspype",
+ "Singularity.xenial"
],
- "full_name": "rses-singularity/singularity-ubuntu-xenial-ffmpeg-pysoundfile",
+ "full_name": "hbraunDSP/containers",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-ffmpeg-and-pysoundfile-in-a-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#ffmpeg-and-pysoundfile-in-a-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003effmpeg and pysoundfile in a Singularity image\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eSee \u003ca href=\"build.sh\"\u003ebuild.sh\u003c/a\u003e for info on how to build and run the image\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e file for the definition of the image, including\n\u003cul\u003e\n\u003cli\u003eThe (Docker) image it is based on\u003c/li\u003e\n\u003cli\u003eWhat OS packages are installed\u003c/li\u003e\n\u003cli\u003eWhat environment variables are set\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSee \u003ca href=\"requirements.txt\"\u003erequirements.txt\u003c/a\u003e for the Python packages installed in the image (using \u003ccode\u003epip\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e project website for more info on Singularity in general and detailed documentaiton.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-containers\" class=\"anchor\" href=\"#containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainers\u003c/h1\u003e\n\u003cp\u003ePRIVATE repo for recipes to put on singularity hub.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1503997989.0
+ "updated_at": 1567609710.0
},
{
"data_format": 2,
- "description": "BIDS app to perform PET motion correction of dynamic data",
+ "description": "HTSlib A C library for reading/writing high-throughput sequencing data. ",
"filenames": [
- "Singularity"
+ "1.13/Singularity"
],
- "full_name": "mnoergaard/hmcpet",
- "latest_release": null,
- "readme": "\u003ch2\u003e\u003ca id=\"user-content-an-example-bids-app-template-repository\" class=\"anchor\" aria-hidden=\"true\" href=\"#an-example-bids-app-template-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAn example BIDS App (template repository)\u003c/h2\u003e\n\u003cp\u003eEvery BIDS App needs to follow a minimal set of command arguments common across\nall of the Apps. This allows users and developers to easily use and integrate\nBIDS Apps with their environment.\u003c/p\u003e\n\u003cp\u003eThis is a minimalist example of a BIDS App consisting of a Dockerfile and a simple\nentry point script (written in this case in Python) accepting the standard BIDS\nApps command line arguments. This repository can be used as a template for new BIDS Apps.\u003c/p\u003e\n\u003cp\u003eFor more information about the specification of BIDS Apps see \u003ca href=\"https://docs.google.com/document/d/1E1Wi5ONvOVVnGhj21S1bmJJ4kyHFT7tkxnV3C23sjIE/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-description\" class=\"anchor\" aria-hidden=\"true\" href=\"#description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h3\u003e\n\u003cp\u003eThis is a placeholder for a short description explaining to the user what your App will doing.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eProvide a link to the documentation of your pipeline.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-how-to-report-errors\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-report-errors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to report errors\u003c/h3\u003e\n\u003cp\u003eProvide instructions for users on how to get help and report errors.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-acknowledgments\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgments\u003c/h3\u003e\n\u003cp\u003eDescribe how would you would like users to acknowledge use of your App in their papers (citation, a paragraph that can be copy pasted, etc.)\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003cp\u003eThis App has the following command line arguments:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\tusage: run.py [-h]\n\t [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]\n\t bids_dir output_dir {participant,group}\n\n\tExample BIDS App entry point script.\n\n\tpositional arguments:\n\t bids_dir The directory with the input dataset formatted\n\t according to the BIDS standard.\n\t output_dir The directory where the output files should be stored.\n\t If you are running a group level analysis, this folder\n\t should be prepopulated with the results of\n\t the participant level analysis.\n\t {participant,group} Level of the analysis that will be performed. Multiple\n\t participant level analyses can be run independently\n\t (in parallel).\n\n\toptional arguments:\n\t -h, --help show this help message and exit\n\t --participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]\n\t The label(s) of the participant(s) that should be\n\t analyzed. The label corresponds to\n\t sub-\u0026lt;participant_label\u0026gt; from the BIDS spec (so it does\n\t not include \"sub-\"). If this parameter is not provided\n\t all subjects will be analyzed. Multiple participants\n\t can be specified with a space separated list.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run it in participant level mode (for one participant):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -i --rm \\\n\t-v /Users/filo/data/ds005:/bids_dataset:ro \\\n\t-v /Users/filo/outputs:/outputs \\\n\tbids/example \\\n\t/bids_dataset /outputs participant --participant_label 01\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAfter doing this for all subjects (potentially in parallel), the group level analysis\ncan be run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -i --rm \\\n\t-v /Users/filo/data/ds005:/bids_dataset:ro \\\n\t-v /Users/filo/outputs:/outputs \\\n\tbids/example \\\n\t/bids_dataset /outputs group\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-special-considerations\" class=\"anchor\" aria-hidden=\"true\" href=\"#special-considerations\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpecial considerations\u003c/h3\u003e\n\u003cp\u003eDescribe whether your app has any special requirements. For example:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMultiple map reduce steps (participant, group, participant2, group2 etc.)\u003c/li\u003e\n\u003cli\u003eUnusual memory requirements\u003c/li\u003e\n\u003cli\u003eetc.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "pscedu/singularity-htslib",
+ "latest_release": "v1.13",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-htslib/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-htslib/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-htslib/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-htslib/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c19127d592d5b1774f1b776b581a4ee3e088dc8836040a4dcfb0112e233e0272/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6874736c6962\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c19127d592d5b1774f1b776b581a4ee3e088dc8836040a4dcfb0112e233e0272/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6874736c6962\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-htslib\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7eb94edba6c28c8efe671ccb26366254e3fa67b9ba22e17183a8353c985c30f7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6874736c6962\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7eb94edba6c28c8efe671ccb26366254e3fa67b9ba22e17183a8353c985c30f7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6874736c6962\" alt=\"Forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-htslib\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0c4e24ae23aaa5d0244c3ba0370b21835d696a720659445acd0879d08953dbf5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6874736c6962\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0c4e24ae23aaa5d0244c3ba0370b21835d696a720659445acd0879d08953dbf5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6874736c6962\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-htslib\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/e0b439a0b671ca5e751012f4801e4febe27cb2fa88ea95ed862cca4a347af459/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6874736c6962\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e0b439a0b671ca5e751012f4801e4febe27cb2fa88ea95ed862cca4a347af459/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6874736c6962\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-htslib\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-htslib\" class=\"anchor\" href=\"#singularity-htslib\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-htslib\u003c/h2\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/samtools/htslib\"\u003ehtslib\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ehtsfile\u003c/code\u003e, \u003ccode\u003etabix\u003c/code\u003e and \u003ccode\u003ebgzip\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/htslib/1.13\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/htslib\u003c/code\u003e as \u003ccode\u003e1.13.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1653596606.0
+ "subscribers_count": 2,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1629226143.0
},
{
"data_format": 2,
- "description": null,
+ "description": "\u5b8f\u57fa\u56e0\u7ec4\u76f8\u5173\u4ee3\u7801",
"filenames": [
- "Singularity.zlib-1.2-centos8.def",
- "Singularity.binutils-2.36.1-GCCcore-11.1.0-centos8.def"
+ "scripts/lathe/singularity/Singularity.quickmerge",
+ "scripts/lathe/singularity/Singularity.longread",
+ "scripts/lathe/singularity/Singularity.htsbox"
],
- "full_name": "jkwmoore/centos8-eb-singularity-image",
+ "full_name": "JiaLonghao1997/Microbiome",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-microbiome\" class=\"anchor\" href=\"#microbiome\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMicrobiome\u003c/h1\u003e\n\u003cp\u003e\u5b8f\u57fa\u56e0\u7ec4\u76f8\u5173\u4ee3\u7801\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1653574058.0
+ "updated_at": 1626932334.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "ext/Singularity"
+ "Singularity.tut0804",
+ "Singularity.05211526",
+ "Singularity",
+ "Singularity.386",
+ "Singularity.05201328",
+ "Singularity.sf",
+ "Singularity.05131402",
+ "Singularity.05221357",
+ "Singularity.1908121107",
+ "Singularity.cuda10"
],
- "full_name": "dtenenba/bc_example_dan_rstudio",
+ "full_name": "timkphd/Containers",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-wip-batch-connect---osc-example-shiny-app\" class=\"anchor\" aria-hidden=\"true\" href=\"#wip-batch-connect---osc-example-shiny-app\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e[WIP] Batch Connect - OSC Example Shiny App\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a8152a2780451d58acdca1e79b03f771d6e84ae12087e6e7a824b6759b715dc1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6f73635f6578616d706c655f7368696e792e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a8152a2780451d58acdca1e79b03f771d6e84ae12087e6e7a824b6759b715dc1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6f73635f6578616d706c655f7368696e792e737667\" alt=\"GitHub Release\" data-canonical-src=\"https://img.shields.io/github/release/osc/bc_osc_example_shiny.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA Batch Connect app designed for OSC OnDemand that launches a Shiny App within\nan Owens batch job.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eThis Batch Connect app requires the following software be installed on the\n\u003cstrong\u003ecompute nodes\u003c/strong\u003e that the batch job is intended to run on (\u003cstrong\u003eNOT\u003c/strong\u003e the\nOnDemand node):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://shiny.rstudio.com/\" rel=\"nofollow\"\u003eShiny\u003c/a\u003e x.y.z+\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.tacc.utexas.edu/research-development/tacc-projects/lmod\" rel=\"nofollow\"\u003eLmod\u003c/a\u003e 6.0.1+ or any other \u003ccode\u003emodule purge\u003c/code\u003e and \u003ccode\u003emodule load \u0026lt;modules\u0026gt;\u003c/code\u003e based\nCLI used to load appropriate environments within the batch job\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install\" class=\"anchor\" aria-hidden=\"true\" href=\"#install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h2\u003e\n\u003cp\u003eUse git to clone this app and checkout the desired branch/version you want to\nuse:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003escl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git clone \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003erepo\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git checkout \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etag/branch\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou will not need to do anything beyond this as all necessary assets are\ninstalled. You will also not need to restart this app as it isn\u0027t a Passenger\napp.\u003c/p\u003e\n\u003cp\u003eTo update the app you would:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git fetch\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git checkout \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etag/branch\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAgain, you do not need to restart the app as it isn\u0027t a Passenger app.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eFork it ( \u003ca href=\"https://github.com/OSC/bc_osc_example_shiny/fork\"\u003ehttps://github.com/OSC/bc_osc_example_shiny/fork\u003c/a\u003e )\u003c/li\u003e\n\u003cli\u003eCreate your feature branch (\u003ccode\u003egit checkout -b my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCommit your changes (\u003ccode\u003egit commit -am \u0027Add some feature\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003ePush to the branch (\u003ccode\u003egit push origin my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a new Pull Request\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-chpcs-notes\" class=\"anchor\" aria-hidden=\"true\" href=\"#chpcs-notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCHPC\u0027s notes\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-functional-overview\" class=\"anchor\" aria-hidden=\"true\" href=\"#functional-overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFunctional overview\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eUses CHPC\u0027s R (3.6.1) which has shiny installed\u003c/li\u003e\n\u003cli\u003eTo run a webserver, use an openresty container running nginx\u003c/li\u003e\n\u003cli\u003eThe script.sh that launches the OOD app creates a nginx config file and Shiny app launcher, then runs R with the launcher, followed by looking for the Unix socket created by the R\u0027s Shiny, thich then gets used by the nginx startup\u003c/li\u003e\n\u003cli\u003eThe user shiny app path is specified in the job specs\u0027 input box\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eNote that Shiny app can be also launched from the OOD\u0027s RStudio app by typing\nlibrary(\u0027shiny\u0027)\nrunApp(\"newdir\") - where \"newdir\" is the directory where app.R resides\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-applications-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#applications-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eApplication\u0027s dependencies\u003c/h3\u003e\n\u003cp\u003eR libraries that are needed by the application need to either be installed centrally to CHPC\u0027s R libraries location, or to other shared directory location. The former approach risks potential version conflicts with other library dependencies (this is more of an issue in Python but is possible in R as well).\u003c/p\u003e\n\u003cp\u003eBest practice may be for the creator of the app to install all the dependencies to his/her home directory, and in the app modify the R library path (using the .libPaths function) to add this directory to it.\u003c/p\u003e\n",
+ "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-singularity-container-build-scripts\" class=\"anchor\" href=\"#singularity-container-build-scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity container build Scripts\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-see-httpssingularity-huborgcollections2962\" class=\"anchor\" href=\"#see-httpssingularity-huborgcollections2962\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSee \u003ca href=\"https://singularity-hub.org/collections/2962\" rel=\"nofollow\"\u003ehttps://singularity-hub.org/collections/2962\u003c/a\u003e\n\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:16.04, , R, MPI (intel and openMPI ), python\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.05131402\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:16.04, basic stuff, does not actually install Intel Python\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.05201328\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:16.04, R, MPI, python, tutorial stuff\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.05211526\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:16.04, R, MPI, python, tutorial stuff\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.05221357 (Built)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:16.04, R, MPI, python, tutorial stuff\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.1908121107 (Built)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:latest, R, MPI, python, tutorial stuff\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.386 (Built)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBasic 32 bit with Fortran, c++ make, nano,vim\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.sf (Built)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:18.04, STAR-Fusion\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.tut0804\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:16.04, R, MPI, python, tutorial stuff\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1653954801.0
+ "updated_at": 1627001875.0
},
{
"data_format": 2,
- "description": null,
+ "description": "RAdiation SEmiconductoR ",
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "ZizZu94/covid19-ultrasound-img-prediction",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-covid19-ultrasound-image-score-prediction\" class=\"anchor\" aria-hidden=\"true\" href=\"#covid19-ultrasound-image-score-prediction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCovid19 Ultrasound image score prediction\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-models-resnet50-and-efficientnet-b0\" class=\"anchor\" aria-hidden=\"true\" href=\"#models-resnet50-and-efficientnet-b0\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModels: ResNet50 and EfficientNet-b0\u003c/h2\u003e\n",
+ "full_name": "dt-np/raser",
+ "latest_release": "v1.1",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-raser\" class=\"anchor\" href=\"#raser\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRASER\u003c/h1\u003e\n\u003cp\u003eRAdiation SEmiconductoR\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-build-with-singularity\" class=\"anchor\" href=\"#build-with-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild with Singularity\u003c/h1\u003e\n\u003cp\u003eBefore running the code, install the Singularity on your OS.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003e./sinularity_build.sh\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cblockquote\u003e\n\u003cp\u003e./singularity_run.sh\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cblockquote\u003e\n\u003cp\u003eraser\u0026gt; geant4_build.sh\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-run-with-singularity\" class=\"anchor\" href=\"#run-with-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun with Singularity\u003c/h1\u003e\n\u003cblockquote\u003e\n\u003cp\u003e./singularity_run.sh\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cblockquote\u003e\n\u003cp\u003eraser\u0026gt; ./run\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-raser-unit-test-after-you-change-some-codes\" class=\"anchor\" href=\"#raser-unit-test-after-you-change-some-codes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRaser unit test after you change some codes\u003c/h1\u003e\n\u003cblockquote\u003e\n\u003cp\u003e./singularity_run.sh\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cblockquote\u003e\n\u003cp\u003eraser\u0026gt; ./run 0.1.5\nraser\u0026gt; ./run 0.2.5\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eIf the output is \"Successful\", the code your changed is OK.\nOtherwise, you should check the code your changed.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [
- "classification",
- "covid-19",
- "deep-learning",
- "efficientnet",
- "neural-network",
- "python",
- "pytorch",
- "resnet-50",
- "ultrasound"
- ],
- "updated_at": 1654162475.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1630661539.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Fast, reliable protein-coding gene prediction for prokaryotic genomes.",
"filenames": [
- "downward/misc/releases/19.12/Singularity.19.12",
- "downward/misc/releases/20.06/Singularity.20.06",
- "downward/misc/releases/latest/Singularity",
- "downward/misc/releases/19.06/Singularity.19.06"
+ "2.6.3/Singularity"
],
- "full_name": "aymeric75/latplan",
+ "full_name": "pscedu/singularity-prodigal",
"latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-prodigal/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-prodigal/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-prodigal/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-prodigal/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/dbf23f859880f70436ee9de9ee89a1528a5171defb337385614da4eee0ffeb2d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d70726f646967616c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/dbf23f859880f70436ee9de9ee89a1528a5171defb337385614da4eee0ffeb2d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d70726f646967616c\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-prodigal\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f5f6ed86bbd6c79a6449e24738f02f9844e1fe9972bd1d162eb62316c06bf9dc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d70726f646967616c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f5f6ed86bbd6c79a6449e24738f02f9844e1fe9972bd1d162eb62316c06bf9dc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d70726f646967616c\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-prodigal\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/4ef2a97630fd3ac7037f653270a9129fe20826c8bf90956c9b995c0eea86da02/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d70726f646967616c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4ef2a97630fd3ac7037f653270a9129fe20826c8bf90956c9b995c0eea86da02/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d70726f646967616c\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-prodigal\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/e41f95bac858eb80bd1956886531b10a1a335ab73e0c0cbdc7ab720cf22824cd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d70726f646967616c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e41f95bac858eb80bd1956886531b10a1a335ab73e0c0cbdc7ab720cf22824cd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d70726f646967616c\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-prodigal\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-prodigal\" class=\"anchor\" href=\"#singularity-prodigal\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-prodigal\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/prodigal\"\u003eprodigal\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eprodigal\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/prodigal/2.6.3\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/prodigal\u003c/code\u003e as \u003ccode\u003e2.6.3.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [],
- "updated_at": 1654148749.0
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1629226411.0
},
{
"data_format": 2,
- "description": "Ba\u011flant\u0131 test ara\u00e7lar\u0131 i\u00e7eren Docker imaj\u0131",
+ "description": "Bismark is a program to map bisulfite treated sequencing reads to a genome of interest and perform methylation calls in a single step. ",
"filenames": [
- "Singularity"
+ "0.22.3/Singularity"
],
- "full_name": "gulnihalugur/testutils",
+ "full_name": "pscedu/singularity-bismark",
"latest_release": null,
- "readme": "\u003cp\u003eDocker imaji: curl, wget, ping, netcat, nslookup,host, dig, psql, mysql\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-kullanim\" class=\"anchor\" aria-hidden=\"true\" href=\"#kullanim\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eKullanim\u003c/h2\u003e\n\u003cp\u003eKubernetes\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ekubectl run --rm utils -it --generator=run-pod/v1 --image gulnihalugur/testutils bash\n# You will be seeing a bash prompt\n$ psql -h hostname -U test -d test\n...\n$ exit\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDocker Engine\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ docker pull gulnihalugur/testutils\n$ docker run --rm -it gulnihalugur/testutils bash\n\n# konteynir icinde\n$ ping google.com\n$ ifconfig\n...\n$ exit\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-bismark/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bismark/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-bismark/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bismark/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ac6bb8f2b406618278034b709c736e772b92723686bd930d0ec0e0caaf278599/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6269736d61726b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ac6bb8f2b406618278034b709c736e772b92723686bd930d0ec0e0caaf278599/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6269736d61726b\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bismark\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5f93c1931fec2c3f8a38122749025c57f09fb930eb75c591ad412dfa911b97ae/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6269736d61726b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5f93c1931fec2c3f8a38122749025c57f09fb930eb75c591ad412dfa911b97ae/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6269736d61726b\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bismark\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f20c48b5b2226a8f0a7cff096f8cedfe80b073f0b801009d9684d408ee31ca07/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6269736d61726b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f20c48b5b2226a8f0a7cff096f8cedfe80b073f0b801009d9684d408ee31ca07/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6269736d61726b\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bismark\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/07c4815a6c07dc179ddc97de5e5faa3c7fec941cc2c81a94adaed0547946fd27/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6269736d61726b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/07c4815a6c07dc179ddc97de5e5faa3c7fec941cc2c81a94adaed0547946fd27/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6269736d61726b\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bismark\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-bismark\" class=\"anchor\" href=\"#singularity-bismark\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bismark\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/FelixKrueger/Bismark\"\u003ebismark\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebismark\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bismark/0.22.3\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bismark\u003c/code\u003e as \u003ccode\u003e0.22.3.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
- "topics": [],
- "updated_at": 1561217122.0
+ "subscribers_count": 2,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1629214967.0
},
{
"data_format": 2,
- "description": "Singularity container for minc built on centos 7",
+ "description": "Nextflow pipeline for inference of CRISPR edits from NGS (Amplicon Sequencing) data",
"filenames": [
"Singularity"
],
- "full_name": "pndni/minc-container",
+ "full_name": "Yield10Bio/crispedit",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-crispedit\" class=\"anchor\" href=\"#crispedit\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecrispedit\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eNextflow pipeline for inference of CRISPR edits from NGS (Amplicon Sequencing) data\u003c/strong\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erun crispedit/crisedit.nf --in_fastq /Users/ngebremedhin/Downloads/VB26_18_3428_P1087_308811w_BF8.fastq --ref canola_badc_allgenes.fa --out_dir ${PWD}/myProject --project_name LC25 --bucket bioinformatics-analysis-netsanet --sgrna \"CCTTCTGAGCCCATGAACAAATC\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eN E X T F L O W ~ version 19.04.1\nLaunching `crispedit/crisedit.nf` [hopeful_swanson] - revision: 607eaca8d5\n\n[warm up] executor \u0026gt; local\nexecutor \u0026gt; local (27)\n[a7/a397c1] process \u0026gt; mergeReads [100%] 1 of 1 \u2714\n[58/d46b33] process \u0026gt; clustering [100%] 1 of 1 \u2714\n[1d/5e8374] process \u0026gt; dereplication [100%] 1 of 1 \u2714\n[bb/cc12b3] process \u0026gt; mapHighFrequencyReads [100%] 1 of 1 \u2714\n[44/eec241] process \u0026gt; samToBam [100%] 1 of 1 \u2714\n[92/c84f30] process \u0026gt; indexBam [100%] 1 of 1 \u2714\n[d2/119094] process \u0026gt; identiyEdits [100%] 1 of 1 \u2714\n[a2/38c0af] process \u0026gt; prepForPSA [100%] 1 of 1 \u2714\n[a6/51cabd] process \u0026gt; performPSA [100%] 9 of 9 \u2714\n[bd/fd96a3] process \u0026gt; combineClustalOut [100%] 9 of 9 \u2714\n[33/0f5567] process \u0026gt; createFinalReport [100%] 1 of 1 \u2714\n\nCompleted at: 25-Jul-2019 11:37:08\nDuration : 12.4s\nCPU hours : (a few seconds)\nSucceeded : 27\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003ebwa 0.7.17\u003c/li\u003e\n\u003cli\u003evsearch 2.18.0\u003c/li\u003e\n\u003cli\u003ebbmap 38.92\u003c/li\u003e\n\u003cli\u003esamtools=1.9\u003c/li\u003e\n\u003cli\u003eBiopython\u003c/li\u003e\n\u003cli\u003eclustalo 1.2.4\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-credits\" class=\"anchor\" href=\"#credits\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h3\u003e\n\u003cp\u003ecrispedit is written by Netsanet Gebremedhin.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1554308962.0
+ "updated_at": 1631063991.0
},
{
"data_format": 2,
- "description": "Singularity build files for FSL and freesurfer",
+ "description": "ElikoPy is Python library aiming at easing the processing of diffusion imaging for microstructural analysis.",
"filenames": [
- "Singularity.FSL-6.0.1_freesurfer-6.0.1_dev"
+ "Singularity_elikopy"
],
- "full_name": "pndni/FSL-and-freesurfer",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-license-info\" class=\"anchor\" aria-hidden=\"true\" href=\"#license-info\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense info\u003c/h1\u003e\n\u003cp\u003eWhile the actual code in this repository is covered by the provided \u003ca href=\"LICENSE\"\u003elicense\u003c/a\u003e,\nusing freesurfer and FSL requires accepting their respective licenses. By using this\ncontainer, you must agree to these licenses.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferSoftwareLicense\" rel=\"nofollow\"\u003eFreesurfer license\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Licence\" rel=\"nofollow\"\u003eFSL license\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eYou must acquire a freesurfer license from\n\u003ca href=\"https://surfer.nmr.mgh.harvard.edu/registration.html\" rel=\"nofollow\"\u003ehttps://surfer.nmr.mgh.harvard.edu/registration.html\u003c/a\u003e\nEnsure that the license file is visible from the container,\nand set the environment variable FS_LICENSE to point to it\n(or copy the file to /opt/freesurfer/license.txt from\ninside the container)\u003c/p\u003e\n",
+ "full_name": "Hyedryn/elikopy",
+ "latest_release": "v0.2.2",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-elikopy\" class=\"anchor\" href=\"#elikopy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eElikoPy\u003c/h1\u003e\n\u003cp\u003eElikoPy is Python library aiming at easing the processing of diffusion imaging for microstructural analysis.\nThis Python library is based on\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDIPY, a python library for the analysis of MR diffusion imaging.\u003c/li\u003e\n\u003cli\u003eMicrostructure fingerprinting, a python library doing estimation of white matter microstructural properties from a dictionary of Monte Carlo diffusion MRI fingerprints.\u003c/li\u003e\n\u003cli\u003eFSL, a comprehensive library of analysis tools for FMRI, MRI and DTI brain imaging data.\u003c/li\u003e\n\u003cli\u003eDIAMOND, a c software that is characterizing brain tissue by assessment of the distribution of anisotropic microstructural environments in diffusion\u2010compartment imaging.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cp\u003eElikoPy requires \u003ca href=\"https://www.python.org/\" rel=\"nofollow\"\u003ePython\u003c/a\u003e v3.7+ to run.\u003c/p\u003e\n\u003cp\u003eAfter cloning the repo, you can either firstly install all the python dependencies including optionnal dependency used to speed up the code:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ pip install -r requirements.txt --user\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eOr you can install directly the library with only the mandatory dependencies (if you performed the previous step, you still need to perform this step):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ python3 setup.py install --user\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eMicrostructure Fingerprinting is currently not avaible in the standard python repo, you can clone and install this library manually.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git clone git@github.com:rensonnetg/microstructure_fingerprinting.git\n$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e microstructure_fingerprinting\n$ python setup.py install\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFSL also needs to be installed and availabe in our path if you want to perform mouvement correction or tbss.\u003c/p\u003e\n\u003cp\u003eUnfortunatly, the DIAMOND code is not publically available. If you do not have it in your possesion, you will not be able to use this algorithm. If you have it, simply add the executable to your path.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003cp\u003eTodo\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-development\" class=\"anchor\" href=\"#development\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopment\u003c/h3\u003e\n\u003cp\u003eWant to contribute? Great!\u003c/p\u003e\n\u003cp\u003eDo not hesitate to open issue or pull request!\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-todos\" class=\"anchor\" href=\"#todos\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTodos\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eRelease a complete and accurate documentation for the library\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eFree Software, Hell Yeah!\u003c/strong\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [],
- "updated_at": 1554399581.0
+ "topics": [
+ "microstructure-fingerprinting",
+ "fsl",
+ "tbss",
+ "python-library",
+ "diffusion-imaging",
+ "preprocessing",
+ "dmri",
+ "diamond",
+ "noddi",
+ "dti"
+ ],
+ "updated_at": 1627554863.0
},
{
"data_format": 2,
- "description": "Singularity recipe for centos7",
+ "description": null,
"filenames": [
- "Singularity.dev"
+ "pin/conduit-binder/third-party/force-cover/Singularity"
],
- "full_name": "pndni/centos7-base",
+ "full_name": "mmore500/conduit-quality-of-service-writeup",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1555436901.0
+ "updated_at": 1631675356.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Nextflow pipeline for inference of CRISPR edits from NGS (Amplicon Sequencing) data",
"filenames": [
- "Singularity.ubuntu-20.04"
+ "Singularity"
],
- "full_name": "zonca/singularity_github_ci",
+ "full_name": "gnetsanet/crispedit",
"latest_release": null,
- "readme": "\u003ch2\u003e\u003ca id=\"user-content-test-build-singularity-containers-on-github-actions\" class=\"anchor\" aria-hidden=\"true\" href=\"#test-build-singularity-containers-on-github-actions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest build Singularity containers on Github Actions\u003c/h2\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-crispedit\" class=\"anchor\" href=\"#crispedit\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecrispedit\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eNextflow pipeline for inference of CRISPR edits from NGS (Amplicon Sequencing) data\u003c/strong\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erun crispedit/crisedit.nf --in_fastq /Users/ngebremedhin/Downloads/VB26_18_3428_P1087_308811w_BF8.fastq --ref canola_badc_allgenes.fa --out_dir ${PWD}/myProject --project_name LC25 --bucket bioinformatics-analysis-netsanet --sgrna \"CCTTCTGAGCCCATGAACAAATC\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eN E X T F L O W ~ version 19.04.1\nLaunching `crispedit/crisedit.nf` [hopeful_swanson] - revision: 607eaca8d5\n\n[warm up] executor \u0026gt; local\nexecutor \u0026gt; local (27)\n[a7/a397c1] process \u0026gt; mergeReads [100%] 1 of 1 \u2714\n[58/d46b33] process \u0026gt; clustering [100%] 1 of 1 \u2714\n[1d/5e8374] process \u0026gt; dereplication [100%] 1 of 1 \u2714\n[bb/cc12b3] process \u0026gt; mapHighFrequencyReads [100%] 1 of 1 \u2714\n[44/eec241] process \u0026gt; samToBam [100%] 1 of 1 \u2714\n[92/c84f30] process \u0026gt; indexBam [100%] 1 of 1 \u2714\n[d2/119094] process \u0026gt; identiyEdits [100%] 1 of 1 \u2714\n[a2/38c0af] process \u0026gt; prepForPSA [100%] 1 of 1 \u2714\n[a6/51cabd] process \u0026gt; performPSA [100%] 9 of 9 \u2714\n[bd/fd96a3] process \u0026gt; combineClustalOut [100%] 9 of 9 \u2714\n[33/0f5567] process \u0026gt; createFinalReport [100%] 1 of 1 \u2714\n\nCompleted at: 25-Jul-2019 11:37:08\nDuration : 12.4s\nCPU hours : (a few seconds)\nSucceeded : 27\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-credits\" class=\"anchor\" href=\"#credits\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h3\u003e\n\u003cp\u003ecrispedit is written by Netsanet Gebremedhin.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1654214816.0
+ "updated_at": 1631673344.0
},
{
"data_format": 2,
@@ -11828,360 +11235,364 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "VacantiLab/LehtioDDMSQuantSearch",
+ "full_name": "arabnejad/FabSim4",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-lehtiolabddamsproteomics\" class=\"anchor\" aria-hidden=\"true\" href=\"#lehtiolabddamsproteomics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003elehtiolab/ddamsproteomics\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eA Quantitative MS proteomics analysis pipeline\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/lehtiolab/ddamsproteomics\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2e73ffd6aaca951b76d06bb9e625b9958985004799f48697d15d272d8754b96a/68747470733a2f2f7472617669732d63692e6f72672f6c656874696f6c61622f6464616d7370726f74656f6d6963732e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/lehtiolab/ddamsproteomics.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/03c97559839c37998c3c1db1465217ff323c688ad1dbb4a617a90eefde35af1d/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d25453225383925413532302e30312e312d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A520.01.1-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://zenodo.org/badge/latestdoi/219955514\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3cdf183590e0fd8280e9cf4762883d9e76e2b577ee19066a8d3debc07af0553/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3231393935353531342e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/219955514.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/lehtiolab/ddamsproteomics\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3e006af0b85a286d286be1e4a41902ac68ed95f8253c038485c54ba693b93049/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6c656874696f6c61622f6464616d7370726f74656f6d6963732e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/lehtiolab/ddamsproteomics.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThis workflow identifies peptides in mzML input data using \u003ca href=\"https://github.com/MSGFPlus/msgfplus\"\u003eMSGF+\u003c/a\u003e, and \u003ca href=\"https://github.com/percolator/percolator/\"\u003ePercolator\u003c/a\u003e, quantifies isobarically labeled samples with \u003ca href=\"https://github.com/openms/openms\"\u003eOpenMS\u003c/a\u003e, and precursor peptides with \u003ca href=\"https://github.com/fickludd/dinosaur\"\u003eDinosaur\u003c/a\u003e, and processes that output to formatted peptide and protein/gene tables using \u003ca href=\"https://github.com/lehtiolab/msstitch\"\u003eMsstitch\u003c/a\u003e. Optional PTM data is analyzed by \u003ca href=\"https://github.com/dfermin/lucxor\"\u003eLuciphor2\u003c/a\u003e, and differential expression analyses can be performed using \u003ca href=\"https://github.com/yafeng/deqms\"\u003eDEqMS\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003einstall \u003ca href=\"https://nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003einstall \u003ca href=\"https://docs.docker.com/engine/installation/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e, \u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e, or \u003ca href=\"https://conda.io/miniconda.html\" rel=\"nofollow\"\u003eConda\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003erun pipeline:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run lehtiolab/ddamsproteomics --mzmls \u0027/path/to/*.mzML\u0027 --tdb /path/to/proteins.fa --mods \u0027oxidation;carbamidomethylation\u0027 -profile standard,docker\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOr for two sample sets of isobaric data you can:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run lehtiolab/ddamsproteomics --mzmls \u0027/path/to/*.mzML\u0027 --tdb /path/to/proteins.fa --mods \u0027oxidation;carbamidomethylation --isobaric \u0027setA:tmt10plex:126 setB:tmt10plex:127N\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor more elaborate examples covering fractionation, PTMs, and more, the lehtiolab/ddamsproteomics pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://nf-co.re/usage/troubleshooting\" rel=\"nofollow\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThere is more extensive documentation on the options inside the main.nf file.\u003c/p\u003e\n\u003cp\u003eThe pipeline takes multiple mzML files as input and performs identification and quantification to output results and a QC report (\u003ca href=\"docs/example_qc.html\"\u003ean example can be found here\u003c/a\u003e)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003elehtiolab/ddamsproteomics was originally written by Jorrit Boekel and tries to follow the \u003ca href=\"https://nf-co.re\" rel=\"nofollow\"\u003enf-core\u003c/a\u003e best practices and templates.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fabsim4\" class=\"anchor\" href=\"#fabsim4\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFabSim4\u003c/h1\u003e\n\u003cp\u003eThis the migrated version of FabSim3 to Fabric2\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1654280178.0
+ "updated_at": 1630410840.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ ".ci/github/Singularity"
],
- "full_name": "Lipinski-B/DE-nf",
- "latest_release": "v1.0",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-de-nf---pipeline-v10\" class=\"anchor\" aria-hidden=\"true\" href=\"#de-nf---pipeline-v10\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDE-nf : Pipeline V1.0\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-un-pipeline-nextflow-pour-r\u00e9aliser-une-analyse-dexpression-diff\u00e9rentielle-rnaseq-sur-un-ensemble-dindividus\" class=\"anchor\" aria-hidden=\"true\" href=\"#un-pipeline-nextflow-pour-r\u00e9aliser-une-analyse-dexpression-diff\u00e9rentielle-rnaseq-sur-un-ensemble-dindividus\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUn pipeline nextflow pour r\u00e9aliser une analyse d\u0027expression diff\u00e9rentielle RNAseq sur un ensemble d\u0027individus.\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://hub.docker.com/r/lipinskiboris/de-nf/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c5d5383ee3d6248c7d31b5fcaa21fc7d689b53ecb330dbfe628cd1fae38c853/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d72656164792d626c75652e737667\" alt=\"Docker Hub\" data-canonical-src=\"https://img.shields.io/badge/docker-ready-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/5269\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp align=\"center\" width=\"100%\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"analyses-nf.png\"\u003e\u003cimg align=\"center\" width=\"60%\" src=\"analyses-nf.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-description\" class=\"anchor\" aria-hidden=\"true\" href=\"#description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h2\u003e\n\u003cp\u003eCe pipeline a \u00e9t\u00e9 d\u00e9velopp\u00e9 en vue de r\u00e9aliser des analyses RNAseq compl\u00e8tes \u00e0 partir de fichiers FASTA issus de s\u00e9quen\u00e7age NGS.\u003c/p\u003e\n\u003cp\u003eVoici un r\u00e9sum\u00e9 de la m\u00e9thode :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eR\u00e9alisation d\u0027un index (optionnel).\u003c/li\u003e\n\u003cli\u003eAlignement des reads sur le g\u00e9nome de r\u00e9f\u00e9rence.\u003c/li\u003e\n\u003cli\u003eIntersection des fichiers SAM sur l\u0027annotation de r\u00e9f\u00e9rence.\u003c/li\u003e\n\u003cli\u003e\u00c9laboration de la matrice finale de comptage brute.\u003c/li\u003e\n\u003cli\u003eAnalyse d\u0027expression diff\u00e9rentielle sur R via le package DESeq2.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eVeuillez consulter la section \"Usage\" pour tester le pipeline avec un ensemble de donn\u00e9es.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-d\u00e9pendences\" class=\"anchor\" aria-hidden=\"true\" href=\"#d\u00e9pendences\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eD\u00e9pendences\u003c/h2\u003e\n\u003cp\u003eLe pipeline est fonctionnel sous les distributions de Linux.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eCe pipeline est enti\u00e8rement bas\u00e9 sur l\u0027utilisation de \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e. Il est fortement recommand\u00e9 de prendre connaissance de son \u003ca href=\"https://www.nextflow.io/docs/latest/getstarted.html\" rel=\"nofollow\"\u003einstallation\u003c/a\u003e et de son utilisation avant d\u0027ex\u00e9cuter le pipeline.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSoftware \u00e0 installer :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSTAR (version 2.7.7a)\u003c/li\u003e\n\u003cli\u003eBWA (version 0.7.17-r1188)\u003c/li\u003e\n\u003cli\u003esamtools (version 1.9)\u003c/li\u003e\n\u003cli\u003efastqc (version 0.11)\u003c/li\u003e\n\u003cli\u003emultiqc (version 1.8)\u003c/li\u003e\n\u003cli\u003ehtseq-count (version 0.13.5)\u003c/li\u003e\n\u003cli\u003eR (version 4.0.3)\u003c/li\u003e\n\u003cli\u003ePackage R : DESeq2, edgeR, pheatmap, RColorBrewer, ggbeeswarm, genefilter, biomaRt, stringr, ggplot2, NMF, tidyverse.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eFichier compl\u00e9mentaire n\u00e9cessaire :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFichier d\u0027annotation GTF : \u003ca href=\"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/latest/\" rel=\"nofollow\"\u003ehg38\u003c/a\u003e ou \u003ca href=\"https://ftp.ncbi.nlm.nih.gov/genomes/all/annotation_releases/7160/102/GCF_006496715.1_Aalbo_primary.1/GCF_006496715.1_Aalbo_primary.1_genomic.gtf.gz\" rel=\"nofollow\"\u003eAedes albopictus\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFichier FNA pour l\u0027index : \u003ca href=\"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/genes/\" rel=\"nofollow\"\u003ehg38\u003c/a\u003e ou \u003ca href=\"https://ftp.ncbi.nlm.nih.gov/genomes/all/annotation_releases/7160/102/GCF_006496715.1_Aalbo_primary.1/GCF_006496715.1_Aalbo_primary.1_genomic.fna.gz\" rel=\"nofollow\"\u003eAedes albopictus\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFichier XLS : M\u00e9tadonn\u00e9e (voir dossier data/ pour Aedes albopictus)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eAutre :\nDes containers Docker et Singularity ont \u00e9galement \u00e9t\u00e9 \u00e9labor\u00e9 en vue de permettre aux utilisateurs de lancer le pipeline sans avoir \u00e0 installer toutes les d\u00e9pendances n\u00e9cessaires de la partie 2. Les installations des outils \u003ca href=\"https://docs.docker.com/engine/install/ubuntu/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e et \u003ca href=\"https://singularity.lbl.gov/install-linux\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e sont n\u00e9cessaire au pr\u00e9alable. Voir la derni\u00e8re section de \"Usage\" pour plus de d\u00e9tails.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-input\" class=\"anchor\" aria-hidden=\"true\" href=\"#input\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eType\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eFichier FASTA/FASTQ\u003c/td\u003e\n\u003ctd\u003eCorresponds aux fichiers FASTA/FASTQ d\u0027int\u00e9r\u00eat compress\u00e9s au format .gz.\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\u003ca id=\"user-content-param\u00e8tres\" class=\"anchor\" aria-hidden=\"true\" href=\"#param\u00e8tres\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParam\u00e8tres\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ch4\u003e\u003ca id=\"user-content-param\u00e8tres-obligatoires-\" class=\"anchor\" aria-hidden=\"true\" href=\"#param\u00e8tres-obligatoires-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParam\u00e8tres obligatoires :\u003c/h4\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eNom\u003c/th\u003e\n\u003cth\u003eExemple\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--input\u003c/td\u003e\n\u003ctd\u003e/input/\u003c/td\u003e\n\u003ctd\u003eChemin vers le dossier o\u00f9 se trouvent les fichiers FASTA \u00e0 utiliser pour l\u0027analyse. Assurez-vous de n\u0027avoir que les fichiers FASTA d\u0027int\u00e9r\u00eats dans ce dossier et rien d\u0027autre.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--output\u003c/td\u003e\n\u003ctd\u003e/output/\u003c/td\u003e\n\u003ctd\u003eChemin vers le dossier o\u00f9 se trouveront les diff\u00e9rents r\u00e9sultats issus du pipeline.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--GTF\u003c/td\u003e\n\u003ctd\u003e/data/fichier.gtf\u003c/td\u003e\n\u003ctd\u003eChemin o\u00f9 se trouve le fichier d\u0027annotation \u00e0 utiliser pour l\u0027index via STAR et l\u0027intersection via htseq-count.\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ch4\u003e\u003ca id=\"user-content-param\u00e8tres-obligatoires-compl\u00e9mentaires-pour-lindex-\" class=\"anchor\" aria-hidden=\"true\" href=\"#param\u00e8tres-obligatoires-compl\u00e9mentaires-pour-lindex-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParam\u00e8tres obligatoires compl\u00e9mentaires pour l\u0027index :\u003c/h4\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eNom\u003c/th\u003e\n\u003cth\u003eExemple\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--index\u003c/td\u003e\n\u003ctd\u003e/data/index\u003c/td\u003e\n\u003ctd\u003eChemin vers le dossier o\u00f9 se trouve l\u0027index STAR \u00e0 utiliser pour le pipeline. Si cette option n\u0027est pas utilis\u00e9e, merci de vous assurer de fournir l\u0027option --FNA en plus de l\u0027option --GTF pour r\u00e9aliser l\u0027index. Par d\u00e9faut, null.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eOu bien :\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--FNA\u003c/td\u003e\n\u003ctd\u003e/data/fichier.fna\u003c/td\u003e\n\u003ctd\u003eChemin o\u00f9 se trouve le fichier .fna \u00e0 fournir obligatoirement pour r\u00e9aliser l\u0027index si l\u0027option --index n\u0027est pas fourni.\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ch4\u003e\u003ca id=\"user-content-param\u00e8tres-optionellescompl\u00e9mentaires-\" class=\"anchor\" aria-hidden=\"true\" href=\"#param\u00e8tres-optionellescompl\u00e9mentaires-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParam\u00e8tres optionelles/compl\u00e9mentaires :\u003c/h4\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eNom\u003c/th\u003e\n\u003cth\u003eExemple\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--mapper\u003c/td\u003e\n\u003ctd\u003eSTAR/BWA\u003c/td\u003e\n\u003ctd\u003eMapper \u00e0 utiliser. Par d\u00e9faut BWA (MEM).\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--thread\u003c/td\u003e\n\u003ctd\u003eN\u003c/td\u003e\n\u003ctd\u003eNombre de thread \u00e0 utiliser pour le pipeline. Par d\u00e9faut 1.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--R\u003c/td\u003e\n\u003ctd\u003eon/off\u003c/td\u003e\n\u003ctd\u003eOption pour r\u00e9aliser (\"on\") ou non (\"off\") l\u0027analyse d\u0027expression diff\u00e9rentielle sur R par d\u00e9faut sur pipeline. Par d\u00e9faut, off.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--metadata\u003c/td\u003e\n\u003ctd\u003e/data/metadata.xls\u003c/td\u003e\n\u003ctd\u003eChemin o\u00f9 se trouve le fichier de m\u00e9tadonn\u00e9es \u00e0 utiliser pour l\u0027analyse d\u0027expression diff\u00e9rentielle sur R. Obligatoire si l\u0027option --R est mis sur \"on\"\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eLancement basique du pipeline, dans le cas o\u00f9 toutes les d\u00e9pendances sont install\u00e9es localement.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run Lipinski-B/DE-nf --input /input/ --GTF /data/fichier.gtf --FNA /data/fichier.fna --output /output/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLa matrice de comptage r\u00e9sultant correspond au fichier finale.txt dans le dossier \"/output/merge/finale.txt\".\u003c/p\u003e\n\u003cp\u003eUn script DE.R est mis \u00e0 votre disposition dans le dossier \"bin/\" de ce r\u00e9pertoire git, afin de vous permettre de r\u00e9aliser par vous-m\u00eame l\u0027analyse de l\u0027expression diff\u00e9rentielle. Vous aurez donc besoin de la matrice finale pour terminer l\u0027analyse mais aussi d\u0027un fichier XLS r\u00e9pertoriant les m\u00e9tadonn\u00e9es des \u00e9chantillons d\u0027int\u00e9r\u00eats.\u003c/p\u003e\n\u003cp\u003eLe script DE.R se lance comme ceci :\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRscript bin/DE.r finale.txt /data/Metadata.xls\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eVous pouvez utiliser votre propre fichier XLS, dans ce cas il est recommand\u00e9 de suivre comme template le fichier \"Metadata.xls\" que vous trouverez dans le dossier \"data/\" de ce r\u00e9pertoire. Le but ici \u00e9tant de pouvoir permettre \u00e0 l\u0027utilisateur de r\u00e9aliser ses propres analyses exploratoires d\u0027expression diff\u00e9rentielle \u00e0 partir du template fourni dans le script DE.R\u003c/p\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eVous pouvez \u00e9galement lancer le pipeline avec la r\u00e9alisation d\u0027une analyse d\u0027expression diff\u00e9rentielle par d\u00e9faut sur R de fa\u00e7on automatique, via l\u0027option --R.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run Lipinski-B/DE-nf --input /input/ --GTF /data/fichier.gtf --FNA /data/fichier.fna --R on --metadata /data/metadata.xls --output /output/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUn rapport sera mis \u00e0 votre disposition dans le dossier \"/output/R/\".\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eDans le cas o\u00f9 toutes les d\u00e9pendances sont install\u00e9es localement et vous souhaitez utiliser votre propre index STAR pour l\u0027analyse, vous pouvez suivre cette proc\u00e9dure. Attention pour des raisons de compatibilit\u00e9, l\u0027index ajout\u00e9 avec l\u0027option --index doit \u00eatre r\u00e9alis\u00e9 avec la m\u00eame version du mapper que celle utilis\u00e9e pour l\u0027alignement.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run Lipinski-B/DE-nf --input /input/ --GTF /data/fichier.gtf --index /data/mapper_index --output /output/\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eEnfin vous pouvez lancer le pipeline via l\u0027utilisation de containers Docker/Singularity via l\u0027option -profile.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run Lipinski-B/DE-nf -profile docker --input /input/ --GTF /data/fichier.gtf --FNA /data/fichier.fna --output /output/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eou\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run Lipinski-B/DE-nf -profile singularity --input /input/ --GTF /data/fichier.gtf --FNA /data/fichier.fna --output /output/\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributions\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributions\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eEmail\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eLipinski Boris\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"mailto:boris.lipinski@etu.univ-lyon1.fr\"\u003eboris.lipinski@etu.univ-lyon1.fr\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eDevelopeur \u00e0 contacter pour support\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
+ "full_name": "qwert2333/CEPCSW_training",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-cepcsw\" class=\"anchor\" href=\"#cepcsw\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"https://cepc.github.io/CEPCSW/\" rel=\"nofollow\"\u003eCEPCSW\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://www.travis-ci.com/cepc/CEPCSW\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/51cb592ac6435ae6b6bdc6cca7a941779434c9db16df9857df2a94e6f239971b/68747470733a2f2f7777772e7472617669732d63692e636f6d2f636570632f4345504353572e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://www.travis-ci.com/cepc/CEPCSW.svg?branch=master\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/cepc/CEPCSW/actions\"\u003e\u003cimg src=\"https://github.com/cepc/CEPCSW/workflows/CI/badge.svg?branch=master\" alt=\"CI\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eCEPC offline software prototype based on \u003ca href=\"https://github.com/key4hep\"\u003eKey4hep\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quick-start\" class=\"anchor\" href=\"#quick-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick start\u003c/h2\u003e\n\u003cp\u003eSSH to lxslc7 (CentOS 7).\u003c/p\u003e\n\u003cp\u003eBefore run following commands, please make sure you setup the CVMFS:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone git@github.com:cepc/CEPCSW.git\n$ cd CEPCSW\n$ git checkout master # branch name\n$ source setup.sh\n$ ./build.sh\n$ ./run.sh Examples/options/helloalg.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-packages\" class=\"anchor\" href=\"#packages\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePackages\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eExamples: For new comers and users\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDetector: Geometry\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGenerator: Physics Generator\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSimulation: Detector Simulation\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDigitization: Digitization\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eReconstruction: Reconstruction\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-conventions-for-collections\" class=\"anchor\" href=\"#conventions-for-collections\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConventions for collections\u003c/h2\u003e\n\u003cp\u003eKeep the collection names compatible between the prototype and the existing CEPC software.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMCParticle\u003c/li\u003e\n\u003cli\u003eVXDCollection\u003c/li\u003e\n\u003cli\u003eSITCollection\u003c/li\u003e\n\u003cli\u003eTPCCollection\u003c/li\u003e\n\u003cli\u003eSETCollection\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1654520921.0
+ "updated_at": 1631168746.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.main",
+ "Singularity.def"
],
- "full_name": "przepiorkaGrzegorz/singularity_container",
+ "full_name": "shubavarshini/microbiome",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-microbiome\" class=\"anchor\" href=\"#microbiome\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emicrobiome\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1660178824.0
+ "updated_at": 1630678051.0
},
{
"data_format": 2,
- "description": "High Resolution Non-Deterministic Face Aging",
+ "description": "Singularity image for the presence_absence pipeline ",
"filenames": [
- "gdown.pl/Singularity"
+ "Singularity"
],
- "full_name": "arshagarwal/Face-AHQ-GAN2",
- "latest_release": null,
- "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-steps-to-run-using-docker-using-nvidia-gpus\" class=\"anchor\" href=\"#steps-to-run-using-docker-using-nvidia-gpus\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSteps to run using docker using Nvidia gpus:\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eInstall docker using \u003ca href=\"https://docs.docker.com/engine/install/ubuntu/\" rel=\"nofollow\"\u003edocker installation guide\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eInstall nvidia-docker2 using \u003ca href=\"https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker\" rel=\"nofollow\"\u003envidia-docker2 installation guide\u003c/a\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003cstrong\u003eNote: Ensure to check the latest versions of nvidia cuda runtime and coroborrate with pytorch cuda requirements , this guide was uploaded on 4/9/2020.\u003c/strong\u003e\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eBuild the image using \u003ccode\u003edocker build -f docker -t slimgan:gpu\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eRun the Container using \u003ccode\u003edocker run --gpus all --shm-size 10G -it slimgan:gpu\u003c/code\u003e.\n5.Run the \u003ccode\u003envidia-smi\u003c/code\u003e to check if gpus work.\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003epython main.py --img_dir ../data/celeba_hq/train --iters 20000,60000,100000 --img_size 128,256,512 --batch_size 16,8,2 --gpus 0,1 --c_dim 2 --num_workers 5\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-steps-to-run-the-code-on-google-colab-just-3-lines-of-code\" class=\"anchor\" href=\"#steps-to-run-the-code-on-google-colab-just-3-lines-of-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSteps to run the code on Google colab (just 3 lines of code):\u003c/h2\u003e\n\u003col start=\"0\"\u003e\n\u003cli\u003eClone the code by running the command \u003ccode\u003e!git clone https://username:password@github.com/arshagarwal/C_slim_gan.git -b arsh_spectral\u003c/code\u003e .\n\u003cstrong\u003eReplace the username and password with your github username and password respectively.\u003c/strong\u003e\n\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003ecd C_slim_gan\u003c/code\u003e to navigate to the \u003cstrong\u003eC_slim_gan\u003c/strong\u003e directory.\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003e!bash import_dataset.sh\u003c/code\u003e to import the \u003cstrong\u003eBig slim dataset\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003e! python main.py --rafd_image_dir Big_slim --num_iters 20000 --sample_step 500 --c_dim 2 --log_step 100 --model_save_step 5000 --batch_size 64 --n_critic 2 --rafd_crop_size 128 --image_size 128 \u003c/code\u003e to train on the \u003cstrong\u003eBig_slim_dataset\u003c/strong\u003e.\n\u003cstrong\u003eAlternatively to train on custom dataset replace the \u003ccode\u003eslim_dataset/Train_dataset\u003c/code\u003e string with the path of your custom dataset.\u003c/strong\u003e\u003cbr\u003e\nFor further options such as \u003cstrong\u003enumber of epochs, batch_size etc\u003c/strong\u003e refer \u003cstrong\u003emain.py\u003c/strong\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-note-after-running-step-3-after-every-sample-stepth-iteration-generated-samples-will-be-stored-in-stargansamples-folder-for-performance-evaluation\" class=\"anchor\" href=\"#note-after-running-step-3-after-every-sample-stepth-iteration-generated-samples-will-be-stored-in-stargansamples-folder-for-performance-evaluation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNote: After running step 3 after every sample stepth iteration generated samples will be stored in stargan/samples folder for performance evaluation.\u003c/h3\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-for-continuing-training-from-20000-iteration-to-30000-iteration-follow\" class=\"anchor\" href=\"#for-continuing-training-from-20000-iteration-to-30000-iteration-follow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor Continuing training from 20000 iteration to 30000 iteration follow:\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ccode\u003epython main.py --rafd_image_dir Big_slim --num_iters 30000 --sample_step 500 --c_dim 2 --log_step 100 --model_save_step 5000 --batch_size 64 --n_critic 2 --rafd_crop_size 128 --image_size 128 --resume_iters 20000\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "full_name": "vdclab/simg-PA_tools",
+ "latest_release": "0.0.2",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-presence_absence-tools-image\" class=\"anchor\" href=\"#singularity-presence_absence-tools-image\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity presence_absence tools image\u003c/h1\u003e\n\u003cp\u003eSingularity image for the presence_absence pipeline.\u003c/p\u003e\n\u003cp\u003eThis repository is created to be able to not depend on instalation or module loading for the presence abscence pipeline.\u003c/p\u003e\n\u003cp\u003eIn this Singularity container the following software and python library are installed :\u003c/p\u003e\n\u003cp\u003eSoftwares:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNCBI BLAST+ == 2.10.1\u003c/li\u003e\n\u003cli\u003esilix == 1.2.11\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ePython libraries:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003encbi-genome-download == 0.3.0\u003c/li\u003e\n\u003cli\u003eete3 == 3.1.2\u003c/li\u003e\n\u003cli\u003ematplotlib == 3.3.3\u003c/li\u003e\n\u003cli\u003epandas == 1.1.5\u003c/li\u003e\n\u003cli\u003ebiopython == 1.78\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1651478504.0
+ "updated_at": 1629657667.0
},
{
"data_format": 2,
- "description": "Repository for Open OnDemand Applications on Lehigh\u0027s HPC clusters",
+ "description": "clone of temp_tc",
"filenames": [
- "spark_r/Singularity"
+ "Singularity"
],
- "full_name": "alexpacheco/lurc-ood-apps",
+ "full_name": "JoshLorDeveloper/temp_tc_clone",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-open-ondemand-applications\" class=\"anchor\" href=\"#open-ondemand-applications\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOpen OnDemand Applications\u003c/h1\u003e\n\u003cp\u003eOpen OnDemand Applications on Lehigh\u0027s HPC cluster.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eMaple\u003c/li\u003e\n\u003cli\u003eMathematica\u003c/li\u003e\n\u003cli\u003eMATLAB\u003c/li\u003e\n\u003cli\u003eAbaqus\u003c/li\u003e\n\u003cli\u003eAnsys\u003c/li\u003e\n\u003cli\u003eDesktop Environment - XCFE\u003c/li\u003e\n\u003cli\u003eGNU Octave\u003c/li\u003e\n\u003cli\u003eSAS\u003c/li\u003e\n\u003cli\u003eVisualization Tools\n\u003cul\u003e\n\u003cli\u003eASE\u003c/li\u003e\n\u003cli\u003eAvogadro 2\u003c/li\u003e\n\u003cli\u003eGabedit\u003c/li\u003e\n\u003cli\u003eGaussView\u003c/li\u003e\n\u003cli\u003eParaview\u003c/li\u003e\n\u003cli\u003ePWGui\u003c/li\u003e\n\u003cli\u003ePyMol\u003c/li\u003e\n\u003cli\u003eVESTA\u003c/li\u003e\n\u003cli\u003eXCrysDen\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSTATA\u003c/li\u003e\n\u003cli\u003eDeepLabCut Desktop Application\u003c/li\u003e\n\u003cli\u003eSpyder\u003c/li\u003e\n\u003cli\u003eSpark + Jupyter\u003c/li\u003e\n\u003cli\u003eSpark + RStudio\u003c/li\u003e\n\u003cli\u003eX-Ray Crytallagraphic analysis tools - XDS, Phenix, CCP4, Cytoscape\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-transactive_control\" class=\"anchor\" href=\"#transactive_control\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etransactive_control\u003c/h1\u003e\n\u003cp\u003eCode meant to support and simulate the Social Game that will be launched in 2020. Elements of transactive control and behavioral engineering will be tested and designed here\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eClone the repo\u003c/li\u003e\n\u003cli\u003eInstall \u003ca href=\"https://dvc.org/doc/install\" rel=\"nofollow\"\u003edvc\u003c/a\u003e (with google drive support)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eOn linux this is \u003ccode\u003epip install \u0027dvc[gdrive]\u0027\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eInstall Docker, if you have not already.\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003epython3 -m dvc remote add -d gdrive gdrive://1qaTn6IYd3cpiyJegDwwEhZ3LwrujK3_x\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003epython3 -m dvc pull\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eRun \u003ccode\u003e./run.sh\u003c/code\u003e from the root of the repo. This will put you in a shell in the docker container with the \u003ccode\u003erl_algos/logs\u003c/code\u003e directory mounted\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003epython3 StableBaselines.py sac test_experiment\u003c/code\u003e in the docker container to start an experiment with the name \u003ccode\u003etest_experiment\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003etensorboard --logdir rl_algos/logs\u003c/code\u003e from outside the docker container to view the logs\u003c/li\u003e\n\u003c/ol\u003e\n\u003chr\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-12202020\" class=\"anchor\" href=\"#12202020\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e12/20/2020\u003c/h3\u003e\n\u003cp\u003eThis repository has been cleaned and updated for use. It contains: (1) The OpenAI gym environment \"OfficeLearn\", in the \"gym-socialgame\" folder, and (2) implementations of Reinforcement learning algorithms in \"rl_algos\" folder. In the \"simulations\" folder are various datasets for setting up and training models associated with the gym simulation.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-912020\" class=\"anchor\" href=\"#912020\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e9/1/2020\u003c/h3\u003e\n\u003cp\u003eThe most recent running of the code involves navigating to the rl_algos/ directory, then running the python command for the vanilla version:\u003c/p\u003e\n\u003cp\u003epython StableBaselines.py sac\u003c/p\u003e\n\u003cp\u003eAdding in the planning model can be done with the following flags:\u003c/p\u003e\n\u003cp\u003epython StableBaselines.py sac --planning_steps=10 --planning_model=Oracle --num_steps=10000\u003c/p\u003e\n\u003cp\u003ePlease see transactive_control/gym-socialgame/gym_socialgame/envs for files pertaining to the setup of the environment. The socialgame_env.py contains a lot of the information necessary for understanding how the agent steps through the environment. The reward.py file contains information on the variety of reward types available for testing. agents.py contains information on the deterministic people that we created for our simulation.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-gym-socialgame\" class=\"anchor\" href=\"#gym-socialgame\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egym-socialgame\u003c/h3\u003e\n\u003cp\u003eOpenAI Gym environment for a social game.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1651619112.0
+ "updated_at": 1636716500.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "planner/symk/Singularity",
- "planner/symk/misc/releases/19.06/Singularity.19.06",
- "planner/symk/misc/releases/latest/Singularity",
- "planner/symk/misc/releases/19.12/Singularity.19.12"
+ "Singularity"
],
- "full_name": "zihangs/Janus",
+ "full_name": "DCAN-Labs/heudiconv-helper",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-janus\" class=\"anchor\" href=\"#janus\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eJanus\u003c/h1\u003e\n",
+ "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-bids-conversion-scripts\" class=\"anchor\" href=\"#bids-conversion-scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBIDS Conversion Scripts\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-description\" class=\"anchor\" href=\"#description\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h3\u003e\n\u003cp\u003eThis repository contains scripts that will assist in the conversion of raw DICOM data sets to \u003ca href=\"http://bids.neuroimaging.io/format\" rel=\"nofollow\"\u003eBIDS\u003c/a\u003e. The \"heuristics\" folder contains example scripts that have been used to convert data from DICOM to BIDS. \u003cstrong\u003eThis folder may be helpful to build your own heuristics script.\u003c/strong\u003e For additional information on how to create a heuristic script see the \u003ca href=\"https://github.com/nipy/heudiconv\"\u003eheudiconv\u003c/a\u003e github page.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-container-hosting\" class=\"anchor\" href=\"#container-hosting\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainer Hosting\u003c/h3\u003e\n\u003cp\u003ePull the most recent container below, (\u003cstrong\u003eNOTE: you only have to do this once!\u003c/strong\u003e):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://tjhendrickson/BIDS_scripts:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-singularity-usage\" class=\"anchor\" href=\"#singularity-usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Usage\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run /path/to/singularity/images/directory/imagename.img --help\nusage: [-h] [--output_dir OUTPUT_DIR] [--dicom_dir DICOM_DIR]\n [--study_name STUDY_NAME] [--ses_id SES_ID] [--subj_id SUBJ_ID]\n [--heuristic HEURISTIC] [--dry_run]\n\nScript that controls BIDS conversion for individual studies\n\noptional arguments:\n -h, --help show this help message and exit\n --output_dir OUTPUT_DIR\n The directory that the BIDS data will be outputted to\n --dicom_dir DICOM_DIR\n The directory that houses unzipped dicom\n directories/files.\n --study_name STUDY_NAME\n What is the shorthand name for this study?\n --ses_id SES_ID scanning session id\n --subj_id SUBJ_ID subject id\n --heuristic HEURISTIC\n Path to heuristic file, if the file is already within\n the container (i.e. within heuristics folder) you do\n not have to specify a path.\n --dry_run Dry run. A dicominfo_*.tsv file will generate within\n .heudiconv/\u0027subj_id\u0027/info directory which can be used\n to create heuristic script\n\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eThis application must be run with either the \"--heuristic\" or \"--dry_run\" argument, it will fail otherwise.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eUse the \"--dry_run\" argument to take a closer look at the acquistion parameters for a scanning session.\u003c/p\u003e\n\u003cp\u003eTo run a single participant with dry_run argument:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /home/timothy/sandbox_DO_NOT_DELETE/BIDS/142_CIFASD_4:/output_dir \\\n-B /path/to/dicom/data/dir:/dicom_dir /path/to/singularity/images/directory/imagename.img \\\n--output_dir /output_dir --dicom_dir /dicom_dir --ses_id 10000 --subj_id 1000 --dry_run\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will output a hidden folder (named .heudiconv) along with sub-folders based on arguments provided to \"--subj_id\" and \"--ses_id\" respectively.\nWithin the sub-folders will be a tsv file that begins with \"dicominfo\". \u003cstrong\u003eBased on the example above the path to the file will be \".heudiconv/1000/ses-10000/info/dicominfo_ses-10000.tsv\"\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eUse this tsv file to design a heuristics script to organize your eventual nifti data. \u003cstrong\u003eSee this tutorial for a how to on heuristic script creation (\u003ca href=\"http://reproducibility.stanford.edu/bids-tutorial-series-part-2a/#heuman3\" rel=\"nofollow\"\u003eheuristics tutorial\u003c/a\u003e)\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eTo run a single participant with heuristic argument:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /home/timothy/sandbox_DO_NOT_DELETE/BIDS/142_CIFASD_4:/output_dir \\\n-B /path/to/dicom/data/dir:/dicom_dir -B /path/to/heuristics/script:/heuristic.py \\\n /path/to/singularity/images/directory/imagename.img \\\n--output_dir /output_dir --dicom_dir /dicom_dir --ses_id 10000 --subj_id 1000 --heuristic /heuristic.py\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-important-notes\" class=\"anchor\" href=\"#important-notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImportant Notes\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-gotchas\" class=\"anchor\" href=\"#gotchas\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGotchas\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003e1) Bind Mounting\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eIn order to run this container you will have to use \"bind mounting\", meaning you will have to link local folders/files to existing folders/files within the container with the -B flag. In the example above the local folder \"/home/timothy/sandbos_DO_NOT_DELETE/BIDS/142_CIFASD_4\" becomes \"/output_dir\" within the container as they are separated by a colon (:). \u003cstrong\u003eNotice that in both cases above the output and dicom folder and heuristic file are bound to /output_dir, /dicom_dir and /heuristic.py respectively, this is very important.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e2) DICOM Data Formatting\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eDue to the restrictive nature of BIDS the dicom data must be in a particular format in order for the conversion to work properly. This application will copy dicom data directories by searching for either the --subj_id or --ses_id argument present within a dicom directory name, place them in a separate directory, and rearrange them. So for example if the dicom directory is named \"XYXY4776XYXY\" --subj_id 4776 the application will find the \"4776\" pattern.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e3) Subject ID and Session ID names\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eYou must use alphanumerics (i.e. letters or numbers) only (\u003cstrong\u003eno special characters\u003c/strong\u003e) with your subject IDs (subj_id) and session IDs (ses_id). \u003cstrong\u003eNote the \"--ses_id\" argument is optional\u003c/strong\u003e!\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-best-practices\" class=\"anchor\" href=\"#best-practices\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBest Practices\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003e1) Initial Conversion\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eWhile testing the initial BIDS conversion it is best to start with one or two datasets and specify the \u0027--dry_run\u0027 argument (see above for an example of usage).\nThis will create a dicom_info tsv file which can be used for heuristic script creation.\nSee Step 3 of \u0027Run HeuDiConv on ses-001 scans to get the dicominfo file\u0027 within \u003ca href=\"http://reproducibility.stanford.edu/bids-tutorial-series-part-2a/#heuman2\" rel=\"nofollow\"\u003eStanford BIDS Tutorial\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e2) BIDS Validator\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eOnce satisfied with an initial BIDS conversion, prior to running the conversion on an entire study first ensure that the BIDS converted dataset meets the BIDS specification by using the \u003ca href=\"http://incf.github.io/bids-validator/\" rel=\"nofollow\"\u003eBIDS validator web version\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e3) Longitudinal Format\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eWhen converting data to BIDS you can certainly have a cross sectonal directory format such as below:\nBIDS_output\nsub-01\nsub-02\nsub-03\nsub-04\netc\nHowever, I suggest placing data within a longitudinal directory format even if you have cross-sectional data:\nBIDS_output\nsub-01\nses-01\nses-02\nsub-02\nses-01\netc\u003c/p\u003e\n\u003cp\u003eYou can control the BIDS directory format by providing both the arguments --subj_id --ses_id for a conversion, if you only specify one of the two arguments the data will be outputted in a cross-sectional format.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1652720467.0
+ "updated_at": 1634787198.0
},
{
"data_format": 2,
- "description": "The source code for the TAAMP project",
+ "description": "A Singularity container Definition File for running the Tensorflow Object Detection API and a demo Python script.",
"filenames": [
- "downward/misc/releases/19.06/Singularity.19.06",
- "downward/misc/releases/20.06/Singularity.20.06",
- "downward/misc/releases/19.12/Singularity.19.12"
+ "singularity/Singularity"
],
- "full_name": "ScazLab/TAAMP",
+ "full_name": "cedarwarman/object_detection_singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-task-affordance-and-motion-planning-taamppproach\" class=\"anchor\" href=\"#task-affordance-and-motion-planning-taamppproach\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTask, Affordance, And Motion Planning (TAAMP)pproach\u003c/h1\u003e\n\u003cp\u003eWe used TAAMP, which is an affordance-based TAMP approach to expedite the search on tasks with contrained environment, or tasks that are infeasible due to environmental constraints. In this approach, we checked whether the environment allow the effects of certain actions. Or in other words, whether the environment can afford these actions. This is because some constraints imposed by the context, such as a very crowded surface that does not allow more objects to be placed on top of it as shown in the image below, is independent of robot configurations (e.g., grasp poses of the object). We refer to the quality of being \"place-able\" as affordance, and each action may have different affordances.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_7_zoom_in.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_7_zoom_in.png\" height=\"150\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWe build upon PDDLStream, the state-of-the-art TAMP planner. The source code of PDDLStream can be found \u003ca href=\"https://github.com/caelan/pddlstream\"\u003ehere\u003c/a\u003e, and the original readme file can be found \u003ca href=\"PDDLSTREAM_README.md\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone --recursive git@github.com:ScazLab/Affordance-based-TAMP.git\n$ cd Affordance-based-TAMP\nAffordance-based-TAMP$ ./downward/build.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eInstall the dependencies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ pip install pybullet numpy scipy\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-demonstrations\" class=\"anchor\" href=\"#demonstrations\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDemonstrations\u003c/h2\u003e\n\u003cp\u003eThis repository contains the demonstrations in simulation that are included in the paper. There are four types of tasks: unconstrained tasks, constrained tasks 1, constrained tasks 2, and infeasible tasks. Each type of task has a demonstration without the tool and one with the tool. In these tasks, a robot should cook the \"celery\" (the green block) by first placing it on the \"sink\" (the blue surface) and then placing it on the \"stove\" (the red surface). The \"radish\" (the cyan block) is not directly related to the goal. Images of each task is shown below:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_1.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_1.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_2.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_2.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_3.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_3.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_4.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_4.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_5.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_5.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_6.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_6.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_7.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_7.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_8.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_8.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWe compared our results with PDDLStream which doesn\u0027t have these affordance checks, and used them as control conditions.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-preliminaries\" class=\"anchor\" href=\"#preliminaries\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreliminaries\u003c/h3\u003e\n\u003cp\u003eBefore you ran the code, you should update the directories in the urdf files in \u003ccode\u003eexamples/pybullet/utils/models\u003c/code\u003e and in \u003ccode\u003eexamples/pybullet/utils/models/drake/objects\u003c/code\u003e with the prefix \u003ccode\u003emeiying_\u003c/code\u003e. I attempted to use relative paths but the urdf cannot find the correct point cloud file. I apologize for any inconvenience.\u003c/p\u003e\n\u003cp\u003eYou also need to correct the path in the \u003ccode\u003eexamples/pybullet/utils/model/bb.json\u003c/code\u003e, \u003ccode\u003elearned_samples\\ur/simulator\\pointcloud\\tool.json\u003c/code\u003e, the \u003ccode\u003eget_package_dir()\u003c/code\u003e function in \u003ccode\u003eexamples/pybullet/utils/pybullet_tools/learn_affordance_tamp/constants.py\u003c/code\u003e. This is awarkward coding style, but I run out of time to fix it.\u003c/p\u003e\n\u003cp\u003eNote: If you would like to learn the affordances and use the generic affordance tests, you should train the tasks with TRI-STAR (steps omitted here. Please refer to the TRI-STAR readme file to see how to use the package; You also need to update the file location of the learned affordances in the function \u003ccode\u003e\\_get_goal_range\u003c/code\u003e in \u003ccode\u003emeiying_primitives.py\u003c/code\u003e).\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-unconstrained-tasks\" class=\"anchor\" href=\"#unconstrained-tasks\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUnconstrained Tasks\u003c/h3\u003e\n\u003cp\u003eThe non-tool-use version was orginally included in \u003ca href=\"https://github.com/caelan/pddlstream/tree/main/examples/pybullet/kuka\"\u003ePDDLStream\u003c/a\u003e. We included this task to ensure that the task is friendly to the current planners. In the tool-use version, the robot should first retrieve the the green block with the L-shaped tool.\u003c/p\u003e\n\u003cp\u003eDemonstrations\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNon-Tool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_1_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_2_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eNon-Tool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_1_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_2_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou can add the \u003ccode\u003e-viewer\u003c/code\u003e option to visualize the task and the solution, for example:\n\u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_1_test.run -viewer\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-constrained-tasks-1\" class=\"anchor\" href=\"#constrained-tasks-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConstrained Tasks 1\u003c/h3\u003e\n\u003cp\u003eIn these tasks, the environments are more constrainted than constrained tasks. However, the robots does not need to relocate objects that are not directly related to the goal (e.g., the cyan block). In the non-tool-use task, the robot needs to place the green block on the relatively crowded vlue surface which has limited space for the green block. In the tool-use task, the robot needs to retrieve the green block hiding under the orange tunnel with a T-shaped tool. In these tasks, the red blocks are immovable.\u003c/p\u003e\n\u003cp\u003eDemonstrations\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNon-Tool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_3_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_4_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eNon-Tool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_3_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_4_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-constrained-tasks-2\" class=\"anchor\" href=\"#constrained-tasks-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConstrained Tasks 2\u003c/h3\u003e\n\u003cp\u003eIn these tasks, the robots need to relocate objects that are not directly related to the goal (e.g., the cyan block). In the non-tool-use task, the robot needs to relocate the cyan block to make room for the green block. In the tool-use task, the robot needs to retrieve the L-shaped tool hiding under the orange tunnel with a T-shaped tool, in order to pull the green block towards itself with the T-shaped tool. In these tasks, the red blocks are also immovable.\u003c/p\u003e\n\u003cp\u003eDemonstrations\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNon-Tool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_5_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_6_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eNon-Tool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_5_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_6_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-infeasible-tasks\" class=\"anchor\" href=\"#infeasible-tasks\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInfeasible Tasks\u003c/h3\u003e\n\u003cp\u003eIn these tasks, the robots cannot complete the tasks. The green block is hidding under immovable yellow contrainer, which makes it impossible to pick, pull or push the green block to retrieve it.\u003c/p\u003e\n\u003cp\u003eDemonstrations\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNon-Tool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_7_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_8_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eNon-Tool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_7_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_8_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-adding-new-examples\" class=\"anchor\" href=\"#adding-new-examples\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAdding New Examples\u003c/h2\u003e\n\u003cp\u003eTo add a new example, one should first create a folder under \u003ccode\u003eexamples/pybullet\u003c/code\u003e. In this folder, one should create a \u003ccode\u003e__init__.py\u003c/code\u003e to initialize this folder as a package, a \u003ccode\u003edomain.pddl\u003c/code\u003e which defines the problem (e.g., the actions), a \u003ccode\u003estream.pddl\u003c/code\u003e with the streams to certify predicates or generate samples, and a \u003ccode\u003erun.py\u003c/code\u003e that defines the environment.\u003c/p\u003e\n\u003cp\u003eIf a new object is needed, one should create an urdf under \u003ccode\u003eexamples/pybullet/utils/models\u003c/code\u003e. If a pointcloud/mesh is needed, one should create an \u003ccode\u003eobj\u003c/code\u003e file, as well as a ply file with the same name for collision detection purposes.\u003c/p\u003e\n\u003cp\u003eWhen a new action is needed, the names of the correspondence affordance checks in the \u003ccode\u003estream.pddl\u003c/code\u003e should starts with the \u003ccode\u003etest\u003c/code\u003e and also include the word \u003ccode\u003efeasible\u003c/code\u003e so that these checks will be applied earlier in the search process when necessary.\u003c/p\u003e\n\u003cp\u003eWhen sampling for certain affordances are needed, and when fluents are needed (currently only support the AtPose fluent), the name of the affordance samplers should be added to \u003ccode\u003e./pddlstream/algorithms/scheduling/apply_fluents.py\u003c/code\u003e line 98. Note: this is by no means be considered as good coding style, but I did not have time to completely refactor the code. The purpose of this source code is to show the benefit of considering affordances.\u003c/p\u003e\n\u003cp\u003eNote: I only performed a minor code refactor before I upload this source code due to time constraints. I apologize for the messiness of the code.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-tensorflow-object-detection-in-singularity\" class=\"anchor\" href=\"#tensorflow-object-detection-in-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTensorflow Object Detection in Singularity\u003c/h1\u003e\n\u003cp\u003eThis repo contains a Singularity Definition File for making a container that runs the \u003ca href=\"https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2.md\"\u003eTensorflow Object Detection API\u003c/a\u003e. It also contains a Python script that runs a modified version of the API\u0027s \u003ca href=\"https://github.com/tensorflow/models/blob/master/research/object_detection/colab_tutorials/eager_few_shot_od_training_tf2_colab.ipynb\"\u003eEager Few Shot Detector demo\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-singularity-container\" class=\"anchor\" href=\"#building-the-singularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the Singularity container\u003c/h2\u003e\n\u003cp\u003eTo build the Singularity container with \u003ca href=\"https://cloud.sylabs.io/builder\" rel=\"nofollow\"\u003eRemote Builder\u003c/a\u003e, first add your credentials:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity remote login\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity -v build --remote ./singularity/tf_od.sif ./singularity/Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-the-demo\" class=\"anchor\" href=\"#running-the-demo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the demo\u003c/h2\u003e\n\u003cp\u003eTo run the demo with X11 forwarding and error message suppression:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv -B ~/.Xauthority ./singularity/tf_od.sif python3 ./python/eager_few_shot_od_training_tf2_singularity.py \u0026amp;\u0026gt;/dev/null \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eI use this in an HPC environment, so putting it in the background and suppressing messages allows me to monitor the progress with \u003ccode\u003envtop\u003c/code\u003e or \u003ccode\u003envidia-smi\u003c/code\u003e in the same window. Adjust to suit your needs.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 9,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1658517655.0
+ "updated_at": 1632281930.0
},
{
"data_format": 2,
- "description": "A toolkit for aligning multi-modal images to the Allen CCF.",
+ "description": "Class apps for CHPC OnDemand",
"filenames": [
- "CWLScripts/Singularity.def"
+ "MIB2020/Singularity"
],
- "full_name": "dontminchenit/CCFAlignmentToolkit",
+ "full_name": "CHPC-UofU/OOD-class-apps",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ccfalignmenttoolkit\" class=\"anchor\" href=\"#ccfalignmenttoolkit\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCCFAlignmentToolkit\u003c/h1\u003e\n\u003cp\u003eOne-time Functions (these are functions that only need to be run once. We will run these and will provide the end results as resources)\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eConstruction of fMOST atlas\nFunction: antsMultivariateTemplateConstruction2.sh\nInputs: Collection of fMOST images to be used in atlas.\nOutputs: fMOST average atlas\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSequential Registration of fMOST atlas to CCF\nFunction: AtlasToCCFSequentialRegistration.py\nInputs: Atlas \u0026amp; labels for fMOST atlas and CCF\nOutputs: Transform between fMOST atlas -\u0026gt; CCF\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eUser Runtime Functions (These are functions the users will run given new images)\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eRegistration of new fMOST image to fMOST atlas\nFunction: fMOSTRegisterToCCF.py\nInputs: New fMOST image (downsampled) and fMOST average atlas\nOutput: Transform between new fMOST image and fMOST atlas\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e2)Applying transforms to image\nFunction: ApplyTransfromTofMOST.py\nInputs: fMOST image; transform between fMOST image-\u0026gt;fMOST atlas; transform between fMOST atlas -\u0026gt; CCF\nOutputs: new fMOST image in CCF space\u003c/p\u003e\n\u003cp\u003e3)Applying transforms to neurons\nFunction: ApplyTransfromToSWC.py\nInputs: SWC in new fMOST image space; transform between fMOST image-\u0026gt;fMOST atlas; transform between fMOST atlas-\u0026gt;CCF\nOutputs: neurons (swc) in CCF space\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ood-apps\" class=\"anchor\" href=\"#ood-apps\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOOD-apps\u003c/h1\u003e\n\u003cp\u003eRepository of CHPC\u0027s Class Open OnDemand apps\u003c/p\u003e\n\u003cp\u003eThis is a repository of interactive apps used at CHPC supported classes with Open OnDemand.\u003c/p\u003e\n\u003cp\u003eEach subdirectory has its own README.md which contains information about this particular app.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1649347077.0
+ "updated_at": 1631833519.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Wave-U-Net-Pytorch/Singularity"
+ "pySCENIC-master/Singularity.0.9.18"
],
- "full_name": "likelian/source-separation",
+ "full_name": "rahuldvs1904/pySCENIC-master",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-source-separation\" class=\"anchor\" href=\"#source-separation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esource-separation\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1650573000.0
+ "updated_at": 1631722647.0
},
{
"data_format": 2,
- "description": "Definition files for singularity container",
+ "description": "AUGUSTUS is a program that predicts genes in eukaryotic genomic sequences.",
"filenames": [
- "Singularity.test",
- "Singularity.one-point-stats",
- "Singularity.reach"
+ "3.4.0/Singularity"
],
- "full_name": "piyanatk/singularity-containers",
+ "full_name": "pscedu/singularity-augustus",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-containers\" class=\"anchor\" href=\"#singularity-containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-containers\u003c/h1\u003e\n\u003cp\u003eDefinition files for singularity container\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-augustus/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-augustus/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-augustus/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-augustus/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/b009594bd55f20cf925162d0fe98bf76f1a1f741fbee0db595e0980a750bb1ae/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6175677573747573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b009594bd55f20cf925162d0fe98bf76f1a1f741fbee0db595e0980a750bb1ae/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6175677573747573\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-augustus\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/e5e9d7c3436fbd053be5a28483f6822d138a79c3a29716fd6d3f2fe128fae067/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6175677573747573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e5e9d7c3436fbd053be5a28483f6822d138a79c3a29716fd6d3f2fe128fae067/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6175677573747573\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-augustus\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f00d9c84f9567045a6f64ca45bb524ba8b825def2d65b2d01198055f6cba9c46/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6175677573747573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f00d9c84f9567045a6f64ca45bb524ba8b825def2d65b2d01198055f6cba9c46/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6175677573747573\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-augustus\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/955c466d3c55ba981c6418256a37775f3ba366d3272280c174ef9e6ed43f5d27/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6175677573747573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/955c466d3c55ba981c6418256a37775f3ba366d3272280c174ef9e6ed43f5d27/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6175677573747573\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-augustus\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-augustus\" class=\"anchor\" href=\"#singularity-augustus\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-augustus\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for AUGUSTUS.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eaugustus\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/AUGUSTUS/3.4.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/AUGUSTUS\u003c/code\u003e as \u003ccode\u003e3.4.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1650540063.0
+ "subscribers_count": 3,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1631583633.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "AttentionASR/util/Singularity.def",
- "wav2vec2.0bert/util/Singularity.def"
+ "tools/Singularity"
],
- "full_name": "1vket/ASR",
+ "full_name": "psadil/meta",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1649148128.0
+ "updated_at": 1635794729.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "container/Singularity.intel_am4",
+ "container/Singularity.intel_netcdf",
+ "container/Singularity.gnu"
],
- "full_name": "Bandit42/gdown.pl",
+ "full_name": "nova0002/troubleshooting",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-gdownpl\" class=\"anchor\" href=\"#gdownpl\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egdown.pl\u003c/h1\u003e\n\u003cp\u003eGoogle Drive direct download of big files\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-requirements\" class=\"anchor\" href=\"#requirements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements\u003c/h1\u003e\n\u003cp\u003e\u003cem\u003ewget\u003c/em\u003e and \u003cem\u003ePerl\u003c/em\u003e must be in the PATH.\u003cbr\u003e\n\u003cstrong\u003eWindows\u003c/strong\u003e and \u003cstrong\u003elinux\u003c/strong\u003e compatible.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h1\u003e\n\u003cp\u003eUse Google Drive shareable links, viewable by anyone:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ./gdown.pl \u0027gdrive file url\u0027 [\u0027desired file name\u0027] \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-example\" class=\"anchor\" href=\"#example\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample\u003c/h1\u003e\n\u003cp\u003eFor example, to download \u003ca href=\"https://drive.google.com/file/d/0B1L_hFrWJfRhLUJZdXdSdTdfSWs/edit\" rel=\"nofollow\"\u003ethis video\u003c/a\u003e from my \u003ca href=\"https://circulosmeos.wordpress.com/2015/03/04/axolotl-a-simple-plain-text-documentation-system/\" rel=\"nofollow\"\u003eaxolotl project\u003c/a\u003e, just copy the url, and give a file name if desired:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ./gdown.pl https://drive.google.com/file/d/0B1L_hFrWJfRhLUJZdXdSdTdfSWs/edit axolotl.mp4 \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-resuming-a-download\" class=\"anchor\" href=\"#resuming-a-download\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResuming a download\u003c/h1\u003e\n\u003cp\u003eIf you need to resume a download, please, use \u003ca href=\"https://github.com/circulosmeos/gdown.pl/tree/with-resume\"\u003e\u003cstrong\u003egdown.pl v2.0\u003c/strong\u003e here\u003c/a\u003e.\u003cbr\u003e\nAs long as a file name is indicated as second parameter, \u003cem\u003egdown.pl v2.0\u003c/em\u003e \u003cstrong\u003ewill try to resume the partially downloaded file\u003c/strong\u003e if a local incomplete file with that name already exists.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-version\" class=\"anchor\" href=\"#version\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVersion\u003c/h1\u003e\n\u003cp\u003eThis version is \u003cstrong\u003ev1.4\u003c/strong\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-warning\" class=\"anchor\" href=\"#warning\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWarning\u003c/h3\u003e\n\u003cp\u003ePlease, note that v1.2 (available between days 12 to 31 of Jan/2019) \u003cstrong\u003eshould not be used\u003c/strong\u003e, as it contains a bug that could result in unusable downloaded files. Proceed to overwrite with v1.4 in case you have it.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-docker\" class=\"anchor\" href=\"#docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h1\u003e\n\u003cp\u003eA simple Docker file is provided, to build a simple Docker image with gdown.pl.\u003cbr\u003e\nThis has been used for pre-pulling data from a Google Drive to Kubernetes persistent volumes.\u003cbr\u003e\nThanks @anton-khodak\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h1\u003e\n\u003cp\u003eAn example \u003ca href=\"https://sylabs.io/guides/3.2/user-guide/quick_start.html\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e file is provided.\u003cbr\u003e\nBuild the container:\n\u003ccode\u003esudo singularity build (imagename) Singularity\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eRun the container:\n\u003ccode\u003esingularity run (imagename) (gdown.pl args)\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThanks to @ttbrunner\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h1\u003e\n\u003cp\u003eDistributed \u003ca href=\"http://www.gnu.org/licenses/gpl-3.0.html\" rel=\"nofollow\"\u003eunder GPL 3\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-disclaimer\" class=\"anchor\" href=\"#disclaimer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDisclaimer\u003c/h1\u003e\n\u003cp\u003eThis software is provided \"as is\", without warranty of any kind, express or implied.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-more-info\" class=\"anchor\" href=\"#more-info\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMore info\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://circulosmeos.wordpress.com/2014/04/12/google-drive-direct-download-of-big-files\" rel=\"nofollow\"\u003ehttps://circulosmeos.wordpress.com/2014/04/12/google-drive-direct-download-of-big-files\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-contact\" class=\"anchor\" href=\"#contact\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h1\u003e\n\u003cp\u003eby \u003ca href=\"loopidle@gmail.com\"\u003ecirculosmeos\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-gfdl-am4-model\" class=\"anchor\" href=\"#gfdl-am4-model\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGFDL AM4 Model\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://zenodo.org/badge/latestdoi/102487636\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/878db836b9000fd7d9ff531257cade7343f3a3fdf8f764b5a7f1e8ef6ccc6abe/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3130323438373633362e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/102487636.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis repository includes the public release of the GFDL AM4 model\ncode. The AM4 model is described in the\n\u003ca href=\"https://doi.org/10.1002/2017MS001208\" rel=\"nofollow\"\u003etwo\u003c/a\u003e\n\u003ca href=\"https://doi.org/10.1002/2017MS001209\" rel=\"nofollow\"\u003earticles\u003c/a\u003e published in the\n\u003ca href=\"https://agupubs.onlinelibrary.wiley.com/journal/19422466\" rel=\"nofollow\"\u003eJournal of Advances in Modeling Earth Systems\n(JAMES)\u003c/a\u003e.\nMore information on the model and access to the output is available on\nthe \u003ca href=\"http://data1.gfdl.noaa.gov/nomads/forms/am4.0/\" rel=\"nofollow\"\u003eAM4 data and code\nsite\u003c/a\u003e at the\n\u003ca href=\"https://www.gfdl.noaa.gov\" rel=\"nofollow\"\u003eGeophysical Fluid Dynamics Laboratory\n(GFDL)\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe layout of this package includes the following directories:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esrc - The source code for the AM4 model\u003c/li\u003e\n\u003cli\u003eexec - The build directory with Makefiles for building the model executable\u003c/li\u003e\n\u003cli\u003erun - Sample run script and updated files needed for running\u003c/li\u003e\n\u003cli\u003eanalysis - Sample analysis scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-cloning-instructions\" class=\"anchor\" href=\"#cloning-instructions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCloning Instructions\u003c/h2\u003e\n\u003cp\u003eThis repository uses \u003ca href=\"https://git-scm.com/book/en/v2/Git-Tools-Submodules\" rel=\"nofollow\"\u003egit\nsubmodules\u003c/a\u003e to\npoint to other repositories. Thus, care should be taken when cloning,\nand updating the source to ensure all source. To obtain all source,\nuse the following git command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone --recursive https://github.com/NOAA-GFDL/AM4.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003e--recursive\u003c/code\u003e option to \u003ccode\u003egit clone\u003c/code\u003e instructs git to recursively\nclone all submodules. In the event the repository was not cloned\nusing the \u003ccode\u003e--recursive\u003c/code\u003e option, the following step must be taken to\nobtain all sources:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# From within the AM4 parent directory\ngit submodule update --init --recursive\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-source-code\" class=\"anchor\" href=\"#source-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSource Code\u003c/h2\u003e\n\u003cp\u003eAll model source is contained in the \u003ca href=\"src\"\u003esrc\u003c/a\u003e directory. GFDL\ntracks code using the git version control system. This package\nincludes a single version of the following GFDL model components. The\ngit hash listed corresponds to the commit hash in the internal GFDL\ngit repository.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eComponent\u003c/th\u003e\n\u003cth\u003eCommit Hash\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eatmos_drivers\u003c/td\u003e\n\u003ctd\u003e5ee95d6abf0879594551dd7e6635dff4004c4010\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eatmos_param\u003c/td\u003e\n\u003ctd\u003e2e94acfd8621e85216bf822c395a8c3f15a511a5\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eatmos_shared\u003c/td\u003e\n\u003ctd\u003ea557d4d7bab033ef1ad1d400a62fe07a97ccb477\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eice_param\u003c/td\u003e\n\u003ctd\u003e1553c8bc4f9a66791c89367b6f327147523155ed\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eice_sis\u003c/td\u003e\n\u003ctd\u003eccc7328dcd79706dd5c17c8bab660222886fc80b\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eland_lad2\u003c/td\u003e\n\u003ctd\u003ea220288ecb289bf9d793d051fc5076072874ce07\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eThe following components are available in the\n\u003ca href=\"https://github.com/NOAA-GFDL\"\u003eNOAA-GFDL\u003c/a\u003e github organization:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/NOAA-GFDL/MOM6\"\u003eMOM6\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/NOAA-GFDL/coupler\"\u003ecoupler\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/NOAA-GFDL/FMS\"\u003eFMS\u003c/a\u003e (as \u003ca href=\"src/shared\"\u003eshared\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere\"\u003eGFDL_atmos_cubed_sphere (tag AM4.0)\u003c/a\u003e (as \u003ca href=\"src/atmos_cubed_sphere\"\u003eatmos_cubed_sphere\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-am4\" class=\"anchor\" href=\"#building-am4\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding AM4\u003c/h2\u003e\n\u003cp\u003e###Containers\nThe \u003ca href=\"container\"\u003econtainer folder\u003c/a\u003e provides example Dockerfiles and Signularity\ndefinition files to use to build AM4 containers using either GCC/GFORTAN or\nIntel oneAPI. There is a script that can be used to build the intel\nsingularity containers, and the first step of this script can be used with the\nother GFDL climate models.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-from-source\" class=\"anchor\" href=\"#from-source\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFrom source\u003c/h3\u003e\n\u003cp\u003eThe \u003ca href=\"exec\"\u003eexec\u003c/a\u003e directory contains Makefiles that can be used to\nbuild the AM4 executable. These Makefiles were generated using the\n\u003ca href=\"https://github.com/NOAA-GFDL/mkmf\"\u003eMake Makefile (mkmf)\u003c/a\u003e program.\nIncluded in the exec direcgtory is a sample make template file for the\nIntel compilers (\u003ca href=\"exec/templates/intel.mk\"\u003eintel.mk\u003c/a\u003e). This make\ntemplate can be used on any system with a relatively recent version of\nthe Intel compilers, the netCDF 4 library and the MPICH2 MPI library.\nIncluded in the \u003ca href=\"exec/templates/intel.mk\"\u003eintel.mk\u003c/a\u003e file are\nadditional settings that can be modified during the build.\u003c/p\u003e\n\u003cp\u003eTo run the default build (-O3 -msse2), go to the exec directory and\nenter the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emake\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you would like to change some of the compiler options, there are several different\noptions to add to the make command. For example\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emake ISA=-xhost BLD_TYPE=REPRO\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewill replace -msse with -xhost and -O3 with -O2. The three options for\n\u003ccode\u003eBLD_TYPE\u003c/code\u003e are\u003cbr\u003e\n\u003ccode\u003ePROD\u003c/code\u003e (-O3)\u003cbr\u003e\n\u003ccode\u003eREPRO\u003c/code\u003e (-O2)\u003cbr\u003e\n\u003ccode\u003eDEBUG\u003c/code\u003e (-O0 and other traps)\u003cbr\u003e\nAll of the make line options can be\nfound in the \u003ca href=\"exec/templates/intel.mk\"\u003eintel.mk\u003c/a\u003e file.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-obtaining-the-input-data\" class=\"anchor\" href=\"#obtaining-the-input-data\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eObtaining the input data\u003c/h2\u003e\n\u003cp\u003eThe input data required for running the AM4 model can be found on\n\u003ca href=\"http://data1.gfdl.noaa.gov/nomads/forms/am4.0/\" rel=\"nofollow\"\u003eGFDL\u0027s data\nportal\u003c/a\u003e .\u003c/p\u003e\n\u003cp\u003eThe file \u003ccode\u003eAM4.tar.gz\u003c/code\u003e contains a configured run directory to run a\nsample experiment of the AM4 model. Included in the tar file is a\nREADME.AM4_run with more instructions on how to configure the AM4 run\ndirectory.\u003c/p\u003e\n\u003cp\u003eOn Linux systems, the \u003ccode\u003ewget\u003c/code\u003e command is usually sufficient to download the data\nfile:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewget ftp://nomads.gfdl.noaa.gov/users/Ming.Zhao/AM4Documentation/GFDL-AM4.0/inputData/AM4_run.tar.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo ensure the file downloaded is complete and not corrupted, download one of the two files:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewget ftp://nomads.gfdl.noaa.gov/users/Ming.Zhao/AM4Documentation/GFDL-AM4.0/inputData/AM4_run.tar.gz.sha256\nwget ftp://nomads.gfdl.noaa.gov/users/Ming.Zhao/AM4Documentation/GFDL-AM4.0/inputData/AM4_run.tar.gz.sig\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand run the following command that corresponds to the signature file downloaded:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esha256sum -c AM4_run.tar.gz.sha256\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003egpg --verify AM4_run.tar.gz.sig\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-am4\" class=\"anchor\" href=\"#running-am4\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning AM4\u003c/h2\u003e\n\u003cp\u003eIncluded in the run directory is a sample run script for reference.\nTo run the AM4 sample experiment, first download the data file\nmentioned in \u003ca href=\"#obtaining-the-input-data\"\u003eObtaining the Input data\u003c/a\u003e\nsection. Replace diag_table and input.nml in the top level of the\nuntar\u0027d directory with the corresponding files in the run directory\nof this repository. Modify the variables in the configuration section\nin the sample run script, and then run the script.\u003c/p\u003e\n\u003cp\u003eThe sample data and run script are configured to run on 216\nprocessors. To run on a different number of processors, or modify the\nexperiment, refer to the \u003ccode\u003eREADME.AM4_run\u003c/code\u003e file included in the AM4\ndata tarball.\u003c/p\u003e\n\u003cp\u003eNote: The \u003ccode\u003einput.nml\u003c/code\u003e file (found in the AM4 data tarball) contains\nFortran namelists and namelist variables that modify, at run time, the\nmodel. To learn more about the settings in the \u003ccode\u003einput.nml\u003c/code\u003e file,\nplease refer to source code where the namelist/variable are defined.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-analysis-scripts\" class=\"anchor\" href=\"#analysis-scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAnalysis Scripts\u003c/h2\u003e\n\u003cp\u003eSome of the climate analysis scripts run at NOAA GFDL and used in the\nAM4 documentation papers are located in the analysis directory.\nWithin each analysis suite, is a \u003ca href=\"https://jupyter-notebook.readthedocs.io/en/stable/\" rel=\"nofollow\"\u003ejupyter\nnotebook\u003c/a\u003e, both\nreadable and runnable from your local jupyter environment, provided\nall dependencies are installed.\u003c/p\u003e\n\u003cp\u003eE.g.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"analysis/cjs1/radiation_atmos_av_mon/radiation_atmos_av_mon.ipynb\"\u003eRadiation processor\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"analysis/bw/bw_atmos_cru_ts_a1r/bw_atmos_monthly_cru_ts.1980-2014.ipynb\"\u003eLong-term DJF seasonal mean\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"analysis/bw/bw_atmos_zm_atl_pac_a1r/bw_atmos_atl_pac.1980-2014.ipynb\"\u003eZonal_mean_zonal_wind_stress\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"analysis/pcmdimetrics/portraitPlot-AM4.AMIP.ipynb\"\u003ePCMDI Metrics Portrait Plot\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-model-output-and-other-references\" class=\"anchor\" href=\"#model-output-and-other-references\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModel output and Other References\u003c/h2\u003e\n\u003cp\u003ePlease refer to the \u003ca href=\"http://data1.gfdl.noaa.gov/nomads/forms/am4.0/\" rel=\"nofollow\"\u003eAM4 data and code\nsite\u003c/a\u003e for details\nabout where to find model and OBS data used in the papers.\u003c/p\u003e\n\u003cp\u003eFor all analysis figures and pertaining data, please use the AM4\ndocumentation papers as the original reference.\u003c/p\u003e\n\u003cp\u003ePlease direct your questions and feedback to\n\u003ca href=\"mailto:gfdl.climate.model.info@noaa.gov\"\u003egfdl.climate.model.info@noaa.gov\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-disclaimer\" class=\"anchor\" href=\"#disclaimer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDisclaimer\u003c/h2\u003e\n\u003cp\u003eThe United States Department of Commerce (DOC) GitHub project code is\nprovided on an \u0027as is\u0027 basis and the user assumes responsibility for\nits use. DOC has relinquished control of the information and no\nlonger has responsibility to protect the integrity, confidentiality,\nor availability of the information. Any claims against the Department\nof Commerce stemming from the use of its GitHub project will be\ngoverned by all applicable Federal law. Any reference to specific\ncommercial products, processes, or services by service mark,\ntrademark, manufacturer, or otherwise, does not constitute or imply\ntheir endorsement, recommendation or favoring by the Department of\nCommerce. The Department of Commerce seal and logo, or the seal and\nlogo of a DOC bureau, shall not be used in any manner to imply\nendorsement of any commercial product or activity by DOC or the United\nStates Government.\u003c/p\u003e\n\u003cp\u003eThis project code is made available through GitHub but is managed by\nNOAA-GFDL at \u003ca href=\"https://gitlab.gfdl.noaa.gov\" rel=\"nofollow\"\u003ehttps://gitlab.gfdl.noaa.gov\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1651087778.0
+ "updated_at": 1631295050.0
},
{
"data_format": 2,
- "description": "Control + Camera code for the autonomous delivery robot developed for Albert Heijn as part of the Robotics Minor at TU Delft 2020",
+ "description": "Singularity container for playing 2048",
"filenames": [
- "Gazebo/Singularity"
+ "Singularity"
],
- "full_name": "Sh-Anand/delivery-fellow",
+ "full_name": "bbbbbrie/2048-container",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-delivery-fellow\" class=\"anchor\" href=\"#delivery-fellow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDelivery Fellow\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-2048-container\" class=\"anchor\" href=\"#2048-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2048-container\u003c/h1\u003e\n\u003cp\u003eA recipe for a Singularity container useful for playing 2048.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-construction\" class=\"anchor\" href=\"#construction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConstruction\u003c/h2\u003e\n\u003cp\u003eBuild the container with something like \u003ccode\u003esudo singularity build 2048.img Singularity\u003c/code\u003e or \u003ccode\u003ebuild-image.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-play-2048\" class=\"anchor\" href=\"#play-2048\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePlay 2048!\u003c/h2\u003e\n\u003cp\u003eRun \u003ccode\u003esingularity exec 2048.img /usr/games/2048-qt\u003c/code\u003e or \u003ccode\u003eplay-2048.sh\u003c/code\u003e after building the container.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/436e8e13c282802e7481996df4fa6dc543fd7e18b520205aa794df403d2226b7/68747470733a2f2f692e696d6775722e636f6d2f64496c50474c642e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/436e8e13c282802e7481996df4fa6dc543fd7e18b520205aa794df403d2226b7/68747470733a2f2f692e696d6775722e636f6d2f64496c50474c642e706e67\" alt=\"Score: 128\" data-canonical-src=\"https://i.imgur.com/dIlPGLd.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [],
- "updated_at": 1651228584.0
+ "topics": [
+ "singularity-container",
+ "2048",
+ "2048-game",
+ "container"
+ ],
+ "updated_at": 1556246890.0
},
{
"data_format": 2,
- "description": "A repo of container definitions and CI build support",
+ "description": null,
"filenames": [
- "singularity/analysis/r/Singularity",
- "singularity/analysis/python/Singularity",
- "singularity/analysis/notebook/Singularity"
+ "bartender/Singularity"
],
- "full_name": "lkirk/containers",
+ "full_name": "cory-weller/YKO-barseq",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-containers\" class=\"anchor\" href=\"#containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainers\u003c/h1\u003e\n\u003cp\u003eThis is my personal repo of container definitions and CI build support\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-background\" class=\"anchor\" href=\"#background\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBackground\u003c/h1\u003e\n\u003cp\u003eSince I use singularity and docker heavily in my analysis/development workflows, I needed a CI system for versioning/releasing containers.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-builds\" class=\"anchor\" href=\"#singularity-builds\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Builds\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://cloud.sylabs.io/library/lkirk/analysis/r\" rel=\"nofollow\"\u003eR\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://cloud.sylabs.io/library/lkirk/analysis/python\" rel=\"nofollow\"\u003ePython\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://cloud.sylabs.io/library/lkirk/analysis/notebook\" rel=\"nofollow\"\u003eJupyter Notebook\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-docker\" class=\"anchor\" href=\"#docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h1\u003e\n\u003cp\u003eTools\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://quay.io/repository/lkirk/bwa\" rel=\"nofollow\"\u003eBWA\u003c/a\u003e \u003ca href=\"https://camo.githubusercontent.com/d8a712bb098b054f0b4be4e9e111d976dc1a1faf2dce9016f81fd76bc4d06462/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6c6b69726b2f6277612f7374617475733f746f6b656e3d38313862616539352d313133612d343762642d396561642d636630343435613137323739\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d8a712bb098b054f0b4be4e9e111d976dc1a1faf2dce9016f81fd76bc4d06462/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6c6b69726b2f6277612f7374617475733f746f6b656e3d38313862616539352d313133612d343762642d396561642d636630343435613137323739\" alt=\"\" data-canonical-src=\"https://quay.io/repository/lkirk/bwa/status?token=818bae95-113a-47bd-9ead-cf0445a17279\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://quay.io/repository/lkirk/samtools\" rel=\"nofollow\"\u003eSamtools\u003c/a\u003e \u003ca href=\"https://camo.githubusercontent.com/c4de3955204a04af95d325f708841180e77c42bbe944739ed74609eb629450ee/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6c6b69726b2f73616d746f6f6c732f7374617475733f746f6b656e3d61316462633336612d633938352d343565312d393563642d353132333030653531383932\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c4de3955204a04af95d325f708841180e77c42bbe944739ed74609eb629450ee/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6c6b69726b2f73616d746f6f6c732f7374617475733f746f6b656e3d61316462633336612d633938352d343565312d393563642d353132333030653531383932\" alt=\"\" data-canonical-src=\"https://quay.io/repository/lkirk/samtools/status?token=a1dbc36a-c985-45e1-95cd-512300e51892\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://quay.io/repository/lkirk/bcftools\" rel=\"nofollow\"\u003eBcftools\u003c/a\u003e \u003ca href=\"https://camo.githubusercontent.com/6090ee9c9b88031c51de2fbe49de54b6c91686e8e676a2d49827af13be55f2d2/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6c6b69726b2f626366746f6f6c732f7374617475733f746f6b656e3d63363032653330612d316637392d346432622d383338372d633762656131393537366632\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6090ee9c9b88031c51de2fbe49de54b6c91686e8e676a2d49827af13be55f2d2/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6c6b69726b2f626366746f6f6c732f7374617475733f746f6b656e3d63363032653330612d316637392d346432622d383338372d633762656131393537366632\" alt=\"\" data-canonical-src=\"https://quay.io/repository/lkirk/bcftools/status?token=c602e30a-1f79-4d2b-8387-c7bea19576f2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-yko-barseq\" class=\"anchor\" href=\"#yko-barseq\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eYKO-barseq\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-singularity-image\" class=\"anchor\" href=\"#building-singularity-image\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding singularity image\u003c/h2\u003e\n\u003cp\u003eOn a computer with sudo access, run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e while in directory containing Singularity file\u003c/span\u003e\nsudo singularity build bartender.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-bartender-extractor\" class=\"anchor\" href=\"#running-bartender-extractor\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning bartender extractor\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e \\\n -B /data/SBGE/cory/YKO-barseq:/home/wellerca/ \\\n bartender/bartender.sif bartender_extractor_com \\\n -f seq/MS3059950-600V3_19109498_S7_L001_R1_001.fastq \\\n -o pre \\\n -p CGAGC[34]C -m 1\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eOutput:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRunning bartender extractor\nbartender_extractor seq/MS3059950-600V3_19109498_S7_L001_R1_001.fastq pre 1 \"(CGAG.|CGA.C|CG.GC|C.AGC|.GAGC)([ATCGN]{34})(C)\" CGAGC C 3 1\nTotally there are 1187764 reads in seq/MS3059950-600V3_19109498_S7_L001_R1_001.fastq file!\nTotally there are 1118562 valid barcodes from seq/MS3059950-600V3_19109498_S7_L001_R1_001.fastq file\nTotally there are 1118562 valid barcodes whose quality pass the quality condition\nThe estimated sequence error from the prefix and suffix parts is 0.0311966\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-formatting-barcodes\" class=\"anchor\" href=\"#formatting-barcodes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFormatting barcodes\u003c/h2\u003e\n\u003cp\u003eThe \u003ccode\u003eextracted_barcode.txt\u003c/code\u003e file contains a 34-mer nucleotide sequence, but we only\nwant the 20 nucleotide barcode sequence contained within.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s1\"\u003epython3\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eformat_barcodes\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003epy\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003epre_barcode\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003etxt\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ebarcodes\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003etxt\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-bartender-cluster\" class=\"anchor\" href=\"#running-bartender-cluster\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning bartender cluster\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e \\\n -B /data/SBGE/cory/YKO-barseq:/home/wellerca/ \\\n bartender/bartender.sif bartender_single_com \\\n -f barcodes.txt \\\n -o barcode_clusters \\\n -d 2 \\\n -s 5\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eoutput:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRunning bartender\nLoading barcodes from the file\nIt takes 00:00:01 to load the barcodes from barcodes.txt\nShortest barcode length: 20\nLongest barcode length: 20\nStart to group barcode with length 20\nUsing two sample unpooled test\nTransforming the barcodes into seed clusters\nInitial number of unique reads: 64431\nThe distance threshold is 2\nClustering iteration 1\nClustering iteration 2\nClustering iteration 3\nClustering iteration 4\nIdentified 18272 barcodes with length 20\nThe clustering process takes 00:00:01\nStart to dump clusters to file with prefix barcode_clusters\nStart to remove pcr effects\n***(Overall error rate estimated from the clustering result)***\nTotal number of clusters after removing PCR effects: 18272\nThe estimated error rate is 0.00340786\nThe overall running time 00:00:05 seconds.\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-take-most-abundant-seq-consensus-per-cluster-and-plot\" class=\"anchor\" href=\"#take-most-abundant-seq-consensus-per-cluster-and-plot\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTake most abundant seq (consensus) per cluster and plot\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003elibrary(\u003cspan class=\"pl-smi\"\u003edata.table\u003c/span\u003e)\nlibrary(\u003cspan class=\"pl-smi\"\u003eggplot2\u003c/span\u003e)\nlibrary(\u003cspan class=\"pl-smi\"\u003eggrepel\u003c/span\u003e)\n\n\u003cspan class=\"pl-smi\"\u003edat\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e fread(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ebarcode_clusters_barcode.csv\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e)\n\n\u003cspan class=\"pl-smi\"\u003econsensus\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003edat\u003c/span\u003e[, \u003cspan class=\"pl-smi\"\u003e.SD\u003c/span\u003e[which.max(\u003cspan class=\"pl-smi\"\u003eFrequency\u003c/span\u003e)], \u003cspan class=\"pl-v\"\u003eby\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003eCluster.ID\u003c/span\u003e]\n\nsetnames(\u003cspan class=\"pl-smi\"\u003econsensus\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eUnique.reads\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003econsensus\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e)\n\u003cspan class=\"pl-smi\"\u003econsensus\u003c/span\u003e[, \u003cspan class=\"pl-smi\"\u003eFrequency\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e:\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003eNULL\u003c/span\u003e]\nsetkey(\u003cspan class=\"pl-smi\"\u003econsensus\u003c/span\u003e, \u003cspan class=\"pl-smi\"\u003eCluster.ID\u003c/span\u003e)\nsetkey(\u003cspan class=\"pl-smi\"\u003edat\u003c/span\u003e, \u003cspan class=\"pl-smi\"\u003eCluster.ID\u003c/span\u003e)\n\n\u003cspan class=\"pl-smi\"\u003edat.merge\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e merge(\u003cspan class=\"pl-smi\"\u003edat\u003c/span\u003e, \u003cspan class=\"pl-smi\"\u003econsensus\u003c/span\u003e)\n\u003cspan class=\"pl-smi\"\u003econsensus_counts\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003edat.merge\u003c/span\u003e[, \u003cspan class=\"pl-k\"\u003elist\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eN\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e sum(\u003cspan class=\"pl-smi\"\u003eFrequency\u003c/span\u003e)), \u003cspan class=\"pl-v\"\u003eby\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003econsensus\u003c/span\u003e][order(\u003cspan class=\"pl-k\"\u003e-\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003eN\u003c/span\u003e)]\n\u003cspan class=\"pl-smi\"\u003econsensus_counts\u003c/span\u003e[, \u003cspan class=\"pl-smi\"\u003eabundance_rank\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e:\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e:\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e.N\u003c/span\u003e]\n\nfwrite(\u003cspan class=\"pl-smi\"\u003econsensus_counts\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003efile\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003econsensus_counts.csv\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003equote\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eF\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003erow.names\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eF\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003ecol.names\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eT\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003esep\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e,\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e)\n\n\n\u003cspan class=\"pl-smi\"\u003econsensus_counts\u003c/span\u003e[\u003cspan class=\"pl-smi\"\u003eN\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e3000\u003c/span\u003e, \u003cspan class=\"pl-smi\"\u003etext_label\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e:\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003econsensus\u003c/span\u003e]\n\n\nggplot(\u003cspan class=\"pl-smi\"\u003econsensus_counts\u003c/span\u003e[\u003cspan class=\"pl-smi\"\u003eN\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e2\u003c/span\u003e], aes(\u003cspan class=\"pl-v\"\u003ex\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003eabundance_rank\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003ey\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003eN\u003c/span\u003e)) \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e geom_point() \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e\nscale_y_continuous(\u003cspan class=\"pl-v\"\u003etrans\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003elog10\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e, \n \u003cspan class=\"pl-v\"\u003ebreaks\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003ec(\u003cspan class=\"pl-c1\"\u003e1e0\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e1e1\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e1e2\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e1e3\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e1e4\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e1e5\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e1e6\u003c/span\u003e),\n \u003cspan class=\"pl-v\"\u003elabels\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003ec(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e1\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e10\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e100\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e1000\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e10000\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e100000\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e1000000\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e)) \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e\nlabs(\u003cspan class=\"pl-v\"\u003ex\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eBarcodes ranked by abundance\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003ey\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eAbundance\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003etitle\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eBarcodes with cluster counts \u0026gt;= 2\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e) \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e\ntheme_few(\u003cspan class=\"pl-c1\"\u003e12\u003c/span\u003e) \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e\ngeom_text_repel(aes(\u003cspan class=\"pl-v\"\u003elabel\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003etext_label\u003c/span\u003e))\n\nggplot(\u003cspan class=\"pl-smi\"\u003econsensus_counts\u003c/span\u003e[\u003cspan class=\"pl-smi\"\u003eN\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e2\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026amp;\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003eN\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e10000\u003c/span\u003e], aes(\u003cspan class=\"pl-v\"\u003ex\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003eabundance_rank\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003ey\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003eN\u003c/span\u003e)) \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e geom_point() \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e\nlabs(\u003cspan class=\"pl-v\"\u003ex\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eBarcodes ranked by abundance\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003ey\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eAbundance\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003etitle\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eBarcodes with cluster counts \u0026gt;= 2 and \u0026lt;= 100000\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e) \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e\ntheme_few(\u003cspan class=\"pl-c1\"\u003e12\u003c/span\u003e) \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e\ngeom_text_repel(aes(\u003cspan class=\"pl-v\"\u003elabel\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003etext_label\u003c/span\u003e))\n\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1647133221.0
+ "updated_at": 1631115532.0
},
{
"data_format": 2,
- "description": "CheckM provides a set of tools for assessing the quality of genomes recovered from isolates, single cells, or metagenomes.",
+ "description": "Singularity container for RNA-Seq power analysis",
"filenames": [
- "1.2.0/Singularity",
- "1.1.3/Singularity"
+ "Singularity.rnaseqpower"
],
- "full_name": "pscedu/singularity-checkm",
- "latest_release": "v1.1.3",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-checkm/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-checkm/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-checkm/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-checkm/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5c36d6207c7a83b2505f3c3da9648b2bde15022fb54c87c7d694d8aef86ba345/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d636865636b6d\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c36d6207c7a83b2505f3c3da9648b2bde15022fb54c87c7d694d8aef86ba345/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d636865636b6d\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-checkm\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/39b062bc9d3f1163144f8faf52a104ed79d50fb16f21cf3ab1bf888d2f31ffff/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d636865636b6d\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/39b062bc9d3f1163144f8faf52a104ed79d50fb16f21cf3ab1bf888d2f31ffff/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d636865636b6d\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-checkm\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/b2c55512b9909564abb8abf9ff50100608717f5342c5fcce30438dcc63f8eeeb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d636865636b6d\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b2c55512b9909564abb8abf9ff50100608717f5342c5fcce30438dcc63f8eeeb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d636865636b6d\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-checkm\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/4e65c1f34358c555baa1e01b53582475c3621a1e12ad015e81ad9fc5dbc0a221/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d636865636b6d\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4e65c1f34358c555baa1e01b53582475c3621a1e12ad015e81ad9fc5dbc0a221/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d636865636b6d\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-checkm\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-checkm\" class=\"anchor\" href=\"#singularity-checkm\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-checkm\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/93019bef04184f04502c095cd35e9340a581b7ead3193c4e7b387aa845b96f59/687474703a2f2f65636f67656e6f6d6963732e6769746875622e696f2f436865636b4d2f696d672f636865636b6d2e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/93019bef04184f04502c095cd35e9340a581b7ead3193c4e7b387aa845b96f59/687474703a2f2f65636f67656e6f6d6963732e6769746875622e696f2f436865636b4d2f696d672f636865636b6d2e706e67\" width=\"50%\" data-canonical-src=\"http://ecogenomics.github.io/CheckM/img/checkm.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"http://ecogenomics.github.io/CheckM/\" rel=\"nofollow\"\u003eCheckM\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003echeckm\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/CheckM/1.1.3\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/checkm\u003c/code\u003e as \u003ccode\u003e1.1.3.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "qbicsoftware/rnaseq-power-container",
+ "latest_release": "0.3.14",
+ "readme": "\u003cp\u003eCreates power or sample size matrix given different experimental parameters. Uploads created heatmaps as attachment to openBIS using attachi-cli and Dync.\u003c/p\u003e\n\u003cp\u003eUses \u003ca href=\"https://doi.org/doi:10.18129/B9.bioc.RnaSeqSampleSize\" rel=\"nofollow\"\u003eRnaSeqSampleSize\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eContainers are built using the \u003ca href=\"https://github.com/singularityhub/singularity-deploy\"\u003eSingularity Deploy template\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1651352851.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1635346688.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Operating Systems",
"filenames": [
"Singularity"
],
- "full_name": "truatpasteurdotfr/bioconda-perl-bioperl",
+ "full_name": "cassimpatel/COMP2211",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-a-miniconda-based-container-with-bioconda-bioperl\" class=\"anchor\" href=\"#a-miniconda-based-container-with-bioconda-bioperl\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ea miniconda based container with bioconda-bioperl\u003c/h1\u003e\n\u003cp\u003edocker:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/bioconda-perl-bioperl:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003esingularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv oras://ghcr.io/truatpasteurdotfr/bioconda-perl-bioperl:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-operating-systems-comp2211\" class=\"anchor\" href=\"#operating-systems-comp2211\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOperating Systems (COMP2211)\u003c/h1\u003e\n\u003cp\u003eNOTE: this repository does not seem to work, no source code seems to be committed or staged. Instructions to run are kept here, but find a copy of the operating system including all changes made within your UoL Linux File System in Documents\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running\" class=\"anchor\" href=\"#running\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning\u003c/h2\u003e\n\u003cp\u003eNote these instructions are for running on a UoL Linux terminal\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNavigate to the directory containing this README file\u003c/li\u003e\n\u003cli\u003eRun the following command: \u003ccode\u003esingularity shell xv6_tools.simg\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eThe terminal should now prompt you with \u003ccode\u003eSingularity\u0026gt; \u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eNotice you are no longer in the same folder, navigate into the \u003ccode\u003exv6-riscv\u003c/code\u003e directory\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003emake clean\u003c/code\u003e followed by \u003ccode\u003emake\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eStart up the Xv6 Operating system: \u003ccode\u003emake qemu\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eOnce you are finished using the OS:\n\u003cul\u003e\n\u003cli\u003eHold \u003ccode\u003ectrl + a\u003c/code\u003e and click \u003ccode\u003ex\u003c/code\u003e to exit back to Singularity\u003c/li\u003e\n\u003cli\u003eIf you want to view new changes to the OS code: run \u003ccode\u003emake clean; make; make qemu\u003c/code\u003e again to restart the OS\u003c/li\u003e\n\u003cli\u003eTo exit Singularity: use command \u003ccode\u003eexit\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-shortcut-to-run\" class=\"anchor\" href=\"#shortcut-to-run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eShortcut to run\u003c/h2\u003e\n\u003cp\u003eNavigate to the top repository directory and use the commands below. Note you will have to run the first line, then the second.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity shell xv6_tools.simg\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e Desktop/Git/COMP2211/xv6-riscv\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e make clean\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e make\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e make qemu\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1651593131.0
+ "updated_at": 1641130398.0
},
{
"data_format": 2,
- "description": "The MEME Suite allows you to discover novel motifs in collections of unaligned nucleotide or protein sequences, and to perform a wide variety of other motif-based analyses.",
+ "description": "Scripts for building VirSorter2 Cyverse App",
"filenames": [
- "5.4.1/Singularity",
- "5.4.0/Singularity",
- "5.3.3/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-meme-suite",
- "latest_release": "v5.4.0",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-meme-suite/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-meme-suite/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-meme-suite/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-meme-suite/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/19fb6791fbb0d3b375a57c2d240aaaf0bcf3c3fc41c90ea1779d4b744a1b503b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/19fb6791fbb0d3b375a57c2d240aaaf0bcf3c3fc41c90ea1779d4b744a1b503b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-meme-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c583cd02f62c30b39ca677f51fb0f0594e8d44174063b0a9eff5e1da24824696/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c583cd02f62c30b39ca677f51fb0f0594e8d44174063b0a9eff5e1da24824696/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-meme-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f6e0b1113a2126c7e25c07091194a3965453a639e67de2097dc827e2dea8066c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f6e0b1113a2126c7e25c07091194a3965453a639e67de2097dc827e2dea8066c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-meme-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/20a21f7be1dd954bce6c17c8486d5d385ff4cc87c3c6b3574e99c4b9287e759c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/20a21f7be1dd954bce6c17c8486d5d385ff4cc87c3c6b3574e99c4b9287e759c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-meme-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-meme-suite\" class=\"anchor\" href=\"#singularity-meme-suite\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-meme-suite\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://meme-suite.org/meme/\" rel=\"nofollow\"\u003ememe-suite\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ememe-suite\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/meme-suite/5.4.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/meme-suite\u003c/code\u003e as \u003ccode\u003e5.4.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "jiarong/vs2-cyverse-app",
+ "latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1649276065.0
+ "updated_at": 1640407925.0
},
{
"data_format": 2,
- "description": "A visual approach to monitoring and managing the on campus HPC system known as Bender. ",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "wrightedu/Bender-Monitor",
+ "full_name": "yimengkong/6mASCOPE",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-bender-monitor\" class=\"anchor\" href=\"#bender-monitor\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBender-Monitor\u003c/h1\u003e\n\u003cp\u003eA visual approach to monitoring and managing the on campus HPC system known as Bender.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-6mascope\" class=\"anchor\" href=\"#6mascope\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e6mASCOPE\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-description\" class=\"anchor\" href=\"#description\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h2\u003e\n\u003cp\u003e6mASCOPE is a toolbox to assess 6mA events in eukaryotic species using a quantitative deconvolution approach. By using a novel short-insert library (200~400bp) design with the PacBio sequencing Sequel II System, 6mASCOPE makes an effective use of the large number of circular consensus (CCS) reads to reliably capture deviations in IPD values at single molecule resolution. Taking an innovative metagenomic approach, 6mASCOPE deconvolves the DNA molecules from a gDNA sample into species and genomic regions of interests, and sources of contamination. Using a rationally designed machine learning model, 6mASCOPE enables sensitive and reliable 6mA quantification for each of the deconvolved composition.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-access\" class=\"anchor\" href=\"#access\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAccess\u003c/h2\u003e\n\u003cp\u003eThis current version is for manuscript review. Upon publication, we plan to release 6mASOCPE publically on our GitHub page \u003ca href=\"https://github.com/fanglab/6mascope\"\u003ehttps://github.com/fanglab/6mascope\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003e6mASCOPE is distributed as a fully functional image bypassing the need to install any dependencies others than the virtualization software. We recommend using Singularity, which can be installed on Linux systems and is often the preferred solution by HPC administrators (\u003ca href=\"https://sylabs.io/guides/3.5/user-guide/quick_start.html\" rel=\"nofollow\"\u003eQuick Start\u003c/a\u003e). \u003ccode\u003e6mASCOPE\u003c/code\u003e was tested extensively with Singularity v3.6.4.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emodule load singularity/3.6.4 \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Required only singularity/3.6.4 is a dynamic environment module. \u003c/span\u003e\nsingularity pull 6mASCOPE.sif library://yimengkong/default/6mascope:latest \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Download the image from cloud.sylabs.io; Make sure you have the network connection\u003c/span\u003e\nsingularity build --sandbox 6mASCOPE 6mASCOPE.sif \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Create a writable container named 6mASCOPE\u003c/span\u003e\nsingularity run --no-home -w 6mASCOPE \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Start an interactive shell to use 6mASCOPE, type `exit` to leave\u003c/span\u003e\ninit_6mASCOPE \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003eInside the container; Only required once when start using 6mASCOPE\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e run_6mASCOPE \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003eInside the container; Required every time when running 6mASCOPE\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe image retrieved from \u003ca href=\"https://cloud.sylabs.io/home\" rel=\"nofollow\"\u003eSylab Cloud\u003c/a\u003e with \u003ccode\u003esingularity pull\u003c/code\u003e (e.g. 6mASCOPE.sif) is already built and can be reused at will. Containers built with those instructions are writable meaning that results from 6mASCOPE analysis can be retrieved when the container is not running. Outputs for the following commands can be found at \u003ccode\u003e./path/to/6mASCOPE/home/6mASCOPE/\u003c/code\u003e. To re-run the same container:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --no-home -w 6mASCOPE \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Re-run container 6mASCOPE, type `exit` to leave\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e run_6mASCOPE \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003eInside the container; Required every time when running 6mASCOPE\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-tool-showcase\" class=\"anchor\" href=\"#tool-showcase\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTool showcase\u003c/h2\u003e\n\u003cp\u003eTo showcase the toolbox applications, we provide examples for the analysis of the Drosophila ~45min embryo dataset presented in our manuscript (Fig 5). The dataset can be downloaded with the following commands from within a 6mASCOPE container: \u003ccode\u003e6mASCOPE get_test_data\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-contamination-estimation\" class=\"anchor\" href=\"#contamination-estimation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContamination estimation\u003c/h3\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-goal\" class=\"anchor\" href=\"#goal\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGoal\u003c/h4\u003e\n\u003cp\u003eTo get an idea about the overall contamination of a gDNA sample. This step helps users define the composition of a gDNA sample using a metagenomic approach to assign reads to different species.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-description-1\" class=\"anchor\" href=\"#description-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription:\u003c/h4\u003e\n\u003cp\u003eFor a given CCS dataset generated from short-insert library, 6mASCOPE will examine if there are contaminating species and calculate the proportion of reads mapped to the reference and top 50 contaminated species from reads that do not map to the eukaryotic species of interest.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-inputs\" class=\"anchor\" href=\"#inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs:\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003eCCS reads file capturing all the genetic material in a gDNA sample (.fasta, pre-computed in the following example)\u003c/li\u003e\n\u003cli\u003eEukaryotic reference of genome of interest (.fasta)\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-outputs\" class=\"anchor\" href=\"#outputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs:\u003c/h4\u003e\n\u003cp\u003eFor a given CCS dataset generated from short-insert library, \u003ccode\u003e6mASCOPE\u003c/code\u003e will examine if there are contaminating species and calculate the proportion of reads mapped to the reference and top 50 contaminated species from reads that do not map to the eukaryotic species of interest.\u003c/p\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-example-of-the-output\" class=\"anchor\" href=\"#example-of-the-output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample of the Output:\u003c/h5\u003e\n\u003cpre\u003e\u003ccode\u003eRemove 8491 possible inter-species chimeric reads for further analysis\n#total_CCS\tmapped_to_goi\tcontaminants\n666159\t640345 (96.1249%)\t25814 (3.87505%)\n\nTop 50 mapped species outside goi reference\n#Count\tSpecies\n 10836 Saccharomyces cerevisiae\n 2413 Acetobacter tropicalis\n 1524 Acetobacter pasteurianus\n 1479 Lactobacillus plantarum\n 882 Acetobacter sp.\n ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(Full species list can be viewed in \u003ccode\u003etest.contam.estimate.txt\u003c/code\u003e)\u003c/p\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-example-commands\" class=\"anchor\" href=\"#example-commands\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample commands:\u003c/h5\u003e\n\u003cpre\u003e\u003ccode\u003e6mASCOPE contam -c test.ccs.fasta -r test.ref.fasta -o test.contam.estimate.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIn this example, \u003ccode\u003etest.ccs.fasta\u003c/code\u003e includes CCS reads (674,650) from the Drosophila ~45min embryo reads dataset described in our manuscript and pre-filtered with command \u003ccode\u003e6mASCOPE ccs\u003c/code\u003e. Using 5 cores, runtime is ~12m51s. The output shows ~3.9% CCS reads come from contaminated sources other than Drosophila melanogaster, the genome of interest (goi). Please be noted, blastn is embedded within this step, which will need at least 32-64G RAM.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-6ma-analysis-using-quantitative-deconvolution\" class=\"anchor\" href=\"#6ma-analysis-using-quantitative-deconvolution\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e6mA analysis using quantitative deconvolution\u003c/h3\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-goal-1\" class=\"anchor\" href=\"#goal-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGoal:\u003c/h4\u003e\n\u003cp\u003eFor each source determined in \u003ccode\u003e6mASCOPE contam\u003c/code\u003e, this step will quantify the 6mA/A level and calculate the 6mA contribution (%) of each source to the total 6mA abundance in the gDNA sample.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-inputs-1\" class=\"anchor\" href=\"#inputs-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs:\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003eThe same CCS reads file as explained above for Contamination Estimation (.fasta).\u003c/li\u003e\n\u003cli\u003eIPD and QV information of the CCS reads (pre-computed in the following example, ; this can be generated for new data with \u003ccode\u003e6mASCOPE ipd\u003c/code\u003e command, as explained in detailed tutorial).\u003c/li\u003e\n\u003cli\u003eUser defined groups besides the genome of interest. Examples as shown below. (Left columns: subgroup name. Right columns: contamination sources, use vertical line if multiple sources included within one subgroup).\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eSaccharomyces Saccharomyces\nAcetobacter Acetobacter|Komagataeibacter\nLactobacillus Lactobacillus\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-outputs-1\" class=\"anchor\" href=\"#outputs-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs:\u003c/h4\u003e\n\u003cp\u003eA table including the following information: the proportion (%) of reads from each source out of the total number of reads; source-specific 6mA/A level with 95% confidence intervals (log10-transformed), and contribution (%) of each source to the total 6mA abundance in the gDNA sample (as presented in the manuscript Figure 5A, B, C)\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-example-commands-1\" class=\"anchor\" href=\"#example-commands-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample commands:\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003e6mASCOPE quant -c test.ccs.fasta -i test.IPD.out.A -o test -r test.ref.fasta -s subgroup.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIn this example, the file \u003ccode\u003etest.IPD.out.A\u003c/code\u003e includes the pre-calculated IPD and QV information on the CCS molecules (can be generated with \u003ccode\u003e6mASCOPE ipd\u003c/code\u003e). Only Adenines were included here to to reduce computational time and ease evaluation. \u003ccode\u003esubgroup.txt\u003c/code\u003e includes the pre-defined main contamination groups, inferred from the top mapped species and blast output from \u003ccode\u003e6mASCOPE contam\u003c/code\u003e. Using 5 cores, runtime is ~13m17s.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-example-output\" class=\"anchor\" href=\"#example-output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample output:\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003e #Subgroup count ReadsProportion 6mAlevel(ppm) 6mAlevel(log10) UpCI DownCI subtotal(ppm) contribution(%)\n goi 640345 0.9612 2.0417 -5.69 -5.0 -6.0 1.9625 1.4431\n Saccharomyces 11011 0.0165 45.7088 -4.34 -3.9 -6.0 0.7542 0.5546\n Acetobacter 5757 0.0086 5495.4087 -2.26 -2.0 -2.5 47.2605 34.7522\n Lactobacillus 1517 0.0023 977.2372 -3.01 -2.7 -3.3 2.2476 1.6528\n others 7529 0.0113 7413.1024 -2.13 -1.9 -2.4 83.7681 61.5974\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp align=\"center\"\u003e\n \u003ca href=\"/docs/figures/test.6mASCOPE.ReadsProportion.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"/docs/figures/test.6mASCOPE.ReadsProportion.png\" alt=\"The proportion of CCS reads from each group 6mA\" width=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n1. The % of total CCS reads mapped to different subgroups. Left: The % of CCS reads mapped to D. melanogaster (genome of interest) and contamintant subgroups. Right: The % of CCS reads mapped to different contaminant sources.\n\u003cp align=\"center\"\u003e\n \u003ca href=\"/docs/figures/test.6mASCOPE.6mAlevel.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"/docs/figures/test.6mASCOPE.6mAlevel.png\" alt=\"Group-specific 6mA/A level prediction with confidence intervals 6mA\" width=\"500\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n2. 6mA quantification and 95% confidence intervals (log10-transformed) on CCS reads mapped to different subgroups. Please be noted, it is important to combine the estimated 6mA/A level with its confidence interval for reliable data interpretation. In this example, the 6mA/A level of Saccharomyces (45.7ppm) does not mean abundant 6mA events in this subgroup because it has a wide range of confidence interval (1-125ppm; -6.0 to -3.9 with log10 transformed). In the paper, an additional Sequel II run for this single species (higher yield) actually shows extremely low 6mA level (2ppm, confidence interval: 1-10ppm).\n\u003cp align=\"center\"\u003e\n \u003ca href=\"/docs/figures/test.6mASCOPE.6mAcontribution.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"/docs/figures/test.6mASCOPE.6mAcontribution.png\" alt=\"Group-specific 6mA/A level prediction with confidence intervals 6mA\" width=\"300\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n3. Contribution (%) of each source to total 6mA abundance in the gDNA sample. CCS reads mapped to the D. melanogaster genome only explains 1.4% of the total 6mA events in the gDNA sample (green).\n\u003cp\u003eThese figures can be drawn with \u003ccode\u003esh ~/code/draw_example.sh test.6mASCOPE.txt\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eFor a comprehensive description of\u00a06mASCOPE including installation guide, data preprocessing and a detailed tutorial, including how to apply 6mASCOPE to your own datasets, please refer to the\u00a0\u003ca href=\"https://6mascope.readthedocs.io/en/latest/overview.html\" rel=\"nofollow\"\u003ecomplete documentation\u003c/a\u003e .\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1649360377.0
+ "updated_at": 1637592376.0
},
{
"data_format": 2,
- "description": "FDUPES is a program for identifying or deleting duplicate files residing within specified directories.",
+ "description": null,
"filenames": [
- "2.1.2/Singularity"
+ "Singularity.centos-7__openmpi-4.0.5__h5py"
],
- "full_name": "pscedu/singularity-fdupes",
- "latest_release": "v2.1.2",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-fdupes/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-fdupes/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-fdupes/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-fdupes/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7700c9eafb1c45ca39d418b3ee39c83b436797c445767acae057a19d939f01dd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d666475706573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7700c9eafb1c45ca39d418b3ee39c83b436797c445767acae057a19d939f01dd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d666475706573\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-fdupes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/4e0f77fad0f89b200065773b91d9cf0199d583f2e5dcfe43a4571654d5d8da80/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d666475706573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4e0f77fad0f89b200065773b91d9cf0199d583f2e5dcfe43a4571654d5d8da80/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d666475706573\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-fdupes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/2f63e8145296847b2c2079b4c565a9d7ad5fb9407a85cf088bd7d357b3a00201/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d666475706573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2f63e8145296847b2c2079b4c565a9d7ad5fb9407a85cf088bd7d357b3a00201/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d666475706573\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-fdupes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0ce07a73d5d378e12e65c32c5066e0d1f9c188afcfe5184dc190f28137faf80c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d666475706573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0ce07a73d5d378e12e65c32c5066e0d1f9c188afcfe5184dc190f28137faf80c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d666475706573\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-fdupes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-fdupes\" class=\"anchor\" href=\"#singularity-fdupes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-fdupes\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/adrianlopezroche/fdupes\"\u003efdupes\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003efdupes\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/fdupes/2.1.2\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/fdupes\u003c/code\u003e as \u003ccode\u003e2.1.2.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "mcduta/h5py-demo",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-experimenting-with-hdf5-in-python\" class=\"anchor\" href=\"#experimenting-with-hdf5-in-python\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExperimenting with HDF5 in Python\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-material\" class=\"anchor\" href=\"#material\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMaterial\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003ethis README;\u003c/li\u003e\n\u003cli\u003ethe associated python files;\u003c/li\u003e\n\u003cli\u003ea Singularity container for \u003ccode\u003eminiconda\u003c/code\u003e, \u003ccode\u003empi4py\u003c/code\u003e and \u003ccode\u003eh5py\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e: \u003ccode\u003ejupyter\u003c/code\u003e notebooks to experiment with MPI are very limited in scope by the very logic of parallel execution.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-reading\" class=\"anchor\" href=\"#reading\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReading\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://twiki.cern.ch/twiki/pub/Sandbox/JaredDavidLittleSandbox/PythonandHDF5.pdf\" rel=\"nofollow\"\u003ePython and HDF5\u003c/a\u003e by Andrew Collette (O\u0027Reilly, 2014)\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://ntrs.nasa.gov/api/citations/20180008456/downloads/20180008456.pdf\" rel=\"nofollow\"\u003eSome notes about chunks and compression\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://docs.h5py.org/en/stable/mpi.html#\" rel=\"nofollow\"\u003eh5py online documentation on parallel HDF5\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-container\" class=\"anchor\" href=\"#singularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Container\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-the-container\" class=\"anchor\" href=\"#the-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThe container\u003c/h3\u003e\n\u003cp\u003eThe Singularity container for \u003ccode\u003eminiconda\u003c/code\u003e, \u003ccode\u003empi4py\u003c/code\u003e and \u003ccode\u003eh5py\u003c/code\u003e can be directly downloaded from \u003ca href=\"https://cloud.sylabs.io/library/mcduta/default/h5py\" rel=\"nofollow\"\u003eSyLabs\u003c/a\u003e using the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull library://mcduta/default/h5py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAlternatively, it can be generated from the recipe provided\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity build --fakeroot h5py_latest.sif Singularity.centos-7__openmpi-4.0.5__h5py\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-interactive-shell\" class=\"anchor\" href=\"#interactive-shell\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInteractive Shell\u003c/h3\u003e\n\u003cp\u003eTo experiment with the parallel Python scripts, obtain an interactive shell in the container\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell h5py_latest.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eInteract with the shell, available containerised software and the underlying files system in the normal way, just as on any linux workstation.\u003c/p\u003e\n\u003cp\u003eBasic configuration settings can be checked once in a container shell, \u003cem\u003ee.g.\u003c/em\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eorte-info --config\nh5pcc -showconfig\nconda list h5py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBoth executables as well as the expected HDF5 tools, \u003cem\u003ee.g.\u003c/em\u003e \u003ccode\u003eh5dump\u003c/code\u003e and \u003ccode\u003eh5ls\u003c/code\u003e are already in path. The above commands shows some details of how \u003ccode\u003eh5py\u003c/code\u003e was built (\u003cem\u003ei.e.\u003c/em\u003e on top of a parallel enabled build of HDF5 itself). See also \u003ca href=\"https://docs.h5py.org/en/stable/mpi.html#building-against-parallel-hdf5\" rel=\"nofollow\"\u003eh5py notes on building HDF5\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-input-and-output\" class=\"anchor\" href=\"#input-and-output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput and Output\u003c/h3\u003e\n\u003cp\u003eNeither the Python scripts nor the HDF5 files generated are part of the container. The Python scripts can be anywhere in a path on DLS storage. For the purpose of experimentation for I/O performance, the HDF5 files generated can be on a path that is mounted as \u003ccode\u003egpfs\u003c/code\u003e, \u003ccode\u003enfs\u003c/code\u003e or local \u003ccode\u003eext4\u003c/code\u003e (\u003cem\u003ee.g.\u003c/em\u003e local scratch or \u003ccode\u003e/tmp\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eTip\u003c/strong\u003e: an easy way to verify what a certain path is mounted as is \u003ccode\u003edf -PT /path\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eControlling input and output can be done by bind-mounting paths in the Singularity container. For example, supposing the Python files are in \u003ccode\u003e$HOME/h5pytest\u003c/code\u003e and the output is to go to \u003ccode\u003e/dls/p45/path/to/somewhere\u003c/code\u003e, the command to start the Singularity shell is\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --bind $HOME/h5pytest:/apps/input,/dls/p45/path/to/somewhere:/apps/output h5py_latest.sif\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce in a container shell, go to the designated output path in the container and experiment, \u003cem\u003ee.g.\u003c/em\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd /apps/output/\nmpirun -np 4 python /apps/input/h5py_write_demo.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAny files written to \u003ccode\u003e/apps/output\u003c/code\u003e are \"seen\" outside the container in the path \u003ccode\u003e/dls/p45/path/to/somewhere\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eAn easier alternative to the above is to have the Python scripts and output in the same path, case in which bind-mounting the current working directory is sufficient. For example, the following command lands the Singularity shell in the current directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --home $PWD h5py_latest.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAny files generated in the container shell are visible in \u003ccode\u003e$PWD\u003c/code\u003e outside.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-cluster\" class=\"anchor\" href=\"#cluster\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCluster\u003c/h3\u003e\n\u003cp\u003eAn interactive session on the Hamilton cluster is a good idea for a) the availability of a significant number of cores on which the \u003ccode\u003empirun\u003c/code\u003e-launched Python processes can execute and b) the availability of \u003ccode\u003egpfs\u003c/code\u003e mounted paths. An example of request for an interactive job is\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eqrsh -pe openmpi-savu 20 -l h_rt=01:00:00,m_mem_free=8G -P tomography\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSingularity is available on the cluster nodes.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-h5py-experiments\" class=\"anchor\" href=\"#h5py-experiments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ccode\u003eh5py\u003c/code\u003e Experiments\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-exercise-1\" class=\"anchor\" href=\"#exercise-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExercise 1\u003c/h3\u003e\n\u003cp\u003eFirst, experiment with parallel writes and reads from local disk (\u003ccode\u003eext4\u003c/code\u003e file system). Create a user writable directory in \u003ccode\u003e/tmp\u003c/code\u003e and then obtain an interactive session on Hamilton. Use the commands\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emkdir -p /tmp/$USER\nsingularity shell --bind $PWD:/apps/input,/tmp/$USER:/apps/output h5py_latest.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce in the container shell, run the writer \u003ccode\u003eh5py\u003c/code\u003e demo with a varying number of processes:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd /apps/output/\nfor np in 4 8 16; do mpirun -np ${np} python /apps/input/h5py_write_demo.py; done\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eEdit the file \u003ccode\u003eh5py_write_demo.py\u003c/code\u003e and observe the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe HDF5 files is open using the \u003ccode\u003empio\u003c/code\u003e driver and the operation makes use of the default MPI communicator \u003ccode\u003eMPI.COMM_WORLD\u003c/code\u003e;\u003c/li\u003e\n\u003cli\u003eeach process initialises only a part of the data that is written to file;\u003c/li\u003e\n\u003cli\u003ethere is no \u003cem\u003eglobal\u003c/em\u003e (across-process) view of the data; the variable \u003ccode\u003edataset\u003c/code\u003e is a handle for the data;\u003c/li\u003e\n\u003cli\u003edata initialisation is an \u003cem\u003eindependent\u003c/em\u003e \u003ccode\u003eh5py\u003c/code\u003e operation, while file open and close are \u003cem\u003ecollective\u003c/em\u003e (see the \u003ca href=\"https://docs.h5py.org/en/stable/mpi.html#collective-versus-independent-operations\" rel=\"nofollow\"\u003eh5py notes on this\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe data size is fixed, so increasing the number of processes means each process initialises and writes less data.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-exercise-2\" class=\"anchor\" href=\"#exercise-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExercise 2\u003c/h3\u003e\n\u003cp\u003eNow, run the reader demo, which reads the data from the file written by the writer demo. Use the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003efor np in 4 8 16; do mpirun -np ${np} python /apps/input/h5py_read_demo.py; done\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eEdit the file \u003ccode\u003eh5py_read_demo.py\u003c/code\u003e and observe the similarities with the writer demo.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-exercise-3\" class=\"anchor\" href=\"#exercise-3\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExercise 3\u003c/h3\u003e\n\u003cp\u003eIn the read demo \u003ccode\u003eh5py_read_demo.py\u003c/code\u003e, print additional information on data read by each process, \u003cem\u003ee.g.\u003c/em\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eprint (\" iproc = {}, shape = {}, data[0,0] = {}\".format(iproc, dataproc.shape, dataproc[0,0]))\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePlace this just after the last \u003ccode\u003eMPI.Wtime\u003c/code\u003e call. Rerun the demo with 4 processes and understand the output. Now replace the \"process view\" of the data \u003ccode\u003edataproc[0,0]\u003c/code\u003e with the \"global view\" \u003ccode\u003edataset[0,0]\u003c/code\u003e and rerun. What happens?\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-exercise-4\" class=\"anchor\" href=\"#exercise-4\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExercise 4\u003c/h3\u003e\n\u003cp\u003eNow repeat the write and read runs above on \u003ccode\u003egpfs\u003c/code\u003e rather than \u003ccode\u003eetx4\u003c/code\u003e. Use an interactive cluster session and an appropriate path (\u003cem\u003ee.g.\u003c/em\u003e \u003ccode\u003e/dls/p45\u003c/code\u003e) that is mounted as \u003ccode\u003egpfs\u003c/code\u003e on Hamilton nodes. How do write/read times compare with \u003ccode\u003eext4\u003c/code\u003e?\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-exercise-5\" class=\"anchor\" href=\"#exercise-5\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExercise 5\u003c/h3\u003e\n\u003cp\u003eRepeat the same operations, on the same path as the previous exercise but this time running the containe on a linux workstation, which mounts the path as \u003ccode\u003enfs\u003c/code\u003e (check!). How do results change?\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-exercise-6\" class=\"anchor\" href=\"#exercise-6\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExercise 6\u003c/h3\u003e\n\u003cp\u003eEdit the file \u003ccode\u003eh5py_serial_chunking_demo.py\u003c/code\u003e and understand what it is programmed to do. The demo is serial and can be run outside the container, using the DLS python installation, \u003cem\u003ee.g.\u003c/em\u003e using \u003ccode\u003emodule load python/3.9\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eNotice how the demo writes and then reads the same amount of data (simulating a stack of images) to and from HDF5 files. The first write/read is contiguous (\u003cem\u003ei.e.\u003c/em\u003e no chunks), the second is chunked and the third is chunked and also uses compression.\u003c/p\u003e\n\u003cp\u003eRun the demo on \u003ccode\u003egpfs03\u003c/code\u003e as well as \u003ccode\u003eext4\u003c/code\u003e. The chunked reads should show increased performance over the contiguous, and compressed read even more so.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNotes\u003c/strong\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe success of chunking depends entirely on the particular read data access pattern.\u003c/li\u003e\n\u003cli\u003eThe chunks are set at dataset creation time but can be changed using command line tools, \u003cem\u003ee.g.\u003c/em\u003e \u003ccode\u003eh5repack\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1633086411.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1639579950.0
},
{
"data_format": 2,
- "description": "Count your code, quickly.",
+ "description": "A Strudel2 singularity container based on the code for OpenOnDemand shell application",
"filenames": [
- "12.1.2/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-tokei",
- "latest_release": "v12.1.2",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-tokei/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-tokei/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-tokei/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-tokei/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/390a2ed4d417fdf45f007b0d91b70db9dc6ff55cff5fc8f811907b8a76d74102/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d746f6b6569\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/390a2ed4d417fdf45f007b0d91b70db9dc6ff55cff5fc8f811907b8a76d74102/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d746f6b6569\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-tokei\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7b139de678930691b4ec584c1314dc0c37bc85e1767f8a2d22394b60895ed619/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d746f6b6569\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7b139de678930691b4ec584c1314dc0c37bc85e1767f8a2d22394b60895ed619/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d746f6b6569\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-tokei\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/4a8856bc06400cf7ded9aef8652c3b21a9258182350126042ebd6e7a605fc4e7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d746f6b6569\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4a8856bc06400cf7ded9aef8652c3b21a9258182350126042ebd6e7a605fc4e7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d746f6b6569\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-tokei\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/933616d1190d66e34b2b8e2c452321c7f5aaf0eba14a74d8672c4f67db1312a0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d746f6b6569\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/933616d1190d66e34b2b8e2c452321c7f5aaf0eba14a74d8672c4f67db1312a0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d746f6b6569\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-tokei\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-tokei\" class=\"anchor\" href=\"#singularity-tokei\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-tokei\u003c/h1\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e===============================================================================\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e Language Files Lines Code Comments Blanks\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e===============================================================================\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e BASH 4 49 30 10 9\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e JSON 1 1332 1332 0 0\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e Shell 1 49 38 1 10\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e TOML 2 77 64 4 9\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e-------------------------------------------------------------------------------\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e Markdown 5 1355 0 1074 281\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e |- JSON 1 41 41 0 0\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e |- Rust 2 53 42 6 5\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e |- Shell 1 22 18 0 4\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e (Total) 1471 101 1080 290\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e-------------------------------------------------------------------------------\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e Rust 19 3416 2840 116 460\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e |- Markdown 12 351 5 295 51\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e (Total) 3767 2845 411 511\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e===============================================================================\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e Total 32 6745 4410 1506 829\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e===============================================================================\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/XAMPPRocky/tokei\"\u003etokei\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003etokei\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/tokei/12.1.2\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/tokei\u003c/code\u003e as \u003ccode\u003e12.1.2.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "l1ll1/terminal",
+ "latest_release": null,
+ "readme": "\u003cp\u003eThis container runs code derived from\n\u003ca href=\"https://osc.github.io/ood-documentation/master/applications/shell.html\" rel=\"nofollow\"\u003ehttps://osc.github.io/ood-documentation/master/applications/shell.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWhen starting the program as a batch job, it simply submits a tmux new-session\nWhen connecting to the program,\nit:\u003c/p\u003e\n\u003cp\u003ea) picks an unused port\nb) generates a random token for authenticaion\nc) runs a command like ssh localhost tmux attach-session \nd) proxys that command onto the unused port\ne) watches (using lsof) for connections to the port. if its been disconnected for 5 minutes it shuts down the proxy\nf) prints out the port and token in json format\u003c/p\u003e\n\u003cp\u003eBecause the proxy is inside the container, but the tmux server is outside we have to do a bit ssh localhost\nWhen doing this we supress operations relating to SSHKnowHosts (beacuse localhost is rarely the same localhost)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-debugging\" class=\"anchor\" href=\"#debugging\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDebugging:\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eCheck that you can start a tmux session via echo \"module load singularity\\nsingularity exec term.sif /start\" | sbatch This is what strudel2 does\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eFind out which node your tmux is running on, login, singularity shell term.sif\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInside the singularity shell, try executing /params. Check that it gives json output. Check that it starts node /opt/shell/tmux.js and watchdog.py\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCreate an SSH tunnel to the port specified. Open the URL localhost:/tmux?token=\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1649568351.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1636670270.0
},
{
"data_format": 2,
- "description": "Spatially explicit individual based model that simulates Coffee Leaf Rust epidemics on a coffee farm",
+ "description": "Container recipes, usually related to HPC and scientific computing",
"filenames": [
- "Singularity.def"
+ "cadabra/cadabra2-2.1.9-stretch/Singularity"
],
- "full_name": "comses-education/coffee-leaf-rust-model",
+ "full_name": "jose-d/container-recipes",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-spatialrust\" class=\"anchor\" href=\"#spatialrust\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpatialRust\u003c/h1\u003e\n\u003cp\u003eSpatialRust is an individual based model that simulates Coffee Leaf Rust epidemics within a coffee farm.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-installing-dependencies\" class=\"anchor\" href=\"#installing-dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling dependencies\u003c/h3\u003e\n\u003cp\u003eMove to this project\u0027s directory and run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-julia\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eusing\u003c/span\u003e Pkg\nPkg\u003cspan class=\"pl-k\"\u003e.\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eactivate\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e.\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e)\nPkg\u003cspan class=\"pl-k\"\u003e.\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003einstantiate\u003c/span\u003e()\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-running-the-model\" class=\"anchor\" href=\"#running-the-model\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the model\u003c/h3\u003e\n\u003cp\u003eThere are two script files available. You can run a single simulation using a fixed parameter set using \u003ccode\u003escripts/OneRun.jl\u003c/code\u003e as follows:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ julia scripts/OneRun.jl\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eResults from this single run will be saved in a \u003ccode\u003eresults\u003c/code\u003e folder as \u003ccode\u003esinglerun.csv\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eThe second option, \u003ccode\u003escripts/ParameterRuns.jl\u003c/code\u003e, lets you run a parameter exploration experiment. The default setup of this experiment will run 2700 simulations. To modify the parameter values to be evaluated or the replicates for each combination, open \u003ccode\u003escripts/ParameterRuns.jl\u003c/code\u003e and edit lines 11 to 14. Like the first option, you can run the script from bash:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ julia scripts/ParameterRuns.jl\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eResults from this experiment will be saved in a \u003ccode\u003eresults\u003c/code\u003e folder as \u003ccode\u003eparameterexp.csv\u003c/code\u003e. Both scripts take care of creating the \u003ccode\u003eresults\u003c/code\u003e folder if it has not been created yet.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-container-recipes\" class=\"anchor\" href=\"#container-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainer-recipes\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
- "topics": [
- "agent-based-model",
- "computational-model",
- "julia",
- "simulation"
- ],
- "updated_at": 1654288638.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1636393528.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "LaMachine-master/Singularity.dev",
- "LaMachine-master/Singularity"
+ "RStudio/Singularity",
+ "bc_desktop/Singularity"
],
- "full_name": "AymanYac/Neonec-Deep-Classsifier",
+ "full_name": "SupercomputingWales/open-ondemand-apps",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-lamachine-deepclassifier--neonec-dutch-rd\" class=\"anchor\" href=\"#lamachine-deepclassifier--neonec-dutch-rd\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLaMachine DeepClassifier : Neonec Dutch R\u0026amp;D\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-open-ondemand-apps\" class=\"anchor\" href=\"#open-ondemand-apps\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eopen-ondemand-apps\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://osc.github.io/ood-documentation/latest/\" rel=\"nofollow\"\u003eOpen-Ondemand\u003c/a\u003e provides a convenient interface for users to access remote servers such as HPC systems.\u003c/p\u003e\n\u003cp\u003eThis repository will store the versions as running on \u003ca href=\"https://portal.supercomputing.wales\" rel=\"nofollow\"\u003eSupercomputing Wales\u003c/a\u003e Hawk system.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-rstudio\" class=\"anchor\" href=\"#rstudio\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRstudio\u003c/h2\u003e\n\u003cp\u003eUsing Rocker container this spins up a Rstudio session. See Singularity file.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-jupyter\" class=\"anchor\" href=\"#jupyter\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eJupyter\u003c/h2\u003e\n\u003cp\u003eUses Anaconda as installed on Hawk to provide Jupyter session. If users install jupyter in their environments installed in home directory then the kernels for their environments also appear as an option.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-bc_desktop\" class=\"anchor\" href=\"#bc_desktop\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebc_desktop\u003c/h2\u003e\n\u003cp\u003eTo allow remote desktop a container was created to allow the desktop (Mate in this case from EPEL) dependencies to be isolated from host OS which doesnt allow EPEL repository. This also supports VirtualGL and TurboVNC to provide 3D interface. Requires Slurm configurationt to support spinning up Xorg and provide a desktop.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1647881800.0
+ "updated_at": 1635457389.0
},
{
"data_format": 2,
- "description": null,
+ "description": "DNA methylome-based validation of induced sputum as an effective protocol to study lung immunity: construction of a classifier of pulmonary cell types",
+ "filenames": [
+ ".development/Singularity"
+ ],
+ "full_name": "JD2112/AlveolarCellTypeDeconvolution",
+ "latest_release": "v1.4.1",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-the-r-scripts-to-analyze-the-alveolar-macrophages-hla-drcd3--and-lymphocytes-cd3-specific-cell-types-from-dna-methylation-analysis\" class=\"anchor\" href=\"#the-r-scripts-to-analyze-the-alveolar-macrophages-hla-drcd3--and-lymphocytes-cd3-specific-cell-types-from-dna-methylation-analysis\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThe R scripts to analyze the Alveolar macrophages (HLA-DR+/CD3-) and lymphocytes (CD3+) specific cell types from DNA methylation analysis.\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/JD2112/AlveolarCellTypeDeconvolution/actions/workflows/docker-image.yml\"\u003e\u003cimg src=\"https://github.com/JD2112/AlveolarCellTypeDeconvolution/actions/workflows/docker-image.yml/badge.svg?event=workflow_run\" alt=\"alv-decon\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-related-publication-published-in-epigenetics-2021-08-11\" class=\"anchor\" href=\"#related-publication-published-in-epigenetics-2021-08-11\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRelated publication: (Published in Epigenetics, 2021-08-11)\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003eDas, J., Idh, N., Paues, J., Sikkeland, L. I. B., \u0026amp; Lerm, M.\u003c/em\u003e (2021). **DNA methylome-based validation of induced sputum as an effective protocol to study lung immunity: construction of a classifier of pulmonary cell types. \\ ** bioRxiv.\u003ca href=\"https://www.biorxiv.org/content/10.1101/2021.03.12.435086v1\" rel=\"nofollow\"\u003ehttps://doi.org/10.1101/2021.03.12.435086\u003c/a\u003e \\ \u003ca href=\"https://www.tandfonline.com/doi/full/10.1080/15592294.2021.1969499\" rel=\"nofollow\"\u003eEpigenetics link\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-create-package-and-r-script-files-according-to-the-analysis-or-result-in-the-manuscript\" class=\"anchor\" href=\"#create-package-and-r-script-files-according-to-the-analysis-or-result-in-the-manuscript\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreate package and R script files according to the analysis (or Result in the manuscript).\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eDNA methylome analysis - till the normalizaed beta value calculation.\u003c/li\u003e\n\u003cli\u003eNormality calculation with Anderson\u0027s test (\u003cstrong\u003eTable 1\u003c/strong\u003e)\u003c/li\u003e\n\u003cli\u003ePearson\u0027s rank correaltion analysis - Figures, Table (\u003cstrong\u003eFigure 2 - a. HLA-DR, b. CD3\u003c/strong\u003e)\u003c/li\u003e\n\u003cli\u003eBeanplot from the beta values of the whole dataset to describe the beta distribution over all samples (\u003cstrong\u003eFigure S1a\u003c/strong\u003e)\u003c/li\u003e\n\u003cli\u003eMann-Whitney test for the hypothesis - Figures, Table (F\u003cstrong\u003eigure 3a - HLA-DR and 3b. CD3\u003c/strong\u003e)\u003c/li\u003e\n\u003cli\u003eValidation of SI and BAL from Lung compartments (\u003cstrong\u003eFigure 4\u003c/strong\u003e)\u003c/li\u003e\n\u003cli\u003eTesting of 3 reference-free algorithms - algorithms testings, Venn Diagrams (\u003cstrong\u003eFigure 5a. HLA-DR and Figrue 5b. CD3\u003c/strong\u003e)\u003c/li\u003e\n\u003cli\u003eCell proportion analysis using the EpiDISH package (\u003cstrong\u003eFigure 6\u003c/strong\u003e)\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-use-of-docker-image\" class=\"anchor\" href=\"#use-of-docker-image\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUse of Docker image\u003c/h2\u003e\n\u003cp\u003eDockerfile can be used for all R packages and repositories. The image file can be found here\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull jd21/alv-decon:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-functions-present-in-the-package\" class=\"anchor\" href=\"#functions-present-in-the-package\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFunctions present in the package\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eFunctions\u003c/th\u003e\n\u003cth\u003eR scripts\u003c/th\u003e\n\u003cth\u003edescription\u003c/th\u003e\n\u003cth\u003enotes\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eChAMPanalysis450K()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eChAMPanalysis.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003escript for DNA methylation using ChAMP\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eStatiscalAnalysisHLADR()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eStatisticalAnalysis.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eStatiscalAnalysisCD3()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eStatisticalAnalysis.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eValidationWithCysticFibrosis()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eValidationWithCF.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eCompareAnalysisRingh()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eStatisticalAnalysis.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003ehistogramPlot()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eFigure2c.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003ehistogram analysis for beta values\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eAlveolarCellTypeDeconvolutionRefFreeEWAS()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eFigure3.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003eHouseman algorithm reference free analysis\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eAlveolarCellTypeDeconvolutionSVA()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eFigure3.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003eSVA analysis\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eAlveolarCellTypeDeconvolutionRefFreeCellMix()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eFigure3.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eAlveolarCellTypeDeconvolutionTOAST()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eFigure3.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eggplotRegression()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eFigure4.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003esFigure1()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003esupplementaryFigureS1.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003esFigure2()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003esupplementaryFigureS2.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eqqPlot()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003esupplementaryFigureS3.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003eQ-Q plot for compare DNA methylome data\u003c/td\u003e\n\u003ctd\u003ea sub-function can also be used; gg_qq()\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 2,
+ "topics": [
+ "dna-methylation",
+ "alveolar-macrophages",
+ "alveolar-lymphocytes",
+ "hla-dr",
+ "cd3",
+ "cell-deconvolution"
+ ],
+ "updated_at": 1639727537.0
+ },
+ {
+ "data_format": 2,
+ "description": "Exploratory research using graph neural networks",
"filenames": [
"Singularity"
],
- "full_name": "remiolsen/pin_hic_singularity",
+ "full_name": "davidhin/gnn-exploration",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-pin_hic_singularity\" class=\"anchor\" href=\"#pin_hic_singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epin_hic_singularity\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1647940031.0
+ "updated_at": 1635288566.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "SingularityLfH.def"
+ "Singularity"
],
- "full_name": "LearningUAV/hallucination",
+ "full_name": "truatpasteurdotfr/singularity-docker-stream8-warewulf4-builder",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-docker-stream8-warewulf4-builder-\" class=\"anchor\" href=\"#singularity-docker-stream8-warewulf4-builder-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-docker-stream8-warewulf4-builder \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-stream8-warewulf4-builder/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-stream8-warewulf4-builder/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003ewarewulf4 builder container based on a CentOS Stream 8 x86_64 docker image built from github actions\u003c/p\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why\" class=\"anchor\" href=\"#why\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eprovide a minimal builder for warewulf5\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-docker\" class=\"anchor\" href=\"#docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -ti ghcr.io/truatpasteurdotfr/singularity-docker-stream8-warewulf4-builder:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec oras://ghcr.io/truatpasteurdotfr/singularity-docker-stream8-warewulf4-builder:latest rpmbuild -ta warewulf-4.2.0.tar.gz \n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1646853452.0
+ "updated_at": 1638431157.0
},
{
"data_format": 2,
@@ -12189,13 +11600,13 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "garciaml/BrainQCNet_GPU",
+ "full_name": "truatpasteurdotfr/singularity-docker-centos8-ci",
"latest_release": null,
- "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-brainqcnet-version-for-gpu-compatible-with-cuda-cudnn--detection-of-artifacts-on-brain-t1-weighted-scans\" class=\"anchor\" href=\"#brainqcnet-version-for-gpu-compatible-with-cuda-cudnn--detection-of-artifacts-on-brain-t1-weighted-scans\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBrainQCNet [version for GPU compatible with CUDA, CuDNN] : Detection of Artifacts on Brain T1-weighted Scans\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/garciaml/BrainQCNet/blob/master/T1_low_quality_2.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/garciaml/BrainQCNet/raw/master/T1_low_quality_2.jpg\" width=\"2000\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFor more information about the specification of BIDS Apps see \u003ca href=\"https://docs.google.com/document/d/1E1Wi5ONvOVVnGhj21S1bmJJ4kyHFT7tkxnV3C23sjIE/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-description\" class=\"anchor\" href=\"#description\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h3\u003e\n\u003cp\u003eBrainQCNet is a software that automatically detects the presence of defaults on brain structural MRI scans.\u003c/p\u003e\n\u003cp\u003eIt is based on a Deep Learning algorithm, you can find more details on how it was built on the paper \u003ca href=\"https://link-to-preprint.com\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eIn order to understand how to use BainQCNet, please go \u003ca href=\"https://github.com/garciaml/BrainQCNet\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-how-to-report-errors\" class=\"anchor\" href=\"#how-to-report-errors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to report errors\u003c/h3\u003e\n\u003cp\u003eUsers can get help using the \u003ca href=\"https://groups.google.com/g/brainqcnet-users\" rel=\"nofollow\"\u003ebrainqcnet-users mailing list\u003c/a\u003e.\nAll bugs, concerns and enhancement requests for this software can be submitted \u003ca href=\"https://github.com/garciaml/BrainQCNet_GPU/issues\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-citation\" class=\"anchor\" href=\"#citation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h3\u003e\n\u003cp\u003eWhen using BrainQCNet, please include the following citation:\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eBrainQCNet: a Deep Learning attention-based model for multi-scale detection of artifacts in brain structural MRI scans\u003c/em\u003e, Melanie Garcia, Nico Dosenbach, Clare Kelly. bioRxiv 2022.03.11.483983; doi: \u003ca href=\"https://doi.org/10.1101/2022.03.11.483983\" rel=\"nofollow\"\u003ehttps://doi.org/10.1101/2022.03.11.483983\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-centos-8-toy-system-for-singularity-and-docker-image-for-ci\" class=\"anchor\" href=\"#building-a-centos-8-toy-system-for-singularity-and-docker-image-for-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a CentOS 8 toy system for singularity and docker image for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eCentOS-8 system for github actions\u003c/li\u003e\n\u003cli\u003ebuild docker image, push to ghcr.io and re-use that docker image to create a singularity container pushed ghcr.io oras://\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:main\u003c/code\u003e tagged docker image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage-\" class=\"anchor\" href=\"#usage-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-centos8-ci/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-centos8-ci/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocker\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-centos8-ci:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run oras://ghcr.io/truatpasteurdotfr/singularity-docker-centos8-ci:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1646931926.0
+ "updated_at": 1635192721.0
},
{
"data_format": 2,
@@ -12203,307 +11614,320 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "garciaml/BrainQCNet_CPU",
+ "full_name": "truatpasteurdotfr/singularity-docker-stream8-ci",
"latest_release": null,
- "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-brainqcnet-version-for-cpu--detection-of-artifacts-on-brain-t1-weighted-scans\" class=\"anchor\" href=\"#brainqcnet-version-for-cpu--detection-of-artifacts-on-brain-t1-weighted-scans\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBrainQCNet [version for CPU] : Detection of Artifacts on Brain T1-weighted Scans\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/garciaml/BrainQCNet/blob/master/T1_low_quality_2.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/garciaml/BrainQCNet/raw/master/T1_low_quality_2.jpg\" width=\"2000\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFor more information about the specification of BIDS Apps see \u003ca href=\"https://docs.google.com/document/d/1E1Wi5ONvOVVnGhj21S1bmJJ4kyHFT7tkxnV3C23sjIE/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-description\" class=\"anchor\" href=\"#description\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h3\u003e\n\u003cp\u003eBrainQCNet is a software that automatically detects the presence of defaults on brain structural MRI scans.\u003c/p\u003e\n\u003cp\u003eIt is based on a Deep Learning algorithm, you can find more details on how it was built on the paper \u003ca href=\"https://link-to-preprint.com\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eIn order to understand how to use BainQCNet, please go \u003ca href=\"https://github.com/garciaml/BrainQCNet\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-how-to-report-errors\" class=\"anchor\" href=\"#how-to-report-errors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to report errors\u003c/h3\u003e\n\u003cp\u003eUsers can get help using the \u003ca href=\"https://groups.google.com/g/brainqcnet-users\" rel=\"nofollow\"\u003ebrainqcnet-users mailing list\u003c/a\u003e.\nAll bugs, concerns and enhancement requests for this software can be submitted \u003ca href=\"https://github.com/garciaml/BrainQCNet_CPU/issues\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-citation\" class=\"anchor\" href=\"#citation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h3\u003e\n\u003cp\u003eWhen using BrainQCNet, please include the following citation:\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eBrainQCNet: a Deep Learning attention-based model for multi-scale detection of artifacts in brain structural MRI scans\u003c/em\u003e, Melanie Garcia, Nico Dosenbach, Clare Kelly. bioRxiv 2022.03.11.483983; doi: \u003ca href=\"https://doi.org/10.1101/2022.03.11.483983\" rel=\"nofollow\"\u003ehttps://doi.org/10.1101/2022.03.11.483983\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-centos-stream-8-toy-system-for-singularity-and-docker-image-for-ci\" class=\"anchor\" href=\"#building-a-centos-stream-8-toy-system-for-singularity-and-docker-image-for-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a CentOS Stream 8 toy system for singularity and docker image for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003estream8 system for github actions\u003c/li\u003e\n\u003cli\u003ebuild docker image, push to ghcr.io and re-use that docker image to create a singularity container pushed ghcr.io oras://\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:main\u003c/code\u003e tagged docker image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage-\" class=\"anchor\" href=\"#usage-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-stream8-ci/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-stream8-ci/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocker\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-stream8-ci:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run oras://ghcr.io/truatpasteurdotfr/singularity-docker-stream8-ci:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1646931972.0
+ "updated_at": 1635194959.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "piyu2181/singulariyu",
+ "full_name": "truatpasteurdotfr/singularity-docker-busybox",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-busybox-toy-system-for-singularity-and-docker-image-for-ci\" class=\"anchor\" href=\"#building-a-busybox-toy-system-for-singularity-and-docker-image-for-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a busybox toy system for singularity and docker image for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003etoy system for github actions\u003c/li\u003e\n\u003cli\u003ebuild docker image, push to ghcr.io and re-use that docker image to create a singularity container pushed ghcr.io oras://\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:main\u003c/code\u003e tagged docker image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage-\" class=\"anchor\" href=\"#usage-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-busybox/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-busybox/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocker\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-busybox:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run oras://ghcr.io/truatpasteurdotfr/singularity-docker-busybox:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1565736075.0
+ "updated_at": 1635194705.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.speaker_tagging"
+ "Singularity"
],
- "full_name": "oboratav/speaker-tagging",
+ "full_name": "remiolsen/fast5mod-singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-red-hen-teletext-color-annotator\" class=\"anchor\" href=\"#red-hen-teletext-color-annotator\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRed Hen Teletext Color Annotator\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://www.redhenlab.org/home/the-cognitive-core-research-topics-in-red-hen/the-barnyard/convert-teletext-colors-to-speaker-tags\" rel=\"nofollow\"\u003eA Red Hen Lab project.\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003eSome providers in certain countries use styling features available in DVB Teletext to color-code their closed captioning. These color codes can potentially be used to detect turn-taking between interlocutors.\u003c/p\u003e\n\u003cp\u003eThis program takes a \u003ccode\u003e.seg\u003c/code\u003e file, reads color tags inside it (if any), and outputs an annotated version of the same file.\u003c/p\u003e\n\u003cp\u003eThe tags it adds are in the form of:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e[start]|[end]|CTG_0|[hex]/[text]\n\u003c/code\u003e\u003c/pre\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eField\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e[start]\u003c/td\u003e\n\u003ctd\u003eStarting timestamp of the annotation\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e[end]\u003c/td\u003e\n\u003ctd\u003eEnding timestamp of the annotation\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e[hex]\u003c/td\u003e\n\u003ctd\u003eHex color of the tag\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e[text]\u003c/td\u003e\n\u003ctd\u003eContents of the tag\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eFor instance:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e20200202214233.960|20200202214234.760|CTG_0|#ffff00/y nuevas pistas.\n20200202214233.960|20200202214234.760|CC1|\u0026lt;font color=\"#ffff00\"\u0026gt;y nuevas pistas.\u0026lt;/font\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003ehex/text\u003c/code\u003e pairs may repeat if more than one color tag exists in a single CC line, with each pair being separated by \u003ccode\u003e|\u003c/code\u003e like so:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e20200202214242.840|20200202214245.360|CTG_0|#ffff00/en busca de respuestas|#ffff00/a las nuevas tendencias.\n20200202214242.840|20200202214245.360|CC1|\u0026lt;font color=\"#ffff00\"\u0026gt;en busca de respuestas\u0026lt;/font\u0026gt; \u0026lt;font color=\"#ffff00\"\u0026gt;a las nuevas tendencias.\u0026lt;/font\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to-install-and-use\" class=\"anchor\" href=\"#how-to-install-and-use\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to Install and Use\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-via-docker\" class=\"anchor\" href=\"#via-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003evia Docker\u003c/h3\u003e\n\u003cp\u003eInstalling and using the tool as a Docker container is by far the easiest way. Simply run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull oboratav/speaker-tagging\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAnd Docker will take care of the rest. To annotate a file, simply pipe it into the container, and capture its output:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecat input_file.txt | docker run -i -a stdin -a stdout oboratav/speaker-tagging \u0026gt; output_file.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can also use the \u003ccode\u003e-v\u003c/code\u003e flag to mount files from the local filesystem:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -i -v /some/input/file.seg:/usr/data/input_file.seg -a stdout oboratav/speaker-tagging /usr/data/input_file.seg \u0026gt; output_file.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-directly\" class=\"anchor\" href=\"#directly\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDirectly\u003c/h3\u003e\n\u003cp\u003eYou can also skip Docker altogether and just clone this git repo, create a virtual environment, and install the requirements listed in \u003ccode\u003erequirements.txt\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-example-use-cases\" class=\"anchor\" href=\"#example-use-cases\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample Use Cases\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eFind occurrences of two different colors in the same line:\n\u003ccode\u003eCTG_0\\|.*([a-f0-9]{6}).*\\|(?!\\1)(?:[a-f0-9]{6})\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fast5mod-singularity\" class=\"anchor\" href=\"#fast5mod-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efast5mod-singularity\u003c/h1\u003e\n\u003cp\u003eSingulartized version of \u003ca href=\"https://github.com/nanoporetech/fast5mod\"\u003ehttps://github.com/nanoporetech/fast5mod\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1639347259.0
+ "updated_at": 1635176825.0
},
{
"data_format": 2,
- "description": "Generate a singularity container for XDS",
+ "description": "Singularity images for tensorflow",
"filenames": [
- "Singularity.xds_2021-Feb05"
+ "Singularity.cuda9.0-tf1.13-with_dali",
+ "Singularity.cuda9.0-tf1.13-ofed4.4",
+ "Singularity.cuda9.0-tf1.13-ofed4.0",
+ "Singularity.cuda9.0-tf1.13-without-ofed"
],
- "full_name": "hoangnguyen177/xds-singularity-container",
+ "full_name": "Pepitaw/singularity_tensorflow",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-xds-singularity-container\" class=\"anchor\" href=\"#xds-singularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003exds-singularity-container\u003c/h1\u003e\n\u003cp\u003eGenerate a singularity container for XDS\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity_tensorflow\" class=\"anchor\" href=\"#singularity_tensorflow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity_tensorflow\u003c/h1\u003e\n\u003cp\u003eSingularity images for tensorflow\nUsed for 2019 APAC HPC-AI\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1639537965.0
+ "updated_at": 1634629001.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Trigger repo1 on repos2 release",
+ "filenames": [
+ "environments/illumina/Singularity"
+ ],
+ "full_name": "sofstam/repo1",
+ "latest_release": "v2.1.3",
+ "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-repo1\" class=\"anchor\" href=\"#repo1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRepo1\u003c/h2\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1638278004.0
+ },
+ {
+ "data_format": 2,
+ "description": "sherlock vnc is a singularity container and job script to run xfce4 in a vnc session on the sherlock compute cluster",
"filenames": [
"Singularity"
],
- "full_name": "AdamWilsonLab/emma_docker",
- "latest_release": "0.0.605",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-emma-docker-container\" class=\"anchor\" href=\"#emma-docker-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEMMA Docker Container\u003c/h1\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-instructions\" class=\"anchor\" href=\"#instructions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstructions\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quickstart\" class=\"anchor\" href=\"#quickstart\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuickstart\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --rm -p 8787:8787 -e PASSWORD=yourpasswordhere adamwilsonlab/emma:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eVisit \u003ccode\u003elocalhost:8787\u003c/code\u003e in your browser and log in with username rstudio and the password you set. NB: Setting a password is now REQUIRED. Container will error otherwise.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-local-machine-no-password\" class=\"anchor\" href=\"#local-machine-no-password\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLocal machine (no password)\u003c/h2\u003e\n\u003cp\u003eIf you are running on a local machine with other security mechanisms, you can use the following:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --rm \\\n -p 127.0.0.1:8787:8787 \\\n -e DISABLE_AUTH=true \\\n adamwilsonlab/emma:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h2\u003e\n\u003cp\u003eThere are two methods to pull the docker image into Singularity as explained below.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-set-some-useful-environment-variables\" class=\"anchor\" href=\"#set-some-useful-environment-variables\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSet some useful environment variables\u003c/h3\u003e\n\u003cp\u003eIf you don\u0027t do this you\u0027re likely to run out of space because the home directory doesn\u0027t have much room.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# mount project folder inside container:\nexport PROJECT_FOLDER=\"/projects/academic/adamw/\"\n# path to singularity container file. If you want to use a different image, you\u0027ll need\n# to update this line.\nexport DOCKER_PATH=\"docker://adamwilsonlab/emma:latest\"\nexport CONTAINER_PATH=\"/panasas/scratch/grp-adamw/singularity/$USER/AdamWilsonLab-emma_docker:latest.sif\"\n# to use for ssh:\nexport SERVER_URL=\"horae.ccr.buffalo.edu\"\n# folder to hold temporary singularity files - unique for each user:\n# export SINGULARITY_LOCALCACHEDIR=\"/panasas/scratch/grp-adamw/singularity/\"$USER\nexport SINGULARITY_LOCALCACHEDIR=\"/ssd_data/singularity/\"$USER\n\n# name the resulting sif file\nexport SIF_PATH=$SINGULARITY_LOCALCACHEDIR/\"AdamWilsonLab-emma_docker-latest.sif\"\n\n# define a few more folders used by singularity\nexport SINGULARITY_CACHEDIR=$SINGULARITY_LOCALCACHEDIR\nexport SINGULARITY_TMPDIR=$SINGULARITY_LOCALCACHEDIR\n\n# Create the folders if they don\u0027t already exist\nmkdir -p $SINGULARITY_LOCALCACHEDIR/tmp\nmkdir -p $SINGULARITY_LOCALCACHEDIR/run\nmkdir -p $SINGULARITY_LOCALCACHEDIR/rstudio\n\n\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-build-directly-from-docker-image-locally\" class=\"anchor\" href=\"#build-directly-from-docker-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild directly from Docker image locally\u003c/h3\u003e\n\u003cp\u003eBuild the .sif directly from the docker image.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# build the singularity image - note this takes about 3 hours on horae!\nnohup singularity build --force $SIF_PATH $DOCKER_PATH \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003enohup\u003c/code\u003e simply allows it to keep running if the SSH connection is broken.\u003c/p\u003e\n\u003cp\u003eThen follow the \u003ca href=\"singularity_start.sh\"\u003e\u003ccode\u003esingularity_start.sh\u003c/code\u003e\u003c/a\u003e script.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-use-the-precompiled-sif-from-github\" class=\"anchor\" href=\"#use-the-precompiled-sif-from-github\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUse the precompiled .sif from Github\u003c/h3\u003e\n\u003cp\u003eA .sif file is compiled using github actions when the version number of the image is updated in this repository. These can be found \u003ca href=\"https://github.com/AdamWilsonLab/emma_docker/releases\"\u003ehere\u003c/a\u003e. However, they are only produced if turned on in the GitHub actions \u003ccode\u003ebuilder.yml\u003c/code\u003e file.\u003c/p\u003e\n\u003cp\u003eYou will only need to run the following once (unless the image changes).\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd /panasas/scratch/grp-adamw/singularity/adamw\nrm AdamWilsonLab-emma_docker-latest.sif\nwget -O $SIF_PATH https://github.com/AdamWilsonLab/emma_docker/releases/download/0.0.530/AdamWilsonLab-emma_docker-latest.sif.zip\nunzip $SIF_PATH\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen follow the \u003ca href=\"singularity_start.sh\"\u003e\u003ccode\u003esingularity_start.sh\u003c/code\u003e\u003c/a\u003e script.\u003c/p\u003e\n",
+ "full_name": "romxero/sherlock_vnc",
+ "latest_release": null,
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1641492090.0
+ "updated_at": 1634276991.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "iqbal-lab-org/triphecta",
+ "full_name": "DCAN-Labs/BIDS_scripts",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/iqbal-lab-org/triphecta/actions/workflows/build.yaml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/iqbal-lab-org/triphecta/actions/workflows/build.yaml/badge.svg\" alt=\"Build Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-triphecta\" class=\"anchor\" href=\"#triphecta\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etriphecta\u003c/h1\u003e\n\u003cp\u003eUnder construction\u003c/p\u003e\n",
+ "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-bids-conversion-scripts\" class=\"anchor\" href=\"#bids-conversion-scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBIDS Conversion Scripts\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-description\" class=\"anchor\" href=\"#description\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h3\u003e\n\u003cp\u003eThis repository contains scripts that will assist in the conversion of raw DICOM data sets to \u003ca href=\"http://bids.neuroimaging.io/format\" rel=\"nofollow\"\u003eBIDS\u003c/a\u003e. The \"heuristics\" folder contains example scripts that have been used to convert data from DICOM to BIDS. \u003cstrong\u003eThis folder may be helpful to build your own heuristics script.\u003c/strong\u003e For additional information on how to create a heuristic script see the \u003ca href=\"https://github.com/nipy/heudiconv\"\u003eheudiconv\u003c/a\u003e github page.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-container-hosting\" class=\"anchor\" href=\"#container-hosting\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainer Hosting\u003c/h3\u003e\n\u003cp\u003ePull the most recent container below, (\u003cstrong\u003eNOTE: you only have to do this once!\u003c/strong\u003e):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://tjhendrickson/BIDS_scripts:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-singularity-usage\" class=\"anchor\" href=\"#singularity-usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Usage\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run /path/to/singularity/images/directory/imagename.img --help\nusage: [-h] [--output_dir OUTPUT_DIR] [--dicom_dir DICOM_DIR]\n [--study_name STUDY_NAME] [--ses_id SES_ID] [--subj_id SUBJ_ID]\n [--heuristic HEURISTIC] [--dry_run]\n\nScript that controls BIDS conversion for individual studies\n\noptional arguments:\n -h, --help show this help message and exit\n --output_dir OUTPUT_DIR\n The directory that the BIDS data will be outputted to\n --dicom_dir DICOM_DIR\n The directory that houses unzipped dicom\n directories/files.\n --study_name STUDY_NAME\n What is the shorthand name for this study?\n --ses_id SES_ID scanning session id\n --subj_id SUBJ_ID subject id\n --heuristic HEURISTIC\n Path to heuristic file, if the file is already within\n the container (i.e. within heuristics folder) you do\n not have to specify a path.\n --dry_run Dry run. A dicominfo_*.tsv file will generate within\n .heudiconv/\u0027subj_id\u0027/info directory which can be used\n to create heuristic script\n\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eThis application must be run with either the \"--heuristic\" or \"--dry_run\" argument, it will fail otherwise.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eUse the \"--dry_run\" argument to take a closer look at the acquistion parameters for a scanning session.\u003c/p\u003e\n\u003cp\u003eTo run a single participant with dry_run argument:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /home/timothy/sandbox_DO_NOT_DELETE/BIDS/142_CIFASD_4:/output_dir \\\n-B /path/to/dicom/data/dir:/dicom_dir /path/to/singularity/images/directory/imagename.img \\\n--output_dir /output_dir --dicom_dir /dicom_dir --ses_id 10000 --subj_id 1000 --dry_run\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will output a hidden folder (named .heudiconv) along with sub-folders based on arguments provided to \"--subj_id\" and \"--ses_id\" respectively.\nWithin the sub-folders will be a tsv file that begins with \"dicominfo\". \u003cstrong\u003eBased on the example above the path to the file will be \".heudiconv/1000/ses-10000/info/dicominfo_ses-10000.tsv\"\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eUse this tsv file to design a heuristics script to organize your eventual nifti data. \u003cstrong\u003eSee this tutorial for a how to on heuristic script creation (\u003ca href=\"http://reproducibility.stanford.edu/bids-tutorial-series-part-2a/#heuman3\" rel=\"nofollow\"\u003eheuristics tutorial\u003c/a\u003e)\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eTo run a single participant with heuristic argument:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /home/timothy/sandbox_DO_NOT_DELETE/BIDS/142_CIFASD_4:/output_dir \\\n-B /path/to/dicom/data/dir:/dicom_dir -B /path/to/heuristics/script:/heuristic.py \\\n /path/to/singularity/images/directory/imagename.img \\\n--output_dir /output_dir --dicom_dir /dicom_dir --ses_id 10000 --subj_id 1000 --heuristic /heuristic.py\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-important-notes\" class=\"anchor\" href=\"#important-notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImportant Notes\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-gotchas\" class=\"anchor\" href=\"#gotchas\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGotchas\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003e1) Bind Mounting\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eIn order to run this container you will have to use \"bind mounting\", meaning you will have to link local folders/files to existing folders/files within the container with the -B flag. In the example above the local folder \"/home/timothy/sandbos_DO_NOT_DELETE/BIDS/142_CIFASD_4\" becomes \"/output_dir\" within the container as they are separated by a colon (:). \u003cstrong\u003eNotice that in both cases above the output and dicom folder and heuristic file are bound to /output_dir, /dicom_dir and /heuristic.py respectively, this is very important.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e2) DICOM Data Formatting\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eDue to the restrictive nature of BIDS the dicom data must be in a particular format in order for the conversion to work properly. This application will copy dicom data directories by searching for either the --subj_id or --ses_id argument present within a dicom directory name, place them in a separate directory, and rearrange them. So for example if the dicom directory is named \"XYXY4776XYXY\" --subj_id 4776 the application will find the \"4776\" pattern.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e3) Subject ID and Session ID names\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eYou must use alphanumerics (i.e. letters or numbers) only (\u003cstrong\u003eno special characters\u003c/strong\u003e) with your subject IDs (subj_id) and session IDs (ses_id). \u003cstrong\u003eNote the \"--ses_id\" argument is optional\u003c/strong\u003e!\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-best-practices\" class=\"anchor\" href=\"#best-practices\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBest Practices\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003e1) Initial Conversion\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eWhile testing the initial BIDS conversion it is best to start with one or two datasets and specify the \u0027--dry_run\u0027 argument (see above for an example of usage).\nThis will create a dicom_info tsv file which can be used for heuristic script creation.\nSee Step 3 of \u0027Run HeuDiConv on ses-001 scans to get the dicominfo file\u0027 within \u003ca href=\"http://reproducibility.stanford.edu/bids-tutorial-series-part-2a/#heuman2\" rel=\"nofollow\"\u003eStanford BIDS Tutorial\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e2) BIDS Validator\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eOnce satisfied with an initial BIDS conversion, prior to running the conversion on an entire study first ensure that the BIDS converted dataset meets the BIDS specification by using the \u003ca href=\"http://incf.github.io/bids-validator/\" rel=\"nofollow\"\u003eBIDS validator web version\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e3) Longitudinal Format\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eWhen converting data to BIDS you can certainly have a cross sectonal directory format such as below:\nBIDS_output\nsub-01\nsub-02\nsub-03\nsub-04\netc\nHowever, I suggest placing data within a longitudinal directory format even if you have cross-sectional data:\nBIDS_output\nsub-01\nses-01\nses-02\nsub-02\nses-01\netc\u003c/p\u003e\n\u003cp\u003eYou can control the BIDS directory format by providing both the arguments --subj_id --ses_id for a conversion, if you only specify one of the two arguments the data will be outputted in a cross-sectional format.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1639756790.0
+ "updated_at": 1633800709.0
},
{
"data_format": 2,
- "description": "\ud83d\udc1f \ud83c\udf63 \ud83c\udf71 Highly-accurate \u0026 wicked fast transcript-level quantification from RNA-seq reads using selective alignment",
+ "description": "Recipe for deepspeed singularity container",
"filenames": [
- "1.6.0/Singularity",
- "1.5.2/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-salmon",
+ "full_name": "luukkonenr/deepspeed-torch-singularity",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-salmon/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-salmon/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-salmon/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-salmon/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0b8ff9f174b15f24d56c3f8e2cf513b84784150c0375c38dc395c4b3278d6a17/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d73616c6d6f6e\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0b8ff9f174b15f24d56c3f8e2cf513b84784150c0375c38dc395c4b3278d6a17/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d73616c6d6f6e\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-salmon\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/2c22132440bbb02239d96119f1cf10791c102131494c8947ac8fe61fb5e02783/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d73616c6d6f6e\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2c22132440bbb02239d96119f1cf10791c102131494c8947ac8fe61fb5e02783/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d73616c6d6f6e\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-salmon\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/62b78a520b27fb026e274ca940aa93bf9d37fa14d817d47a533364393ecff206/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d73616c6d6f6e\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/62b78a520b27fb026e274ca940aa93bf9d37fa14d817d47a533364393ecff206/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d73616c6d6f6e\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-salmon\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7dd8453685087761442a45f4a77d6ddab1597f1cc80874ef308e2170ed183e6a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d73616c6d6f6e\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7dd8453685087761442a45f4a77d6ddab1597f1cc80874ef308e2170ed183e6a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d73616c6d6f6e\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-salmon\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-salmon\" class=\"anchor\" href=\"#singularity-salmon\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-salmon\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/COMBINE-lab/salmon/raw/master/doc/salmon_logo.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg alt=\"salmon logo\" src=\"https://github.com/COMBINE-lab/salmon/raw/master/doc/salmon_logo.png\" width=\"600\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/COMBINE-lab/salmon\"\u003esalmon\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003esalmon\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/salmon/1.5.2\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/salmon\u003c/code\u003e as \u003ccode\u003e1.5.2.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch3\u003e\n\u003ca id=\"user-content-note-docker-workflow-with-gh-actions-is-broken-due-to-a-broken-dependency-since-debian-git-depenceny-for-image-has-been-removed\" class=\"anchor\" href=\"#note-docker-workflow-with-gh-actions-is-broken-due-to-a-broken-dependency-since-debian-git-depenceny-for-image-has-been-removed\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNOTE: Docker-workflow with GH-Actions is broken due to a broken dependency, since debian-git-depenceny for image has been removed.\u003c/h3\u003e\n\u003cp\u003eTODO: update image path.\nPrevious working image is still available.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-recipe-template-for-building-deepspeed-enabled-pytorch-container\" class=\"anchor\" href=\"#singularity-recipe-template-for-building-deepspeed-enabled-pytorch-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity-recipe-template for building Deepspeed-enabled pytorch-container\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-install-singularity\" class=\"anchor\" href=\"#install-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall singularity\u003c/h2\u003e\n\u003cp\u003eFollow these instructions to install singularity on a system\n\u003ca href=\"https://github.com/hpcng/singularity/blob/master/INSTALL.md\"\u003ehttps://github.com/hpcng/singularity/blob/master/INSTALL.md\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eNOTE: I\u0027ve used \u003cstrong\u003eSingularity version 3.5.3\u003c/strong\u003e, newest 3.8.3 gave me some errors and I think it uses later gcc or something like that which results in build problems with some of the libraries.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-option-1-building-a-container-on-your-own-machine\" class=\"anchor\" href=\"#option-1-building-a-container-on-your-own-machine\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOption 1: Building a container on your own machine\u003c/h2\u003e\n\u003cp\u003eYou need root-privileges (or --fakeroot) to build containers.\nYou may need to set cachedir for singularity to avoid \u0027no space left on device\u0027-errors\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emkdir $HOME/.cache/singularity/\nexport SINGULARITY_TMPDIR=/path/ e.g $HOME/.cache/singularity/\nexport SINGULARITY_CACHEDIR=/path/ e.g $HOME/.cache/singularity/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eBUILD:\u003c/strong\u003e \u003ccode\u003esudo -E singularity build container-name Singularity\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-option-2-pulling-ready-built-image-from-ghcr\" class=\"anchor\" href=\"#option-2-pulling-ready-built-image-from-ghcr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOption 2: Pulling ready-built image from ghcr\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eexport SINGULARITY_TMPDIR=/path/ e.g $HOME/.cache/singularity/\nexport SINGULARITY_CACHEDIR=/path/ e.g $HOME/.cache/singularity/\nsingularity pull NAME_FOR_IMG docker://ghcr.io/luukkonenr/deepspeed-torch-singularity:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-on-csc-environment\" class=\"anchor\" href=\"#running-on-csc-environment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning on CSC-environment\u003c/h2\u003e\n\u003cp\u003eIf running on Mahti make sure your $HOME/.ssh/config is looking like this\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e host c???? g???? mahti* *.mahti.csc.fi\n IdentityFile ~/.ssh/id_rsa_mahti\n StrictHostKeyChecking no\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePut the following inside your slurm-script:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#Load pdsh\nmodule load pdsh/2.31\n\n#Bind directory with pdsh to /usr/local/sbin in singularity\nexport SING_FLAGS=\"$SING_FLAGS -B /appl/spack/v014/install-tree/gcc-4.8.5/pdsh-2.31-cdzt5w/bin:/usr/local/sbin\"`\nexport SING_IMAGE=/PATH/TO/CONTAINER/deepspeed.sif # This needs to match the path inside your init_node.sh\nexport SING_FLAGS=$SING_FLAGS \"--nv\" # Enable GPU\nexport SING_FLAGS=$SING_FLAGS \"--contain\" # Shadow /home/$USER/ \nexport TORCH_EXT_DIR=/path/to/some/dir/ # I f you have existing dir with some ops, may cause a hang with a msg about using this torch_ext_dir. Try removing that dir and run your job again.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUsing plain singularity and \u003ccode\u003e--contain\u003c/code\u003e-flag shadowing the /user/home/ to avoid possible conflicting user-packages:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eEXAMPLE:\u003c/strong\u003e\n\u003ccode\u003esingularity exec --contain $SING_IMAGE python -c \u0027ds_report\u0027\u003c/code\u003e\n\u003ccode\u003esingularity exec $SING_FLAGS $SING_IMAGE python -c \u0027ds_report\u0027\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eUsing csc singularity_wrapper (\u003cstrong\u003enot preferred\u003c/strong\u003e, may lead to conflicts especially on multinode-setup) :\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eRUNNING:\u003c/strong\u003e\n\u003ccode\u003esingularity_wrapper exec deepspeed DEEPSPEED_ARGUMENTS path/to/python_script.py PYTHON_ARGUMENTS\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eEXAMPLE:\u003c/strong\u003e\n\u003ccode\u003esingularity_wrapper exec deepspeed --hostfile=hostfile.txt --master_addr=$MASTER_NODE /projappl/project_2004600/risto/model3multi/training/trainer.py --train_data $TRAIN_DATA \\ ... \u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-changes-to-packages\" class=\"anchor\" href=\"#changes-to-packages\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eChanges to packages:\u003c/h2\u003e\n\u003cp\u003eThis version has been configured to use pdsh for inter-node communications. No other runners have been tested and may need spesific configurations.\n\u003ccode\u003e/opt/conda/lib/python3.8/site-packages/deepspeed/launcher/multinode_runner.py\u003c/code\u003e has been modified to contain relevant information about running python inside the container:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eadded line \"source node_init.sh\" \u003cem\u003esee node_init.sh\u003c/em\u003e to PDSH-runner-class\u003c/li\u003e\n\u003cli\u003eexec argument \u003ccode\u003epython\u003c/code\u003e changed to \u003ccode\u003esingularity exec $SING_FLAGS $SING_IMAGE python\u003c/code\u003e to PDSH-runner-class\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-notes\" class=\"anchor\" href=\"#notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eIMPORTANT\u003c/strong\u003e: CSC singularity_wrapper exposes user-libraries even if we use \u003ccode\u003e--contain\u003c/code\u003e-flag so using it with this container is not a good idea.\n\u003ccode\u003e--contain\u003c/code\u003e-flag prevents usage of locally installed packages. Otherwise, conflicts with different versions of packages, especially included modified Deepspeed will cause problems.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eI\u0027ve tried to test get build process working with Github Actions but during build I encounter \"no space left on device\"-error and build crashes. Will try to get this working so newest img would always be ready to get pulled. However, Docker-workflow works.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-resources\" class=\"anchor\" href=\"#resources\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResources:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://singularity-tutorial.github.io/\" rel=\"nofollow\"\u003ehttps://singularity-tutorial.github.io/\u003c/a\u003e -- Basics of singularity usage\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://sylabs.io/guides/3.5/user-guide/\" rel=\"nofollow\"\u003ehttps://sylabs.io/guides/3.5/user-guide/\u003c/a\u003e -- Singularity docs (v.3.5)\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1639902426.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1637060857.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "requirements/Singularity.def"
],
- "full_name": "porchard/snRNAseq-NextFlow",
+ "full_name": "nasa-cisto-ai/slump-detection",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nextflow-pipeline-for-10x-snatac-seq-data\" class=\"anchor\" href=\"#nextflow-pipeline-for-10x-snatac-seq-data\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNextFlow pipeline for 10X snATAC-seq data\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eSingularity (v. 3) and NextFlow (\u0026gt;= v. 20.10.0). Containers with the software for each step are pulled from the Sylabs cloud library (\u003ca href=\"https://cloud.sylabs.io/library\" rel=\"nofollow\"\u003ehttps://cloud.sylabs.io/library\u003c/a\u003e).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-configuration\" class=\"anchor\" href=\"#configuration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguration\u003c/h2\u003e\n\u003cp\u003ePaths to reference files must be included in the nextflow.config file -- check that file and change paths accordingly. These include:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSTAR indices (compatible with STAR v. 2.7.9a)\u003c/li\u003e\n\u003cli\u003eGTF files\u003c/li\u003e\n\u003cli\u003eBarcode whitelist (for Chromium v3, that is the 3M-february-2018.txt file; for v2, that is the 737K-august-2016.txt file; for multiome, that is 737K-arc-v1.txt)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eYou\u0027ll also need to set the params.results variable -- either in the nextflow.config file itself, or on the command line when you run the pipeline (\u0027--results /path/to/results\u0027) as well as the 10X Chromium chemistry version (\u0027V2\u0027, \u0027V3\u0027, or \u0027multiome\u0027)\u003c/p\u003e\n\u003cp\u003eLastly, you\u0027ll need to include information about each RNA-seq library, including the genome to which it should be mapped, and the paths to the fastq files for each readgroup. Organize this information in a JSON file, as in library-config.json. For each readgroup, the \u00271\u0027 fastq file corresponds to the sequencing read including the UMI and the nucleus index; the \u00272\u0027 fastq file refers to the sequencing read representing the actual transcript. Also, note that the \u0027genome\u0027 attribute is given as a list (because I will be adding the ability to map to multiple genomes, in the case that nuclei from multiple species are mixed together).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running\" class=\"anchor\" href=\"#running\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning\u003c/h2\u003e\n\u003cp\u003eOnce you have all of the above information, you can run the pipeline as follows (in this case, indicating the path to the results on the command line):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run -params-file library-config.json --chemistry multiome --results /path/to/results /path/to/main.nf\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-slump-detection\" class=\"anchor\" href=\"#slump-detection\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSlump Detection\u003c/h1\u003e\n\u003cp\u003eSlump Detection as an instance segmentation problem.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-business-case\" class=\"anchor\" href=\"#business-case\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBusiness Case\u003c/h2\u003e\n\u003cp\u003eThe following repository stores several experiments for the task of instance and semantic\nsegmentation of slumps in very high-resolution satellite imagery. Many of the instructions\nlisted below are guided towards utilizing GSFC NASA Center for Climate Simulation (NCCS)\ncomputing resources, particularly the PRISM GPU cluster.\u003c/p\u003e\n\u003cp\u003eA system with NVIDIA GPUs is required to run the scripts located in this repository.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eprojects/detectron2: utilizes the detectron2 framework for the task of instance segmentation\nleveraging MaskRCNN and Fast RCNN. The backend engine is PyTorch.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-summarized-steps\" class=\"anchor\" href=\"#summarized-steps\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSummarized Steps\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003essh adaptlogin.nccs.nasa.gov\nssh gpulogin1\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e/slump-detection/projects/detectron2\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" href=\"#table-of-contents\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTable of Contents\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"#Logging_In\"\u003eLogging-In\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Container_Environment_Installation\"\u003eContainer Environment Installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Working_Inside_Container\"\u003eWorking Inside a Container\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Getting_Started\"\u003eGetting Started\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Authors\"\u003eAuthors\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#References\"\u003eReferences\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-logging-in-\" class=\"anchor\" href=\"#logging-in-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLogging-In \u003ca name=\"user-content-Logging_In\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cp\u003eYou will need an activate NCCS account together with a PIV Card or an RSA Token. Please refer\nto the following link for instructions on setting up login or any login related questions:\n\u003ca href=\"https://www.nccs.nasa.gov/nccs-users/instructional/logging-in/bastion-host\" rel=\"nofollow\"\u003eNCCS Logging-In\u003c/a\u003e.\nOnce you are all setup, you may login to the PRISM GPU cluster.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003essh adaptlogin.nccs.nasa.gov\nssh gpulogin1\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-container-environment-installation-\" class=\"anchor\" href=\"#container-environment-installation-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainer Environment Installation \u003ca name=\"user-content-Container_Environment_Installation\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cp\u003eAll the software and scripts from this repository can be ran within a container. Containers are\nsmall versions of operating systems that are meant to speed up the process of software development.\nThese containers are simply a binary file which has all the executables needed to run the software included.\u003c/p\u003e\n\u003cp\u003eThe NCCS provides Singularity as the default container runtime tool. In order to configure your\nenvironment to run Singularity containers, you will need to setup the environment variables listed below.\nFor this, you can simply add the following lines to your ~/.bashrc file.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eexport SINGULARITY_CACHEDIR=\u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e/.singularity\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eexport SINGULARITY_TMPDIR=\u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e/.singularity\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc\n\u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTest the environment variables with the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e[username@gpulogin1 \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e]$ \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$SINGULARITY_CACHEDIR\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$SINGULARITY_TMPDIR\u003c/span\u003e\n/att/nobackup/username/.singularity /att/nobackup/username/.singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIn order to utilize the container for this project, we first need to download the image from a container\nregistry. The image for this project is located in \u003ca href=\"https://hub.docker.com/repository/docker/nasanccs/slump-detectron2\" rel=\"nofollow\"\u003eNASA NCCS DockerHub Repository\u003c/a\u003e. Docker containers can be pulled as Singularity containers to be executed on HPC\nenvironments. The following commands allow the download of the container from DockerHub and generates a\nfile with a .sif extension. Depending on the file system, this step can take several minutes.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e\nmodule load singularity\nsingularity pull docker://docker.io/nasanccs/slump-detectron2:latest\nsingularity build --sandbox slump-detectron2_latest slump-detectron2_latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-working-inside-a-container-\" class=\"anchor\" href=\"#working-inside-a-container-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWorking Inside a Container \u003ca name=\"user-content-Working_Inside_Container\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cp\u003eEach project provides a set of Slurm scripts that will execute code inside the container without having\nto login inside the image. You may skip this step and go straight to the project README if you are only\ninterested in running scripts from outside the container. This section is meant to help users developing\nand testing code inside the container to facilitate the development process.\u003c/p\u003e\n\u003cp\u003eTo get a session in one of the PRISM GPU nodes, you can run the following command. Additional instructions\nregarding Slurm can be found in the \u003ca href=\"https://www.nccs.nasa.gov/nccs-users/instructional/adapt-instructional/using-prism\" rel=\"nofollow\"\u003eNCCS website\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esalloc\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou will notice that the hostname will change to something similar to gpu***. This means that you are now\nlogged into one of the GPU nodes. To access the container image, you can run the command listed below:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity shell --nv -B /att/nobackup/username:/att/nobackup/username slump-detectron2_latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ewhere username is your NASA auid. From here, you can run any command inside the container image. Note that\nfor Singularity containers to have access to other paths within the HPC environment, we need to bind\ndirectories to particular locations in the container. The command above is binding your $NOBACKUP directory\nto be visible from inside the container.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-getting-started-\" class=\"anchor\" href=\"#getting-started-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started \u003ca name=\"user-content-Getting_Started\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cp\u003eThe following is a summarized set of steps to get started and running in less than 5 minutes once the container image has been downloaded.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eClone this repository into your ADAPT space\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e\ngit clone https://github.com/jordancaraballo/slump-detection.git\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eCopy the data into the data/ directory\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ecp /data/location/.tif \u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e/slump-detection/data\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eGenerate train, test, and validation datasets\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e/slump-detection/projects/detectron2\nsbatch gen_dataset.sh\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eTrain a new model\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e/slump-detection/projects/detectron2\nsbatch train_detectron2.sh\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eClassify given imagery\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e/slump-detection/projects/detectron2\nsbatch predict_detectron2.sh\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-project-specific-information\" class=\"anchor\" href=\"#project-specific-information\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eProject Specific Information\u003c/h2\u003e\n\u003cp\u003eData resides under:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e/att/nobackup/username/EVHR_requests/_deliver/EWebbRequest\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003essh adaptlogin\nssh gpulogin1\nmodule load anaconda\nconda create --name slump-detection-11.1 --clone /att/nobackup/username/.conda/envs/slump-detection-11.1\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-anaconda-environment\" class=\"anchor\" href=\"#anaconda-environment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAnaconda environment\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emodule load anaconda\nconda config --add channels conda-forge\nconda config --set channel_priority strict\nconda create -y -n slump-detection rioxarray cupy cudatoolkit=11.2 dask-cuda cudnn cutensor nccl ipykernel ipywidgets matplotlib geopandas iteration_utilities\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eInstall pip dependencies\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda activate slump-detection\npip install -r requirements.txt\npip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html\npip install \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003egit+https://github.com/facebookresearch/fvcore\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\npip install \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003egit+https://github.com/philferriere/cocoapi.git#egg=pycocotools\u0026amp;subdirectory=PythonAPI\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\ngit clone https://github.com/facebookresearch/detectron2 detectron2_repo \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e pip install -e detectron2_repo\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAdding NCCL\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia\nconda create -n rapids-21.06 -c rapidsai -c nvidia -c conda-forge rapids-blazing=21.06 python=3.7 cudatoolkit=11.2 nvcc_linux-64 nccl ipykernel ipywidgets matplotlib geopandas iteration_utilities\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda create -n rapids-21.06 -c rapidsai -c nvidia -c conda-forge -c pytorch rapids-blazing=21.06 python=3.7 cudatoolkit=11.1 ipykernel ipywidgets matplotlib geopandas pytorch torchvision torchaudio cudatoolkit=11.1 \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou could also enhance your kernel with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda config --add channels conda-forge\nconda config --set channel_priority strict\nconda create -y -n slump-detection-11.1 rioxarray cupy cudatoolkit=11.1 dask-cuda cudnn cutensor nccl ipykernel ipywidgets matplotlib geopandas iteration_utilities gcc_linux-64\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip install cython\npip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html\npip install \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003egit+https://github.com/facebookresearch/fvcore\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\npip install \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003egit+https://github.com/philferriere/cocoapi.git#egg=pycocotools\u0026amp;subdirectory=PythonAPI\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\npip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu111/torch1.9/index.html\npip install opencv-python scikit-image\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-authors\" class=\"anchor\" href=\"#authors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eJordan Alexis Caraballo-Vega, \u003ca href=\"mailto:jordan.a.caraballo-vega@nasa.gov\"\u003ejordan.a.caraballo-vega@nasa.gov\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-references\" class=\"anchor\" href=\"#references\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences\u003c/h2\u003e\n\u003cp\u003e[1] Chollet, Fran\u00e7ois; et all, Keras, (2015), GitHub repository, \u003ca href=\"https://github.com/keras-team/keras\"\u003ehttps://github.com/keras-team/keras\u003c/a\u003e. Accessed 13 February 2020.\u003c/p\u003e\n\u003cp\u003e[2] Paszke, Adam; Gross, Sam; Chintala, Soumith; Chanan, Gregory; et all, PyTorch, (2016), GitHub repository, \u003ca href=\"https://github.com/pytorch/pytorch\"\u003ehttps://github.com/pytorch/pytorch\u003c/a\u003e. Accessed 13 February 2020.\u003c/p\u003e\n\u003cp\u003e[3] Google Brain Team; et all, TensorFlow, (2015), GitHub repository, \u003ca href=\"https://github.com/tensorflow/tensorflow\"\u003ehttps://github.com/tensorflow/tensorflow\u003c/a\u003e. Accessed 13 February 2020.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1640263903.0
+ "updated_at": 1633374291.0
},
{
"data_format": 2,
- "description": "FabSim3_extra",
+ "description": "Wrapper scripts and documentation for launching database jobs to be used by Nextflow pipelines",
"filenames": [
- "Singularity"
+ "Singularity.mysql"
],
- "full_name": "kbronik2017/FabSim3_extra",
+ "full_name": "biocorecrg/nextflow_detached_db_wrapper",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fabsim\" class=\"anchor\" href=\"#fabsim\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFabSim\u003c/h1\u003e\n\n\u003cp\u003e\u003ca href=\"https://github.com/djgroen/FabSim3/actions/workflows/Pytests.yml\"\u003e\u003cimg src=\"https://github.com/djgroen/FabSim3/actions/workflows/Pytests.yml/badge.svg?branch=master\" alt=\"Run Tests\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/vecmafabsim3/fabsimdocker/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/15984bcb49e30e1f7e5e7b00084e0103bd4c6754edca6fbb1caa32f5dca78509/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f70756c6c732f7665636d6166616273696d332f66616273696d646f636b65722e737667\" alt=\"Docker Pulls\" data-canonical-src=\"https://img.shields.io/docker/pulls/vecmafabsim3/fabsimdocker.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/vecmafabsim3/fabsimdocker/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/506d3bba015b61abe07ca57664f35000afdb03531495602d97f42bb34afa35c3/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f7665636d6166616273696d332f66616273696d646f636b65722e737667\" alt=\"Docker Pulls\" data-canonical-src=\"https://img.shields.io/docker/automated/vecmafabsim3/fabsimdocker.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/djgroen/FabSim3/tags\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f043c3ba40f9c2389fe1479a4488e19dfcbad1feac1fbe888c773bf0f5db411f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f762f7461672f646a67726f656e2f46616253696d333f7374796c653d666c6174\" alt=\"GitHub tag (latest by date)\" data-canonical-src=\"https://img.shields.io/github/v/tag/djgroen/FabSim3?style=flat\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://lgtm.com/projects/g/djgroen/FabSim3/context:python\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/10419cff1f040d68ce752c6639616aaed414c6c5a7488e84662e19dee98ce77c/68747470733a2f2f696d672e736869656c64732e696f2f6c67746d2f67726164652f707974686f6e2f672f646a67726f656e2f46616253696d332e7376673f6c6f676f3d6c67746d266c6f676f57696474683d3138\" alt=\"Language grade: Python\" data-canonical-src=\"https://img.shields.io/lgtm/grade/python/g/djgroen/FabSim3.svg?logo=lgtm\u0026amp;logoWidth=18\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/djgroen/FabSim3/issues\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/acc2a0eb223b853151fc5347101ef8574e352b40abc609e15062ccd32d937545/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f646a67726f656e2f46616253696d332e737667\" alt=\"GitHub Issues\" data-canonical-src=\"https://img.shields.io/github/issues/djgroen/FabSim3.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/djgroen/FabSim3/commits/master\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2c555714d9a4f16fd9f1c30cc71088810cb3cf12ca67e1bf9b3be68232f8fff6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6173742d636f6d6d69742f646a67726f656e2f46616253696d332e737667\" alt=\"GitHub last-commit\" data-canonical-src=\"https://img.shields.io/github/last-commit/djgroen/FabSim3.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003cp\u003e\u003cstrong\u003eFor the full FabSim3 documentation, please visit \u003ca href=\"https://fabsim3.readthedocs.io\" rel=\"nofollow\"\u003ehttps://fabsim3.readthedocs.io\u003c/a\u003e\u003c/strong\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation-and-usage\" class=\"anchor\" href=\"#installation-and-usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation and usage\u003c/h2\u003e\n\u003cp\u003eFirst, user needs to install Anaconda \u003ca href=\"https://www.anaconda.com/\" rel=\"nofollow\"\u003ehttps://www.anaconda.com/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThen\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda create --name py3 python=3.6 {or any other python version \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e 3} \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eand then\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda activate py3\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003efinally for instructions on how to install and test FabSim, please go to \u003ca href=\"https://fabsim3.readthedocs.io/en/latest/installation/\" rel=\"nofollow\"\u003ehttps://fabsim3.readthedocs.io/en/latest/installation/\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-easyvvuqfabmd\" class=\"anchor\" href=\"#easyvvuqfabmd\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEasyVVUQ+FabMD\u003c/h2\u003e\n\u003cp\u003eAfter updating the following files with your credentials\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e -FabSim3/deploy/machines_user.yml\n -FabSim3/deploy/machines.yml\n -FabSim3/plugins/FabMD/machines_FabMD_user.yml\n \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003erun the following:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e - fabsim \u0026lt;remote machine name\u0026gt; lammps_init_run_analyse_campaign:fabmd_easyvvuq_InRuAn\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand copy the results back to your local machine with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e - fabsim \u0026lt;remote machine name\u0026gt; fetch_results\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-important\" class=\"anchor\" href=\"#important\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImportant\u003c/h2\u003e\n\u003cp\u003eBy default, FabSim3_extra comes with the FabDummy plugin and the FabMD plugin(fixed version!), which are available in ~/FabSim3/plugins\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nextflow_detached_db_wrapper\" class=\"anchor\" href=\"#nextflow_detached_db_wrapper\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enextflow_detached_db_wrapper\u003c/h1\u003e\n\u003cp\u003eWrapper scripts and documentation for launching database jobs to be used by Nextflow pipelines\u003c/p\u003e\n\u003cp\u003eSo far it only has been tested with SGE/Univa queues.\u003c/p\u003e\n\u003cp\u003eExample command with several options:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enohup perl run_pipeline_mysql.pl -params \"-with-dag -with-report -with-timeline\" -conf params.config -nextflowver 21.04.03 -extra \"-j y -l virtual_free=4G,h_rt=372800 -N MYSQL_container -m be -cwd -V -q myqueue\" -script pipeline.nf \u0026amp;\u0026gt; log.mysql \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnly running MySQL instance. Useful for checking existing contents.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enohup perl run_pipeline_mysql.pl -conf params.config -mysqlonly -extra \"-j y -l virtual_free=4G,h_rt=372800 -N MYSQL_container -m be -cwd -V -q myqueue\" \u0026amp;\u0026gt; log.mysqlonly \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-requirements\" class=\"anchor\" href=\"#requirements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://singularity.hpcng.org/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePerl (e. g., with \u003ca href=\"https://perlbrew.pl/\" rel=\"nofollow\"\u003ePerlbrew\u003c/a\u003e)\n\u003cul\u003e\n\u003cli\u003eInstall Config::Simple module: \u003ccode\u003ecpanm Config::Simple\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1641166034.0
+ "updated_at": 1634748326.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "02assembly/02long-read_assembly/lathe/singularity/Singularity.longread",
- "02assembly/02long-read_assembly/lathe/singularity/Singularity.htsbox",
- "02assembly/02long-read_assembly/lathe/singularity/Singularity.quickmerge"
+ "containers/Singularity.0.4.0",
+ "containers/Singularity.0.3.5",
+ "containers/Singularity.0.3.6",
+ "containers/Singularity.0.3.3",
+ "containers/Singularity.0.4.1"
],
- "full_name": "JiaLonghao1997/MAGbenchmark",
+ "full_name": "LBJ-Wade/bilby",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-genome-resolved-metagenomics-using-short--long-read-and-metahic-sequencing\" class=\"anchor\" href=\"#genome-resolved-metagenomics-using-short--long-read-and-metahic-sequencing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGenome-resolved metagenomics using short-, long-read and metaHiC sequencing\u003c/h1\u003e\n\u003cp\u003eIn this work, we systematically evaluated \u003cstrong\u003e26\u003c/strong\u003e distinct strategies for recovering high-quality MAGs generated from \u003cstrong\u003eeight\u003c/strong\u003e assemblers, \u003cstrong\u003etwo\u003c/strong\u003e binning strategies, and \u003cstrong\u003efour\u003c/strong\u003e sequencing technologies including both short- and long-read methods. In particular, we evaluated metagenomic high-throughput chromosomal conformation capture (metaHiC), a new technique that improves binning of assembled contigs using physically linked read-pairs within cells. To our knowledge, we are the first to evaluate the combination of long-read and metaHiC on metagenomics data.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/JiaLonghao1997/MAGbenchmark/blob/main/Figure%201_1.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/JiaLonghao1997/MAGbenchmark/raw/main/Figure%201_1.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-1-preprocess\" class=\"anchor\" href=\"#1-preprocess\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Preprocess\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003eTrim the adapter regions and low-quality reads: \u003ca href=\"http://www.usadellab.org/cms/?page=trimmomatic\" rel=\"nofollow\"\u003e\u003cstrong\u003eTrimmomatic v.039\u003c/strong\u003e\u003c/a\u003e (using LEADING:3 TRAILING:3, SLIDINGWINDOW:4:15, MINLEN:25)\u003c/li\u003e\n\u003cli\u003eRemove human reads: Filtered reads were aligned to the human genome (NCBI, hg38) using \u003ca href=\"http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml\" rel=\"nofollow\"\u003e\u003cstrong\u003eBowtie2\u003c/strong\u003e\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-2-assemblies\" class=\"anchor\" href=\"#2-assemblies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Assemblies\u003c/h4\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-21-short-read-assemblies\" class=\"anchor\" href=\"#21-short-read-assemblies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2.1 Short-read assemblies\u003c/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"http://www.cs.hku.hk/~alse/idba_ud\" rel=\"nofollow\"\u003e\u003cstrong\u003eIDBA-UD\u003c/strong\u003e\u003c/a\u003e v.1.1.3 (using --pre_correction --maxk 120 --mink 20 --step 20).\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e\u003ca href=\"https://github.com/voutcn/megahit\"\u003eMEGAHIT\u003c/a\u003e\u003c/strong\u003e v.1.2.9 (using --k-list 21,29,39,59,79,99,119,141)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/ablab/spades\"\u003e\u003cstrong\u003emetaSPAdes\u003c/strong\u003e\u003c/a\u003e v.3.14.1(using --meta -k 21,31,41,61,81,101,121)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-22-long-read-assemblies\" class=\"anchor\" href=\"#22-long-read-assemblies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2.2 Long-read assemblies\u003c/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003e\u003ca href=\"https://github.com/marbl/canu\"\u003eCanu\u003c/a\u003e\u003c/strong\u003e v.2.0 (using genomeSize=50m/100m)\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e\u003ca href=\"https://github.com/fenderglass/Flye\"\u003emetaFlye\u003c/a\u003e\u003c/strong\u003e v. 2.7 (using \u2013meta \u2013g 100m/250m)\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e\u003ca href=\"https://github.com/ruanjue/wtdbg2\"\u003ewtdbg2\u003c/a\u003e\u003c/strong\u003e v.2.5 (using genomesize=50m/100m)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTwo long-read assembled contigs were then merged by \u003ca href=\"https://github.com/mahulchak/quickmerge\"\u003e\u003cstrong\u003equickmerge\u003c/strong\u003e\u003c/a\u003e v.0.40 as previous described in \u003cstrong\u003e\u003ca href=\"https://github.com/bhattlab/lathe\"\u003eLathe\u003c/a\u003e\u003c/strong\u003e, which is a tool for generating bacterial genomes from metagenomes with Nanopore long read sequencing.\u003c/p\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-23-hybrid-assemblies\" class=\"anchor\" href=\"#23-hybrid-assemblies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2.3 Hybrid assemblies\u003c/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/CSB5/OPERA-MS\"\u003e\u003cstrong\u003eOPERA-MS\u003c/strong\u003e\u003c/a\u003e v.0.9.0 (using --no-polishing)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/ablab/spades\"\u003e\u003cstrong\u003ehybridSPAdes\u003c/strong\u003e\u003c/a\u003e v.3.14.1 (using --meta -k 21,31,41,61,81,101,121)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-24-polish-and-evaluation-of-metagenomic-assemblies\" class=\"anchor\" href=\"#24-polish-and-evaluation-of-metagenomic-assemblies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2.4 Polish and evaluation of metagenomic assemblies\u003c/h5\u003e\n\u003cul\u003e\n\u003cli\u003ePolish: \u003cstrong\u003e\u003ca href=\"https://github.com/broadinstitute/pilon\"\u003ePilon\u003c/a\u003e\u003c/strong\u003e v.1.24\u003c/li\u003e\n\u003cli\u003eEvaluation of metagenomic assemblies: \u003cstrong\u003e\u003ca href=\"http://quast.sourceforge.net/metaquast\" rel=\"nofollow\"\u003eMetaQUAST\u003c/a\u003e\u003c/strong\u003e v.5.0.2\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e\u003ca href=\"https://github.com/elimoss/metagenomics_workflows/tree/master/assembly_comparison_circos\"\u003eCircos Assembly Comparison Visualization Workflow\u003c/a\u003e\u003c/strong\u003e are from public available scripts.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-3-binning\" class=\"anchor\" href=\"#3-binning\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. Binning\u003c/h4\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-31-binning\" class=\"anchor\" href=\"#31-binning\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3.1 Binning\u003c/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://bitbucket.org/berkeleylab/metabat/src/master/\" rel=\"nofollow\"\u003e\u003cstrong\u003eMetaBAT2\u003c/strong\u003e\u003c/a\u003e v.2.15 (--minContig 2500 --minContigDepth 1 --percentIdentity 97)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/cerebis/bin3C\"\u003e\u003cstrong\u003ebin3C\u003c/strong\u003e\u003c/a\u003e v.0.1.1\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-32-generation-and-quality-evaluation-of-mags\" class=\"anchor\" href=\"#32-generation-and-quality-evaluation-of-mags\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3.2 Generation and quality evaluation of MAGs\u003c/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003ca href=\"https://github.com/elimoss/metagenomics_workflows\"\u003ebin_label_and_evaluate\u003c/a\u003e\u003c/strong\u003e is a public available Snakemake workflow for aligning, binning, classifying and evaluating a metagenomic assembly. We modified some of the scripts to make it suitable for bin3C binning.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAssembly size and contiguity: \u003cstrong\u003e\u003ca href=\"http://quast.sourceforge.net/metaquast\" rel=\"nofollow\"\u003eMetaQUAST\u003c/a\u003e\u003c/strong\u003e v.5.0.2\u003c/li\u003e\n\u003cli\u003eCompleteness and contamination: \u003ca href=\"https://ecogenomics.github.io/CheckM/\" rel=\"nofollow\"\u003e\u003cstrong\u003eCheckM\u003c/strong\u003e\u003c/a\u003e v.1.1.3\u003c/li\u003e\n\u003cli\u003eGene Content: \u003cstrong\u003e\u003ca href=\"https://github.com/tseemann/prokka\"\u003eProkka\u003c/a\u003e\u003c/strong\u003e v.1.14.6\u003c/li\u003e\n\u003cli\u003etRNA sequences: \u003ca href=\"http://www.ansikte.se/ARAGORN/\" rel=\"nofollow\"\u003e\u003cstrong\u003eAragorn\u003c/strong\u003e\u003c/a\u003e v.1.2.38\u003c/li\u003e\n\u003cli\u003eRibosomal RNA loci: \u003ca href=\"https://github.com/tseemann/barrnap\"\u003e\u003cstrong\u003eBarrnap\u003c/strong\u003e\u003c/a\u003e v.0.9\u003c/li\u003e\n\u003cli\u003eTaxonomic classification: \u003ca href=\"https://ccb.jhu.edu/software/kraken2/\" rel=\"nofollow\"\u003e\u003cstrong\u003eKraken2\u003c/strong\u003e\u003c/a\u003e v.2.1.1 and \u003ca href=\"https://github.com/Ecogenomics/GTDBTk\"\u003e\u003cstrong\u003eGTDB-tk\u003c/strong\u003e\u003c/a\u003e v1.4.1.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-4-trna-and-rrna\" class=\"anchor\" href=\"#4-trna-and-rrna\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. tRNA and rRNA\u003c/h4\u003e\n\u003cp\u003eThe close reference genome of MAG was determined by \u003ca href=\"https://github.com/Ecogenomics/GTDBTk\"\u003e\u003cstrong\u003eGTDB-tk\u003c/strong\u003e\u003c/a\u003e v.1.4.1.\u003c/p\u003e\n\u003cp\u003etRNA and rRNA genes of MAGs and reference genomes were identified as previously mentioned.\u003c/p\u003e\n\u003cp\u003eThen we calculated an observed-versus-expected ratio of the annotated tRNA and rRNA genes for each MAG as:\n\u003ca href=\"https://github.com/JiaLonghao1997/MAGbenchmark/blob/main/math1.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/JiaLonghao1997/MAGbenchmark/raw/main/math1.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e \u003cbr\u003e\nR_e is the expected tRNA or rRNA count of the reference genome, R_o is the observed tRNA or rRNA count of the MAG, r is the observed-versus-expected ratio.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-5-extrachromosomal-mobile-genetic-elements-emges\" class=\"anchor\" href=\"#5-extrachromosomal-mobile-genetic-elements-emges\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e5. extrachromosomal mobile genetic elements (eMGEs)\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003ePhages: \u003ca href=\"https://github.com/jiarong/VirSorter2\"\u003e\u003cstrong\u003eVirSorter2\u003c/strong\u003e\u003c/a\u003e v.2.1(using --min-length 1500 all) and \u003ca href=\"https://bitbucket.org/berkeleylab/checkv/src/master/\" rel=\"nofollow\"\u003e\u003cstrong\u003eCheckV\u003c/strong\u003e\u003c/a\u003e v0.8.1 (using end_to_end)\u003c/li\u003e\n\u003cli\u003ePlasmids: \u003cstrong\u003e\u003ca href=\"https://github.com/phac-nml/mob-suite\"\u003eMOB-suite\u003c/a\u003e\u003c/strong\u003e v.3.0.0\u003c/li\u003e\n\u003cli\u003eAntibiotic resistance genes: \u003ca href=\"https://www.mediterranee-infection.com/acces-ressources/base-de-donnees/arg-annot-2/\" rel=\"nofollow\"\u003e\u003cstrong\u003eARG-ANNOT\u003c/strong\u003e\u003c/a\u003e and \u003ca href=\"https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs\" rel=\"nofollow\"\u003e\u003cstrong\u003eBLASTN\u003c/strong\u003e\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-6-references\" class=\"anchor\" href=\"#6-references\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e6. References\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003eKuleshov V, Jiang C, Zhou W, Jahanbani F, Batzoglou S, Snyder M. Synthetic long-read sequencing reveals intraspecies diversity in the human microbiome. Nat Biotechnol 2016, 34:64-69.\u003c/li\u003e\n\u003cli\u003eBishara A, Moss EL, Kolmogorov M, Parada AE, Weng Z, Sidow A, Dekas AE, Batzoglou S, Bhatt AS. High-quality genome sequences of uncultured microbes by assembly of read clouds. Nat Biotechnol 2018.\u003c/li\u003e\n\u003cli\u003eMoss EL, Maghini DG, Bhatt AS. Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat Biotechnol 2020, 38:701-707.\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1640764398.0
+ "updated_at": 1633153969.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "2.8.2/Singularity.2.8.2",
- "2.11.9/Singularity"
+ "Singularity.STAR"
],
- "full_name": "yh549848/singularity-igv",
+ "full_name": "izem-idem/sandboxIM",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1640802538.0
+ "updated_at": 1633092971.0
},
{
"data_format": 2,
- "description": "Some projects in nextflow",
+ "description": null,
"filenames": [
- "workflow/template/Singularity"
+ "Singularity"
],
- "full_name": "lux563624348/nextflow",
+ "full_name": "remiolsen/dovetail-hichip-singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nextflow\" class=\"anchor\" href=\"#nextflow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enextflow\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dovetail-hichip-singularity\" class=\"anchor\" href=\"#dovetail-hichip-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edovetail-hichip-singularity\u003c/h1\u003e\n\u003cp\u003eSingularity dependency wrapper and containerization of Dovetail HiChiP tools - \u003ca href=\"https://hichip.readthedocs.io/en/latest/index.html\" rel=\"nofollow\"\u003ehttps://hichip.readthedocs.io/en/latest/index.html\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1640806208.0
+ "updated_at": 1633078304.0
},
{
"data_format": 2,
- "description": "Quim\u0027s fork of fownward",
+ "description": "A singularity container for NodeJS, SQLite3, MongoDB and VS Code web development",
"filenames": [
- "misc/releases/19.06/Singularity.19.06",
- "misc/releases/latest/Singularity",
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/20.06/Singularity.20.06"
+ "Singularity"
],
- "full_name": "quimortiz/downward",
+ "full_name": "benatuts/aip-container",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"misc/images/fast-downward.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2020 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"http://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttp://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" href=\"#tested-software-versions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2017 (MSVC 19.16) and 2019 (MSVC 19.28)\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributors\" class=\"anchor\" href=\"#contributors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2020 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2020 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2020 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2020 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2020 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2020 Salome Eriksson\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2018-2020 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2015 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-history\" class=\"anchor\" href=\"#history\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-aip-container\" class=\"anchor\" href=\"#aip-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAIP Container\u003c/h1\u003e\n\u003cp\u003eA singularity container for NodeJS, SQLite3, MongoDB and VS Code web development.\u003c/p\u003e\n\u003cp\u003eThis is used for the subject Advanced Internet Programming (AIP) at UTS.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-configuration\" class=\"anchor\" href=\"#configuration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguration\u003c/h1\u003e\n\u003cp\u003eConfiguration is optional. If there is no configuration file, the default settings shown below will be used.\u003c/p\u003e\n\u003cp\u003eYou can override these defaults by creating a file named ~/.config/aip_container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# The existence of base path is checked before starting the container\nBASE_PATH=\"/tmp\"\n\n# The host path is then created if it doesn\u0027t exist\n# (set BASE_PATH and HOST_PATH to be the same if you don\u0027t want directories to be created)\nHOST_PATH=\"/tmp/$USER/aip\"\n\n# This array of files is symlinked to the corresponding files in your $HOME\nSYMLINK=(\".gitconfig\" \".ssh\")\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote that if the path /images/tmp exists and you have no configuration file, then /images/tmp will be used instead of /tmp. This is because on UTS lab computers, /images/tmp has greater capacity.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h1\u003e\n\u003cp\u003eIf you are using a lab computer, the container should already be installed for you.\u003c/p\u003e\n\u003cp\u003eTo rebuild the container using your own computer:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build aip-container_latest.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOr, you can pull the pre-built image from Singularity Hub to your own computer:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://benatuts/aip-container\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUse run_aip_singularity_container.sh to manually start the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erun_aip_singularity_container.sh term # Start a gnome-terminal\nrun_aip_singularity_container.sh vscode # Start visual studio code\nrun_aip_singularity_container.sh fullterm # Start a gnome-terminal-server and gnome-terminal\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1640879253.0
+ "updated_at": 1563696940.0
},
{
"data_format": 2,
- "description": "Metagenomic analysis of viral samples",
+ "description": null,
"filenames": [
- "Singularity"
+ "latest/Singularity"
],
- "full_name": "Aexbrayat/snakevir",
+ "full_name": "pscedu/singularity-rnaview",
"latest_release": null,
- "readme": "\u003cp\u003esnakevir\u003c/p\u003e\n\u003cp\u003eAuthors\u003c/p\u003e\n\u003cp\u003eAntoni Exbrayat (CIRAD) \u0026amp; Etienne Loire (CIRAD) \u0026amp; Serafin Gutierrez (CIRAD)\u003c/p\u003e\n\u003cp\u003ePurpose:\nMetagenomic analysis of viral shotgun NGS samples.\u003c/p\u003e\n\u003cp\u003eThis pipeline is based on \u003ca href=\"https://snakemake.readthedocs.io/en/stable/\" rel=\"nofollow\"\u003esnakemake\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-step\" class=\"anchor\" href=\"#step\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eCleaning\u003c/li\u003e\n\u003cli\u003eMerging\u003c/li\u003e\n\u003cli\u003eFiltering\u003c/li\u003e\n\u003cli\u003eDe novo sequence assembly\u003c/li\u003e\n\u003cli\u003eMapping\u003c/li\u003e\n\u003cli\u003eHomology search protein databases\u003c/li\u003e\n\u003cli\u003eHomology search nucleotide databases\u003c/li\u003e\n\u003cli\u003eTaxonomic annotation\u003c/li\u003e\n\u003cli\u003eTaxonomy refining\u003c/li\u003e\n\u003cli\u003eViral hosts search\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e - bioawk\n - biopython\n - blast\n - bwa\n - cap3\n - csvkit\n - cutadapt\n - diamond\n - entrez-direct\n - ete3\n - flash\n - megahit\n - pandas\n - picard\n - python\n - r-base\n - samtools\n - seqtk\n - snakemake\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe conda environment manager can be used to install python , snakemake and all the required tools and dependencies into a single environment in a way such that reproducibility is ensured.\u003c/p\u003e\n\u003cp\u003eNote: Conda must be installed on the system. For help with setting up conda, please see \u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003eminiconda\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eTo create and activate the conda environment with the environment.yml provided , use :\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml\nconda activate snakevir\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage:\u003c/h2\u003e\n\u003cp\u003eSnakemake supports a separate configuration file for execution on a cluster. A cluster config file cluster.json is provided , it allows you to specify cluster submission parameters outside the Snakefile. The cluster config is contains all parameters with match names of rules in the Snakefile.\u003c/p\u003e\n\u003cp\u003eedit config.yaml to precise dataset and dependencies path, accomodate read files names , threads allocated to the rules (according to cluster.json).\u003c/p\u003e\n\u003cp\u003elaunch with e.g. :\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -s snakefile -j 100 --cluster-config cluster.json --cluster \"sbatch -p {cluster.queue} -N {cluster.queue} -c {cluster.cpu_task} --mem {cluster.mem} -e {cluster.error} -o {cluster.log} \" --printshellcmd --rerun-incomplete --reason --dryrun\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto execute on a SLURM cluster with a maximum of 100 concurrent jobs submitted, eventually modify the command accordingly with your job scheduler.\u003c/p\u003e\n\u003cp\u003eNote : A Singularity containers image will be available soon\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-rnaview/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-rnaview/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-rnaview/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-rnaview/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/3a42a8171d093b99dbf3681a7fa3d291910415d6829e5b185e78e6168f87473d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d726e6176696577\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3a42a8171d093b99dbf3681a7fa3d291910415d6829e5b185e78e6168f87473d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d726e6176696577\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-rnaview\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/594609bf54cba045fda0d342b24488065cf9a7e08df690ff506222fb47f67f34/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d726e6176696577\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/594609bf54cba045fda0d342b24488065cf9a7e08df690ff506222fb47f67f34/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d726e6176696577\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-rnaview\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/9a9e736965b0a755f4684cb670ad871f680ce0a747ca86e9cdbc0597b32e2b4e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d726e6176696577\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9a9e736965b0a755f4684cb670ad871f680ce0a747ca86e9cdbc0597b32e2b4e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d726e6176696577\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-rnaview\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/1d9776e18f2e7616bb9a34f6dafc7c0d6da72a9975f6a690c8c59599d1708961/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d726e6176696577\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1d9776e18f2e7616bb9a34f6dafc7c0d6da72a9975f6a690c8c59599d1708961/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d726e6176696577\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-rnaview\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-rnaview\" class=\"anchor\" href=\"#singularity-rnaview\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-rnaview\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"http://ndbserver.rutgers.edu/ndbmodule/services/download/rnaview.html\" rel=\"nofollow\"\u003ernaview\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ernaview\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/rnaview/latest\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/rnaview\u003c/code\u003e as \u003ccode\u003elatest.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1641215049.0
+ "updated_at": 1632891843.0
},
{
"data_format": 2,
- "description": "SCOV2-spikeScreen IMI prototype bash pipeline",
+ "description": "Singularity recipe for Circos.",
"filenames": [
"Singularity"
],
- "full_name": "IMIMF-UNILJSI/scov2-spikeScreen",
+ "full_name": "ArnaudBelcour/circos-singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-scov2-spikescreen\" class=\"anchor\" href=\"#scov2-spikescreen\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003escov2-spikeScreen\u003c/h1\u003e\n\u003cp\u003eSCOV2-spikeScreen IMI prototype bash pipeline\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-build-container\" class=\"anchor\" href=\"#build-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuild container\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e/path/to/repo/directory/buildContainer web # pull from shub\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e/path/to/repo/directory/buildContainer local # build from scratch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eno argument defaults to \"web\", local requires sudo privileges. If none of the options is suitable to the user, do manual build with working parameter settings.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running\" class=\"anchor\" href=\"#running\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning\u003c/h2\u003e\n\u003cp\u003eCreate a working dir somewhere in your FS (preferably outside of the git dir), run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run --bind /path/to/repo/directory:/opt/scripts,/path/to/data:/mnt /path/to/repo/directory/spikeScreenContainer.sif /opt/scripts/runPipeline runID keyword /mnt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe second argument (keyword) should be replaced with either pools/assemblies/pools_single/assemblies_single to run the appropriate analysis (self explanatory).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-cleanup\" class=\"anchor\" href=\"#cleanup\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCleanup\u003c/h2\u003e\n\u003cp\u003eA cleanup script is also provided (see repo directory: cleanUp), but it may not be so useful. It simply removes the contents of the work dir related to the pipeline process.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-circos-singularity\" class=\"anchor\" href=\"#circos-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCircos singularity\u003c/h1\u003e\n\u003cp\u003eA singularity recipe for Circos (inspired by the one written by \u003ca href=\"https://github.com/J35P312/CircusCircos\"\u003ehttps://github.com/J35P312/CircusCircos\u003c/a\u003e). This install all of its dependencies. The image size is around ~212 Mb.\u003c/p\u003e\n\u003cp\u003eYou can directly call \u003ccode\u003ecircos\u003c/code\u003e inside of the image like:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec -c -B /shared/folder:/shared/folder circos.sif circos -conf /shared/folder/circos.conf -outputdir /shared/folder\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003e-c\u003c/code\u003e option isolates the container and the \u003ccode\u003e-B\u003c/code\u003e option give access to a folder outside the container for Singularity.\u003c/p\u003e\n\u003cp\u003eYou can use the path associated to \u003ccode\u003e-B\u003c/code\u003e to give access to data path in the configuration file.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1641561900.0
+ "updated_at": 1632847008.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "singularity/Singularity.vcf_processing.v1.0",
- "singularity/Singularity.sv_call.v1.0",
- "singularity/Singularity.bcftools.v1.10.2",
- "singularity/Singularity.qcbam.v1.0",
- "singularity/Singularity.align_dedup.v1.0",
- "singularity/Singularity.expansion_hunter.v5.0.0",
- "singularity/Singularity.sv_processing.v1.0"
+ "DeepLearningCamelyon/0.Preparation/Singularity",
+ "DeepLearningCamelyon/0.Preparation/Singularity_Code_for_Prediction.sh"
],
- "full_name": "edg1983/WGS_pipeline",
+ "full_name": "shiny0510/Camelyon_Preprocessing_tif",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-wgs-analysis-pipeline\" class=\"anchor\" href=\"#wgs-analysis-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWGS analysis pipeline\u003c/h1\u003e\n\u003cp\u003eWGS analysis pipeline. Can handle both WGS and WES data.\u003c/p\u003e\n\u003cp\u003eThe whole pipeline use singularity images and will pull images from singularity library when needed. Singularity recipes used are provided in \u003ccode\u003esingularity\u003c/code\u003e folder for reference.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to-run\" class=\"anchor\" href=\"#how-to-run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run\u003c/h2\u003e\n\u003cp\u003eThe pipeline can be run directly using Nextflow \u0026gt;= v20.10.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow WGS_analysis.nf -profile cluster --operation align --input input_file.txt --mode WGS --ped ped_file.ped --ref genome.fa --cohort_id cohort_name --outdir results \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe pipeline automatically infer the number of samples in the cohort from your input file and adjust the filtering accordingly. When more than one sample is present, small variants and structural variants from all samples are merged in cohort wide VCF files.\u003c/p\u003e\n\u003cp\u003eEventually update \u003ccode\u003esingularity_cachedir\u003c/code\u003e variable in \u003ccode\u003enextflow.config\u003c/code\u003e to point to a proper folder where singularity images are stored / will be downloaded\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-arguments\" class=\"anchor\" href=\"#arguments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eArguments\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003eoperation : align or call_variants\nmode : WGS only supported at the moment\nref : fasta file for the genome. Note that .fai and bwa index are expected in the same location\ninput : tab-separated file describing input files. \n The exact format depends on operation requested (see below)\nped : standard PED file containing all samples\ncohort_id : a arbitrary name for the cohort files generated\noutdir : output folder for results\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUse \u003ccode\u003e--operation align/call_variants --help\u003c/code\u003e for more explanations.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-resources\" class=\"anchor\" href=\"#resources\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResources\u003c/h2\u003e\n\u003cp\u003eVarious supporting files are needed and expected in the \u003ccode\u003eresources\u003c/code\u003e folder. This path can be configured by changing the parameters in \u003ccode\u003econfig/resources_GRCh37/38.conf\u003c/code\u003e. All files needed are provided in a Zenodo repository. Please refer to the README file in the resources folder.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNB.\u003c/strong\u003e The available resources are based on GRCh37 with standard chromosomes \u003ccode\u003e1..22 X Y MT\u003c/code\u003e and GRCh38 using \u003ccode\u003echr1..22 chrX chrY chrM\u003c/code\u003e. Be sure the genome reference file passed with \u003ccode\u003e--ref\u003c/code\u003e matches the expected nomenclature for your genome build.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-input-files-format\" class=\"anchor\" href=\"#input-files-format\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput files format\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-ped-file\" class=\"anchor\" href=\"#ped-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePED file\u003c/h3\u003e\n\u003cp\u003eA standard tab-separated PED file without header, describing all samples provided in the input file. All sample IDs must match between ped and input file. All samples must have sex defined.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003efamily_ID individual_ID father_ID mother_ID sex(1=M,2=F) status(1=unaff,2=aff,0=unknown)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-input-file\" class=\"anchor\" href=\"#input-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003einput file\u003c/h3\u003e\n\u003cp\u003eNote that all files need to be specified using \u003cstrong\u003eabsolute paths\u003c/strong\u003e\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-operation-align\" class=\"anchor\" href=\"#operation-align\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOperation: align\u003c/h4\u003e\n\u003cp\u003eA 3 columns tab-separated file without header\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esampleID1 s1_lane1_R1.fastq.gz s1_lane1_R2.fastq.gz\nsampleID1 s1_lane2_R1.fastq.gz s1_lane2_R2.fastq.gz\nsampleID2 s2_lane2_R1.fastq.gz s2_lane2_R2.fastq.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote that if a sample has been sequenced with multiple pairs of fastq files you need to add multiple lines for each pair of fastq files using the same sampleID. The pipeline will take care of the merge.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-operation-call_variants\" class=\"anchor\" href=\"#operation-call_variants\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOperation: call_variants\u003c/h4\u003e\n\u003cp\u003eA 5 columns tab-separated file without header.\nThis file is automatically generated in the output folder when using \u003ccode\u003e--operation align\u003c/code\u003e (bam_files.txt)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esampleID1 main_bam.bam disc.bam split.bam\nsampleID2 main_bam.bam disc.bam split.bam\nsampleID3 main_bam.bam disc.bam split.bam\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ccode\u003edisc\u003c/code\u003e and \u003ccode\u003esplit\u003c/code\u003e BAM files are files containing only discordant pair and split reads like the\nones that can be obtained using Samblaster\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-output\" class=\"anchor\" href=\"#output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput\u003c/h2\u003e\n\u003cp\u003eThe pipeline generates a reach set of outputs including\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ealigned deduplicated BAM files\u003c/li\u003e\n\u003cli\u003edisc/split BAM files\u003c/li\u003e\n\u003cli\u003eExtensive QC of alignements, which includes mapping stats, coverage, relatedness, ancestry\u003c/li\u003e\n\u003cli\u003eMulti sample and single sample VCFs of small variants and structural variants (variants are provided as raw calls and filtered calls)\u003c/li\u003e\n\u003cli\u003eVariants QC report for small variants\u003c/li\u003e\n\u003cli\u003eROH regions\u003c/li\u003e\n\u003cli\u003eRepeat expansions by Expansion Hunter\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pipeline-components\" class=\"anchor\" href=\"#pipeline-components\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline components\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eAlignement and duplicate marking\n\u003cul\u003e\n\u003cli\u003eBWA-MEM + samblaster + samtools\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eQC and coverage from BAM files\n\u003cul\u003e\n\u003cli\u003efastqc: reads stats\u003c/li\u003e\n\u003cli\u003emosdepth: coverage\u003c/li\u003e\n\u003cli\u003esamtools flagstat / mapstat: alignment stats\u003c/li\u003e\n\u003cli\u003esomalier: ancestry, relatedness, sex check reports\u003c/li\u003e\n\u003cli\u003emultiqc: interactive report\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003esmall variants\n\u003cul\u003e\n\u003cli\u003edeepvariant: single sample calls\u003c/li\u003e\n\u003cli\u003eglnexus: gvcf merge\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003estructural variants\n\u003cul\u003e\n\u003cli\u003elumpy: structural variants events\u003c/li\u003e\n\u003cli\u003eCNVnator: CNV estimation\u003c/li\u003e\n\u003cli\u003esvtools: combine, merge and classify\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003erepeat expansion detection\n\u003cul\u003e\n\u003cli\u003eexpansion hunter\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eROH regions\n\u003cul\u003e\n\u003cli\u003ebcftools ROH\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-future-developments\" class=\"anchor\" href=\"#future-developments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFuture developments\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] Update SV pipeline to Manta / dysgu\u003c/li\u003e\n\u003cli\u003e[ ] Add duphold for SV quality check\u003c/li\u003e\n\u003cli\u003e[ ] Variant annotation\u003c/li\u003e\n\u003cli\u003e[ ] Segregation analysis with slivar\u003c/li\u003e\n\u003cli\u003e[ ] Support for WES?\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-deeplearningcamelyon\" class=\"anchor\" href=\"#deeplearningcamelyon\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeepLearningCamelyon\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-reference\" class=\"anchor\" href=\"#reference\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ereference\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/3dimaging/DeepLearningCamelyon\"\u003ehttps://github.com/3dimaging/DeepLearningCamelyon\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-file\" class=\"anchor\" href=\"#file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFile\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDeepLearningCamelyon Folder:Preprocessing (ASAP, tif), Unet Traing and prediction\u003c/li\u003e\n\u003cli\u003eannotation.py: Make mask File\u003c/li\u003e\n\u003cli\u003emain.py: tif File resize, mask File and originFile\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1642604585.0
+ "updated_at": 1632725622.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Run Open XDMod in a container with automated data ingest.",
"filenames": [
- "Singularity"
+ "container/Singularity/Singularity"
],
- "full_name": "genxnetwork/uk-biobank",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-federated-biobank-project\" class=\"anchor\" href=\"#federated-biobank-project\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFederated Biobank Project\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-motivation\" class=\"anchor\" href=\"#motivation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMotivation\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-structure\" class=\"anchor\" href=\"#structure\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStructure\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003esplit\u003c/strong\u003e module generates node datasets from the whole UKB dataset based on self-reported ancestry.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eqc\u003c/strong\u003e module encapsulates node-based quality control.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003edimred\u003c/strong\u003e module performs different strategies of dimensionality reduction.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003efl\u003c/strong\u003e module compares various FL strategies on selected SNPs.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "jtfrey/open-xdmod-container",
+ "latest_release": "v8.1.2",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-open-xdmod-container\" class=\"anchor\" href=\"#open-xdmod-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eopen-xdmod-container\u003c/h1\u003e\n\u003cp\u003eRun Open XDMod in a container with automated data ingest.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1643039658.0
+ "updated_at": 1632401090.0
},
{
"data_format": 2,
- "description": "Modified chroma code",
+ "description": null,
"filenames": [
- "installation/chroma3.nvidia/Singularity"
+ "Singularity"
],
- "full_name": "unlimited-name/chroma",
+ "full_name": "lawlessrd/SCZ",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-chroma-ultra-fast-photon-monte-carlo\" class=\"anchor\" href=\"#chroma-ultra-fast-photon-monte-carlo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eChroma: Ultra-fast Photon Monte Carlo\u003c/h1\u003e\n\u003cp\u003eChroma is a high performance optical photon simulation for particle physics detectors originally written by A. LaTorre and S. Seibert. It tracks individual photons passing through a triangle-mesh detector geometry, simulating standard physics processes like diffuse and specular reflections, refraction, Rayleigh scattering and absorption.\u003c/p\u003e\n\u003cp\u003eWith the assistance of a CUDA-enabled GPU, Chroma can propagate 2.5 million photons per second in a detector with 29,000 photomultiplier tubes. This is 200x faster than the same simulation with GEANT4.\u003c/p\u003e\n\u003cp\u003eCheck out the \u003ca href=\"doc/source/chroma.pdf\"\u003eChroma whitepaper\u003c/a\u003e for information on how Chroma works.\u003c/p\u003e\n\u003cp\u003eInformation about the historical development of Chroma can be found at the \u003ca href=\"https://chroma.bitbucket.io/index.html\" rel=\"nofollow\"\u003ebitbucket repository\u003c/a\u003e this repository was forked from.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-modified-chroma-for-sbc-simulation\" class=\"anchor\" href=\"#modified-chroma-for-sbc-simulation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModified chroma for SBC simulation\u003c/h2\u003e\n\u003cp\u003eThe SBC collaboration wants to use \u003ca href=\"https://github.com/SBC-Collaboration\"\u003eSBCgeant4\u003c/a\u003e geometry in photon simulation. Chroma has a geometry interface for STL mesh, or GDML, a XML-based geometry languige. Current GDML interface is not perfect for use, and actually even has some defects. I modified the functions and classes in gdml.py to fit the need of SBC simulations.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation-and-quick-use-of-chroma\" class=\"anchor\" href=\"#installation-and-quick-use-of-chroma\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation and quick use of Chroma\u003c/h2\u003e\n\u003cp\u003eThe source of chroma uses \u0027Docker\u0027 for maintainance and environment controlling. However, this can cause trouble for Windows system users. To solve this problem, we choose to use Cloud platforms provided by Google and other companies, which is also stable in environments and available to anyone who wants to engage in chroma.\u003c/p\u003e\n\u003cp\u003eTo start using chroma on cloud platform, you will need to construct a VM instance including certain GPUs, using an ubuntu OS image. Google image for \u0027DEEP LEARNING\u0027 is well-constructed and worth trying.\u003c/p\u003e\n\u003cp\u003eFor any empty ubuntu image, installation of chroma can be completed in \u003ca href=\"https://github.com/unlimited-name/CloudInstallation\"\u003ebash batches\u003c/a\u003e. All the batch commands are translated and modified via the \u0027Docker Dockerfile\u0027 used by the maintainer.\n**Note you will have to mannually modify the version of CUDA installed by matching the CUDA version of host machine. **\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-subject-to-change\" class=\"anchor\" href=\"#subject-to-change\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSUBJECT TO CHANGE\u003c/h1\u003e\n",
+ "readme": "",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1643829901.0
+ "updated_at": 1641581829.0
},
{
"data_format": 2,
- "description": "rstudio on RCC",
+ "description": null,
"filenames": [
- "singularity/Singularity"
+ "Singularity"
],
- "full_name": "liliw-w/rstudio-server-conda_share",
- "latest_release": null,
- "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-run-studio-server-on-rcc\" class=\"anchor\" href=\"#run-studio-server-on-rcc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun studio server on RCC\u003c/h2\u003e\n\u003cp\u003eBased on \u003ca href=\"https://github.com/grst/rstudio-server-conda\"\u003eintegrate the container with conda\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-why-this-repo\" class=\"anchor\" href=\"#why-this-repo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy this repo?\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eWe want to use rstudio interactively on RCC just like on our local computers. e.g. easy access to files on server, draw and check plots easily, upload and download files within rstudio, user-friendly UI.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eOne way provided is through ThinLinc. But ThinLinc sometimes is slow; hard to copy-paste; not good UI, etc.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTherefore, we need another way to be able to launch rstudio on RCC.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-what-is-this-repo\" class=\"anchor\" href=\"#what-is-this-repo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is this repo?\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eThis repo implements rstudio server on RCC through a singularity container.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBe able to run rstudio on computation node by sumbiting a SLURM job.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eIntergrate rstudio with conda for easy package management.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-how-to-use-this-repo\" class=\"anchor\" href=\"#how-to-use-this-repo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to use this repo?\u003c/h3\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-git-clone-this-repo\" class=\"anchor\" href=\"#git-clone-this-repo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGit clone this repo\u003c/h4\u003e\n\u003cp\u003e... to your RCC folder. I store it in my \u003ccode\u003escratch\u003c/code\u003e space.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-modify-a-few-parameters\" class=\"anchor\" href=\"#modify-a-few-parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModify a few parameters\u003c/h4\u003e\n\u003cp\u003eTo make it work for your own use, several parameters needed to modify. All modifications will be made in file \u003ccode\u003esingularity/run_singularity.sh\u003c/code\u003e.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSpecify the path to a conda env to parameter \u003ccode\u003e$CONDA_PREFIX\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThis conda env store all packages you will need. You can use an existing conda env, or create a one as in file \u003ccode\u003econda_env_config.sh\u003c/code\u003e.\u003c/p\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eSpeficy the path to the rstudio singularity container to parameter \u003ccode\u003e$CONTAINER\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eDownload the container by \u003ccode\u003esingularity pull docker://rocker/rstudio_latest\u003c/code\u003e. See \u003ca href=\"https://www.rocker-project.org/use/singularity/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e for the container\u0027s info.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eMove the downloaded file \u003ccode\u003erstudio_latest.sif\u003c/code\u003e to the path you assigned to \u003ccode\u003e$CONTAINER\u003c/code\u003e. I would recommend \u003ccode\u003esingularity/rstudio_latest.sif\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eSet your login password to parameter \u003ccode\u003e$USER_psw\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-run\" class=\"anchor\" href=\"#run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003eRun this container on login node.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ebash /path/to/your_repo/singularity/run_singularity.sh\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eYou will see something like highlighted in orange rectangle,\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca href=\"rstudio_contaner_login.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"rstudio_contaner_login.png\" alt=\"\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eOpen the link in your browser.\u003c/p\u003e\n\u003cp\u003eUser name and password are in the figure.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eRun studio on computation node.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003esbatch /path/to/your_repo/singularity/run_singularity.sh\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThis is to submit a slurm job. Configure the slurm resource parameters in the header of \u003ccode\u003esingularity/run_singularity.sh\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCheck the slurm output file \u003ccode\u003erstudio-server.job\u003c/code\u003e. The content is basically the same as the above figure.\u003c/p\u003e\n\u003cp\u003eUse the info highlighted in blue rectangle.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003essh -N -L ...\u003c/code\u003e in your terminal.\u003c/li\u003e\n\u003cli\u003eOpen the link in your browser.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-ref\" class=\"anchor\" href=\"#ref\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRef\u003c/h3\u003e\n\u003cp\u003eTo understand more how this works, see ref below:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://www.rocker-project.org/use/singularity/\" rel=\"nofollow\"\u003erstudio server singularity container\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://www.rocker-project.org/use/singularity/\" rel=\"nofollow\"\u003emake it a SLURM sbatch script\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/grst/rstudio-server-conda\"\u003eintegrate the container with conda\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "aerval/drop",
+ "latest_release": "0.0.2",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-deploy\" class=\"anchor\" href=\"#singularity-deploy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Deploy\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"img/shpc.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"img/shpc.png\" alt=\"img/shpc.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWouldn\u0027t it be nice to build Singularity images without a registry proper,\nand just keep them alongside the GitHub codebase? This is now possible!\nThis small repository provides an example to get you started. It will\nbuild one or more images (whatever Singularity.* files that are present at\nthe root) and then release them as assets to your GitHub repository so\nthat they can be programatically obtained. It is associated with\n\u003ca href=\"https://github.com/singularityhub/singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e to allow\nyou to then define LMOD modules for these same containers.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eCan I upload the largest of chonkers?\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eYes and no. Note that assets are limited to 2 GB in size, which is still fairly good. You can use\nit as a template for your own recipes as is, or modify it for your custom\nuse case. Instructions are below!\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e Currently recipe extensions are associated with tags, and the GitHub release is\nassociated with a digest. We likely will change this in the next few weeks so that GitHub\nreleases are tags, and the \"digests\" are flie names. Stay tuned for updates!\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-getting-started\" class=\"anchor\" href=\"#getting-started\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1-template-or-fork\" class=\"anchor\" href=\"#1-template-or-fork\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Template or Fork\u003c/h3\u003e\n\u003cp\u003eIf you haven\u0027t already, template or fork this repository. You can then clone\nyour fork:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git clone git@github.com:\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eusername\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/singularity-deploy\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou likely want to name the repository by the container. For example, if I would\nhave created a container on Docker Hub or similar with the name \u003ccode\u003evsoch/salad\u003c/code\u003e,\nhere I\u0027d call the repository \u003ccode\u003esalad\u003c/code\u003e. You obviously are limited to your username\nor an organizational namespace.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1-write-your-singularity-recipes\" class=\"anchor\" href=\"#1-write-your-singularity-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Write your Singularity Recipe(s)\u003c/h3\u003e\n\u003cp\u003eFirst, you should write your container recipe(s) in the present working directory.\nFor good practice, when you are updating recipes you should checkout a new branch\nand open a pull request, as the repository comes with a workflow to trigger on a PR\nto \u003ca href=\".github/workflows/test.yml\"\u003etest your container build\u003c/a\u003e. Note that in the main workflow\nthat deploys the releases, the current branch is set to be \u003ccode\u003emain-branch\u003c/code\u003e. You should\nupdate this to be your main \"production\" branch that you want to deploy releases on merge.\nYou are also free to choose a different trigger and release strategy. You can add any additional\ntests that that you might need. By default, any Singularity.* file will be automatically detected.\nIf there is no extension (the name Singularity), the name used will be \"latest.\"\nYou can use these tags across multiple releases of your containers. For example,\nthese files would generate packages with sifs named as follows:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.pokemon\"\u003eSingularity.pokemon\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.salad\"\u003eSingularity.salad\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor each name, you can see the direct download URL contains the repository (singularityhub/singularity-deploy),\nYou should not use any \u003ccode\u003e:\u003c/code\u003e characters in either your container tag (the GitHub extension) or\nthe GitHub tags (the release tags) as this might interfere with parsing.\nThe GitHub release tag (0.0.1 in the example above) is discussed next.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-2-update-the-version-file\" class=\"anchor\" href=\"#2-update-the-version-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Update the VERSION file\u003c/h3\u003e\n\u003cp\u003eAny time that you prepare new container recipes, you should update the \u003ca href=\"VERSION\"\u003eVERSION\u003c/a\u003e\nfile. The way that this repository works is to generate a release based on the\nstring in \u003ccode\u003eVERSION\u003c/code\u003e. A version is just a tag, so it could be something like\n\u003ccode\u003e0.0.1\u003c/code\u003e or \u003ccode\u003e0.0.1-slim\u003c/code\u003e. Keep in mind that GitHub releases cannot have duplicated\nnames, so you should not repeat the same tag. Do not use \u003ccode\u003e:\u003c/code\u003e in your tag names.\nIf you do need to re-release a tag (not recommended if a user might be using it and then it\u0027s changed) you can manually delete\nthe release and the tag in the GitHub interface. This is a nice structure because it\nmeans you can have containers with different names under the same tag. In the example\nabove, we have each of \"pokemon,\" \"latest,\" and \"salad\" released under tag 0.0.1.\nThis is how it looks on GitHub:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"img/releases.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"img/releases.png\" alt=\"img/releases.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-3-how-to-develop\" class=\"anchor\" href=\"#3-how-to-develop\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. How to Develop\u003c/h3\u003e\n\u003cp\u003eAs we mentioned previously, the container builds will be tested on a pull request,\nand the release will trigger on merge into your main branch (main). See the \u003ca href=\".github/workflows/builder.yml\"\u003e.github/workflows/builder.yml\u003c/a\u003e)\nto edit this. The idea is that you can:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDevelop your container via a development branch\u003c/li\u003e\n\u003cli\u003eOpen a pull request to test the container (the \u003ca href=\".github/workflows/test.yml\"\u003e.github/workflows/test.yml\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eOn merge, your container will be released!\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-4-how-to-pull\" class=\"anchor\" href=\"#4-how-to-pull\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. How to pull\u003c/h3\u003e\n\u003cp\u003eTechnically, Singularity can pull just knowing the URL. For example:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eHowever, the \u003ca href=\"singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e tool (will be) designed to be able to parse and handle\nthese container uris automatically. For the containers here, you could do:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:latest\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:salad\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:pokemon\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor write the container URI into a registry entry:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egh: singularityhub/singularity-deploy\nlatest:\n latest: \"0.0.1\"\ntags:\n \"latest\": \"0.0.1\"\n \"salad\": \"0.0.1\"\n \"pokemon\": \"0.0.1\"\nmaintainer: \"@vsoch\"\nurl: https://github.com/singularityhub/singularity-deploy\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(This part is still under development!)\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1644084864.0
+ "updated_at": 1641857087.0
},
{
"data_format": 2,
- "description": "Paired end ChIP-seq processing through alignment.",
+ "description": "Singularity recipe for HERA software",
"filenames": [
- "Singularity.hg19v1.centos"
+ "Singularity.casa6_full",
+ "Singularity.tau",
+ "Singularity.casa6_modular",
+ "Singularity.h4c",
+ "Singularity.rtp",
+ "Singularity.validation",
+ "Singularity.hera1",
+ "Singularity.calamity",
+ "Singularity.mpi"
],
- "full_name": "ertheisen/appalachian_centos",
+ "full_name": "HERA-Team/hera-singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-appalachianhg19v1-container-for-early-ngs-pipeline-applications\" class=\"anchor\" href=\"#appalachianhg19v1-container-for-early-ngs-pipeline-applications\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eappalachian.hg19v1 container for early NGS pipeline applications\u003c/h1\u003e\n\u003cp\u003eHow to run pipeline:\u003c/p\u003e\n\u003cp\u003esingularity run --app [appname] --bind [directory_info] container_name.simg\u003c/p\u003e\n\u003cp\u003ePath to genome in container needs to be:\n\u0027/genomes/test/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/spike/dm6/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/spike/sacCer3/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/STAR/[STAR index files]\u0027\n-or-\n\u0027/genomes/anno/[gtf or gff annotation file]\u0027\u003c/p\u003e\n\u003cp\u003eFor Baker Cluster Users:\ndirectory to mount for fly spike-in is: /gpfs0/home/gdlessnicklab/share/trails/genomes/Drosophila_melanogaster/UCSC\ndirectory to mount for yeast spike-in is: /gpfs0/home/gdlessnicklab/share/trails/genomes/Saccharomyces_cerevisiae/UCSC\ndirectory to mount for hg19 is: /reference/homo_sapiens/hg19/ucsc_assembly/illumina_download/\u003c/p\u003e\n\u003cp\u003eTo run interactive terminal in container\u003c/p\u003e\n\u003cp\u003esingularity shell --bind [directory_info] appalachian_hg19.simg\u003c/p\u003e\n\u003cp\u003e##Be sure to bind your data, your genome, and any script files you may want to run\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-hera-singularity\" class=\"anchor\" href=\"#hera-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ehera-singularity\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-notice\" class=\"anchor\" href=\"#notice\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotice\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eJuly 15, 2021\u003c/strong\u003e:\nWe are currently manually building and uploading the containers to the HERA project directory on Ilifu on an irregular basis. Please check the built dates of the container files and contact @piyanatk if you need the containers to be rebuilt. Scheduled daily re-building is being planned.\u003c/p\u003e\n\u003chr\u003e\n\u003cp\u003eThis repository contains recipe files of the Singularity containers for the HERA software stack.\u003c/p\u003e\n\u003cp\u003eIlifu users, please make sure to read the relevant page on the HERA wiki. A singularity container is required for computing on the Ilifu. If you need specific Python modules to be installed in the containers, please contact @piyanatk.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-about-container-and-singularity\" class=\"anchor\" href=\"#about-container-and-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAbout Container and Singularity\u003c/h2\u003e\n\u003cp\u003eContainers are encapsulated software environments and abstract the software and applications from the underlying operating system. This allows users to run workflows in customized environments, switch between environments, and to share these environments with colleagues and research teams.\u003c/p\u003e\n\u003cp\u003eSingularity is a free, cross-platform and open-source computer program that performs operating-system-level virtualization also known as containerization (another widely used one being Docker).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-container-content\" class=\"anchor\" href=\"#container-content\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainer Content\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-python-packages\" class=\"anchor\" href=\"#python-packages\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePython Packages\u003c/h3\u003e\n\u003cp\u003eAll containers are built with \u003ccode\u003eUbuntu 20.04\u003c/code\u003e and \u003ccode\u003eminiconda\u003c/code\u003e with \u003ccode\u003epython=3.8\u003c/code\u003e unless otherwise specify \u003ca href=\"###-Different-Between-Containers:\"\u003ebelow\u003c/a\u003e. All variances come standard with the following packages:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eData Analysis\u003c/th\u003e\n\u003cth\u003eAstronomical\u003c/th\u003e\n\u003cth\u003eHERA\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003edask\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003eaipy\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003elinsolve\u003c/code\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003ejupyterlab\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003eastropy\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003euvtools\u003c/code\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003ematplotlib\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003eastropy-healpix\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003ehera_qm\u003c/code\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003enumpy\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003eastroquery\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003ehera_cal\u003c/code\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003epandas\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003ecartopy\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003ehera_sim\u003c/code\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003escipy\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003ehealpy\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003ehera_psepc\u003c/code\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003escikit-learn\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\n\u003ccode\u003epyuvdata\u003c/code\u003e\u003csup\u003e\u003ca href=\"#myfootnote1\"\u003e1\u003c/a\u003e\u003c/sup\u003e\n\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003evis_cpu\u003c/code\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003exarray\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\n\u003ccode\u003epyuvsim\u003c/code\u003e\u003csup\u003e\u003ca href=\"#myfootnote2\"\u003e2\u003c/a\u003e\u003c/sup\u003e\n\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\n\u003ccode\u003eSSINS\u003c/code\u003e\u003csup\u003e\u003ca href=\"#myfootnote3\"\u003e3\u003c/a\u003e\u003c/sup\u003e\n\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e\u003ca name=\"user-content-myfootnote1\"\u003e1\u003c/a\u003e: With CASA measurement sets, HEALPix beam, and CST beam functionalities, see \u003ca href=\"https://github.com/RadioAstronomySoftwareGroup/pyuvdata%5C\"\u003ehttps://github.com/RadioAstronomySoftwareGroup/pyuvdata\\\u003c/a\u003e\n\u003ca name=\"user-content-myfootnote2\"\u003e2\u003c/a\u003e: without line profiler and lunar capability, see \u003ca href=\"https://github.com/RadioAstronomySoftwareGroup/pyuvsim\"\u003ehttps://github.com/RadioAstronomySoftwareGroup/pyuvsim\u003c/a\u003e\n\u003ca name=\"user-content-myfootnote3\"\u003e3\u003c/a\u003e: See \u003ca href=\"https://github.com/mwilensky768/SSINS\"\u003ehttps://github.com/mwilensky768/SSINS\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-variances\" class=\"anchor\" href=\"#variances\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVariances:\u003c/h3\u003e\n\u003cp\u003eWe are currently building the following variances.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ehera1\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eInclude all packages in the table above. Intended for general-purpose computing.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecasa6_full\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eEquivalent to \u003ccode\u003ehera1\u003c/code\u003e with a full installation of \u003ccode\u003ecasa-6\u003c/code\u003e, and \u003ccode\u003eAPLpy\u003c/code\u003e for visualisation.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecasa6_modular\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eEquivalent to \u003ccode\u003ehera1\u003c/code\u003e with a pip-wheel installation of \u003ccode\u003ecasa-6\u003c/code\u003e, making \u003ccode\u003ecasatasks\u003c/code\u003e, \u003ccode\u003ecasatools\u003c/code\u003e, and \u003ccode\u003ecasampi\u003c/code\u003e packages (see \u003ca href=\"https://casa-pip.nrao.edu/\" rel=\"nofollow\"\u003ehttps://casa-pip.nrao.edu/\u003c/a\u003e), and \u003ccode\u003eAPLpy\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eBased on \u003ccode\u003ePython 3.6\u003c/code\u003e and \u003ccode\u003eUbuntu 18.04\u003c/code\u003e for casa-pip compatibility.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ertp\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eFor testing the \u003ccode\u003emakeflow\u003c/code\u003e pipeline.\u003c/li\u003e\n\u003cli\u003eEquivalent to \u003ccode\u003ehera1\u003c/code\u003e with an addition of \u003ccode\u003ehera_opm\u003c/code\u003e, \u003ccode\u003ehera_mc\u003c/code\u003e, and \u003ccode\u003ehera_notebook_templates\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ehera_pipelines\u003c/code\u003e is cloned to \u003ccode\u003e/usr/local\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eh4c\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eAlmost equivalent to \u003ccode\u003ertp\u003c/code\u003e except some specific branches on \u003ccode\u003ehera_cal\u003c/code\u003e and \u003ccode\u003epspec\u003c/code\u003e for H4C analysis.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003etau\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eThis container is \u003ccode\u003ehera1\u003c/code\u003e with extra tools for simulation, machine learning, and etc. Specifically, it contains the following additions:\n\u003cul\u003e\n\u003cli\u003eemupy (\u003ca href=\"https://github.com/nkern/emupy\"\u003ehttps://github.com/nkern/emupy\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003ezreion (\u003ca href=\"https://github.com/plaplant/zreion\"\u003ehttps://github.com/plaplant/zreion\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003e21cmFAST=3.1.1\u003c/li\u003e\n\u003cli\u003epowerbox\u003c/li\u003e\n\u003cli\u003etensorflow\u003c/li\u003e\n\u003cli\u003epytorch\u003c/li\u003e\n\u003cli\u003ekeras\u003c/li\u003e\n\u003cli\u003esympy\u003c/li\u003e\n\u003cli\u003enumexpr\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-python-environment\" class=\"anchor\" href=\"#python-environment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePython Environment\u003c/h3\u003e\n\u003cp\u003eAll containers use Miniconda3, which are installed at \u003ccode\u003e/usr/local/miniconda3/\u003c/code\u003e inside the containers.\u003c/p\u003e\n\u003cp\u003eThe name of Conda environment in each container is the same as the container name, e.g. \u003ccode\u003ehera1\u003c/code\u003e, \u003ccode\u003ecasa6_full\u003c/code\u003e, and etc, The default conda environment \u003ccode\u003ebase\u003c/code\u003e is not used.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-environment-variables\" class=\"anchor\" href=\"#environment-variables\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEnvironment Variables\u003c/h3\u003e\n\u003cp\u003eThe following environment variables are also exported in all containers:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eCONDA_PATH=\"/usr/local/miniconda3\"\nCONDA_SH=\"$CONDA_PATH/etc/profile.d/conda.sh\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe latter is especially useful to make the \u003ccode\u003econda\u003c/code\u003e command available inside the container (see the section on \u003ca href=\"####-%60shell%60\"\u003e\u003ccode\u003esingularly shell\u003c/code\u003e usage\u003c/a\u003e below).\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003ertp\u003c/code\u003e container has an additional environment variable that point to \u003ccode\u003ehera_pipelines\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eHERA_PIPELINES_PATH=\"/usr/local/hera_pipelines\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-singularity-commands\" class=\"anchor\" href=\"#singularity-commands\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Commands\u003c/h3\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-pull\" class=\"anchor\" href=\"#pull\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ccode\u003epull\u003c/code\u003e\n\u003c/h4\u003e\n\u003cp\u003eUse \u003ccode\u003esingularity pull\u003c/code\u003e to download the container from Singularity Hub\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity pull [name_to_save_the_image_(optional)] shub://HERA-Team/hera-singularity:\u0026lt;recipe\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor example,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity pull rtp.sif shub://HERA-Team/hera-singularity:rtp\nINFO: Downloading shub image\n 1.98 GiB / 1.98 GiB [=======================================================] 100.00% 13.12 MiB/s 2m34s\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-shell\" class=\"anchor\" href=\"#shell\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ccode\u003eshell\u003c/code\u003e\n\u003c/h4\u003e\n\u003cp\u003eThe \u003ccode\u003esingularity shell\u003c/code\u003e command allows you to spawn a new shell within your container and interact with it as though it were a small virtual machine.\u003c/p\u003e\n\u003cp\u003eBy default, \u003ccode\u003eshell\u003c/code\u003e invokes \u003ccode\u003e/bin/sh --norc\u003c/code\u003e, which means that \u003ccode\u003e.bashrc\u003c/code\u003e will not be executed (more on this \u003ca href=\"https://github.com/hpcng/singularity/issues/643\"\u003ehere\u003c/a\u003e) and thus Conda will not be initialized. To make the \u003ccode\u003econda\u003c/code\u003e command available, you can do one of the following:\u003c/p\u003e\n\u003cp\u003ea) Run \u003ccode\u003eexec $SHELL\u003c/code\u003e inside the singularity shell. If \u003ccode\u003e$SHELL\u003c/code\u003e is \u003ccode\u003e\\bin\\bash\u003c/code\u003e (as in our Ubuntu build), \u003ccode\u003e.bashrc\u003c/code\u003e will be read.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity shell rtp.sif\nSingularity\u0026gt; exec $SHELL\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eb) Manually execute the conda initialization script inside singularity shell. The \u003ccode\u003eCONDA_SH\u003c/code\u003e environment variable pointing to the absolute path of the script (\u003ccode\u003e/usr/local/miniconda3/etc/profile.d/conda.sh\u003c/code\u003e), is made available for this purpose. Note that \u003ccode\u003e.\u003c/code\u003e must be used as \u003ccode\u003esource\u003c/code\u003e won\u0027t work under \u003ccode\u003esh\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity shell rtp.sif\nSingularity\u0026gt; . $CONDA_SH\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eb) Specify \u003ccode\u003e\\bin\\bash\u003c/code\u003e as a shell to use when executing the \u003ccode\u003eshell\u003c/code\u003e command, either by using the \u003ccode\u003eSINGULARITY_SHELL\u003c/code\u003e environment variable,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ SINGULARITY_SHELL=/bin/bash singularity shell hera-rtp.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor \u003ccode\u003e-s\u003c/code\u003e option,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity shell -s /bin/bash hera-rtp.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-exec\" class=\"anchor\" href=\"#exec\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ccode\u003eexec\u003c/code\u003e\n\u003c/h4\u003e\n\u003cp\u003eThe \u003ccode\u003esingularity exec\u003c/code\u003e command allows you to execute a custom command within a container by specifying the image file.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec rtp.sif echo \"Hello World!\"\nHello World!\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003e$ cat myscript.sh\nHello World!\n$ singularity exec rtp.sif bash myscript.sh\nHello World!\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-file-permission-and-bind-path\" class=\"anchor\" href=\"#file-permission-and-bind-path\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFile Permission and Bind Path\u003c/h3\u003e\n\u003cp\u003eSingularity containers run as the user and share host services. When Singularity \u2018switch\u2019 from the host operating system to the containerized operating system, the OS-level system files on the host becomes inaccessible. (the root user on the host system is also different from the root in the container!)\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-specific-usages-for-ilifu\" class=\"anchor\" href=\"#specific-usages-for-ilifu\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpecific Usages for Ilifu\u003c/h3\u003e\n\u003cp\u003ePlese see the relevant page on the HERA wiki.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 13,
"topics": [],
- "updated_at": 1551443298.0
+ "updated_at": 1638267345.0
},
{
"data_format": 2,
- "description": "General container for RNA-seq sample QC, trimming, alignment and counts (STAR 2.7)",
+ "description": null,
"filenames": [
- "Singularity.hg19v1.centos"
+ "Singularity"
],
- "full_name": "ertheisen/wildcat_centos",
+ "full_name": "lkirk/nb-env",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-appalachianhg19v1-container-for-early-ngs-pipeline-applications\" class=\"anchor\" href=\"#appalachianhg19v1-container-for-early-ngs-pipeline-applications\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eappalachian.hg19v1 container for early NGS pipeline applications\u003c/h1\u003e\n\u003cp\u003eHow to run pipeline:\u003c/p\u003e\n\u003cp\u003esingularity run --app [appname] --bind [directory_info] container_name.simg\u003c/p\u003e\n\u003cp\u003ePath to genome in container needs to be:\n\u0027/genomes/test/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/spike/dm6/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/spike/sacCer3/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/STAR/[STAR index files]\u0027\n-or-\n\u0027/genomes/anno/[gtf or gff annotation file]\u0027\u003c/p\u003e\n\u003cp\u003eFor Baker Cluster Users:\ndirectory to mount for fly spike-in is: /gpfs0/home/gdlessnicklab/share/trails/genomes/Drosophila_melanogaster/UCSC\ndirectory to mount for yeast spike-in is: /gpfs0/home/gdlessnicklab/share/trails/genomes/Saccharomyces_cerevisiae/UCSC\ndirectory to mount for hg19 is: /reference/homo_sapiens/hg19/ucsc_assembly/illumina_download/\u003c/p\u003e\n\u003cp\u003eTo run interactive terminal in container\u003c/p\u003e\n\u003cp\u003esingularity shell --bind [directory_info] appalachian_hg19.simg\u003c/p\u003e\n\u003cp\u003e##Be sure to bind your data, your genome, and any script files you may want to run\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nb-env\" class=\"anchor\" href=\"#nb-env\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enb-env\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1560527067.0
+ "updated_at": 1637426544.0
},
{
"data_format": 2,
@@ -12511,243 +11935,245 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "Nemirtingas/gdown",
+ "full_name": "hakanyi/robust-vision-thesis",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-gdownpl\" class=\"anchor\" href=\"#gdownpl\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egdown.pl\u003c/h1\u003e\n\u003cp\u003eGoogle Drive direct download of big files\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-requirements\" class=\"anchor\" href=\"#requirements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements\u003c/h1\u003e\n\u003cp\u003e\u003cem\u003ewget\u003c/em\u003e and \u003cem\u003ePerl\u003c/em\u003e must be in the PATH.\u003cbr\u003e\n\u003cstrong\u003eWindows\u003c/strong\u003e and \u003cstrong\u003elinux\u003c/strong\u003e compatible.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h1\u003e\n\u003cp\u003eUse Google Drive shareable links, viewable by anyone:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ./gdown.pl \u0027gdrive file url\u0027 [\u0027desired file name\u0027] \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-example\" class=\"anchor\" href=\"#example\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample\u003c/h1\u003e\n\u003cp\u003eFor example, to download \u003ca href=\"https://drive.google.com/file/d/0B1L_hFrWJfRhLUJZdXdSdTdfSWs/edit\" rel=\"nofollow\"\u003ethis video\u003c/a\u003e from my \u003ca href=\"https://circulosmeos.wordpress.com/2015/03/04/axolotl-a-simple-plain-text-documentation-system/\" rel=\"nofollow\"\u003eaxolotl project\u003c/a\u003e, just copy the url, and give a file name if desired:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ./gdown.pl https://drive.google.com/file/d/0B1L_hFrWJfRhLUJZdXdSdTdfSWs/edit axolotl.mp4 \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-resuming-a-download\" class=\"anchor\" href=\"#resuming-a-download\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResuming a download\u003c/h1\u003e\n\u003cp\u003eIf you need to resume a download, please, use \u003ca href=\"https://github.com/circulosmeos/gdown.pl/tree/with-resume\"\u003e\u003cstrong\u003egdown.pl v2.0\u003c/strong\u003e here\u003c/a\u003e.\u003cbr\u003e\nAs long as a file name is indicated as second parameter, \u003cem\u003egdown.pl v2.0\u003c/em\u003e \u003cstrong\u003ewill try to resume the partially downloaded file\u003c/strong\u003e if a local incomplete file with that name already exists.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-version\" class=\"anchor\" href=\"#version\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVersion\u003c/h1\u003e\n\u003cp\u003eThis version is \u003cstrong\u003ev1.4\u003c/strong\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-warning\" class=\"anchor\" href=\"#warning\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWarning\u003c/h3\u003e\n\u003cp\u003ePlease, note that v1.2 (available between days 12 to 31 of Jan/2019) \u003cstrong\u003eshould not be used\u003c/strong\u003e, as it contains a bug that could result in unusable downloaded files. Proceed to overwrite with v1.4 in case you have it.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-docker\" class=\"anchor\" href=\"#docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h1\u003e\n\u003cp\u003eA simple Docker file is provided, to build a simple Docker image with gdown.pl.\u003cbr\u003e\nThis has been used for pre-pulling data from a Google Drive to Kubernetes persistent volumes.\u003cbr\u003e\nThanks @anton-khodak\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h1\u003e\n\u003cp\u003eAn example \u003ca href=\"https://sylabs.io/guides/3.2/user-guide/quick_start.html\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e file is provided.\u003cbr\u003e\nBuild the container:\n\u003ccode\u003esudo singularity build (imagename) Singularity\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eRun the container:\n\u003ccode\u003esingularity run (imagename) (gdown.pl args)\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThanks to @ttbrunner\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h1\u003e\n\u003cp\u003eDistributed \u003ca href=\"http://www.gnu.org/licenses/gpl-3.0.html\" rel=\"nofollow\"\u003eunder GPL 3\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-disclaimer\" class=\"anchor\" href=\"#disclaimer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDisclaimer\u003c/h1\u003e\n\u003cp\u003eThis software is provided \"as is\", without warranty of any kind, express or implied.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-more-info\" class=\"anchor\" href=\"#more-info\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMore info\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://circulosmeos.wordpress.com/2014/04/12/google-drive-direct-download-of-big-files\" rel=\"nofollow\"\u003ehttps://circulosmeos.wordpress.com/2014/04/12/google-drive-direct-download-of-big-files\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-contact\" class=\"anchor\" href=\"#contact\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h1\u003e\n\u003cp\u003eby \u003ca href=\"loopidle@gmail.com\"\u003ecirculosmeos\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-stimulus-generation-pipeline\" class=\"anchor\" href=\"#stimulus-generation-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStimulus generation pipeline\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eManually choose base and change postures from H36M dataset. The outcome of this is a \u003ccode\u003ebase_posture.txt\u003c/code\u003e file that we\u0027ll put in a folder, e.g. \u003ccode\u003esampled-lights\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eUse \u003ccode\u003e00_h36m_to_mesh.py\u003c/code\u003e to generate meshes for all of the images from \u003ccode\u003ebase_postures.txt\u003c/code\u003e and place them in the \u003ccode\u003emeshes\u003c/code\u003e folder under \u003ccode\u003esampled-lights\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eUse \u003ccode\u003e01_sample_candidates.sh\u003c/code\u003e to go through the mesh pairs and, for each, generate N base:changed-light and base:changed-pose pairs where the underlying lamp position is sampled. Record image statistics under \u003ccode\u003esampled-lights\u003c/code\u003e, but don\u0027t save images.\u003c/li\u003e\n\u003cli\u003eAnalyze the data with \u003ccode\u003e02_analyze_candidates.Rmd\u003c/code\u003e to determine a) pairs where the pixel distance due to light changes are comparable to pixel distance due to posture changes and b) out these pairs, whether the pixel distances lie in a given range. Save the filtered csv to \u003ccode\u003ecandidate_pairs.csv\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eProduce the images in \u003ccode\u003ecandidate_pairs.csv\u003c/code\u003e (incl. diff-images) to sanity-check using \u003ccode\u003e03_visualize_candidates.py\u003c/code\u003e. Place them in \u003ccode\u003ecandidate_pairs_images\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eAcross all \u003ccode\u003esampled-lights-\u0026lt;x\u0026gt;\u003c/code\u003e folders, choose from the candidates and consolidate the output in a \u003ccode\u003eimage_info.csv\u003c/code\u003e in this folder.\u003c/li\u003e\n\u003cli\u003eConsolidate the images in \u003ccode\u003ecandidate_pairs.csv\u003c/code\u003e and place them in \u003ccode\u003eimages\u003c/code\u003e using \u003ccode\u003e04_collect_images.py\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eUse \u003ccode\u003e05_make_videos.py\u003c/code\u003e to produce the video stimuli for the behavioral experiment.\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1645100579.0
+ "updated_at": 1637252100.0
},
{
"data_format": 2,
- "description": "CP 2022",
+ "description": null,
"filenames": [
- "dmc/Singularity",
- "lg/Singularity"
+ "Singularity"
],
- "full_name": "anonymizee/dper",
- "latest_release": "v0",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dper-dynamic-programming-for-er-ssat\" class=\"anchor\" href=\"#dper-dynamic-programming-for-er-ssat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDPER (Dynamic Programming for ER-SSAT)\u003c/h1\u003e\n\u003cp\u003eDPER runs in two phases:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe planning phase constructs a join tree of a CNF formula\u003c/li\u003e\n\u003cli\u003eThe execution phase computes the maximum and a maximizer from the join tree\u003c/li\u003e\n\u003c/ul\u003e\n\n\u003ch2\u003e\n\u003ca id=\"user-content-cloning-this-repository\" class=\"anchor\" href=\"#cloning-this-repository\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCloning this repository\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/anonymizee/dper\u003c/pre\u003e\u003c/div\u003e\n\n\u003ch2\u003e\n\u003ca id=\"user-content-files\" class=\"anchor\" href=\"#files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFiles\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDir \u003ca href=\"lg\"\u003e\u003ccode\u003elg\u003c/code\u003e\u003c/a\u003e: DPER\u0027s planner\u003c/li\u003e\n\u003cli\u003eDir \u003ca href=\"dmc\"\u003e\u003ccode\u003edmc\u003c/code\u003e\u003c/a\u003e: DPER\u0027s executor\u003c/li\u003e\n\u003cli\u003eDir \u003ca href=\"experiments\"\u003e\u003ccode\u003eexperiments\u003c/code\u003e\u003c/a\u003e: empirical evaluation\u003c/li\u003e\n\u003cli\u003eFile \u003ca href=\"ACKNOWLEDGMENT.md\"\u003e\u003ccode\u003eACKNOWLEDGMENT.md\u003c/code\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "iferres/GTi_UY_shiny",
+ "latest_release": null,
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1645325273.0
+ "updated_at": 1638368684.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "0.1.16/Singularity"
+ "Singularity"
],
- "full_name": "yh549848/singularity-vcftools",
- "latest_release": null,
+ "full_name": "cmatKhan/brentlabRnaSeqTools",
+ "latest_release": "0.0.2",
+ "readme": "\u003cp\u003e\u003ca href=\"https://codecov.io/gh/cmatKhan/brentlabRnaSeqTools?branch=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5960bfe27822500008e6c1cfcd08e981288cc2fb1c1ae70ecf9a5125057f6c7c/68747470733a2f2f636f6465636f762e696f2f67682f636d61744b68616e2f6272656e746c6162526e61536571546f6f6c732f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"Codecov test coverage\" data-canonical-src=\"https://codecov.io/gh/cmatKhan/brentlabRnaSeqTools/branch/master/graph/badge.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003ca href=\"https://github.com/cmatKhan/brentlabRnaSeqTools/actions\"\u003e\u003cimg src=\"https://github.com/cmatKhan/brentlabRnaSeqTools/workflows/R-CMD-check/badge.svg\" alt=\"R-CMD-check\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://cmatkhan.github.io/brentlabRnaSeqTools/\" rel=\"nofollow\"\u003eClick here for the online documentation\u003c/a\u003e. This is a work in progress, still. If there is documentation that you\u0027d like that doesn\u0027t exist, please make an issue report.\u003c/p\u003e\n\u003cp\u003eThe \"articles\" link in the navbar at the top of the page has some vignettes that will help with some common tasks -- please do look at those, if you are a user of this package.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-installation-and-updating\" class=\"anchor\" href=\"#installation-and-updating\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation and updating\u003c/h1\u003e\n\u003cp\u003eThe following will both install, and update if there are changes in the repository.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003elibrary(devtools)\n# remove build_vignettes to save time\ninstall_github(\"cmatKhan/brentlabRnaSeqTools\", dependencies = TRUE)\n\n# after you get the package installed, do this:\nlibrary(brentlabRnaSeqTools)\n\n# if you think there are changes, but install_github disagrees, try using the argument force = TRUE\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eI have also installed this on my htcf cluster profile like so:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eml miniconda # note: this will definitely load, and most likely work as expected. But it does not come with a promise. It is a cluster module I wrote. If you have issues which you suspect to be a conda problem, I suggest that you install a version of miniconda in your home profile. It will be easier to address any conda related issues that way.\n\nconda install -n brentlabRnaSeqTools # or whatever you want to call your env name\n\nconda install r r-essentials libpq\n\n$ R\n\n\u0026gt; install.packages(devtools)\n# YOU HAVE TO DO THIS! do not update RSQLite (as of 20210702 there is an install error in the boost/c++ package which is a dependency. You do not need to worry about this when you\u0027re installing)\n\u0026gt; remotes::install_version(\"RSQLite\", version = \"2.2.5\")\n\u0026gt; install_github(\"cmatKhan/brentlabRnaSeqTools\")\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee the bamtools vignette for examples of how to use the functions to examine bam files in an Rscript that you could run with SLURM\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-uninstall\" class=\"anchor\" href=\"#uninstall\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003euninstall\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003eremove.packages(\"brentlabRnaSeqTools\")\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-container\" class=\"anchor\" href=\"#singularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity container\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull library://cmatkhan/default/brentlab_rnaseq_tools:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-issues\" class=\"anchor\" href=\"#issues\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eissues\u003c/h1\u003e\n\u003cp\u003eplease do post issues to the issues tab. Please include the full error code and the command/context that lead to the error\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-to-contribute\" class=\"anchor\" href=\"#to-contribute\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eto contribute\u003c/h1\u003e\n\u003col\u003e\n\u003cli\u003efork the repo\u003c/li\u003e\n\u003cli\u003edevelop in a branch\u003c/li\u003e\n\u003cli\u003ecreate a pull request for the branch\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThis is the featureCounts/subreads homepage. In particular, has a good example of how to make mean/variance graph with voom\n\u003ca href=\"http://bioinf.wehi.edu.au/RNAseqCaseStudy/\" rel=\"nofollow\"\u003ehttp://bioinf.wehi.edu.au/RNAseqCaseStudy/\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todos\" class=\"anchor\" href=\"#todos\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODOs\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eread more about packrat, add some instructions on how to use\u003c/li\u003e\n\u003cli\u003eupdate R and dependencies to R version 4\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-brentlabrnaseqtools\" class=\"anchor\" href=\"#brentlabrnaseqtools\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebrentlabRnaSeqTools\u003c/h1\u003e\n\u003cp\u003eThis is a very helpful tutorial on making an R package:\u003cbr\u003e\n\u003ca href=\"https://tinyheero.github.io/jekyll/update/2015/07/26/making-your-first-R-package.html\" rel=\"nofollow\"\u003ehttps://tinyheero.github.io/jekyll/update/2015/07/26/making-your-first-R-package.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003ethis github post helped with installing bioconductor dependencies (deseq2 in this case):\u003cbr\u003e\n\u003ca href=\"https://bioinformatics.stackexchange.com/a/3375\" rel=\"nofollow\"\u003ehttps://bioinformatics.stackexchange.com/a/3375\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eand this helped with installing from github:\u003cbr\u003e\n\u003ca href=\"https://cran.r-project.org/web/packages/githubinstall/vignettes/githubinstall.html\" rel=\"nofollow\"\u003ehttps://cran.r-project.org/web/packages/githubinstall/vignettes/githubinstall.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFinally, here is a nice package development cheatsheet (for R):\u003cbr\u003e\n\u003ca href=\"https://rawgit.com/rstudio/cheatsheets/master/package-development.pdf\" rel=\"nofollow\"\u003ehttps://rawgit.com/rstudio/cheatsheets/master/package-development.pdf\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1645372372.0
+ "updated_at": 1636684356.0
},
{
"data_format": 2,
- "description": "Docker images",
+ "description": "This repo contains a Singularity definition file for the newest ROS2 distro",
"filenames": [
- "images/sc_qc_cluster/Singularity.sc_qc_cluster"
+ "Singularity"
],
- "full_name": "letaylor/docker-letaylor",
+ "full_name": "siehlema/ros2_singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-docker-letaylor\" class=\"anchor\" href=\"#docker-letaylor\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edocker-letaylor\u003c/h1\u003e\n\u003cp\u003eThis repo contains Docker images that are automatically built using Travis CI. It is not designed to scale to many images as each image is updated if any one image changes.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-automatically-push-images-to-docker-hub-using-travis-ci\" class=\"anchor\" href=\"#automatically-push-images-to-docker-hub-using-travis-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAutomatically push images to Docker Hub using Travis CI\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-1-edit-config-files\" class=\"anchor\" href=\"#1-edit-config-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Edit config files\u003c/h2\u003e\n\u003cp\u003eEdit the following files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e.travis.yml\u003c/code\u003e : alter \u003ccode\u003e$IMAGE_NAME\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-2-give-travis-ci-access-to-upload-to-docer-hub\" class=\"anchor\" href=\"#2-give-travis-ci-access-to-upload-to-docer-hub\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Give Travis CI access to upload to Docer Hub\u003c/h2\u003e\n\u003cp\u003eStore both \u003ccode\u003e$DOCKER_PASSWORD\u003c/code\u003e and \u003ccode\u003e$DOCKER_USERNAME\u003c/code\u003e securely in on Travis CI. These are used for authentication.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eLogin to the account you want Travis to use to upload on \u003ca href=\"https://hub.docker.com/\" rel=\"nofollow\"\u003ehub.docker.com\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eClick on your username on the top left and go to \u0027Account Settings\u0027.\u003c/li\u003e\n\u003cli\u003eOn the left hand panel, go to \u0027Security\u0027 and enter your password as requested.\u003c/li\u003e\n\u003cli\u003eNow we\u0027ll create an API token. Name it Travis CI.\u003c/li\u003e\n\u003cli\u003eCreate the token and copy it.\u003c/li\u003e\n\u003cli\u003eLogin to your account on \u003ca href=\"https://travis-ci.org\" rel=\"nofollow\"\u003etravis-ci.org\u003c/a\u003e and go to the repository that you want to add this automatic functionality to.\u003c/li\u003e\n\u003cli\u003eOn the right next to \u0027More options\u0027 go to \u0027Settings\u0027 in the hamburger menu.\u003c/li\u003e\n\u003cli\u003eAdd an environment variable with the name \u003ccode\u003eDOCKER_PASSWORD\u003c/code\u003e and give it the value of the API token that you copied from \u003ca href=\"https://hub.docker.com/\" rel=\"nofollow\"\u003ehub.docker.com\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eAdd an environment variable with the name \u003ccode\u003eDOCKER_USERNAME\u003c/code\u003e and give it your \u003ca href=\"https://hub.docker.com/\" rel=\"nofollow\"\u003ehub.docker.com\u003c/a\u003e user name.\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ros2_singularity\" class=\"anchor\" href=\"#ros2_singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eros2_singularity\u003c/h1\u003e\n\u003cp\u003eThis definition file is based on the ROS2 Docker from the \u003ca href=\"https://hub.docker.com/r/osrf/ros2/dockerfile\" rel=\"nofollow\"\u003eDocker Hub\u003c/a\u003e and the official \u003ca href=\"https://github.com/osrf/docker_images/blob/master/ros2/source/source/Dockerfile\"\u003eGithub Repo\u003c/a\u003e and adds some Singularity functionality. Singularity containers can for instance be used from SLURM workload managers on computer clusters.\u003c/p\u003e\n\u003cp\u003eIt is supposed to help new Singularity/ROS2 developers to start their projects.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to\" class=\"anchor\" href=\"#how-to\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003emeet prerequisites for demo:\n\u003cul\u003e\n\u003cli\u003eLinux environment (tested on Ubuntu 18.04)\u003c/li\u003e\n\u003cli\u003einstall Singularity (\u003ca href=\"https://sylabs.io/guides/3.0/user-guide/installation.html\" rel=\"nofollow\"\u003eGuide\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003erun all containers on one host\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eclone repo\u003c/li\u003e\n\u003cli\u003ebuild singularity container: \u003ccode\u003esudo singularity build ros2_container.simg Singularity\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eafterwards try the demo apps:\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003esudo singularity run --app example_talker ros2_container.simg\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003esudo singularity run --app example_listener ros2_container.simg\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003ecreate your own apps on the Singularity container or copy them onto the container before building\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1611328575.0
+ "updated_at": 1566384326.0
},
{
"data_format": 2,
- "description": "A Nextflow pipeline for processing 16S rRNA sequences using dada2",
+ "description": null,
"filenames": [
- "singularity/Singularity"
+ "Singularity"
],
- "full_name": "nhoffman/dada2-nf",
+ "full_name": "cmatKhan/bartNP",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dada2-nextflow-pipeline\" class=\"anchor\" href=\"#dada2-nextflow-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDada2 Nextflow pipeline\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-local-execution-quickstart-for-the-truly-impatient\" class=\"anchor\" href=\"#local-execution-quickstart-for-the-truly-impatient\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLocal execution quickstart for the truly impatient\u003c/h2\u003e\n\u003cp\u003eInstall Docker and make sure that the Docker daemon is running.\u003c/p\u003e\n\u003cp\u003eInstall the nextflow binary in this directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewget -qO- https://get.nextflow.io | bash\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExecute locally, using the minimal data set.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./nextflow run main.nf -params-file params-minimal.json\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-execution-on-aws-batch\" class=\"anchor\" href=\"#execution-on-aws-batch\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExecution on AWS Batch\u003c/h2\u003e\n\u003cp\u003eDetails will depend on your AWS batch configuration. General instructions TBD.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-infernal-16s-filtering\" class=\"anchor\" href=\"#infernal-16s-filtering\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInfernal 16s filtering\u003c/h3\u003e\n\u003cp\u003eCoveriance model used for Infernal sequence filtering obtained from the Rfam database:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://rfam.xfam.org/family/RF00177\" rel=\"nofollow\"\u003ehttps://rfam.xfam.org/family/RF00177\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eTo cite Rfam see latest web site instructions:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://rfam.xfam.org/\" rel=\"nofollow\"\u003ehttps://rfam.xfam.org/\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-bartnp\" class=\"anchor\" href=\"#bartnp\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebartNP\u003c/h1\u003e\n\n\u003cp\u003e\u003ca href=\"https://github.com/cmatKhan/bartNP/actions\"\u003e\u003cimg src=\"https://github.com/cmatKhan/bartNP/workflows/R-CMD-check/badge.svg\" alt=\"R-CMD-check\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003cp\u003e\u003ca href=\"https://cmatkhan.github.io/bartNP/\" rel=\"nofollow\"\u003eSee Documentation Here\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1637256255.0
+ "updated_at": 1639423876.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "QE/Singularity.QuantumESPRESSO-6.3-intel-2018b-unrrc"
+ "Singularity"
],
- "full_name": "UNR-HPC/singularity-recipes",
+ "full_name": "bozmik/singularity_image",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-recipes\" class=\"anchor\" href=\"#singularity-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-recipes\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1544465938.0
+ "updated_at": 1552825749.0
},
{
"data_format": 2,
- "description": "Singularity Containers",
+ "description": "md5deep is a set of programs to compute MD5, SHA-1, SHA-256, Tiger, or Whirlpool message digests on an arbitrary number of files.",
"filenames": [
- "Singularity.fmriprep.1.4.1rc1",
- "Singularity.rclone",
- "Singularity.hddm",
- "Singularity.neurodebian",
- "Singularity.fmriprep",
- "Singularity.test.neurodebian.def"
+ "4.4/Singularity"
],
- "full_name": "klabhub/singularity",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h1\u003e\n\u003cp\u003eKlab Singularity Containers, access them here:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2510\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eNeurodebian is a full install, with FSL, AFNI, datalad, etc.\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-hashdeep",
+ "latest_release": "v4.4",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-hashdeep/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-hashdeep/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-hashdeep/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-hashdeep/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ff1122893a7ca155e9b1b0481dc029ee11528d2c1a5d57208038642526e8e646/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6861736864656570\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ff1122893a7ca155e9b1b0481dc029ee11528d2c1a5d57208038642526e8e646/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6861736864656570\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-hashdeep\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f144df41de2d6e76dd24c4825a4ac826fd107f3ea3e94ec7daf3c070422137cc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6861736864656570\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f144df41de2d6e76dd24c4825a4ac826fd107f3ea3e94ec7daf3c070422137cc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6861736864656570\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-hashdeep\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/b2bcc92aad4b69910d6a0b34f82bbe68f8529688631ce0a15fb4ddbca44fd8be/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6861736864656570\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b2bcc92aad4b69910d6a0b34f82bbe68f8529688631ce0a15fb4ddbca44fd8be/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6861736864656570\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-hashdeep\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5aa33b5c4bd7a85735363e937ad526230f325f4d70cd29a78de7f77376b0defd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6861736864656570\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5aa33b5c4bd7a85735363e937ad526230f325f4d70cd29a78de7f77376b0defd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6861736864656570\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-hashdeep\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-hashdeep\" class=\"anchor\" href=\"#singularity-hashdeep\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-hashdeep\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/jessek/hashdeep\"\u003ehashdeep\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ehashdeep\u003c/code\u003e, \u003ccode\u003esha1deep\u003c/code\u003e, \u003ccode\u003etigerdeep\u003c/code\u003e, \u003ccode\u003emd5deep\u003c/code\u003e, \u003ccode\u003esha256deep\u003c/code\u003e and \u003ccode\u003ewhirlpooldeep\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hashdeep/4.4\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hashdeep\u003c/code\u003e as \u003ccode\u003e4.4.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [],
- "updated_at": 1637675540.0
+ "subscribers_count": 2,
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1639934583.0
},
{
"data_format": 2,
- "description": null,
+ "description": "A monitor of resources",
"filenames": [
- "Singularity"
+ "1.0.20/Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-docker-fidle",
+ "full_name": "pscedu/singularity-btop",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-container-for-fidle-httpsgricad-gitlabuniv-grenoble-alpesfrtalksfidle\" class=\"anchor\" href=\"#building-container-for-fidle-httpsgricad-gitlabuniv-grenoble-alpesfrtalksfidle\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding container for fidle (\u003ca href=\"https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle\" rel=\"nofollow\"\u003ehttps://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle\u003c/a\u003e)\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003etoy system for github actions\u003c/li\u003e\n\u003cli\u003ebuild docker image from dockerhub registry and push to ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003ebuild singularity container from dockerhub registry and push to oras://ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003ebuild docker image, push to ghcr.io and re-use that docker image to create a singularity container pushed ghcr.io oras://\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:main\u003c/code\u003e tagged docker image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003cli\u003eOnly cover the software installation for cpu (\u003ca href=\"https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Using%20Fidle/Linux%20installation%20using%20conda\" rel=\"nofollow\"\u003ehttps://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Using%20Fidle/Linux%20installation%20using%20conda\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage-\" class=\"anchor\" href=\"#usage-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-fidle/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-fidle/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocker\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-fidle:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run oras://ghcr.io/truatpasteurdotfr/singularity-docker-fidle:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-btop/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-btop/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-btop/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-btop/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c5457f5a651b024fa69983d39c277473e069e5594ee409e53b44e391c6c15b39/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62746f70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c5457f5a651b024fa69983d39c277473e069e5594ee409e53b44e391c6c15b39/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62746f70\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-btop\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/fed939c101ca243e5b6b049eb99d6125bc1a94e6772a69e3d1e61c7bc1dd401e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62746f70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fed939c101ca243e5b6b049eb99d6125bc1a94e6772a69e3d1e61c7bc1dd401e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62746f70\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-btop\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/eb5608fc1c3e2f7a3a19f5f7d22fadf1ee0714cb6c0c9d9cdc2dfd9589202a2a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62746f70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/eb5608fc1c3e2f7a3a19f5f7d22fadf1ee0714cb6c0c9d9cdc2dfd9589202a2a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62746f70\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-btop\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7edba1cf64e407b9a9f9fd1d76709a70797be17efa4ad0233df596ca5b65aab2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62746f70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7edba1cf64e407b9a9f9fd1d76709a70797be17efa4ad0233df596ca5b65aab2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62746f70\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-btop\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-btop\" class=\"anchor\" href=\"#singularity-btop\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-btop\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/aristocratos/btop/raw/main/Img/logo.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/aristocratos/btop/raw/main/Img/logo.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/aristocratos/btop\"\u003ebtop\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebtop\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/btop/1.0.20\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/btop\u003c/code\u003e as \u003ccode\u003e1.0.20.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1637706473.0
+ "subscribers_count": 3,
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1635823834.0
},
{
"data_format": 2,
- "description": null,
+ "description": "SCG collaboration with ETA on BEAM/Atlas project",
"filenames": [
"Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-docker-fidle-gpu",
+ "full_name": "lbnl-science-it/atlas",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-container-for-fidle-httpsgricad-gitlabuniv-grenoble-alpesfrtalksfidle-with-a-gpu\" class=\"anchor\" href=\"#building-container-for-fidle-httpsgricad-gitlabuniv-grenoble-alpesfrtalksfidle-with-a-gpu\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding container for fidle (\u003ca href=\"https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle\" rel=\"nofollow\"\u003ehttps://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle\u003c/a\u003e) with a gpu\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003etoy system for github actions\u003c/li\u003e\n\u003cli\u003ebuild docker image from dockerhub registry and push to ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003ebuild singularity container from dockerhub registry and push to oras://ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003ebuild docker image, push to ghcr.io and re-use that docker image to create a singularity container pushed ghcr.io oras://\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:main\u003c/code\u003e tagged docker image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003cli\u003eOnly cover the software installation for gpu (\u003ca href=\"https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Using%20Fidle/Linux%20installation%20using%20conda\" rel=\"nofollow\"\u003ehttps://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Using%20Fidle/Linux%20installation%20using%20conda\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage-\" class=\"anchor\" href=\"#usage-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-fidle-gpu/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-fidle-gpu/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocker\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-fidle-gpu:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run oras://ghcr.io/truatpasteurdotfr/singularity-docker-fidle-gpu:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-atlas\" class=\"anchor\" href=\"#atlas\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eatlas\u003c/h1\u003e\n\u003cp\u003eContainer with R and necessary packages to run BEAM/Atlas vehicle simulation.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-example-running-r-script-via-docker\" class=\"anchor\" href=\"#example-running-r-script-via-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample running R script via Docker\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e /global/data/transportation/ATLAS/static/urbansim/\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e# R script in home dir, bind mounted to container\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003eXX docker run -v /global/data/transportation/ATLAS/static/urbansim:/global/data/transportation/ATLAS/static/urbansim -it --entrypoint=Rscript ghcr.io/lbnl-science-it/atlas:main /global/data/transportation/ATLAS/static/urbansim/model_application/Model_application_hima.R \u003c/span\u003e\ndocker run -v /global/data/transportation/ATLAS/static/urbansim:/mnt -it --entrypoint=Rscript ghcr.io/lbnl-science-it/atlas:main /mnt/model_application/Model_application_hima.R \ndocker run -v /global/data/transportation/ATLAS/static/urbansim_hima_apollo:/mnt -it --entrypoint=Rscript ghcr.io/lbnl-science-it/atlas:main /mnt/model_application/Model_application_hima.R \ndocker run -v \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e:/mnt -it --entrypoint=Rscript ghcr.io/lbnl-science-it/atlas:main /mnt/model_application/Model_application_hima.R\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e# running a bash shell, can call R from there\u003c/span\u003e\ndocker run -it --entrypoint=bash ghcr.io/lbnl-science-it/atlas:main\ndocker run -v /global/data/transportation/ATLAS/static/urbansim_hima_apollo:/mnt -it --entrypoint=bash ghcr.io/lbnl-science-it/atlas:main \n root@0b5815f5b441:/\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e export R_LIBS=/usr/local/lib/R/site-library/\u003c/span\u003e\n root@0b5815f5b441:/\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Rscript /mnt/model_application/Model_application_hima.R\u003c/span\u003e\n\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-example-running-r-script-via-singularity\" class=\"anchor\" href=\"#example-running-r-script-via-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample running R script via Singularity\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e\ncd /global/data/transportation/ATLAS/static/urbansim/\n\nsingularity pull docker://ghcr.io/lbnl-science-it/atlas:main \nsingularity exec docker://ghcr.io/lbnl-science-it/atlas:main Rscript ./model_application/Model_application_hima.R \n\n// other things to try for debug use\nsingularity shell docker://ghcr.io/lbnl-science-it/atlas:main # get bash prompt, can call R afterward\nsingularity run docker://ghcr.io/lbnl-science-it/atlas:main # get R prompt\n\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1637710228.0
+ "subscribers_count": 0,
+ "topics": [
+ "modeling"
+ ],
+ "updated_at": 1642141776.0
},
{
"data_format": 2,
- "description": "The preprocessing pipeline at ZHH",
+ "description": null,
"filenames": [
- "HCPPipeline/Singularity.unix"
+ "Singularity"
],
- "full_name": "argyelan/ZHHpipelines",
+ "full_name": "jzhanghzau/thesis_docker",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-zhhpipelines\" class=\"anchor\" href=\"#zhhpipelines\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eZHHpipelines\u003c/h1\u003e\n\u003cp\u003eThe preprocessing pipeline at ZHH\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-bids-conversion\" class=\"anchor\" href=\"#bids-conversion\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBIDS Conversion\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eUsage: dicom2bids.sh grid_num sess_num descr\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003egrid_num: subject identifier;\nsess_num: session identifier;\ndescr: study specificator (currently available: TMS)\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eUsage: multiple_dicom2bids.sh info.csv\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003einfo.csv: a file with 3 columns, first subject identifier, second: session identifier, third: study type\nProgram goes over every line one by one and calls dicom2bids.sh\u003c/p\u003e\n\u003cp\u003etest 2 ....\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1637793201.0
+ "updated_at": 1635770574.0
},
{
"data_format": 2,
- "description": null,
+ "description": "ENHSP Containers. This contains singularity recipes for ENHSP. ENHSP-18, ENHSP-19 and ENHSP20. More details can be found at https://sites.google.com/view/enhsp/",
"filenames": [
- "Singularity.lbfs"
+ "2018/Singularity.2018",
+ "latest/Singularity",
+ "2019/Singularity.2019",
+ "2020/Singularity.2020"
],
- "full_name": "ab649964207/fs",
+ "full_name": "hstairs/enhsp-containers",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-the-fs-functional-strips-planner\" class=\"anchor\" href=\"#the-fs-functional-strips-planner\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThe FS Functional STRIPS planner\u003c/h1\u003e\n\u003cp\u003e\u003ccode\u003eFS\u003c/code\u003e is a classical planner that works with the Functional STRIPS planning language \u003ca href=\"#ref-geffner-fstrips-2000\"\u003e[Geffner, 2000]\u003c/a\u003e,\na modeling language based on the quantifier-free\nfragment of first-order logic that includes constant, function and predicate symbols, but no variable symbols. The increased expressiveness\nof the Functional STRIPS language with respect to propositional languages such as standard STRIPS (which is indeed subsumed by Functional STRIPS)\noften results in problem encodings which are more compact, more readable, have fewer ground actions\nand preserve the structural properties of the problem in a manner which allows the derivation of more effective heuristics.\u003c/p\u003e\n\u003cp\u003eAlong with the core of the Functional STRIPS language, the \u003ccode\u003eFS\u003c/code\u003e planner supports certain extensions which are useful both\nfrom the expressive \u003cem\u003eand\u003c/em\u003e the computational point of view. These include \u003cem\u003eexistential quantification\u003c/em\u003e,\n\u003cem\u003estate constraints\u003c/em\u003e, a fairly large library of \u003cem\u003eglobal constraints\u003c/em\u003e, and the possibility of using \u003cem\u003eexternally-defined symbols\u003c/em\u003e\nand \u003cem\u003ebuilt-in arithmetic symbols\u003c/em\u003e.\u003c/p\u003e\n\u003cp\u003eThis documentation covers a number of practical issues related to the use of the \u003ccode\u003eFS\u003c/code\u003e planner. The planner, however, has\nbeen used and described in a number of academic publications that \u003ca href=\"http://gfrances.github.io/pubs/\" rel=\"nofollow\"\u003ecan be found here\u003c/a\u003e,\nthe most recent of which are \u003ca href=\"#ref-frances-modeling-2015\"\u003e[Franc\u00e8s and Geffner, 2015]\u003c/a\u003e and \u003ca href=\"#ref-frances-existential-2016\"\u003e[Franc\u00e8s and Geffner, 2016a]\u003c/a\u003e\nand \u003ca href=\"#ref-frances-effective-2016\"\u003e[Franc\u00e8s and Geffner, 2016b]\u003c/a\u003e.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"#installation\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#usage\"\u003eUsage\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#credits\"\u003eCredits\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#references\"\u003eReferences\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca name=\"user-content-references\"\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eThe easiest way to use the planner is by \u003ca href=\"doc/installation.md\"\u003emanually compiling the planner source code\u003c/a\u003e.\nAlternatively, you can build and/or use a \u003ca href=\"doc/containers.md\"\u003eready-to-use image\u003c/a\u003e in some of the containerization solutions\nthat we support.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca name=\"user-content-usage\"\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003eYou can find a high-level overview of the planner usage options \u003ca href=\"doc/usage.md\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-credits\" class=\"anchor\" href=\"#credits\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca name=\"user-content-credits\"\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003eThe \u003ccode\u003eFS\u003c/code\u003e planner is partially built upon the \u003ca href=\"http://www.lapkt.org\" rel=\"nofollow\"\u003eLightweight Automated Planning Toolkit\u003c/a\u003e\nand the PDDL parser from the \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003eFast Downward\u003c/a\u003e distribution.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-references\" class=\"anchor\" href=\"#references\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca name=\"user-content-references\"\u003e\u003c/a\u003eReferences\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca name=\"user-content-ref-frances-modeling-2015\"\u003eFranc\u00e8s, G., and Geffner, H. (2015)\u003c/a\u003e,\n\u003ca href=\"http://gfrances.github.io/pubs/2015-icaps-better-heuristics-more-expressive-languages/\" rel=\"nofollow\"\u003e\u003cem\u003eModeling and Computation in Planning: Better Heuristics from More Expressive Languages\u003c/em\u003e\u003c/a\u003e, ICAPS 2015.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca name=\"user-content-ref-frances-existential-2016\"\u003eFranc\u00e8s, G., and Geffner, H. (2016a)\u003c/a\u003e,\n\u003ca href=\"http://gfrances.github.io/pubs/2016-ijcai-existential-quantification-planning-csp/\" rel=\"nofollow\"\u003e\u003cem\u003eE-STRIPS: Existential Quantification in Planning and Constraint Satisfaction\u003c/em\u003e\u003c/a\u003e, IJCAI 2016.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca name=\"user-content-ref-frances-effective-2016\"\u003eFranc\u00e8s, G., and Geffner, H. (2016b)\u003c/a\u003e,\n\u003ca href=\"http://gfrances.github.io/pubs/2016-ijcai-effective-planning-more-expressive-languages/\" rel=\"nofollow\"\u003e\u003cem\u003eEffective Planning with More Expressive Languages\u003c/em\u003e\u003c/a\u003e, IJCAI 2016.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca name=\"user-content-ref-geffner-fstrips-2000\"\u003eGeffner, H. (2000)\u003c/a\u003e,\n\u003ca href=\"http://www.tecn.upf.es/~hgeffner/\" rel=\"nofollow\"\u003e\u003cem\u003eFunctional STRIPS: A more flexible lan-\nguage for planning and problem solving\u003c/em\u003e\u003c/a\u003e.\nIn Minker, J., ed., Logic-Based Artificial Intelligence. Kluwer. 187\u2013205.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-enhsp-containers\" class=\"anchor\" href=\"#enhsp-containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eENHSP Containers\u003c/h1\u003e\n\u003cp\u003eThis repository contains singularity recipes for ENHSP, the Expressive Numeric Heuristic Search Planner. ENHSP is an automated planning engine focused at solving planning problems with numeric state variables.\u003c/p\u003e\n\u003cp\u003eThe repository provides three versions of ENHSP, 2018, 2019 and 2020. These versions are described at \u003ca href=\"https://sites.google.com/view/enhsp/\" rel=\"nofollow\"\u003ehttps://sites.google.com/view/enhsp/\u003c/a\u003e as enhsp-18, enhsp-19, enhsp-20.\nSource code of all versions can be downloaded at: \u003ca href=\"https://gitlab.com/enricos83/ENHSP-Public\" rel=\"nofollow\"\u003ehttps://gitlab.com/enricos83/ENHSP-Public\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1637831969.0
+ "updated_at": 1635518248.0
},
{
"data_format": 2,
- "description": "PPX protocols for open malaria",
+ "description": null,
"filenames": [
- "src/code/Singularity"
+ "enricher/tests/resources/Singularity.enrichment"
],
- "full_name": "bayesianbrad/openmalaria_probprog",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-todo\" class=\"anchor\" href=\"#todo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etodo\u003c/h1\u003e\n\u003cp\u003eAdd notes to all the .cpp files that we modify, to state exactly\nwhat we modified.\u003c/p\u003e\n\u003cp\u003eopenmalaria dependencies (Ubuntu):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eapt packages: xsdcxx libxerces-c-dev libgsl-dev libboost-all-dev\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eHow to build wiki locally:\u003c/p\u003e\n\u003cp\u003eFirst download Gollum:\u003c/p\u003e\n\u003cp\u003eOn mac:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esudo gem install gollum\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-inputoutputs-to-the-model\" class=\"anchor\" href=\"#inputoutputs-to-the-model\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput/Outputs to the model\u003c/h1\u003e\n\u003cp\u003eWhat can we designate as input/output:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eInputs\n\u003cul\u003e\n\u003cli\u003eMosquito nets\u003c/li\u003e\n\u003cli\u003eVaccination, type of vaccination\u003c/li\u003e\n\u003cli\u003eProphylactic\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eOutputs\n\u003cul\u003e\n\u003cli\u003e\"Survey measures\"\n\u003cul\u003e\n\u003cli\u003enHost\u003c/li\u003e\n\u003cli\u003enPatent\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eMortality rate\u003c/li\u003e\n\u003cli\u003eProbability of seeking medical help\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-how-to-build-docker-image\" class=\"anchor\" href=\"#how-to-build-docker-image\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to build Docker image:\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003edocker build . -t openmalariapp\u003c/li\u003e\n\u003cli\u003edocker run --rm -it (for interactive usage, will remove the container from memory) (-it interactive attach to terminal)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo attach a local drive / folder use\n:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003edocker run --rm -it -v $PWD:/home bradleygh/openmalariapp\nConnecting docker to the external file system:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eHow to run Jupyter inside Docker:\u003c/p\u003e\n\u003cp\u003eFor linux\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003edocker run --rm -it -v $PWD:/home --net=host bradleygh/openmalariapp\nrun the following inside the container: jupyter notebook --allow-root\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor Mac\u003c/p\u003e\n\u003cp\u003edocker run --rm -it -p 127.0.0.1:8889:8889 -v $PWD:/home gbaydin/openmalariapp jupyter notebook --port 8889 --allow-root --ip=0.0.0.0\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-creating-an-experiment\" class=\"anchor\" href=\"#creating-an-experiment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreating an experiment\u003c/h1\u003e\n\u003cp\u003eCreate a directory in your local machine, for example called examples\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ecd /home\u003c/li\u003e\n\u003cli\u003emkdir examples\u003c/li\u003e\n\u003cli\u003ecd examples\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ewithin the folder add the following files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003escenario_current.xsd\u003c/li\u003e\n\u003cli\u003e\u0026lt;name_of_the_scenario_you_want_to_run\u0026gt;.xml\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAdd the openmalaria executable to the folder to, i.e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003ecp /code/openmalaria/build/openMalaria examples/openMalaria\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u0026lt;add_any_input_csv_or_txt_files\u0026gt;\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-running-the-simulator-once-an-experiment-has-been-created\" class=\"anchor\" href=\"#running-the-simulator-once-an-experiment-has-been-created\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the simulator once an experiment has been created\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003ecd ./examples\u003c/li\u003e\n\u003cli\u003edocker run --rm -it -v $PWD:/home/examples bradleygh/openmalariapp\u003c/li\u003e\n\u003cli\u003ecd /home/examples/\u003c/li\u003e\n\u003cli\u003e./openMalaria -s \u0026lt;name_of_the_scenario_you_want_to_run\u0026gt;.xml\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-debugging-by-modifying-code-outside-docker-but-running-inside\" class=\"anchor\" href=\"#debugging-by-modifying-code-outside-docker-but-running-inside\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDebugging by modifying code outside Docker, but running inside\u003c/h1\u003e\n\u003cp\u003edocker run --rm -it --net=host -v $PWD/examples:/home/examples -v $PWD/code/openmalaria/:/code/openmalaria bradleygh/openmalariapp\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-when-building-the-prob-prog-version\" class=\"anchor\" href=\"#when-building-the-prob-prog-version\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhen building the prob prog version\u003c/h1\u003e\n\u003cp\u003eWhen openMalaria is being built it is actively looking for the current version of schema, in this case the schema\nversion is 39.0, If the main directory name is not called \"openmalaria_schema_\u0026lt;version_number\u0026gt; then the code will fail to build.\nIn addition to this, as specified by the openMalaria readme, you will have to change\nall the relevant places in the script where schema number appears before a build.\nSeems very inefficient, but that is the way in whcih the simulator is set up.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-running-om-simulator-with-pyprob\" class=\"anchor\" href=\"#running-om-simulator-with-pyprob\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning OM simulator with Pyprob\u003c/h1\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-mac\" class=\"anchor\" href=\"#mac\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMac\u003c/h1\u003e\n\u003cp\u003edocker run --rm -it -p 2345:2345 -v $PWD/examples:/home/examples -v $PWD/code/openmalaria/:/code/openmalaria bradleygh/openmalariapp\u003c/p\u003e\n\u003cp\u003eadd when calling ./openmalaria\n$ ./openMalaria tcp://*:2345\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-linux\" class=\"anchor\" href=\"#linux\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLinux\u003c/h1\u003e\n\u003cp\u003edocker run --rm -it -v $PWD/examples:/home/examples -v $PWD/code/openmalaria/:/code/openmalaria bradleygh/openmalariapp\u003c/p\u003e\n\u003cp\u003eadd when calling ./openmalaria\n$ ./openMalaria ipc://@\u0026lt;some_string\u0026gt;\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-using-singluarity-instead\" class=\"anchor\" href=\"#using-singluarity-instead\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing Singluarity instead\u003c/h1\u003e\n\u003cp\u003eTo convert a dockerfile to singularityfile run:\u003c/p\u003e\n\u003cp\u003epip install singularity\u003c/p\u003e\n\u003cp\u003eThen in the terminal / commmand line run:\u003c/p\u003e\n\u003cp\u003espython recipe Dockerfile \u0026gt;\u0026gt; Singularity\u003c/p\u003e\n\u003cp\u003eThis will convert the Dockerfile to a singularity file and save the output as Singularity.\u003c/p\u003e\n\u003cp\u003eWe can also make use of pre-built docker containers, without having to install docker, by running\nthe following:\u003c/p\u003e\n\u003cp\u003esingularity pull docker://bradleygh:openmalariapp\u003c/p\u003e\n",
+ "full_name": "JEstabrook/regulon-enrichment",
+ "latest_release": "v0.3.1a",
+ "readme": "\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/4fdbdfa64306659366ce76f0240a36fb0dc5e510b28870cad546175d0030658d/68747470733a2f2f7472617669732d63692e636f6d2f4a4573746162726f6f6b2f726567756c6f6e2d656e726963686d656e742e7376673f746f6b656e3d5a52445742576539735843697650314e725a7771266272616e63683d6d6173746572\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4fdbdfa64306659366ce76f0240a36fb0dc5e510b28870cad546175d0030658d/68747470733a2f2f7472617669732d63692e636f6d2f4a4573746162726f6f6b2f726567756c6f6e2d656e726963686d656e742e7376673f746f6b656e3d5a52445742576539735843697650314e725a7771266272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.com/JEstabrook/regulon-enrichment.svg?token=ZRDWBWe9sXCivP1NrZwq\u0026amp;branch=master\" style=\"max-width:100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://www.python.org/downloads/release/python-367\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/75b8738e1bdfe8a832711925abbc3bd449c1e7e9260c870153ec761cad8dde40/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f707974686f6e2d332e362b2d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/python-3.6+-blue.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://camo.githubusercontent.com/1d48578e1082d434280fe2299efd72bcf1cba5658c8ad707406fd29a0a1a4193/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d6e7269676874677265656e2e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1d48578e1082d434280fe2299efd72bcf1cba5658c8ad707406fd29a0a1a4193/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d6e7269676874677265656e2e737667\" alt=\"t\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-nrightgreen.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://camo.githubusercontent.com/8416ebae4490c8fa309b7d13e3a8565f3da2ea34ce1eb8a905ce2c7195dddd63/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f7374617475732d737461626c652d6e7269676874677265656e2e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8416ebae4490c8fa309b7d13e3a8565f3da2ea34ce1eb8a905ce2c7195dddd63/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f7374617475732d737461626c652d6e7269676874677265656e2e737667\" alt=\"t\" data-canonical-src=\"https://img.shields.io/badge/status-stable-nrightgreen.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://camo.githubusercontent.com/31c454bdf9d517bfbf4d3eed1c768f1853de782076f85ce05b681d0017bfa7f4/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3137393735323035392e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/31c454bdf9d517bfbf4d3eed1c768f1853de782076f85ce05b681d0017bfa7f4/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3137393735323035392e737667\" alt=\"t\" data-canonical-src=\"https://zenodo.org/badge/179752059.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-enrich\" class=\"anchor\" href=\"#enrich\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEnrich\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eregulon-enrichment\u003c/strong\u003e is a Python module used to predict the activity of regulatory proteins from RNAseq data.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eregulon-enrichment\u003c/em\u003e submodules:\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-enricherfeatures\" class=\"anchor\" href=\"#enricherfeatures\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ccode\u003eenricher.features\u003c/code\u003e\n\u003c/h3\u003e\n\u003cp\u003eLoad -omic datasets\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-enricherregulon\" class=\"anchor\" href=\"#enricherregulon\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ccode\u003eenricher.regulon\u003c/code\u003e\n\u003c/h3\u003e\n\u003cp\u003eRegulon utilities\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eregulon-enrichment\u003c/strong\u003e requires:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e- Python (\u0026gt;= 3.6)\n- scikit-learn (\u0026gt;= 0.21.3)\n- NumPy (\u0026gt;= 1.17.3)\n- SciPy (\u0026gt;= 1.3.1)\n- pandas (\u0026gt;= 0.25.3)\n- tqdm (\u0026gt;= 4.38.0)\n- dill (\u0026gt;= 0.3.1.1)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-user-installation\" class=\"anchor\" href=\"#user-installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUser installation\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003e\nIf you already have a working installation of numpy and scipy,\nthe easiest way to install regulon-enrichment is using ``conda`` ::\n\n conda install -c estabroj89 regulon-enrichment\n\nor ``pip``::\n\n pip install regulon-enrichment==0.0.2b0\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-overview\" class=\"anchor\" href=\"#overview\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOverview\u003c/h1\u003e\n\u003cp\u003eThis method leverages pathway information and gene expression data to produce regulon-based protein activity scores.\nOur method tests for positional shifts in experimental-evidence supported networks consisting of transcription factors\nand their downstream signaling pathways when projected onto a rank-sorted gene-expression signature.\u003c/p\u003e\n\u003cp\u003eThis regulon enrichment method utilizes pathway and molecular interactions and mechanisms available through Pathway\nCommons to accurately infer aberrant transcription factor activity from gene expression data.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-running-regulon-enrichment\" class=\"anchor\" href=\"#running-regulon-enrichment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning regulon-enrichment\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-invoking-enrich-from-the-command-line\" class=\"anchor\" href=\"#invoking-enrich-from-the-command-line\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInvoking enrich from the command line\u003c/h2\u003e\n\u003cp\u003eWhen installing the regulon-enrichment package, the set of scripts that make up to inteface to regulon-enrichment will\nautomatically be placed as an executables in your path, so that you can refer to these without modifying your shell\nenvironment. For example, if you install regulon-enrichment using conda, then enrich will become available on the path,\nand can be run as:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eenrich\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-enrich-parameters\" class=\"anchor\" href=\"#enrich-parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEnrich parameters\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-required-parameters\" class=\"anchor\" href=\"#required-parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequired parameters\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003ecohort\u003c/code\u003e : which cohort to use; this information will be retained in the serialized Enrichment class\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eexpr\u003c/code\u003e : which tab delimited expression matrix to use shape : \u003ccode\u003e[n_features, n_samples]\u003c/code\u003e, units : \u003ccode\u003eTPM, RPKM\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eout_dir\u003c/code\u003e : output directory - directory serialized Enrichment object and enrichment.tsv will be saved to\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-optional-parameters\" class=\"anchor\" href=\"#optional-parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOptional parameters\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003eregulon\u003c/code\u003e : optional regulon containing weight interactions between regulator and\ndownstream members of its regulon shape : \u003ccode\u003e[len(Target), [\u0027Regulator\u0027,\u0027Target\u0027,\u0027MoA\u0027,\u0027likelihood\u0027]\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eregulon_size\u003c/code\u003e : number of downstream interactions required for a given regulator in order to calculate enrichment score \u003ccode\u003edefault=15\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esec_intx\u003c/code\u003e : path to pre-compiled serialized secondary interaction network, \u003ccode\u003edefault=secondary_intx_regulon.pkl\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003escaler_type\u003c/code\u003e : scaler to normalized features/samples by: \u003ccode\u003estandard | robust | minmax | quant\u003c/code\u003e, default=\u003ccode\u003erobust\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ethresh_filter\u003c/code\u003e : Prior to normalization remove features that have a standard deviation per feature less than \u003ccode\u003e{thresh_filter}\u003c/code\u003e, \u003ccode\u003edefault=0.1\u003c/code\u003e)\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-computing-regulon-enrichment-scores\" class=\"anchor\" href=\"#computing-regulon-enrichment-scores\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eComputing regulon enrichment scores\u003c/h1\u003e\n\u003cp\u003eTo quantify the regulon enrichment for a given dataset, the command line script \u003ccode\u003eenrich\u003c/code\u003e is used.\u003c/p\u003e\n\u003cp\u003eUse --help argument to view options\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eenrich --help\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eEnrich requires three positional arguments: \u003ccode\u003ecohort\u003c/code\u003e,\u003ccode\u003eexpr\u003c/code\u003e, \u003ccode\u003eout_dir\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eenrich cohort expr out_dir [regulon] [regulon_size] [sec_intx] [scaler_type] [thresh_filter] \u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eIt is recommended to run enrich with the default parameters.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eenrich test tests/resources/test_expr.tsv test_enrichment_scores\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe command above will generate enrichment scores for the unittest dataset \u003ccode\u003etest_expr.tsv\u003c/code\u003e and will generate and store the output under \u003ccode\u003etest_enrichment_scores/\u003c/code\u003e. In this directory \u003ccode\u003etest_enrichment_scores/\u003c/code\u003e, both the serialized Enrichment object \u003ccode\u003etest_enrichment.pkl\u003c/code\u003e and a tsv of the enrichment scores,\u003ccode\u003etest_regulon_enrichment.tsv\u003c/code\u003e will be found.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003eenrichment.tsv\u003c/code\u003e file be shaped : \u003ccode\u003e[n_samples, n_regulators]\u003c/code\u003e, where \u003ccode\u003en_samples\u003c/code\u003e refers to the original number of samples provided in \u003ccode\u003eexpr\u003c/code\u003e, while \u003ccode\u003en_regulators\u003c/code\u003e will be determined based on the overlapping features present in the \u003ccode\u003eexpr\u003c/code\u003e dataset and the \u003ccode\u003eregulon_size\u003c/code\u003e parameter.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1637861862.0
+ "updated_at": 1640212972.0
},
{
"data_format": 2,
- "description": "Original version from: http://gki.informatik.uni-freiburg.de/tools/tfd/",
+ "description": "Run Rstudio-server with singularity instance",
"filenames": [
- "Singularity.0.4",
- "Singularity"
+ "Singularity.Rstudio"
],
- "full_name": "roveri-marco/tfd",
- "latest_release": "0.4",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-temporalfastdownward\" class=\"anchor\" href=\"#temporalfastdownward\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTemporalFastDownward\u003c/h1\u003e\n\u003cp\u003eThe version of Temporal Fast Downward.\nThis version has been ported to Python3 (tested with Python3.8)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-information\" class=\"anchor\" href=\"#information\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInformation\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://gki.informatik.uni-freiburg.de/tools/tfd/\" rel=\"nofollow\"\u003ehttp://gki.informatik.uni-freiburg.de/tools/tfd/\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003e$ ./build\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-citation\" class=\"anchor\" href=\"#citation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\u003cp\u003ePatrick Eyerich, Robert Mattm\u00fcller and Gabriele R\u00f6ger.\nUsing the Context-enhanced Additive Heuristic for Temporal and Numeric Planning.\nIn Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS 2009), 2009.\u003c/p\u003e\n",
+ "full_name": "edg1983/RStudio_server_singularity",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-run-rstudio-server-with-singularity-instance\" class=\"anchor\" href=\"#run-rstudio-server-with-singularity-instance\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Rstudio-server with singularity instance\u003c/h1\u003e\n\u003cp\u003eUsing these instructions you can run rstudio server within a singulatiry instance\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-build-singularity-image\" class=\"anchor\" href=\"#build-singularity-image\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild singularity image\u003c/h2\u003e\n\u003cp\u003eThe recipe is built with R 4.0 and r studio v1.4\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build rstudio_v1.4.sif Singularity.Rstudio\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-before-you-start\" class=\"anchor\" href=\"#before-you-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBefore you start\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1set-up-library-locations\" class=\"anchor\" href=\"#1set-up-library-locations\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1.Set up library locations\u003c/h3\u003e\n\u003cp\u003eAll R libraries will be installed in \u003ccode\u003e/well/brc/R_pkg/$USER\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eSubfolders will be created automatically according to R version and cpu architecture so that everything stay in place and you can run correctly compiled packages according to your environment (humbug and rescomp nodes have different architectures). This means that you need to install a package for each specific environment.\u003c/p\u003e\n\u003cp\u003eThis is managed by the \u003ccode\u003eRpofile\u003c/code\u003e file\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-set-up-your-r-profile\" class=\"anchor\" href=\"#set-up-your-r-profile\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSet up your R profile\u003c/h4\u003e\n\u003cp\u003eCopy the \u003ccode\u003eRprofile\u003c/code\u003e file to \u003ccode\u003e$HOME/.Rprofile\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-2-create-an-r-session-folder\" class=\"anchor\" href=\"#2-create-an-r-session-folder\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Create an R session folder\u003c/h3\u003e\n\u003cp\u003eDuring execution the instance will create R session files. You need to create a folder where yu have access to to store these files and then bind this to the Rsession folder in the image.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-run-rserver\" class=\"anchor\" href=\"#run-rserver\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun rserver\u003c/h2\u003e\n\u003cp\u003eModify the variables in \u003ccode\u003estart_rstudio_instance.sh\u003c/code\u003e according to your needs and run the script. Access is secured by password you can set changing the \u003ccode\u003ePASSWORD\u003c/code\u003e variable in the script.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNB.\u003c/strong\u003e Remember to add relevant paths to the bind argument in the script WITHOUT touching the default ones. All paths you need to acces from R server must be added to \u003ccode\u003e--bind\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eDefault settings:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eaddress: 127.0.0.1\u003c/li\u003e\n\u003cli\u003eport: 9997\u003c/li\u003e\n\u003cli\u003eRsession.conf file: set rsession timeout to zero to avoid writing temp session files\u003c/li\u003e\n\u003cli\u003eRsession dir: /well/brc/Rstudio_server/$USER\u003c/li\u003e\n\u003cli\u003eRstudio session folders creaded in \u003ccode\u003e$Rsession_dir\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1638481913.0
+ "updated_at": 1642779639.0
},
{
"data_format": 2,
- "description": "Cluster Pipeline Workflow",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.def"
],
- "full_name": "ftlin22/RNASeq_pipeline",
+ "full_name": "nickdelgrosso/crab_pipeline",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-rnaseq_pipeline\" class=\"anchor\" href=\"#rnaseq_pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRNASeq_pipeline\u003c/h1\u003e\n\u003cp\u003eCluster Pipeline Workflow\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003cem\u003eNote:\u003c/em\u003e If using WSL and data is on a usb drive, \u003ca href=\"https://www.howtogeek.com/331053/how-to-mount-removable-drives-and-network-locations-in-the-windows-subsystem-for-linux/\" rel=\"nofollow\"\u003emount the drive on the filesystem\u003c/a\u003e first so you can access it:\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-launch-singularity-interactively\" class=\"anchor\" href=\"#launch-singularity-interactively\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLaunch Singularity Interactively\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-if-building-a-full-sandbox-so-you-can-pip-install-during-a-session-try-out-applications-etc\" class=\"anchor\" href=\"#if-building-a-full-sandbox-so-you-can-pip-install-during-a-session-try-out-applications-etc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIf building a full sandbox (so you can pip install during a session, try out applications, etc)\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build --sandbox -F Singularity.sif Singularity.def\nsingularity shell --writable --bind /path/to/videos:/data/raw Singularity.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-if-just-runing-code-insteractively-or-already-have-the-container-built\" class=\"anchor\" href=\"#if-just-runing-code-insteractively-or-already-have-the-container-built\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIf just runing code insteractively, or already have the container built\u003c/h3\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-build\" class=\"anchor\" href=\"#build\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build --sandbox -F Singularity.sif Singularity.def\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-run\" class=\"anchor\" href=\"#run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity shell --bind /path/to/videos:/data/raw Singularity.sif\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-launch-jupyter-lab\" class=\"anchor\" href=\"#launch-jupyter-lab\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLaunch Jupyter Lab\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run --app jupyter Singularity.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-singularity-38\" class=\"anchor\" href=\"#installing-singularity-38\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling Singularity 3.8\u003c/h2\u003e\n\u003cp\u003eThese were the best instructions!\n\u003ca href=\"https://github.com/apptainer/singularity/blob/master/INSTALL.md\"\u003ehttps://github.com/apptainer/singularity/blob/master/INSTALL.md\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-docs\" class=\"anchor\" href=\"#docs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocs\u003c/h3\u003e\n\u003cp\u003e\u003ca href=\"https://sylabs.io/guides/3.8/user-guide/\" rel=\"nofollow\"\u003ehttps://sylabs.io/guides/3.8/user-guide/\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1638035482.0
+ "updated_at": 1642525381.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Test making a Singularity-HUB image for OpenFOAM",
"filenames": [
- "p9/Singularity",
- "pytorch/Singularity"
+ "Singularity"
],
- "full_name": "abergeron/bench",
+ "full_name": "TormodLandet/singularity-openfoam",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-openfoam\" class=\"anchor\" href=\"#singularity-openfoam\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-openfoam\u003c/h1\u003e\n\u003cp\u003eA Singularity Hub image for OpenFOAM. Not official and probably not up to date\u003c/p\u003e\n\u003cp\u003eGithub added an Apache 2.0 license (at my choice), but feel free to use the contents of this repository under any license and however you want, this is just a Singularity image bootstrap description after all\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1539805396.0
+ "updated_at": 1501144397.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity/Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-debian11-visualstudio",
+ "full_name": "YadavDosieah/FYP_Simulation",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-vstudio-on-debian11-toy-system-for-singularity-for-ci\" class=\"anchor\" href=\"#building-a-vstudio-on-debian11-toy-system-for-singularity-for-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a vstudio on debian11 toy system for singularity for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003etoy system for github actions\u003c/li\u003e\n\u003cli\u003ebuild singularity container from dockerhub registry and push to oras://ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-debian11-visualstudio/actions/workflows/singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-debian11-visualstudio/actions/workflows/singularity-publish.yml/badge.svg\" alt=\"Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /run oras://ghcr.io/truatpasteurdotfr/singularity-debian11-visualstudio:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-final-year-project\" class=\"anchor\" href=\"#final-year-project\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFinal-Year-Project\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-shepherding-and-object-clustering-using-collaborative-robots\" class=\"anchor\" href=\"#shepherding-and-object-clustering-using-collaborative-robots\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eShepherding and Object Clustering using collaborative robots\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eThe main code for the simulation can be found here: \u003ca href=\"https://github.com/YadavDosieah/FYP_Simulation/tree/master/enki/examples/playground\"\u003ehttps://github.com/YadavDosieah/FYP_Simulation/tree/master/enki/examples/playground\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eThe Singularity folder contains the definition file from which the Singularity container can be build\u003c/li\u003e\n\u003cli\u003eThe tracking folder contains the files used to implement the tracking system\u003c/li\u003e\n\u003cli\u003eThe MyProject folder contains the code used on the e-puck2 robot for the colour sensing\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-dependecies\" class=\"anchor\" href=\"#dependecies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependecies\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eEnki\u003c/li\u003e\n\u003cli\u003elibcmaes\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1638371327.0
+ "updated_at": 1640465576.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.latest"
],
- "full_name": "cognirob/crow_vision_yolact",
+ "full_name": "bioexcel/biobb_cmip",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-you-only-look-at-coefficients\" class=\"anchor\" href=\"#you-only-look-at-coefficients\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003cstrong\u003eY\u003c/strong\u003eou \u003cstrong\u003eO\u003c/strong\u003enly \u003cstrong\u003eL\u003c/strong\u003eook \u003cstrong\u003eA\u003c/strong\u003et \u003cstrong\u003eC\u003c/strong\u003eoefficien\u003cstrong\u003eT\u003c/strong\u003es\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003e \u2588\u2588\u2557 \u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2588\u2557\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2557\n \u255a\u2588\u2588\u2557 \u2588\u2588\u2554\u255d\u2588\u2588\u2554\u2550\u2550\u2550\u2588\u2588\u2557\u2588\u2588\u2551 \u2588\u2588\u2554\u2550\u2550\u2588\u2588\u2557\u2588\u2588\u2554\u2550\u2550\u2550\u2550\u255d\u255a\u2550\u2550\u2588\u2588\u2554\u2550\u2550\u255d\n \u255a\u2588\u2588\u2588\u2588\u2554\u255d \u2588\u2588\u2551 \u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2551 \n \u255a\u2588\u2588\u2554\u255d \u2588\u2588\u2551 \u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2554\u2550\u2550\u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2551 \n \u2588\u2588\u2551 \u255a\u2588\u2588\u2588\u2588\u2588\u2588\u2554\u255d\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2557\u2588\u2588\u2551 \u2588\u2588\u2551\u255a\u2588\u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2551 \n \u255a\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u2550\u255d\u255a\u2550\u255d \u255a\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u255d \u255a\u2550\u255d \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA simple, fully convolutional model for real-time instance segmentation. This is the code for our papers:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://arxiv.org/abs/1904.02689\" rel=\"nofollow\"\u003eYOLACT: Real-time Instance Segmentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://arxiv.org/abs/1912.06218\" rel=\"nofollow\"\u003eYOLACT++: Better Real-time Instance Segmentation\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-yolact-v12-released-changelog\" class=\"anchor\" href=\"#yolact-v12-released-changelog\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eYOLACT++ (v1.2) released! (\u003ca href=\"CHANGELOG.md\"\u003eChangelog\u003c/a\u003e)\u003c/h4\u003e\n\u003cp\u003eYOLACT++\u0027s resnet50 model runs at 33.5 fps on a Titan Xp and achieves 34.1 mAP on COCO\u0027s \u003ccode\u003etest-dev\u003c/code\u003e (check out our journal paper \u003ca href=\"https://arxiv.org/abs/1912.06218\" rel=\"nofollow\"\u003ehere\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003eIn order to use YOLACT++, make sure you compile the DCNv2 code. (See \u003ca href=\"https://github.com/dbolya/yolact#installation\"\u003eInstallation\u003c/a\u003e)\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-for-a-real-time-demo-check-out-our-iccv-video\" class=\"anchor\" href=\"#for-a-real-time-demo-check-out-our-iccv-video\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor a real-time demo, check out our ICCV video:\u003c/h4\u003e\n\u003cp\u003e\u003ca href=\"https://www.youtube.com/watch?v=0pMfmo8qfpQ\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c9e061dab1a6754a417d6eb14803f1104cce54aa9231aa0d779e2523694ed23e/68747470733a2f2f696d672e796f75747562652e636f6d2f76692f30704d666d6f38716670512f302e6a7067\" alt=\"IMAGE ALT TEXT HERE\" data-canonical-src=\"https://img.youtube.com/vi/0pMfmo8qfpQ/0.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSome examples from our YOLACT base model (33.5 fps on a Titan Xp and 29.8 mAP on COCO\u0027s \u003ccode\u003etest-dev\u003c/code\u003e):\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"data/yolact_example_0.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"data/yolact_example_0.png\" alt=\"Example 0\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"data/yolact_example_1.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"data/yolact_example_1.png\" alt=\"Example 1\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"data/yolact_example_2.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"data/yolact_example_2.png\" alt=\"Example 2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eClone this repository and enter it:\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/dbolya/yolact.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e yolact\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eSet up the environment using one of the following methods:\n\u003cul\u003e\n\u003cli\u003eUsing \u003ca href=\"https://www.anaconda.com/distribution/\" rel=\"nofollow\"\u003eAnaconda\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eRun \u003ccode\u003econda env create -f environment.yml\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eManually with pip\n\u003cul\u003e\n\u003cli\u003eSet up a Python3 environment (e.g., using virtenv).\u003c/li\u003e\n\u003cli\u003eInstall \u003ca href=\"http://pytorch.org/\" rel=\"nofollow\"\u003ePytorch\u003c/a\u003e 1.0.1 (or higher) and TorchVision.\u003c/li\u003e\n\u003cli\u003eInstall some other packages:\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Cython needs to be installed before pycocotools\u003c/span\u003e\npip install cython\npip install opencv-python pillow pycocotools matplotlib \u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you\u0027d like to train YOLACT, download the COCO dataset and the 2014/2017 annotations. Note that this script will take a while and dump 21gb of files into \u003ccode\u003e./data/coco\u003c/code\u003e.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esh data/scripts/COCO.sh\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you\u0027d like to evaluate YOLACT on \u003ccode\u003etest-dev\u003c/code\u003e, download \u003ccode\u003etest-dev\u003c/code\u003e with this script.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esh data/scripts/COCO_test.sh\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you want to use YOLACT++, compile deformable convolutional layers (from \u003ca href=\"https://github.com/CharlesShang/DCNv2/tree/pytorch_1.0\"\u003eDCNv2\u003c/a\u003e).\nMake sure you have the latest CUDA toolkit installed from \u003ca href=\"https://developer.nvidia.com/cuda-toolkit\" rel=\"nofollow\"\u003eNVidia\u0027s Website\u003c/a\u003e.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e external/DCNv2\npython setup.py build develop\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-evaluation\" class=\"anchor\" href=\"#evaluation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEvaluation\u003c/h1\u003e\n\u003cp\u003eHere are our YOLACT models (released on April 5th, 2019) along with their FPS on a Titan Xp and mAP on \u003ccode\u003etest-dev\u003c/code\u003e:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eImage Size\u003c/th\u003e\n\u003cth align=\"center\"\u003eBackbone\u003c/th\u003e\n\u003cth align=\"center\"\u003eFPS\u003c/th\u003e\n\u003cth align=\"center\"\u003emAP\u003c/th\u003e\n\u003cth\u003eWeights\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet50-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e42.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e28.2\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1yp7ZbbDwvMiFJEq4ptVKTYTI2VeRDXl0/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_resnet50_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EUVpxoSXaqNIlssoLKOEoCcB1m0RpzGq_Khp5n1VX3zcUw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eDarknet53-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e40.0\u003c/td\u003e\n\u003ctd align=\"center\"\u003e28.7\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1dukLrTzZQEuhzitGkHaGjphlmRJOjVnP/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_darknet53_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/ERrao26c8llJn25dIyZPhwMBxUp2GdZTKIMUQA3t0djHLw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e33.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e29.8\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1UYy3dMapbH1BnmtZU4WH1zbYgOzzHHf_/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_base_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EYRWxBEoKU9DiblrWx2M89MBGFkVVB_drlRd_v5sdT3Hgg\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e700\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e23.6\u003c/td\u003e\n\u003ctd align=\"center\"\u003e31.2\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1lE4Lz5p25teiXV-6HdTiOJSnS7u7GBzg/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_im700_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/Eagg5RSc5hFEhp7sPtvLNyoBjhlf2feog7t8OQzHKKphjw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eYOLACT++ models (released on December 16th, 2019):\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eImage Size\u003c/th\u003e\n\u003cth align=\"center\"\u003eBackbone\u003c/th\u003e\n\u003cth align=\"center\"\u003eFPS\u003c/th\u003e\n\u003cth align=\"center\"\u003emAP\u003c/th\u003e\n\u003cth\u003eWeights\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet50-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e33.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e34.1\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1ZPu1YR2UzGHQD0o1rEqy-j5bmEm3lbyP/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_plus_resnet50_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EcJAtMiEFlhAnVsDf00yWRIBUC4m8iE9NEEiV05XwtEoGw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e27.3\u003c/td\u003e\n\u003ctd align=\"center\"\u003e34.6\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/15id0Qq5eqRbkD-N3ZjDZXdCvRyIaHpFB/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_plus_base_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EVQ62sF0SrJPrl_68onyHF8BpG7c05A8PavV4a849sZgEA\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eTo evalute the model, put the corresponding weights file in the \u003ccode\u003e./weights\u003c/code\u003e directory and run one of the following commands. The name of each config is everything before the numbers in the file name (e.g., \u003ccode\u003eyolact_base\u003c/code\u003e for \u003ccode\u003eyolact_base_54_800000.pth\u003c/code\u003e).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quantitative-results-on-coco\" class=\"anchor\" href=\"#quantitative-results-on-coco\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuantitative Results on COCO\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Quantitatively evaluate a trained model on the entire validation set. Make sure you have COCO downloaded as above.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e This should get 29.92 validation mask mAP last time I checked.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Output a COCOEval json to submit to the website or to use the run_coco_eval.py script.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e This command will create \u0027./results/bbox_detections.json\u0027 and \u0027./results/mask_detections.json\u0027 for detection and instance segmentation respectively.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --output_coco_json\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e You can run COCOEval on the files created in the previous command. The performance should match my implementation in eval.py.\u003c/span\u003e\npython run_coco_eval.py\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e To output a coco json file for test-dev, make sure you have test-dev downloaded from above and go\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --output_coco_json --dataset=coco2017_testdev_dataset\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-qualitative-results-on-coco\" class=\"anchor\" href=\"#qualitative-results-on-coco\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQualitative Results on COCO\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display qualitative results on COCO. From here on I\u0027ll use a confidence threshold of 0.15.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --display\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-benchmarking-on-coco\" class=\"anchor\" href=\"#benchmarking-on-coco\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBenchmarking on COCO\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Run just the raw model on the first 1k images of the validation set\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --benchmark --max_images=1000\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-images\" class=\"anchor\" href=\"#images\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImages\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display qualitative results on the specified image.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=my_image.png\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process an image and save it to another file.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=input_image.png:output_image.png\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process a whole folder of images.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --images=path/to/input/folder:path/to/output/folder\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-video\" class=\"anchor\" href=\"#video\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVideo\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display a video in real-time. \"--video_multiframe\" will process that many frames at once for improved performance.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e If you want, use \"--display_fps\" to draw the FPS directly on the frame.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=my_video.mp4\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display a webcam feed in real-time. If you have multiple webcams pass the index of the webcam you want instead of 0.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=0\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process a video and save it to another file. This uses the same pipeline as the ones above now, so it\u0027s fast!\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=input_video.mp4:output_video.mp4\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAs you can tell, \u003ccode\u003eeval.py\u003c/code\u003e can do a ton of stuff. Run the \u003ccode\u003e--help\u003c/code\u003e command to see everything it can do.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython eval.py --help\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-training\" class=\"anchor\" href=\"#training\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTraining\u003c/h1\u003e\n\u003cp\u003eBy default, we train on COCO. Make sure to download the entire dataset using the commands above.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eTo train, grab an imagenet-pretrained model and put it in \u003ccode\u003e./weights\u003c/code\u003e.\n\u003cul\u003e\n\u003cli\u003eFor Resnet101, download \u003ccode\u003eresnet101_reducedfc.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/1tvqFPd4bJtakOlmn-uIA492g2qurRChj/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor Resnet50, download \u003ccode\u003eresnet50-19c8e357.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/1Jy3yCdbatgXa5YYIdTCRrSV0S9V5g1rn/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor Darknet53, download \u003ccode\u003edarknet53.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/17Y431j4sagFpSReuPNoFcj9h7azDTZFf/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eRun one of the training commands below.\n\u003cul\u003e\n\u003cli\u003eNote that you can press ctrl+c while training and it will save an \u003ccode\u003e*_interrupt.pth\u003c/code\u003e file at the current iteration.\u003c/li\u003e\n\u003cli\u003eAll weights are saved in the \u003ccode\u003e./weights\u003c/code\u003e directory by default with the file name \u003ccode\u003e\u0026lt;config\u0026gt;_\u0026lt;epoch\u0026gt;_\u0026lt;iter\u0026gt;.pth\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Trains using the base config with a batch size of 8 (the default).\u003c/span\u003e\npython train.py --config=yolact_base_config\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Trains yolact_base_config with a batch_size of 5. For the 550px models, 1 batch takes up around 1.5 gigs of VRAM, so specify accordingly.\u003c/span\u003e\npython train.py --config=yolact_base_config --batch_size=5\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Resume training yolact_base with a specific weight file and start from the iteration specified in the weight file\u0027s name.\u003c/span\u003e\npython train.py --config=yolact_base_config --resume=weights/yolact_base_10_32100.pth --start_iter=-1\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Use the help option to see a description of all available command line arguments\u003c/span\u003e\npython train.py --help\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-multi-gpu-support\" class=\"anchor\" href=\"#multi-gpu-support\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMulti-GPU Support\u003c/h2\u003e\n\u003cp\u003eYOLACT now supports multiple GPUs seamlessly during training:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBefore running any of the scripts, run: \u003ccode\u003eexport CUDA_VISIBLE_DEVICES=[gpus]\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eWhere you should replace [gpus] with a comma separated list of the index of each GPU you want to use (e.g., 0,1,2,3).\u003c/li\u003e\n\u003cli\u003eYou should still do this if only using 1 GPU.\u003c/li\u003e\n\u003cli\u003eYou can check the indices of your GPUs with \u003ccode\u003envidia-smi\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eThen, simply set the batch size to \u003ccode\u003e8*num_gpus\u003c/code\u003e with the training commands above. The training script will automatically scale the hyperparameters to the right values.\n\u003cul\u003e\n\u003cli\u003eIf you have memory to spare you can increase the batch size further, but keep it a multiple of the number of GPUs you\u0027re using.\u003c/li\u003e\n\u003cli\u003eIf you want to allocate the images per GPU specific for different GPUs, you can use \u003ccode\u003e--batch_alloc=[alloc]\u003c/code\u003e where [alloc] is a comma seprated list containing the number of images on each GPU. This must sum to \u003ccode\u003ebatch_size\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-logging\" class=\"anchor\" href=\"#logging\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLogging\u003c/h2\u003e\n\u003cp\u003eYOLACT now logs training and validation information by default. You can disable this with \u003ccode\u003e--no_log\u003c/code\u003e. A guide on how to visualize these logs is coming soon, but now you can look at \u003ccode\u003eLogVizualizer\u003c/code\u003e in \u003ccode\u003eutils/logger.py\u003c/code\u003e for help.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pascal-sbd\" class=\"anchor\" href=\"#pascal-sbd\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePascal SBD\u003c/h2\u003e\n\u003cp\u003eWe also include a config for training on Pascal SBD annotations (for rapid experimentation or comparing with other methods). To train on Pascal SBD, proceed with the following steps:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDownload the dataset from \u003ca href=\"http://home.bharathh.info/pubs/codes/SBD/download.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. It\u0027s the first link in the top \"Overview\" section (and the file is called \u003ccode\u003ebenchmark.tgz\u003c/code\u003e).\u003c/li\u003e\n\u003cli\u003eExtract the dataset somewhere. In the dataset there should be a folder called \u003ccode\u003edataset/img\u003c/code\u003e. Create the directory \u003ccode\u003e./data/sbd\u003c/code\u003e (where \u003ccode\u003e.\u003c/code\u003e is YOLACT\u0027s root) and copy \u003ccode\u003edataset/img\u003c/code\u003e to \u003ccode\u003e./data/sbd/img\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eDownload the COCO-style annotations from \u003ca href=\"https://drive.google.com/open?id=1ExrRSPVctHW8Nxrn0SofU1lVhK5Wn0_S\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eExtract the annotations into \u003ccode\u003e./data/sbd/\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eNow you can train using \u003ccode\u003e--config=yolact_resnet50_pascal_config\u003c/code\u003e. Check that config to see how to extend it to other models.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eI will automate this all with a script soon, don\u0027t worry. Also, if you want the script I used to convert the annotations, I put it in \u003ccode\u003e./scripts/convert_sbd.py\u003c/code\u003e, but you\u0027ll have to check how it works to be able to use it because I don\u0027t actually remember at this point.\u003c/p\u003e\n\u003cp\u003eIf you want to verify our results, you can download our \u003ccode\u003eyolact_resnet50_pascal_config\u003c/code\u003e weights from \u003ca href=\"https://drive.google.com/open?id=1yLVwtkRtNxyl0kxeMCtPXJsXFFyc_FHe\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. This model should get 72.3 mask AP_50 and 56.2 mask AP_70. Note that the \"all\" AP isn\u0027t the same as the \"vol\" AP reported in others papers for pascal (they use an averages of the thresholds from \u003ccode\u003e0.1 - 0.9\u003c/code\u003e in increments of \u003ccode\u003e0.1\u003c/code\u003e instead of what COCO uses).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-custom-datasets\" class=\"anchor\" href=\"#custom-datasets\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCustom Datasets\u003c/h2\u003e\n\u003cp\u003eYou can also train on your own dataset by following these steps:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCreate a COCO-style Object Detection JSON annotation file for your dataset. The specification for this can be found \u003ca href=\"http://cocodataset.org/#format-data\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. Note that we don\u0027t use some fields, so the following may be omitted:\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003einfo\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eliscense\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003eUnder \u003ccode\u003eimage\u003c/code\u003e: \u003ccode\u003elicense, flickr_url, coco_url, date_captured\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecategories\u003c/code\u003e (we use our own format for categories, see below)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eCreate a definition for your dataset under \u003ccode\u003edataset_base\u003c/code\u003e in \u003ccode\u003edata/config.py\u003c/code\u003e (see the comments in \u003ccode\u003edataset_base\u003c/code\u003e for an explanation of each field):\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s1\"\u003emy_custom_dataset\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003edataset_base\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003ecopy\u003c/span\u003e({\n \u003cspan class=\"pl-s\"\u003e\u0027name\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027My Dataset\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027train_images\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_training_images\u0027\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027train_info\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_training_annotation\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027valid_images\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_validation_images\u0027\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027valid_info\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_validation_annotation\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027has_gt\u0027\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027class_names\u0027\u003c/span\u003e: (\u003cspan class=\"pl-s\"\u003e\u0027my_class_id_1\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027my_class_id_2\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027my_class_id_3\u0027\u003c/span\u003e, ...)\n})\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eA couple things to note:\n\u003cul\u003e\n\u003cli\u003eClass IDs in the annotation file should start at 1 and increase sequentially on the order of \u003ccode\u003eclass_names\u003c/code\u003e. If this isn\u0027t the case for your annotation file (like in COCO), see the field \u003ccode\u003elabel_map\u003c/code\u003e in \u003ccode\u003edataset_base\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eIf you do not want to create a validation split, use the same image path and annotations file for validation. By default (see \u003ccode\u003epython train.py --help\u003c/code\u003e), \u003ccode\u003etrain.py\u003c/code\u003e will output validation mAP for the first 5000 images in the dataset every 2 epochs.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eFinally, in \u003ccode\u003eyolact_base_config\u003c/code\u003e in the same file, change the value for \u003ccode\u003e\u0027dataset\u0027\u003c/code\u003e to \u003ccode\u003e\u0027my_custom_dataset\u0027\u003c/code\u003e or whatever you named the config object above. Then you can use any of the training commands in the previous section.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-creating-a-custom-dataset-from-scratch\" class=\"anchor\" href=\"#creating-a-custom-dataset-from-scratch\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreating a Custom Dataset from Scratch\u003c/h4\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/dbolya/yolact/issues/70#issuecomment-504283008\"\u003ethis nice post by @Amit12690\u003c/a\u003e for tips on how to annotate a custom dataset and prepare it for use with YOLACT.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-citation\" class=\"anchor\" href=\"#citation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h1\u003e\n\u003cp\u003eIf you use YOLACT or this code base in your work, please cite\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@inproceedings{yolact-iccv2019,\n author = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},\n title = {YOLACT: {Real-time} Instance Segmentation},\n booktitle = {ICCV},\n year = {2019},\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor YOLACT++, please cite\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@misc{yolact-plus-arxiv2019,\n title = {YOLACT++: Better Real-time Instance Segmentation},\n author = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},\n year = {2019},\n eprint = {1912.06218},\n archivePrefix = {arXiv},\n primaryClass = {cs.CV}\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-contact\" class=\"anchor\" href=\"#contact\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h1\u003e\n\u003cp\u003eFor questions about our paper or code, please contact \u003ca href=\"mailto:dbolya@ucdavis.edu\"\u003eDaniel Bolya\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://biobb-cmip.readthedocs.io/en/latest/?badge=latest\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8bd09664a4dca78a8f246d76f3af7fc6da719393b3f9c6cbc6a8b291b19f3d80/68747470733a2f2f72656164746865646f63732e6f72672f70726f6a656374732f62696f62622d636d69702f62616467652f3f76657273696f6e3d6c6174657374\" alt=\"\" data-canonical-src=\"https://readthedocs.org/projects/biobb-cmip/badge/?version=latest\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://anaconda.org/bioconda/biobb_cmip\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a477fdb1fd9bc9eb7ffa6cae6a019c6d4c3902fd468b3126f1b78e56c7dcff83/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e7376673f7374796c653d666c6174\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://quay.io/repository/biocontainers/biobb_cmip\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ca418e4db0b3de91a09a5df4a59446da015b6164598a8bc255918e911484f84f/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d517561792e696f2d626c7565\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/docker-Quay.io-blue\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/Apache-2.0\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2a2157c971b7ae1deb8eb095799440551c33dcf61ea3d965d86b496a5a65df55/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d417061636865253230322e302d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/License-Apache%202.0-blue.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-biobb_cmip\" class=\"anchor\" href=\"#biobb_cmip\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebiobb_cmip\u003c/h1\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eBiobb_cmip is the Biobb module collection to compute classical molecular interaction potentials.\nBiobb (BioExcel building blocks) packages are Python building blocks that\ncreate new layer of compatibility and interoperability over popular\nbioinformatics tools.\nThe latest documentation of this package can be found in our readthedocs site:\n\u003ca href=\"http://biobb-cmip.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003elatest API documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-version\" class=\"anchor\" href=\"#version\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVersion\u003c/h3\u003e\n\u003cp\u003ev3.7.5 2021.4\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cp\u003eUsing PIP:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eImportant:\u003c/strong\u003e PIP only installs the package. All the dependencies must be installed separately. To perform a complete installation, please use ANACONDA, DOCKER or SINGULARITY.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e pip install \"biobb_cmip\u0026gt;=3.7.5\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage: \u003ca href=\"https://biobb-cmip.readthedocs.io/en/latest/modules.html\" rel=\"nofollow\"\u003ePython API documentation\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing ANACONDA:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e conda install -c bioconda \"biobb_cmip\u0026gt;=3.7.5\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage: With conda installation BioBBs can be used with the \u003ca href=\"https://biobb-cmip.readthedocs.io/en/latest/modules.html\" rel=\"nofollow\"\u003ePython API documentation\u003c/a\u003e and the \u003ca href=\"https://biobb-cmip.readthedocs.io/en/latest/command_line.html\" rel=\"nofollow\"\u003eCommand Line documentation\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing DOCKER:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker pull quay.io/biocontainers/biobb_cmip:3.7.5--pyhdfd78af_0\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker run quay.io/biocontainers/biobb_cmip:3.7.5--pyhdfd78af_0 \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing SINGULARITY:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eMacOS users\u003c/strong\u003e: it\u0027s strongly recommended to avoid Singularity and use \u003cstrong\u003eDocker\u003c/strong\u003e as containerization system.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity pull --name biobb_cmip.sif shub://bioexcel/biobb_cmip\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity exec biobb_cmip.sif \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe command list and specification can be found at the \u003ca href=\"https://biobb-cmip.readthedocs.io/en/latest/command_line.html\" rel=\"nofollow\"\u003eCommand Line documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-copyright--licensing\" class=\"anchor\" href=\"#copyright--licensing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCopyright \u0026amp; Licensing\u003c/h3\u003e\n\u003cp\u003eThis software has been developed in the \u003ca href=\"http://mmb.irbbarcelona.org\" rel=\"nofollow\"\u003eMMB group\u003c/a\u003e at the \u003ca href=\"http://www.bsc.es/\" rel=\"nofollow\"\u003eBSC\u003c/a\u003e \u0026amp; \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eIRB\u003c/a\u003e for the \u003ca href=\"http://bioexcel.eu/\" rel=\"nofollow\"\u003eEuropean BioExcel\u003c/a\u003e, funded by the European Commission (EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/823830\" rel=\"nofollow\"\u003e823830\u003c/a\u003e, EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/675728\" rel=\"nofollow\"\u003e675728\u003c/a\u003e).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e(c) 2015-2022 \u003ca href=\"https://www.bsc.es/\" rel=\"nofollow\"\u003eBarcelona Supercomputing Center\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e(c) 2015-2022 \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eInstitute for Research in Biomedicine\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eLicensed under the\n\u003ca href=\"https://www.apache.org/licenses/LICENSE-2.0\" rel=\"nofollow\"\u003eApache License 2.0\u003c/a\u003e, see the file LICENSE for details.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/39c04282e694d49ea0d56c716a27845cd25b9931f791484540f625dcecf68af2/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/39c04282e694d49ea0d56c716a27845cd25b9931f791484540f625dcecf68af2/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\" alt=\"\" title=\"Bioexcel\" data-canonical-src=\"https://bioexcel.eu/wp-content/uploads/2019/04/Bioexcell_logo_1080px_transp.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 8,
"topics": [],
- "updated_at": 1639151360.0
+ "updated_at": 1640095100.0
},
{
"data_format": 2,
@@ -12767,233 +12193,231 @@ var data =
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.latest"
+ "Singularity"
],
- "full_name": "bioexcel/biobb_cmip",
+ "full_name": "cognirob/crow_vision_yolact",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://biobb-cmip.readthedocs.io/en/latest/?badge=latest\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8bd09664a4dca78a8f246d76f3af7fc6da719393b3f9c6cbc6a8b291b19f3d80/68747470733a2f2f72656164746865646f63732e6f72672f70726f6a656374732f62696f62622d636d69702f62616467652f3f76657273696f6e3d6c6174657374\" alt=\"\" data-canonical-src=\"https://readthedocs.org/projects/biobb-cmip/badge/?version=latest\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://anaconda.org/bioconda/biobb_cmip\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a477fdb1fd9bc9eb7ffa6cae6a019c6d4c3902fd468b3126f1b78e56c7dcff83/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e7376673f7374796c653d666c6174\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://quay.io/repository/biocontainers/biobb_cmip\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ca418e4db0b3de91a09a5df4a59446da015b6164598a8bc255918e911484f84f/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d517561792e696f2d626c7565\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/docker-Quay.io-blue\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/Apache-2.0\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2a2157c971b7ae1deb8eb095799440551c33dcf61ea3d965d86b496a5a65df55/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d417061636865253230322e302d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/License-Apache%202.0-blue.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-biobb_cmip\" class=\"anchor\" href=\"#biobb_cmip\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebiobb_cmip\u003c/h1\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eBiobb_cmip is the Biobb module collection to compute classical molecular interaction potentials.\nBiobb (BioExcel building blocks) packages are Python building blocks that\ncreate new layer of compatibility and interoperability over popular\nbioinformatics tools.\nThe latest documentation of this package can be found in our readthedocs site:\n\u003ca href=\"http://biobb-cmip.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003elatest API documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-version\" class=\"anchor\" href=\"#version\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVersion\u003c/h3\u003e\n\u003cp\u003ev3.7.5 2021.4\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cp\u003eUsing PIP:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eImportant:\u003c/strong\u003e PIP only installs the package. All the dependencies must be installed separately. To perform a complete installation, please use ANACONDA, DOCKER or SINGULARITY.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e pip install \"biobb_cmip\u0026gt;=3.7.5\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage: \u003ca href=\"https://biobb-cmip.readthedocs.io/en/latest/modules.html\" rel=\"nofollow\"\u003ePython API documentation\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing ANACONDA:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e conda install -c bioconda \"biobb_cmip\u0026gt;=3.7.5\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage: With conda installation BioBBs can be used with the \u003ca href=\"https://biobb-cmip.readthedocs.io/en/latest/modules.html\" rel=\"nofollow\"\u003ePython API documentation\u003c/a\u003e and the \u003ca href=\"https://biobb-cmip.readthedocs.io/en/latest/command_line.html\" rel=\"nofollow\"\u003eCommand Line documentation\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing DOCKER:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker pull quay.io/biocontainers/biobb_cmip:3.7.5--pyhdfd78af_0\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker run quay.io/biocontainers/biobb_cmip:3.7.5--pyhdfd78af_0 \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing SINGULARITY:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eMacOS users\u003c/strong\u003e: it\u0027s strongly recommended to avoid Singularity and use \u003cstrong\u003eDocker\u003c/strong\u003e as containerization system.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity pull --name biobb_cmip.sif shub://bioexcel/biobb_cmip\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity exec biobb_cmip.sif \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe command list and specification can be found at the \u003ca href=\"https://biobb-cmip.readthedocs.io/en/latest/command_line.html\" rel=\"nofollow\"\u003eCommand Line documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-copyright--licensing\" class=\"anchor\" href=\"#copyright--licensing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCopyright \u0026amp; Licensing\u003c/h3\u003e\n\u003cp\u003eThis software has been developed in the \u003ca href=\"http://mmb.irbbarcelona.org\" rel=\"nofollow\"\u003eMMB group\u003c/a\u003e at the \u003ca href=\"http://www.bsc.es/\" rel=\"nofollow\"\u003eBSC\u003c/a\u003e \u0026amp; \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eIRB\u003c/a\u003e for the \u003ca href=\"http://bioexcel.eu/\" rel=\"nofollow\"\u003eEuropean BioExcel\u003c/a\u003e, funded by the European Commission (EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/823830\" rel=\"nofollow\"\u003e823830\u003c/a\u003e, EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/675728\" rel=\"nofollow\"\u003e675728\u003c/a\u003e).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e(c) 2015-2022 \u003ca href=\"https://www.bsc.es/\" rel=\"nofollow\"\u003eBarcelona Supercomputing Center\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e(c) 2015-2022 \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eInstitute for Research in Biomedicine\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eLicensed under the\n\u003ca href=\"https://www.apache.org/licenses/LICENSE-2.0\" rel=\"nofollow\"\u003eApache License 2.0\u003c/a\u003e, see the file LICENSE for details.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/39c04282e694d49ea0d56c716a27845cd25b9931f791484540f625dcecf68af2/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/39c04282e694d49ea0d56c716a27845cd25b9931f791484540f625dcecf68af2/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\" alt=\"\" title=\"Bioexcel\" data-canonical-src=\"https://bioexcel.eu/wp-content/uploads/2019/04/Bioexcell_logo_1080px_transp.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-you-only-look-at-coefficients\" class=\"anchor\" href=\"#you-only-look-at-coefficients\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003cstrong\u003eY\u003c/strong\u003eou \u003cstrong\u003eO\u003c/strong\u003enly \u003cstrong\u003eL\u003c/strong\u003eook \u003cstrong\u003eA\u003c/strong\u003et \u003cstrong\u003eC\u003c/strong\u003eoefficien\u003cstrong\u003eT\u003c/strong\u003es\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003e \u2588\u2588\u2557 \u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2588\u2557\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2557\n \u255a\u2588\u2588\u2557 \u2588\u2588\u2554\u255d\u2588\u2588\u2554\u2550\u2550\u2550\u2588\u2588\u2557\u2588\u2588\u2551 \u2588\u2588\u2554\u2550\u2550\u2588\u2588\u2557\u2588\u2588\u2554\u2550\u2550\u2550\u2550\u255d\u255a\u2550\u2550\u2588\u2588\u2554\u2550\u2550\u255d\n \u255a\u2588\u2588\u2588\u2588\u2554\u255d \u2588\u2588\u2551 \u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2551 \n \u255a\u2588\u2588\u2554\u255d \u2588\u2588\u2551 \u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2554\u2550\u2550\u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2551 \n \u2588\u2588\u2551 \u255a\u2588\u2588\u2588\u2588\u2588\u2588\u2554\u255d\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2557\u2588\u2588\u2551 \u2588\u2588\u2551\u255a\u2588\u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2551 \n \u255a\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u2550\u255d\u255a\u2550\u255d \u255a\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u255d \u255a\u2550\u255d \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA simple, fully convolutional model for real-time instance segmentation. This is the code for our papers:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://arxiv.org/abs/1904.02689\" rel=\"nofollow\"\u003eYOLACT: Real-time Instance Segmentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://arxiv.org/abs/1912.06218\" rel=\"nofollow\"\u003eYOLACT++: Better Real-time Instance Segmentation\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-yolact-v12-released-changelog\" class=\"anchor\" href=\"#yolact-v12-released-changelog\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eYOLACT++ (v1.2) released! (\u003ca href=\"CHANGELOG.md\"\u003eChangelog\u003c/a\u003e)\u003c/h4\u003e\n\u003cp\u003eYOLACT++\u0027s resnet50 model runs at 33.5 fps on a Titan Xp and achieves 34.1 mAP on COCO\u0027s \u003ccode\u003etest-dev\u003c/code\u003e (check out our journal paper \u003ca href=\"https://arxiv.org/abs/1912.06218\" rel=\"nofollow\"\u003ehere\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003eIn order to use YOLACT++, make sure you compile the DCNv2 code. (See \u003ca href=\"https://github.com/dbolya/yolact#installation\"\u003eInstallation\u003c/a\u003e)\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-for-a-real-time-demo-check-out-our-iccv-video\" class=\"anchor\" href=\"#for-a-real-time-demo-check-out-our-iccv-video\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor a real-time demo, check out our ICCV video:\u003c/h4\u003e\n\u003cp\u003e\u003ca href=\"https://www.youtube.com/watch?v=0pMfmo8qfpQ\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c9e061dab1a6754a417d6eb14803f1104cce54aa9231aa0d779e2523694ed23e/68747470733a2f2f696d672e796f75747562652e636f6d2f76692f30704d666d6f38716670512f302e6a7067\" alt=\"IMAGE ALT TEXT HERE\" data-canonical-src=\"https://img.youtube.com/vi/0pMfmo8qfpQ/0.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSome examples from our YOLACT base model (33.5 fps on a Titan Xp and 29.8 mAP on COCO\u0027s \u003ccode\u003etest-dev\u003c/code\u003e):\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"data/yolact_example_0.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"data/yolact_example_0.png\" alt=\"Example 0\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"data/yolact_example_1.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"data/yolact_example_1.png\" alt=\"Example 1\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"data/yolact_example_2.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"data/yolact_example_2.png\" alt=\"Example 2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eClone this repository and enter it:\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/dbolya/yolact.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e yolact\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eSet up the environment using one of the following methods:\n\u003cul\u003e\n\u003cli\u003eUsing \u003ca href=\"https://www.anaconda.com/distribution/\" rel=\"nofollow\"\u003eAnaconda\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eRun \u003ccode\u003econda env create -f environment.yml\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eManually with pip\n\u003cul\u003e\n\u003cli\u003eSet up a Python3 environment (e.g., using virtenv).\u003c/li\u003e\n\u003cli\u003eInstall \u003ca href=\"http://pytorch.org/\" rel=\"nofollow\"\u003ePytorch\u003c/a\u003e 1.0.1 (or higher) and TorchVision.\u003c/li\u003e\n\u003cli\u003eInstall some other packages:\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Cython needs to be installed before pycocotools\u003c/span\u003e\npip install cython\npip install opencv-python pillow pycocotools matplotlib \u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you\u0027d like to train YOLACT, download the COCO dataset and the 2014/2017 annotations. Note that this script will take a while and dump 21gb of files into \u003ccode\u003e./data/coco\u003c/code\u003e.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esh data/scripts/COCO.sh\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you\u0027d like to evaluate YOLACT on \u003ccode\u003etest-dev\u003c/code\u003e, download \u003ccode\u003etest-dev\u003c/code\u003e with this script.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esh data/scripts/COCO_test.sh\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you want to use YOLACT++, compile deformable convolutional layers (from \u003ca href=\"https://github.com/CharlesShang/DCNv2/tree/pytorch_1.0\"\u003eDCNv2\u003c/a\u003e).\nMake sure you have the latest CUDA toolkit installed from \u003ca href=\"https://developer.nvidia.com/cuda-toolkit\" rel=\"nofollow\"\u003eNVidia\u0027s Website\u003c/a\u003e.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e external/DCNv2\npython setup.py build develop\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-evaluation\" class=\"anchor\" href=\"#evaluation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEvaluation\u003c/h1\u003e\n\u003cp\u003eHere are our YOLACT models (released on April 5th, 2019) along with their FPS on a Titan Xp and mAP on \u003ccode\u003etest-dev\u003c/code\u003e:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eImage Size\u003c/th\u003e\n\u003cth align=\"center\"\u003eBackbone\u003c/th\u003e\n\u003cth align=\"center\"\u003eFPS\u003c/th\u003e\n\u003cth align=\"center\"\u003emAP\u003c/th\u003e\n\u003cth\u003eWeights\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet50-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e42.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e28.2\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1yp7ZbbDwvMiFJEq4ptVKTYTI2VeRDXl0/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_resnet50_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EUVpxoSXaqNIlssoLKOEoCcB1m0RpzGq_Khp5n1VX3zcUw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eDarknet53-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e40.0\u003c/td\u003e\n\u003ctd align=\"center\"\u003e28.7\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1dukLrTzZQEuhzitGkHaGjphlmRJOjVnP/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_darknet53_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/ERrao26c8llJn25dIyZPhwMBxUp2GdZTKIMUQA3t0djHLw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e33.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e29.8\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1UYy3dMapbH1BnmtZU4WH1zbYgOzzHHf_/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_base_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EYRWxBEoKU9DiblrWx2M89MBGFkVVB_drlRd_v5sdT3Hgg\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e700\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e23.6\u003c/td\u003e\n\u003ctd align=\"center\"\u003e31.2\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1lE4Lz5p25teiXV-6HdTiOJSnS7u7GBzg/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_im700_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/Eagg5RSc5hFEhp7sPtvLNyoBjhlf2feog7t8OQzHKKphjw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eYOLACT++ models (released on December 16th, 2019):\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eImage Size\u003c/th\u003e\n\u003cth align=\"center\"\u003eBackbone\u003c/th\u003e\n\u003cth align=\"center\"\u003eFPS\u003c/th\u003e\n\u003cth align=\"center\"\u003emAP\u003c/th\u003e\n\u003cth\u003eWeights\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet50-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e33.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e34.1\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1ZPu1YR2UzGHQD0o1rEqy-j5bmEm3lbyP/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_plus_resnet50_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EcJAtMiEFlhAnVsDf00yWRIBUC4m8iE9NEEiV05XwtEoGw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e27.3\u003c/td\u003e\n\u003ctd align=\"center\"\u003e34.6\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/15id0Qq5eqRbkD-N3ZjDZXdCvRyIaHpFB/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_plus_base_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EVQ62sF0SrJPrl_68onyHF8BpG7c05A8PavV4a849sZgEA\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eTo evalute the model, put the corresponding weights file in the \u003ccode\u003e./weights\u003c/code\u003e directory and run one of the following commands. The name of each config is everything before the numbers in the file name (e.g., \u003ccode\u003eyolact_base\u003c/code\u003e for \u003ccode\u003eyolact_base_54_800000.pth\u003c/code\u003e).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quantitative-results-on-coco\" class=\"anchor\" href=\"#quantitative-results-on-coco\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuantitative Results on COCO\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Quantitatively evaluate a trained model on the entire validation set. Make sure you have COCO downloaded as above.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e This should get 29.92 validation mask mAP last time I checked.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Output a COCOEval json to submit to the website or to use the run_coco_eval.py script.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e This command will create \u0027./results/bbox_detections.json\u0027 and \u0027./results/mask_detections.json\u0027 for detection and instance segmentation respectively.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --output_coco_json\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e You can run COCOEval on the files created in the previous command. The performance should match my implementation in eval.py.\u003c/span\u003e\npython run_coco_eval.py\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e To output a coco json file for test-dev, make sure you have test-dev downloaded from above and go\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --output_coco_json --dataset=coco2017_testdev_dataset\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-qualitative-results-on-coco\" class=\"anchor\" href=\"#qualitative-results-on-coco\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQualitative Results on COCO\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display qualitative results on COCO. From here on I\u0027ll use a confidence threshold of 0.15.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --display\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-benchmarking-on-coco\" class=\"anchor\" href=\"#benchmarking-on-coco\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBenchmarking on COCO\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Run just the raw model on the first 1k images of the validation set\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --benchmark --max_images=1000\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-images\" class=\"anchor\" href=\"#images\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImages\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display qualitative results on the specified image.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=my_image.png\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process an image and save it to another file.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=input_image.png:output_image.png\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process a whole folder of images.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --images=path/to/input/folder:path/to/output/folder\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-video\" class=\"anchor\" href=\"#video\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVideo\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display a video in real-time. \"--video_multiframe\" will process that many frames at once for improved performance.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e If you want, use \"--display_fps\" to draw the FPS directly on the frame.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=my_video.mp4\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display a webcam feed in real-time. If you have multiple webcams pass the index of the webcam you want instead of 0.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=0\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process a video and save it to another file. This uses the same pipeline as the ones above now, so it\u0027s fast!\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=input_video.mp4:output_video.mp4\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAs you can tell, \u003ccode\u003eeval.py\u003c/code\u003e can do a ton of stuff. Run the \u003ccode\u003e--help\u003c/code\u003e command to see everything it can do.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython eval.py --help\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-training\" class=\"anchor\" href=\"#training\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTraining\u003c/h1\u003e\n\u003cp\u003eBy default, we train on COCO. Make sure to download the entire dataset using the commands above.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eTo train, grab an imagenet-pretrained model and put it in \u003ccode\u003e./weights\u003c/code\u003e.\n\u003cul\u003e\n\u003cli\u003eFor Resnet101, download \u003ccode\u003eresnet101_reducedfc.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/1tvqFPd4bJtakOlmn-uIA492g2qurRChj/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor Resnet50, download \u003ccode\u003eresnet50-19c8e357.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/1Jy3yCdbatgXa5YYIdTCRrSV0S9V5g1rn/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor Darknet53, download \u003ccode\u003edarknet53.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/17Y431j4sagFpSReuPNoFcj9h7azDTZFf/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eRun one of the training commands below.\n\u003cul\u003e\n\u003cli\u003eNote that you can press ctrl+c while training and it will save an \u003ccode\u003e*_interrupt.pth\u003c/code\u003e file at the current iteration.\u003c/li\u003e\n\u003cli\u003eAll weights are saved in the \u003ccode\u003e./weights\u003c/code\u003e directory by default with the file name \u003ccode\u003e\u0026lt;config\u0026gt;_\u0026lt;epoch\u0026gt;_\u0026lt;iter\u0026gt;.pth\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Trains using the base config with a batch size of 8 (the default).\u003c/span\u003e\npython train.py --config=yolact_base_config\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Trains yolact_base_config with a batch_size of 5. For the 550px models, 1 batch takes up around 1.5 gigs of VRAM, so specify accordingly.\u003c/span\u003e\npython train.py --config=yolact_base_config --batch_size=5\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Resume training yolact_base with a specific weight file and start from the iteration specified in the weight file\u0027s name.\u003c/span\u003e\npython train.py --config=yolact_base_config --resume=weights/yolact_base_10_32100.pth --start_iter=-1\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Use the help option to see a description of all available command line arguments\u003c/span\u003e\npython train.py --help\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-multi-gpu-support\" class=\"anchor\" href=\"#multi-gpu-support\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMulti-GPU Support\u003c/h2\u003e\n\u003cp\u003eYOLACT now supports multiple GPUs seamlessly during training:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBefore running any of the scripts, run: \u003ccode\u003eexport CUDA_VISIBLE_DEVICES=[gpus]\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eWhere you should replace [gpus] with a comma separated list of the index of each GPU you want to use (e.g., 0,1,2,3).\u003c/li\u003e\n\u003cli\u003eYou should still do this if only using 1 GPU.\u003c/li\u003e\n\u003cli\u003eYou can check the indices of your GPUs with \u003ccode\u003envidia-smi\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eThen, simply set the batch size to \u003ccode\u003e8*num_gpus\u003c/code\u003e with the training commands above. The training script will automatically scale the hyperparameters to the right values.\n\u003cul\u003e\n\u003cli\u003eIf you have memory to spare you can increase the batch size further, but keep it a multiple of the number of GPUs you\u0027re using.\u003c/li\u003e\n\u003cli\u003eIf you want to allocate the images per GPU specific for different GPUs, you can use \u003ccode\u003e--batch_alloc=[alloc]\u003c/code\u003e where [alloc] is a comma seprated list containing the number of images on each GPU. This must sum to \u003ccode\u003ebatch_size\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-logging\" class=\"anchor\" href=\"#logging\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLogging\u003c/h2\u003e\n\u003cp\u003eYOLACT now logs training and validation information by default. You can disable this with \u003ccode\u003e--no_log\u003c/code\u003e. A guide on how to visualize these logs is coming soon, but now you can look at \u003ccode\u003eLogVizualizer\u003c/code\u003e in \u003ccode\u003eutils/logger.py\u003c/code\u003e for help.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pascal-sbd\" class=\"anchor\" href=\"#pascal-sbd\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePascal SBD\u003c/h2\u003e\n\u003cp\u003eWe also include a config for training on Pascal SBD annotations (for rapid experimentation or comparing with other methods). To train on Pascal SBD, proceed with the following steps:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDownload the dataset from \u003ca href=\"http://home.bharathh.info/pubs/codes/SBD/download.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. It\u0027s the first link in the top \"Overview\" section (and the file is called \u003ccode\u003ebenchmark.tgz\u003c/code\u003e).\u003c/li\u003e\n\u003cli\u003eExtract the dataset somewhere. In the dataset there should be a folder called \u003ccode\u003edataset/img\u003c/code\u003e. Create the directory \u003ccode\u003e./data/sbd\u003c/code\u003e (where \u003ccode\u003e.\u003c/code\u003e is YOLACT\u0027s root) and copy \u003ccode\u003edataset/img\u003c/code\u003e to \u003ccode\u003e./data/sbd/img\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eDownload the COCO-style annotations from \u003ca href=\"https://drive.google.com/open?id=1ExrRSPVctHW8Nxrn0SofU1lVhK5Wn0_S\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eExtract the annotations into \u003ccode\u003e./data/sbd/\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eNow you can train using \u003ccode\u003e--config=yolact_resnet50_pascal_config\u003c/code\u003e. Check that config to see how to extend it to other models.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eI will automate this all with a script soon, don\u0027t worry. Also, if you want the script I used to convert the annotations, I put it in \u003ccode\u003e./scripts/convert_sbd.py\u003c/code\u003e, but you\u0027ll have to check how it works to be able to use it because I don\u0027t actually remember at this point.\u003c/p\u003e\n\u003cp\u003eIf you want to verify our results, you can download our \u003ccode\u003eyolact_resnet50_pascal_config\u003c/code\u003e weights from \u003ca href=\"https://drive.google.com/open?id=1yLVwtkRtNxyl0kxeMCtPXJsXFFyc_FHe\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. This model should get 72.3 mask AP_50 and 56.2 mask AP_70. Note that the \"all\" AP isn\u0027t the same as the \"vol\" AP reported in others papers for pascal (they use an averages of the thresholds from \u003ccode\u003e0.1 - 0.9\u003c/code\u003e in increments of \u003ccode\u003e0.1\u003c/code\u003e instead of what COCO uses).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-custom-datasets\" class=\"anchor\" href=\"#custom-datasets\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCustom Datasets\u003c/h2\u003e\n\u003cp\u003eYou can also train on your own dataset by following these steps:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCreate a COCO-style Object Detection JSON annotation file for your dataset. The specification for this can be found \u003ca href=\"http://cocodataset.org/#format-data\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. Note that we don\u0027t use some fields, so the following may be omitted:\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003einfo\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eliscense\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003eUnder \u003ccode\u003eimage\u003c/code\u003e: \u003ccode\u003elicense, flickr_url, coco_url, date_captured\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecategories\u003c/code\u003e (we use our own format for categories, see below)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eCreate a definition for your dataset under \u003ccode\u003edataset_base\u003c/code\u003e in \u003ccode\u003edata/config.py\u003c/code\u003e (see the comments in \u003ccode\u003edataset_base\u003c/code\u003e for an explanation of each field):\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s1\"\u003emy_custom_dataset\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003edataset_base\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003ecopy\u003c/span\u003e({\n \u003cspan class=\"pl-s\"\u003e\u0027name\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027My Dataset\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027train_images\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_training_images\u0027\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027train_info\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_training_annotation\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027valid_images\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_validation_images\u0027\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027valid_info\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_validation_annotation\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027has_gt\u0027\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027class_names\u0027\u003c/span\u003e: (\u003cspan class=\"pl-s\"\u003e\u0027my_class_id_1\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027my_class_id_2\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027my_class_id_3\u0027\u003c/span\u003e, ...)\n})\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eA couple things to note:\n\u003cul\u003e\n\u003cli\u003eClass IDs in the annotation file should start at 1 and increase sequentially on the order of \u003ccode\u003eclass_names\u003c/code\u003e. If this isn\u0027t the case for your annotation file (like in COCO), see the field \u003ccode\u003elabel_map\u003c/code\u003e in \u003ccode\u003edataset_base\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eIf you do not want to create a validation split, use the same image path and annotations file for validation. By default (see \u003ccode\u003epython train.py --help\u003c/code\u003e), \u003ccode\u003etrain.py\u003c/code\u003e will output validation mAP for the first 5000 images in the dataset every 2 epochs.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eFinally, in \u003ccode\u003eyolact_base_config\u003c/code\u003e in the same file, change the value for \u003ccode\u003e\u0027dataset\u0027\u003c/code\u003e to \u003ccode\u003e\u0027my_custom_dataset\u0027\u003c/code\u003e or whatever you named the config object above. Then you can use any of the training commands in the previous section.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-creating-a-custom-dataset-from-scratch\" class=\"anchor\" href=\"#creating-a-custom-dataset-from-scratch\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreating a Custom Dataset from Scratch\u003c/h4\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/dbolya/yolact/issues/70#issuecomment-504283008\"\u003ethis nice post by @Amit12690\u003c/a\u003e for tips on how to annotate a custom dataset and prepare it for use with YOLACT.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-citation\" class=\"anchor\" href=\"#citation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h1\u003e\n\u003cp\u003eIf you use YOLACT or this code base in your work, please cite\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@inproceedings{yolact-iccv2019,\n author = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},\n title = {YOLACT: {Real-time} Instance Segmentation},\n booktitle = {ICCV},\n year = {2019},\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor YOLACT++, please cite\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@misc{yolact-plus-arxiv2019,\n title = {YOLACT++: Better Real-time Instance Segmentation},\n author = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},\n year = {2019},\n eprint = {1912.06218},\n archivePrefix = {arXiv},\n primaryClass = {cs.CV}\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-contact\" class=\"anchor\" href=\"#contact\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h1\u003e\n\u003cp\u003eFor questions about our paper or code, please contact \u003ca href=\"mailto:dbolya@ucdavis.edu\"\u003eDaniel Bolya\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 8,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1640095100.0
+ "updated_at": 1639151360.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity/Singularity"
+ "Singularity"
],
- "full_name": "YadavDosieah/FYP_Simulation",
+ "full_name": "truatpasteurdotfr/singularity-debian11-visualstudio",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-final-year-project\" class=\"anchor\" href=\"#final-year-project\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFinal-Year-Project\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-shepherding-and-object-clustering-using-collaborative-robots\" class=\"anchor\" href=\"#shepherding-and-object-clustering-using-collaborative-robots\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eShepherding and Object Clustering using collaborative robots\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eThe main code for the simulation can be found here: \u003ca href=\"https://github.com/YadavDosieah/FYP_Simulation/tree/master/enki/examples/playground\"\u003ehttps://github.com/YadavDosieah/FYP_Simulation/tree/master/enki/examples/playground\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eThe Singularity folder contains the definition file from which the Singularity container can be build\u003c/li\u003e\n\u003cli\u003eThe tracking folder contains the files used to implement the tracking system\u003c/li\u003e\n\u003cli\u003eThe MyProject folder contains the code used on the e-puck2 robot for the colour sensing\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-dependecies\" class=\"anchor\" href=\"#dependecies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependecies\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eEnki\u003c/li\u003e\n\u003cli\u003elibcmaes\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-vstudio-on-debian11-toy-system-for-singularity-for-ci\" class=\"anchor\" href=\"#building-a-vstudio-on-debian11-toy-system-for-singularity-for-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a vstudio on debian11 toy system for singularity for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003etoy system for github actions\u003c/li\u003e\n\u003cli\u003ebuild singularity container from dockerhub registry and push to oras://ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-debian11-visualstudio/actions/workflows/singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-debian11-visualstudio/actions/workflows/singularity-publish.yml/badge.svg\" alt=\"Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /run oras://ghcr.io/truatpasteurdotfr/singularity-debian11-visualstudio:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1640465576.0
+ "updated_at": 1638371327.0
},
{
"data_format": 2,
- "description": "Test making a Singularity-HUB image for OpenFOAM",
+ "description": null,
"filenames": [
- "Singularity"
+ "p9/Singularity",
+ "pytorch/Singularity"
],
- "full_name": "TormodLandet/singularity-openfoam",
+ "full_name": "abergeron/bench",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-openfoam\" class=\"anchor\" href=\"#singularity-openfoam\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-openfoam\u003c/h1\u003e\n\u003cp\u003eA Singularity Hub image for OpenFOAM. Not official and probably not up to date\u003c/p\u003e\n\u003cp\u003eGithub added an Apache 2.0 license (at my choice), but feel free to use the contents of this repository under any license and however you want, this is just a Singularity image bootstrap description after all\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1501144397.0
+ "updated_at": 1539805396.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Cluster Pipeline Workflow",
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "nickdelgrosso/crab_pipeline",
+ "full_name": "ftlin22/RNASeq_pipeline",
"latest_release": null,
- "readme": "\u003cp\u003e\u003cem\u003eNote:\u003c/em\u003e If using WSL and data is on a usb drive, \u003ca href=\"https://www.howtogeek.com/331053/how-to-mount-removable-drives-and-network-locations-in-the-windows-subsystem-for-linux/\" rel=\"nofollow\"\u003emount the drive on the filesystem\u003c/a\u003e first so you can access it:\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-launch-singularity-interactively\" class=\"anchor\" href=\"#launch-singularity-interactively\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLaunch Singularity Interactively\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-if-building-a-full-sandbox-so-you-can-pip-install-during-a-session-try-out-applications-etc\" class=\"anchor\" href=\"#if-building-a-full-sandbox-so-you-can-pip-install-during-a-session-try-out-applications-etc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIf building a full sandbox (so you can pip install during a session, try out applications, etc)\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build --sandbox -F Singularity.sif Singularity.def\nsingularity shell --writable --bind /path/to/videos:/data/raw Singularity.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-if-just-runing-code-insteractively-or-already-have-the-container-built\" class=\"anchor\" href=\"#if-just-runing-code-insteractively-or-already-have-the-container-built\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIf just runing code insteractively, or already have the container built\u003c/h3\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-build\" class=\"anchor\" href=\"#build\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build --sandbox -F Singularity.sif Singularity.def\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-run\" class=\"anchor\" href=\"#run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity shell --bind /path/to/videos:/data/raw Singularity.sif\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-launch-jupyter-lab\" class=\"anchor\" href=\"#launch-jupyter-lab\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLaunch Jupyter Lab\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run --app jupyter Singularity.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-singularity-38\" class=\"anchor\" href=\"#installing-singularity-38\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling Singularity 3.8\u003c/h2\u003e\n\u003cp\u003eThese were the best instructions!\n\u003ca href=\"https://github.com/apptainer/singularity/blob/master/INSTALL.md\"\u003ehttps://github.com/apptainer/singularity/blob/master/INSTALL.md\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-docs\" class=\"anchor\" href=\"#docs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocs\u003c/h3\u003e\n\u003cp\u003e\u003ca href=\"https://sylabs.io/guides/3.8/user-guide/\" rel=\"nofollow\"\u003ehttps://sylabs.io/guides/3.8/user-guide/\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-rnaseq_pipeline\" class=\"anchor\" href=\"#rnaseq_pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRNASeq_pipeline\u003c/h1\u003e\n\u003cp\u003eCluster Pipeline Workflow\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1642525381.0
+ "updated_at": 1638035482.0
},
{
"data_format": 2,
- "description": "Run Rstudio-server with singularity instance",
+ "description": "Original version from: http://gki.informatik.uni-freiburg.de/tools/tfd/",
"filenames": [
- "Singularity.Rstudio"
+ "Singularity.0.4",
+ "Singularity"
],
- "full_name": "edg1983/RStudio_server_singularity",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-run-rstudio-server-with-singularity-instance\" class=\"anchor\" href=\"#run-rstudio-server-with-singularity-instance\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Rstudio-server with singularity instance\u003c/h1\u003e\n\u003cp\u003eUsing these instructions you can run rstudio server within a singulatiry instance\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-build-singularity-image\" class=\"anchor\" href=\"#build-singularity-image\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild singularity image\u003c/h2\u003e\n\u003cp\u003eThe recipe is built with R 4.0 and r studio v1.4\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build rstudio_v1.4.sif Singularity.Rstudio\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-before-you-start\" class=\"anchor\" href=\"#before-you-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBefore you start\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1set-up-library-locations\" class=\"anchor\" href=\"#1set-up-library-locations\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1.Set up library locations\u003c/h3\u003e\n\u003cp\u003eAll R libraries will be installed in \u003ccode\u003e/well/brc/R_pkg/$USER\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eSubfolders will be created automatically according to R version and cpu architecture so that everything stay in place and you can run correctly compiled packages according to your environment (humbug and rescomp nodes have different architectures). This means that you need to install a package for each specific environment.\u003c/p\u003e\n\u003cp\u003eThis is managed by the \u003ccode\u003eRpofile\u003c/code\u003e file\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-set-up-your-r-profile\" class=\"anchor\" href=\"#set-up-your-r-profile\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSet up your R profile\u003c/h4\u003e\n\u003cp\u003eCopy the \u003ccode\u003eRprofile\u003c/code\u003e file to \u003ccode\u003e$HOME/.Rprofile\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-2-create-an-r-session-folder\" class=\"anchor\" href=\"#2-create-an-r-session-folder\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Create an R session folder\u003c/h3\u003e\n\u003cp\u003eDuring execution the instance will create R session files. You need to create a folder where yu have access to to store these files and then bind this to the Rsession folder in the image.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-run-rserver\" class=\"anchor\" href=\"#run-rserver\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun rserver\u003c/h2\u003e\n\u003cp\u003eModify the variables in \u003ccode\u003estart_rstudio_instance.sh\u003c/code\u003e according to your needs and run the script. Access is secured by password you can set changing the \u003ccode\u003ePASSWORD\u003c/code\u003e variable in the script.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNB.\u003c/strong\u003e Remember to add relevant paths to the bind argument in the script WITHOUT touching the default ones. All paths you need to acces from R server must be added to \u003ccode\u003e--bind\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eDefault settings:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eaddress: 127.0.0.1\u003c/li\u003e\n\u003cli\u003eport: 9997\u003c/li\u003e\n\u003cli\u003eRsession.conf file: set rsession timeout to zero to avoid writing temp session files\u003c/li\u003e\n\u003cli\u003eRsession dir: /well/brc/Rstudio_server/$USER\u003c/li\u003e\n\u003cli\u003eRstudio session folders creaded in \u003ccode\u003e$Rsession_dir\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "roveri-marco/tfd",
+ "latest_release": "0.4",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-temporalfastdownward\" class=\"anchor\" href=\"#temporalfastdownward\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTemporalFastDownward\u003c/h1\u003e\n\u003cp\u003eThe version of Temporal Fast Downward.\nThis version has been ported to Python3 (tested with Python3.8)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-information\" class=\"anchor\" href=\"#information\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInformation\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://gki.informatik.uni-freiburg.de/tools/tfd/\" rel=\"nofollow\"\u003ehttp://gki.informatik.uni-freiburg.de/tools/tfd/\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003e$ ./build\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-citation\" class=\"anchor\" href=\"#citation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\u003cp\u003ePatrick Eyerich, Robert Mattm\u00fcller and Gabriele R\u00f6ger.\nUsing the Context-enhanced Additive Heuristic for Temporal and Numeric Planning.\nIn Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS 2009), 2009.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1642779639.0
+ "updated_at": 1638481913.0
},
{
"data_format": 2,
- "description": null,
+ "description": "PPX protocols for open malaria",
"filenames": [
- "enricher/tests/resources/Singularity.enrichment"
+ "src/code/Singularity"
],
- "full_name": "JEstabrook/regulon-enrichment",
- "latest_release": "v0.3.1a",
- "readme": "\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/4fdbdfa64306659366ce76f0240a36fb0dc5e510b28870cad546175d0030658d/68747470733a2f2f7472617669732d63692e636f6d2f4a4573746162726f6f6b2f726567756c6f6e2d656e726963686d656e742e7376673f746f6b656e3d5a52445742576539735843697650314e725a7771266272616e63683d6d6173746572\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4fdbdfa64306659366ce76f0240a36fb0dc5e510b28870cad546175d0030658d/68747470733a2f2f7472617669732d63692e636f6d2f4a4573746162726f6f6b2f726567756c6f6e2d656e726963686d656e742e7376673f746f6b656e3d5a52445742576539735843697650314e725a7771266272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.com/JEstabrook/regulon-enrichment.svg?token=ZRDWBWe9sXCivP1NrZwq\u0026amp;branch=master\" style=\"max-width:100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://www.python.org/downloads/release/python-367\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/75b8738e1bdfe8a832711925abbc3bd449c1e7e9260c870153ec761cad8dde40/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f707974686f6e2d332e362b2d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/python-3.6+-blue.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://camo.githubusercontent.com/1d48578e1082d434280fe2299efd72bcf1cba5658c8ad707406fd29a0a1a4193/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d6e7269676874677265656e2e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1d48578e1082d434280fe2299efd72bcf1cba5658c8ad707406fd29a0a1a4193/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d6e7269676874677265656e2e737667\" alt=\"t\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-nrightgreen.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://camo.githubusercontent.com/8416ebae4490c8fa309b7d13e3a8565f3da2ea34ce1eb8a905ce2c7195dddd63/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f7374617475732d737461626c652d6e7269676874677265656e2e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8416ebae4490c8fa309b7d13e3a8565f3da2ea34ce1eb8a905ce2c7195dddd63/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f7374617475732d737461626c652d6e7269676874677265656e2e737667\" alt=\"t\" data-canonical-src=\"https://img.shields.io/badge/status-stable-nrightgreen.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://camo.githubusercontent.com/31c454bdf9d517bfbf4d3eed1c768f1853de782076f85ce05b681d0017bfa7f4/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3137393735323035392e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/31c454bdf9d517bfbf4d3eed1c768f1853de782076f85ce05b681d0017bfa7f4/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3137393735323035392e737667\" alt=\"t\" data-canonical-src=\"https://zenodo.org/badge/179752059.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-enrich\" class=\"anchor\" href=\"#enrich\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEnrich\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eregulon-enrichment\u003c/strong\u003e is a Python module used to predict the activity of regulatory proteins from RNAseq data.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eregulon-enrichment\u003c/em\u003e submodules:\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-enricherfeatures\" class=\"anchor\" href=\"#enricherfeatures\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ccode\u003eenricher.features\u003c/code\u003e\n\u003c/h3\u003e\n\u003cp\u003eLoad -omic datasets\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-enricherregulon\" class=\"anchor\" href=\"#enricherregulon\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ccode\u003eenricher.regulon\u003c/code\u003e\n\u003c/h3\u003e\n\u003cp\u003eRegulon utilities\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eregulon-enrichment\u003c/strong\u003e requires:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e- Python (\u0026gt;= 3.6)\n- scikit-learn (\u0026gt;= 0.21.3)\n- NumPy (\u0026gt;= 1.17.3)\n- SciPy (\u0026gt;= 1.3.1)\n- pandas (\u0026gt;= 0.25.3)\n- tqdm (\u0026gt;= 4.38.0)\n- dill (\u0026gt;= 0.3.1.1)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-user-installation\" class=\"anchor\" href=\"#user-installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUser installation\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003e\nIf you already have a working installation of numpy and scipy,\nthe easiest way to install regulon-enrichment is using ``conda`` ::\n\n conda install -c estabroj89 regulon-enrichment\n\nor ``pip``::\n\n pip install regulon-enrichment==0.0.2b0\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-overview\" class=\"anchor\" href=\"#overview\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOverview\u003c/h1\u003e\n\u003cp\u003eThis method leverages pathway information and gene expression data to produce regulon-based protein activity scores.\nOur method tests for positional shifts in experimental-evidence supported networks consisting of transcription factors\nand their downstream signaling pathways when projected onto a rank-sorted gene-expression signature.\u003c/p\u003e\n\u003cp\u003eThis regulon enrichment method utilizes pathway and molecular interactions and mechanisms available through Pathway\nCommons to accurately infer aberrant transcription factor activity from gene expression data.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-running-regulon-enrichment\" class=\"anchor\" href=\"#running-regulon-enrichment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning regulon-enrichment\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-invoking-enrich-from-the-command-line\" class=\"anchor\" href=\"#invoking-enrich-from-the-command-line\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInvoking enrich from the command line\u003c/h2\u003e\n\u003cp\u003eWhen installing the regulon-enrichment package, the set of scripts that make up to inteface to regulon-enrichment will\nautomatically be placed as an executables in your path, so that you can refer to these without modifying your shell\nenvironment. For example, if you install regulon-enrichment using conda, then enrich will become available on the path,\nand can be run as:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eenrich\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-enrich-parameters\" class=\"anchor\" href=\"#enrich-parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEnrich parameters\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-required-parameters\" class=\"anchor\" href=\"#required-parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequired parameters\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003ecohort\u003c/code\u003e : which cohort to use; this information will be retained in the serialized Enrichment class\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eexpr\u003c/code\u003e : which tab delimited expression matrix to use shape : \u003ccode\u003e[n_features, n_samples]\u003c/code\u003e, units : \u003ccode\u003eTPM, RPKM\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eout_dir\u003c/code\u003e : output directory - directory serialized Enrichment object and enrichment.tsv will be saved to\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-optional-parameters\" class=\"anchor\" href=\"#optional-parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOptional parameters\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003eregulon\u003c/code\u003e : optional regulon containing weight interactions between regulator and\ndownstream members of its regulon shape : \u003ccode\u003e[len(Target), [\u0027Regulator\u0027,\u0027Target\u0027,\u0027MoA\u0027,\u0027likelihood\u0027]\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eregulon_size\u003c/code\u003e : number of downstream interactions required for a given regulator in order to calculate enrichment score \u003ccode\u003edefault=15\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esec_intx\u003c/code\u003e : path to pre-compiled serialized secondary interaction network, \u003ccode\u003edefault=secondary_intx_regulon.pkl\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003escaler_type\u003c/code\u003e : scaler to normalized features/samples by: \u003ccode\u003estandard | robust | minmax | quant\u003c/code\u003e, default=\u003ccode\u003erobust\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ethresh_filter\u003c/code\u003e : Prior to normalization remove features that have a standard deviation per feature less than \u003ccode\u003e{thresh_filter}\u003c/code\u003e, \u003ccode\u003edefault=0.1\u003c/code\u003e)\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-computing-regulon-enrichment-scores\" class=\"anchor\" href=\"#computing-regulon-enrichment-scores\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eComputing regulon enrichment scores\u003c/h1\u003e\n\u003cp\u003eTo quantify the regulon enrichment for a given dataset, the command line script \u003ccode\u003eenrich\u003c/code\u003e is used.\u003c/p\u003e\n\u003cp\u003eUse --help argument to view options\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eenrich --help\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eEnrich requires three positional arguments: \u003ccode\u003ecohort\u003c/code\u003e,\u003ccode\u003eexpr\u003c/code\u003e, \u003ccode\u003eout_dir\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eenrich cohort expr out_dir [regulon] [regulon_size] [sec_intx] [scaler_type] [thresh_filter] \u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eIt is recommended to run enrich with the default parameters.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eenrich test tests/resources/test_expr.tsv test_enrichment_scores\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe command above will generate enrichment scores for the unittest dataset \u003ccode\u003etest_expr.tsv\u003c/code\u003e and will generate and store the output under \u003ccode\u003etest_enrichment_scores/\u003c/code\u003e. In this directory \u003ccode\u003etest_enrichment_scores/\u003c/code\u003e, both the serialized Enrichment object \u003ccode\u003etest_enrichment.pkl\u003c/code\u003e and a tsv of the enrichment scores,\u003ccode\u003etest_regulon_enrichment.tsv\u003c/code\u003e will be found.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003eenrichment.tsv\u003c/code\u003e file be shaped : \u003ccode\u003e[n_samples, n_regulators]\u003c/code\u003e, where \u003ccode\u003en_samples\u003c/code\u003e refers to the original number of samples provided in \u003ccode\u003eexpr\u003c/code\u003e, while \u003ccode\u003en_regulators\u003c/code\u003e will be determined based on the overlapping features present in the \u003ccode\u003eexpr\u003c/code\u003e dataset and the \u003ccode\u003eregulon_size\u003c/code\u003e parameter.\u003c/p\u003e\n",
+ "full_name": "bayesianbrad/openmalaria_probprog",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-todo\" class=\"anchor\" href=\"#todo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etodo\u003c/h1\u003e\n\u003cp\u003eAdd notes to all the .cpp files that we modify, to state exactly\nwhat we modified.\u003c/p\u003e\n\u003cp\u003eopenmalaria dependencies (Ubuntu):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eapt packages: xsdcxx libxerces-c-dev libgsl-dev libboost-all-dev\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eHow to build wiki locally:\u003c/p\u003e\n\u003cp\u003eFirst download Gollum:\u003c/p\u003e\n\u003cp\u003eOn mac:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esudo gem install gollum\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-inputoutputs-to-the-model\" class=\"anchor\" href=\"#inputoutputs-to-the-model\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput/Outputs to the model\u003c/h1\u003e\n\u003cp\u003eWhat can we designate as input/output:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eInputs\n\u003cul\u003e\n\u003cli\u003eMosquito nets\u003c/li\u003e\n\u003cli\u003eVaccination, type of vaccination\u003c/li\u003e\n\u003cli\u003eProphylactic\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eOutputs\n\u003cul\u003e\n\u003cli\u003e\"Survey measures\"\n\u003cul\u003e\n\u003cli\u003enHost\u003c/li\u003e\n\u003cli\u003enPatent\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eMortality rate\u003c/li\u003e\n\u003cli\u003eProbability of seeking medical help\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-how-to-build-docker-image\" class=\"anchor\" href=\"#how-to-build-docker-image\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to build Docker image:\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003edocker build . -t openmalariapp\u003c/li\u003e\n\u003cli\u003edocker run --rm -it (for interactive usage, will remove the container from memory) (-it interactive attach to terminal)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo attach a local drive / folder use\n:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003edocker run --rm -it -v $PWD:/home bradleygh/openmalariapp\nConnecting docker to the external file system:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eHow to run Jupyter inside Docker:\u003c/p\u003e\n\u003cp\u003eFor linux\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003edocker run --rm -it -v $PWD:/home --net=host bradleygh/openmalariapp\nrun the following inside the container: jupyter notebook --allow-root\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor Mac\u003c/p\u003e\n\u003cp\u003edocker run --rm -it -p 127.0.0.1:8889:8889 -v $PWD:/home gbaydin/openmalariapp jupyter notebook --port 8889 --allow-root --ip=0.0.0.0\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-creating-an-experiment\" class=\"anchor\" href=\"#creating-an-experiment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreating an experiment\u003c/h1\u003e\n\u003cp\u003eCreate a directory in your local machine, for example called examples\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ecd /home\u003c/li\u003e\n\u003cli\u003emkdir examples\u003c/li\u003e\n\u003cli\u003ecd examples\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ewithin the folder add the following files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003escenario_current.xsd\u003c/li\u003e\n\u003cli\u003e\u0026lt;name_of_the_scenario_you_want_to_run\u0026gt;.xml\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAdd the openmalaria executable to the folder to, i.e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003ecp /code/openmalaria/build/openMalaria examples/openMalaria\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u0026lt;add_any_input_csv_or_txt_files\u0026gt;\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-running-the-simulator-once-an-experiment-has-been-created\" class=\"anchor\" href=\"#running-the-simulator-once-an-experiment-has-been-created\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the simulator once an experiment has been created\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003ecd ./examples\u003c/li\u003e\n\u003cli\u003edocker run --rm -it -v $PWD:/home/examples bradleygh/openmalariapp\u003c/li\u003e\n\u003cli\u003ecd /home/examples/\u003c/li\u003e\n\u003cli\u003e./openMalaria -s \u0026lt;name_of_the_scenario_you_want_to_run\u0026gt;.xml\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-debugging-by-modifying-code-outside-docker-but-running-inside\" class=\"anchor\" href=\"#debugging-by-modifying-code-outside-docker-but-running-inside\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDebugging by modifying code outside Docker, but running inside\u003c/h1\u003e\n\u003cp\u003edocker run --rm -it --net=host -v $PWD/examples:/home/examples -v $PWD/code/openmalaria/:/code/openmalaria bradleygh/openmalariapp\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-when-building-the-prob-prog-version\" class=\"anchor\" href=\"#when-building-the-prob-prog-version\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhen building the prob prog version\u003c/h1\u003e\n\u003cp\u003eWhen openMalaria is being built it is actively looking for the current version of schema, in this case the schema\nversion is 39.0, If the main directory name is not called \"openmalaria_schema_\u0026lt;version_number\u0026gt; then the code will fail to build.\nIn addition to this, as specified by the openMalaria readme, you will have to change\nall the relevant places in the script where schema number appears before a build.\nSeems very inefficient, but that is the way in whcih the simulator is set up.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-running-om-simulator-with-pyprob\" class=\"anchor\" href=\"#running-om-simulator-with-pyprob\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning OM simulator with Pyprob\u003c/h1\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-mac\" class=\"anchor\" href=\"#mac\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMac\u003c/h1\u003e\n\u003cp\u003edocker run --rm -it -p 2345:2345 -v $PWD/examples:/home/examples -v $PWD/code/openmalaria/:/code/openmalaria bradleygh/openmalariapp\u003c/p\u003e\n\u003cp\u003eadd when calling ./openmalaria\n$ ./openMalaria tcp://*:2345\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-linux\" class=\"anchor\" href=\"#linux\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLinux\u003c/h1\u003e\n\u003cp\u003edocker run --rm -it -v $PWD/examples:/home/examples -v $PWD/code/openmalaria/:/code/openmalaria bradleygh/openmalariapp\u003c/p\u003e\n\u003cp\u003eadd when calling ./openmalaria\n$ ./openMalaria ipc://@\u0026lt;some_string\u0026gt;\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-using-singluarity-instead\" class=\"anchor\" href=\"#using-singluarity-instead\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing Singluarity instead\u003c/h1\u003e\n\u003cp\u003eTo convert a dockerfile to singularityfile run:\u003c/p\u003e\n\u003cp\u003epip install singularity\u003c/p\u003e\n\u003cp\u003eThen in the terminal / commmand line run:\u003c/p\u003e\n\u003cp\u003espython recipe Dockerfile \u0026gt;\u0026gt; Singularity\u003c/p\u003e\n\u003cp\u003eThis will convert the Dockerfile to a singularity file and save the output as Singularity.\u003c/p\u003e\n\u003cp\u003eWe can also make use of pre-built docker containers, without having to install docker, by running\nthe following:\u003c/p\u003e\n\u003cp\u003esingularity pull docker://bradleygh:openmalariapp\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1640212972.0
+ "updated_at": 1637861862.0
},
{
"data_format": 2,
- "description": "ENHSP Containers. This contains singularity recipes for ENHSP. ENHSP-18, ENHSP-19 and ENHSP20. More details can be found at https://sites.google.com/view/enhsp/",
+ "description": null,
"filenames": [
- "2018/Singularity.2018",
- "latest/Singularity",
- "2019/Singularity.2019",
- "2020/Singularity.2020"
+ "Singularity.lbfs"
],
- "full_name": "hstairs/enhsp-containers",
+ "full_name": "ab649964207/fs",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-enhsp-containers\" class=\"anchor\" href=\"#enhsp-containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eENHSP Containers\u003c/h1\u003e\n\u003cp\u003eThis repository contains singularity recipes for ENHSP, the Expressive Numeric Heuristic Search Planner. ENHSP is an automated planning engine focused at solving planning problems with numeric state variables.\u003c/p\u003e\n\u003cp\u003eThe repository provides three versions of ENHSP, 2018, 2019 and 2020. These versions are described at \u003ca href=\"https://sites.google.com/view/enhsp/\" rel=\"nofollow\"\u003ehttps://sites.google.com/view/enhsp/\u003c/a\u003e as enhsp-18, enhsp-19, enhsp-20.\nSource code of all versions can be downloaded at: \u003ca href=\"https://gitlab.com/enricos83/ENHSP-Public\" rel=\"nofollow\"\u003ehttps://gitlab.com/enricos83/ENHSP-Public\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-the-fs-functional-strips-planner\" class=\"anchor\" href=\"#the-fs-functional-strips-planner\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThe FS Functional STRIPS planner\u003c/h1\u003e\n\u003cp\u003e\u003ccode\u003eFS\u003c/code\u003e is a classical planner that works with the Functional STRIPS planning language \u003ca href=\"#ref-geffner-fstrips-2000\"\u003e[Geffner, 2000]\u003c/a\u003e,\na modeling language based on the quantifier-free\nfragment of first-order logic that includes constant, function and predicate symbols, but no variable symbols. The increased expressiveness\nof the Functional STRIPS language with respect to propositional languages such as standard STRIPS (which is indeed subsumed by Functional STRIPS)\noften results in problem encodings which are more compact, more readable, have fewer ground actions\nand preserve the structural properties of the problem in a manner which allows the derivation of more effective heuristics.\u003c/p\u003e\n\u003cp\u003eAlong with the core of the Functional STRIPS language, the \u003ccode\u003eFS\u003c/code\u003e planner supports certain extensions which are useful both\nfrom the expressive \u003cem\u003eand\u003c/em\u003e the computational point of view. These include \u003cem\u003eexistential quantification\u003c/em\u003e,\n\u003cem\u003estate constraints\u003c/em\u003e, a fairly large library of \u003cem\u003eglobal constraints\u003c/em\u003e, and the possibility of using \u003cem\u003eexternally-defined symbols\u003c/em\u003e\nand \u003cem\u003ebuilt-in arithmetic symbols\u003c/em\u003e.\u003c/p\u003e\n\u003cp\u003eThis documentation covers a number of practical issues related to the use of the \u003ccode\u003eFS\u003c/code\u003e planner. The planner, however, has\nbeen used and described in a number of academic publications that \u003ca href=\"http://gfrances.github.io/pubs/\" rel=\"nofollow\"\u003ecan be found here\u003c/a\u003e,\nthe most recent of which are \u003ca href=\"#ref-frances-modeling-2015\"\u003e[Franc\u00e8s and Geffner, 2015]\u003c/a\u003e and \u003ca href=\"#ref-frances-existential-2016\"\u003e[Franc\u00e8s and Geffner, 2016a]\u003c/a\u003e\nand \u003ca href=\"#ref-frances-effective-2016\"\u003e[Franc\u00e8s and Geffner, 2016b]\u003c/a\u003e.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"#installation\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#usage\"\u003eUsage\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#credits\"\u003eCredits\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#references\"\u003eReferences\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca name=\"user-content-references\"\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eThe easiest way to use the planner is by \u003ca href=\"doc/installation.md\"\u003emanually compiling the planner source code\u003c/a\u003e.\nAlternatively, you can build and/or use a \u003ca href=\"doc/containers.md\"\u003eready-to-use image\u003c/a\u003e in some of the containerization solutions\nthat we support.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca name=\"user-content-usage\"\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003eYou can find a high-level overview of the planner usage options \u003ca href=\"doc/usage.md\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-credits\" class=\"anchor\" href=\"#credits\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca name=\"user-content-credits\"\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003eThe \u003ccode\u003eFS\u003c/code\u003e planner is partially built upon the \u003ca href=\"http://www.lapkt.org\" rel=\"nofollow\"\u003eLightweight Automated Planning Toolkit\u003c/a\u003e\nand the PDDL parser from the \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003eFast Downward\u003c/a\u003e distribution.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-references\" class=\"anchor\" href=\"#references\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca name=\"user-content-references\"\u003e\u003c/a\u003eReferences\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca name=\"user-content-ref-frances-modeling-2015\"\u003eFranc\u00e8s, G., and Geffner, H. (2015)\u003c/a\u003e,\n\u003ca href=\"http://gfrances.github.io/pubs/2015-icaps-better-heuristics-more-expressive-languages/\" rel=\"nofollow\"\u003e\u003cem\u003eModeling and Computation in Planning: Better Heuristics from More Expressive Languages\u003c/em\u003e\u003c/a\u003e, ICAPS 2015.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca name=\"user-content-ref-frances-existential-2016\"\u003eFranc\u00e8s, G., and Geffner, H. (2016a)\u003c/a\u003e,\n\u003ca href=\"http://gfrances.github.io/pubs/2016-ijcai-existential-quantification-planning-csp/\" rel=\"nofollow\"\u003e\u003cem\u003eE-STRIPS: Existential Quantification in Planning and Constraint Satisfaction\u003c/em\u003e\u003c/a\u003e, IJCAI 2016.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca name=\"user-content-ref-frances-effective-2016\"\u003eFranc\u00e8s, G., and Geffner, H. (2016b)\u003c/a\u003e,\n\u003ca href=\"http://gfrances.github.io/pubs/2016-ijcai-effective-planning-more-expressive-languages/\" rel=\"nofollow\"\u003e\u003cem\u003eEffective Planning with More Expressive Languages\u003c/em\u003e\u003c/a\u003e, IJCAI 2016.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca name=\"user-content-ref-geffner-fstrips-2000\"\u003eGeffner, H. (2000)\u003c/a\u003e,\n\u003ca href=\"http://www.tecn.upf.es/~hgeffner/\" rel=\"nofollow\"\u003e\u003cem\u003eFunctional STRIPS: A more flexible lan-\nguage for planning and problem solving\u003c/em\u003e\u003c/a\u003e.\nIn Minker, J., ed., Logic-Based Artificial Intelligence. Kluwer. 187\u2013205.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1635518248.0
+ "updated_at": 1637831969.0
},
{
"data_format": 2,
- "description": null,
+ "description": "The preprocessing pipeline at ZHH",
"filenames": [
- "Singularity"
+ "HCPPipeline/Singularity.unix"
],
- "full_name": "jzhanghzau/thesis_docker",
+ "full_name": "argyelan/ZHHpipelines",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-zhhpipelines\" class=\"anchor\" href=\"#zhhpipelines\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eZHHpipelines\u003c/h1\u003e\n\u003cp\u003eThe preprocessing pipeline at ZHH\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-bids-conversion\" class=\"anchor\" href=\"#bids-conversion\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBIDS Conversion\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eUsage: dicom2bids.sh grid_num sess_num descr\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003egrid_num: subject identifier;\nsess_num: session identifier;\ndescr: study specificator (currently available: TMS)\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eUsage: multiple_dicom2bids.sh info.csv\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003einfo.csv: a file with 3 columns, first subject identifier, second: session identifier, third: study type\nProgram goes over every line one by one and calls dicom2bids.sh\u003c/p\u003e\n\u003cp\u003etest 2 ....\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1635770574.0
+ "updated_at": 1637793201.0
},
{
"data_format": 2,
- "description": "SCG collaboration with ETA on BEAM/Atlas project",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "lbnl-science-it/atlas",
+ "full_name": "truatpasteurdotfr/singularity-docker-fidle-gpu",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-atlas\" class=\"anchor\" href=\"#atlas\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eatlas\u003c/h1\u003e\n\u003cp\u003eContainer with R and necessary packages to run BEAM/Atlas vehicle simulation.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-example-running-r-script-via-docker\" class=\"anchor\" href=\"#example-running-r-script-via-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample running R script via Docker\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e /global/data/transportation/ATLAS/static/urbansim/\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e# R script in home dir, bind mounted to container\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003eXX docker run -v /global/data/transportation/ATLAS/static/urbansim:/global/data/transportation/ATLAS/static/urbansim -it --entrypoint=Rscript ghcr.io/lbnl-science-it/atlas:main /global/data/transportation/ATLAS/static/urbansim/model_application/Model_application_hima.R \u003c/span\u003e\ndocker run -v /global/data/transportation/ATLAS/static/urbansim:/mnt -it --entrypoint=Rscript ghcr.io/lbnl-science-it/atlas:main /mnt/model_application/Model_application_hima.R \ndocker run -v /global/data/transportation/ATLAS/static/urbansim_hima_apollo:/mnt -it --entrypoint=Rscript ghcr.io/lbnl-science-it/atlas:main /mnt/model_application/Model_application_hima.R \ndocker run -v \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e:/mnt -it --entrypoint=Rscript ghcr.io/lbnl-science-it/atlas:main /mnt/model_application/Model_application_hima.R\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e# running a bash shell, can call R from there\u003c/span\u003e\ndocker run -it --entrypoint=bash ghcr.io/lbnl-science-it/atlas:main\ndocker run -v /global/data/transportation/ATLAS/static/urbansim_hima_apollo:/mnt -it --entrypoint=bash ghcr.io/lbnl-science-it/atlas:main \n root@0b5815f5b441:/\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e export R_LIBS=/usr/local/lib/R/site-library/\u003c/span\u003e\n root@0b5815f5b441:/\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Rscript /mnt/model_application/Model_application_hima.R\u003c/span\u003e\n\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-example-running-r-script-via-singularity\" class=\"anchor\" href=\"#example-running-r-script-via-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample running R script via Singularity\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e\ncd /global/data/transportation/ATLAS/static/urbansim/\n\nsingularity pull docker://ghcr.io/lbnl-science-it/atlas:main \nsingularity exec docker://ghcr.io/lbnl-science-it/atlas:main Rscript ./model_application/Model_application_hima.R \n\n// other things to try for debug use\nsingularity shell docker://ghcr.io/lbnl-science-it/atlas:main # get bash prompt, can call R afterward\nsingularity run docker://ghcr.io/lbnl-science-it/atlas:main # get R prompt\n\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-container-for-fidle-httpsgricad-gitlabuniv-grenoble-alpesfrtalksfidle-with-a-gpu\" class=\"anchor\" href=\"#building-container-for-fidle-httpsgricad-gitlabuniv-grenoble-alpesfrtalksfidle-with-a-gpu\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding container for fidle (\u003ca href=\"https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle\" rel=\"nofollow\"\u003ehttps://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle\u003c/a\u003e) with a gpu\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003etoy system for github actions\u003c/li\u003e\n\u003cli\u003ebuild docker image from dockerhub registry and push to ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003ebuild singularity container from dockerhub registry and push to oras://ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003ebuild docker image, push to ghcr.io and re-use that docker image to create a singularity container pushed ghcr.io oras://\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:main\u003c/code\u003e tagged docker image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003cli\u003eOnly cover the software installation for gpu (\u003ca href=\"https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Using%20Fidle/Linux%20installation%20using%20conda\" rel=\"nofollow\"\u003ehttps://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Using%20Fidle/Linux%20installation%20using%20conda\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage-\" class=\"anchor\" href=\"#usage-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-fidle-gpu/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-fidle-gpu/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocker\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-fidle-gpu:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run oras://ghcr.io/truatpasteurdotfr/singularity-docker-fidle-gpu:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
- "topics": [
- "modeling"
- ],
- "updated_at": 1642141776.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1637710228.0
},
{
"data_format": 2,
- "description": "A monitor of resources",
+ "description": null,
"filenames": [
- "1.0.20/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-btop",
+ "full_name": "truatpasteurdotfr/singularity-docker-fidle",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-btop/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-btop/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-btop/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-btop/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c5457f5a651b024fa69983d39c277473e069e5594ee409e53b44e391c6c15b39/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62746f70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c5457f5a651b024fa69983d39c277473e069e5594ee409e53b44e391c6c15b39/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62746f70\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-btop\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/fed939c101ca243e5b6b049eb99d6125bc1a94e6772a69e3d1e61c7bc1dd401e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62746f70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fed939c101ca243e5b6b049eb99d6125bc1a94e6772a69e3d1e61c7bc1dd401e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62746f70\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-btop\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/eb5608fc1c3e2f7a3a19f5f7d22fadf1ee0714cb6c0c9d9cdc2dfd9589202a2a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62746f70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/eb5608fc1c3e2f7a3a19f5f7d22fadf1ee0714cb6c0c9d9cdc2dfd9589202a2a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62746f70\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-btop\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7edba1cf64e407b9a9f9fd1d76709a70797be17efa4ad0233df596ca5b65aab2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62746f70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7edba1cf64e407b9a9f9fd1d76709a70797be17efa4ad0233df596ca5b65aab2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62746f70\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-btop\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-btop\" class=\"anchor\" href=\"#singularity-btop\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-btop\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/aristocratos/btop/raw/main/Img/logo.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/aristocratos/btop/raw/main/Img/logo.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/aristocratos/btop\"\u003ebtop\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebtop\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/btop/1.0.20\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/btop\u003c/code\u003e as \u003ccode\u003e1.0.20.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-container-for-fidle-httpsgricad-gitlabuniv-grenoble-alpesfrtalksfidle\" class=\"anchor\" href=\"#building-container-for-fidle-httpsgricad-gitlabuniv-grenoble-alpesfrtalksfidle\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding container for fidle (\u003ca href=\"https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle\" rel=\"nofollow\"\u003ehttps://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle\u003c/a\u003e)\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003etoy system for github actions\u003c/li\u003e\n\u003cli\u003ebuild docker image from dockerhub registry and push to ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003ebuild singularity container from dockerhub registry and push to oras://ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003ebuild docker image, push to ghcr.io and re-use that docker image to create a singularity container pushed ghcr.io oras://\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:main\u003c/code\u003e tagged docker image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003cli\u003eOnly cover the software installation for cpu (\u003ca href=\"https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Using%20Fidle/Linux%20installation%20using%20conda\" rel=\"nofollow\"\u003ehttps://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/Using%20Fidle/Linux%20installation%20using%20conda\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage-\" class=\"anchor\" href=\"#usage-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-fidle/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-fidle/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocker\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-fidle:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run oras://ghcr.io/truatpasteurdotfr/singularity-docker-fidle:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1635823834.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1637706473.0
},
{
"data_format": 2,
- "description": "md5deep is a set of programs to compute MD5, SHA-1, SHA-256, Tiger, or Whirlpool message digests on an arbitrary number of files.",
+ "description": "Singularity Containers",
"filenames": [
- "4.4/Singularity"
+ "Singularity.fmriprep.1.4.1rc1",
+ "Singularity.rclone",
+ "Singularity.hddm",
+ "Singularity.neurodebian",
+ "Singularity.fmriprep",
+ "Singularity.test.neurodebian.def"
],
- "full_name": "pscedu/singularity-hashdeep",
- "latest_release": "v4.4",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-hashdeep/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-hashdeep/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-hashdeep/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-hashdeep/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ff1122893a7ca155e9b1b0481dc029ee11528d2c1a5d57208038642526e8e646/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6861736864656570\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ff1122893a7ca155e9b1b0481dc029ee11528d2c1a5d57208038642526e8e646/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6861736864656570\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-hashdeep\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f144df41de2d6e76dd24c4825a4ac826fd107f3ea3e94ec7daf3c070422137cc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6861736864656570\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f144df41de2d6e76dd24c4825a4ac826fd107f3ea3e94ec7daf3c070422137cc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6861736864656570\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-hashdeep\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/b2bcc92aad4b69910d6a0b34f82bbe68f8529688631ce0a15fb4ddbca44fd8be/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6861736864656570\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b2bcc92aad4b69910d6a0b34f82bbe68f8529688631ce0a15fb4ddbca44fd8be/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6861736864656570\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-hashdeep\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5aa33b5c4bd7a85735363e937ad526230f325f4d70cd29a78de7f77376b0defd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6861736864656570\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5aa33b5c4bd7a85735363e937ad526230f325f4d70cd29a78de7f77376b0defd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6861736864656570\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-hashdeep\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-hashdeep\" class=\"anchor\" href=\"#singularity-hashdeep\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-hashdeep\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/jessek/hashdeep\"\u003ehashdeep\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ehashdeep\u003c/code\u003e, \u003ccode\u003esha1deep\u003c/code\u003e, \u003ccode\u003etigerdeep\u003c/code\u003e, \u003ccode\u003emd5deep\u003c/code\u003e, \u003ccode\u003esha256deep\u003c/code\u003e and \u003ccode\u003ewhirlpooldeep\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hashdeep/4.4\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hashdeep\u003c/code\u003e as \u003ccode\u003e4.4.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "klabhub/singularity",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h1\u003e\n\u003cp\u003eKlab Singularity Containers, access them here:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2510\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eNeurodebian is a full install, with FSL, AFNI, datalad, etc.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1639934583.0
+ "subscribers_count": 3,
+ "topics": [],
+ "updated_at": 1637675540.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "QE/Singularity.QuantumESPRESSO-6.3-intel-2018b-unrrc"
],
- "full_name": "bozmik/singularity_image",
+ "full_name": "UNR-HPC/singularity-recipes",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-recipes\" class=\"anchor\" href=\"#singularity-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-recipes\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1552825749.0
+ "updated_at": 1544465938.0
},
{
"data_format": 2,
- "description": null,
+ "description": "A Nextflow pipeline for processing 16S rRNA sequences using dada2",
"filenames": [
- "Singularity"
+ "singularity/Singularity"
],
- "full_name": "cmatKhan/bartNP",
+ "full_name": "nhoffman/dada2-nf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-bartnp\" class=\"anchor\" href=\"#bartnp\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebartNP\u003c/h1\u003e\n\n\u003cp\u003e\u003ca href=\"https://github.com/cmatKhan/bartNP/actions\"\u003e\u003cimg src=\"https://github.com/cmatKhan/bartNP/workflows/R-CMD-check/badge.svg\" alt=\"R-CMD-check\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003cp\u003e\u003ca href=\"https://cmatkhan.github.io/bartNP/\" rel=\"nofollow\"\u003eSee Documentation Here\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dada2-nextflow-pipeline\" class=\"anchor\" href=\"#dada2-nextflow-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDada2 Nextflow pipeline\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-local-execution-quickstart-for-the-truly-impatient\" class=\"anchor\" href=\"#local-execution-quickstart-for-the-truly-impatient\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLocal execution quickstart for the truly impatient\u003c/h2\u003e\n\u003cp\u003eInstall Docker and make sure that the Docker daemon is running.\u003c/p\u003e\n\u003cp\u003eInstall the nextflow binary in this directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewget -qO- https://get.nextflow.io | bash\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExecute locally, using the minimal data set.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./nextflow run main.nf -params-file params-minimal.json\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-execution-on-aws-batch\" class=\"anchor\" href=\"#execution-on-aws-batch\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExecution on AWS Batch\u003c/h2\u003e\n\u003cp\u003eDetails will depend on your AWS batch configuration. General instructions TBD.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-infernal-16s-filtering\" class=\"anchor\" href=\"#infernal-16s-filtering\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInfernal 16s filtering\u003c/h3\u003e\n\u003cp\u003eCoveriance model used for Infernal sequence filtering obtained from the Rfam database:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://rfam.xfam.org/family/RF00177\" rel=\"nofollow\"\u003ehttps://rfam.xfam.org/family/RF00177\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eTo cite Rfam see latest web site instructions:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://rfam.xfam.org/\" rel=\"nofollow\"\u003ehttps://rfam.xfam.org/\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1639423876.0
+ "updated_at": 1637256255.0
},
{
"data_format": 2,
- "description": "This repo contains a Singularity definition file for the newest ROS2 distro",
+ "description": "Docker images",
"filenames": [
- "Singularity"
+ "images/sc_qc_cluster/Singularity.sc_qc_cluster"
],
- "full_name": "siehlema/ros2_singularity",
+ "full_name": "letaylor/docker-letaylor",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ros2_singularity\" class=\"anchor\" href=\"#ros2_singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eros2_singularity\u003c/h1\u003e\n\u003cp\u003eThis definition file is based on the ROS2 Docker from the \u003ca href=\"https://hub.docker.com/r/osrf/ros2/dockerfile\" rel=\"nofollow\"\u003eDocker Hub\u003c/a\u003e and the official \u003ca href=\"https://github.com/osrf/docker_images/blob/master/ros2/source/source/Dockerfile\"\u003eGithub Repo\u003c/a\u003e and adds some Singularity functionality. Singularity containers can for instance be used from SLURM workload managers on computer clusters.\u003c/p\u003e\n\u003cp\u003eIt is supposed to help new Singularity/ROS2 developers to start their projects.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to\" class=\"anchor\" href=\"#how-to\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003emeet prerequisites for demo:\n\u003cul\u003e\n\u003cli\u003eLinux environment (tested on Ubuntu 18.04)\u003c/li\u003e\n\u003cli\u003einstall Singularity (\u003ca href=\"https://sylabs.io/guides/3.0/user-guide/installation.html\" rel=\"nofollow\"\u003eGuide\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003erun all containers on one host\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eclone repo\u003c/li\u003e\n\u003cli\u003ebuild singularity container: \u003ccode\u003esudo singularity build ros2_container.simg Singularity\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eafterwards try the demo apps:\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003esudo singularity run --app example_talker ros2_container.simg\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003esudo singularity run --app example_listener ros2_container.simg\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003ecreate your own apps on the Singularity container or copy them onto the container before building\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-docker-letaylor\" class=\"anchor\" href=\"#docker-letaylor\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edocker-letaylor\u003c/h1\u003e\n\u003cp\u003eThis repo contains Docker images that are automatically built using Travis CI. It is not designed to scale to many images as each image is updated if any one image changes.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-automatically-push-images-to-docker-hub-using-travis-ci\" class=\"anchor\" href=\"#automatically-push-images-to-docker-hub-using-travis-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAutomatically push images to Docker Hub using Travis CI\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-1-edit-config-files\" class=\"anchor\" href=\"#1-edit-config-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Edit config files\u003c/h2\u003e\n\u003cp\u003eEdit the following files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e.travis.yml\u003c/code\u003e : alter \u003ccode\u003e$IMAGE_NAME\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-2-give-travis-ci-access-to-upload-to-docer-hub\" class=\"anchor\" href=\"#2-give-travis-ci-access-to-upload-to-docer-hub\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Give Travis CI access to upload to Docer Hub\u003c/h2\u003e\n\u003cp\u003eStore both \u003ccode\u003e$DOCKER_PASSWORD\u003c/code\u003e and \u003ccode\u003e$DOCKER_USERNAME\u003c/code\u003e securely in on Travis CI. These are used for authentication.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eLogin to the account you want Travis to use to upload on \u003ca href=\"https://hub.docker.com/\" rel=\"nofollow\"\u003ehub.docker.com\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eClick on your username on the top left and go to \u0027Account Settings\u0027.\u003c/li\u003e\n\u003cli\u003eOn the left hand panel, go to \u0027Security\u0027 and enter your password as requested.\u003c/li\u003e\n\u003cli\u003eNow we\u0027ll create an API token. Name it Travis CI.\u003c/li\u003e\n\u003cli\u003eCreate the token and copy it.\u003c/li\u003e\n\u003cli\u003eLogin to your account on \u003ca href=\"https://travis-ci.org\" rel=\"nofollow\"\u003etravis-ci.org\u003c/a\u003e and go to the repository that you want to add this automatic functionality to.\u003c/li\u003e\n\u003cli\u003eOn the right next to \u0027More options\u0027 go to \u0027Settings\u0027 in the hamburger menu.\u003c/li\u003e\n\u003cli\u003eAdd an environment variable with the name \u003ccode\u003eDOCKER_PASSWORD\u003c/code\u003e and give it the value of the API token that you copied from \u003ca href=\"https://hub.docker.com/\" rel=\"nofollow\"\u003ehub.docker.com\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eAdd an environment variable with the name \u003ccode\u003eDOCKER_USERNAME\u003c/code\u003e and give it your \u003ca href=\"https://hub.docker.com/\" rel=\"nofollow\"\u003ehub.docker.com\u003c/a\u003e user name.\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1566384326.0
+ "updated_at": 1611328575.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "0.1.16/Singularity"
],
- "full_name": "cmatKhan/brentlabRnaSeqTools",
- "latest_release": "0.0.2",
- "readme": "\u003cp\u003e\u003ca href=\"https://codecov.io/gh/cmatKhan/brentlabRnaSeqTools?branch=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5960bfe27822500008e6c1cfcd08e981288cc2fb1c1ae70ecf9a5125057f6c7c/68747470733a2f2f636f6465636f762e696f2f67682f636d61744b68616e2f6272656e746c6162526e61536571546f6f6c732f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"Codecov test coverage\" data-canonical-src=\"https://codecov.io/gh/cmatKhan/brentlabRnaSeqTools/branch/master/graph/badge.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003ca href=\"https://github.com/cmatKhan/brentlabRnaSeqTools/actions\"\u003e\u003cimg src=\"https://github.com/cmatKhan/brentlabRnaSeqTools/workflows/R-CMD-check/badge.svg\" alt=\"R-CMD-check\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://cmatkhan.github.io/brentlabRnaSeqTools/\" rel=\"nofollow\"\u003eClick here for the online documentation\u003c/a\u003e. This is a work in progress, still. If there is documentation that you\u0027d like that doesn\u0027t exist, please make an issue report.\u003c/p\u003e\n\u003cp\u003eThe \"articles\" link in the navbar at the top of the page has some vignettes that will help with some common tasks -- please do look at those, if you are a user of this package.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-installation-and-updating\" class=\"anchor\" href=\"#installation-and-updating\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation and updating\u003c/h1\u003e\n\u003cp\u003eThe following will both install, and update if there are changes in the repository.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003elibrary(devtools)\n# remove build_vignettes to save time\ninstall_github(\"cmatKhan/brentlabRnaSeqTools\", dependencies = TRUE)\n\n# after you get the package installed, do this:\nlibrary(brentlabRnaSeqTools)\n\n# if you think there are changes, but install_github disagrees, try using the argument force = TRUE\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eI have also installed this on my htcf cluster profile like so:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eml miniconda # note: this will definitely load, and most likely work as expected. But it does not come with a promise. It is a cluster module I wrote. If you have issues which you suspect to be a conda problem, I suggest that you install a version of miniconda in your home profile. It will be easier to address any conda related issues that way.\n\nconda install -n brentlabRnaSeqTools # or whatever you want to call your env name\n\nconda install r r-essentials libpq\n\n$ R\n\n\u0026gt; install.packages(devtools)\n# YOU HAVE TO DO THIS! do not update RSQLite (as of 20210702 there is an install error in the boost/c++ package which is a dependency. You do not need to worry about this when you\u0027re installing)\n\u0026gt; remotes::install_version(\"RSQLite\", version = \"2.2.5\")\n\u0026gt; install_github(\"cmatKhan/brentlabRnaSeqTools\")\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee the bamtools vignette for examples of how to use the functions to examine bam files in an Rscript that you could run with SLURM\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-uninstall\" class=\"anchor\" href=\"#uninstall\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003euninstall\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003eremove.packages(\"brentlabRnaSeqTools\")\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-container\" class=\"anchor\" href=\"#singularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity container\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull library://cmatkhan/default/brentlab_rnaseq_tools:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-issues\" class=\"anchor\" href=\"#issues\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eissues\u003c/h1\u003e\n\u003cp\u003eplease do post issues to the issues tab. Please include the full error code and the command/context that lead to the error\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-to-contribute\" class=\"anchor\" href=\"#to-contribute\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eto contribute\u003c/h1\u003e\n\u003col\u003e\n\u003cli\u003efork the repo\u003c/li\u003e\n\u003cli\u003edevelop in a branch\u003c/li\u003e\n\u003cli\u003ecreate a pull request for the branch\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThis is the featureCounts/subreads homepage. In particular, has a good example of how to make mean/variance graph with voom\n\u003ca href=\"http://bioinf.wehi.edu.au/RNAseqCaseStudy/\" rel=\"nofollow\"\u003ehttp://bioinf.wehi.edu.au/RNAseqCaseStudy/\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todos\" class=\"anchor\" href=\"#todos\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODOs\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eread more about packrat, add some instructions on how to use\u003c/li\u003e\n\u003cli\u003eupdate R and dependencies to R version 4\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-brentlabrnaseqtools\" class=\"anchor\" href=\"#brentlabrnaseqtools\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebrentlabRnaSeqTools\u003c/h1\u003e\n\u003cp\u003eThis is a very helpful tutorial on making an R package:\u003cbr\u003e\n\u003ca href=\"https://tinyheero.github.io/jekyll/update/2015/07/26/making-your-first-R-package.html\" rel=\"nofollow\"\u003ehttps://tinyheero.github.io/jekyll/update/2015/07/26/making-your-first-R-package.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003ethis github post helped with installing bioconductor dependencies (deseq2 in this case):\u003cbr\u003e\n\u003ca href=\"https://bioinformatics.stackexchange.com/a/3375\" rel=\"nofollow\"\u003ehttps://bioinformatics.stackexchange.com/a/3375\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eand this helped with installing from github:\u003cbr\u003e\n\u003ca href=\"https://cran.r-project.org/web/packages/githubinstall/vignettes/githubinstall.html\" rel=\"nofollow\"\u003ehttps://cran.r-project.org/web/packages/githubinstall/vignettes/githubinstall.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFinally, here is a nice package development cheatsheet (for R):\u003cbr\u003e\n\u003ca href=\"https://rawgit.com/rstudio/cheatsheets/master/package-development.pdf\" rel=\"nofollow\"\u003ehttps://rawgit.com/rstudio/cheatsheets/master/package-development.pdf\u003c/a\u003e\u003c/p\u003e\n",
+ "full_name": "yh549848/singularity-vcftools",
+ "latest_release": null,
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1636684356.0
+ "updated_at": 1645372372.0
},
{
"data_format": 2,
- "description": null,
+ "description": "CP 2022",
"filenames": [
- "Singularity"
+ "dmc/Singularity",
+ "lg/Singularity"
],
- "full_name": "iferres/GTi_UY_shiny",
- "latest_release": null,
+ "full_name": "anonymizee/dper",
+ "latest_release": "v0",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dper-dynamic-programming-for-er-ssat\" class=\"anchor\" href=\"#dper-dynamic-programming-for-er-ssat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDPER (Dynamic Programming for ER-SSAT)\u003c/h1\u003e\n\u003cp\u003eDPER runs in two phases:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe planning phase constructs a join tree of a CNF formula\u003c/li\u003e\n\u003cli\u003eThe execution phase computes the maximum and a maximizer from the join tree\u003c/li\u003e\n\u003c/ul\u003e\n\n\u003ch2\u003e\n\u003ca id=\"user-content-cloning-this-repository\" class=\"anchor\" href=\"#cloning-this-repository\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCloning this repository\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/anonymizee/dper\u003c/pre\u003e\u003c/div\u003e\n\n\u003ch2\u003e\n\u003ca id=\"user-content-files\" class=\"anchor\" href=\"#files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFiles\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDir \u003ca href=\"lg\"\u003e\u003ccode\u003elg\u003c/code\u003e\u003c/a\u003e: DPER\u0027s planner\u003c/li\u003e\n\u003cli\u003eDir \u003ca href=\"dmc\"\u003e\u003ccode\u003edmc\u003c/code\u003e\u003c/a\u003e: DPER\u0027s executor\u003c/li\u003e\n\u003cli\u003eDir \u003ca href=\"experiments\"\u003e\u003ccode\u003eexperiments\u003c/code\u003e\u003c/a\u003e: empirical evaluation\u003c/li\u003e\n\u003cli\u003eFile \u003ca href=\"ACKNOWLEDGMENT.md\"\u003e\u003ccode\u003eACKNOWLEDGMENT.md\u003c/code\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1638368684.0
+ "updated_at": 1645325273.0
},
{
"data_format": 2,
@@ -13001,306 +12425,307 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "hakanyi/robust-vision-thesis",
+ "full_name": "Nemirtingas/gdown",
"latest_release": null,
- "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-stimulus-generation-pipeline\" class=\"anchor\" href=\"#stimulus-generation-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStimulus generation pipeline\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eManually choose base and change postures from H36M dataset. The outcome of this is a \u003ccode\u003ebase_posture.txt\u003c/code\u003e file that we\u0027ll put in a folder, e.g. \u003ccode\u003esampled-lights\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eUse \u003ccode\u003e00_h36m_to_mesh.py\u003c/code\u003e to generate meshes for all of the images from \u003ccode\u003ebase_postures.txt\u003c/code\u003e and place them in the \u003ccode\u003emeshes\u003c/code\u003e folder under \u003ccode\u003esampled-lights\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eUse \u003ccode\u003e01_sample_candidates.sh\u003c/code\u003e to go through the mesh pairs and, for each, generate N base:changed-light and base:changed-pose pairs where the underlying lamp position is sampled. Record image statistics under \u003ccode\u003esampled-lights\u003c/code\u003e, but don\u0027t save images.\u003c/li\u003e\n\u003cli\u003eAnalyze the data with \u003ccode\u003e02_analyze_candidates.Rmd\u003c/code\u003e to determine a) pairs where the pixel distance due to light changes are comparable to pixel distance due to posture changes and b) out these pairs, whether the pixel distances lie in a given range. Save the filtered csv to \u003ccode\u003ecandidate_pairs.csv\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eProduce the images in \u003ccode\u003ecandidate_pairs.csv\u003c/code\u003e (incl. diff-images) to sanity-check using \u003ccode\u003e03_visualize_candidates.py\u003c/code\u003e. Place them in \u003ccode\u003ecandidate_pairs_images\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eAcross all \u003ccode\u003esampled-lights-\u0026lt;x\u0026gt;\u003c/code\u003e folders, choose from the candidates and consolidate the output in a \u003ccode\u003eimage_info.csv\u003c/code\u003e in this folder.\u003c/li\u003e\n\u003cli\u003eConsolidate the images in \u003ccode\u003ecandidate_pairs.csv\u003c/code\u003e and place them in \u003ccode\u003eimages\u003c/code\u003e using \u003ccode\u003e04_collect_images.py\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eUse \u003ccode\u003e05_make_videos.py\u003c/code\u003e to produce the video stimuli for the behavioral experiment.\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-gdownpl\" class=\"anchor\" href=\"#gdownpl\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egdown.pl\u003c/h1\u003e\n\u003cp\u003eGoogle Drive direct download of big files\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-requirements\" class=\"anchor\" href=\"#requirements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements\u003c/h1\u003e\n\u003cp\u003e\u003cem\u003ewget\u003c/em\u003e and \u003cem\u003ePerl\u003c/em\u003e must be in the PATH.\u003cbr\u003e\n\u003cstrong\u003eWindows\u003c/strong\u003e and \u003cstrong\u003elinux\u003c/strong\u003e compatible.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h1\u003e\n\u003cp\u003eUse Google Drive shareable links, viewable by anyone:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ./gdown.pl \u0027gdrive file url\u0027 [\u0027desired file name\u0027] \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-example\" class=\"anchor\" href=\"#example\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample\u003c/h1\u003e\n\u003cp\u003eFor example, to download \u003ca href=\"https://drive.google.com/file/d/0B1L_hFrWJfRhLUJZdXdSdTdfSWs/edit\" rel=\"nofollow\"\u003ethis video\u003c/a\u003e from my \u003ca href=\"https://circulosmeos.wordpress.com/2015/03/04/axolotl-a-simple-plain-text-documentation-system/\" rel=\"nofollow\"\u003eaxolotl project\u003c/a\u003e, just copy the url, and give a file name if desired:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ./gdown.pl https://drive.google.com/file/d/0B1L_hFrWJfRhLUJZdXdSdTdfSWs/edit axolotl.mp4 \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-resuming-a-download\" class=\"anchor\" href=\"#resuming-a-download\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResuming a download\u003c/h1\u003e\n\u003cp\u003eIf you need to resume a download, please, use \u003ca href=\"https://github.com/circulosmeos/gdown.pl/tree/with-resume\"\u003e\u003cstrong\u003egdown.pl v2.0\u003c/strong\u003e here\u003c/a\u003e.\u003cbr\u003e\nAs long as a file name is indicated as second parameter, \u003cem\u003egdown.pl v2.0\u003c/em\u003e \u003cstrong\u003ewill try to resume the partially downloaded file\u003c/strong\u003e if a local incomplete file with that name already exists.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-version\" class=\"anchor\" href=\"#version\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVersion\u003c/h1\u003e\n\u003cp\u003eThis version is \u003cstrong\u003ev1.4\u003c/strong\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-warning\" class=\"anchor\" href=\"#warning\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWarning\u003c/h3\u003e\n\u003cp\u003ePlease, note that v1.2 (available between days 12 to 31 of Jan/2019) \u003cstrong\u003eshould not be used\u003c/strong\u003e, as it contains a bug that could result in unusable downloaded files. Proceed to overwrite with v1.4 in case you have it.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-docker\" class=\"anchor\" href=\"#docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h1\u003e\n\u003cp\u003eA simple Docker file is provided, to build a simple Docker image with gdown.pl.\u003cbr\u003e\nThis has been used for pre-pulling data from a Google Drive to Kubernetes persistent volumes.\u003cbr\u003e\nThanks @anton-khodak\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h1\u003e\n\u003cp\u003eAn example \u003ca href=\"https://sylabs.io/guides/3.2/user-guide/quick_start.html\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e file is provided.\u003cbr\u003e\nBuild the container:\n\u003ccode\u003esudo singularity build (imagename) Singularity\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eRun the container:\n\u003ccode\u003esingularity run (imagename) (gdown.pl args)\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThanks to @ttbrunner\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h1\u003e\n\u003cp\u003eDistributed \u003ca href=\"http://www.gnu.org/licenses/gpl-3.0.html\" rel=\"nofollow\"\u003eunder GPL 3\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-disclaimer\" class=\"anchor\" href=\"#disclaimer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDisclaimer\u003c/h1\u003e\n\u003cp\u003eThis software is provided \"as is\", without warranty of any kind, express or implied.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-more-info\" class=\"anchor\" href=\"#more-info\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMore info\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://circulosmeos.wordpress.com/2014/04/12/google-drive-direct-download-of-big-files\" rel=\"nofollow\"\u003ehttps://circulosmeos.wordpress.com/2014/04/12/google-drive-direct-download-of-big-files\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-contact\" class=\"anchor\" href=\"#contact\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h1\u003e\n\u003cp\u003eby \u003ca href=\"loopidle@gmail.com\"\u003ecirculosmeos\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1637252100.0
+ "updated_at": 1645100579.0
},
{
"data_format": 2,
- "description": null,
+ "description": "General container for RNA-seq sample QC, trimming, alignment and counts (STAR 2.7)",
"filenames": [
- "Singularity"
+ "Singularity.hg19v1.centos"
],
- "full_name": "lkirk/nb-env",
+ "full_name": "ertheisen/wildcat_centos",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nb-env\" class=\"anchor\" href=\"#nb-env\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enb-env\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-appalachianhg19v1-container-for-early-ngs-pipeline-applications\" class=\"anchor\" href=\"#appalachianhg19v1-container-for-early-ngs-pipeline-applications\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eappalachian.hg19v1 container for early NGS pipeline applications\u003c/h1\u003e\n\u003cp\u003eHow to run pipeline:\u003c/p\u003e\n\u003cp\u003esingularity run --app [appname] --bind [directory_info] container_name.simg\u003c/p\u003e\n\u003cp\u003ePath to genome in container needs to be:\n\u0027/genomes/test/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/spike/dm6/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/spike/sacCer3/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/STAR/[STAR index files]\u0027\n-or-\n\u0027/genomes/anno/[gtf or gff annotation file]\u0027\u003c/p\u003e\n\u003cp\u003eFor Baker Cluster Users:\ndirectory to mount for fly spike-in is: /gpfs0/home/gdlessnicklab/share/trails/genomes/Drosophila_melanogaster/UCSC\ndirectory to mount for yeast spike-in is: /gpfs0/home/gdlessnicklab/share/trails/genomes/Saccharomyces_cerevisiae/UCSC\ndirectory to mount for hg19 is: /reference/homo_sapiens/hg19/ucsc_assembly/illumina_download/\u003c/p\u003e\n\u003cp\u003eTo run interactive terminal in container\u003c/p\u003e\n\u003cp\u003esingularity shell --bind [directory_info] appalachian_hg19.simg\u003c/p\u003e\n\u003cp\u003e##Be sure to bind your data, your genome, and any script files you may want to run\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1637426544.0
+ "updated_at": 1560527067.0
},
{
"data_format": 2,
- "description": "Singularity recipe for HERA software",
+ "description": "Paired end ChIP-seq processing through alignment.",
"filenames": [
- "Singularity.casa6_full",
- "Singularity.tau",
- "Singularity.casa6_modular",
- "Singularity.h4c",
- "Singularity.rtp",
- "Singularity.validation",
- "Singularity.hera1",
- "Singularity.calamity",
- "Singularity.mpi"
+ "Singularity.hg19v1.centos"
],
- "full_name": "HERA-Team/hera-singularity",
+ "full_name": "ertheisen/appalachian_centos",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-hera-singularity\" class=\"anchor\" href=\"#hera-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ehera-singularity\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-notice\" class=\"anchor\" href=\"#notice\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotice\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eJuly 15, 2021\u003c/strong\u003e:\nWe are currently manually building and uploading the containers to the HERA project directory on Ilifu on an irregular basis. Please check the built dates of the container files and contact @piyanatk if you need the containers to be rebuilt. Scheduled daily re-building is being planned.\u003c/p\u003e\n\u003chr\u003e\n\u003cp\u003eThis repository contains recipe files of the Singularity containers for the HERA software stack.\u003c/p\u003e\n\u003cp\u003eIlifu users, please make sure to read the relevant page on the HERA wiki. A singularity container is required for computing on the Ilifu. If you need specific Python modules to be installed in the containers, please contact @piyanatk.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-about-container-and-singularity\" class=\"anchor\" href=\"#about-container-and-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAbout Container and Singularity\u003c/h2\u003e\n\u003cp\u003eContainers are encapsulated software environments and abstract the software and applications from the underlying operating system. This allows users to run workflows in customized environments, switch between environments, and to share these environments with colleagues and research teams.\u003c/p\u003e\n\u003cp\u003eSingularity is a free, cross-platform and open-source computer program that performs operating-system-level virtualization also known as containerization (another widely used one being Docker).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-container-content\" class=\"anchor\" href=\"#container-content\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainer Content\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-python-packages\" class=\"anchor\" href=\"#python-packages\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePython Packages\u003c/h3\u003e\n\u003cp\u003eAll containers are built with \u003ccode\u003eUbuntu 20.04\u003c/code\u003e and \u003ccode\u003eminiconda\u003c/code\u003e with \u003ccode\u003epython=3.8\u003c/code\u003e unless otherwise specify \u003ca href=\"###-Different-Between-Containers:\"\u003ebelow\u003c/a\u003e. All variances come standard with the following packages:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eData Analysis\u003c/th\u003e\n\u003cth\u003eAstronomical\u003c/th\u003e\n\u003cth\u003eHERA\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003edask\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003eaipy\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003elinsolve\u003c/code\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003ejupyterlab\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003eastropy\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003euvtools\u003c/code\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003ematplotlib\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003eastropy-healpix\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003ehera_qm\u003c/code\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003enumpy\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003eastroquery\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003ehera_cal\u003c/code\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003epandas\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003ecartopy\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003ehera_sim\u003c/code\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003escipy\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003ehealpy\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003ehera_psepc\u003c/code\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003escikit-learn\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\n\u003ccode\u003epyuvdata\u003c/code\u003e\u003csup\u003e\u003ca href=\"#myfootnote1\"\u003e1\u003c/a\u003e\u003c/sup\u003e\n\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003evis_cpu\u003c/code\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003exarray\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\n\u003ccode\u003epyuvsim\u003c/code\u003e\u003csup\u003e\u003ca href=\"#myfootnote2\"\u003e2\u003c/a\u003e\u003c/sup\u003e\n\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\n\u003ccode\u003eSSINS\u003c/code\u003e\u003csup\u003e\u003ca href=\"#myfootnote3\"\u003e3\u003c/a\u003e\u003c/sup\u003e\n\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e\u003ca name=\"user-content-myfootnote1\"\u003e1\u003c/a\u003e: With CASA measurement sets, HEALPix beam, and CST beam functionalities, see \u003ca href=\"https://github.com/RadioAstronomySoftwareGroup/pyuvdata%5C\"\u003ehttps://github.com/RadioAstronomySoftwareGroup/pyuvdata\\\u003c/a\u003e\n\u003ca name=\"user-content-myfootnote2\"\u003e2\u003c/a\u003e: without line profiler and lunar capability, see \u003ca href=\"https://github.com/RadioAstronomySoftwareGroup/pyuvsim\"\u003ehttps://github.com/RadioAstronomySoftwareGroup/pyuvsim\u003c/a\u003e\n\u003ca name=\"user-content-myfootnote3\"\u003e3\u003c/a\u003e: See \u003ca href=\"https://github.com/mwilensky768/SSINS\"\u003ehttps://github.com/mwilensky768/SSINS\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-variances\" class=\"anchor\" href=\"#variances\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVariances:\u003c/h3\u003e\n\u003cp\u003eWe are currently building the following variances.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ehera1\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eInclude all packages in the table above. Intended for general-purpose computing.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecasa6_full\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eEquivalent to \u003ccode\u003ehera1\u003c/code\u003e with a full installation of \u003ccode\u003ecasa-6\u003c/code\u003e, and \u003ccode\u003eAPLpy\u003c/code\u003e for visualisation.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecasa6_modular\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eEquivalent to \u003ccode\u003ehera1\u003c/code\u003e with a pip-wheel installation of \u003ccode\u003ecasa-6\u003c/code\u003e, making \u003ccode\u003ecasatasks\u003c/code\u003e, \u003ccode\u003ecasatools\u003c/code\u003e, and \u003ccode\u003ecasampi\u003c/code\u003e packages (see \u003ca href=\"https://casa-pip.nrao.edu/\" rel=\"nofollow\"\u003ehttps://casa-pip.nrao.edu/\u003c/a\u003e), and \u003ccode\u003eAPLpy\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eBased on \u003ccode\u003ePython 3.6\u003c/code\u003e and \u003ccode\u003eUbuntu 18.04\u003c/code\u003e for casa-pip compatibility.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ertp\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eFor testing the \u003ccode\u003emakeflow\u003c/code\u003e pipeline.\u003c/li\u003e\n\u003cli\u003eEquivalent to \u003ccode\u003ehera1\u003c/code\u003e with an addition of \u003ccode\u003ehera_opm\u003c/code\u003e, \u003ccode\u003ehera_mc\u003c/code\u003e, and \u003ccode\u003ehera_notebook_templates\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ehera_pipelines\u003c/code\u003e is cloned to \u003ccode\u003e/usr/local\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eh4c\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eAlmost equivalent to \u003ccode\u003ertp\u003c/code\u003e except some specific branches on \u003ccode\u003ehera_cal\u003c/code\u003e and \u003ccode\u003epspec\u003c/code\u003e for H4C analysis.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003etau\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eThis container is \u003ccode\u003ehera1\u003c/code\u003e with extra tools for simulation, machine learning, and etc. Specifically, it contains the following additions:\n\u003cul\u003e\n\u003cli\u003eemupy (\u003ca href=\"https://github.com/nkern/emupy\"\u003ehttps://github.com/nkern/emupy\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003ezreion (\u003ca href=\"https://github.com/plaplant/zreion\"\u003ehttps://github.com/plaplant/zreion\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003e21cmFAST=3.1.1\u003c/li\u003e\n\u003cli\u003epowerbox\u003c/li\u003e\n\u003cli\u003etensorflow\u003c/li\u003e\n\u003cli\u003epytorch\u003c/li\u003e\n\u003cli\u003ekeras\u003c/li\u003e\n\u003cli\u003esympy\u003c/li\u003e\n\u003cli\u003enumexpr\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-python-environment\" class=\"anchor\" href=\"#python-environment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePython Environment\u003c/h3\u003e\n\u003cp\u003eAll containers use Miniconda3, which are installed at \u003ccode\u003e/usr/local/miniconda3/\u003c/code\u003e inside the containers.\u003c/p\u003e\n\u003cp\u003eThe name of Conda environment in each container is the same as the container name, e.g. \u003ccode\u003ehera1\u003c/code\u003e, \u003ccode\u003ecasa6_full\u003c/code\u003e, and etc, The default conda environment \u003ccode\u003ebase\u003c/code\u003e is not used.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-environment-variables\" class=\"anchor\" href=\"#environment-variables\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEnvironment Variables\u003c/h3\u003e\n\u003cp\u003eThe following environment variables are also exported in all containers:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eCONDA_PATH=\"/usr/local/miniconda3\"\nCONDA_SH=\"$CONDA_PATH/etc/profile.d/conda.sh\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe latter is especially useful to make the \u003ccode\u003econda\u003c/code\u003e command available inside the container (see the section on \u003ca href=\"####-%60shell%60\"\u003e\u003ccode\u003esingularly shell\u003c/code\u003e usage\u003c/a\u003e below).\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003ertp\u003c/code\u003e container has an additional environment variable that point to \u003ccode\u003ehera_pipelines\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eHERA_PIPELINES_PATH=\"/usr/local/hera_pipelines\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-singularity-commands\" class=\"anchor\" href=\"#singularity-commands\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Commands\u003c/h3\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-pull\" class=\"anchor\" href=\"#pull\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ccode\u003epull\u003c/code\u003e\n\u003c/h4\u003e\n\u003cp\u003eUse \u003ccode\u003esingularity pull\u003c/code\u003e to download the container from Singularity Hub\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity pull [name_to_save_the_image_(optional)] shub://HERA-Team/hera-singularity:\u0026lt;recipe\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor example,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity pull rtp.sif shub://HERA-Team/hera-singularity:rtp\nINFO: Downloading shub image\n 1.98 GiB / 1.98 GiB [=======================================================] 100.00% 13.12 MiB/s 2m34s\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-shell\" class=\"anchor\" href=\"#shell\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ccode\u003eshell\u003c/code\u003e\n\u003c/h4\u003e\n\u003cp\u003eThe \u003ccode\u003esingularity shell\u003c/code\u003e command allows you to spawn a new shell within your container and interact with it as though it were a small virtual machine.\u003c/p\u003e\n\u003cp\u003eBy default, \u003ccode\u003eshell\u003c/code\u003e invokes \u003ccode\u003e/bin/sh --norc\u003c/code\u003e, which means that \u003ccode\u003e.bashrc\u003c/code\u003e will not be executed (more on this \u003ca href=\"https://github.com/hpcng/singularity/issues/643\"\u003ehere\u003c/a\u003e) and thus Conda will not be initialized. To make the \u003ccode\u003econda\u003c/code\u003e command available, you can do one of the following:\u003c/p\u003e\n\u003cp\u003ea) Run \u003ccode\u003eexec $SHELL\u003c/code\u003e inside the singularity shell. If \u003ccode\u003e$SHELL\u003c/code\u003e is \u003ccode\u003e\\bin\\bash\u003c/code\u003e (as in our Ubuntu build), \u003ccode\u003e.bashrc\u003c/code\u003e will be read.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity shell rtp.sif\nSingularity\u0026gt; exec $SHELL\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eb) Manually execute the conda initialization script inside singularity shell. The \u003ccode\u003eCONDA_SH\u003c/code\u003e environment variable pointing to the absolute path of the script (\u003ccode\u003e/usr/local/miniconda3/etc/profile.d/conda.sh\u003c/code\u003e), is made available for this purpose. Note that \u003ccode\u003e.\u003c/code\u003e must be used as \u003ccode\u003esource\u003c/code\u003e won\u0027t work under \u003ccode\u003esh\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity shell rtp.sif\nSingularity\u0026gt; . $CONDA_SH\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eb) Specify \u003ccode\u003e\\bin\\bash\u003c/code\u003e as a shell to use when executing the \u003ccode\u003eshell\u003c/code\u003e command, either by using the \u003ccode\u003eSINGULARITY_SHELL\u003c/code\u003e environment variable,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ SINGULARITY_SHELL=/bin/bash singularity shell hera-rtp.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor \u003ccode\u003e-s\u003c/code\u003e option,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity shell -s /bin/bash hera-rtp.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-exec\" class=\"anchor\" href=\"#exec\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ccode\u003eexec\u003c/code\u003e\n\u003c/h4\u003e\n\u003cp\u003eThe \u003ccode\u003esingularity exec\u003c/code\u003e command allows you to execute a custom command within a container by specifying the image file.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec rtp.sif echo \"Hello World!\"\nHello World!\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003e$ cat myscript.sh\nHello World!\n$ singularity exec rtp.sif bash myscript.sh\nHello World!\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-file-permission-and-bind-path\" class=\"anchor\" href=\"#file-permission-and-bind-path\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFile Permission and Bind Path\u003c/h3\u003e\n\u003cp\u003eSingularity containers run as the user and share host services. When Singularity \u2018switch\u2019 from the host operating system to the containerized operating system, the OS-level system files on the host becomes inaccessible. (the root user on the host system is also different from the root in the container!)\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-specific-usages-for-ilifu\" class=\"anchor\" href=\"#specific-usages-for-ilifu\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpecific Usages for Ilifu\u003c/h3\u003e\n\u003cp\u003ePlese see the relevant page on the HERA wiki.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-appalachianhg19v1-container-for-early-ngs-pipeline-applications\" class=\"anchor\" href=\"#appalachianhg19v1-container-for-early-ngs-pipeline-applications\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eappalachian.hg19v1 container for early NGS pipeline applications\u003c/h1\u003e\n\u003cp\u003eHow to run pipeline:\u003c/p\u003e\n\u003cp\u003esingularity run --app [appname] --bind [directory_info] container_name.simg\u003c/p\u003e\n\u003cp\u003ePath to genome in container needs to be:\n\u0027/genomes/test/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/spike/dm6/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/spike/sacCer3/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/STAR/[STAR index files]\u0027\n-or-\n\u0027/genomes/anno/[gtf or gff annotation file]\u0027\u003c/p\u003e\n\u003cp\u003eFor Baker Cluster Users:\ndirectory to mount for fly spike-in is: /gpfs0/home/gdlessnicklab/share/trails/genomes/Drosophila_melanogaster/UCSC\ndirectory to mount for yeast spike-in is: /gpfs0/home/gdlessnicklab/share/trails/genomes/Saccharomyces_cerevisiae/UCSC\ndirectory to mount for hg19 is: /reference/homo_sapiens/hg19/ucsc_assembly/illumina_download/\u003c/p\u003e\n\u003cp\u003eTo run interactive terminal in container\u003c/p\u003e\n\u003cp\u003esingularity shell --bind [directory_info] appalachian_hg19.simg\u003c/p\u003e\n\u003cp\u003e##Be sure to bind your data, your genome, and any script files you may want to run\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 13,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1638267345.0
+ "updated_at": 1551443298.0
},
{
"data_format": 2,
- "description": null,
+ "description": "rstudio on RCC",
"filenames": [
- "Singularity"
+ "singularity/Singularity"
],
- "full_name": "aerval/drop",
- "latest_release": "0.0.2",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-deploy\" class=\"anchor\" href=\"#singularity-deploy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Deploy\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"img/shpc.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"img/shpc.png\" alt=\"img/shpc.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWouldn\u0027t it be nice to build Singularity images without a registry proper,\nand just keep them alongside the GitHub codebase? This is now possible!\nThis small repository provides an example to get you started. It will\nbuild one or more images (whatever Singularity.* files that are present at\nthe root) and then release them as assets to your GitHub repository so\nthat they can be programatically obtained. It is associated with\n\u003ca href=\"https://github.com/singularityhub/singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e to allow\nyou to then define LMOD modules for these same containers.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eCan I upload the largest of chonkers?\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eYes and no. Note that assets are limited to 2 GB in size, which is still fairly good. You can use\nit as a template for your own recipes as is, or modify it for your custom\nuse case. Instructions are below!\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e Currently recipe extensions are associated with tags, and the GitHub release is\nassociated with a digest. We likely will change this in the next few weeks so that GitHub\nreleases are tags, and the \"digests\" are flie names. Stay tuned for updates!\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-getting-started\" class=\"anchor\" href=\"#getting-started\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1-template-or-fork\" class=\"anchor\" href=\"#1-template-or-fork\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Template or Fork\u003c/h3\u003e\n\u003cp\u003eIf you haven\u0027t already, template or fork this repository. You can then clone\nyour fork:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git clone git@github.com:\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eusername\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/singularity-deploy\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou likely want to name the repository by the container. For example, if I would\nhave created a container on Docker Hub or similar with the name \u003ccode\u003evsoch/salad\u003c/code\u003e,\nhere I\u0027d call the repository \u003ccode\u003esalad\u003c/code\u003e. You obviously are limited to your username\nor an organizational namespace.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1-write-your-singularity-recipes\" class=\"anchor\" href=\"#1-write-your-singularity-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Write your Singularity Recipe(s)\u003c/h3\u003e\n\u003cp\u003eFirst, you should write your container recipe(s) in the present working directory.\nFor good practice, when you are updating recipes you should checkout a new branch\nand open a pull request, as the repository comes with a workflow to trigger on a PR\nto \u003ca href=\".github/workflows/test.yml\"\u003etest your container build\u003c/a\u003e. Note that in the main workflow\nthat deploys the releases, the current branch is set to be \u003ccode\u003emain-branch\u003c/code\u003e. You should\nupdate this to be your main \"production\" branch that you want to deploy releases on merge.\nYou are also free to choose a different trigger and release strategy. You can add any additional\ntests that that you might need. By default, any Singularity.* file will be automatically detected.\nIf there is no extension (the name Singularity), the name used will be \"latest.\"\nYou can use these tags across multiple releases of your containers. For example,\nthese files would generate packages with sifs named as follows:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.pokemon\"\u003eSingularity.pokemon\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.salad\"\u003eSingularity.salad\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor each name, you can see the direct download URL contains the repository (singularityhub/singularity-deploy),\nYou should not use any \u003ccode\u003e:\u003c/code\u003e characters in either your container tag (the GitHub extension) or\nthe GitHub tags (the release tags) as this might interfere with parsing.\nThe GitHub release tag (0.0.1 in the example above) is discussed next.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-2-update-the-version-file\" class=\"anchor\" href=\"#2-update-the-version-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Update the VERSION file\u003c/h3\u003e\n\u003cp\u003eAny time that you prepare new container recipes, you should update the \u003ca href=\"VERSION\"\u003eVERSION\u003c/a\u003e\nfile. The way that this repository works is to generate a release based on the\nstring in \u003ccode\u003eVERSION\u003c/code\u003e. A version is just a tag, so it could be something like\n\u003ccode\u003e0.0.1\u003c/code\u003e or \u003ccode\u003e0.0.1-slim\u003c/code\u003e. Keep in mind that GitHub releases cannot have duplicated\nnames, so you should not repeat the same tag. Do not use \u003ccode\u003e:\u003c/code\u003e in your tag names.\nIf you do need to re-release a tag (not recommended if a user might be using it and then it\u0027s changed) you can manually delete\nthe release and the tag in the GitHub interface. This is a nice structure because it\nmeans you can have containers with different names under the same tag. In the example\nabove, we have each of \"pokemon,\" \"latest,\" and \"salad\" released under tag 0.0.1.\nThis is how it looks on GitHub:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"img/releases.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"img/releases.png\" alt=\"img/releases.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-3-how-to-develop\" class=\"anchor\" href=\"#3-how-to-develop\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. How to Develop\u003c/h3\u003e\n\u003cp\u003eAs we mentioned previously, the container builds will be tested on a pull request,\nand the release will trigger on merge into your main branch (main). See the \u003ca href=\".github/workflows/builder.yml\"\u003e.github/workflows/builder.yml\u003c/a\u003e)\nto edit this. The idea is that you can:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDevelop your container via a development branch\u003c/li\u003e\n\u003cli\u003eOpen a pull request to test the container (the \u003ca href=\".github/workflows/test.yml\"\u003e.github/workflows/test.yml\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eOn merge, your container will be released!\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-4-how-to-pull\" class=\"anchor\" href=\"#4-how-to-pull\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. How to pull\u003c/h3\u003e\n\u003cp\u003eTechnically, Singularity can pull just knowing the URL. For example:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eHowever, the \u003ca href=\"singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e tool (will be) designed to be able to parse and handle\nthese container uris automatically. For the containers here, you could do:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:latest\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:salad\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:pokemon\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor write the container URI into a registry entry:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egh: singularityhub/singularity-deploy\nlatest:\n latest: \"0.0.1\"\ntags:\n \"latest\": \"0.0.1\"\n \"salad\": \"0.0.1\"\n \"pokemon\": \"0.0.1\"\nmaintainer: \"@vsoch\"\nurl: https://github.com/singularityhub/singularity-deploy\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(This part is still under development!)\u003c/p\u003e\n",
+ "full_name": "liliw-w/rstudio-server-conda_share",
+ "latest_release": null,
+ "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-run-studio-server-on-rcc\" class=\"anchor\" href=\"#run-studio-server-on-rcc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun studio server on RCC\u003c/h2\u003e\n\u003cp\u003eBased on \u003ca href=\"https://github.com/grst/rstudio-server-conda\"\u003eintegrate the container with conda\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-why-this-repo\" class=\"anchor\" href=\"#why-this-repo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy this repo?\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eWe want to use rstudio interactively on RCC just like on our local computers. e.g. easy access to files on server, draw and check plots easily, upload and download files within rstudio, user-friendly UI.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eOne way provided is through ThinLinc. But ThinLinc sometimes is slow; hard to copy-paste; not good UI, etc.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTherefore, we need another way to be able to launch rstudio on RCC.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-what-is-this-repo\" class=\"anchor\" href=\"#what-is-this-repo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is this repo?\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eThis repo implements rstudio server on RCC through a singularity container.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBe able to run rstudio on computation node by sumbiting a SLURM job.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eIntergrate rstudio with conda for easy package management.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-how-to-use-this-repo\" class=\"anchor\" href=\"#how-to-use-this-repo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to use this repo?\u003c/h3\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-git-clone-this-repo\" class=\"anchor\" href=\"#git-clone-this-repo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGit clone this repo\u003c/h4\u003e\n\u003cp\u003e... to your RCC folder. I store it in my \u003ccode\u003escratch\u003c/code\u003e space.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-modify-a-few-parameters\" class=\"anchor\" href=\"#modify-a-few-parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModify a few parameters\u003c/h4\u003e\n\u003cp\u003eTo make it work for your own use, several parameters needed to modify. All modifications will be made in file \u003ccode\u003esingularity/run_singularity.sh\u003c/code\u003e.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSpecify the path to a conda env to parameter \u003ccode\u003e$CONDA_PREFIX\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThis conda env store all packages you will need. You can use an existing conda env, or create a one as in file \u003ccode\u003econda_env_config.sh\u003c/code\u003e.\u003c/p\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eSpeficy the path to the rstudio singularity container to parameter \u003ccode\u003e$CONTAINER\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eDownload the container by \u003ccode\u003esingularity pull docker://rocker/rstudio_latest\u003c/code\u003e. See \u003ca href=\"https://www.rocker-project.org/use/singularity/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e for the container\u0027s info.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eMove the downloaded file \u003ccode\u003erstudio_latest.sif\u003c/code\u003e to the path you assigned to \u003ccode\u003e$CONTAINER\u003c/code\u003e. I would recommend \u003ccode\u003esingularity/rstudio_latest.sif\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eSet your login password to parameter \u003ccode\u003e$USER_psw\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-run\" class=\"anchor\" href=\"#run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003eRun this container on login node.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ebash /path/to/your_repo/singularity/run_singularity.sh\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eYou will see something like highlighted in orange rectangle,\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca href=\"rstudio_contaner_login.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"rstudio_contaner_login.png\" alt=\"\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eOpen the link in your browser.\u003c/p\u003e\n\u003cp\u003eUser name and password are in the figure.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eRun studio on computation node.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003esbatch /path/to/your_repo/singularity/run_singularity.sh\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThis is to submit a slurm job. Configure the slurm resource parameters in the header of \u003ccode\u003esingularity/run_singularity.sh\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCheck the slurm output file \u003ccode\u003erstudio-server.job\u003c/code\u003e. The content is basically the same as the above figure.\u003c/p\u003e\n\u003cp\u003eUse the info highlighted in blue rectangle.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003essh -N -L ...\u003c/code\u003e in your terminal.\u003c/li\u003e\n\u003cli\u003eOpen the link in your browser.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-ref\" class=\"anchor\" href=\"#ref\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRef\u003c/h3\u003e\n\u003cp\u003eTo understand more how this works, see ref below:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://www.rocker-project.org/use/singularity/\" rel=\"nofollow\"\u003erstudio server singularity container\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://www.rocker-project.org/use/singularity/\" rel=\"nofollow\"\u003emake it a SLURM sbatch script\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/grst/rstudio-server-conda\"\u003eintegrate the container with conda\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1641857087.0
+ "updated_at": 1644084864.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Modified chroma code",
"filenames": [
- "Singularity"
+ "installation/chroma3.nvidia/Singularity"
],
- "full_name": "lawlessrd/SCZ",
+ "full_name": "unlimited-name/chroma",
"latest_release": null,
- "readme": "",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-chroma-ultra-fast-photon-monte-carlo\" class=\"anchor\" href=\"#chroma-ultra-fast-photon-monte-carlo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eChroma: Ultra-fast Photon Monte Carlo\u003c/h1\u003e\n\u003cp\u003eChroma is a high performance optical photon simulation for particle physics detectors originally written by A. LaTorre and S. Seibert. It tracks individual photons passing through a triangle-mesh detector geometry, simulating standard physics processes like diffuse and specular reflections, refraction, Rayleigh scattering and absorption.\u003c/p\u003e\n\u003cp\u003eWith the assistance of a CUDA-enabled GPU, Chroma can propagate 2.5 million photons per second in a detector with 29,000 photomultiplier tubes. This is 200x faster than the same simulation with GEANT4.\u003c/p\u003e\n\u003cp\u003eCheck out the \u003ca href=\"doc/source/chroma.pdf\"\u003eChroma whitepaper\u003c/a\u003e for information on how Chroma works.\u003c/p\u003e\n\u003cp\u003eInformation about the historical development of Chroma can be found at the \u003ca href=\"https://chroma.bitbucket.io/index.html\" rel=\"nofollow\"\u003ebitbucket repository\u003c/a\u003e this repository was forked from.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-modified-chroma-for-sbc-simulation\" class=\"anchor\" href=\"#modified-chroma-for-sbc-simulation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModified chroma for SBC simulation\u003c/h2\u003e\n\u003cp\u003eThe SBC collaboration wants to use \u003ca href=\"https://github.com/SBC-Collaboration\"\u003eSBCgeant4\u003c/a\u003e geometry in photon simulation. Chroma has a geometry interface for STL mesh, or GDML, a XML-based geometry languige. Current GDML interface is not perfect for use, and actually even has some defects. I modified the functions and classes in gdml.py to fit the need of SBC simulations.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation-and-quick-use-of-chroma\" class=\"anchor\" href=\"#installation-and-quick-use-of-chroma\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation and quick use of Chroma\u003c/h2\u003e\n\u003cp\u003eThe source of chroma uses \u0027Docker\u0027 for maintainance and environment controlling. However, this can cause trouble for Windows system users. To solve this problem, we choose to use Cloud platforms provided by Google and other companies, which is also stable in environments and available to anyone who wants to engage in chroma.\u003c/p\u003e\n\u003cp\u003eTo start using chroma on cloud platform, you will need to construct a VM instance including certain GPUs, using an ubuntu OS image. Google image for \u0027DEEP LEARNING\u0027 is well-constructed and worth trying.\u003c/p\u003e\n\u003cp\u003eFor any empty ubuntu image, installation of chroma can be completed in \u003ca href=\"https://github.com/unlimited-name/CloudInstallation\"\u003ebash batches\u003c/a\u003e. All the batch commands are translated and modified via the \u0027Docker Dockerfile\u0027 used by the maintainer.\n**Note you will have to mannually modify the version of CUDA installed by matching the CUDA version of host machine. **\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-subject-to-change\" class=\"anchor\" href=\"#subject-to-change\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSUBJECT TO CHANGE\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1641581829.0
+ "updated_at": 1643829901.0
},
{
"data_format": 2,
- "description": "Run Open XDMod in a container with automated data ingest.",
+ "description": null,
"filenames": [
- "container/Singularity/Singularity"
+ "Singularity"
],
- "full_name": "jtfrey/open-xdmod-container",
- "latest_release": "v8.1.2",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-open-xdmod-container\" class=\"anchor\" href=\"#open-xdmod-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eopen-xdmod-container\u003c/h1\u003e\n\u003cp\u003eRun Open XDMod in a container with automated data ingest.\u003c/p\u003e\n",
+ "full_name": "genxnetwork/uk-biobank",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-federated-biobank-project\" class=\"anchor\" href=\"#federated-biobank-project\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFederated Biobank Project\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-motivation\" class=\"anchor\" href=\"#motivation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMotivation\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-structure\" class=\"anchor\" href=\"#structure\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStructure\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003esplit\u003c/strong\u003e module generates node datasets from the whole UKB dataset based on self-reported ancestry.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eqc\u003c/strong\u003e module encapsulates node-based quality control.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003edimred\u003c/strong\u003e module performs different strategies of dimensionality reduction.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003efl\u003c/strong\u003e module compares various FL strategies on selected SNPs.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1632401090.0
+ "updated_at": 1643039658.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "DeepLearningCamelyon/0.Preparation/Singularity",
- "DeepLearningCamelyon/0.Preparation/Singularity_Code_for_Prediction.sh"
+ "singularity/Singularity.vcf_processing.v1.0",
+ "singularity/Singularity.sv_call.v1.0",
+ "singularity/Singularity.bcftools.v1.10.2",
+ "singularity/Singularity.qcbam.v1.0",
+ "singularity/Singularity.align_dedup.v1.0",
+ "singularity/Singularity.expansion_hunter.v5.0.0",
+ "singularity/Singularity.sv_processing.v1.0"
],
- "full_name": "shiny0510/Camelyon_Preprocessing_tif",
+ "full_name": "edg1983/WGS_pipeline",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-deeplearningcamelyon\" class=\"anchor\" href=\"#deeplearningcamelyon\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeepLearningCamelyon\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-reference\" class=\"anchor\" href=\"#reference\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ereference\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/3dimaging/DeepLearningCamelyon\"\u003ehttps://github.com/3dimaging/DeepLearningCamelyon\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-file\" class=\"anchor\" href=\"#file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFile\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDeepLearningCamelyon Folder:Preprocessing (ASAP, tif), Unet Traing and prediction\u003c/li\u003e\n\u003cli\u003eannotation.py: Make mask File\u003c/li\u003e\n\u003cli\u003emain.py: tif File resize, mask File and originFile\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-wgs-analysis-pipeline\" class=\"anchor\" href=\"#wgs-analysis-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWGS analysis pipeline\u003c/h1\u003e\n\u003cp\u003eWGS analysis pipeline. Can handle both WGS and WES data.\u003c/p\u003e\n\u003cp\u003eThe whole pipeline use singularity images and will pull images from singularity library when needed. Singularity recipes used are provided in \u003ccode\u003esingularity\u003c/code\u003e folder for reference.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to-run\" class=\"anchor\" href=\"#how-to-run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run\u003c/h2\u003e\n\u003cp\u003eThe pipeline can be run directly using Nextflow \u0026gt;= v20.10.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow WGS_analysis.nf -profile cluster --operation align --input input_file.txt --mode WGS --ped ped_file.ped --ref genome.fa --cohort_id cohort_name --outdir results \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe pipeline automatically infer the number of samples in the cohort from your input file and adjust the filtering accordingly. When more than one sample is present, small variants and structural variants from all samples are merged in cohort wide VCF files.\u003c/p\u003e\n\u003cp\u003eEventually update \u003ccode\u003esingularity_cachedir\u003c/code\u003e variable in \u003ccode\u003enextflow.config\u003c/code\u003e to point to a proper folder where singularity images are stored / will be downloaded\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-arguments\" class=\"anchor\" href=\"#arguments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eArguments\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003eoperation : align or call_variants\nmode : WGS only supported at the moment\nref : fasta file for the genome. Note that .fai and bwa index are expected in the same location\ninput : tab-separated file describing input files. \n The exact format depends on operation requested (see below)\nped : standard PED file containing all samples\ncohort_id : a arbitrary name for the cohort files generated\noutdir : output folder for results\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUse \u003ccode\u003e--operation align/call_variants --help\u003c/code\u003e for more explanations.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-resources\" class=\"anchor\" href=\"#resources\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResources\u003c/h2\u003e\n\u003cp\u003eVarious supporting files are needed and expected in the \u003ccode\u003eresources\u003c/code\u003e folder. This path can be configured by changing the parameters in \u003ccode\u003econfig/resources_GRCh37/38.conf\u003c/code\u003e. All files needed are provided in a Zenodo repository. Please refer to the README file in the resources folder.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNB.\u003c/strong\u003e The available resources are based on GRCh37 with standard chromosomes \u003ccode\u003e1..22 X Y MT\u003c/code\u003e and GRCh38 using \u003ccode\u003echr1..22 chrX chrY chrM\u003c/code\u003e. Be sure the genome reference file passed with \u003ccode\u003e--ref\u003c/code\u003e matches the expected nomenclature for your genome build.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-input-files-format\" class=\"anchor\" href=\"#input-files-format\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput files format\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-ped-file\" class=\"anchor\" href=\"#ped-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePED file\u003c/h3\u003e\n\u003cp\u003eA standard tab-separated PED file without header, describing all samples provided in the input file. All sample IDs must match between ped and input file. All samples must have sex defined.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003efamily_ID individual_ID father_ID mother_ID sex(1=M,2=F) status(1=unaff,2=aff,0=unknown)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-input-file\" class=\"anchor\" href=\"#input-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003einput file\u003c/h3\u003e\n\u003cp\u003eNote that all files need to be specified using \u003cstrong\u003eabsolute paths\u003c/strong\u003e\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-operation-align\" class=\"anchor\" href=\"#operation-align\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOperation: align\u003c/h4\u003e\n\u003cp\u003eA 3 columns tab-separated file without header\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esampleID1 s1_lane1_R1.fastq.gz s1_lane1_R2.fastq.gz\nsampleID1 s1_lane2_R1.fastq.gz s1_lane2_R2.fastq.gz\nsampleID2 s2_lane2_R1.fastq.gz s2_lane2_R2.fastq.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote that if a sample has been sequenced with multiple pairs of fastq files you need to add multiple lines for each pair of fastq files using the same sampleID. The pipeline will take care of the merge.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-operation-call_variants\" class=\"anchor\" href=\"#operation-call_variants\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOperation: call_variants\u003c/h4\u003e\n\u003cp\u003eA 5 columns tab-separated file without header.\nThis file is automatically generated in the output folder when using \u003ccode\u003e--operation align\u003c/code\u003e (bam_files.txt)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esampleID1 main_bam.bam disc.bam split.bam\nsampleID2 main_bam.bam disc.bam split.bam\nsampleID3 main_bam.bam disc.bam split.bam\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ccode\u003edisc\u003c/code\u003e and \u003ccode\u003esplit\u003c/code\u003e BAM files are files containing only discordant pair and split reads like the\nones that can be obtained using Samblaster\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-output\" class=\"anchor\" href=\"#output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput\u003c/h2\u003e\n\u003cp\u003eThe pipeline generates a reach set of outputs including\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ealigned deduplicated BAM files\u003c/li\u003e\n\u003cli\u003edisc/split BAM files\u003c/li\u003e\n\u003cli\u003eExtensive QC of alignements, which includes mapping stats, coverage, relatedness, ancestry\u003c/li\u003e\n\u003cli\u003eMulti sample and single sample VCFs of small variants and structural variants (variants are provided as raw calls and filtered calls)\u003c/li\u003e\n\u003cli\u003eVariants QC report for small variants\u003c/li\u003e\n\u003cli\u003eROH regions\u003c/li\u003e\n\u003cli\u003eRepeat expansions by Expansion Hunter\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pipeline-components\" class=\"anchor\" href=\"#pipeline-components\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline components\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eAlignement and duplicate marking\n\u003cul\u003e\n\u003cli\u003eBWA-MEM + samblaster + samtools\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eQC and coverage from BAM files\n\u003cul\u003e\n\u003cli\u003efastqc: reads stats\u003c/li\u003e\n\u003cli\u003emosdepth: coverage\u003c/li\u003e\n\u003cli\u003esamtools flagstat / mapstat: alignment stats\u003c/li\u003e\n\u003cli\u003esomalier: ancestry, relatedness, sex check reports\u003c/li\u003e\n\u003cli\u003emultiqc: interactive report\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003esmall variants\n\u003cul\u003e\n\u003cli\u003edeepvariant: single sample calls\u003c/li\u003e\n\u003cli\u003eglnexus: gvcf merge\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003estructural variants\n\u003cul\u003e\n\u003cli\u003elumpy: structural variants events\u003c/li\u003e\n\u003cli\u003eCNVnator: CNV estimation\u003c/li\u003e\n\u003cli\u003esvtools: combine, merge and classify\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003erepeat expansion detection\n\u003cul\u003e\n\u003cli\u003eexpansion hunter\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eROH regions\n\u003cul\u003e\n\u003cli\u003ebcftools ROH\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-future-developments\" class=\"anchor\" href=\"#future-developments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFuture developments\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] Update SV pipeline to Manta / dysgu\u003c/li\u003e\n\u003cli\u003e[ ] Add duphold for SV quality check\u003c/li\u003e\n\u003cli\u003e[ ] Variant annotation\u003c/li\u003e\n\u003cli\u003e[ ] Segregation analysis with slivar\u003c/li\u003e\n\u003cli\u003e[ ] Support for WES?\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1632725622.0
+ "updated_at": 1642604585.0
},
{
"data_format": 2,
- "description": "Singularity recipe for Circos.",
+ "description": "SCOV2-spikeScreen IMI prototype bash pipeline",
"filenames": [
"Singularity"
],
- "full_name": "ArnaudBelcour/circos-singularity",
+ "full_name": "IMIMF-UNILJSI/scov2-spikeScreen",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-circos-singularity\" class=\"anchor\" href=\"#circos-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCircos singularity\u003c/h1\u003e\n\u003cp\u003eA singularity recipe for Circos (inspired by the one written by \u003ca href=\"https://github.com/J35P312/CircusCircos\"\u003ehttps://github.com/J35P312/CircusCircos\u003c/a\u003e). This install all of its dependencies. The image size is around ~212 Mb.\u003c/p\u003e\n\u003cp\u003eYou can directly call \u003ccode\u003ecircos\u003c/code\u003e inside of the image like:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec -c -B /shared/folder:/shared/folder circos.sif circos -conf /shared/folder/circos.conf -outputdir /shared/folder\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003e-c\u003c/code\u003e option isolates the container and the \u003ccode\u003e-B\u003c/code\u003e option give access to a folder outside the container for Singularity.\u003c/p\u003e\n\u003cp\u003eYou can use the path associated to \u003ccode\u003e-B\u003c/code\u003e to give access to data path in the configuration file.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-scov2-spikescreen\" class=\"anchor\" href=\"#scov2-spikescreen\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003escov2-spikeScreen\u003c/h1\u003e\n\u003cp\u003eSCOV2-spikeScreen IMI prototype bash pipeline\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-build-container\" class=\"anchor\" href=\"#build-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuild container\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e/path/to/repo/directory/buildContainer web # pull from shub\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e/path/to/repo/directory/buildContainer local # build from scratch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eno argument defaults to \"web\", local requires sudo privileges. If none of the options is suitable to the user, do manual build with working parameter settings.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running\" class=\"anchor\" href=\"#running\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning\u003c/h2\u003e\n\u003cp\u003eCreate a working dir somewhere in your FS (preferably outside of the git dir), run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run --bind /path/to/repo/directory:/opt/scripts,/path/to/data:/mnt /path/to/repo/directory/spikeScreenContainer.sif /opt/scripts/runPipeline runID keyword /mnt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe second argument (keyword) should be replaced with either pools/assemblies/pools_single/assemblies_single to run the appropriate analysis (self explanatory).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-cleanup\" class=\"anchor\" href=\"#cleanup\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCleanup\u003c/h2\u003e\n\u003cp\u003eA cleanup script is also provided (see repo directory: cleanUp), but it may not be so useful. It simply removes the contents of the work dir related to the pipeline process.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1632847008.0
+ "updated_at": 1641561900.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Metagenomic analysis of viral samples",
"filenames": [
- "latest/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-rnaview",
+ "full_name": "Aexbrayat/snakevir",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-rnaview/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-rnaview/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-rnaview/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-rnaview/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/3a42a8171d093b99dbf3681a7fa3d291910415d6829e5b185e78e6168f87473d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d726e6176696577\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3a42a8171d093b99dbf3681a7fa3d291910415d6829e5b185e78e6168f87473d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d726e6176696577\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-rnaview\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/594609bf54cba045fda0d342b24488065cf9a7e08df690ff506222fb47f67f34/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d726e6176696577\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/594609bf54cba045fda0d342b24488065cf9a7e08df690ff506222fb47f67f34/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d726e6176696577\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-rnaview\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/9a9e736965b0a755f4684cb670ad871f680ce0a747ca86e9cdbc0597b32e2b4e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d726e6176696577\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9a9e736965b0a755f4684cb670ad871f680ce0a747ca86e9cdbc0597b32e2b4e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d726e6176696577\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-rnaview\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/1d9776e18f2e7616bb9a34f6dafc7c0d6da72a9975f6a690c8c59599d1708961/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d726e6176696577\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1d9776e18f2e7616bb9a34f6dafc7c0d6da72a9975f6a690c8c59599d1708961/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d726e6176696577\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-rnaview\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-rnaview\" class=\"anchor\" href=\"#singularity-rnaview\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-rnaview\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"http://ndbserver.rutgers.edu/ndbmodule/services/download/rnaview.html\" rel=\"nofollow\"\u003ernaview\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ernaview\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/rnaview/latest\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/rnaview\u003c/code\u003e as \u003ccode\u003elatest.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003esnakevir\u003c/p\u003e\n\u003cp\u003eAuthors\u003c/p\u003e\n\u003cp\u003eAntoni Exbrayat (CIRAD) \u0026amp; Etienne Loire (CIRAD) \u0026amp; Serafin Gutierrez (CIRAD)\u003c/p\u003e\n\u003cp\u003ePurpose:\nMetagenomic analysis of viral shotgun NGS samples.\u003c/p\u003e\n\u003cp\u003eThis pipeline is based on \u003ca href=\"https://snakemake.readthedocs.io/en/stable/\" rel=\"nofollow\"\u003esnakemake\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-step\" class=\"anchor\" href=\"#step\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eCleaning\u003c/li\u003e\n\u003cli\u003eMerging\u003c/li\u003e\n\u003cli\u003eFiltering\u003c/li\u003e\n\u003cli\u003eDe novo sequence assembly\u003c/li\u003e\n\u003cli\u003eMapping\u003c/li\u003e\n\u003cli\u003eHomology search protein databases\u003c/li\u003e\n\u003cli\u003eHomology search nucleotide databases\u003c/li\u003e\n\u003cli\u003eTaxonomic annotation\u003c/li\u003e\n\u003cli\u003eTaxonomy refining\u003c/li\u003e\n\u003cli\u003eViral hosts search\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e - bioawk\n - biopython\n - blast\n - bwa\n - cap3\n - csvkit\n - cutadapt\n - diamond\n - entrez-direct\n - ete3\n - flash\n - megahit\n - pandas\n - picard\n - python\n - r-base\n - samtools\n - seqtk\n - snakemake\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe conda environment manager can be used to install python , snakemake and all the required tools and dependencies into a single environment in a way such that reproducibility is ensured.\u003c/p\u003e\n\u003cp\u003eNote: Conda must be installed on the system. For help with setting up conda, please see \u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003eminiconda\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eTo create and activate the conda environment with the environment.yml provided , use :\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml\nconda activate snakevir\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage:\u003c/h2\u003e\n\u003cp\u003eSnakemake supports a separate configuration file for execution on a cluster. A cluster config file cluster.json is provided , it allows you to specify cluster submission parameters outside the Snakefile. The cluster config is contains all parameters with match names of rules in the Snakefile.\u003c/p\u003e\n\u003cp\u003eedit config.yaml to precise dataset and dependencies path, accomodate read files names , threads allocated to the rules (according to cluster.json).\u003c/p\u003e\n\u003cp\u003elaunch with e.g. :\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -s snakefile -j 100 --cluster-config cluster.json --cluster \"sbatch -p {cluster.queue} -N {cluster.queue} -c {cluster.cpu_task} --mem {cluster.mem} -e {cluster.error} -o {cluster.log} \" --printshellcmd --rerun-incomplete --reason --dryrun\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto execute on a SLURM cluster with a maximum of 100 concurrent jobs submitted, eventually modify the command accordingly with your job scheduler.\u003c/p\u003e\n\u003cp\u003eNote : A Singularity containers image will be available soon\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1632891843.0
+ "updated_at": 1641215049.0
},
{
"data_format": 2,
- "description": "A singularity container for NodeJS, SQLite3, MongoDB and VS Code web development",
+ "description": "Quim\u0027s fork of fownward",
"filenames": [
- "Singularity"
+ "misc/releases/19.06/Singularity.19.06",
+ "misc/releases/latest/Singularity",
+ "misc/releases/19.12/Singularity.19.12",
+ "misc/releases/20.06/Singularity.20.06"
],
- "full_name": "benatuts/aip-container",
+ "full_name": "quimortiz/downward",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-aip-container\" class=\"anchor\" href=\"#aip-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAIP Container\u003c/h1\u003e\n\u003cp\u003eA singularity container for NodeJS, SQLite3, MongoDB and VS Code web development.\u003c/p\u003e\n\u003cp\u003eThis is used for the subject Advanced Internet Programming (AIP) at UTS.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-configuration\" class=\"anchor\" href=\"#configuration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguration\u003c/h1\u003e\n\u003cp\u003eConfiguration is optional. If there is no configuration file, the default settings shown below will be used.\u003c/p\u003e\n\u003cp\u003eYou can override these defaults by creating a file named ~/.config/aip_container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# The existence of base path is checked before starting the container\nBASE_PATH=\"/tmp\"\n\n# The host path is then created if it doesn\u0027t exist\n# (set BASE_PATH and HOST_PATH to be the same if you don\u0027t want directories to be created)\nHOST_PATH=\"/tmp/$USER/aip\"\n\n# This array of files is symlinked to the corresponding files in your $HOME\nSYMLINK=(\".gitconfig\" \".ssh\")\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote that if the path /images/tmp exists and you have no configuration file, then /images/tmp will be used instead of /tmp. This is because on UTS lab computers, /images/tmp has greater capacity.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h1\u003e\n\u003cp\u003eIf you are using a lab computer, the container should already be installed for you.\u003c/p\u003e\n\u003cp\u003eTo rebuild the container using your own computer:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build aip-container_latest.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOr, you can pull the pre-built image from Singularity Hub to your own computer:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://benatuts/aip-container\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUse run_aip_singularity_container.sh to manually start the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erun_aip_singularity_container.sh term # Start a gnome-terminal\nrun_aip_singularity_container.sh vscode # Start visual studio code\nrun_aip_singularity_container.sh fullterm # Start a gnome-terminal-server and gnome-terminal\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"misc/images/fast-downward.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2020 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"http://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttp://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" href=\"#tested-software-versions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2017 (MSVC 19.16) and 2019 (MSVC 19.28)\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributors\" class=\"anchor\" href=\"#contributors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2020 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2020 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2020 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2020 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2020 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2020 Salome Eriksson\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2018-2020 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2015 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-history\" class=\"anchor\" href=\"#history\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1563696940.0
+ "updated_at": 1640879253.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Some projects in nextflow",
"filenames": [
- "Singularity"
+ "workflow/template/Singularity"
],
- "full_name": "remiolsen/dovetail-hichip-singularity",
+ "full_name": "lux563624348/nextflow",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dovetail-hichip-singularity\" class=\"anchor\" href=\"#dovetail-hichip-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edovetail-hichip-singularity\u003c/h1\u003e\n\u003cp\u003eSingularity dependency wrapper and containerization of Dovetail HiChiP tools - \u003ca href=\"https://hichip.readthedocs.io/en/latest/index.html\" rel=\"nofollow\"\u003ehttps://hichip.readthedocs.io/en/latest/index.html\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nextflow\" class=\"anchor\" href=\"#nextflow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enextflow\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1633078304.0
+ "updated_at": 1640806208.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.STAR"
+ "2.8.2/Singularity.2.8.2",
+ "2.11.9/Singularity"
],
- "full_name": "izem-idem/sandboxIM",
+ "full_name": "yh549848/singularity-igv",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1633092971.0
+ "updated_at": 1640802538.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "containers/Singularity.0.4.0",
- "containers/Singularity.0.3.5",
- "containers/Singularity.0.3.6",
- "containers/Singularity.0.3.3",
- "containers/Singularity.0.4.1"
+ "02assembly/02long-read_assembly/lathe/singularity/Singularity.longread",
+ "02assembly/02long-read_assembly/lathe/singularity/Singularity.htsbox",
+ "02assembly/02long-read_assembly/lathe/singularity/Singularity.quickmerge"
],
- "full_name": "LBJ-Wade/bilby",
+ "full_name": "JiaLonghao1997/MAGbenchmark",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-genome-resolved-metagenomics-using-short--long-read-and-metahic-sequencing\" class=\"anchor\" href=\"#genome-resolved-metagenomics-using-short--long-read-and-metahic-sequencing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGenome-resolved metagenomics using short-, long-read and metaHiC sequencing\u003c/h1\u003e\n\u003cp\u003eIn this work, we systematically evaluated \u003cstrong\u003e26\u003c/strong\u003e distinct strategies for recovering high-quality MAGs generated from \u003cstrong\u003eeight\u003c/strong\u003e assemblers, \u003cstrong\u003etwo\u003c/strong\u003e binning strategies, and \u003cstrong\u003efour\u003c/strong\u003e sequencing technologies including both short- and long-read methods. In particular, we evaluated metagenomic high-throughput chromosomal conformation capture (metaHiC), a new technique that improves binning of assembled contigs using physically linked read-pairs within cells. To our knowledge, we are the first to evaluate the combination of long-read and metaHiC on metagenomics data.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/JiaLonghao1997/MAGbenchmark/blob/main/Figure%201_1.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/JiaLonghao1997/MAGbenchmark/raw/main/Figure%201_1.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-1-preprocess\" class=\"anchor\" href=\"#1-preprocess\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Preprocess\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003eTrim the adapter regions and low-quality reads: \u003ca href=\"http://www.usadellab.org/cms/?page=trimmomatic\" rel=\"nofollow\"\u003e\u003cstrong\u003eTrimmomatic v.039\u003c/strong\u003e\u003c/a\u003e (using LEADING:3 TRAILING:3, SLIDINGWINDOW:4:15, MINLEN:25)\u003c/li\u003e\n\u003cli\u003eRemove human reads: Filtered reads were aligned to the human genome (NCBI, hg38) using \u003ca href=\"http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml\" rel=\"nofollow\"\u003e\u003cstrong\u003eBowtie2\u003c/strong\u003e\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-2-assemblies\" class=\"anchor\" href=\"#2-assemblies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Assemblies\u003c/h4\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-21-short-read-assemblies\" class=\"anchor\" href=\"#21-short-read-assemblies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2.1 Short-read assemblies\u003c/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"http://www.cs.hku.hk/~alse/idba_ud\" rel=\"nofollow\"\u003e\u003cstrong\u003eIDBA-UD\u003c/strong\u003e\u003c/a\u003e v.1.1.3 (using --pre_correction --maxk 120 --mink 20 --step 20).\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e\u003ca href=\"https://github.com/voutcn/megahit\"\u003eMEGAHIT\u003c/a\u003e\u003c/strong\u003e v.1.2.9 (using --k-list 21,29,39,59,79,99,119,141)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/ablab/spades\"\u003e\u003cstrong\u003emetaSPAdes\u003c/strong\u003e\u003c/a\u003e v.3.14.1(using --meta -k 21,31,41,61,81,101,121)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-22-long-read-assemblies\" class=\"anchor\" href=\"#22-long-read-assemblies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2.2 Long-read assemblies\u003c/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003e\u003ca href=\"https://github.com/marbl/canu\"\u003eCanu\u003c/a\u003e\u003c/strong\u003e v.2.0 (using genomeSize=50m/100m)\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e\u003ca href=\"https://github.com/fenderglass/Flye\"\u003emetaFlye\u003c/a\u003e\u003c/strong\u003e v. 2.7 (using \u2013meta \u2013g 100m/250m)\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e\u003ca href=\"https://github.com/ruanjue/wtdbg2\"\u003ewtdbg2\u003c/a\u003e\u003c/strong\u003e v.2.5 (using genomesize=50m/100m)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTwo long-read assembled contigs were then merged by \u003ca href=\"https://github.com/mahulchak/quickmerge\"\u003e\u003cstrong\u003equickmerge\u003c/strong\u003e\u003c/a\u003e v.0.40 as previous described in \u003cstrong\u003e\u003ca href=\"https://github.com/bhattlab/lathe\"\u003eLathe\u003c/a\u003e\u003c/strong\u003e, which is a tool for generating bacterial genomes from metagenomes with Nanopore long read sequencing.\u003c/p\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-23-hybrid-assemblies\" class=\"anchor\" href=\"#23-hybrid-assemblies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2.3 Hybrid assemblies\u003c/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/CSB5/OPERA-MS\"\u003e\u003cstrong\u003eOPERA-MS\u003c/strong\u003e\u003c/a\u003e v.0.9.0 (using --no-polishing)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/ablab/spades\"\u003e\u003cstrong\u003ehybridSPAdes\u003c/strong\u003e\u003c/a\u003e v.3.14.1 (using --meta -k 21,31,41,61,81,101,121)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-24-polish-and-evaluation-of-metagenomic-assemblies\" class=\"anchor\" href=\"#24-polish-and-evaluation-of-metagenomic-assemblies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2.4 Polish and evaluation of metagenomic assemblies\u003c/h5\u003e\n\u003cul\u003e\n\u003cli\u003ePolish: \u003cstrong\u003e\u003ca href=\"https://github.com/broadinstitute/pilon\"\u003ePilon\u003c/a\u003e\u003c/strong\u003e v.1.24\u003c/li\u003e\n\u003cli\u003eEvaluation of metagenomic assemblies: \u003cstrong\u003e\u003ca href=\"http://quast.sourceforge.net/metaquast\" rel=\"nofollow\"\u003eMetaQUAST\u003c/a\u003e\u003c/strong\u003e v.5.0.2\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e\u003ca href=\"https://github.com/elimoss/metagenomics_workflows/tree/master/assembly_comparison_circos\"\u003eCircos Assembly Comparison Visualization Workflow\u003c/a\u003e\u003c/strong\u003e are from public available scripts.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-3-binning\" class=\"anchor\" href=\"#3-binning\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. Binning\u003c/h4\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-31-binning\" class=\"anchor\" href=\"#31-binning\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3.1 Binning\u003c/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://bitbucket.org/berkeleylab/metabat/src/master/\" rel=\"nofollow\"\u003e\u003cstrong\u003eMetaBAT2\u003c/strong\u003e\u003c/a\u003e v.2.15 (--minContig 2500 --minContigDepth 1 --percentIdentity 97)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/cerebis/bin3C\"\u003e\u003cstrong\u003ebin3C\u003c/strong\u003e\u003c/a\u003e v.0.1.1\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-32-generation-and-quality-evaluation-of-mags\" class=\"anchor\" href=\"#32-generation-and-quality-evaluation-of-mags\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3.2 Generation and quality evaluation of MAGs\u003c/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003ca href=\"https://github.com/elimoss/metagenomics_workflows\"\u003ebin_label_and_evaluate\u003c/a\u003e\u003c/strong\u003e is a public available Snakemake workflow for aligning, binning, classifying and evaluating a metagenomic assembly. We modified some of the scripts to make it suitable for bin3C binning.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAssembly size and contiguity: \u003cstrong\u003e\u003ca href=\"http://quast.sourceforge.net/metaquast\" rel=\"nofollow\"\u003eMetaQUAST\u003c/a\u003e\u003c/strong\u003e v.5.0.2\u003c/li\u003e\n\u003cli\u003eCompleteness and contamination: \u003ca href=\"https://ecogenomics.github.io/CheckM/\" rel=\"nofollow\"\u003e\u003cstrong\u003eCheckM\u003c/strong\u003e\u003c/a\u003e v.1.1.3\u003c/li\u003e\n\u003cli\u003eGene Content: \u003cstrong\u003e\u003ca href=\"https://github.com/tseemann/prokka\"\u003eProkka\u003c/a\u003e\u003c/strong\u003e v.1.14.6\u003c/li\u003e\n\u003cli\u003etRNA sequences: \u003ca href=\"http://www.ansikte.se/ARAGORN/\" rel=\"nofollow\"\u003e\u003cstrong\u003eAragorn\u003c/strong\u003e\u003c/a\u003e v.1.2.38\u003c/li\u003e\n\u003cli\u003eRibosomal RNA loci: \u003ca href=\"https://github.com/tseemann/barrnap\"\u003e\u003cstrong\u003eBarrnap\u003c/strong\u003e\u003c/a\u003e v.0.9\u003c/li\u003e\n\u003cli\u003eTaxonomic classification: \u003ca href=\"https://ccb.jhu.edu/software/kraken2/\" rel=\"nofollow\"\u003e\u003cstrong\u003eKraken2\u003c/strong\u003e\u003c/a\u003e v.2.1.1 and \u003ca href=\"https://github.com/Ecogenomics/GTDBTk\"\u003e\u003cstrong\u003eGTDB-tk\u003c/strong\u003e\u003c/a\u003e v1.4.1.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-4-trna-and-rrna\" class=\"anchor\" href=\"#4-trna-and-rrna\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. tRNA and rRNA\u003c/h4\u003e\n\u003cp\u003eThe close reference genome of MAG was determined by \u003ca href=\"https://github.com/Ecogenomics/GTDBTk\"\u003e\u003cstrong\u003eGTDB-tk\u003c/strong\u003e\u003c/a\u003e v.1.4.1.\u003c/p\u003e\n\u003cp\u003etRNA and rRNA genes of MAGs and reference genomes were identified as previously mentioned.\u003c/p\u003e\n\u003cp\u003eThen we calculated an observed-versus-expected ratio of the annotated tRNA and rRNA genes for each MAG as:\n\u003ca href=\"https://github.com/JiaLonghao1997/MAGbenchmark/blob/main/math1.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/JiaLonghao1997/MAGbenchmark/raw/main/math1.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e \u003cbr\u003e\nR_e is the expected tRNA or rRNA count of the reference genome, R_o is the observed tRNA or rRNA count of the MAG, r is the observed-versus-expected ratio.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-5-extrachromosomal-mobile-genetic-elements-emges\" class=\"anchor\" href=\"#5-extrachromosomal-mobile-genetic-elements-emges\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e5. extrachromosomal mobile genetic elements (eMGEs)\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003ePhages: \u003ca href=\"https://github.com/jiarong/VirSorter2\"\u003e\u003cstrong\u003eVirSorter2\u003c/strong\u003e\u003c/a\u003e v.2.1(using --min-length 1500 all) and \u003ca href=\"https://bitbucket.org/berkeleylab/checkv/src/master/\" rel=\"nofollow\"\u003e\u003cstrong\u003eCheckV\u003c/strong\u003e\u003c/a\u003e v0.8.1 (using end_to_end)\u003c/li\u003e\n\u003cli\u003ePlasmids: \u003cstrong\u003e\u003ca href=\"https://github.com/phac-nml/mob-suite\"\u003eMOB-suite\u003c/a\u003e\u003c/strong\u003e v.3.0.0\u003c/li\u003e\n\u003cli\u003eAntibiotic resistance genes: \u003ca href=\"https://www.mediterranee-infection.com/acces-ressources/base-de-donnees/arg-annot-2/\" rel=\"nofollow\"\u003e\u003cstrong\u003eARG-ANNOT\u003c/strong\u003e\u003c/a\u003e and \u003ca href=\"https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs\" rel=\"nofollow\"\u003e\u003cstrong\u003eBLASTN\u003c/strong\u003e\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-6-references\" class=\"anchor\" href=\"#6-references\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e6. References\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003eKuleshov V, Jiang C, Zhou W, Jahanbani F, Batzoglou S, Snyder M. Synthetic long-read sequencing reveals intraspecies diversity in the human microbiome. Nat Biotechnol 2016, 34:64-69.\u003c/li\u003e\n\u003cli\u003eBishara A, Moss EL, Kolmogorov M, Parada AE, Weng Z, Sidow A, Dekas AE, Batzoglou S, Bhatt AS. High-quality genome sequences of uncultured microbes by assembly of read clouds. Nat Biotechnol 2018.\u003c/li\u003e\n\u003cli\u003eMoss EL, Maghini DG, Bhatt AS. Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat Biotechnol 2020, 38:701-707.\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1633153969.0
+ "updated_at": 1640764398.0
},
{
"data_format": 2,
- "description": "Wrapper scripts and documentation for launching database jobs to be used by Nextflow pipelines",
+ "description": "FabSim3_extra",
"filenames": [
- "Singularity.mysql"
+ "Singularity"
],
- "full_name": "biocorecrg/nextflow_detached_db_wrapper",
+ "full_name": "kbronik2017/FabSim3_extra",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nextflow_detached_db_wrapper\" class=\"anchor\" href=\"#nextflow_detached_db_wrapper\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enextflow_detached_db_wrapper\u003c/h1\u003e\n\u003cp\u003eWrapper scripts and documentation for launching database jobs to be used by Nextflow pipelines\u003c/p\u003e\n\u003cp\u003eSo far it only has been tested with SGE/Univa queues.\u003c/p\u003e\n\u003cp\u003eExample command with several options:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enohup perl run_pipeline_mysql.pl -params \"-with-dag -with-report -with-timeline\" -conf params.config -nextflowver 21.04.03 -extra \"-j y -l virtual_free=4G,h_rt=372800 -N MYSQL_container -m be -cwd -V -q myqueue\" -script pipeline.nf \u0026amp;\u0026gt; log.mysql \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnly running MySQL instance. Useful for checking existing contents.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enohup perl run_pipeline_mysql.pl -conf params.config -mysqlonly -extra \"-j y -l virtual_free=4G,h_rt=372800 -N MYSQL_container -m be -cwd -V -q myqueue\" \u0026amp;\u0026gt; log.mysqlonly \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-requirements\" class=\"anchor\" href=\"#requirements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://singularity.hpcng.org/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePerl (e. g., with \u003ca href=\"https://perlbrew.pl/\" rel=\"nofollow\"\u003ePerlbrew\u003c/a\u003e)\n\u003cul\u003e\n\u003cli\u003eInstall Config::Simple module: \u003ccode\u003ecpanm Config::Simple\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fabsim\" class=\"anchor\" href=\"#fabsim\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFabSim\u003c/h1\u003e\n\n\u003cp\u003e\u003ca href=\"https://github.com/djgroen/FabSim3/actions/workflows/Pytests.yml\"\u003e\u003cimg src=\"https://github.com/djgroen/FabSim3/actions/workflows/Pytests.yml/badge.svg?branch=master\" alt=\"Run Tests\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/vecmafabsim3/fabsimdocker/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/15984bcb49e30e1f7e5e7b00084e0103bd4c6754edca6fbb1caa32f5dca78509/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f70756c6c732f7665636d6166616273696d332f66616273696d646f636b65722e737667\" alt=\"Docker Pulls\" data-canonical-src=\"https://img.shields.io/docker/pulls/vecmafabsim3/fabsimdocker.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/vecmafabsim3/fabsimdocker/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/506d3bba015b61abe07ca57664f35000afdb03531495602d97f42bb34afa35c3/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f7665636d6166616273696d332f66616273696d646f636b65722e737667\" alt=\"Docker Pulls\" data-canonical-src=\"https://img.shields.io/docker/automated/vecmafabsim3/fabsimdocker.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/djgroen/FabSim3/tags\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f043c3ba40f9c2389fe1479a4488e19dfcbad1feac1fbe888c773bf0f5db411f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f762f7461672f646a67726f656e2f46616253696d333f7374796c653d666c6174\" alt=\"GitHub tag (latest by date)\" data-canonical-src=\"https://img.shields.io/github/v/tag/djgroen/FabSim3?style=flat\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://lgtm.com/projects/g/djgroen/FabSim3/context:python\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/10419cff1f040d68ce752c6639616aaed414c6c5a7488e84662e19dee98ce77c/68747470733a2f2f696d672e736869656c64732e696f2f6c67746d2f67726164652f707974686f6e2f672f646a67726f656e2f46616253696d332e7376673f6c6f676f3d6c67746d266c6f676f57696474683d3138\" alt=\"Language grade: Python\" data-canonical-src=\"https://img.shields.io/lgtm/grade/python/g/djgroen/FabSim3.svg?logo=lgtm\u0026amp;logoWidth=18\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/djgroen/FabSim3/issues\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/acc2a0eb223b853151fc5347101ef8574e352b40abc609e15062ccd32d937545/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f646a67726f656e2f46616253696d332e737667\" alt=\"GitHub Issues\" data-canonical-src=\"https://img.shields.io/github/issues/djgroen/FabSim3.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/djgroen/FabSim3/commits/master\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2c555714d9a4f16fd9f1c30cc71088810cb3cf12ca67e1bf9b3be68232f8fff6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6173742d636f6d6d69742f646a67726f656e2f46616253696d332e737667\" alt=\"GitHub last-commit\" data-canonical-src=\"https://img.shields.io/github/last-commit/djgroen/FabSim3.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003cp\u003e\u003cstrong\u003eFor the full FabSim3 documentation, please visit \u003ca href=\"https://fabsim3.readthedocs.io\" rel=\"nofollow\"\u003ehttps://fabsim3.readthedocs.io\u003c/a\u003e\u003c/strong\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation-and-usage\" class=\"anchor\" href=\"#installation-and-usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation and usage\u003c/h2\u003e\n\u003cp\u003eFirst, user needs to install Anaconda \u003ca href=\"https://www.anaconda.com/\" rel=\"nofollow\"\u003ehttps://www.anaconda.com/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThen\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda create --name py3 python=3.6 {or any other python version \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e 3} \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eand then\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda activate py3\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003efinally for instructions on how to install and test FabSim, please go to \u003ca href=\"https://fabsim3.readthedocs.io/en/latest/installation/\" rel=\"nofollow\"\u003ehttps://fabsim3.readthedocs.io/en/latest/installation/\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-easyvvuqfabmd\" class=\"anchor\" href=\"#easyvvuqfabmd\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEasyVVUQ+FabMD\u003c/h2\u003e\n\u003cp\u003eAfter updating the following files with your credentials\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e -FabSim3/deploy/machines_user.yml\n -FabSim3/deploy/machines.yml\n -FabSim3/plugins/FabMD/machines_FabMD_user.yml\n \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003erun the following:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e - fabsim \u0026lt;remote machine name\u0026gt; lammps_init_run_analyse_campaign:fabmd_easyvvuq_InRuAn\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand copy the results back to your local machine with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e - fabsim \u0026lt;remote machine name\u0026gt; fetch_results\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-important\" class=\"anchor\" href=\"#important\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImportant\u003c/h2\u003e\n\u003cp\u003eBy default, FabSim3_extra comes with the FabDummy plugin and the FabMD plugin(fixed version!), which are available in ~/FabSim3/plugins\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1634748326.0
+ "updated_at": 1641166034.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "requirements/Singularity.def"
+ "Singularity"
],
- "full_name": "nasa-cisto-ai/slump-detection",
+ "full_name": "porchard/snRNAseq-NextFlow",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-slump-detection\" class=\"anchor\" href=\"#slump-detection\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSlump Detection\u003c/h1\u003e\n\u003cp\u003eSlump Detection as an instance segmentation problem.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-business-case\" class=\"anchor\" href=\"#business-case\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBusiness Case\u003c/h2\u003e\n\u003cp\u003eThe following repository stores several experiments for the task of instance and semantic\nsegmentation of slumps in very high-resolution satellite imagery. Many of the instructions\nlisted below are guided towards utilizing GSFC NASA Center for Climate Simulation (NCCS)\ncomputing resources, particularly the PRISM GPU cluster.\u003c/p\u003e\n\u003cp\u003eA system with NVIDIA GPUs is required to run the scripts located in this repository.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eprojects/detectron2: utilizes the detectron2 framework for the task of instance segmentation\nleveraging MaskRCNN and Fast RCNN. The backend engine is PyTorch.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-summarized-steps\" class=\"anchor\" href=\"#summarized-steps\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSummarized Steps\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003essh adaptlogin.nccs.nasa.gov\nssh gpulogin1\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e/slump-detection/projects/detectron2\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" href=\"#table-of-contents\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTable of Contents\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"#Logging_In\"\u003eLogging-In\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Container_Environment_Installation\"\u003eContainer Environment Installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Working_Inside_Container\"\u003eWorking Inside a Container\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Getting_Started\"\u003eGetting Started\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Authors\"\u003eAuthors\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#References\"\u003eReferences\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-logging-in-\" class=\"anchor\" href=\"#logging-in-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLogging-In \u003ca name=\"user-content-Logging_In\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cp\u003eYou will need an activate NCCS account together with a PIV Card or an RSA Token. Please refer\nto the following link for instructions on setting up login or any login related questions:\n\u003ca href=\"https://www.nccs.nasa.gov/nccs-users/instructional/logging-in/bastion-host\" rel=\"nofollow\"\u003eNCCS Logging-In\u003c/a\u003e.\nOnce you are all setup, you may login to the PRISM GPU cluster.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003essh adaptlogin.nccs.nasa.gov\nssh gpulogin1\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-container-environment-installation-\" class=\"anchor\" href=\"#container-environment-installation-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainer Environment Installation \u003ca name=\"user-content-Container_Environment_Installation\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cp\u003eAll the software and scripts from this repository can be ran within a container. Containers are\nsmall versions of operating systems that are meant to speed up the process of software development.\nThese containers are simply a binary file which has all the executables needed to run the software included.\u003c/p\u003e\n\u003cp\u003eThe NCCS provides Singularity as the default container runtime tool. In order to configure your\nenvironment to run Singularity containers, you will need to setup the environment variables listed below.\nFor this, you can simply add the following lines to your ~/.bashrc file.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eexport SINGULARITY_CACHEDIR=\u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e/.singularity\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc\n\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eexport SINGULARITY_TMPDIR=\u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e/.singularity\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026gt;\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc\n\u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.bashrc\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTest the environment variables with the following command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e[username@gpulogin1 \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e]$ \u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$SINGULARITY_CACHEDIR\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$SINGULARITY_TMPDIR\u003c/span\u003e\n/att/nobackup/username/.singularity /att/nobackup/username/.singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIn order to utilize the container for this project, we first need to download the image from a container\nregistry. The image for this project is located in \u003ca href=\"https://hub.docker.com/repository/docker/nasanccs/slump-detectron2\" rel=\"nofollow\"\u003eNASA NCCS DockerHub Repository\u003c/a\u003e. Docker containers can be pulled as Singularity containers to be executed on HPC\nenvironments. The following commands allow the download of the container from DockerHub and generates a\nfile with a .sif extension. Depending on the file system, this step can take several minutes.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e\nmodule load singularity\nsingularity pull docker://docker.io/nasanccs/slump-detectron2:latest\nsingularity build --sandbox slump-detectron2_latest slump-detectron2_latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-working-inside-a-container-\" class=\"anchor\" href=\"#working-inside-a-container-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWorking Inside a Container \u003ca name=\"user-content-Working_Inside_Container\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cp\u003eEach project provides a set of Slurm scripts that will execute code inside the container without having\nto login inside the image. You may skip this step and go straight to the project README if you are only\ninterested in running scripts from outside the container. This section is meant to help users developing\nand testing code inside the container to facilitate the development process.\u003c/p\u003e\n\u003cp\u003eTo get a session in one of the PRISM GPU nodes, you can run the following command. Additional instructions\nregarding Slurm can be found in the \u003ca href=\"https://www.nccs.nasa.gov/nccs-users/instructional/adapt-instructional/using-prism\" rel=\"nofollow\"\u003eNCCS website\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esalloc\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou will notice that the hostname will change to something similar to gpu***. This means that you are now\nlogged into one of the GPU nodes. To access the container image, you can run the command listed below:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity shell --nv -B /att/nobackup/username:/att/nobackup/username slump-detectron2_latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ewhere username is your NASA auid. From here, you can run any command inside the container image. Note that\nfor Singularity containers to have access to other paths within the HPC environment, we need to bind\ndirectories to particular locations in the container. The command above is binding your $NOBACKUP directory\nto be visible from inside the container.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-getting-started-\" class=\"anchor\" href=\"#getting-started-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started \u003ca name=\"user-content-Getting_Started\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cp\u003eThe following is a summarized set of steps to get started and running in less than 5 minutes once the container image has been downloaded.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eClone this repository into your ADAPT space\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e\ngit clone https://github.com/jordancaraballo/slump-detection.git\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eCopy the data into the data/ directory\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ecp /data/location/.tif \u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e/slump-detection/data\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eGenerate train, test, and validation datasets\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e/slump-detection/projects/detectron2\nsbatch gen_dataset.sh\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eTrain a new model\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e/slump-detection/projects/detectron2\nsbatch train_detectron2.sh\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eClassify given imagery\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003e$NOBACKUP\u003c/span\u003e/slump-detection/projects/detectron2\nsbatch predict_detectron2.sh\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-project-specific-information\" class=\"anchor\" href=\"#project-specific-information\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eProject Specific Information\u003c/h2\u003e\n\u003cp\u003eData resides under:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e/att/nobackup/username/EVHR_requests/_deliver/EWebbRequest\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003essh adaptlogin\nssh gpulogin1\nmodule load anaconda\nconda create --name slump-detection-11.1 --clone /att/nobackup/username/.conda/envs/slump-detection-11.1\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-anaconda-environment\" class=\"anchor\" href=\"#anaconda-environment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAnaconda environment\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emodule load anaconda\nconda config --add channels conda-forge\nconda config --set channel_priority strict\nconda create -y -n slump-detection rioxarray cupy cudatoolkit=11.2 dask-cuda cudnn cutensor nccl ipykernel ipywidgets matplotlib geopandas iteration_utilities\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eInstall pip dependencies\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda activate slump-detection\npip install -r requirements.txt\npip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html\npip install \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003egit+https://github.com/facebookresearch/fvcore\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\npip install \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003egit+https://github.com/philferriere/cocoapi.git#egg=pycocotools\u0026amp;subdirectory=PythonAPI\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\ngit clone https://github.com/facebookresearch/detectron2 detectron2_repo \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e pip install -e detectron2_repo\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAdding NCCL\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia\nconda create -n rapids-21.06 -c rapidsai -c nvidia -c conda-forge rapids-blazing=21.06 python=3.7 cudatoolkit=11.2 nvcc_linux-64 nccl ipykernel ipywidgets matplotlib geopandas iteration_utilities\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda create -n rapids-21.06 -c rapidsai -c nvidia -c conda-forge -c pytorch rapids-blazing=21.06 python=3.7 cudatoolkit=11.1 ipykernel ipywidgets matplotlib geopandas pytorch torchvision torchaudio cudatoolkit=11.1 \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou could also enhance your kernel with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda config --add channels conda-forge\nconda config --set channel_priority strict\nconda create -y -n slump-detection-11.1 rioxarray cupy cudatoolkit=11.1 dask-cuda cudnn cutensor nccl ipykernel ipywidgets matplotlib geopandas iteration_utilities gcc_linux-64\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip install cython\npip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html\npip install \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003egit+https://github.com/facebookresearch/fvcore\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\npip install \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003egit+https://github.com/philferriere/cocoapi.git#egg=pycocotools\u0026amp;subdirectory=PythonAPI\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\npip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu111/torch1.9/index.html\npip install opencv-python scikit-image\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-authors\" class=\"anchor\" href=\"#authors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eJordan Alexis Caraballo-Vega, \u003ca href=\"mailto:jordan.a.caraballo-vega@nasa.gov\"\u003ejordan.a.caraballo-vega@nasa.gov\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-references\" class=\"anchor\" href=\"#references\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences\u003c/h2\u003e\n\u003cp\u003e[1] Chollet, Fran\u00e7ois; et all, Keras, (2015), GitHub repository, \u003ca href=\"https://github.com/keras-team/keras\"\u003ehttps://github.com/keras-team/keras\u003c/a\u003e. Accessed 13 February 2020.\u003c/p\u003e\n\u003cp\u003e[2] Paszke, Adam; Gross, Sam; Chintala, Soumith; Chanan, Gregory; et all, PyTorch, (2016), GitHub repository, \u003ca href=\"https://github.com/pytorch/pytorch\"\u003ehttps://github.com/pytorch/pytorch\u003c/a\u003e. Accessed 13 February 2020.\u003c/p\u003e\n\u003cp\u003e[3] Google Brain Team; et all, TensorFlow, (2015), GitHub repository, \u003ca href=\"https://github.com/tensorflow/tensorflow\"\u003ehttps://github.com/tensorflow/tensorflow\u003c/a\u003e. Accessed 13 February 2020.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nextflow-pipeline-for-10x-snatac-seq-data\" class=\"anchor\" href=\"#nextflow-pipeline-for-10x-snatac-seq-data\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNextFlow pipeline for 10X snATAC-seq data\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eSingularity (v. 3) and NextFlow (\u0026gt;= v. 20.10.0). Containers with the software for each step are pulled from the Sylabs cloud library (\u003ca href=\"https://cloud.sylabs.io/library\" rel=\"nofollow\"\u003ehttps://cloud.sylabs.io/library\u003c/a\u003e).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-configuration\" class=\"anchor\" href=\"#configuration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguration\u003c/h2\u003e\n\u003cp\u003ePaths to reference files must be included in the nextflow.config file -- check that file and change paths accordingly. These include:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSTAR indices (compatible with STAR v. 2.7.9a)\u003c/li\u003e\n\u003cli\u003eGTF files\u003c/li\u003e\n\u003cli\u003eBarcode whitelist (for Chromium v3, that is the 3M-february-2018.txt file; for v2, that is the 737K-august-2016.txt file; for multiome, that is 737K-arc-v1.txt)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eYou\u0027ll also need to set the params.results variable -- either in the nextflow.config file itself, or on the command line when you run the pipeline (\u0027--results /path/to/results\u0027) as well as the 10X Chromium chemistry version (\u0027V2\u0027, \u0027V3\u0027, or \u0027multiome\u0027)\u003c/p\u003e\n\u003cp\u003eLastly, you\u0027ll need to include information about each RNA-seq library, including the genome to which it should be mapped, and the paths to the fastq files for each readgroup. Organize this information in a JSON file, as in library-config.json. For each readgroup, the \u00271\u0027 fastq file corresponds to the sequencing read including the UMI and the nucleus index; the \u00272\u0027 fastq file refers to the sequencing read representing the actual transcript. Also, note that the \u0027genome\u0027 attribute is given as a list (because I will be adding the ability to map to multiple genomes, in the case that nuclei from multiple species are mixed together).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running\" class=\"anchor\" href=\"#running\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning\u003c/h2\u003e\n\u003cp\u003eOnce you have all of the above information, you can run the pipeline as follows (in this case, indicating the path to the results on the command line):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run -params-file library-config.json --chemistry multiome --results /path/to/results /path/to/main.nf\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1633374291.0
+ "updated_at": 1640263903.0
},
{
"data_format": 2,
- "description": "Recipe for deepspeed singularity container",
+ "description": "\ud83d\udc1f \ud83c\udf63 \ud83c\udf71 Highly-accurate \u0026 wicked fast transcript-level quantification from RNA-seq reads using selective alignment",
"filenames": [
- "Singularity"
+ "1.6.0/Singularity",
+ "1.5.2/Singularity"
],
- "full_name": "luukkonenr/deepspeed-torch-singularity",
+ "full_name": "pscedu/singularity-salmon",
"latest_release": null,
- "readme": "\u003ch3\u003e\n\u003ca id=\"user-content-note-docker-workflow-with-gh-actions-is-broken-due-to-a-broken-dependency-since-debian-git-depenceny-for-image-has-been-removed\" class=\"anchor\" href=\"#note-docker-workflow-with-gh-actions-is-broken-due-to-a-broken-dependency-since-debian-git-depenceny-for-image-has-been-removed\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNOTE: Docker-workflow with GH-Actions is broken due to a broken dependency, since debian-git-depenceny for image has been removed.\u003c/h3\u003e\n\u003cp\u003eTODO: update image path.\nPrevious working image is still available.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-recipe-template-for-building-deepspeed-enabled-pytorch-container\" class=\"anchor\" href=\"#singularity-recipe-template-for-building-deepspeed-enabled-pytorch-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity-recipe-template for building Deepspeed-enabled pytorch-container\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-install-singularity\" class=\"anchor\" href=\"#install-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall singularity\u003c/h2\u003e\n\u003cp\u003eFollow these instructions to install singularity on a system\n\u003ca href=\"https://github.com/hpcng/singularity/blob/master/INSTALL.md\"\u003ehttps://github.com/hpcng/singularity/blob/master/INSTALL.md\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eNOTE: I\u0027ve used \u003cstrong\u003eSingularity version 3.5.3\u003c/strong\u003e, newest 3.8.3 gave me some errors and I think it uses later gcc or something like that which results in build problems with some of the libraries.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-option-1-building-a-container-on-your-own-machine\" class=\"anchor\" href=\"#option-1-building-a-container-on-your-own-machine\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOption 1: Building a container on your own machine\u003c/h2\u003e\n\u003cp\u003eYou need root-privileges (or --fakeroot) to build containers.\nYou may need to set cachedir for singularity to avoid \u0027no space left on device\u0027-errors\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emkdir $HOME/.cache/singularity/\nexport SINGULARITY_TMPDIR=/path/ e.g $HOME/.cache/singularity/\nexport SINGULARITY_CACHEDIR=/path/ e.g $HOME/.cache/singularity/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eBUILD:\u003c/strong\u003e \u003ccode\u003esudo -E singularity build container-name Singularity\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-option-2-pulling-ready-built-image-from-ghcr\" class=\"anchor\" href=\"#option-2-pulling-ready-built-image-from-ghcr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOption 2: Pulling ready-built image from ghcr\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eexport SINGULARITY_TMPDIR=/path/ e.g $HOME/.cache/singularity/\nexport SINGULARITY_CACHEDIR=/path/ e.g $HOME/.cache/singularity/\nsingularity pull NAME_FOR_IMG docker://ghcr.io/luukkonenr/deepspeed-torch-singularity:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-on-csc-environment\" class=\"anchor\" href=\"#running-on-csc-environment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning on CSC-environment\u003c/h2\u003e\n\u003cp\u003eIf running on Mahti make sure your $HOME/.ssh/config is looking like this\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e host c???? g???? mahti* *.mahti.csc.fi\n IdentityFile ~/.ssh/id_rsa_mahti\n StrictHostKeyChecking no\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePut the following inside your slurm-script:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#Load pdsh\nmodule load pdsh/2.31\n\n#Bind directory with pdsh to /usr/local/sbin in singularity\nexport SING_FLAGS=\"$SING_FLAGS -B /appl/spack/v014/install-tree/gcc-4.8.5/pdsh-2.31-cdzt5w/bin:/usr/local/sbin\"`\nexport SING_IMAGE=/PATH/TO/CONTAINER/deepspeed.sif # This needs to match the path inside your init_node.sh\nexport SING_FLAGS=$SING_FLAGS \"--nv\" # Enable GPU\nexport SING_FLAGS=$SING_FLAGS \"--contain\" # Shadow /home/$USER/ \nexport TORCH_EXT_DIR=/path/to/some/dir/ # I f you have existing dir with some ops, may cause a hang with a msg about using this torch_ext_dir. Try removing that dir and run your job again.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUsing plain singularity and \u003ccode\u003e--contain\u003c/code\u003e-flag shadowing the /user/home/ to avoid possible conflicting user-packages:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eEXAMPLE:\u003c/strong\u003e\n\u003ccode\u003esingularity exec --contain $SING_IMAGE python -c \u0027ds_report\u0027\u003c/code\u003e\n\u003ccode\u003esingularity exec $SING_FLAGS $SING_IMAGE python -c \u0027ds_report\u0027\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eUsing csc singularity_wrapper (\u003cstrong\u003enot preferred\u003c/strong\u003e, may lead to conflicts especially on multinode-setup) :\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eRUNNING:\u003c/strong\u003e\n\u003ccode\u003esingularity_wrapper exec deepspeed DEEPSPEED_ARGUMENTS path/to/python_script.py PYTHON_ARGUMENTS\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eEXAMPLE:\u003c/strong\u003e\n\u003ccode\u003esingularity_wrapper exec deepspeed --hostfile=hostfile.txt --master_addr=$MASTER_NODE /projappl/project_2004600/risto/model3multi/training/trainer.py --train_data $TRAIN_DATA \\ ... \u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-changes-to-packages\" class=\"anchor\" href=\"#changes-to-packages\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eChanges to packages:\u003c/h2\u003e\n\u003cp\u003eThis version has been configured to use pdsh for inter-node communications. No other runners have been tested and may need spesific configurations.\n\u003ccode\u003e/opt/conda/lib/python3.8/site-packages/deepspeed/launcher/multinode_runner.py\u003c/code\u003e has been modified to contain relevant information about running python inside the container:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eadded line \"source node_init.sh\" \u003cem\u003esee node_init.sh\u003c/em\u003e to PDSH-runner-class\u003c/li\u003e\n\u003cli\u003eexec argument \u003ccode\u003epython\u003c/code\u003e changed to \u003ccode\u003esingularity exec $SING_FLAGS $SING_IMAGE python\u003c/code\u003e to PDSH-runner-class\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-notes\" class=\"anchor\" href=\"#notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eIMPORTANT\u003c/strong\u003e: CSC singularity_wrapper exposes user-libraries even if we use \u003ccode\u003e--contain\u003c/code\u003e-flag so using it with this container is not a good idea.\n\u003ccode\u003e--contain\u003c/code\u003e-flag prevents usage of locally installed packages. Otherwise, conflicts with different versions of packages, especially included modified Deepspeed will cause problems.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eI\u0027ve tried to test get build process working with Github Actions but during build I encounter \"no space left on device\"-error and build crashes. Will try to get this working so newest img would always be ready to get pulled. However, Docker-workflow works.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-resources\" class=\"anchor\" href=\"#resources\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResources:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://singularity-tutorial.github.io/\" rel=\"nofollow\"\u003ehttps://singularity-tutorial.github.io/\u003c/a\u003e -- Basics of singularity usage\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://sylabs.io/guides/3.5/user-guide/\" rel=\"nofollow\"\u003ehttps://sylabs.io/guides/3.5/user-guide/\u003c/a\u003e -- Singularity docs (v.3.5)\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-salmon/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-salmon/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-salmon/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-salmon/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0b8ff9f174b15f24d56c3f8e2cf513b84784150c0375c38dc395c4b3278d6a17/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d73616c6d6f6e\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0b8ff9f174b15f24d56c3f8e2cf513b84784150c0375c38dc395c4b3278d6a17/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d73616c6d6f6e\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-salmon\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/2c22132440bbb02239d96119f1cf10791c102131494c8947ac8fe61fb5e02783/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d73616c6d6f6e\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2c22132440bbb02239d96119f1cf10791c102131494c8947ac8fe61fb5e02783/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d73616c6d6f6e\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-salmon\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/62b78a520b27fb026e274ca940aa93bf9d37fa14d817d47a533364393ecff206/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d73616c6d6f6e\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/62b78a520b27fb026e274ca940aa93bf9d37fa14d817d47a533364393ecff206/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d73616c6d6f6e\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-salmon\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7dd8453685087761442a45f4a77d6ddab1597f1cc80874ef308e2170ed183e6a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d73616c6d6f6e\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7dd8453685087761442a45f4a77d6ddab1597f1cc80874ef308e2170ed183e6a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d73616c6d6f6e\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-salmon\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-salmon\" class=\"anchor\" href=\"#singularity-salmon\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-salmon\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/COMBINE-lab/salmon/raw/master/doc/salmon_logo.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg alt=\"salmon logo\" src=\"https://github.com/COMBINE-lab/salmon/raw/master/doc/salmon_logo.png\" width=\"600\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/COMBINE-lab/salmon\"\u003esalmon\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003esalmon\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/salmon/1.5.2\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/salmon\u003c/code\u003e as \u003ccode\u003e1.5.2.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1637060857.0
+ "subscribers_count": 3,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1639902426.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.def"
],
- "full_name": "DCAN-Labs/BIDS_scripts",
+ "full_name": "iqbal-lab-org/triphecta",
"latest_release": null,
- "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-bids-conversion-scripts\" class=\"anchor\" href=\"#bids-conversion-scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBIDS Conversion Scripts\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-description\" class=\"anchor\" href=\"#description\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h3\u003e\n\u003cp\u003eThis repository contains scripts that will assist in the conversion of raw DICOM data sets to \u003ca href=\"http://bids.neuroimaging.io/format\" rel=\"nofollow\"\u003eBIDS\u003c/a\u003e. The \"heuristics\" folder contains example scripts that have been used to convert data from DICOM to BIDS. \u003cstrong\u003eThis folder may be helpful to build your own heuristics script.\u003c/strong\u003e For additional information on how to create a heuristic script see the \u003ca href=\"https://github.com/nipy/heudiconv\"\u003eheudiconv\u003c/a\u003e github page.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-container-hosting\" class=\"anchor\" href=\"#container-hosting\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainer Hosting\u003c/h3\u003e\n\u003cp\u003ePull the most recent container below, (\u003cstrong\u003eNOTE: you only have to do this once!\u003c/strong\u003e):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://tjhendrickson/BIDS_scripts:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-singularity-usage\" class=\"anchor\" href=\"#singularity-usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Usage\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run /path/to/singularity/images/directory/imagename.img --help\nusage: [-h] [--output_dir OUTPUT_DIR] [--dicom_dir DICOM_DIR]\n [--study_name STUDY_NAME] [--ses_id SES_ID] [--subj_id SUBJ_ID]\n [--heuristic HEURISTIC] [--dry_run]\n\nScript that controls BIDS conversion for individual studies\n\noptional arguments:\n -h, --help show this help message and exit\n --output_dir OUTPUT_DIR\n The directory that the BIDS data will be outputted to\n --dicom_dir DICOM_DIR\n The directory that houses unzipped dicom\n directories/files.\n --study_name STUDY_NAME\n What is the shorthand name for this study?\n --ses_id SES_ID scanning session id\n --subj_id SUBJ_ID subject id\n --heuristic HEURISTIC\n Path to heuristic file, if the file is already within\n the container (i.e. within heuristics folder) you do\n not have to specify a path.\n --dry_run Dry run. A dicominfo_*.tsv file will generate within\n .heudiconv/\u0027subj_id\u0027/info directory which can be used\n to create heuristic script\n\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eThis application must be run with either the \"--heuristic\" or \"--dry_run\" argument, it will fail otherwise.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eUse the \"--dry_run\" argument to take a closer look at the acquistion parameters for a scanning session.\u003c/p\u003e\n\u003cp\u003eTo run a single participant with dry_run argument:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /home/timothy/sandbox_DO_NOT_DELETE/BIDS/142_CIFASD_4:/output_dir \\\n-B /path/to/dicom/data/dir:/dicom_dir /path/to/singularity/images/directory/imagename.img \\\n--output_dir /output_dir --dicom_dir /dicom_dir --ses_id 10000 --subj_id 1000 --dry_run\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will output a hidden folder (named .heudiconv) along with sub-folders based on arguments provided to \"--subj_id\" and \"--ses_id\" respectively.\nWithin the sub-folders will be a tsv file that begins with \"dicominfo\". \u003cstrong\u003eBased on the example above the path to the file will be \".heudiconv/1000/ses-10000/info/dicominfo_ses-10000.tsv\"\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eUse this tsv file to design a heuristics script to organize your eventual nifti data. \u003cstrong\u003eSee this tutorial for a how to on heuristic script creation (\u003ca href=\"http://reproducibility.stanford.edu/bids-tutorial-series-part-2a/#heuman3\" rel=\"nofollow\"\u003eheuristics tutorial\u003c/a\u003e)\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eTo run a single participant with heuristic argument:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /home/timothy/sandbox_DO_NOT_DELETE/BIDS/142_CIFASD_4:/output_dir \\\n-B /path/to/dicom/data/dir:/dicom_dir -B /path/to/heuristics/script:/heuristic.py \\\n /path/to/singularity/images/directory/imagename.img \\\n--output_dir /output_dir --dicom_dir /dicom_dir --ses_id 10000 --subj_id 1000 --heuristic /heuristic.py\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-important-notes\" class=\"anchor\" href=\"#important-notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImportant Notes\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-gotchas\" class=\"anchor\" href=\"#gotchas\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGotchas\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003e1) Bind Mounting\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eIn order to run this container you will have to use \"bind mounting\", meaning you will have to link local folders/files to existing folders/files within the container with the -B flag. In the example above the local folder \"/home/timothy/sandbos_DO_NOT_DELETE/BIDS/142_CIFASD_4\" becomes \"/output_dir\" within the container as they are separated by a colon (:). \u003cstrong\u003eNotice that in both cases above the output and dicom folder and heuristic file are bound to /output_dir, /dicom_dir and /heuristic.py respectively, this is very important.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e2) DICOM Data Formatting\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eDue to the restrictive nature of BIDS the dicom data must be in a particular format in order for the conversion to work properly. This application will copy dicom data directories by searching for either the --subj_id or --ses_id argument present within a dicom directory name, place them in a separate directory, and rearrange them. So for example if the dicom directory is named \"XYXY4776XYXY\" --subj_id 4776 the application will find the \"4776\" pattern.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e3) Subject ID and Session ID names\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eYou must use alphanumerics (i.e. letters or numbers) only (\u003cstrong\u003eno special characters\u003c/strong\u003e) with your subject IDs (subj_id) and session IDs (ses_id). \u003cstrong\u003eNote the \"--ses_id\" argument is optional\u003c/strong\u003e!\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-best-practices\" class=\"anchor\" href=\"#best-practices\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBest Practices\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003e1) Initial Conversion\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eWhile testing the initial BIDS conversion it is best to start with one or two datasets and specify the \u0027--dry_run\u0027 argument (see above for an example of usage).\nThis will create a dicom_info tsv file which can be used for heuristic script creation.\nSee Step 3 of \u0027Run HeuDiConv on ses-001 scans to get the dicominfo file\u0027 within \u003ca href=\"http://reproducibility.stanford.edu/bids-tutorial-series-part-2a/#heuman2\" rel=\"nofollow\"\u003eStanford BIDS Tutorial\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e2) BIDS Validator\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eOnce satisfied with an initial BIDS conversion, prior to running the conversion on an entire study first ensure that the BIDS converted dataset meets the BIDS specification by using the \u003ca href=\"http://incf.github.io/bids-validator/\" rel=\"nofollow\"\u003eBIDS validator web version\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e3) Longitudinal Format\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eWhen converting data to BIDS you can certainly have a cross sectonal directory format such as below:\nBIDS_output\nsub-01\nsub-02\nsub-03\nsub-04\netc\nHowever, I suggest placing data within a longitudinal directory format even if you have cross-sectional data:\nBIDS_output\nsub-01\nses-01\nses-02\nsub-02\nses-01\netc\u003c/p\u003e\n\u003cp\u003eYou can control the BIDS directory format by providing both the arguments --subj_id --ses_id for a conversion, if you only specify one of the two arguments the data will be outputted in a cross-sectional format.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/iqbal-lab-org/triphecta/actions/workflows/build.yaml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/iqbal-lab-org/triphecta/actions/workflows/build.yaml/badge.svg\" alt=\"Build Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-triphecta\" class=\"anchor\" href=\"#triphecta\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etriphecta\u003c/h1\u003e\n\u003cp\u003eUnder construction\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1633800709.0
+ "updated_at": 1639756790.0
},
{
"data_format": 2,
- "description": "sherlock vnc is a singularity container and job script to run xfce4 in a vnc session on the sherlock compute cluster",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "romxero/sherlock_vnc",
- "latest_release": null,
+ "full_name": "AdamWilsonLab/emma_docker",
+ "latest_release": "0.0.605",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-emma-docker-container\" class=\"anchor\" href=\"#emma-docker-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEMMA Docker Container\u003c/h1\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-instructions\" class=\"anchor\" href=\"#instructions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstructions\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quickstart\" class=\"anchor\" href=\"#quickstart\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuickstart\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --rm -p 8787:8787 -e PASSWORD=yourpasswordhere adamwilsonlab/emma:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eVisit \u003ccode\u003elocalhost:8787\u003c/code\u003e in your browser and log in with username rstudio and the password you set. NB: Setting a password is now REQUIRED. Container will error otherwise.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-local-machine-no-password\" class=\"anchor\" href=\"#local-machine-no-password\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLocal machine (no password)\u003c/h2\u003e\n\u003cp\u003eIf you are running on a local machine with other security mechanisms, you can use the following:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --rm \\\n -p 127.0.0.1:8787:8787 \\\n -e DISABLE_AUTH=true \\\n adamwilsonlab/emma:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h2\u003e\n\u003cp\u003eThere are two methods to pull the docker image into Singularity as explained below.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-set-some-useful-environment-variables\" class=\"anchor\" href=\"#set-some-useful-environment-variables\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSet some useful environment variables\u003c/h3\u003e\n\u003cp\u003eIf you don\u0027t do this you\u0027re likely to run out of space because the home directory doesn\u0027t have much room.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# mount project folder inside container:\nexport PROJECT_FOLDER=\"/projects/academic/adamw/\"\n# path to singularity container file. If you want to use a different image, you\u0027ll need\n# to update this line.\nexport DOCKER_PATH=\"docker://adamwilsonlab/emma:latest\"\nexport CONTAINER_PATH=\"/panasas/scratch/grp-adamw/singularity/$USER/AdamWilsonLab-emma_docker:latest.sif\"\n# to use for ssh:\nexport SERVER_URL=\"horae.ccr.buffalo.edu\"\n# folder to hold temporary singularity files - unique for each user:\n# export SINGULARITY_LOCALCACHEDIR=\"/panasas/scratch/grp-adamw/singularity/\"$USER\nexport SINGULARITY_LOCALCACHEDIR=\"/ssd_data/singularity/\"$USER\n\n# name the resulting sif file\nexport SIF_PATH=$SINGULARITY_LOCALCACHEDIR/\"AdamWilsonLab-emma_docker-latest.sif\"\n\n# define a few more folders used by singularity\nexport SINGULARITY_CACHEDIR=$SINGULARITY_LOCALCACHEDIR\nexport SINGULARITY_TMPDIR=$SINGULARITY_LOCALCACHEDIR\n\n# Create the folders if they don\u0027t already exist\nmkdir -p $SINGULARITY_LOCALCACHEDIR/tmp\nmkdir -p $SINGULARITY_LOCALCACHEDIR/run\nmkdir -p $SINGULARITY_LOCALCACHEDIR/rstudio\n\n\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-build-directly-from-docker-image-locally\" class=\"anchor\" href=\"#build-directly-from-docker-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild directly from Docker image locally\u003c/h3\u003e\n\u003cp\u003eBuild the .sif directly from the docker image.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# build the singularity image - note this takes about 3 hours on horae!\nnohup singularity build --force $SIF_PATH $DOCKER_PATH \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003enohup\u003c/code\u003e simply allows it to keep running if the SSH connection is broken.\u003c/p\u003e\n\u003cp\u003eThen follow the \u003ca href=\"singularity_start.sh\"\u003e\u003ccode\u003esingularity_start.sh\u003c/code\u003e\u003c/a\u003e script.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-use-the-precompiled-sif-from-github\" class=\"anchor\" href=\"#use-the-precompiled-sif-from-github\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUse the precompiled .sif from Github\u003c/h3\u003e\n\u003cp\u003eA .sif file is compiled using github actions when the version number of the image is updated in this repository. These can be found \u003ca href=\"https://github.com/AdamWilsonLab/emma_docker/releases\"\u003ehere\u003c/a\u003e. However, they are only produced if turned on in the GitHub actions \u003ccode\u003ebuilder.yml\u003c/code\u003e file.\u003c/p\u003e\n\u003cp\u003eYou will only need to run the following once (unless the image changes).\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd /panasas/scratch/grp-adamw/singularity/adamw\nrm AdamWilsonLab-emma_docker-latest.sif\nwget -O $SIF_PATH https://github.com/AdamWilsonLab/emma_docker/releases/download/0.0.530/AdamWilsonLab-emma_docker-latest.sif.zip\nunzip $SIF_PATH\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen follow the \u003ca href=\"singularity_start.sh\"\u003e\u003ccode\u003esingularity_start.sh\u003c/code\u003e\u003c/a\u003e script.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1634276991.0
+ "updated_at": 1641492090.0
},
{
"data_format": 2,
- "description": "Trigger repo1 on repos2 release",
+ "description": "Generate a singularity container for XDS",
"filenames": [
- "environments/illumina/Singularity"
+ "Singularity.xds_2021-Feb05"
],
- "full_name": "sofstam/repo1",
- "latest_release": "v2.1.3",
- "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-repo1\" class=\"anchor\" href=\"#repo1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRepo1\u003c/h2\u003e\n",
+ "full_name": "hoangnguyen177/xds-singularity-container",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-xds-singularity-container\" class=\"anchor\" href=\"#xds-singularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003exds-singularity-container\u003c/h1\u003e\n\u003cp\u003eGenerate a singularity container for XDS\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1638278004.0
+ "updated_at": 1639537965.0
},
{
"data_format": 2,
- "description": "Singularity images for tensorflow",
+ "description": null,
"filenames": [
- "Singularity.cuda9.0-tf1.13-with_dali",
- "Singularity.cuda9.0-tf1.13-ofed4.4",
- "Singularity.cuda9.0-tf1.13-ofed4.0",
- "Singularity.cuda9.0-tf1.13-without-ofed"
+ "Singularity.speaker_tagging"
],
- "full_name": "Pepitaw/singularity_tensorflow",
+ "full_name": "oboratav/speaker-tagging",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity_tensorflow\" class=\"anchor\" href=\"#singularity_tensorflow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity_tensorflow\u003c/h1\u003e\n\u003cp\u003eSingularity images for tensorflow\nUsed for 2019 APAC HPC-AI\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-red-hen-teletext-color-annotator\" class=\"anchor\" href=\"#red-hen-teletext-color-annotator\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRed Hen Teletext Color Annotator\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://www.redhenlab.org/home/the-cognitive-core-research-topics-in-red-hen/the-barnyard/convert-teletext-colors-to-speaker-tags\" rel=\"nofollow\"\u003eA Red Hen Lab project.\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003eSome providers in certain countries use styling features available in DVB Teletext to color-code their closed captioning. These color codes can potentially be used to detect turn-taking between interlocutors.\u003c/p\u003e\n\u003cp\u003eThis program takes a \u003ccode\u003e.seg\u003c/code\u003e file, reads color tags inside it (if any), and outputs an annotated version of the same file.\u003c/p\u003e\n\u003cp\u003eThe tags it adds are in the form of:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e[start]|[end]|CTG_0|[hex]/[text]\n\u003c/code\u003e\u003c/pre\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eField\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e[start]\u003c/td\u003e\n\u003ctd\u003eStarting timestamp of the annotation\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e[end]\u003c/td\u003e\n\u003ctd\u003eEnding timestamp of the annotation\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e[hex]\u003c/td\u003e\n\u003ctd\u003eHex color of the tag\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e[text]\u003c/td\u003e\n\u003ctd\u003eContents of the tag\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eFor instance:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e20200202214233.960|20200202214234.760|CTG_0|#ffff00/y nuevas pistas.\n20200202214233.960|20200202214234.760|CC1|\u0026lt;font color=\"#ffff00\"\u0026gt;y nuevas pistas.\u0026lt;/font\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003ehex/text\u003c/code\u003e pairs may repeat if more than one color tag exists in a single CC line, with each pair being separated by \u003ccode\u003e|\u003c/code\u003e like so:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e20200202214242.840|20200202214245.360|CTG_0|#ffff00/en busca de respuestas|#ffff00/a las nuevas tendencias.\n20200202214242.840|20200202214245.360|CC1|\u0026lt;font color=\"#ffff00\"\u0026gt;en busca de respuestas\u0026lt;/font\u0026gt; \u0026lt;font color=\"#ffff00\"\u0026gt;a las nuevas tendencias.\u0026lt;/font\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to-install-and-use\" class=\"anchor\" href=\"#how-to-install-and-use\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to Install and Use\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-via-docker\" class=\"anchor\" href=\"#via-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003evia Docker\u003c/h3\u003e\n\u003cp\u003eInstalling and using the tool as a Docker container is by far the easiest way. Simply run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull oboratav/speaker-tagging\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAnd Docker will take care of the rest. To annotate a file, simply pipe it into the container, and capture its output:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecat input_file.txt | docker run -i -a stdin -a stdout oboratav/speaker-tagging \u0026gt; output_file.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can also use the \u003ccode\u003e-v\u003c/code\u003e flag to mount files from the local filesystem:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -i -v /some/input/file.seg:/usr/data/input_file.seg -a stdout oboratav/speaker-tagging /usr/data/input_file.seg \u0026gt; output_file.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-directly\" class=\"anchor\" href=\"#directly\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDirectly\u003c/h3\u003e\n\u003cp\u003eYou can also skip Docker altogether and just clone this git repo, create a virtual environment, and install the requirements listed in \u003ccode\u003erequirements.txt\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-example-use-cases\" class=\"anchor\" href=\"#example-use-cases\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample Use Cases\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eFind occurrences of two different colors in the same line:\n\u003ccode\u003eCTG_0\\|.*([a-f0-9]{6}).*\\|(?!\\1)(?:[a-f0-9]{6})\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1634629001.0
+ "updated_at": 1639347259.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.def"
],
- "full_name": "remiolsen/fast5mod-singularity",
+ "full_name": "piyu2181/singulariyu",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fast5mod-singularity\" class=\"anchor\" href=\"#fast5mod-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efast5mod-singularity\u003c/h1\u003e\n\u003cp\u003eSingulartized version of \u003ca href=\"https://github.com/nanoporetech/fast5mod\"\u003ehttps://github.com/nanoporetech/fast5mod\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1635176825.0
+ "updated_at": 1565736075.0
},
{
"data_format": 2,
@@ -13308,13 +12733,13 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-docker-busybox",
+ "full_name": "garciaml/BrainQCNet_CPU",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-busybox-toy-system-for-singularity-and-docker-image-for-ci\" class=\"anchor\" href=\"#building-a-busybox-toy-system-for-singularity-and-docker-image-for-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a busybox toy system for singularity and docker image for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003etoy system for github actions\u003c/li\u003e\n\u003cli\u003ebuild docker image, push to ghcr.io and re-use that docker image to create a singularity container pushed ghcr.io oras://\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:main\u003c/code\u003e tagged docker image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage-\" class=\"anchor\" href=\"#usage-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-busybox/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-busybox/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocker\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-busybox:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run oras://ghcr.io/truatpasteurdotfr/singularity-docker-busybox:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-brainqcnet-version-for-cpu--detection-of-artifacts-on-brain-t1-weighted-scans\" class=\"anchor\" href=\"#brainqcnet-version-for-cpu--detection-of-artifacts-on-brain-t1-weighted-scans\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBrainQCNet [version for CPU] : Detection of Artifacts on Brain T1-weighted Scans\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/garciaml/BrainQCNet/blob/master/T1_low_quality_2.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/garciaml/BrainQCNet/raw/master/T1_low_quality_2.jpg\" width=\"2000\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFor more information about the specification of BIDS Apps see \u003ca href=\"https://docs.google.com/document/d/1E1Wi5ONvOVVnGhj21S1bmJJ4kyHFT7tkxnV3C23sjIE/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-description\" class=\"anchor\" href=\"#description\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h3\u003e\n\u003cp\u003eBrainQCNet is a software that automatically detects the presence of defaults on brain structural MRI scans.\u003c/p\u003e\n\u003cp\u003eIt is based on a Deep Learning algorithm, you can find more details on how it was built on the paper \u003ca href=\"https://link-to-preprint.com\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eIn order to understand how to use BainQCNet, please go \u003ca href=\"https://github.com/garciaml/BrainQCNet\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-how-to-report-errors\" class=\"anchor\" href=\"#how-to-report-errors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to report errors\u003c/h3\u003e\n\u003cp\u003eUsers can get help using the \u003ca href=\"https://groups.google.com/g/brainqcnet-users\" rel=\"nofollow\"\u003ebrainqcnet-users mailing list\u003c/a\u003e.\nAll bugs, concerns and enhancement requests for this software can be submitted \u003ca href=\"https://github.com/garciaml/BrainQCNet_CPU/issues\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-citation\" class=\"anchor\" href=\"#citation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h3\u003e\n\u003cp\u003eWhen using BrainQCNet, please include the following citation:\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eBrainQCNet: a Deep Learning attention-based model for multi-scale detection of artifacts in brain structural MRI scans\u003c/em\u003e, Melanie Garcia, Nico Dosenbach, Clare Kelly. bioRxiv 2022.03.11.483983; doi: \u003ca href=\"https://doi.org/10.1101/2022.03.11.483983\" rel=\"nofollow\"\u003ehttps://doi.org/10.1101/2022.03.11.483983\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1635194705.0
+ "updated_at": 1646931972.0
},
{
"data_format": 2,
@@ -13322,27 +12747,26 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-docker-stream8-ci",
+ "full_name": "garciaml/BrainQCNet_GPU",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-centos-stream-8-toy-system-for-singularity-and-docker-image-for-ci\" class=\"anchor\" href=\"#building-a-centos-stream-8-toy-system-for-singularity-and-docker-image-for-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a CentOS Stream 8 toy system for singularity and docker image for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003estream8 system for github actions\u003c/li\u003e\n\u003cli\u003ebuild docker image, push to ghcr.io and re-use that docker image to create a singularity container pushed ghcr.io oras://\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:main\u003c/code\u003e tagged docker image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage-\" class=\"anchor\" href=\"#usage-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-stream8-ci/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-stream8-ci/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocker\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-stream8-ci:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run oras://ghcr.io/truatpasteurdotfr/singularity-docker-stream8-ci:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-brainqcnet-version-for-gpu-compatible-with-cuda-cudnn--detection-of-artifacts-on-brain-t1-weighted-scans\" class=\"anchor\" href=\"#brainqcnet-version-for-gpu-compatible-with-cuda-cudnn--detection-of-artifacts-on-brain-t1-weighted-scans\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBrainQCNet [version for GPU compatible with CUDA, CuDNN] : Detection of Artifacts on Brain T1-weighted Scans\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/garciaml/BrainQCNet/blob/master/T1_low_quality_2.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/garciaml/BrainQCNet/raw/master/T1_low_quality_2.jpg\" width=\"2000\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFor more information about the specification of BIDS Apps see \u003ca href=\"https://docs.google.com/document/d/1E1Wi5ONvOVVnGhj21S1bmJJ4kyHFT7tkxnV3C23sjIE/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-description\" class=\"anchor\" href=\"#description\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h3\u003e\n\u003cp\u003eBrainQCNet is a software that automatically detects the presence of defaults on brain structural MRI scans.\u003c/p\u003e\n\u003cp\u003eIt is based on a Deep Learning algorithm, you can find more details on how it was built on the paper \u003ca href=\"https://link-to-preprint.com\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eIn order to understand how to use BainQCNet, please go \u003ca href=\"https://github.com/garciaml/BrainQCNet\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-how-to-report-errors\" class=\"anchor\" href=\"#how-to-report-errors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to report errors\u003c/h3\u003e\n\u003cp\u003eUsers can get help using the \u003ca href=\"https://groups.google.com/g/brainqcnet-users\" rel=\"nofollow\"\u003ebrainqcnet-users mailing list\u003c/a\u003e.\nAll bugs, concerns and enhancement requests for this software can be submitted \u003ca href=\"https://github.com/garciaml/BrainQCNet_GPU/issues\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-citation\" class=\"anchor\" href=\"#citation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h3\u003e\n\u003cp\u003eWhen using BrainQCNet, please include the following citation:\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eBrainQCNet: a Deep Learning attention-based model for multi-scale detection of artifacts in brain structural MRI scans\u003c/em\u003e, Melanie Garcia, Nico Dosenbach, Clare Kelly. bioRxiv 2022.03.11.483983; doi: \u003ca href=\"https://doi.org/10.1101/2022.03.11.483983\" rel=\"nofollow\"\u003ehttps://doi.org/10.1101/2022.03.11.483983\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1635194959.0
+ "updated_at": 1646931926.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "SingularityLfH.def"
],
- "full_name": "truatpasteurdotfr/singularity-docker-centos8-ci",
+ "full_name": "LearningUAV/hallucination",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-centos-8-toy-system-for-singularity-and-docker-image-for-ci\" class=\"anchor\" href=\"#building-a-centos-8-toy-system-for-singularity-and-docker-image-for-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a CentOS 8 toy system for singularity and docker image for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eCentOS-8 system for github actions\u003c/li\u003e\n\u003cli\u003ebuild docker image, push to ghcr.io and re-use that docker image to create a singularity container pushed ghcr.io oras://\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:main\u003c/code\u003e tagged docker image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage-\" class=\"anchor\" href=\"#usage-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-centos8-ci/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-centos8-ci/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocker\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-centos8-ci:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run oras://ghcr.io/truatpasteurdotfr/singularity-docker-centos8-ci:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1635192721.0
+ "updated_at": 1646853452.0
},
{
"data_format": 2,
@@ -13350,104 +12774,111 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-docker-stream8-warewulf4-builder",
+ "full_name": "remiolsen/pin_hic_singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-docker-stream8-warewulf4-builder-\" class=\"anchor\" href=\"#singularity-docker-stream8-warewulf4-builder-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-docker-stream8-warewulf4-builder \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-stream8-warewulf4-builder/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-stream8-warewulf4-builder/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003ewarewulf4 builder container based on a CentOS Stream 8 x86_64 docker image built from github actions\u003c/p\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why\" class=\"anchor\" href=\"#why\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eprovide a minimal builder for warewulf5\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-docker\" class=\"anchor\" href=\"#docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -ti ghcr.io/truatpasteurdotfr/singularity-docker-stream8-warewulf4-builder:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec oras://ghcr.io/truatpasteurdotfr/singularity-docker-stream8-warewulf4-builder:latest rpmbuild -ta warewulf-4.2.0.tar.gz \n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-pin_hic_singularity\" class=\"anchor\" href=\"#pin_hic_singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epin_hic_singularity\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1638431157.0
+ "updated_at": 1647940031.0
},
{
"data_format": 2,
- "description": "Exploratory research using graph neural networks",
+ "description": null,
"filenames": [
- "Singularity"
+ "LaMachine-master/Singularity.dev",
+ "LaMachine-master/Singularity"
],
- "full_name": "davidhin/gnn-exploration",
+ "full_name": "AymanYac/Neonec-Deep-Classsifier",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-lamachine-deepclassifier--neonec-dutch-rd\" class=\"anchor\" href=\"#lamachine-deepclassifier--neonec-dutch-rd\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLaMachine DeepClassifier : Neonec Dutch R\u0026amp;D\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1635288566.0
+ "updated_at": 1647881800.0
},
{
"data_format": 2,
- "description": "DNA methylome-based validation of induced sputum as an effective protocol to study lung immunity: construction of a classifier of pulmonary cell types",
+ "description": "Spatially explicit individual based model that simulates Coffee Leaf Rust epidemics on a coffee farm",
"filenames": [
- ".development/Singularity"
+ "Singularity.def"
],
- "full_name": "JD2112/AlveolarCellTypeDeconvolution",
- "latest_release": "v1.4.1",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-the-r-scripts-to-analyze-the-alveolar-macrophages-hla-drcd3--and-lymphocytes-cd3-specific-cell-types-from-dna-methylation-analysis\" class=\"anchor\" href=\"#the-r-scripts-to-analyze-the-alveolar-macrophages-hla-drcd3--and-lymphocytes-cd3-specific-cell-types-from-dna-methylation-analysis\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThe R scripts to analyze the Alveolar macrophages (HLA-DR+/CD3-) and lymphocytes (CD3+) specific cell types from DNA methylation analysis.\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/JD2112/AlveolarCellTypeDeconvolution/actions/workflows/docker-image.yml\"\u003e\u003cimg src=\"https://github.com/JD2112/AlveolarCellTypeDeconvolution/actions/workflows/docker-image.yml/badge.svg?event=workflow_run\" alt=\"alv-decon\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-related-publication-published-in-epigenetics-2021-08-11\" class=\"anchor\" href=\"#related-publication-published-in-epigenetics-2021-08-11\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRelated publication: (Published in Epigenetics, 2021-08-11)\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003eDas, J., Idh, N., Paues, J., Sikkeland, L. I. B., \u0026amp; Lerm, M.\u003c/em\u003e (2021). **DNA methylome-based validation of induced sputum as an effective protocol to study lung immunity: construction of a classifier of pulmonary cell types. \\ ** bioRxiv.\u003ca href=\"https://www.biorxiv.org/content/10.1101/2021.03.12.435086v1\" rel=\"nofollow\"\u003ehttps://doi.org/10.1101/2021.03.12.435086\u003c/a\u003e \\ \u003ca href=\"https://www.tandfonline.com/doi/full/10.1080/15592294.2021.1969499\" rel=\"nofollow\"\u003eEpigenetics link\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-create-package-and-r-script-files-according-to-the-analysis-or-result-in-the-manuscript\" class=\"anchor\" href=\"#create-package-and-r-script-files-according-to-the-analysis-or-result-in-the-manuscript\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreate package and R script files according to the analysis (or Result in the manuscript).\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eDNA methylome analysis - till the normalizaed beta value calculation.\u003c/li\u003e\n\u003cli\u003eNormality calculation with Anderson\u0027s test (\u003cstrong\u003eTable 1\u003c/strong\u003e)\u003c/li\u003e\n\u003cli\u003ePearson\u0027s rank correaltion analysis - Figures, Table (\u003cstrong\u003eFigure 2 - a. HLA-DR, b. CD3\u003c/strong\u003e)\u003c/li\u003e\n\u003cli\u003eBeanplot from the beta values of the whole dataset to describe the beta distribution over all samples (\u003cstrong\u003eFigure S1a\u003c/strong\u003e)\u003c/li\u003e\n\u003cli\u003eMann-Whitney test for the hypothesis - Figures, Table (F\u003cstrong\u003eigure 3a - HLA-DR and 3b. CD3\u003c/strong\u003e)\u003c/li\u003e\n\u003cli\u003eValidation of SI and BAL from Lung compartments (\u003cstrong\u003eFigure 4\u003c/strong\u003e)\u003c/li\u003e\n\u003cli\u003eTesting of 3 reference-free algorithms - algorithms testings, Venn Diagrams (\u003cstrong\u003eFigure 5a. HLA-DR and Figrue 5b. CD3\u003c/strong\u003e)\u003c/li\u003e\n\u003cli\u003eCell proportion analysis using the EpiDISH package (\u003cstrong\u003eFigure 6\u003c/strong\u003e)\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-use-of-docker-image\" class=\"anchor\" href=\"#use-of-docker-image\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUse of Docker image\u003c/h2\u003e\n\u003cp\u003eDockerfile can be used for all R packages and repositories. The image file can be found here\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull jd21/alv-decon:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-functions-present-in-the-package\" class=\"anchor\" href=\"#functions-present-in-the-package\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFunctions present in the package\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eFunctions\u003c/th\u003e\n\u003cth\u003eR scripts\u003c/th\u003e\n\u003cth\u003edescription\u003c/th\u003e\n\u003cth\u003enotes\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eChAMPanalysis450K()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eChAMPanalysis.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003escript for DNA methylation using ChAMP\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eStatiscalAnalysisHLADR()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eStatisticalAnalysis.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eStatiscalAnalysisCD3()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eStatisticalAnalysis.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eValidationWithCysticFibrosis()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eValidationWithCF.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eCompareAnalysisRingh()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eStatisticalAnalysis.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003ehistogramPlot()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eFigure2c.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003ehistogram analysis for beta values\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eAlveolarCellTypeDeconvolutionRefFreeEWAS()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eFigure3.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003eHouseman algorithm reference free analysis\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eAlveolarCellTypeDeconvolutionSVA()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eFigure3.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003eSVA analysis\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eAlveolarCellTypeDeconvolutionRefFreeCellMix()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eFigure3.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eAlveolarCellTypeDeconvolutionTOAST()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eFigure3.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eggplotRegression()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003eFigure4.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003esFigure1()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003esupplementaryFigureS1.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003esFigure2()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003esupplementaryFigureS2.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cem\u003eqqPlot()\u003c/em\u003e\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003esupplementaryFigureS3.R\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003eQ-Q plot for compare DNA methylome data\u003c/td\u003e\n\u003ctd\u003ea sub-function can also be used; gg_qq()\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
+ "full_name": "comses-education/coffee-leaf-rust-model",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-spatialrust\" class=\"anchor\" href=\"#spatialrust\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpatialRust\u003c/h1\u003e\n\u003cp\u003eSpatialRust is an individual based model that simulates Coffee Leaf Rust epidemics within a coffee farm.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-installing-dependencies\" class=\"anchor\" href=\"#installing-dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling dependencies\u003c/h3\u003e\n\u003cp\u003eMove to this project\u0027s directory and run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-julia\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eusing\u003c/span\u003e Pkg\nPkg\u003cspan class=\"pl-k\"\u003e.\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eactivate\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e.\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e)\nPkg\u003cspan class=\"pl-k\"\u003e.\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003einstantiate\u003c/span\u003e()\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-running-the-model\" class=\"anchor\" href=\"#running-the-model\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the model\u003c/h3\u003e\n\u003cp\u003eThere are two script files available. You can run a single simulation using a fixed parameter set using \u003ccode\u003escripts/OneRun.jl\u003c/code\u003e as follows:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ julia scripts/OneRun.jl\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eResults from this single run will be saved in a \u003ccode\u003eresults\u003c/code\u003e folder as \u003ccode\u003esinglerun.csv\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eThe second option, \u003ccode\u003escripts/ParameterRuns.jl\u003c/code\u003e, lets you run a parameter exploration experiment. The default setup of this experiment will run 2700 simulations. To modify the parameter values to be evaluated or the replicates for each combination, open \u003ccode\u003escripts/ParameterRuns.jl\u003c/code\u003e and edit lines 11 to 14. Like the first option, you can run the script from bash:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ julia scripts/ParameterRuns.jl\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eResults from this experiment will be saved in a \u003ccode\u003eresults\u003c/code\u003e folder as \u003ccode\u003eparameterexp.csv\u003c/code\u003e. Both scripts take care of creating the \u003ccode\u003eresults\u003c/code\u003e folder if it has not been created yet.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 4,
"topics": [
- "dna-methylation",
- "alveolar-macrophages",
- "alveolar-lymphocytes",
- "hla-dr",
- "cd3",
- "cell-deconvolution"
+ "agent-based-model",
+ "computational-model",
+ "julia",
+ "simulation"
],
- "updated_at": 1639727537.0
+ "updated_at": 1654288638.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Count your code, quickly.",
"filenames": [
- "RStudio/Singularity",
- "bc_desktop/Singularity"
+ "12.1.2/Singularity"
],
- "full_name": "SupercomputingWales/open-ondemand-apps",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-open-ondemand-apps\" class=\"anchor\" href=\"#open-ondemand-apps\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eopen-ondemand-apps\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://osc.github.io/ood-documentation/latest/\" rel=\"nofollow\"\u003eOpen-Ondemand\u003c/a\u003e provides a convenient interface for users to access remote servers such as HPC systems.\u003c/p\u003e\n\u003cp\u003eThis repository will store the versions as running on \u003ca href=\"https://portal.supercomputing.wales\" rel=\"nofollow\"\u003eSupercomputing Wales\u003c/a\u003e Hawk system.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-rstudio\" class=\"anchor\" href=\"#rstudio\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRstudio\u003c/h2\u003e\n\u003cp\u003eUsing Rocker container this spins up a Rstudio session. See Singularity file.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-jupyter\" class=\"anchor\" href=\"#jupyter\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eJupyter\u003c/h2\u003e\n\u003cp\u003eUses Anaconda as installed on Hawk to provide Jupyter session. If users install jupyter in their environments installed in home directory then the kernels for their environments also appear as an option.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-bc_desktop\" class=\"anchor\" href=\"#bc_desktop\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebc_desktop\u003c/h2\u003e\n\u003cp\u003eTo allow remote desktop a container was created to allow the desktop (Mate in this case from EPEL) dependencies to be isolated from host OS which doesnt allow EPEL repository. This also supports VirtualGL and TurboVNC to provide 3D interface. Requires Slurm configurationt to support spinning up Xorg and provide a desktop.\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-tokei",
+ "latest_release": "v12.1.2",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-tokei/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-tokei/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-tokei/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-tokei/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/390a2ed4d417fdf45f007b0d91b70db9dc6ff55cff5fc8f811907b8a76d74102/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d746f6b6569\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/390a2ed4d417fdf45f007b0d91b70db9dc6ff55cff5fc8f811907b8a76d74102/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d746f6b6569\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-tokei\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7b139de678930691b4ec584c1314dc0c37bc85e1767f8a2d22394b60895ed619/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d746f6b6569\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7b139de678930691b4ec584c1314dc0c37bc85e1767f8a2d22394b60895ed619/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d746f6b6569\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-tokei\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/4a8856bc06400cf7ded9aef8652c3b21a9258182350126042ebd6e7a605fc4e7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d746f6b6569\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4a8856bc06400cf7ded9aef8652c3b21a9258182350126042ebd6e7a605fc4e7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d746f6b6569\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-tokei\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/933616d1190d66e34b2b8e2c452321c7f5aaf0eba14a74d8672c4f67db1312a0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d746f6b6569\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/933616d1190d66e34b2b8e2c452321c7f5aaf0eba14a74d8672c4f67db1312a0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d746f6b6569\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-tokei\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-tokei\" class=\"anchor\" href=\"#singularity-tokei\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-tokei\u003c/h1\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e===============================================================================\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e Language Files Lines Code Comments Blanks\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e===============================================================================\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e BASH 4 49 30 10 9\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e JSON 1 1332 1332 0 0\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e Shell 1 49 38 1 10\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e TOML 2 77 64 4 9\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e-------------------------------------------------------------------------------\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e Markdown 5 1355 0 1074 281\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e |- JSON 1 41 41 0 0\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e |- Rust 2 53 42 6 5\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e |- Shell 1 22 18 0 4\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e (Total) 1471 101 1080 290\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e-------------------------------------------------------------------------------\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e Rust 19 3416 2840 116 460\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e |- Markdown 12 351 5 295 51\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e (Total) 3767 2845 411 511\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e===============================================================================\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e Total 32 6745 4410 1506 829\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e===============================================================================\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/XAMPPRocky/tokei\"\u003etokei\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003etokei\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/tokei/12.1.2\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/tokei\u003c/code\u003e as \u003ccode\u003e12.1.2.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
- "topics": [],
- "updated_at": 1635457389.0
+ "subscribers_count": 2,
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1649568351.0
},
{
"data_format": 2,
- "description": "Container recipes, usually related to HPC and scientific computing",
+ "description": "FDUPES is a program for identifying or deleting duplicate files residing within specified directories.",
"filenames": [
- "cadabra/cadabra2-2.1.9-stretch/Singularity"
+ "2.1.2/Singularity"
],
- "full_name": "jose-d/container-recipes",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-container-recipes\" class=\"anchor\" href=\"#container-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainer-recipes\u003c/h1\u003e\n",
+ "full_name": "pscedu/singularity-fdupes",
+ "latest_release": "v2.1.2",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-fdupes/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-fdupes/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-fdupes/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-fdupes/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7700c9eafb1c45ca39d418b3ee39c83b436797c445767acae057a19d939f01dd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d666475706573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7700c9eafb1c45ca39d418b3ee39c83b436797c445767acae057a19d939f01dd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d666475706573\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-fdupes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/4e0f77fad0f89b200065773b91d9cf0199d583f2e5dcfe43a4571654d5d8da80/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d666475706573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4e0f77fad0f89b200065773b91d9cf0199d583f2e5dcfe43a4571654d5d8da80/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d666475706573\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-fdupes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/2f63e8145296847b2c2079b4c565a9d7ad5fb9407a85cf088bd7d357b3a00201/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d666475706573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2f63e8145296847b2c2079b4c565a9d7ad5fb9407a85cf088bd7d357b3a00201/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d666475706573\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-fdupes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0ce07a73d5d378e12e65c32c5066e0d1f9c188afcfe5184dc190f28137faf80c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d666475706573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0ce07a73d5d378e12e65c32c5066e0d1f9c188afcfe5184dc190f28137faf80c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d666475706573\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-fdupes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-fdupes\" class=\"anchor\" href=\"#singularity-fdupes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-fdupes\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/adrianlopezroche/fdupes\"\u003efdupes\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003efdupes\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/fdupes/2.1.2\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/fdupes\u003c/code\u003e as \u003ccode\u003e2.1.2.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1636393528.0
+ "subscribers_count": 3,
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1633086411.0
},
{
"data_format": 2,
- "description": "A Strudel2 singularity container based on the code for OpenOnDemand shell application",
+ "description": "A visual approach to monitoring and managing the on campus HPC system known as Bender. ",
"filenames": [
"Singularity"
],
- "full_name": "l1ll1/terminal",
+ "full_name": "wrightedu/Bender-Monitor",
"latest_release": null,
- "readme": "\u003cp\u003eThis container runs code derived from\n\u003ca href=\"https://osc.github.io/ood-documentation/master/applications/shell.html\" rel=\"nofollow\"\u003ehttps://osc.github.io/ood-documentation/master/applications/shell.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWhen starting the program as a batch job, it simply submits a tmux new-session\nWhen connecting to the program,\nit:\u003c/p\u003e\n\u003cp\u003ea) picks an unused port\nb) generates a random token for authenticaion\nc) runs a command like ssh localhost tmux attach-session \nd) proxys that command onto the unused port\ne) watches (using lsof) for connections to the port. if its been disconnected for 5 minutes it shuts down the proxy\nf) prints out the port and token in json format\u003c/p\u003e\n\u003cp\u003eBecause the proxy is inside the container, but the tmux server is outside we have to do a bit ssh localhost\nWhen doing this we supress operations relating to SSHKnowHosts (beacuse localhost is rarely the same localhost)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-debugging\" class=\"anchor\" href=\"#debugging\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDebugging:\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eCheck that you can start a tmux session via echo \"module load singularity\\nsingularity exec term.sif /start\" | sbatch This is what strudel2 does\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eFind out which node your tmux is running on, login, singularity shell term.sif\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInside the singularity shell, try executing /params. Check that it gives json output. Check that it starts node /opt/shell/tmux.js and watchdog.py\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCreate an SSH tunnel to the port specified. Open the URL localhost:/tmux?token=\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-bender-monitor\" class=\"anchor\" href=\"#bender-monitor\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBender-Monitor\u003c/h1\u003e\n\u003cp\u003eA visual approach to monitoring and managing the on campus HPC system known as Bender.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1636670270.0
+ "updated_at": 1649360377.0
},
{
"data_format": 2,
- "description": null,
+ "description": "The MEME Suite allows you to discover novel motifs in collections of unaligned nucleotide or protein sequences, and to perform a wide variety of other motif-based analyses.",
"filenames": [
- "Singularity.centos-7__openmpi-4.0.5__h5py"
+ "5.4.1/Singularity",
+ "5.4.0/Singularity",
+ "5.3.3/Singularity"
],
- "full_name": "mcduta/h5py-demo",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-experimenting-with-hdf5-in-python\" class=\"anchor\" href=\"#experimenting-with-hdf5-in-python\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExperimenting with HDF5 in Python\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-material\" class=\"anchor\" href=\"#material\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMaterial\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003ethis README;\u003c/li\u003e\n\u003cli\u003ethe associated python files;\u003c/li\u003e\n\u003cli\u003ea Singularity container for \u003ccode\u003eminiconda\u003c/code\u003e, \u003ccode\u003empi4py\u003c/code\u003e and \u003ccode\u003eh5py\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e: \u003ccode\u003ejupyter\u003c/code\u003e notebooks to experiment with MPI are very limited in scope by the very logic of parallel execution.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-reading\" class=\"anchor\" href=\"#reading\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReading\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://twiki.cern.ch/twiki/pub/Sandbox/JaredDavidLittleSandbox/PythonandHDF5.pdf\" rel=\"nofollow\"\u003ePython and HDF5\u003c/a\u003e by Andrew Collette (O\u0027Reilly, 2014)\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://ntrs.nasa.gov/api/citations/20180008456/downloads/20180008456.pdf\" rel=\"nofollow\"\u003eSome notes about chunks and compression\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://docs.h5py.org/en/stable/mpi.html#\" rel=\"nofollow\"\u003eh5py online documentation on parallel HDF5\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-container\" class=\"anchor\" href=\"#singularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Container\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-the-container\" class=\"anchor\" href=\"#the-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThe container\u003c/h3\u003e\n\u003cp\u003eThe Singularity container for \u003ccode\u003eminiconda\u003c/code\u003e, \u003ccode\u003empi4py\u003c/code\u003e and \u003ccode\u003eh5py\u003c/code\u003e can be directly downloaded from \u003ca href=\"https://cloud.sylabs.io/library/mcduta/default/h5py\" rel=\"nofollow\"\u003eSyLabs\u003c/a\u003e using the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull library://mcduta/default/h5py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAlternatively, it can be generated from the recipe provided\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity build --fakeroot h5py_latest.sif Singularity.centos-7__openmpi-4.0.5__h5py\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-interactive-shell\" class=\"anchor\" href=\"#interactive-shell\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInteractive Shell\u003c/h3\u003e\n\u003cp\u003eTo experiment with the parallel Python scripts, obtain an interactive shell in the container\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell h5py_latest.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eInteract with the shell, available containerised software and the underlying files system in the normal way, just as on any linux workstation.\u003c/p\u003e\n\u003cp\u003eBasic configuration settings can be checked once in a container shell, \u003cem\u003ee.g.\u003c/em\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eorte-info --config\nh5pcc -showconfig\nconda list h5py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBoth executables as well as the expected HDF5 tools, \u003cem\u003ee.g.\u003c/em\u003e \u003ccode\u003eh5dump\u003c/code\u003e and \u003ccode\u003eh5ls\u003c/code\u003e are already in path. The above commands shows some details of how \u003ccode\u003eh5py\u003c/code\u003e was built (\u003cem\u003ei.e.\u003c/em\u003e on top of a parallel enabled build of HDF5 itself). See also \u003ca href=\"https://docs.h5py.org/en/stable/mpi.html#building-against-parallel-hdf5\" rel=\"nofollow\"\u003eh5py notes on building HDF5\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-input-and-output\" class=\"anchor\" href=\"#input-and-output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput and Output\u003c/h3\u003e\n\u003cp\u003eNeither the Python scripts nor the HDF5 files generated are part of the container. The Python scripts can be anywhere in a path on DLS storage. For the purpose of experimentation for I/O performance, the HDF5 files generated can be on a path that is mounted as \u003ccode\u003egpfs\u003c/code\u003e, \u003ccode\u003enfs\u003c/code\u003e or local \u003ccode\u003eext4\u003c/code\u003e (\u003cem\u003ee.g.\u003c/em\u003e local scratch or \u003ccode\u003e/tmp\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eTip\u003c/strong\u003e: an easy way to verify what a certain path is mounted as is \u003ccode\u003edf -PT /path\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eControlling input and output can be done by bind-mounting paths in the Singularity container. For example, supposing the Python files are in \u003ccode\u003e$HOME/h5pytest\u003c/code\u003e and the output is to go to \u003ccode\u003e/dls/p45/path/to/somewhere\u003c/code\u003e, the command to start the Singularity shell is\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --bind $HOME/h5pytest:/apps/input,/dls/p45/path/to/somewhere:/apps/output h5py_latest.sif\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce in a container shell, go to the designated output path in the container and experiment, \u003cem\u003ee.g.\u003c/em\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd /apps/output/\nmpirun -np 4 python /apps/input/h5py_write_demo.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAny files written to \u003ccode\u003e/apps/output\u003c/code\u003e are \"seen\" outside the container in the path \u003ccode\u003e/dls/p45/path/to/somewhere\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eAn easier alternative to the above is to have the Python scripts and output in the same path, case in which bind-mounting the current working directory is sufficient. For example, the following command lands the Singularity shell in the current directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --home $PWD h5py_latest.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAny files generated in the container shell are visible in \u003ccode\u003e$PWD\u003c/code\u003e outside.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-cluster\" class=\"anchor\" href=\"#cluster\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCluster\u003c/h3\u003e\n\u003cp\u003eAn interactive session on the Hamilton cluster is a good idea for a) the availability of a significant number of cores on which the \u003ccode\u003empirun\u003c/code\u003e-launched Python processes can execute and b) the availability of \u003ccode\u003egpfs\u003c/code\u003e mounted paths. An example of request for an interactive job is\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eqrsh -pe openmpi-savu 20 -l h_rt=01:00:00,m_mem_free=8G -P tomography\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSingularity is available on the cluster nodes.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-h5py-experiments\" class=\"anchor\" href=\"#h5py-experiments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ccode\u003eh5py\u003c/code\u003e Experiments\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-exercise-1\" class=\"anchor\" href=\"#exercise-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExercise 1\u003c/h3\u003e\n\u003cp\u003eFirst, experiment with parallel writes and reads from local disk (\u003ccode\u003eext4\u003c/code\u003e file system). Create a user writable directory in \u003ccode\u003e/tmp\u003c/code\u003e and then obtain an interactive session on Hamilton. Use the commands\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emkdir -p /tmp/$USER\nsingularity shell --bind $PWD:/apps/input,/tmp/$USER:/apps/output h5py_latest.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce in the container shell, run the writer \u003ccode\u003eh5py\u003c/code\u003e demo with a varying number of processes:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd /apps/output/\nfor np in 4 8 16; do mpirun -np ${np} python /apps/input/h5py_write_demo.py; done\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eEdit the file \u003ccode\u003eh5py_write_demo.py\u003c/code\u003e and observe the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe HDF5 files is open using the \u003ccode\u003empio\u003c/code\u003e driver and the operation makes use of the default MPI communicator \u003ccode\u003eMPI.COMM_WORLD\u003c/code\u003e;\u003c/li\u003e\n\u003cli\u003eeach process initialises only a part of the data that is written to file;\u003c/li\u003e\n\u003cli\u003ethere is no \u003cem\u003eglobal\u003c/em\u003e (across-process) view of the data; the variable \u003ccode\u003edataset\u003c/code\u003e is a handle for the data;\u003c/li\u003e\n\u003cli\u003edata initialisation is an \u003cem\u003eindependent\u003c/em\u003e \u003ccode\u003eh5py\u003c/code\u003e operation, while file open and close are \u003cem\u003ecollective\u003c/em\u003e (see the \u003ca href=\"https://docs.h5py.org/en/stable/mpi.html#collective-versus-independent-operations\" rel=\"nofollow\"\u003eh5py notes on this\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe data size is fixed, so increasing the number of processes means each process initialises and writes less data.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-exercise-2\" class=\"anchor\" href=\"#exercise-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExercise 2\u003c/h3\u003e\n\u003cp\u003eNow, run the reader demo, which reads the data from the file written by the writer demo. Use the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003efor np in 4 8 16; do mpirun -np ${np} python /apps/input/h5py_read_demo.py; done\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eEdit the file \u003ccode\u003eh5py_read_demo.py\u003c/code\u003e and observe the similarities with the writer demo.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-exercise-3\" class=\"anchor\" href=\"#exercise-3\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExercise 3\u003c/h3\u003e\n\u003cp\u003eIn the read demo \u003ccode\u003eh5py_read_demo.py\u003c/code\u003e, print additional information on data read by each process, \u003cem\u003ee.g.\u003c/em\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eprint (\" iproc = {}, shape = {}, data[0,0] = {}\".format(iproc, dataproc.shape, dataproc[0,0]))\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePlace this just after the last \u003ccode\u003eMPI.Wtime\u003c/code\u003e call. Rerun the demo with 4 processes and understand the output. Now replace the \"process view\" of the data \u003ccode\u003edataproc[0,0]\u003c/code\u003e with the \"global view\" \u003ccode\u003edataset[0,0]\u003c/code\u003e and rerun. What happens?\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-exercise-4\" class=\"anchor\" href=\"#exercise-4\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExercise 4\u003c/h3\u003e\n\u003cp\u003eNow repeat the write and read runs above on \u003ccode\u003egpfs\u003c/code\u003e rather than \u003ccode\u003eetx4\u003c/code\u003e. Use an interactive cluster session and an appropriate path (\u003cem\u003ee.g.\u003c/em\u003e \u003ccode\u003e/dls/p45\u003c/code\u003e) that is mounted as \u003ccode\u003egpfs\u003c/code\u003e on Hamilton nodes. How do write/read times compare with \u003ccode\u003eext4\u003c/code\u003e?\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-exercise-5\" class=\"anchor\" href=\"#exercise-5\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExercise 5\u003c/h3\u003e\n\u003cp\u003eRepeat the same operations, on the same path as the previous exercise but this time running the containe on a linux workstation, which mounts the path as \u003ccode\u003enfs\u003c/code\u003e (check!). How do results change?\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-exercise-6\" class=\"anchor\" href=\"#exercise-6\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExercise 6\u003c/h3\u003e\n\u003cp\u003eEdit the file \u003ccode\u003eh5py_serial_chunking_demo.py\u003c/code\u003e and understand what it is programmed to do. The demo is serial and can be run outside the container, using the DLS python installation, \u003cem\u003ee.g.\u003c/em\u003e using \u003ccode\u003emodule load python/3.9\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eNotice how the demo writes and then reads the same amount of data (simulating a stack of images) to and from HDF5 files. The first write/read is contiguous (\u003cem\u003ei.e.\u003c/em\u003e no chunks), the second is chunked and the third is chunked and also uses compression.\u003c/p\u003e\n\u003cp\u003eRun the demo on \u003ccode\u003egpfs03\u003c/code\u003e as well as \u003ccode\u003eext4\u003c/code\u003e. The chunked reads should show increased performance over the contiguous, and compressed read even more so.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNotes\u003c/strong\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe success of chunking depends entirely on the particular read data access pattern.\u003c/li\u003e\n\u003cli\u003eThe chunks are set at dataset creation time but can be changed using command line tools, \u003cem\u003ee.g.\u003c/em\u003e \u003ccode\u003eh5repack\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "pscedu/singularity-meme-suite",
+ "latest_release": "v5.4.0",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-meme-suite/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-meme-suite/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-meme-suite/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-meme-suite/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/19fb6791fbb0d3b375a57c2d240aaaf0bcf3c3fc41c90ea1779d4b744a1b503b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/19fb6791fbb0d3b375a57c2d240aaaf0bcf3c3fc41c90ea1779d4b744a1b503b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-meme-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c583cd02f62c30b39ca677f51fb0f0594e8d44174063b0a9eff5e1da24824696/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c583cd02f62c30b39ca677f51fb0f0594e8d44174063b0a9eff5e1da24824696/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-meme-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f6e0b1113a2126c7e25c07091194a3965453a639e67de2097dc827e2dea8066c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f6e0b1113a2126c7e25c07091194a3965453a639e67de2097dc827e2dea8066c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-meme-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/20a21f7be1dd954bce6c17c8486d5d385ff4cc87c3c6b3574e99c4b9287e759c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/20a21f7be1dd954bce6c17c8486d5d385ff4cc87c3c6b3574e99c4b9287e759c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6d656d652d7375697465\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-meme-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-meme-suite\" class=\"anchor\" href=\"#singularity-meme-suite\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-meme-suite\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://meme-suite.org/meme/\" rel=\"nofollow\"\u003ememe-suite\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ememe-suite\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/meme-suite/5.4.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/meme-suite\u003c/code\u003e as \u003ccode\u003e5.4.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1639579950.0
+ "updated_at": 1649276065.0
},
{
"data_format": 2,
@@ -13455,245 +12886,221 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "yimengkong/6mASCOPE",
+ "full_name": "truatpasteurdotfr/bioconda-perl-bioperl",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-6mascope\" class=\"anchor\" href=\"#6mascope\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e6mASCOPE\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-description\" class=\"anchor\" href=\"#description\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h2\u003e\n\u003cp\u003e6mASCOPE is a toolbox to assess 6mA events in eukaryotic species using a quantitative deconvolution approach. By using a novel short-insert library (200~400bp) design with the PacBio sequencing Sequel II System, 6mASCOPE makes an effective use of the large number of circular consensus (CCS) reads to reliably capture deviations in IPD values at single molecule resolution. Taking an innovative metagenomic approach, 6mASCOPE deconvolves the DNA molecules from a gDNA sample into species and genomic regions of interests, and sources of contamination. Using a rationally designed machine learning model, 6mASCOPE enables sensitive and reliable 6mA quantification for each of the deconvolved composition.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-access\" class=\"anchor\" href=\"#access\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAccess\u003c/h2\u003e\n\u003cp\u003eThis current version is for manuscript review. Upon publication, we plan to release 6mASOCPE publically on our GitHub page \u003ca href=\"https://github.com/fanglab/6mascope\"\u003ehttps://github.com/fanglab/6mascope\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003e6mASCOPE is distributed as a fully functional image bypassing the need to install any dependencies others than the virtualization software. We recommend using Singularity, which can be installed on Linux systems and is often the preferred solution by HPC administrators (\u003ca href=\"https://sylabs.io/guides/3.5/user-guide/quick_start.html\" rel=\"nofollow\"\u003eQuick Start\u003c/a\u003e). \u003ccode\u003e6mASCOPE\u003c/code\u003e was tested extensively with Singularity v3.6.4.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emodule load singularity/3.6.4 \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Required only singularity/3.6.4 is a dynamic environment module. \u003c/span\u003e\nsingularity pull 6mASCOPE.sif library://yimengkong/default/6mascope:latest \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Download the image from cloud.sylabs.io; Make sure you have the network connection\u003c/span\u003e\nsingularity build --sandbox 6mASCOPE 6mASCOPE.sif \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Create a writable container named 6mASCOPE\u003c/span\u003e\nsingularity run --no-home -w 6mASCOPE \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Start an interactive shell to use 6mASCOPE, type `exit` to leave\u003c/span\u003e\ninit_6mASCOPE \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003eInside the container; Only required once when start using 6mASCOPE\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e run_6mASCOPE \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003eInside the container; Required every time when running 6mASCOPE\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe image retrieved from \u003ca href=\"https://cloud.sylabs.io/home\" rel=\"nofollow\"\u003eSylab Cloud\u003c/a\u003e with \u003ccode\u003esingularity pull\u003c/code\u003e (e.g. 6mASCOPE.sif) is already built and can be reused at will. Containers built with those instructions are writable meaning that results from 6mASCOPE analysis can be retrieved when the container is not running. Outputs for the following commands can be found at \u003ccode\u003e./path/to/6mASCOPE/home/6mASCOPE/\u003c/code\u003e. To re-run the same container:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --no-home -w 6mASCOPE \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Re-run container 6mASCOPE, type `exit` to leave\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e run_6mASCOPE \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003eInside the container; Required every time when running 6mASCOPE\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-tool-showcase\" class=\"anchor\" href=\"#tool-showcase\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTool showcase\u003c/h2\u003e\n\u003cp\u003eTo showcase the toolbox applications, we provide examples for the analysis of the Drosophila ~45min embryo dataset presented in our manuscript (Fig 5). The dataset can be downloaded with the following commands from within a 6mASCOPE container: \u003ccode\u003e6mASCOPE get_test_data\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-contamination-estimation\" class=\"anchor\" href=\"#contamination-estimation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContamination estimation\u003c/h3\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-goal\" class=\"anchor\" href=\"#goal\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGoal\u003c/h4\u003e\n\u003cp\u003eTo get an idea about the overall contamination of a gDNA sample. This step helps users define the composition of a gDNA sample using a metagenomic approach to assign reads to different species.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-description-1\" class=\"anchor\" href=\"#description-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription:\u003c/h4\u003e\n\u003cp\u003eFor a given CCS dataset generated from short-insert library, 6mASCOPE will examine if there are contaminating species and calculate the proportion of reads mapped to the reference and top 50 contaminated species from reads that do not map to the eukaryotic species of interest.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-inputs\" class=\"anchor\" href=\"#inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs:\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003eCCS reads file capturing all the genetic material in a gDNA sample (.fasta, pre-computed in the following example)\u003c/li\u003e\n\u003cli\u003eEukaryotic reference of genome of interest (.fasta)\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-outputs\" class=\"anchor\" href=\"#outputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs:\u003c/h4\u003e\n\u003cp\u003eFor a given CCS dataset generated from short-insert library, \u003ccode\u003e6mASCOPE\u003c/code\u003e will examine if there are contaminating species and calculate the proportion of reads mapped to the reference and top 50 contaminated species from reads that do not map to the eukaryotic species of interest.\u003c/p\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-example-of-the-output\" class=\"anchor\" href=\"#example-of-the-output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample of the Output:\u003c/h5\u003e\n\u003cpre\u003e\u003ccode\u003eRemove 8491 possible inter-species chimeric reads for further analysis\n#total_CCS\tmapped_to_goi\tcontaminants\n666159\t640345 (96.1249%)\t25814 (3.87505%)\n\nTop 50 mapped species outside goi reference\n#Count\tSpecies\n 10836 Saccharomyces cerevisiae\n 2413 Acetobacter tropicalis\n 1524 Acetobacter pasteurianus\n 1479 Lactobacillus plantarum\n 882 Acetobacter sp.\n ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(Full species list can be viewed in \u003ccode\u003etest.contam.estimate.txt\u003c/code\u003e)\u003c/p\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-example-commands\" class=\"anchor\" href=\"#example-commands\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample commands:\u003c/h5\u003e\n\u003cpre\u003e\u003ccode\u003e6mASCOPE contam -c test.ccs.fasta -r test.ref.fasta -o test.contam.estimate.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIn this example, \u003ccode\u003etest.ccs.fasta\u003c/code\u003e includes CCS reads (674,650) from the Drosophila ~45min embryo reads dataset described in our manuscript and pre-filtered with command \u003ccode\u003e6mASCOPE ccs\u003c/code\u003e. Using 5 cores, runtime is ~12m51s. The output shows ~3.9% CCS reads come from contaminated sources other than Drosophila melanogaster, the genome of interest (goi). Please be noted, blastn is embedded within this step, which will need at least 32-64G RAM.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-6ma-analysis-using-quantitative-deconvolution\" class=\"anchor\" href=\"#6ma-analysis-using-quantitative-deconvolution\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e6mA analysis using quantitative deconvolution\u003c/h3\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-goal-1\" class=\"anchor\" href=\"#goal-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGoal:\u003c/h4\u003e\n\u003cp\u003eFor each source determined in \u003ccode\u003e6mASCOPE contam\u003c/code\u003e, this step will quantify the 6mA/A level and calculate the 6mA contribution (%) of each source to the total 6mA abundance in the gDNA sample.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-inputs-1\" class=\"anchor\" href=\"#inputs-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs:\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003eThe same CCS reads file as explained above for Contamination Estimation (.fasta).\u003c/li\u003e\n\u003cli\u003eIPD and QV information of the CCS reads (pre-computed in the following example, ; this can be generated for new data with \u003ccode\u003e6mASCOPE ipd\u003c/code\u003e command, as explained in detailed tutorial).\u003c/li\u003e\n\u003cli\u003eUser defined groups besides the genome of interest. Examples as shown below. (Left columns: subgroup name. Right columns: contamination sources, use vertical line if multiple sources included within one subgroup).\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eSaccharomyces Saccharomyces\nAcetobacter Acetobacter|Komagataeibacter\nLactobacillus Lactobacillus\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-outputs-1\" class=\"anchor\" href=\"#outputs-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs:\u003c/h4\u003e\n\u003cp\u003eA table including the following information: the proportion (%) of reads from each source out of the total number of reads; source-specific 6mA/A level with 95% confidence intervals (log10-transformed), and contribution (%) of each source to the total 6mA abundance in the gDNA sample (as presented in the manuscript Figure 5A, B, C)\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-example-commands-1\" class=\"anchor\" href=\"#example-commands-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample commands:\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003e6mASCOPE quant -c test.ccs.fasta -i test.IPD.out.A -o test -r test.ref.fasta -s subgroup.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIn this example, the file \u003ccode\u003etest.IPD.out.A\u003c/code\u003e includes the pre-calculated IPD and QV information on the CCS molecules (can be generated with \u003ccode\u003e6mASCOPE ipd\u003c/code\u003e). Only Adenines were included here to to reduce computational time and ease evaluation. \u003ccode\u003esubgroup.txt\u003c/code\u003e includes the pre-defined main contamination groups, inferred from the top mapped species and blast output from \u003ccode\u003e6mASCOPE contam\u003c/code\u003e. Using 5 cores, runtime is ~13m17s.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-example-output\" class=\"anchor\" href=\"#example-output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample output:\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003e #Subgroup count ReadsProportion 6mAlevel(ppm) 6mAlevel(log10) UpCI DownCI subtotal(ppm) contribution(%)\n goi 640345 0.9612 2.0417 -5.69 -5.0 -6.0 1.9625 1.4431\n Saccharomyces 11011 0.0165 45.7088 -4.34 -3.9 -6.0 0.7542 0.5546\n Acetobacter 5757 0.0086 5495.4087 -2.26 -2.0 -2.5 47.2605 34.7522\n Lactobacillus 1517 0.0023 977.2372 -3.01 -2.7 -3.3 2.2476 1.6528\n others 7529 0.0113 7413.1024 -2.13 -1.9 -2.4 83.7681 61.5974\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp align=\"center\"\u003e\n \u003ca href=\"/docs/figures/test.6mASCOPE.ReadsProportion.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"/docs/figures/test.6mASCOPE.ReadsProportion.png\" alt=\"The proportion of CCS reads from each group 6mA\" width=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n1. The % of total CCS reads mapped to different subgroups. Left: The % of CCS reads mapped to D. melanogaster (genome of interest) and contamintant subgroups. Right: The % of CCS reads mapped to different contaminant sources.\n\u003cp align=\"center\"\u003e\n \u003ca href=\"/docs/figures/test.6mASCOPE.6mAlevel.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"/docs/figures/test.6mASCOPE.6mAlevel.png\" alt=\"Group-specific 6mA/A level prediction with confidence intervals 6mA\" width=\"500\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n2. 6mA quantification and 95% confidence intervals (log10-transformed) on CCS reads mapped to different subgroups. Please be noted, it is important to combine the estimated 6mA/A level with its confidence interval for reliable data interpretation. In this example, the 6mA/A level of Saccharomyces (45.7ppm) does not mean abundant 6mA events in this subgroup because it has a wide range of confidence interval (1-125ppm; -6.0 to -3.9 with log10 transformed). In the paper, an additional Sequel II run for this single species (higher yield) actually shows extremely low 6mA level (2ppm, confidence interval: 1-10ppm).\n\u003cp align=\"center\"\u003e\n \u003ca href=\"/docs/figures/test.6mASCOPE.6mAcontribution.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"/docs/figures/test.6mASCOPE.6mAcontribution.png\" alt=\"Group-specific 6mA/A level prediction with confidence intervals 6mA\" width=\"300\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n3. Contribution (%) of each source to total 6mA abundance in the gDNA sample. CCS reads mapped to the D. melanogaster genome only explains 1.4% of the total 6mA events in the gDNA sample (green).\n\u003cp\u003eThese figures can be drawn with \u003ccode\u003esh ~/code/draw_example.sh test.6mASCOPE.txt\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eFor a comprehensive description of\u00a06mASCOPE including installation guide, data preprocessing and a detailed tutorial, including how to apply 6mASCOPE to your own datasets, please refer to the\u00a0\u003ca href=\"https://6mascope.readthedocs.io/en/latest/overview.html\" rel=\"nofollow\"\u003ecomplete documentation\u003c/a\u003e .\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-a-miniconda-based-container-with-bioconda-bioperl\" class=\"anchor\" href=\"#a-miniconda-based-container-with-bioconda-bioperl\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ea miniconda based container with bioconda-bioperl\u003c/h1\u003e\n\u003cp\u003edocker:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/bioconda-perl-bioperl:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003esingularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv oras://ghcr.io/truatpasteurdotfr/bioconda-perl-bioperl:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1637592376.0
+ "updated_at": 1651593131.0
},
{
"data_format": 2,
- "description": "Scripts for building VirSorter2 Cyverse App",
+ "description": "CheckM provides a set of tools for assessing the quality of genomes recovered from isolates, single cells, or metagenomes.",
"filenames": [
- "Singularity"
+ "1.2.0/Singularity",
+ "1.1.3/Singularity"
],
- "full_name": "jiarong/vs2-cyverse-app",
- "latest_release": null,
+ "full_name": "pscedu/singularity-checkm",
+ "latest_release": "v1.1.3",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-checkm/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-checkm/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-checkm/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-checkm/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5c36d6207c7a83b2505f3c3da9648b2bde15022fb54c87c7d694d8aef86ba345/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d636865636b6d\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c36d6207c7a83b2505f3c3da9648b2bde15022fb54c87c7d694d8aef86ba345/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d636865636b6d\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-checkm\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/39b062bc9d3f1163144f8faf52a104ed79d50fb16f21cf3ab1bf888d2f31ffff/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d636865636b6d\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/39b062bc9d3f1163144f8faf52a104ed79d50fb16f21cf3ab1bf888d2f31ffff/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d636865636b6d\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-checkm\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/b2c55512b9909564abb8abf9ff50100608717f5342c5fcce30438dcc63f8eeeb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d636865636b6d\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b2c55512b9909564abb8abf9ff50100608717f5342c5fcce30438dcc63f8eeeb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d636865636b6d\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-checkm\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/4e65c1f34358c555baa1e01b53582475c3621a1e12ad015e81ad9fc5dbc0a221/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d636865636b6d\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4e65c1f34358c555baa1e01b53582475c3621a1e12ad015e81ad9fc5dbc0a221/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d636865636b6d\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-checkm\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-checkm\" class=\"anchor\" href=\"#singularity-checkm\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-checkm\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/93019bef04184f04502c095cd35e9340a581b7ead3193c4e7b387aa845b96f59/687474703a2f2f65636f67656e6f6d6963732e6769746875622e696f2f436865636b4d2f696d672f636865636b6d2e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/93019bef04184f04502c095cd35e9340a581b7ead3193c4e7b387aa845b96f59/687474703a2f2f65636f67656e6f6d6963732e6769746875622e696f2f436865636b4d2f696d672f636865636b6d2e706e67\" width=\"50%\" data-canonical-src=\"http://ecogenomics.github.io/CheckM/img/checkm.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"http://ecogenomics.github.io/CheckM/\" rel=\"nofollow\"\u003eCheckM\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003echeckm\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/CheckM/1.1.3\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/checkm\u003c/code\u003e as \u003ccode\u003e1.1.3.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1640407925.0
+ "subscribers_count": 3,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1651352851.0
},
{
"data_format": 2,
- "description": "Operating Systems",
+ "description": "A repo of container definitions and CI build support",
"filenames": [
- "Singularity"
+ "singularity/analysis/r/Singularity",
+ "singularity/analysis/python/Singularity",
+ "singularity/analysis/notebook/Singularity"
],
- "full_name": "cassimpatel/COMP2211",
+ "full_name": "lkirk/containers",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-operating-systems-comp2211\" class=\"anchor\" href=\"#operating-systems-comp2211\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOperating Systems (COMP2211)\u003c/h1\u003e\n\u003cp\u003eNOTE: this repository does not seem to work, no source code seems to be committed or staged. Instructions to run are kept here, but find a copy of the operating system including all changes made within your UoL Linux File System in Documents\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running\" class=\"anchor\" href=\"#running\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning\u003c/h2\u003e\n\u003cp\u003eNote these instructions are for running on a UoL Linux terminal\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNavigate to the directory containing this README file\u003c/li\u003e\n\u003cli\u003eRun the following command: \u003ccode\u003esingularity shell xv6_tools.simg\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eThe terminal should now prompt you with \u003ccode\u003eSingularity\u0026gt; \u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eNotice you are no longer in the same folder, navigate into the \u003ccode\u003exv6-riscv\u003c/code\u003e directory\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003emake clean\u003c/code\u003e followed by \u003ccode\u003emake\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eStart up the Xv6 Operating system: \u003ccode\u003emake qemu\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eOnce you are finished using the OS:\n\u003cul\u003e\n\u003cli\u003eHold \u003ccode\u003ectrl + a\u003c/code\u003e and click \u003ccode\u003ex\u003c/code\u003e to exit back to Singularity\u003c/li\u003e\n\u003cli\u003eIf you want to view new changes to the OS code: run \u003ccode\u003emake clean; make; make qemu\u003c/code\u003e again to restart the OS\u003c/li\u003e\n\u003cli\u003eTo exit Singularity: use command \u003ccode\u003eexit\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-shortcut-to-run\" class=\"anchor\" href=\"#shortcut-to-run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eShortcut to run\u003c/h2\u003e\n\u003cp\u003eNavigate to the top repository directory and use the commands below. Note you will have to run the first line, then the second.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity shell xv6_tools.simg\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e Desktop/Git/COMP2211/xv6-riscv\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e make clean\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e make\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e make qemu\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1641130398.0
- },
- {
- "data_format": 2,
- "description": "Singularity container for RNA-Seq power analysis",
- "filenames": [
- "Singularity.rnaseqpower"
- ],
- "full_name": "qbicsoftware/rnaseq-power-container",
- "latest_release": "0.3.14",
- "readme": "\u003cp\u003eCreates power or sample size matrix given different experimental parameters. Uploads created heatmaps as attachment to openBIS using attachi-cli and Dync.\u003c/p\u003e\n\u003cp\u003eUses \u003ca href=\"https://doi.org/doi:10.18129/B9.bioc.RnaSeqSampleSize\" rel=\"nofollow\"\u003eRnaSeqSampleSize\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eContainers are built using the \u003ca href=\"https://github.com/singularityhub/singularity-deploy\"\u003eSingularity Deploy template\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-containers\" class=\"anchor\" href=\"#containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainers\u003c/h1\u003e\n\u003cp\u003eThis is my personal repo of container definitions and CI build support\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-background\" class=\"anchor\" href=\"#background\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBackground\u003c/h1\u003e\n\u003cp\u003eSince I use singularity and docker heavily in my analysis/development workflows, I needed a CI system for versioning/releasing containers.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-builds\" class=\"anchor\" href=\"#singularity-builds\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Builds\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://cloud.sylabs.io/library/lkirk/analysis/r\" rel=\"nofollow\"\u003eR\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://cloud.sylabs.io/library/lkirk/analysis/python\" rel=\"nofollow\"\u003ePython\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://cloud.sylabs.io/library/lkirk/analysis/notebook\" rel=\"nofollow\"\u003eJupyter Notebook\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-docker\" class=\"anchor\" href=\"#docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h1\u003e\n\u003cp\u003eTools\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://quay.io/repository/lkirk/bwa\" rel=\"nofollow\"\u003eBWA\u003c/a\u003e \u003ca href=\"https://camo.githubusercontent.com/d8a712bb098b054f0b4be4e9e111d976dc1a1faf2dce9016f81fd76bc4d06462/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6c6b69726b2f6277612f7374617475733f746f6b656e3d38313862616539352d313133612d343762642d396561642d636630343435613137323739\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d8a712bb098b054f0b4be4e9e111d976dc1a1faf2dce9016f81fd76bc4d06462/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6c6b69726b2f6277612f7374617475733f746f6b656e3d38313862616539352d313133612d343762642d396561642d636630343435613137323739\" alt=\"\" data-canonical-src=\"https://quay.io/repository/lkirk/bwa/status?token=818bae95-113a-47bd-9ead-cf0445a17279\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://quay.io/repository/lkirk/samtools\" rel=\"nofollow\"\u003eSamtools\u003c/a\u003e \u003ca href=\"https://camo.githubusercontent.com/c4de3955204a04af95d325f708841180e77c42bbe944739ed74609eb629450ee/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6c6b69726b2f73616d746f6f6c732f7374617475733f746f6b656e3d61316462633336612d633938352d343565312d393563642d353132333030653531383932\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c4de3955204a04af95d325f708841180e77c42bbe944739ed74609eb629450ee/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6c6b69726b2f73616d746f6f6c732f7374617475733f746f6b656e3d61316462633336612d633938352d343565312d393563642d353132333030653531383932\" alt=\"\" data-canonical-src=\"https://quay.io/repository/lkirk/samtools/status?token=a1dbc36a-c985-45e1-95cd-512300e51892\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://quay.io/repository/lkirk/bcftools\" rel=\"nofollow\"\u003eBcftools\u003c/a\u003e \u003ca href=\"https://camo.githubusercontent.com/6090ee9c9b88031c51de2fbe49de54b6c91686e8e676a2d49827af13be55f2d2/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6c6b69726b2f626366746f6f6c732f7374617475733f746f6b656e3d63363032653330612d316637392d346432622d383338372d633762656131393537366632\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6090ee9c9b88031c51de2fbe49de54b6c91686e8e676a2d49827af13be55f2d2/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6c6b69726b2f626366746f6f6c732f7374617475733f746f6b656e3d63363032653330612d316637392d346432622d383338372d633762656131393537366632\" alt=\"\" data-canonical-src=\"https://quay.io/repository/lkirk/bcftools/status?token=c602e30a-1f79-4d2b-8387-c7bea19576f2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1635346688.0
+ "updated_at": 1647133221.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Control + Camera code for the autonomous delivery robot developed for Albert Heijn as part of the Robotics Minor at TU Delft 2020",
"filenames": [
- "bartender/Singularity"
+ "Gazebo/Singularity"
],
- "full_name": "cory-weller/YKO-barseq",
+ "full_name": "Sh-Anand/delivery-fellow",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-yko-barseq\" class=\"anchor\" href=\"#yko-barseq\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eYKO-barseq\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-singularity-image\" class=\"anchor\" href=\"#building-singularity-image\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding singularity image\u003c/h2\u003e\n\u003cp\u003eOn a computer with sudo access, run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e while in directory containing Singularity file\u003c/span\u003e\nsudo singularity build bartender.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-bartender-extractor\" class=\"anchor\" href=\"#running-bartender-extractor\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning bartender extractor\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e \\\n -B /data/SBGE/cory/YKO-barseq:/home/wellerca/ \\\n bartender/bartender.sif bartender_extractor_com \\\n -f seq/MS3059950-600V3_19109498_S7_L001_R1_001.fastq \\\n -o pre \\\n -p CGAGC[34]C -m 1\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eOutput:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRunning bartender extractor\nbartender_extractor seq/MS3059950-600V3_19109498_S7_L001_R1_001.fastq pre 1 \"(CGAG.|CGA.C|CG.GC|C.AGC|.GAGC)([ATCGN]{34})(C)\" CGAGC C 3 1\nTotally there are 1187764 reads in seq/MS3059950-600V3_19109498_S7_L001_R1_001.fastq file!\nTotally there are 1118562 valid barcodes from seq/MS3059950-600V3_19109498_S7_L001_R1_001.fastq file\nTotally there are 1118562 valid barcodes whose quality pass the quality condition\nThe estimated sequence error from the prefix and suffix parts is 0.0311966\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-formatting-barcodes\" class=\"anchor\" href=\"#formatting-barcodes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFormatting barcodes\u003c/h2\u003e\n\u003cp\u003eThe \u003ccode\u003eextracted_barcode.txt\u003c/code\u003e file contains a 34-mer nucleotide sequence, but we only\nwant the 20 nucleotide barcode sequence contained within.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s1\"\u003epython3\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eformat_barcodes\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003epy\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003epre_barcode\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003etxt\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ebarcodes\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003etxt\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-bartender-cluster\" class=\"anchor\" href=\"#running-bartender-cluster\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning bartender cluster\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e \\\n -B /data/SBGE/cory/YKO-barseq:/home/wellerca/ \\\n bartender/bartender.sif bartender_single_com \\\n -f barcodes.txt \\\n -o barcode_clusters \\\n -d 2 \\\n -s 5\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eoutput:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRunning bartender\nLoading barcodes from the file\nIt takes 00:00:01 to load the barcodes from barcodes.txt\nShortest barcode length: 20\nLongest barcode length: 20\nStart to group barcode with length 20\nUsing two sample unpooled test\nTransforming the barcodes into seed clusters\nInitial number of unique reads: 64431\nThe distance threshold is 2\nClustering iteration 1\nClustering iteration 2\nClustering iteration 3\nClustering iteration 4\nIdentified 18272 barcodes with length 20\nThe clustering process takes 00:00:01\nStart to dump clusters to file with prefix barcode_clusters\nStart to remove pcr effects\n***(Overall error rate estimated from the clustering result)***\nTotal number of clusters after removing PCR effects: 18272\nThe estimated error rate is 0.00340786\nThe overall running time 00:00:05 seconds.\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-take-most-abundant-seq-consensus-per-cluster-and-plot\" class=\"anchor\" href=\"#take-most-abundant-seq-consensus-per-cluster-and-plot\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTake most abundant seq (consensus) per cluster and plot\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003elibrary(\u003cspan class=\"pl-smi\"\u003edata.table\u003c/span\u003e)\nlibrary(\u003cspan class=\"pl-smi\"\u003eggplot2\u003c/span\u003e)\nlibrary(\u003cspan class=\"pl-smi\"\u003eggrepel\u003c/span\u003e)\n\n\u003cspan class=\"pl-smi\"\u003edat\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e fread(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ebarcode_clusters_barcode.csv\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e)\n\n\u003cspan class=\"pl-smi\"\u003econsensus\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003edat\u003c/span\u003e[, \u003cspan class=\"pl-smi\"\u003e.SD\u003c/span\u003e[which.max(\u003cspan class=\"pl-smi\"\u003eFrequency\u003c/span\u003e)], \u003cspan class=\"pl-v\"\u003eby\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003eCluster.ID\u003c/span\u003e]\n\nsetnames(\u003cspan class=\"pl-smi\"\u003econsensus\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eUnique.reads\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003econsensus\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e)\n\u003cspan class=\"pl-smi\"\u003econsensus\u003c/span\u003e[, \u003cspan class=\"pl-smi\"\u003eFrequency\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e:\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003eNULL\u003c/span\u003e]\nsetkey(\u003cspan class=\"pl-smi\"\u003econsensus\u003c/span\u003e, \u003cspan class=\"pl-smi\"\u003eCluster.ID\u003c/span\u003e)\nsetkey(\u003cspan class=\"pl-smi\"\u003edat\u003c/span\u003e, \u003cspan class=\"pl-smi\"\u003eCluster.ID\u003c/span\u003e)\n\n\u003cspan class=\"pl-smi\"\u003edat.merge\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e merge(\u003cspan class=\"pl-smi\"\u003edat\u003c/span\u003e, \u003cspan class=\"pl-smi\"\u003econsensus\u003c/span\u003e)\n\u003cspan class=\"pl-smi\"\u003econsensus_counts\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003edat.merge\u003c/span\u003e[, \u003cspan class=\"pl-k\"\u003elist\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eN\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e sum(\u003cspan class=\"pl-smi\"\u003eFrequency\u003c/span\u003e)), \u003cspan class=\"pl-v\"\u003eby\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003econsensus\u003c/span\u003e][order(\u003cspan class=\"pl-k\"\u003e-\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003eN\u003c/span\u003e)]\n\u003cspan class=\"pl-smi\"\u003econsensus_counts\u003c/span\u003e[, \u003cspan class=\"pl-smi\"\u003eabundance_rank\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e:\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e:\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003e.N\u003c/span\u003e]\n\nfwrite(\u003cspan class=\"pl-smi\"\u003econsensus_counts\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003efile\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003econsensus_counts.csv\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003equote\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eF\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003erow.names\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eF\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003ecol.names\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eT\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003esep\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e,\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e)\n\n\n\u003cspan class=\"pl-smi\"\u003econsensus_counts\u003c/span\u003e[\u003cspan class=\"pl-smi\"\u003eN\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e3000\u003c/span\u003e, \u003cspan class=\"pl-smi\"\u003etext_label\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e:\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003econsensus\u003c/span\u003e]\n\n\nggplot(\u003cspan class=\"pl-smi\"\u003econsensus_counts\u003c/span\u003e[\u003cspan class=\"pl-smi\"\u003eN\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e2\u003c/span\u003e], aes(\u003cspan class=\"pl-v\"\u003ex\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003eabundance_rank\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003ey\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003eN\u003c/span\u003e)) \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e geom_point() \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e\nscale_y_continuous(\u003cspan class=\"pl-v\"\u003etrans\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003elog10\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e, \n \u003cspan class=\"pl-v\"\u003ebreaks\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003ec(\u003cspan class=\"pl-c1\"\u003e1e0\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e1e1\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e1e2\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e1e3\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e1e4\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e1e5\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e1e6\u003c/span\u003e),\n \u003cspan class=\"pl-v\"\u003elabels\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003ec(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e1\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e10\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e100\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e1000\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e10000\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e100000\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e1000000\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e)) \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e\nlabs(\u003cspan class=\"pl-v\"\u003ex\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eBarcodes ranked by abundance\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003ey\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eAbundance\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003etitle\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eBarcodes with cluster counts \u0026gt;= 2\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e) \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e\ntheme_few(\u003cspan class=\"pl-c1\"\u003e12\u003c/span\u003e) \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e\ngeom_text_repel(aes(\u003cspan class=\"pl-v\"\u003elabel\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003etext_label\u003c/span\u003e))\n\nggplot(\u003cspan class=\"pl-smi\"\u003econsensus_counts\u003c/span\u003e[\u003cspan class=\"pl-smi\"\u003eN\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e2\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026amp;\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003eN\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e10000\u003c/span\u003e], aes(\u003cspan class=\"pl-v\"\u003ex\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003eabundance_rank\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003ey\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003eN\u003c/span\u003e)) \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e geom_point() \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e\nlabs(\u003cspan class=\"pl-v\"\u003ex\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eBarcodes ranked by abundance\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003ey\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eAbundance\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003etitle\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eBarcodes with cluster counts \u0026gt;= 2 and \u0026lt;= 100000\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e) \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e\ntheme_few(\u003cspan class=\"pl-c1\"\u003e12\u003c/span\u003e) \u003cspan class=\"pl-k\"\u003e+\u003c/span\u003e\ngeom_text_repel(aes(\u003cspan class=\"pl-v\"\u003elabel\u003c/span\u003e\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-smi\"\u003etext_label\u003c/span\u003e))\n\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-delivery-fellow\" class=\"anchor\" href=\"#delivery-fellow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDelivery Fellow\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1631115532.0
+ "updated_at": 1651228584.0
},
{
"data_format": 2,
- "description": "Singularity container for playing 2048",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "bbbbbrie/2048-container",
+ "full_name": "Bandit42/gdown.pl",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-2048-container\" class=\"anchor\" href=\"#2048-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2048-container\u003c/h1\u003e\n\u003cp\u003eA recipe for a Singularity container useful for playing 2048.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-construction\" class=\"anchor\" href=\"#construction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConstruction\u003c/h2\u003e\n\u003cp\u003eBuild the container with something like \u003ccode\u003esudo singularity build 2048.img Singularity\u003c/code\u003e or \u003ccode\u003ebuild-image.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-play-2048\" class=\"anchor\" href=\"#play-2048\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePlay 2048!\u003c/h2\u003e\n\u003cp\u003eRun \u003ccode\u003esingularity exec 2048.img /usr/games/2048-qt\u003c/code\u003e or \u003ccode\u003eplay-2048.sh\u003c/code\u003e after building the container.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/436e8e13c282802e7481996df4fa6dc543fd7e18b520205aa794df403d2226b7/68747470733a2f2f692e696d6775722e636f6d2f64496c50474c642e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/436e8e13c282802e7481996df4fa6dc543fd7e18b520205aa794df403d2226b7/68747470733a2f2f692e696d6775722e636f6d2f64496c50474c642e706e67\" alt=\"Score: 128\" data-canonical-src=\"https://i.imgur.com/dIlPGLd.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-gdownpl\" class=\"anchor\" href=\"#gdownpl\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egdown.pl\u003c/h1\u003e\n\u003cp\u003eGoogle Drive direct download of big files\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-requirements\" class=\"anchor\" href=\"#requirements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements\u003c/h1\u003e\n\u003cp\u003e\u003cem\u003ewget\u003c/em\u003e and \u003cem\u003ePerl\u003c/em\u003e must be in the PATH.\u003cbr\u003e\n\u003cstrong\u003eWindows\u003c/strong\u003e and \u003cstrong\u003elinux\u003c/strong\u003e compatible.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h1\u003e\n\u003cp\u003eUse Google Drive shareable links, viewable by anyone:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ./gdown.pl \u0027gdrive file url\u0027 [\u0027desired file name\u0027] \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-example\" class=\"anchor\" href=\"#example\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample\u003c/h1\u003e\n\u003cp\u003eFor example, to download \u003ca href=\"https://drive.google.com/file/d/0B1L_hFrWJfRhLUJZdXdSdTdfSWs/edit\" rel=\"nofollow\"\u003ethis video\u003c/a\u003e from my \u003ca href=\"https://circulosmeos.wordpress.com/2015/03/04/axolotl-a-simple-plain-text-documentation-system/\" rel=\"nofollow\"\u003eaxolotl project\u003c/a\u003e, just copy the url, and give a file name if desired:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ./gdown.pl https://drive.google.com/file/d/0B1L_hFrWJfRhLUJZdXdSdTdfSWs/edit axolotl.mp4 \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-resuming-a-download\" class=\"anchor\" href=\"#resuming-a-download\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResuming a download\u003c/h1\u003e\n\u003cp\u003eIf you need to resume a download, please, use \u003ca href=\"https://github.com/circulosmeos/gdown.pl/tree/with-resume\"\u003e\u003cstrong\u003egdown.pl v2.0\u003c/strong\u003e here\u003c/a\u003e.\u003cbr\u003e\nAs long as a file name is indicated as second parameter, \u003cem\u003egdown.pl v2.0\u003c/em\u003e \u003cstrong\u003ewill try to resume the partially downloaded file\u003c/strong\u003e if a local incomplete file with that name already exists.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-version\" class=\"anchor\" href=\"#version\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVersion\u003c/h1\u003e\n\u003cp\u003eThis version is \u003cstrong\u003ev1.4\u003c/strong\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-warning\" class=\"anchor\" href=\"#warning\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWarning\u003c/h3\u003e\n\u003cp\u003ePlease, note that v1.2 (available between days 12 to 31 of Jan/2019) \u003cstrong\u003eshould not be used\u003c/strong\u003e, as it contains a bug that could result in unusable downloaded files. Proceed to overwrite with v1.4 in case you have it.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-docker\" class=\"anchor\" href=\"#docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h1\u003e\n\u003cp\u003eA simple Docker file is provided, to build a simple Docker image with gdown.pl.\u003cbr\u003e\nThis has been used for pre-pulling data from a Google Drive to Kubernetes persistent volumes.\u003cbr\u003e\nThanks @anton-khodak\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h1\u003e\n\u003cp\u003eAn example \u003ca href=\"https://sylabs.io/guides/3.2/user-guide/quick_start.html\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e file is provided.\u003cbr\u003e\nBuild the container:\n\u003ccode\u003esudo singularity build (imagename) Singularity\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eRun the container:\n\u003ccode\u003esingularity run (imagename) (gdown.pl args)\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThanks to @ttbrunner\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h1\u003e\n\u003cp\u003eDistributed \u003ca href=\"http://www.gnu.org/licenses/gpl-3.0.html\" rel=\"nofollow\"\u003eunder GPL 3\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-disclaimer\" class=\"anchor\" href=\"#disclaimer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDisclaimer\u003c/h1\u003e\n\u003cp\u003eThis software is provided \"as is\", without warranty of any kind, express or implied.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-more-info\" class=\"anchor\" href=\"#more-info\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMore info\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://circulosmeos.wordpress.com/2014/04/12/google-drive-direct-download-of-big-files\" rel=\"nofollow\"\u003ehttps://circulosmeos.wordpress.com/2014/04/12/google-drive-direct-download-of-big-files\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-contact\" class=\"anchor\" href=\"#contact\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h1\u003e\n\u003cp\u003eby \u003ca href=\"loopidle@gmail.com\"\u003ecirculosmeos\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [
- "singularity-container",
- "2048",
- "2048-game",
- "container"
- ],
- "updated_at": 1556246890.0
+ "topics": [],
+ "updated_at": 1651087778.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "container/Singularity.intel_am4",
- "container/Singularity.intel_netcdf",
- "container/Singularity.gnu"
+ "AttentionASR/util/Singularity.def",
+ "wav2vec2.0bert/util/Singularity.def"
],
- "full_name": "nova0002/troubleshooting",
+ "full_name": "1vket/ASR",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-gfdl-am4-model\" class=\"anchor\" href=\"#gfdl-am4-model\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGFDL AM4 Model\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://zenodo.org/badge/latestdoi/102487636\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/878db836b9000fd7d9ff531257cade7343f3a3fdf8f764b5a7f1e8ef6ccc6abe/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3130323438373633362e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/102487636.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis repository includes the public release of the GFDL AM4 model\ncode. The AM4 model is described in the\n\u003ca href=\"https://doi.org/10.1002/2017MS001208\" rel=\"nofollow\"\u003etwo\u003c/a\u003e\n\u003ca href=\"https://doi.org/10.1002/2017MS001209\" rel=\"nofollow\"\u003earticles\u003c/a\u003e published in the\n\u003ca href=\"https://agupubs.onlinelibrary.wiley.com/journal/19422466\" rel=\"nofollow\"\u003eJournal of Advances in Modeling Earth Systems\n(JAMES)\u003c/a\u003e.\nMore information on the model and access to the output is available on\nthe \u003ca href=\"http://data1.gfdl.noaa.gov/nomads/forms/am4.0/\" rel=\"nofollow\"\u003eAM4 data and code\nsite\u003c/a\u003e at the\n\u003ca href=\"https://www.gfdl.noaa.gov\" rel=\"nofollow\"\u003eGeophysical Fluid Dynamics Laboratory\n(GFDL)\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe layout of this package includes the following directories:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esrc - The source code for the AM4 model\u003c/li\u003e\n\u003cli\u003eexec - The build directory with Makefiles for building the model executable\u003c/li\u003e\n\u003cli\u003erun - Sample run script and updated files needed for running\u003c/li\u003e\n\u003cli\u003eanalysis - Sample analysis scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-cloning-instructions\" class=\"anchor\" href=\"#cloning-instructions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCloning Instructions\u003c/h2\u003e\n\u003cp\u003eThis repository uses \u003ca href=\"https://git-scm.com/book/en/v2/Git-Tools-Submodules\" rel=\"nofollow\"\u003egit\nsubmodules\u003c/a\u003e to\npoint to other repositories. Thus, care should be taken when cloning,\nand updating the source to ensure all source. To obtain all source,\nuse the following git command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone --recursive https://github.com/NOAA-GFDL/AM4.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003e--recursive\u003c/code\u003e option to \u003ccode\u003egit clone\u003c/code\u003e instructs git to recursively\nclone all submodules. In the event the repository was not cloned\nusing the \u003ccode\u003e--recursive\u003c/code\u003e option, the following step must be taken to\nobtain all sources:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# From within the AM4 parent directory\ngit submodule update --init --recursive\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-source-code\" class=\"anchor\" href=\"#source-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSource Code\u003c/h2\u003e\n\u003cp\u003eAll model source is contained in the \u003ca href=\"src\"\u003esrc\u003c/a\u003e directory. GFDL\ntracks code using the git version control system. This package\nincludes a single version of the following GFDL model components. The\ngit hash listed corresponds to the commit hash in the internal GFDL\ngit repository.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eComponent\u003c/th\u003e\n\u003cth\u003eCommit Hash\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eatmos_drivers\u003c/td\u003e\n\u003ctd\u003e5ee95d6abf0879594551dd7e6635dff4004c4010\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eatmos_param\u003c/td\u003e\n\u003ctd\u003e2e94acfd8621e85216bf822c395a8c3f15a511a5\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eatmos_shared\u003c/td\u003e\n\u003ctd\u003ea557d4d7bab033ef1ad1d400a62fe07a97ccb477\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eice_param\u003c/td\u003e\n\u003ctd\u003e1553c8bc4f9a66791c89367b6f327147523155ed\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eice_sis\u003c/td\u003e\n\u003ctd\u003eccc7328dcd79706dd5c17c8bab660222886fc80b\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eland_lad2\u003c/td\u003e\n\u003ctd\u003ea220288ecb289bf9d793d051fc5076072874ce07\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eThe following components are available in the\n\u003ca href=\"https://github.com/NOAA-GFDL\"\u003eNOAA-GFDL\u003c/a\u003e github organization:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/NOAA-GFDL/MOM6\"\u003eMOM6\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/NOAA-GFDL/coupler\"\u003ecoupler\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/NOAA-GFDL/FMS\"\u003eFMS\u003c/a\u003e (as \u003ca href=\"src/shared\"\u003eshared\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere\"\u003eGFDL_atmos_cubed_sphere (tag AM4.0)\u003c/a\u003e (as \u003ca href=\"src/atmos_cubed_sphere\"\u003eatmos_cubed_sphere\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-am4\" class=\"anchor\" href=\"#building-am4\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding AM4\u003c/h2\u003e\n\u003cp\u003e###Containers\nThe \u003ca href=\"container\"\u003econtainer folder\u003c/a\u003e provides example Dockerfiles and Signularity\ndefinition files to use to build AM4 containers using either GCC/GFORTAN or\nIntel oneAPI. There is a script that can be used to build the intel\nsingularity containers, and the first step of this script can be used with the\nother GFDL climate models.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-from-source\" class=\"anchor\" href=\"#from-source\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFrom source\u003c/h3\u003e\n\u003cp\u003eThe \u003ca href=\"exec\"\u003eexec\u003c/a\u003e directory contains Makefiles that can be used to\nbuild the AM4 executable. These Makefiles were generated using the\n\u003ca href=\"https://github.com/NOAA-GFDL/mkmf\"\u003eMake Makefile (mkmf)\u003c/a\u003e program.\nIncluded in the exec direcgtory is a sample make template file for the\nIntel compilers (\u003ca href=\"exec/templates/intel.mk\"\u003eintel.mk\u003c/a\u003e). This make\ntemplate can be used on any system with a relatively recent version of\nthe Intel compilers, the netCDF 4 library and the MPICH2 MPI library.\nIncluded in the \u003ca href=\"exec/templates/intel.mk\"\u003eintel.mk\u003c/a\u003e file are\nadditional settings that can be modified during the build.\u003c/p\u003e\n\u003cp\u003eTo run the default build (-O3 -msse2), go to the exec directory and\nenter the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emake\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you would like to change some of the compiler options, there are several different\noptions to add to the make command. For example\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emake ISA=-xhost BLD_TYPE=REPRO\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewill replace -msse with -xhost and -O3 with -O2. The three options for\n\u003ccode\u003eBLD_TYPE\u003c/code\u003e are\u003cbr\u003e\n\u003ccode\u003ePROD\u003c/code\u003e (-O3)\u003cbr\u003e\n\u003ccode\u003eREPRO\u003c/code\u003e (-O2)\u003cbr\u003e\n\u003ccode\u003eDEBUG\u003c/code\u003e (-O0 and other traps)\u003cbr\u003e\nAll of the make line options can be\nfound in the \u003ca href=\"exec/templates/intel.mk\"\u003eintel.mk\u003c/a\u003e file.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-obtaining-the-input-data\" class=\"anchor\" href=\"#obtaining-the-input-data\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eObtaining the input data\u003c/h2\u003e\n\u003cp\u003eThe input data required for running the AM4 model can be found on\n\u003ca href=\"http://data1.gfdl.noaa.gov/nomads/forms/am4.0/\" rel=\"nofollow\"\u003eGFDL\u0027s data\nportal\u003c/a\u003e .\u003c/p\u003e\n\u003cp\u003eThe file \u003ccode\u003eAM4.tar.gz\u003c/code\u003e contains a configured run directory to run a\nsample experiment of the AM4 model. Included in the tar file is a\nREADME.AM4_run with more instructions on how to configure the AM4 run\ndirectory.\u003c/p\u003e\n\u003cp\u003eOn Linux systems, the \u003ccode\u003ewget\u003c/code\u003e command is usually sufficient to download the data\nfile:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewget ftp://nomads.gfdl.noaa.gov/users/Ming.Zhao/AM4Documentation/GFDL-AM4.0/inputData/AM4_run.tar.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo ensure the file downloaded is complete and not corrupted, download one of the two files:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewget ftp://nomads.gfdl.noaa.gov/users/Ming.Zhao/AM4Documentation/GFDL-AM4.0/inputData/AM4_run.tar.gz.sha256\nwget ftp://nomads.gfdl.noaa.gov/users/Ming.Zhao/AM4Documentation/GFDL-AM4.0/inputData/AM4_run.tar.gz.sig\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand run the following command that corresponds to the signature file downloaded:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esha256sum -c AM4_run.tar.gz.sha256\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003egpg --verify AM4_run.tar.gz.sig\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-am4\" class=\"anchor\" href=\"#running-am4\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning AM4\u003c/h2\u003e\n\u003cp\u003eIncluded in the run directory is a sample run script for reference.\nTo run the AM4 sample experiment, first download the data file\nmentioned in \u003ca href=\"#obtaining-the-input-data\"\u003eObtaining the Input data\u003c/a\u003e\nsection. Replace diag_table and input.nml in the top level of the\nuntar\u0027d directory with the corresponding files in the run directory\nof this repository. Modify the variables in the configuration section\nin the sample run script, and then run the script.\u003c/p\u003e\n\u003cp\u003eThe sample data and run script are configured to run on 216\nprocessors. To run on a different number of processors, or modify the\nexperiment, refer to the \u003ccode\u003eREADME.AM4_run\u003c/code\u003e file included in the AM4\ndata tarball.\u003c/p\u003e\n\u003cp\u003eNote: The \u003ccode\u003einput.nml\u003c/code\u003e file (found in the AM4 data tarball) contains\nFortran namelists and namelist variables that modify, at run time, the\nmodel. To learn more about the settings in the \u003ccode\u003einput.nml\u003c/code\u003e file,\nplease refer to source code where the namelist/variable are defined.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-analysis-scripts\" class=\"anchor\" href=\"#analysis-scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAnalysis Scripts\u003c/h2\u003e\n\u003cp\u003eSome of the climate analysis scripts run at NOAA GFDL and used in the\nAM4 documentation papers are located in the analysis directory.\nWithin each analysis suite, is a \u003ca href=\"https://jupyter-notebook.readthedocs.io/en/stable/\" rel=\"nofollow\"\u003ejupyter\nnotebook\u003c/a\u003e, both\nreadable and runnable from your local jupyter environment, provided\nall dependencies are installed.\u003c/p\u003e\n\u003cp\u003eE.g.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"analysis/cjs1/radiation_atmos_av_mon/radiation_atmos_av_mon.ipynb\"\u003eRadiation processor\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"analysis/bw/bw_atmos_cru_ts_a1r/bw_atmos_monthly_cru_ts.1980-2014.ipynb\"\u003eLong-term DJF seasonal mean\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"analysis/bw/bw_atmos_zm_atl_pac_a1r/bw_atmos_atl_pac.1980-2014.ipynb\"\u003eZonal_mean_zonal_wind_stress\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"analysis/pcmdimetrics/portraitPlot-AM4.AMIP.ipynb\"\u003ePCMDI Metrics Portrait Plot\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-model-output-and-other-references\" class=\"anchor\" href=\"#model-output-and-other-references\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModel output and Other References\u003c/h2\u003e\n\u003cp\u003ePlease refer to the \u003ca href=\"http://data1.gfdl.noaa.gov/nomads/forms/am4.0/\" rel=\"nofollow\"\u003eAM4 data and code\nsite\u003c/a\u003e for details\nabout where to find model and OBS data used in the papers.\u003c/p\u003e\n\u003cp\u003eFor all analysis figures and pertaining data, please use the AM4\ndocumentation papers as the original reference.\u003c/p\u003e\n\u003cp\u003ePlease direct your questions and feedback to\n\u003ca href=\"mailto:gfdl.climate.model.info@noaa.gov\"\u003egfdl.climate.model.info@noaa.gov\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-disclaimer\" class=\"anchor\" href=\"#disclaimer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDisclaimer\u003c/h2\u003e\n\u003cp\u003eThe United States Department of Commerce (DOC) GitHub project code is\nprovided on an \u0027as is\u0027 basis and the user assumes responsibility for\nits use. DOC has relinquished control of the information and no\nlonger has responsibility to protect the integrity, confidentiality,\nor availability of the information. Any claims against the Department\nof Commerce stemming from the use of its GitHub project will be\ngoverned by all applicable Federal law. Any reference to specific\ncommercial products, processes, or services by service mark,\ntrademark, manufacturer, or otherwise, does not constitute or imply\ntheir endorsement, recommendation or favoring by the Department of\nCommerce. The Department of Commerce seal and logo, or the seal and\nlogo of a DOC bureau, shall not be used in any manner to imply\nendorsement of any commercial product or activity by DOC or the United\nStates Government.\u003c/p\u003e\n\u003cp\u003eThis project code is made available through GitHub but is managed by\nNOAA-GFDL at \u003ca href=\"https://gitlab.gfdl.noaa.gov\" rel=\"nofollow\"\u003ehttps://gitlab.gfdl.noaa.gov\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1631295050.0
+ "updated_at": 1649148128.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Definition files for singularity container",
"filenames": [
- "tools/Singularity"
+ "Singularity.test",
+ "Singularity.one-point-stats",
+ "Singularity.reach"
],
- "full_name": "psadil/meta",
+ "full_name": "piyanatk/singularity-containers",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-containers\" class=\"anchor\" href=\"#singularity-containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-containers\u003c/h1\u003e\n\u003cp\u003eDefinition files for singularity container\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1635794729.0
- },
- {
- "data_format": 2,
- "description": "AUGUSTUS is a program that predicts genes in eukaryotic genomic sequences.",
- "filenames": [
- "3.4.0/Singularity"
- ],
- "full_name": "pscedu/singularity-augustus",
- "latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-augustus/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-augustus/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-augustus/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-augustus/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/b009594bd55f20cf925162d0fe98bf76f1a1f741fbee0db595e0980a750bb1ae/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6175677573747573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b009594bd55f20cf925162d0fe98bf76f1a1f741fbee0db595e0980a750bb1ae/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6175677573747573\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-augustus\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/e5e9d7c3436fbd053be5a28483f6822d138a79c3a29716fd6d3f2fe128fae067/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6175677573747573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e5e9d7c3436fbd053be5a28483f6822d138a79c3a29716fd6d3f2fe128fae067/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6175677573747573\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-augustus\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f00d9c84f9567045a6f64ca45bb524ba8b825def2d65b2d01198055f6cba9c46/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6175677573747573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f00d9c84f9567045a6f64ca45bb524ba8b825def2d65b2d01198055f6cba9c46/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6175677573747573\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-augustus\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/955c466d3c55ba981c6418256a37775f3ba366d3272280c174ef9e6ed43f5d27/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6175677573747573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/955c466d3c55ba981c6418256a37775f3ba366d3272280c174ef9e6ed43f5d27/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6175677573747573\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-augustus\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-augustus\" class=\"anchor\" href=\"#singularity-augustus\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-augustus\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for AUGUSTUS.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eaugustus\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/AUGUSTUS/3.4.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/AUGUSTUS\u003c/code\u003e as \u003ccode\u003e3.4.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1631583633.0
+ "updated_at": 1650540063.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "pySCENIC-master/Singularity.0.9.18"
+ "Wave-U-Net-Pytorch/Singularity"
],
- "full_name": "rahuldvs1904/pySCENIC-master",
+ "full_name": "likelian/source-separation",
"latest_release": null,
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-source-separation\" class=\"anchor\" href=\"#source-separation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esource-separation\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1631722647.0
+ "updated_at": 1650573000.0
},
{
"data_format": 2,
- "description": "Class apps for CHPC OnDemand",
+ "description": "A toolkit for aligning multi-modal images to the Allen CCF.",
"filenames": [
- "MIB2020/Singularity"
+ "CWLScripts/Singularity.def"
],
- "full_name": "CHPC-UofU/OOD-class-apps",
+ "full_name": "dontminchenit/CCFAlignmentToolkit",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ood-apps\" class=\"anchor\" href=\"#ood-apps\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOOD-apps\u003c/h1\u003e\n\u003cp\u003eRepository of CHPC\u0027s Class Open OnDemand apps\u003c/p\u003e\n\u003cp\u003eThis is a repository of interactive apps used at CHPC supported classes with Open OnDemand.\u003c/p\u003e\n\u003cp\u003eEach subdirectory has its own README.md which contains information about this particular app.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ccfalignmenttoolkit\" class=\"anchor\" href=\"#ccfalignmenttoolkit\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCCFAlignmentToolkit\u003c/h1\u003e\n\u003cp\u003eOne-time Functions (these are functions that only need to be run once. We will run these and will provide the end results as resources)\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eConstruction of fMOST atlas\nFunction: antsMultivariateTemplateConstruction2.sh\nInputs: Collection of fMOST images to be used in atlas.\nOutputs: fMOST average atlas\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSequential Registration of fMOST atlas to CCF\nFunction: AtlasToCCFSequentialRegistration.py\nInputs: Atlas \u0026amp; labels for fMOST atlas and CCF\nOutputs: Transform between fMOST atlas -\u0026gt; CCF\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eUser Runtime Functions (These are functions the users will run given new images)\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eRegistration of new fMOST image to fMOST atlas\nFunction: fMOSTRegisterToCCF.py\nInputs: New fMOST image (downsampled) and fMOST average atlas\nOutput: Transform between new fMOST image and fMOST atlas\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e2)Applying transforms to image\nFunction: ApplyTransfromTofMOST.py\nInputs: fMOST image; transform between fMOST image-\u0026gt;fMOST atlas; transform between fMOST atlas -\u0026gt; CCF\nOutputs: new fMOST image in CCF space\u003c/p\u003e\n\u003cp\u003e3)Applying transforms to neurons\nFunction: ApplyTransfromToSWC.py\nInputs: SWC in new fMOST image space; transform between fMOST image-\u0026gt;fMOST atlas; transform between fMOST atlas-\u0026gt;CCF\nOutputs: neurons (swc) in CCF space\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1631833519.0
+ "updated_at": 1649347077.0
},
{
"data_format": 2,
- "description": "A Singularity container Definition File for running the Tensorflow Object Detection API and a demo Python script.",
+ "description": "The source code for the TAAMP project",
"filenames": [
- "singularity/Singularity"
+ "downward/misc/releases/19.06/Singularity.19.06",
+ "downward/misc/releases/20.06/Singularity.20.06",
+ "downward/misc/releases/19.12/Singularity.19.12"
],
- "full_name": "cedarwarman/object_detection_singularity",
+ "full_name": "ScazLab/TAAMP",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-tensorflow-object-detection-in-singularity\" class=\"anchor\" href=\"#tensorflow-object-detection-in-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTensorflow Object Detection in Singularity\u003c/h1\u003e\n\u003cp\u003eThis repo contains a Singularity Definition File for making a container that runs the \u003ca href=\"https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2.md\"\u003eTensorflow Object Detection API\u003c/a\u003e. It also contains a Python script that runs a modified version of the API\u0027s \u003ca href=\"https://github.com/tensorflow/models/blob/master/research/object_detection/colab_tutorials/eager_few_shot_od_training_tf2_colab.ipynb\"\u003eEager Few Shot Detector demo\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-singularity-container\" class=\"anchor\" href=\"#building-the-singularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the Singularity container\u003c/h2\u003e\n\u003cp\u003eTo build the Singularity container with \u003ca href=\"https://cloud.sylabs.io/builder\" rel=\"nofollow\"\u003eRemote Builder\u003c/a\u003e, first add your credentials:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity remote login\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity -v build --remote ./singularity/tf_od.sif ./singularity/Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-the-demo\" class=\"anchor\" href=\"#running-the-demo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the demo\u003c/h2\u003e\n\u003cp\u003eTo run the demo with X11 forwarding and error message suppression:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv -B ~/.Xauthority ./singularity/tf_od.sif python3 ./python/eager_few_shot_od_training_tf2_singularity.py \u0026amp;\u0026gt;/dev/null \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eI use this in an HPC environment, so putting it in the background and suppressing messages allows me to monitor the progress with \u003ccode\u003envtop\u003c/code\u003e or \u003ccode\u003envidia-smi\u003c/code\u003e in the same window. Adjust to suit your needs.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-task-affordance-and-motion-planning-taamppproach\" class=\"anchor\" href=\"#task-affordance-and-motion-planning-taamppproach\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTask, Affordance, And Motion Planning (TAAMP)pproach\u003c/h1\u003e\n\u003cp\u003eWe used TAAMP, which is an affordance-based TAMP approach to expedite the search on tasks with contrained environment, or tasks that are infeasible due to environmental constraints. In this approach, we checked whether the environment allow the effects of certain actions. Or in other words, whether the environment can afford these actions. This is because some constraints imposed by the context, such as a very crowded surface that does not allow more objects to be placed on top of it as shown in the image below, is independent of robot configurations (e.g., grasp poses of the object). We refer to the quality of being \"place-able\" as affordance, and each action may have different affordances.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_7_zoom_in.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_7_zoom_in.png\" height=\"150\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWe build upon PDDLStream, the state-of-the-art TAMP planner. The source code of PDDLStream can be found \u003ca href=\"https://github.com/caelan/pddlstream\"\u003ehere\u003c/a\u003e, and the original readme file can be found \u003ca href=\"PDDLSTREAM_README.md\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone --recursive git@github.com:ScazLab/Affordance-based-TAMP.git\n$ cd Affordance-based-TAMP\nAffordance-based-TAMP$ ./downward/build.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eInstall the dependencies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ pip install pybullet numpy scipy\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-demonstrations\" class=\"anchor\" href=\"#demonstrations\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDemonstrations\u003c/h2\u003e\n\u003cp\u003eThis repository contains the demonstrations in simulation that are included in the paper. There are four types of tasks: unconstrained tasks, constrained tasks 1, constrained tasks 2, and infeasible tasks. Each type of task has a demonstration without the tool and one with the tool. In these tasks, a robot should cook the \"celery\" (the green block) by first placing it on the \"sink\" (the blue surface) and then placing it on the \"stove\" (the red surface). The \"radish\" (the cyan block) is not directly related to the goal. Images of each task is shown below:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_1.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_1.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_2.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_2.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_3.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_3.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_4.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_4.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_5.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_5.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_6.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_6.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_7.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_7.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"images/task_8.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/task_8.png\" height=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWe compared our results with PDDLStream which doesn\u0027t have these affordance checks, and used them as control conditions.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-preliminaries\" class=\"anchor\" href=\"#preliminaries\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreliminaries\u003c/h3\u003e\n\u003cp\u003eBefore you ran the code, you should update the directories in the urdf files in \u003ccode\u003eexamples/pybullet/utils/models\u003c/code\u003e and in \u003ccode\u003eexamples/pybullet/utils/models/drake/objects\u003c/code\u003e with the prefix \u003ccode\u003emeiying_\u003c/code\u003e. I attempted to use relative paths but the urdf cannot find the correct point cloud file. I apologize for any inconvenience.\u003c/p\u003e\n\u003cp\u003eYou also need to correct the path in the \u003ccode\u003eexamples/pybullet/utils/model/bb.json\u003c/code\u003e, \u003ccode\u003elearned_samples\\ur/simulator\\pointcloud\\tool.json\u003c/code\u003e, the \u003ccode\u003eget_package_dir()\u003c/code\u003e function in \u003ccode\u003eexamples/pybullet/utils/pybullet_tools/learn_affordance_tamp/constants.py\u003c/code\u003e. This is awarkward coding style, but I run out of time to fix it.\u003c/p\u003e\n\u003cp\u003eNote: If you would like to learn the affordances and use the generic affordance tests, you should train the tasks with TRI-STAR (steps omitted here. Please refer to the TRI-STAR readme file to see how to use the package; You also need to update the file location of the learned affordances in the function \u003ccode\u003e\\_get_goal_range\u003c/code\u003e in \u003ccode\u003emeiying_primitives.py\u003c/code\u003e).\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-unconstrained-tasks\" class=\"anchor\" href=\"#unconstrained-tasks\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUnconstrained Tasks\u003c/h3\u003e\n\u003cp\u003eThe non-tool-use version was orginally included in \u003ca href=\"https://github.com/caelan/pddlstream/tree/main/examples/pybullet/kuka\"\u003ePDDLStream\u003c/a\u003e. We included this task to ensure that the task is friendly to the current planners. In the tool-use version, the robot should first retrieve the the green block with the L-shaped tool.\u003c/p\u003e\n\u003cp\u003eDemonstrations\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNon-Tool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_1_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_2_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eNon-Tool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_1_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_2_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou can add the \u003ccode\u003e-viewer\u003c/code\u003e option to visualize the task and the solution, for example:\n\u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_1_test.run -viewer\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-constrained-tasks-1\" class=\"anchor\" href=\"#constrained-tasks-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConstrained Tasks 1\u003c/h3\u003e\n\u003cp\u003eIn these tasks, the environments are more constrainted than constrained tasks. However, the robots does not need to relocate objects that are not directly related to the goal (e.g., the cyan block). In the non-tool-use task, the robot needs to place the green block on the relatively crowded vlue surface which has limited space for the green block. In the tool-use task, the robot needs to retrieve the green block hiding under the orange tunnel with a T-shaped tool. In these tasks, the red blocks are immovable.\u003c/p\u003e\n\u003cp\u003eDemonstrations\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNon-Tool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_3_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_4_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eNon-Tool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_3_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_4_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-constrained-tasks-2\" class=\"anchor\" href=\"#constrained-tasks-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConstrained Tasks 2\u003c/h3\u003e\n\u003cp\u003eIn these tasks, the robots need to relocate objects that are not directly related to the goal (e.g., the cyan block). In the non-tool-use task, the robot needs to relocate the cyan block to make room for the green block. In the tool-use task, the robot needs to retrieve the L-shaped tool hiding under the orange tunnel with a T-shaped tool, in order to pull the green block towards itself with the T-shaped tool. In these tasks, the red blocks are also immovable.\u003c/p\u003e\n\u003cp\u003eDemonstrations\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNon-Tool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_5_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_6_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eNon-Tool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_5_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_6_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-infeasible-tasks\" class=\"anchor\" href=\"#infeasible-tasks\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInfeasible Tasks\u003c/h3\u003e\n\u003cp\u003eIn these tasks, the robots cannot complete the tasks. The green block is hidding under immovable yellow contrainer, which makes it impossible to pick, pull or push the green block to retrieve it.\u003c/p\u003e\n\u003cp\u003eDemonstrations\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNon-Tool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_7_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_8_test_learn.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eNon-Tool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_7_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eTool-Use Control: \u003ccode\u003eAffordance-based-TAMP$ python -m examples.pybullet.meiying_tamp_8_control.run\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-adding-new-examples\" class=\"anchor\" href=\"#adding-new-examples\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAdding New Examples\u003c/h2\u003e\n\u003cp\u003eTo add a new example, one should first create a folder under \u003ccode\u003eexamples/pybullet\u003c/code\u003e. In this folder, one should create a \u003ccode\u003e__init__.py\u003c/code\u003e to initialize this folder as a package, a \u003ccode\u003edomain.pddl\u003c/code\u003e which defines the problem (e.g., the actions), a \u003ccode\u003estream.pddl\u003c/code\u003e with the streams to certify predicates or generate samples, and a \u003ccode\u003erun.py\u003c/code\u003e that defines the environment.\u003c/p\u003e\n\u003cp\u003eIf a new object is needed, one should create an urdf under \u003ccode\u003eexamples/pybullet/utils/models\u003c/code\u003e. If a pointcloud/mesh is needed, one should create an \u003ccode\u003eobj\u003c/code\u003e file, as well as a ply file with the same name for collision detection purposes.\u003c/p\u003e\n\u003cp\u003eWhen a new action is needed, the names of the correspondence affordance checks in the \u003ccode\u003estream.pddl\u003c/code\u003e should starts with the \u003ccode\u003etest\u003c/code\u003e and also include the word \u003ccode\u003efeasible\u003c/code\u003e so that these checks will be applied earlier in the search process when necessary.\u003c/p\u003e\n\u003cp\u003eWhen sampling for certain affordances are needed, and when fluents are needed (currently only support the AtPose fluent), the name of the affordance samplers should be added to \u003ccode\u003e./pddlstream/algorithms/scheduling/apply_fluents.py\u003c/code\u003e line 98. Note: this is by no means be considered as good coding style, but I did not have time to completely refactor the code. The purpose of this source code is to show the benefit of considering affordances.\u003c/p\u003e\n\u003cp\u003eNote: I only performed a minor code refactor before I upload this source code due to time constraints. I apologize for the messiness of the code.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 9,
"topics": [],
- "updated_at": 1632281930.0
+ "updated_at": 1658517655.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "planner/symk/Singularity",
+ "planner/symk/misc/releases/19.06/Singularity.19.06",
+ "planner/symk/misc/releases/latest/Singularity",
+ "planner/symk/misc/releases/19.12/Singularity.19.12"
],
- "full_name": "DCAN-Labs/heudiconv-helper",
+ "full_name": "zihangs/Janus",
"latest_release": null,
- "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-bids-conversion-scripts\" class=\"anchor\" href=\"#bids-conversion-scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBIDS Conversion Scripts\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-description\" class=\"anchor\" href=\"#description\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h3\u003e\n\u003cp\u003eThis repository contains scripts that will assist in the conversion of raw DICOM data sets to \u003ca href=\"http://bids.neuroimaging.io/format\" rel=\"nofollow\"\u003eBIDS\u003c/a\u003e. The \"heuristics\" folder contains example scripts that have been used to convert data from DICOM to BIDS. \u003cstrong\u003eThis folder may be helpful to build your own heuristics script.\u003c/strong\u003e For additional information on how to create a heuristic script see the \u003ca href=\"https://github.com/nipy/heudiconv\"\u003eheudiconv\u003c/a\u003e github page.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-container-hosting\" class=\"anchor\" href=\"#container-hosting\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainer Hosting\u003c/h3\u003e\n\u003cp\u003ePull the most recent container below, (\u003cstrong\u003eNOTE: you only have to do this once!\u003c/strong\u003e):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://tjhendrickson/BIDS_scripts:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-singularity-usage\" class=\"anchor\" href=\"#singularity-usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Usage\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run /path/to/singularity/images/directory/imagename.img --help\nusage: [-h] [--output_dir OUTPUT_DIR] [--dicom_dir DICOM_DIR]\n [--study_name STUDY_NAME] [--ses_id SES_ID] [--subj_id SUBJ_ID]\n [--heuristic HEURISTIC] [--dry_run]\n\nScript that controls BIDS conversion for individual studies\n\noptional arguments:\n -h, --help show this help message and exit\n --output_dir OUTPUT_DIR\n The directory that the BIDS data will be outputted to\n --dicom_dir DICOM_DIR\n The directory that houses unzipped dicom\n directories/files.\n --study_name STUDY_NAME\n What is the shorthand name for this study?\n --ses_id SES_ID scanning session id\n --subj_id SUBJ_ID subject id\n --heuristic HEURISTIC\n Path to heuristic file, if the file is already within\n the container (i.e. within heuristics folder) you do\n not have to specify a path.\n --dry_run Dry run. A dicominfo_*.tsv file will generate within\n .heudiconv/\u0027subj_id\u0027/info directory which can be used\n to create heuristic script\n\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eThis application must be run with either the \"--heuristic\" or \"--dry_run\" argument, it will fail otherwise.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eUse the \"--dry_run\" argument to take a closer look at the acquistion parameters for a scanning session.\u003c/p\u003e\n\u003cp\u003eTo run a single participant with dry_run argument:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /home/timothy/sandbox_DO_NOT_DELETE/BIDS/142_CIFASD_4:/output_dir \\\n-B /path/to/dicom/data/dir:/dicom_dir /path/to/singularity/images/directory/imagename.img \\\n--output_dir /output_dir --dicom_dir /dicom_dir --ses_id 10000 --subj_id 1000 --dry_run\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will output a hidden folder (named .heudiconv) along with sub-folders based on arguments provided to \"--subj_id\" and \"--ses_id\" respectively.\nWithin the sub-folders will be a tsv file that begins with \"dicominfo\". \u003cstrong\u003eBased on the example above the path to the file will be \".heudiconv/1000/ses-10000/info/dicominfo_ses-10000.tsv\"\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eUse this tsv file to design a heuristics script to organize your eventual nifti data. \u003cstrong\u003eSee this tutorial for a how to on heuristic script creation (\u003ca href=\"http://reproducibility.stanford.edu/bids-tutorial-series-part-2a/#heuman3\" rel=\"nofollow\"\u003eheuristics tutorial\u003c/a\u003e)\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eTo run a single participant with heuristic argument:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /home/timothy/sandbox_DO_NOT_DELETE/BIDS/142_CIFASD_4:/output_dir \\\n-B /path/to/dicom/data/dir:/dicom_dir -B /path/to/heuristics/script:/heuristic.py \\\n /path/to/singularity/images/directory/imagename.img \\\n--output_dir /output_dir --dicom_dir /dicom_dir --ses_id 10000 --subj_id 1000 --heuristic /heuristic.py\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-important-notes\" class=\"anchor\" href=\"#important-notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImportant Notes\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-gotchas\" class=\"anchor\" href=\"#gotchas\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGotchas\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003e1) Bind Mounting\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eIn order to run this container you will have to use \"bind mounting\", meaning you will have to link local folders/files to existing folders/files within the container with the -B flag. In the example above the local folder \"/home/timothy/sandbos_DO_NOT_DELETE/BIDS/142_CIFASD_4\" becomes \"/output_dir\" within the container as they are separated by a colon (:). \u003cstrong\u003eNotice that in both cases above the output and dicom folder and heuristic file are bound to /output_dir, /dicom_dir and /heuristic.py respectively, this is very important.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e2) DICOM Data Formatting\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eDue to the restrictive nature of BIDS the dicom data must be in a particular format in order for the conversion to work properly. This application will copy dicom data directories by searching for either the --subj_id or --ses_id argument present within a dicom directory name, place them in a separate directory, and rearrange them. So for example if the dicom directory is named \"XYXY4776XYXY\" --subj_id 4776 the application will find the \"4776\" pattern.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e3) Subject ID and Session ID names\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eYou must use alphanumerics (i.e. letters or numbers) only (\u003cstrong\u003eno special characters\u003c/strong\u003e) with your subject IDs (subj_id) and session IDs (ses_id). \u003cstrong\u003eNote the \"--ses_id\" argument is optional\u003c/strong\u003e!\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-best-practices\" class=\"anchor\" href=\"#best-practices\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBest Practices\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003e1) Initial Conversion\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eWhile testing the initial BIDS conversion it is best to start with one or two datasets and specify the \u0027--dry_run\u0027 argument (see above for an example of usage).\nThis will create a dicom_info tsv file which can be used for heuristic script creation.\nSee Step 3 of \u0027Run HeuDiConv on ses-001 scans to get the dicominfo file\u0027 within \u003ca href=\"http://reproducibility.stanford.edu/bids-tutorial-series-part-2a/#heuman2\" rel=\"nofollow\"\u003eStanford BIDS Tutorial\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e2) BIDS Validator\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eOnce satisfied with an initial BIDS conversion, prior to running the conversion on an entire study first ensure that the BIDS converted dataset meets the BIDS specification by using the \u003ca href=\"http://incf.github.io/bids-validator/\" rel=\"nofollow\"\u003eBIDS validator web version\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e3) Longitudinal Format\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eWhen converting data to BIDS you can certainly have a cross sectonal directory format such as below:\nBIDS_output\nsub-01\nsub-02\nsub-03\nsub-04\netc\nHowever, I suggest placing data within a longitudinal directory format even if you have cross-sectional data:\nBIDS_output\nsub-01\nses-01\nses-02\nsub-02\nses-01\netc\u003c/p\u003e\n\u003cp\u003eYou can control the BIDS directory format by providing both the arguments --subj_id --ses_id for a conversion, if you only specify one of the two arguments the data will be outputted in a cross-sectional format.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-janus\" class=\"anchor\" href=\"#janus\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eJanus\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1634787198.0
+ "updated_at": 1652720467.0
},
{
"data_format": 2,
- "description": "clone of temp_tc",
+ "description": "Repository for Open OnDemand Applications on Lehigh\u0027s HPC clusters",
"filenames": [
- "Singularity"
+ "spark_r/Singularity"
],
- "full_name": "JoshLorDeveloper/temp_tc_clone",
+ "full_name": "alexpacheco/lurc-ood-apps",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-transactive_control\" class=\"anchor\" href=\"#transactive_control\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etransactive_control\u003c/h1\u003e\n\u003cp\u003eCode meant to support and simulate the Social Game that will be launched in 2020. Elements of transactive control and behavioral engineering will be tested and designed here\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eClone the repo\u003c/li\u003e\n\u003cli\u003eInstall \u003ca href=\"https://dvc.org/doc/install\" rel=\"nofollow\"\u003edvc\u003c/a\u003e (with google drive support)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eOn linux this is \u003ccode\u003epip install \u0027dvc[gdrive]\u0027\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eInstall Docker, if you have not already.\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003epython3 -m dvc remote add -d gdrive gdrive://1qaTn6IYd3cpiyJegDwwEhZ3LwrujK3_x\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003epython3 -m dvc pull\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eRun \u003ccode\u003e./run.sh\u003c/code\u003e from the root of the repo. This will put you in a shell in the docker container with the \u003ccode\u003erl_algos/logs\u003c/code\u003e directory mounted\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003epython3 StableBaselines.py sac test_experiment\u003c/code\u003e in the docker container to start an experiment with the name \u003ccode\u003etest_experiment\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003etensorboard --logdir rl_algos/logs\u003c/code\u003e from outside the docker container to view the logs\u003c/li\u003e\n\u003c/ol\u003e\n\u003chr\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-12202020\" class=\"anchor\" href=\"#12202020\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e12/20/2020\u003c/h3\u003e\n\u003cp\u003eThis repository has been cleaned and updated for use. It contains: (1) The OpenAI gym environment \"OfficeLearn\", in the \"gym-socialgame\" folder, and (2) implementations of Reinforcement learning algorithms in \"rl_algos\" folder. In the \"simulations\" folder are various datasets for setting up and training models associated with the gym simulation.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-912020\" class=\"anchor\" href=\"#912020\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e9/1/2020\u003c/h3\u003e\n\u003cp\u003eThe most recent running of the code involves navigating to the rl_algos/ directory, then running the python command for the vanilla version:\u003c/p\u003e\n\u003cp\u003epython StableBaselines.py sac\u003c/p\u003e\n\u003cp\u003eAdding in the planning model can be done with the following flags:\u003c/p\u003e\n\u003cp\u003epython StableBaselines.py sac --planning_steps=10 --planning_model=Oracle --num_steps=10000\u003c/p\u003e\n\u003cp\u003ePlease see transactive_control/gym-socialgame/gym_socialgame/envs for files pertaining to the setup of the environment. The socialgame_env.py contains a lot of the information necessary for understanding how the agent steps through the environment. The reward.py file contains information on the variety of reward types available for testing. agents.py contains information on the deterministic people that we created for our simulation.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-gym-socialgame\" class=\"anchor\" href=\"#gym-socialgame\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egym-socialgame\u003c/h3\u003e\n\u003cp\u003eOpenAI Gym environment for a social game.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-open-ondemand-applications\" class=\"anchor\" href=\"#open-ondemand-applications\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOpen OnDemand Applications\u003c/h1\u003e\n\u003cp\u003eOpen OnDemand Applications on Lehigh\u0027s HPC cluster.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eMaple\u003c/li\u003e\n\u003cli\u003eMathematica\u003c/li\u003e\n\u003cli\u003eMATLAB\u003c/li\u003e\n\u003cli\u003eAbaqus\u003c/li\u003e\n\u003cli\u003eAnsys\u003c/li\u003e\n\u003cli\u003eDesktop Environment - XCFE\u003c/li\u003e\n\u003cli\u003eGNU Octave\u003c/li\u003e\n\u003cli\u003eSAS\u003c/li\u003e\n\u003cli\u003eVisualization Tools\n\u003cul\u003e\n\u003cli\u003eASE\u003c/li\u003e\n\u003cli\u003eAvogadro 2\u003c/li\u003e\n\u003cli\u003eGabedit\u003c/li\u003e\n\u003cli\u003eGaussView\u003c/li\u003e\n\u003cli\u003eParaview\u003c/li\u003e\n\u003cli\u003ePWGui\u003c/li\u003e\n\u003cli\u003ePyMol\u003c/li\u003e\n\u003cli\u003eVESTA\u003c/li\u003e\n\u003cli\u003eXCrysDen\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSTATA\u003c/li\u003e\n\u003cli\u003eDeepLabCut Desktop Application\u003c/li\u003e\n\u003cli\u003eSpyder\u003c/li\u003e\n\u003cli\u003eSpark + Jupyter\u003c/li\u003e\n\u003cli\u003eSpark + RStudio\u003c/li\u003e\n\u003cli\u003eX-Ray Crytallagraphic analysis tools - XDS, Phenix, CCP4, Cytoscape\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1636716500.0
+ "updated_at": 1651619112.0
},
{
"data_format": 2,
- "description": "Singularity image for the presence_absence pipeline ",
+ "description": "High Resolution Non-Deterministic Face Aging",
"filenames": [
- "Singularity"
+ "gdown.pl/Singularity"
],
- "full_name": "vdclab/simg-PA_tools",
- "latest_release": "0.0.2",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-presence_absence-tools-image\" class=\"anchor\" href=\"#singularity-presence_absence-tools-image\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity presence_absence tools image\u003c/h1\u003e\n\u003cp\u003eSingularity image for the presence_absence pipeline.\u003c/p\u003e\n\u003cp\u003eThis repository is created to be able to not depend on instalation or module loading for the presence abscence pipeline.\u003c/p\u003e\n\u003cp\u003eIn this Singularity container the following software and python library are installed :\u003c/p\u003e\n\u003cp\u003eSoftwares:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNCBI BLAST+ == 2.10.1\u003c/li\u003e\n\u003cli\u003esilix == 1.2.11\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ePython libraries:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003encbi-genome-download == 0.3.0\u003c/li\u003e\n\u003cli\u003eete3 == 3.1.2\u003c/li\u003e\n\u003cli\u003ematplotlib == 3.3.3\u003c/li\u003e\n\u003cli\u003epandas == 1.1.5\u003c/li\u003e\n\u003cli\u003ebiopython == 1.78\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "arshagarwal/Face-AHQ-GAN2",
+ "latest_release": null,
+ "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-steps-to-run-using-docker-using-nvidia-gpus\" class=\"anchor\" href=\"#steps-to-run-using-docker-using-nvidia-gpus\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSteps to run using docker using Nvidia gpus:\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eInstall docker using \u003ca href=\"https://docs.docker.com/engine/install/ubuntu/\" rel=\"nofollow\"\u003edocker installation guide\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eInstall nvidia-docker2 using \u003ca href=\"https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker\" rel=\"nofollow\"\u003envidia-docker2 installation guide\u003c/a\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003cstrong\u003eNote: Ensure to check the latest versions of nvidia cuda runtime and coroborrate with pytorch cuda requirements , this guide was uploaded on 4/9/2020.\u003c/strong\u003e\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eBuild the image using \u003ccode\u003edocker build -f docker -t slimgan:gpu\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eRun the Container using \u003ccode\u003edocker run --gpus all --shm-size 10G -it slimgan:gpu\u003c/code\u003e.\n5.Run the \u003ccode\u003envidia-smi\u003c/code\u003e to check if gpus work.\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003epython main.py --img_dir ../data/celeba_hq/train --iters 20000,60000,100000 --img_size 128,256,512 --batch_size 16,8,2 --gpus 0,1 --c_dim 2 --num_workers 5\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-steps-to-run-the-code-on-google-colab-just-3-lines-of-code\" class=\"anchor\" href=\"#steps-to-run-the-code-on-google-colab-just-3-lines-of-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSteps to run the code on Google colab (just 3 lines of code):\u003c/h2\u003e\n\u003col start=\"0\"\u003e\n\u003cli\u003eClone the code by running the command \u003ccode\u003e!git clone https://username:password@github.com/arshagarwal/C_slim_gan.git -b arsh_spectral\u003c/code\u003e .\n\u003cstrong\u003eReplace the username and password with your github username and password respectively.\u003c/strong\u003e\n\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003ecd C_slim_gan\u003c/code\u003e to navigate to the \u003cstrong\u003eC_slim_gan\u003c/strong\u003e directory.\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003e!bash import_dataset.sh\u003c/code\u003e to import the \u003cstrong\u003eBig slim dataset\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003e! python main.py --rafd_image_dir Big_slim --num_iters 20000 --sample_step 500 --c_dim 2 --log_step 100 --model_save_step 5000 --batch_size 64 --n_critic 2 --rafd_crop_size 128 --image_size 128 \u003c/code\u003e to train on the \u003cstrong\u003eBig_slim_dataset\u003c/strong\u003e.\n\u003cstrong\u003eAlternatively to train on custom dataset replace the \u003ccode\u003eslim_dataset/Train_dataset\u003c/code\u003e string with the path of your custom dataset.\u003c/strong\u003e\u003cbr\u003e\nFor further options such as \u003cstrong\u003enumber of epochs, batch_size etc\u003c/strong\u003e refer \u003cstrong\u003emain.py\u003c/strong\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-note-after-running-step-3-after-every-sample-stepth-iteration-generated-samples-will-be-stored-in-stargansamples-folder-for-performance-evaluation\" class=\"anchor\" href=\"#note-after-running-step-3-after-every-sample-stepth-iteration-generated-samples-will-be-stored-in-stargansamples-folder-for-performance-evaluation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNote: After running step 3 after every sample stepth iteration generated samples will be stored in stargan/samples folder for performance evaluation.\u003c/h3\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-for-continuing-training-from-20000-iteration-to-30000-iteration-follow\" class=\"anchor\" href=\"#for-continuing-training-from-20000-iteration-to-30000-iteration-follow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor Continuing training from 20000 iteration to 30000 iteration follow:\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ccode\u003epython main.py --rafd_image_dir Big_slim --num_iters 30000 --sample_step 500 --c_dim 2 --log_step 100 --model_save_step 5000 --batch_size 64 --n_critic 2 --rafd_crop_size 128 --image_size 128 --resume_iters 20000\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1629657667.0
+ "updated_at": 1651478504.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.main",
- "Singularity.def"
+ "Singularity"
],
- "full_name": "shubavarshini/microbiome",
+ "full_name": "przepiorkaGrzegorz/singularity_container",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-microbiome\" class=\"anchor\" href=\"#microbiome\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emicrobiome\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1630678051.0
+ "updated_at": 1660178824.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- ".ci/github/Singularity"
+ "Singularity"
],
- "full_name": "qwert2333/CEPCSW_training",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-cepcsw\" class=\"anchor\" href=\"#cepcsw\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"https://cepc.github.io/CEPCSW/\" rel=\"nofollow\"\u003eCEPCSW\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://www.travis-ci.com/cepc/CEPCSW\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/51cb592ac6435ae6b6bdc6cca7a941779434c9db16df9857df2a94e6f239971b/68747470733a2f2f7777772e7472617669732d63692e636f6d2f636570632f4345504353572e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://www.travis-ci.com/cepc/CEPCSW.svg?branch=master\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/cepc/CEPCSW/actions\"\u003e\u003cimg src=\"https://github.com/cepc/CEPCSW/workflows/CI/badge.svg?branch=master\" alt=\"CI\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eCEPC offline software prototype based on \u003ca href=\"https://github.com/key4hep\"\u003eKey4hep\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quick-start\" class=\"anchor\" href=\"#quick-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick start\u003c/h2\u003e\n\u003cp\u003eSSH to lxslc7 (CentOS 7).\u003c/p\u003e\n\u003cp\u003eBefore run following commands, please make sure you setup the CVMFS:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone git@github.com:cepc/CEPCSW.git\n$ cd CEPCSW\n$ git checkout master # branch name\n$ source setup.sh\n$ ./build.sh\n$ ./run.sh Examples/options/helloalg.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-packages\" class=\"anchor\" href=\"#packages\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePackages\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eExamples: For new comers and users\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDetector: Geometry\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGenerator: Physics Generator\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSimulation: Detector Simulation\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDigitization: Digitization\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eReconstruction: Reconstruction\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-conventions-for-collections\" class=\"anchor\" href=\"#conventions-for-collections\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConventions for collections\u003c/h2\u003e\n\u003cp\u003eKeep the collection names compatible between the prototype and the existing CEPC software.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMCParticle\u003c/li\u003e\n\u003cli\u003eVXDCollection\u003c/li\u003e\n\u003cli\u003eSITCollection\u003c/li\u003e\n\u003cli\u003eTPCCollection\u003c/li\u003e\n\u003cli\u003eSETCollection\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "Lipinski-B/DE-nf",
+ "latest_release": "v1.0",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-de-nf---pipeline-v10\" class=\"anchor\" aria-hidden=\"true\" href=\"#de-nf---pipeline-v10\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDE-nf : Pipeline V1.0\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-un-pipeline-nextflow-pour-r\u00e9aliser-une-analyse-dexpression-diff\u00e9rentielle-rnaseq-sur-un-ensemble-dindividus\" class=\"anchor\" aria-hidden=\"true\" href=\"#un-pipeline-nextflow-pour-r\u00e9aliser-une-analyse-dexpression-diff\u00e9rentielle-rnaseq-sur-un-ensemble-dindividus\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUn pipeline nextflow pour r\u00e9aliser une analyse d\u0027expression diff\u00e9rentielle RNAseq sur un ensemble d\u0027individus.\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://hub.docker.com/r/lipinskiboris/de-nf/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c5d5383ee3d6248c7d31b5fcaa21fc7d689b53ecb330dbfe628cd1fae38c853/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d72656164792d626c75652e737667\" alt=\"Docker Hub\" data-canonical-src=\"https://img.shields.io/badge/docker-ready-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/5269\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp align=\"center\" width=\"100%\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"analyses-nf.png\"\u003e\u003cimg align=\"center\" width=\"60%\" src=\"analyses-nf.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-description\" class=\"anchor\" aria-hidden=\"true\" href=\"#description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h2\u003e\n\u003cp\u003eCe pipeline a \u00e9t\u00e9 d\u00e9velopp\u00e9 en vue de r\u00e9aliser des analyses RNAseq compl\u00e8tes \u00e0 partir de fichiers FASTA issus de s\u00e9quen\u00e7age NGS.\u003c/p\u003e\n\u003cp\u003eVoici un r\u00e9sum\u00e9 de la m\u00e9thode :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eR\u00e9alisation d\u0027un index (optionnel).\u003c/li\u003e\n\u003cli\u003eAlignement des reads sur le g\u00e9nome de r\u00e9f\u00e9rence.\u003c/li\u003e\n\u003cli\u003eIntersection des fichiers SAM sur l\u0027annotation de r\u00e9f\u00e9rence.\u003c/li\u003e\n\u003cli\u003e\u00c9laboration de la matrice finale de comptage brute.\u003c/li\u003e\n\u003cli\u003eAnalyse d\u0027expression diff\u00e9rentielle sur R via le package DESeq2.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eVeuillez consulter la section \"Usage\" pour tester le pipeline avec un ensemble de donn\u00e9es.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-d\u00e9pendences\" class=\"anchor\" aria-hidden=\"true\" href=\"#d\u00e9pendences\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eD\u00e9pendences\u003c/h2\u003e\n\u003cp\u003eLe pipeline est fonctionnel sous les distributions de Linux.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eCe pipeline est enti\u00e8rement bas\u00e9 sur l\u0027utilisation de \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e. Il est fortement recommand\u00e9 de prendre connaissance de son \u003ca href=\"https://www.nextflow.io/docs/latest/getstarted.html\" rel=\"nofollow\"\u003einstallation\u003c/a\u003e et de son utilisation avant d\u0027ex\u00e9cuter le pipeline.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSoftware \u00e0 installer :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSTAR (version 2.7.7a)\u003c/li\u003e\n\u003cli\u003eBWA (version 0.7.17-r1188)\u003c/li\u003e\n\u003cli\u003esamtools (version 1.9)\u003c/li\u003e\n\u003cli\u003efastqc (version 0.11)\u003c/li\u003e\n\u003cli\u003emultiqc (version 1.8)\u003c/li\u003e\n\u003cli\u003ehtseq-count (version 0.13.5)\u003c/li\u003e\n\u003cli\u003eR (version 4.0.3)\u003c/li\u003e\n\u003cli\u003ePackage R : DESeq2, edgeR, pheatmap, RColorBrewer, ggbeeswarm, genefilter, biomaRt, stringr, ggplot2, NMF, tidyverse.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eFichier compl\u00e9mentaire n\u00e9cessaire :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFichier d\u0027annotation GTF : \u003ca href=\"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/latest/\" rel=\"nofollow\"\u003ehg38\u003c/a\u003e ou \u003ca href=\"https://ftp.ncbi.nlm.nih.gov/genomes/all/annotation_releases/7160/102/GCF_006496715.1_Aalbo_primary.1/GCF_006496715.1_Aalbo_primary.1_genomic.gtf.gz\" rel=\"nofollow\"\u003eAedes albopictus\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFichier FNA pour l\u0027index : \u003ca href=\"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/genes/\" rel=\"nofollow\"\u003ehg38\u003c/a\u003e ou \u003ca href=\"https://ftp.ncbi.nlm.nih.gov/genomes/all/annotation_releases/7160/102/GCF_006496715.1_Aalbo_primary.1/GCF_006496715.1_Aalbo_primary.1_genomic.fna.gz\" rel=\"nofollow\"\u003eAedes albopictus\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFichier XLS : M\u00e9tadonn\u00e9e (voir dossier data/ pour Aedes albopictus)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eAutre :\nDes containers Docker et Singularity ont \u00e9galement \u00e9t\u00e9 \u00e9labor\u00e9 en vue de permettre aux utilisateurs de lancer le pipeline sans avoir \u00e0 installer toutes les d\u00e9pendances n\u00e9cessaires de la partie 2. Les installations des outils \u003ca href=\"https://docs.docker.com/engine/install/ubuntu/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e et \u003ca href=\"https://singularity.lbl.gov/install-linux\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e sont n\u00e9cessaire au pr\u00e9alable. Voir la derni\u00e8re section de \"Usage\" pour plus de d\u00e9tails.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-input\" class=\"anchor\" aria-hidden=\"true\" href=\"#input\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eType\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eFichier FASTA/FASTQ\u003c/td\u003e\n\u003ctd\u003eCorresponds aux fichiers FASTA/FASTQ d\u0027int\u00e9r\u00eat compress\u00e9s au format .gz.\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\u003ca id=\"user-content-param\u00e8tres\" class=\"anchor\" aria-hidden=\"true\" href=\"#param\u00e8tres\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParam\u00e8tres\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ch4\u003e\u003ca id=\"user-content-param\u00e8tres-obligatoires-\" class=\"anchor\" aria-hidden=\"true\" href=\"#param\u00e8tres-obligatoires-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParam\u00e8tres obligatoires :\u003c/h4\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eNom\u003c/th\u003e\n\u003cth\u003eExemple\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--input\u003c/td\u003e\n\u003ctd\u003e/input/\u003c/td\u003e\n\u003ctd\u003eChemin vers le dossier o\u00f9 se trouvent les fichiers FASTA \u00e0 utiliser pour l\u0027analyse. Assurez-vous de n\u0027avoir que les fichiers FASTA d\u0027int\u00e9r\u00eats dans ce dossier et rien d\u0027autre.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--output\u003c/td\u003e\n\u003ctd\u003e/output/\u003c/td\u003e\n\u003ctd\u003eChemin vers le dossier o\u00f9 se trouveront les diff\u00e9rents r\u00e9sultats issus du pipeline.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--GTF\u003c/td\u003e\n\u003ctd\u003e/data/fichier.gtf\u003c/td\u003e\n\u003ctd\u003eChemin o\u00f9 se trouve le fichier d\u0027annotation \u00e0 utiliser pour l\u0027index via STAR et l\u0027intersection via htseq-count.\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ch4\u003e\u003ca id=\"user-content-param\u00e8tres-obligatoires-compl\u00e9mentaires-pour-lindex-\" class=\"anchor\" aria-hidden=\"true\" href=\"#param\u00e8tres-obligatoires-compl\u00e9mentaires-pour-lindex-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParam\u00e8tres obligatoires compl\u00e9mentaires pour l\u0027index :\u003c/h4\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eNom\u003c/th\u003e\n\u003cth\u003eExemple\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--index\u003c/td\u003e\n\u003ctd\u003e/data/index\u003c/td\u003e\n\u003ctd\u003eChemin vers le dossier o\u00f9 se trouve l\u0027index STAR \u00e0 utiliser pour le pipeline. Si cette option n\u0027est pas utilis\u00e9e, merci de vous assurer de fournir l\u0027option --FNA en plus de l\u0027option --GTF pour r\u00e9aliser l\u0027index. Par d\u00e9faut, null.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eOu bien :\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--FNA\u003c/td\u003e\n\u003ctd\u003e/data/fichier.fna\u003c/td\u003e\n\u003ctd\u003eChemin o\u00f9 se trouve le fichier .fna \u00e0 fournir obligatoirement pour r\u00e9aliser l\u0027index si l\u0027option --index n\u0027est pas fourni.\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ch4\u003e\u003ca id=\"user-content-param\u00e8tres-optionellescompl\u00e9mentaires-\" class=\"anchor\" aria-hidden=\"true\" href=\"#param\u00e8tres-optionellescompl\u00e9mentaires-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParam\u00e8tres optionelles/compl\u00e9mentaires :\u003c/h4\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eNom\u003c/th\u003e\n\u003cth\u003eExemple\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--mapper\u003c/td\u003e\n\u003ctd\u003eSTAR/BWA\u003c/td\u003e\n\u003ctd\u003eMapper \u00e0 utiliser. Par d\u00e9faut BWA (MEM).\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--thread\u003c/td\u003e\n\u003ctd\u003eN\u003c/td\u003e\n\u003ctd\u003eNombre de thread \u00e0 utiliser pour le pipeline. Par d\u00e9faut 1.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--R\u003c/td\u003e\n\u003ctd\u003eon/off\u003c/td\u003e\n\u003ctd\u003eOption pour r\u00e9aliser (\"on\") ou non (\"off\") l\u0027analyse d\u0027expression diff\u00e9rentielle sur R par d\u00e9faut sur pipeline. Par d\u00e9faut, off.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--metadata\u003c/td\u003e\n\u003ctd\u003e/data/metadata.xls\u003c/td\u003e\n\u003ctd\u003eChemin o\u00f9 se trouve le fichier de m\u00e9tadonn\u00e9es \u00e0 utiliser pour l\u0027analyse d\u0027expression diff\u00e9rentielle sur R. Obligatoire si l\u0027option --R est mis sur \"on\"\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eLancement basique du pipeline, dans le cas o\u00f9 toutes les d\u00e9pendances sont install\u00e9es localement.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run Lipinski-B/DE-nf --input /input/ --GTF /data/fichier.gtf --FNA /data/fichier.fna --output /output/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLa matrice de comptage r\u00e9sultant correspond au fichier finale.txt dans le dossier \"/output/merge/finale.txt\".\u003c/p\u003e\n\u003cp\u003eUn script DE.R est mis \u00e0 votre disposition dans le dossier \"bin/\" de ce r\u00e9pertoire git, afin de vous permettre de r\u00e9aliser par vous-m\u00eame l\u0027analyse de l\u0027expression diff\u00e9rentielle. Vous aurez donc besoin de la matrice finale pour terminer l\u0027analyse mais aussi d\u0027un fichier XLS r\u00e9pertoriant les m\u00e9tadonn\u00e9es des \u00e9chantillons d\u0027int\u00e9r\u00eats.\u003c/p\u003e\n\u003cp\u003eLe script DE.R se lance comme ceci :\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRscript bin/DE.r finale.txt /data/Metadata.xls\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eVous pouvez utiliser votre propre fichier XLS, dans ce cas il est recommand\u00e9 de suivre comme template le fichier \"Metadata.xls\" que vous trouverez dans le dossier \"data/\" de ce r\u00e9pertoire. Le but ici \u00e9tant de pouvoir permettre \u00e0 l\u0027utilisateur de r\u00e9aliser ses propres analyses exploratoires d\u0027expression diff\u00e9rentielle \u00e0 partir du template fourni dans le script DE.R\u003c/p\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eVous pouvez \u00e9galement lancer le pipeline avec la r\u00e9alisation d\u0027une analyse d\u0027expression diff\u00e9rentielle par d\u00e9faut sur R de fa\u00e7on automatique, via l\u0027option --R.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run Lipinski-B/DE-nf --input /input/ --GTF /data/fichier.gtf --FNA /data/fichier.fna --R on --metadata /data/metadata.xls --output /output/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUn rapport sera mis \u00e0 votre disposition dans le dossier \"/output/R/\".\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eDans le cas o\u00f9 toutes les d\u00e9pendances sont install\u00e9es localement et vous souhaitez utiliser votre propre index STAR pour l\u0027analyse, vous pouvez suivre cette proc\u00e9dure. Attention pour des raisons de compatibilit\u00e9, l\u0027index ajout\u00e9 avec l\u0027option --index doit \u00eatre r\u00e9alis\u00e9 avec la m\u00eame version du mapper que celle utilis\u00e9e pour l\u0027alignement.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run Lipinski-B/DE-nf --input /input/ --GTF /data/fichier.gtf --index /data/mapper_index --output /output/\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eEnfin vous pouvez lancer le pipeline via l\u0027utilisation de containers Docker/Singularity via l\u0027option -profile.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run Lipinski-B/DE-nf -profile docker --input /input/ --GTF /data/fichier.gtf --FNA /data/fichier.fna --output /output/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eou\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run Lipinski-B/DE-nf -profile singularity --input /input/ --GTF /data/fichier.gtf --FNA /data/fichier.fna --output /output/\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributions\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributions\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eEmail\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eLipinski Boris\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"mailto:boris.lipinski@etu.univ-lyon1.fr\"\u003eboris.lipinski@etu.univ-lyon1.fr\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eDevelopeur \u00e0 contacter pour support\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1631168746.0
+ "updated_at": 1654520921.0
},
{
"data_format": 2,
@@ -13701,643 +13108,609 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "arabnejad/FabSim4",
+ "full_name": "VacantiLab/LehtioDDMSQuantSearch",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fabsim4\" class=\"anchor\" href=\"#fabsim4\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFabSim4\u003c/h1\u003e\n\u003cp\u003eThis the migrated version of FabSim3 to Fabric2\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-lehtiolabddamsproteomics\" class=\"anchor\" aria-hidden=\"true\" href=\"#lehtiolabddamsproteomics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003elehtiolab/ddamsproteomics\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eA Quantitative MS proteomics analysis pipeline\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/lehtiolab/ddamsproteomics\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2e73ffd6aaca951b76d06bb9e625b9958985004799f48697d15d272d8754b96a/68747470733a2f2f7472617669732d63692e6f72672f6c656874696f6c61622f6464616d7370726f74656f6d6963732e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/lehtiolab/ddamsproteomics.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/03c97559839c37998c3c1db1465217ff323c688ad1dbb4a617a90eefde35af1d/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d25453225383925413532302e30312e312d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A520.01.1-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://zenodo.org/badge/latestdoi/219955514\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3cdf183590e0fd8280e9cf4762883d9e76e2b577ee19066a8d3debc07af0553/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3231393935353531342e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/219955514.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/lehtiolab/ddamsproteomics\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3e006af0b85a286d286be1e4a41902ac68ed95f8253c038485c54ba693b93049/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6c656874696f6c61622f6464616d7370726f74656f6d6963732e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/lehtiolab/ddamsproteomics.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThis workflow identifies peptides in mzML input data using \u003ca href=\"https://github.com/MSGFPlus/msgfplus\"\u003eMSGF+\u003c/a\u003e, and \u003ca href=\"https://github.com/percolator/percolator/\"\u003ePercolator\u003c/a\u003e, quantifies isobarically labeled samples with \u003ca href=\"https://github.com/openms/openms\"\u003eOpenMS\u003c/a\u003e, and precursor peptides with \u003ca href=\"https://github.com/fickludd/dinosaur\"\u003eDinosaur\u003c/a\u003e, and processes that output to formatted peptide and protein/gene tables using \u003ca href=\"https://github.com/lehtiolab/msstitch\"\u003eMsstitch\u003c/a\u003e. Optional PTM data is analyzed by \u003ca href=\"https://github.com/dfermin/lucxor\"\u003eLuciphor2\u003c/a\u003e, and differential expression analyses can be performed using \u003ca href=\"https://github.com/yafeng/deqms\"\u003eDEqMS\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003einstall \u003ca href=\"https://nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003einstall \u003ca href=\"https://docs.docker.com/engine/installation/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e, \u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e, or \u003ca href=\"https://conda.io/miniconda.html\" rel=\"nofollow\"\u003eConda\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003erun pipeline:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run lehtiolab/ddamsproteomics --mzmls \u0027/path/to/*.mzML\u0027 --tdb /path/to/proteins.fa --mods \u0027oxidation;carbamidomethylation\u0027 -profile standard,docker\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOr for two sample sets of isobaric data you can:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run lehtiolab/ddamsproteomics --mzmls \u0027/path/to/*.mzML\u0027 --tdb /path/to/proteins.fa --mods \u0027oxidation;carbamidomethylation --isobaric \u0027setA:tmt10plex:126 setB:tmt10plex:127N\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor more elaborate examples covering fractionation, PTMs, and more, the lehtiolab/ddamsproteomics pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://nf-co.re/usage/troubleshooting\" rel=\"nofollow\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThere is more extensive documentation on the options inside the main.nf file.\u003c/p\u003e\n\u003cp\u003eThe pipeline takes multiple mzML files as input and performs identification and quantification to output results and a QC report (\u003ca href=\"docs/example_qc.html\"\u003ean example can be found here\u003c/a\u003e)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003elehtiolab/ddamsproteomics was originally written by Jorrit Boekel and tries to follow the \u003ca href=\"https://nf-co.re\" rel=\"nofollow\"\u003enf-core\u003c/a\u003e best practices and templates.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1630410840.0
+ "updated_at": 1654280178.0
},
{
"data_format": 2,
- "description": "Nextflow pipeline for inference of CRISPR edits from NGS (Amplicon Sequencing) data",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.ubuntu-20.04"
],
- "full_name": "gnetsanet/crispedit",
+ "full_name": "zonca/singularity_github_ci",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-crispedit\" class=\"anchor\" href=\"#crispedit\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecrispedit\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eNextflow pipeline for inference of CRISPR edits from NGS (Amplicon Sequencing) data\u003c/strong\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erun crispedit/crisedit.nf --in_fastq /Users/ngebremedhin/Downloads/VB26_18_3428_P1087_308811w_BF8.fastq --ref canola_badc_allgenes.fa --out_dir ${PWD}/myProject --project_name LC25 --bucket bioinformatics-analysis-netsanet --sgrna \"CCTTCTGAGCCCATGAACAAATC\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eN E X T F L O W ~ version 19.04.1\nLaunching `crispedit/crisedit.nf` [hopeful_swanson] - revision: 607eaca8d5\n\n[warm up] executor \u0026gt; local\nexecutor \u0026gt; local (27)\n[a7/a397c1] process \u0026gt; mergeReads [100%] 1 of 1 \u2714\n[58/d46b33] process \u0026gt; clustering [100%] 1 of 1 \u2714\n[1d/5e8374] process \u0026gt; dereplication [100%] 1 of 1 \u2714\n[bb/cc12b3] process \u0026gt; mapHighFrequencyReads [100%] 1 of 1 \u2714\n[44/eec241] process \u0026gt; samToBam [100%] 1 of 1 \u2714\n[92/c84f30] process \u0026gt; indexBam [100%] 1 of 1 \u2714\n[d2/119094] process \u0026gt; identiyEdits [100%] 1 of 1 \u2714\n[a2/38c0af] process \u0026gt; prepForPSA [100%] 1 of 1 \u2714\n[a6/51cabd] process \u0026gt; performPSA [100%] 9 of 9 \u2714\n[bd/fd96a3] process \u0026gt; combineClustalOut [100%] 9 of 9 \u2714\n[33/0f5567] process \u0026gt; createFinalReport [100%] 1 of 1 \u2714\n\nCompleted at: 25-Jul-2019 11:37:08\nDuration : 12.4s\nCPU hours : (a few seconds)\nSucceeded : 27\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-credits\" class=\"anchor\" href=\"#credits\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h3\u003e\n\u003cp\u003ecrispedit is written by Netsanet Gebremedhin.\u003c/p\u003e\n",
+ "readme": "\u003ch2\u003e\u003ca id=\"user-content-test-build-singularity-containers-on-github-actions\" class=\"anchor\" aria-hidden=\"true\" href=\"#test-build-singularity-containers-on-github-actions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest build Singularity containers on Github Actions\u003c/h2\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1631673344.0
+ "updated_at": 1654214816.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe for centos7",
"filenames": [
- "pin/conduit-binder/third-party/force-cover/Singularity"
+ "Singularity.dev"
],
- "full_name": "mmore500/conduit-quality-of-service-writeup",
+ "full_name": "pndni/centos7-base",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1631675356.0
+ "updated_at": 1555436901.0
},
{
"data_format": 2,
- "description": "ElikoPy is Python library aiming at easing the processing of diffusion imaging for microstructural analysis.",
+ "description": "Singularity build files for FSL and freesurfer",
"filenames": [
- "Singularity_elikopy"
+ "Singularity.FSL-6.0.1_freesurfer-6.0.1_dev"
],
- "full_name": "Hyedryn/elikopy",
- "latest_release": "v0.2.2",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-elikopy\" class=\"anchor\" href=\"#elikopy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eElikoPy\u003c/h1\u003e\n\u003cp\u003eElikoPy is Python library aiming at easing the processing of diffusion imaging for microstructural analysis.\nThis Python library is based on\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDIPY, a python library for the analysis of MR diffusion imaging.\u003c/li\u003e\n\u003cli\u003eMicrostructure fingerprinting, a python library doing estimation of white matter microstructural properties from a dictionary of Monte Carlo diffusion MRI fingerprints.\u003c/li\u003e\n\u003cli\u003eFSL, a comprehensive library of analysis tools for FMRI, MRI and DTI brain imaging data.\u003c/li\u003e\n\u003cli\u003eDIAMOND, a c software that is characterizing brain tissue by assessment of the distribution of anisotropic microstructural environments in diffusion\u2010compartment imaging.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cp\u003eElikoPy requires \u003ca href=\"https://www.python.org/\" rel=\"nofollow\"\u003ePython\u003c/a\u003e v3.7+ to run.\u003c/p\u003e\n\u003cp\u003eAfter cloning the repo, you can either firstly install all the python dependencies including optionnal dependency used to speed up the code:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ pip install -r requirements.txt --user\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eOr you can install directly the library with only the mandatory dependencies (if you performed the previous step, you still need to perform this step):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ python3 setup.py install --user\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eMicrostructure Fingerprinting is currently not avaible in the standard python repo, you can clone and install this library manually.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git clone git@github.com:rensonnetg/microstructure_fingerprinting.git\n$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e microstructure_fingerprinting\n$ python setup.py install\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFSL also needs to be installed and availabe in our path if you want to perform mouvement correction or tbss.\u003c/p\u003e\n\u003cp\u003eUnfortunatly, the DIAMOND code is not publically available. If you do not have it in your possesion, you will not be able to use this algorithm. If you have it, simply add the executable to your path.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003cp\u003eTodo\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-development\" class=\"anchor\" href=\"#development\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopment\u003c/h3\u003e\n\u003cp\u003eWant to contribute? Great!\u003c/p\u003e\n\u003cp\u003eDo not hesitate to open issue or pull request!\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-todos\" class=\"anchor\" href=\"#todos\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTodos\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eRelease a complete and accurate documentation for the library\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eFree Software, Hell Yeah!\u003c/strong\u003e\u003c/p\u003e\n",
+ "full_name": "pndni/FSL-and-freesurfer",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-license-info\" class=\"anchor\" aria-hidden=\"true\" href=\"#license-info\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense info\u003c/h1\u003e\n\u003cp\u003eWhile the actual code in this repository is covered by the provided \u003ca href=\"LICENSE\"\u003elicense\u003c/a\u003e,\nusing freesurfer and FSL requires accepting their respective licenses. By using this\ncontainer, you must agree to these licenses.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferSoftwareLicense\" rel=\"nofollow\"\u003eFreesurfer license\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Licence\" rel=\"nofollow\"\u003eFSL license\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eYou must acquire a freesurfer license from\n\u003ca href=\"https://surfer.nmr.mgh.harvard.edu/registration.html\" rel=\"nofollow\"\u003ehttps://surfer.nmr.mgh.harvard.edu/registration.html\u003c/a\u003e\nEnsure that the license file is visible from the container,\nand set the environment variable FS_LICENSE to point to it\n(or copy the file to /opt/freesurfer/license.txt from\ninside the container)\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [
- "microstructure-fingerprinting",
- "fsl",
- "tbss",
- "python-library",
- "diffusion-imaging",
- "preprocessing",
- "dmri",
- "diamond",
- "noddi",
- "dti"
- ],
- "updated_at": 1627554863.0
+ "topics": [],
+ "updated_at": 1554399581.0
},
{
"data_format": 2,
- "description": "Nextflow pipeline for inference of CRISPR edits from NGS (Amplicon Sequencing) data",
+ "description": "Singularity container for minc built on centos 7",
"filenames": [
"Singularity"
],
- "full_name": "Yield10Bio/crispedit",
+ "full_name": "pndni/minc-container",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-crispedit\" class=\"anchor\" href=\"#crispedit\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecrispedit\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eNextflow pipeline for inference of CRISPR edits from NGS (Amplicon Sequencing) data\u003c/strong\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erun crispedit/crisedit.nf --in_fastq /Users/ngebremedhin/Downloads/VB26_18_3428_P1087_308811w_BF8.fastq --ref canola_badc_allgenes.fa --out_dir ${PWD}/myProject --project_name LC25 --bucket bioinformatics-analysis-netsanet --sgrna \"CCTTCTGAGCCCATGAACAAATC\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eN E X T F L O W ~ version 19.04.1\nLaunching `crispedit/crisedit.nf` [hopeful_swanson] - revision: 607eaca8d5\n\n[warm up] executor \u0026gt; local\nexecutor \u0026gt; local (27)\n[a7/a397c1] process \u0026gt; mergeReads [100%] 1 of 1 \u2714\n[58/d46b33] process \u0026gt; clustering [100%] 1 of 1 \u2714\n[1d/5e8374] process \u0026gt; dereplication [100%] 1 of 1 \u2714\n[bb/cc12b3] process \u0026gt; mapHighFrequencyReads [100%] 1 of 1 \u2714\n[44/eec241] process \u0026gt; samToBam [100%] 1 of 1 \u2714\n[92/c84f30] process \u0026gt; indexBam [100%] 1 of 1 \u2714\n[d2/119094] process \u0026gt; identiyEdits [100%] 1 of 1 \u2714\n[a2/38c0af] process \u0026gt; prepForPSA [100%] 1 of 1 \u2714\n[a6/51cabd] process \u0026gt; performPSA [100%] 9 of 9 \u2714\n[bd/fd96a3] process \u0026gt; combineClustalOut [100%] 9 of 9 \u2714\n[33/0f5567] process \u0026gt; createFinalReport [100%] 1 of 1 \u2714\n\nCompleted at: 25-Jul-2019 11:37:08\nDuration : 12.4s\nCPU hours : (a few seconds)\nSucceeded : 27\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003ebwa 0.7.17\u003c/li\u003e\n\u003cli\u003evsearch 2.18.0\u003c/li\u003e\n\u003cli\u003ebbmap 38.92\u003c/li\u003e\n\u003cli\u003esamtools=1.9\u003c/li\u003e\n\u003cli\u003eBiopython\u003c/li\u003e\n\u003cli\u003eclustalo 1.2.4\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-credits\" class=\"anchor\" href=\"#credits\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h3\u003e\n\u003cp\u003ecrispedit is written by Netsanet Gebremedhin.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1631063991.0
+ "updated_at": 1554308962.0
},
{
"data_format": 2,
- "description": "Bismark is a program to map bisulfite treated sequencing reads to a genome of interest and perform methylation calls in a single step. ",
+ "description": "Ba\u011flant\u0131 test ara\u00e7lar\u0131 i\u00e7eren Docker imaj\u0131",
"filenames": [
- "0.22.3/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-bismark",
+ "full_name": "gulnihalugur/testutils",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-bismark/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bismark/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-bismark/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bismark/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ac6bb8f2b406618278034b709c736e772b92723686bd930d0ec0e0caaf278599/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6269736d61726b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ac6bb8f2b406618278034b709c736e772b92723686bd930d0ec0e0caaf278599/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6269736d61726b\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bismark\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5f93c1931fec2c3f8a38122749025c57f09fb930eb75c591ad412dfa911b97ae/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6269736d61726b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5f93c1931fec2c3f8a38122749025c57f09fb930eb75c591ad412dfa911b97ae/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6269736d61726b\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bismark\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f20c48b5b2226a8f0a7cff096f8cedfe80b073f0b801009d9684d408ee31ca07/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6269736d61726b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f20c48b5b2226a8f0a7cff096f8cedfe80b073f0b801009d9684d408ee31ca07/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6269736d61726b\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bismark\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/07c4815a6c07dc179ddc97de5e5faa3c7fec941cc2c81a94adaed0547946fd27/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6269736d61726b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/07c4815a6c07dc179ddc97de5e5faa3c7fec941cc2c81a94adaed0547946fd27/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6269736d61726b\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bismark\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-bismark\" class=\"anchor\" href=\"#singularity-bismark\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bismark\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/FelixKrueger/Bismark\"\u003ebismark\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebismark\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bismark/0.22.3\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bismark\u003c/code\u003e as \u003ccode\u003e0.22.3.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eDocker imaji: curl, wget, ping, netcat, nslookup,host, dig, psql, mysql\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-kullanim\" class=\"anchor\" aria-hidden=\"true\" href=\"#kullanim\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eKullanim\u003c/h2\u003e\n\u003cp\u003eKubernetes\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ekubectl run --rm utils -it --generator=run-pod/v1 --image gulnihalugur/testutils bash\n# You will be seeing a bash prompt\n$ psql -h hostname -U test -d test\n...\n$ exit\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDocker Engine\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ docker pull gulnihalugur/testutils\n$ docker run --rm -it gulnihalugur/testutils bash\n\n# konteynir icinde\n$ ping google.com\n$ ifconfig\n...\n$ exit\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1629214967.0
+ "subscribers_count": 0,
+ "topics": [],
+ "updated_at": 1561217122.0
},
{
"data_format": 2,
- "description": "Fast, reliable protein-coding gene prediction for prokaryotic genomes.",
+ "description": null,
"filenames": [
- "2.6.3/Singularity"
+ "downward/misc/releases/19.12/Singularity.19.12",
+ "downward/misc/releases/20.06/Singularity.20.06",
+ "downward/misc/releases/latest/Singularity",
+ "downward/misc/releases/19.06/Singularity.19.06"
],
- "full_name": "pscedu/singularity-prodigal",
+ "full_name": "aymeric75/latplan",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-prodigal/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-prodigal/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-prodigal/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-prodigal/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/dbf23f859880f70436ee9de9ee89a1528a5171defb337385614da4eee0ffeb2d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d70726f646967616c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/dbf23f859880f70436ee9de9ee89a1528a5171defb337385614da4eee0ffeb2d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d70726f646967616c\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-prodigal\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f5f6ed86bbd6c79a6449e24738f02f9844e1fe9972bd1d162eb62316c06bf9dc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d70726f646967616c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f5f6ed86bbd6c79a6449e24738f02f9844e1fe9972bd1d162eb62316c06bf9dc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d70726f646967616c\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-prodigal\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/4ef2a97630fd3ac7037f653270a9129fe20826c8bf90956c9b995c0eea86da02/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d70726f646967616c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4ef2a97630fd3ac7037f653270a9129fe20826c8bf90956c9b995c0eea86da02/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d70726f646967616c\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-prodigal\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/e41f95bac858eb80bd1956886531b10a1a335ab73e0c0cbdc7ab720cf22824cd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d70726f646967616c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e41f95bac858eb80bd1956886531b10a1a335ab73e0c0cbdc7ab720cf22824cd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d70726f646967616c\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-prodigal\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-prodigal\" class=\"anchor\" href=\"#singularity-prodigal\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-prodigal\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/prodigal\"\u003eprodigal\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eprodigal\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/prodigal/2.6.3\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/prodigal\u003c/code\u003e as \u003ccode\u003e2.6.3.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1629226411.0
+ "topics": [],
+ "updated_at": 1654148749.0
},
{
"data_format": 2,
- "description": "RAdiation SEmiconductoR ",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.def"
],
- "full_name": "dt-np/raser",
- "latest_release": "v1.1",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-raser\" class=\"anchor\" href=\"#raser\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRASER\u003c/h1\u003e\n\u003cp\u003eRAdiation SEmiconductoR\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-build-with-singularity\" class=\"anchor\" href=\"#build-with-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild with Singularity\u003c/h1\u003e\n\u003cp\u003eBefore running the code, install the Singularity on your OS.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003e./sinularity_build.sh\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cblockquote\u003e\n\u003cp\u003e./singularity_run.sh\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cblockquote\u003e\n\u003cp\u003eraser\u0026gt; geant4_build.sh\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-run-with-singularity\" class=\"anchor\" href=\"#run-with-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun with Singularity\u003c/h1\u003e\n\u003cblockquote\u003e\n\u003cp\u003e./singularity_run.sh\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cblockquote\u003e\n\u003cp\u003eraser\u0026gt; ./run\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-raser-unit-test-after-you-change-some-codes\" class=\"anchor\" href=\"#raser-unit-test-after-you-change-some-codes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRaser unit test after you change some codes\u003c/h1\u003e\n\u003cblockquote\u003e\n\u003cp\u003e./singularity_run.sh\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cblockquote\u003e\n\u003cp\u003eraser\u0026gt; ./run 0.1.5\nraser\u0026gt; ./run 0.2.5\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eIf the output is \"Successful\", the code your changed is OK.\nOtherwise, you should check the code your changed.\u003c/p\u003e\n",
+ "full_name": "ZizZu94/covid19-ultrasound-img-prediction",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-covid19-ultrasound-image-score-prediction\" class=\"anchor\" aria-hidden=\"true\" href=\"#covid19-ultrasound-image-score-prediction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCovid19 Ultrasound image score prediction\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-models-resnet50-and-efficientnet-b0\" class=\"anchor\" aria-hidden=\"true\" href=\"#models-resnet50-and-efficientnet-b0\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModels: ResNet50 and EfficientNet-b0\u003c/h2\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1630661539.0
+ "subscribers_count": 1,
+ "topics": [
+ "classification",
+ "covid-19",
+ "deep-learning",
+ "efficientnet",
+ "neural-network",
+ "python",
+ "pytorch",
+ "resnet-50",
+ "ultrasound"
+ ],
+ "updated_at": 1654162475.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.tut0804",
- "Singularity.05211526",
- "Singularity",
- "Singularity.386",
- "Singularity.05201328",
- "Singularity.sf",
- "Singularity.05131402",
- "Singularity.05221357",
- "Singularity.1908121107",
- "Singularity.cuda10"
+ "ext/Singularity"
],
- "full_name": "timkphd/Containers",
+ "full_name": "dtenenba/bc_example_dan_rstudio",
"latest_release": null,
- "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-singularity-container-build-scripts\" class=\"anchor\" href=\"#singularity-container-build-scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity container build Scripts\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-see-httpssingularity-huborgcollections2962\" class=\"anchor\" href=\"#see-httpssingularity-huborgcollections2962\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSee \u003ca href=\"https://singularity-hub.org/collections/2962\" rel=\"nofollow\"\u003ehttps://singularity-hub.org/collections/2962\u003c/a\u003e\n\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:16.04, , R, MPI (intel and openMPI ), python\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.05131402\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:16.04, basic stuff, does not actually install Intel Python\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.05201328\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:16.04, R, MPI, python, tutorial stuff\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.05211526\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:16.04, R, MPI, python, tutorial stuff\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.05221357 (Built)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:16.04, R, MPI, python, tutorial stuff\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.1908121107 (Built)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:latest, R, MPI, python, tutorial stuff\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.386 (Built)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBasic 32 bit with Fortran, c++ make, nano,vim\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.sf (Built)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:18.04, STAR-Fusion\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity.tut0804\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eubuntu:16.04, R, MPI, python, tutorial stuff\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-wip-batch-connect---osc-example-shiny-app\" class=\"anchor\" aria-hidden=\"true\" href=\"#wip-batch-connect---osc-example-shiny-app\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e[WIP] Batch Connect - OSC Example Shiny App\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a8152a2780451d58acdca1e79b03f771d6e84ae12087e6e7a824b6759b715dc1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6f73635f6578616d706c655f7368696e792e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a8152a2780451d58acdca1e79b03f771d6e84ae12087e6e7a824b6759b715dc1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6f73635f6578616d706c655f7368696e792e737667\" alt=\"GitHub Release\" data-canonical-src=\"https://img.shields.io/github/release/osc/bc_osc_example_shiny.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA Batch Connect app designed for OSC OnDemand that launches a Shiny App within\nan Owens batch job.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eThis Batch Connect app requires the following software be installed on the\n\u003cstrong\u003ecompute nodes\u003c/strong\u003e that the batch job is intended to run on (\u003cstrong\u003eNOT\u003c/strong\u003e the\nOnDemand node):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://shiny.rstudio.com/\" rel=\"nofollow\"\u003eShiny\u003c/a\u003e x.y.z+\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.tacc.utexas.edu/research-development/tacc-projects/lmod\" rel=\"nofollow\"\u003eLmod\u003c/a\u003e 6.0.1+ or any other \u003ccode\u003emodule purge\u003c/code\u003e and \u003ccode\u003emodule load \u0026lt;modules\u0026gt;\u003c/code\u003e based\nCLI used to load appropriate environments within the batch job\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install\" class=\"anchor\" aria-hidden=\"true\" href=\"#install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h2\u003e\n\u003cp\u003eUse git to clone this app and checkout the desired branch/version you want to\nuse:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003escl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git clone \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003erepo\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git checkout \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etag/branch\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou will not need to do anything beyond this as all necessary assets are\ninstalled. You will also not need to restart this app as it isn\u0027t a Passenger\napp.\u003c/p\u003e\n\u003cp\u003eTo update the app you would:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git fetch\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git checkout \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etag/branch\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAgain, you do not need to restart the app as it isn\u0027t a Passenger app.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eFork it ( \u003ca href=\"https://github.com/OSC/bc_osc_example_shiny/fork\"\u003ehttps://github.com/OSC/bc_osc_example_shiny/fork\u003c/a\u003e )\u003c/li\u003e\n\u003cli\u003eCreate your feature branch (\u003ccode\u003egit checkout -b my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCommit your changes (\u003ccode\u003egit commit -am \u0027Add some feature\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003ePush to the branch (\u003ccode\u003egit push origin my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a new Pull Request\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-chpcs-notes\" class=\"anchor\" aria-hidden=\"true\" href=\"#chpcs-notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCHPC\u0027s notes\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-functional-overview\" class=\"anchor\" aria-hidden=\"true\" href=\"#functional-overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFunctional overview\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eUses CHPC\u0027s R (3.6.1) which has shiny installed\u003c/li\u003e\n\u003cli\u003eTo run a webserver, use an openresty container running nginx\u003c/li\u003e\n\u003cli\u003eThe script.sh that launches the OOD app creates a nginx config file and Shiny app launcher, then runs R with the launcher, followed by looking for the Unix socket created by the R\u0027s Shiny, thich then gets used by the nginx startup\u003c/li\u003e\n\u003cli\u003eThe user shiny app path is specified in the job specs\u0027 input box\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eNote that Shiny app can be also launched from the OOD\u0027s RStudio app by typing\nlibrary(\u0027shiny\u0027)\nrunApp(\"newdir\") - where \"newdir\" is the directory where app.R resides\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-applications-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#applications-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eApplication\u0027s dependencies\u003c/h3\u003e\n\u003cp\u003eR libraries that are needed by the application need to either be installed centrally to CHPC\u0027s R libraries location, or to other shared directory location. The former approach risks potential version conflicts with other library dependencies (this is more of an issue in Python but is possible in R as well).\u003c/p\u003e\n\u003cp\u003eBest practice may be for the creator of the app to install all the dependencies to his/her home directory, and in the app modify the R library path (using the .libPaths function) to add this directory to it.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1627001875.0
+ "updated_at": 1653954801.0
},
{
"data_format": 2,
- "description": "\u5b8f\u57fa\u56e0\u7ec4\u76f8\u5173\u4ee3\u7801",
+ "description": null,
"filenames": [
- "scripts/lathe/singularity/Singularity.quickmerge",
- "scripts/lathe/singularity/Singularity.longread",
- "scripts/lathe/singularity/Singularity.htsbox"
+ "Singularity.zlib-1.2-centos8.def",
+ "Singularity.binutils-2.36.1-GCCcore-11.1.0-centos8.def"
],
- "full_name": "JiaLonghao1997/Microbiome",
+ "full_name": "jkwmoore/centos8-eb-singularity-image",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-microbiome\" class=\"anchor\" href=\"#microbiome\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMicrobiome\u003c/h1\u003e\n\u003cp\u003e\u5b8f\u57fa\u56e0\u7ec4\u76f8\u5173\u4ee3\u7801\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1626932334.0
+ "updated_at": 1653574058.0
},
{
"data_format": 2,
- "description": "HTSlib A C library for reading/writing high-throughput sequencing data. ",
+ "description": "BIDS app to perform PET motion correction of dynamic data",
"filenames": [
- "1.13/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-htslib",
- "latest_release": "v1.13",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-htslib/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-htslib/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-htslib/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-htslib/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c19127d592d5b1774f1b776b581a4ee3e088dc8836040a4dcfb0112e233e0272/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6874736c6962\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c19127d592d5b1774f1b776b581a4ee3e088dc8836040a4dcfb0112e233e0272/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6874736c6962\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-htslib\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7eb94edba6c28c8efe671ccb26366254e3fa67b9ba22e17183a8353c985c30f7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6874736c6962\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7eb94edba6c28c8efe671ccb26366254e3fa67b9ba22e17183a8353c985c30f7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6874736c6962\" alt=\"Forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-htslib\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0c4e24ae23aaa5d0244c3ba0370b21835d696a720659445acd0879d08953dbf5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6874736c6962\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0c4e24ae23aaa5d0244c3ba0370b21835d696a720659445acd0879d08953dbf5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6874736c6962\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-htslib\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/e0b439a0b671ca5e751012f4801e4febe27cb2fa88ea95ed862cca4a347af459/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6874736c6962\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e0b439a0b671ca5e751012f4801e4febe27cb2fa88ea95ed862cca4a347af459/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6874736c6962\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-htslib\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-htslib\" class=\"anchor\" href=\"#singularity-htslib\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-htslib\u003c/h2\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/samtools/htslib\"\u003ehtslib\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ehtsfile\u003c/code\u003e, \u003ccode\u003etabix\u003c/code\u003e and \u003ccode\u003ebgzip\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/htslib/1.13\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/htslib\u003c/code\u003e as \u003ccode\u003e1.13.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "mnoergaard/hmcpet",
+ "latest_release": null,
+ "readme": "\u003ch2\u003e\u003ca id=\"user-content-an-example-bids-app-template-repository\" class=\"anchor\" aria-hidden=\"true\" href=\"#an-example-bids-app-template-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAn example BIDS App (template repository)\u003c/h2\u003e\n\u003cp\u003eEvery BIDS App needs to follow a minimal set of command arguments common across\nall of the Apps. This allows users and developers to easily use and integrate\nBIDS Apps with their environment.\u003c/p\u003e\n\u003cp\u003eThis is a minimalist example of a BIDS App consisting of a Dockerfile and a simple\nentry point script (written in this case in Python) accepting the standard BIDS\nApps command line arguments. This repository can be used as a template for new BIDS Apps.\u003c/p\u003e\n\u003cp\u003eFor more information about the specification of BIDS Apps see \u003ca href=\"https://docs.google.com/document/d/1E1Wi5ONvOVVnGhj21S1bmJJ4kyHFT7tkxnV3C23sjIE/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-description\" class=\"anchor\" aria-hidden=\"true\" href=\"#description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h3\u003e\n\u003cp\u003eThis is a placeholder for a short description explaining to the user what your App will doing.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eProvide a link to the documentation of your pipeline.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-how-to-report-errors\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-report-errors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to report errors\u003c/h3\u003e\n\u003cp\u003eProvide instructions for users on how to get help and report errors.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-acknowledgments\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgments\u003c/h3\u003e\n\u003cp\u003eDescribe how would you would like users to acknowledge use of your App in their papers (citation, a paragraph that can be copy pasted, etc.)\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003cp\u003eThis App has the following command line arguments:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\tusage: run.py [-h]\n\t [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]\n\t bids_dir output_dir {participant,group}\n\n\tExample BIDS App entry point script.\n\n\tpositional arguments:\n\t bids_dir The directory with the input dataset formatted\n\t according to the BIDS standard.\n\t output_dir The directory where the output files should be stored.\n\t If you are running a group level analysis, this folder\n\t should be prepopulated with the results of\n\t the participant level analysis.\n\t {participant,group} Level of the analysis that will be performed. Multiple\n\t participant level analyses can be run independently\n\t (in parallel).\n\n\toptional arguments:\n\t -h, --help show this help message and exit\n\t --participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]\n\t The label(s) of the participant(s) that should be\n\t analyzed. The label corresponds to\n\t sub-\u0026lt;participant_label\u0026gt; from the BIDS spec (so it does\n\t not include \"sub-\"). If this parameter is not provided\n\t all subjects will be analyzed. Multiple participants\n\t can be specified with a space separated list.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run it in participant level mode (for one participant):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -i --rm \\\n\t-v /Users/filo/data/ds005:/bids_dataset:ro \\\n\t-v /Users/filo/outputs:/outputs \\\n\tbids/example \\\n\t/bids_dataset /outputs participant --participant_label 01\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAfter doing this for all subjects (potentially in parallel), the group level analysis\ncan be run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -i --rm \\\n\t-v /Users/filo/data/ds005:/bids_dataset:ro \\\n\t-v /Users/filo/outputs:/outputs \\\n\tbids/example \\\n\t/bids_dataset /outputs group\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-special-considerations\" class=\"anchor\" aria-hidden=\"true\" href=\"#special-considerations\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpecial considerations\u003c/h3\u003e\n\u003cp\u003eDescribe whether your app has any special requirements. For example:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMultiple map reduce steps (participant, group, participant2, group2 etc.)\u003c/li\u003e\n\u003cli\u003eUnusual memory requirements\u003c/li\u003e\n\u003cli\u003eetc.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1629226143.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1653596606.0
},
{
"data_format": 2,
- "description": "Repo for recipes to put on singularity hub",
+ "description": "ffmpeg and pysoundfile in a Singularity image",
"filenames": [
- "Singularity.dbspype",
- "Singularity.xenial"
+ "Singularity"
],
- "full_name": "hbraunDSP/containers",
+ "full_name": "rses-singularity/singularity-ubuntu-xenial-ffmpeg-pysoundfile",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-containers\" class=\"anchor\" href=\"#containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainers\u003c/h1\u003e\n\u003cp\u003ePRIVATE repo for recipes to put on singularity hub.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-ffmpeg-and-pysoundfile-in-a-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#ffmpeg-and-pysoundfile-in-a-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003effmpeg and pysoundfile in a Singularity image\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eSee \u003ca href=\"build.sh\"\u003ebuild.sh\u003c/a\u003e for info on how to build and run the image\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e file for the definition of the image, including\n\u003cul\u003e\n\u003cli\u003eThe (Docker) image it is based on\u003c/li\u003e\n\u003cli\u003eWhat OS packages are installed\u003c/li\u003e\n\u003cli\u003eWhat environment variables are set\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSee \u003ca href=\"requirements.txt\"\u003erequirements.txt\u003c/a\u003e for the Python packages installed in the image (using \u003ccode\u003epip\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e project website for more info on Singularity in general and detailed documentaiton.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1567609710.0
+ "updated_at": 1503997989.0
},
{
"data_format": 2,
- "description": "msee is a command-line tool to read markdown file.",
+ "description": "Work in progress: A cookiecutter for singularity images",
"filenames": [
- "0.3.5/Singularity"
+ "{{cookiecutter.project_name}}/Singularity"
],
- "full_name": "icaoberg/singularity-msee",
- "latest_release": "v0.3.5",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-msee/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-msee/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/8f15c74b6b0c9b138f9da5b4933fe28294369dc8e7eb93b731dc2ce072de357e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d6d736565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8f15c74b6b0c9b138f9da5b4933fe28294369dc8e7eb93b731dc2ce072de357e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d6d736565\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-msee\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/dc49ece7c14937e5c2802e8ab4824bc9c4606e21bd4f04eede89efffab599a2d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d6d736565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/dc49ece7c14937e5c2802e8ab4824bc9c4606e21bd4f04eede89efffab599a2d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d6d736565\" alt=\"Forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-msee\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/bc6a9157f824c9765da6596c0beb4a82c4f71d7a27b46cec8e32781fb8c3faad/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d6d736565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bc6a9157f824c9765da6596c0beb4a82c4f71d7a27b46cec8e32781fb8c3faad/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d6d736565\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-msee\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5858470ac4cc23a618c46e8f874d611a5c2ba2762846b37cae4b6767e4e8784f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d6d736565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5858470ac4cc23a618c46e8f874d611a5c2ba2762846b37cae4b6767e4e8784f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d6d736565\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-msee\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-msee\" class=\"anchor\" href=\"#singularity-msee\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-msee\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://cloud.githubusercontent.com/assets/157338/10902801/531ba216-823d-11e5-87ac-986b8d5ea4cc.png\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://cloud.githubusercontent.com/assets/157338/10902801/531ba216-823d-11e5-87ac-986b8d5ea4cc.png\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\nSingularity recipe for \u003ca href=\"https://www.npmjs.com/package/msee\" rel=\"nofollow\"\u003emsee\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/msees/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "amanmdesai/cookiecutter-singularity",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-cookiecutter-project-for-singularity-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#cookiecutter-project-for-singularity-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCookiecutter Project for Singularity images\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/amanmdesai/cookiecutter-docker-singularity/blob/master/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/486e44f0e9c09c6186d86e72c96fdfc6574e09d8885cf0fe2b912e9cdbff847e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f616d616e6d64657361692f636f6f6b69656375747465722d646f636b65722d73696e67756c6172697479\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/amanmdesai/cookiecutter-docker-singularity\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-purpose\" class=\"anchor\" aria-hidden=\"true\" href=\"#purpose\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePurpose\u003c/h2\u003e\n\u003cp\u003eCreate Singularity image definition files\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-hidden=\"true\" href=\"#features\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFeatures\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eEasily write customized singularity images\u003c/li\u003e\n\u003cli\u003eDeploy easily to github packages\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eInstructions will be added\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-it\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-it\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning it!\u003c/h2\u003e\n\u003ch2\u003e\u003ca id=\"user-content-extension\" class=\"anchor\" aria-hidden=\"true\" href=\"#extension\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExtension:\u003c/h2\u003e\n\u003cp\u003eAn extension either to include docker images here, or elsewhere is foreseen.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eWORK in Progress\nContributions are welcome and can be made by opening a PR or bug report.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [
- "singularity",
- "utilties"
- ],
- "updated_at": 1627585753.0
+ "topics": [],
+ "updated_at": 1663515196.0
},
{
"data_format": 2,
- "description": "R server within singularity container on HPC",
+ "description": null,
"filenames": [
- "Singularity_bioc_python"
+ "Recipes/Singularity_spark_full",
+ "Recipes/Singularity_numpy",
+ "Recipes/Singularity_pytorch",
+ "Recipes/Singularity_ompi",
+ "Recipes/Singularity_GPU",
+ "Recipes/Singularity_tensorflow",
+ "Recipes/Singularity_Python",
+ "Recipes/Singularity_mpich",
+ "Recipes/Singularity_pytorch_full",
+ "Recipes/Singularity_spark",
+ "Recipes/Singularity_sklearn",
+ "Recipes/Singularity_example"
],
- "full_name": "retogerber/singularity_rserver",
+ "full_name": "Gab0410/Cluster-HPC",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-r-server-in-singularity\" class=\"anchor\" href=\"#r-server-in-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR server in singularity\u003c/h1\u003e\n\u003cp\u003eThis workflow together with the script \u003ccode\u003esingRstudio.sh\u003c/code\u003e facilitates setting up an R server running in a singularity container on a HPC and accessing it on a local PC.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-workflow\" class=\"anchor\" href=\"#workflow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWorkflow\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-prepare-only-first-time\" class=\"anchor\" href=\"#prepare-only-first-time\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrepare (only first time)\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-on-local-pc\" class=\"anchor\" href=\"#on-local-pc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOn local PC\u003c/h3\u003e\n\u003cp\u003eSince building a singularity image requires root privilege it is often not possible to directly build on your HPC. A simple workaround is to build in on your local PC and the copy to the server.\nBuild Singularity image file:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build singularity_container.sif Singularity_bioc_python\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe given Singularity build file is just an example, to customize for your needs have a look at the \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/build_a_container.html\" rel=\"nofollow\"\u003esingularity documentation\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eAfter building the image copy to server, e.g.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003escp singularity_container.sif SERVERNAME:/some/location\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAlternatively there is the possibily to build without sudo using the \u003ccode\u003e--remote\u003c/code\u003e flage. \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/cloud_library.html\" rel=\"nofollow\"\u003eSingularity documentation\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-setup\" class=\"anchor\" href=\"#setup\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-on-server\" class=\"anchor\" href=\"#on-server\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOn server\u003c/h3\u003e\n\u003cp\u003eMake sure a suitable temporary directory is available, e.g. \u003ccode\u003e~/tmp\u003c/code\u003e (the default).\u003c/p\u003e\n\u003cp\u003eDecide on the port you want to use, the default is 8788.\u003c/p\u003e\n\u003cp\u003eRun rserver with singularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash singRstudio.sh -c singularity_container.sif -t ~/tmp -p 8789\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-on-local-pc-1\" class=\"anchor\" href=\"#on-local-pc-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOn local PC\u003c/h3\u003e\n\u003cp\u003eRedirect traffic from port on server to local port via ssh:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003essh -Nf -L LOCALPORT:localhost:SERVERPORT SERVERNAME\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ereplacing \u003ccode\u003eLOCALPORT\u003c/code\u003e with the port you want to use on your local pc, \u003ccode\u003eSERVERPORT\u003c/code\u003e with the above specified port (default 8788) and \u003ccode\u003eSERVERNAME\u003c/code\u003e with the address of the server.\ne.g:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003essh -Nf -L 8787:localhost:8788 user@myserver.com\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen open a browser and go to \u003ccode\u003ehttp://localhost:LOCALPORT\u003c/code\u003e again replacing \u003ccode\u003eLOCALPORT\u003c/code\u003e. Login with your server username and passwort (as specified with the \u003ccode\u003e-a\u003c/code\u003e argument, default: \u003ccode\u003epassword\u003c/code\u003e).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-other-options\" class=\"anchor\" href=\"#other-options\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOther options:\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-bind-local-directories-to-container\" class=\"anchor\" href=\"#bind-local-directories-to-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBind local directories to container\u003c/h3\u003e\n\u003cp\u003eTo connect directories to the container in a specific manner set the \u003ccode\u003e-b\u003c/code\u003e argument:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash singRstudio.sh -c singularity_container.sif -b \"local/dir/1:/absolute/container/dir/1,local/dir/2:/absolute/container/dir/2\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-local-r-library\" class=\"anchor\" href=\"#local-r-library\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003elocal R library\u003c/h3\u003e\n\u003cp\u003eSince singularity containers are read-only, installing R packages is not possible. For reproducibility this is great as it is always clear what packages were used,\nbut sometimes it can be a nuissance when testing stuff. A workaround is to specify a local directory in which the packages are installed. This can be done setting\nthe \u003ccode\u003e-r\u003c/code\u003e argument:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash singRstudio.sh -c singularity_container.sif -r ~/my/R/library\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-dry-run\" class=\"anchor\" href=\"#dry-run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDry run\u003c/h3\u003e\n\u003cp\u003eTo just show the \"built\" singularity command without executing it add \u003ccode\u003e-d\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash singRstudio.sh -c singularity_container.sif -d\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-pr\u00e9-requisitos\" class=\"anchor\" aria-hidden=\"true\" href=\"#pr\u00e9-requisitos\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePr\u00e9-requisitos\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-sele\u00e7\u00e3o-do-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#sele\u00e7\u00e3o-do-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSele\u00e7\u00e3o do Recipe\u003c/h2\u003e\n\u003cp\u003eAdicione o caminho do \u003cem\u003esingularity recipe\u003c/em\u003e desejado na vari\u00e1vel RECIPE no github (projeto \u0026gt;\u0026gt; Settings \u0026gt;\u0026gt; Secrets \u0026gt;\u0026gt; New Secret).\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-template-integra\u00e7\u00e3o-cont\u00ednua-github\" class=\"anchor\" aria-hidden=\"true\" href=\"#template-integra\u00e7\u00e3o-cont\u00ednua-github\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTemplate Integra\u00e7\u00e3o Cont\u00ednua Github\u003c/h1\u003e\n\u003cp\u003eEsse projeto o template para uso do cluster da UFSCar, contendo integra\u00e7\u00e3o cont\u00ednua com o Google Drive e Amazon S3.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requisitos-para-google-drive\" class=\"anchor\" aria-hidden=\"true\" href=\"#requisitos-para-google-drive\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequisitos para Google Drive\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eEntre no \u003ca href=\"https://console.developers.google.com/apis/credentials\" rel=\"nofollow\"\u003econsole de credenciais de API do Google\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eSe ainda n\u00e3o houver um projeto, crie um com permiss\u00e3o para a \"Google Drive API\" (Dashboard).\u003c/li\u003e\n\u003cli\u003eEm \"Tela de consentimento OAuth\", marque \"Interno\" na primeira p\u00e1gina, preencha os campos obrigat\u00f3rios na segunda, n\u00e3o preencha nada na terceira,\u003c/li\u003e\n\u003cli\u003eClique em Credenciais \u0026gt; Criar credenciais.\u003c/li\u003e\n\u003cli\u003eSelecione \"ID do cliente do OAuth\".\u003c/li\u003e\n\u003cli\u003eEm \"Tipo de aplicativo\", selecione \"App para computador\".\u003c/li\u003e\n\u003cli\u003eD\u00ea um nome de identifica\u00e7\u00e3o para as credenciais e clique em \"criar\". V\u00e3o aparecer dois dados (\"Seu ID de cliente\" e \"Sua chave secreta de cliente\"), precisaremos dos dois no passo seguinte.\u003c/li\u003e\n\u003cli\u003eAcesse o \u003cem\u003ecluster\u003c/em\u003e, execute o comando \u003ccode\u003erclone config\u003c/code\u003e e forne\u00e7a as seguintes informa\u00e7\u00f5es quando solicitado:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003en/s/q\u0026gt; n\nname\u0026gt; cloud\nStorage\u0026gt; 17 # selecione aqui o n\u00famero correspondente a op\u00e7\u00e3o \"Google Drive\"\nclient_id\u0026gt; conte\u00fado de \"Seu ID de cliente\"\nclient_secret\u0026gt; conte\u00fado de \"Sua chave secreta de cliente\"\nscope\u0026gt; 1 # Full access all files, excluding Application Data Folder\nroot_folder_id\u0026gt; deixe em branco\nservice_account_file\u0026gt; deixe em branco\ny/n\u0026gt; deixe em branco\ny/n\u0026gt; n\n\nSe j\u00e1 tiver o rclone instalado em seu computador, execute o comando exibido, caso contr\u00e1rio, o instale conforme indicado na p\u00e1gina oficial do rclone dependendo do seu sistema operacional (https://rclone.org/install/). A Seguir insira o resultado do comando exibido:\n\nconfig_token\u0026gt; c\u00f3digo fornecido pelo terminal ap\u00f3s autoriza\u00e7\u00e3o\ny/n\u0026gt; deixe em branco\ny/e/d\u0026gt; deixe em branco\ne/n/d/r/c/s/q\u0026gt; q\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA configura\u00e7\u00e3o at\u00e9 agora servir\u00e1 para transfer\u00eancia de dados do \u003cem\u003ecluster\u003c/em\u003e para a nuvem e vice-e-versa. A partir de agora vamos configurar a integra\u00e7\u00e3o cont\u00ednua no github.\u003c/p\u003e\n\u003col start=\"8\"\u003e\n\u003cli\u003eExecute o comando:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eecho $(cat ~/.config/rclone/rclone.conf | base64 --wrap=0)\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"9\"\u003e\n\u003cli\u003eCopie a sa\u00edda e adicione \u00e0 vari\u00e1vel RCLONE_CONF no github.\u003c/li\u003e\n\u003cli\u003eAdicione no github \u00e0 vari\u00e1vel COLLECTION_CONTAINER \u003ccode\u003e/path/to/project\u003c/code\u003e, esse ser\u00e1 o caminho cujo container vai ser disponibilizado no seu Google Drive no formato \u003ccode\u003erecipe_name_DateTime.simg\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requisitos-para-amazon-s3\" class=\"anchor\" aria-hidden=\"true\" href=\"#requisitos-para-amazon-s3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequisitos para Amazon S3\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eEntre na \u003ca href=\"console.aws.amazon.com\"\u003eAWS\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eClique na seta ao lado de seu nome de usu\u00e1rio e em \"My Security Credentials\".\u003c/li\u003e\n\u003cli\u003eNa se\u00e7\u00e3o \"Access Keys\", clique em \"Create New Access Key\".\u003c/li\u003e\n\u003cli\u003eNa janela que aparece, clique em \"Show Access Key\".\u003c/li\u003e\n\u003cli\u003eAcesse o \u003cem\u003ecluster\u003c/em\u003e, execute o comando \u003ccode\u003erclone config\u003c/code\u003e e forne\u00e7a as seguintes informa\u00e7\u00f5es quando solicitado:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003en/s/q\u0026gt; n\nname\u0026gt; cloud\nStorage\u0026gt; 4\nprovider\u0026gt; 1\nenv_auth\u0026gt; 1\naccess_key_id\u0026gt; conte\u00fado de \"Access Key ID\"\nsecret_access_key\u0026gt; conte\u00fado de \"Secret Access Key\"\nregion\u0026gt; 16\nendpoint\u0026gt; deixe em branco\nlocation_constraint\u0026gt; 16\nacl\u0026gt; deixe em branco\nserver_side_encryption\u0026gt; deixe em branco\nsse_kms_key_id\u0026gt; deixe em branco\nstorage_class\u0026gt; deixe em branco\ny/n\u0026gt; deixe em branco\ny/e/d\u0026gt; deixe em branco\ne/n/d/r/c/s/q\u0026gt; q\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA configura\u00e7\u00e3o at\u00e9 agora servir\u00e1 para transfer\u00eancia de dados do \u003cem\u003ecluster\u003c/em\u003e para a nuvem e vice-e-versa. A partir de agora vamos configurar a integra\u00e7\u00e3o cont\u00ednua no github.\u003c/p\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003eExecute o comando:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eecho $(cat ~/.config/rclone/rclone.conf | base64 --wrap=0)\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"7\"\u003e\n\u003cli\u003eCopie a sa\u00edda e adicione \u00e0 vari\u00e1vel RCLONE_CONF no github.\u003c/li\u003e\n\u003cli\u003eAdicione no github \u00e0 vari\u00e1vel COLLECTION_CONTAINER \u003ccode\u003e/path/to/project\u003c/code\u003e, esse ser\u00e1 o caminho cujo container vai ser disponibilizado no seu Google Drive no formato \u003ccode\u003erecipe_name_DateTime.simg\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1626332421.0
+ "updated_at": 1663111689.0
},
{
"data_format": 2,
- "description": "This repository will hold: the build script to install singularity and other dependencies for it, and a definition file for the singularity container for HPC.",
+ "description": "Demonstration workflow with Alphafold in a Jupyter notebook",
"filenames": [
- "SingularitySC",
- "Singularity"
+ "container/Singularity.def"
],
- "full_name": "perminaa/SingularityHPC",
+ "full_name": "parallelworks/alphafold-notebook-demo",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularityhpc\" class=\"anchor\" href=\"#singularityhpc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularityHPC\u003c/h1\u003e\n\u003cp\u003eThis repository will hold: the build script to install singularity and other dependencies for it, and a definition file for the singularity container for HPC.\u003c/p\u003e\n\u003cp\u003eTo install, run \u003ccode\u003egit clone https://github.com/perminaa/SingularityHPC.git \u0026amp;\u0026amp; cd SingularityHPC \u0026amp;\u0026amp; bash buildscript.sh\u003c/code\u003e. This will install and configure singularity\nand build a container called \u003ccode\u003eContainer.sif\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTo run the container, you can use \u003ccode\u003esingularity shell Container.sif\u003c/code\u003e to run in the singularity shell or \u003ccode\u003esingularity exec Container.sif \u0026lt;command\u0026gt;\u003c/code\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-alphafold-notebook-demo\" class=\"anchor\" aria-hidden=\"true\" href=\"#alphafold-notebook-demo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ealphafold-notebook-demo\u003c/h1\u003e\n\u003cp\u003eDemonstration workflow with Alphafold in a Jupyter notebook\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h2\u003e\n\u003cp\u003eThe following components are necessary for setting up this workflow:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eAn Alphafold Singularity container. Please see instructions in \u003ccode\u003e./container\u003c/code\u003e for how to build an Alphafold container. Currently, it is assumed that this container is available at a \u003cstrong\u003ehard coded path\u003c/strong\u003e in \u003ccode\u003e./container/run_singularity_container.py\u003c/code\u003e in this line of code:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity_image = Client.load(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e/public/apps/alphafold/alphafold.sif\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eA Conda (or pip) environment that has the \u003ccode\u003eabsl-py\u003c/code\u003e and \u003ccode\u003espython\u003c/code\u003e packages to launch the container. This workflow also uses \u003ccode\u003eparsl\u003c/code\u003e (but it is not required for using the container itself). For a cluster with Conda in a module, here is an example for how to create a local environment:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emodule load conda3\n\u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e /gs/gsfs0/hpc01/rhel8/apps/conda3/etc/profile.d/conda.sh\nconda create -y -p /gs/gsfs0/users/gstefan/work/alphafold/env -c conda-forge absl-py==0.13.0 spython=0.1.16 parsl\nconda activate /gs/gsfs0/users/gstefan/work/alphafold/env\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ewhere \u003ccode\u003e/gs/gsfs0/users/gstefan/\u003c/code\u003e is your home directory.\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\n\u003cp\u003ePull this workflow code into your PW environment.\n\u003cstrong\u003eTODO: Add instructions here.\u003c/strong\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun the workflow from PW.\n\u003cstrong\u003eTODO: Add instructions here.\u003c/strong\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-interactive-runs\" class=\"anchor\" aria-hidden=\"true\" href=\"#interactive-runs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInteractive runs\u003c/h2\u003e\n\u003cp\u003eFor the purposes of testing Alphafold, it is possible to\nstart interactive Alphafold runs (i.e. manually launch the\napplication for an instance). Instructions for launching\nan interactive run are in \u003ccode\u003e./container\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-batch-runs\" class=\"anchor\" aria-hidden=\"true\" href=\"#batch-runs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBatch runs\u003c/h2\u003e\n\u003cp\u003eWhen you want to run many proteins with Alphafold, there are\ntwo options:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003ethe workflow form (under construction) can be used to launch a batch run or\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emain.ipynb\u003c/code\u003e, the Jupyter notebook that contains the workflow code.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eWhen users opt for the first option (the workflow form), the form simply\ngrabs the code out of \u003ccode\u003emain.ipynb\u003c/code\u003e and executes it. Users can use\n\u003ccode\u003emain.ipynb\u003c/code\u003e as a template for more complicated Alphafold workflows\nand/or directly modify some of the Alphafold options that are not\navailable in the workflow form. Jupyter notebooks (\u003ccode\u003e*.ipynb\u003c/code\u003e files)\ncan be opened, edited, and run on the platform by double clicking on\nthe file in the file browser pane.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-colabfold\" class=\"anchor\" aria-hidden=\"true\" href=\"#colabfold\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eColabFold\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/sokrypton/ColabFold\"\u003eColabFold\u003c/a\u003e is a community-driven\nupdate to Alphafold underpinned by \u003ca href=\"https://colabfold.mmseqs.com/\" rel=\"nofollow\"\u003enew/updated databases\u003c/a\u003e\nand the MSA search process is accelerated by \u003ca href=\"https://github.com/soedinglab/MMseqs2\"\u003eMMseqs2\u003c/a\u003e.\nPlease see the colabfold directory for more information.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1626501688.0
+ "updated_at": 1659444272.0
},
{
"data_format": 2,
- "description": "ABySS is a de novo sequence assembler that is designed for very short reads",
+ "description": "SPAdes \u2013 St. Petersburg genome assembler \u2013 is intended for both standard isolates and single-cell MDA bacteria assemblies.",
"filenames": [
- "2.1.5/Singularity"
+ "3.15.5/Singularity",
+ "3.15.3/Singularity",
+ "3.15.4/Singularity",
+ "3.14.1/Singularity"
],
- "full_name": "pscedu/singularity-abyss",
- "latest_release": "v2.1.5",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-abyss/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-abyss/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/61f7c02135e022542644bca33ec90a8b6bdc9cbb8ec4b0e3ec8b5480f035beaa/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6162797373\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/61f7c02135e022542644bca33ec90a8b6bdc9cbb8ec4b0e3ec8b5480f035beaa/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6162797373\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-abyss\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/e1d01eb58e3d5d47f45f00fffe4ab16909d1541fcb3cf25e0c01bf5f9d0c8028/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6162797373\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e1d01eb58e3d5d47f45f00fffe4ab16909d1541fcb3cf25e0c01bf5f9d0c8028/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6162797373\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-abyss\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/b5bcaa1865f5b4c8a6901097150a4b2915c2e0a967f27a5cd175b8cd7c653ce3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6162797373\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b5bcaa1865f5b4c8a6901097150a4b2915c2e0a967f27a5cd175b8cd7c653ce3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6162797373\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-abyss\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/1d51b6d070f927bea877c0ebb5437d326390ba7459fc3a1baa9ecefc8c1f63ea/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6162797373\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1d51b6d070f927bea877c0ebb5437d326390ba7459fc3a1baa9ecefc8c1f63ea/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6162797373\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-abyss\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-abyss\" class=\"anchor\" href=\"#singularity-abyss\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-abyss\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/ABYSS\"\u003eABySS\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/ABySS/2.1.5\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/ABySS\u003c/code\u003e as \u003ccode\u003e2.1.5.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-spades",
+ "latest_release": "v3.15.5",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-spades/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-spades/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/11b78f1cdc09fbfab0186e430a46591d3424481741a5bf3fd4ba85e5fdf6ab64/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d737061646573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/11b78f1cdc09fbfab0186e430a46591d3424481741a5bf3fd4ba85e5fdf6ab64/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d737061646573\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-spades\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/4e45c3ef27ec17192287b575ac775bc38996f5ef4371b5c3d60a832ce806669e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d737061646573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4e45c3ef27ec17192287b575ac775bc38996f5ef4371b5c3d60a832ce806669e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d737061646573\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-spades\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/1df46e77d3f98a8380250f3dc06ab84e8496724d7526816114756b5e5115363b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d737061646573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1df46e77d3f98a8380250f3dc06ab84e8496724d7526816114756b5e5115363b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d737061646573\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-spades\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/4819979457ec016fbbbd524e8046081eef419b6669035f155038c378d436a9dc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d737061646573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4819979457ec016fbbbd524e8046081eef419b6669035f155038c378d436a9dc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d737061646573\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-spades\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-singularity-spades\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-spades\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-spades\u003c/h2\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/spades/3.15.3\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/spades\u003c/code\u003e as \u003ccode\u003e3.15.3.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [
"singularity",
"bioinformatics"
],
- "updated_at": 1628991345.0
+ "updated_at": 1658280597.0
},
{
"data_format": 2,
- "description": "Trimmomatic performs a variety of useful trimming tasks for illumina paired-end and single ended data",
+ "description": "Old copy of the nf-core methylseq workflow including hacked in NuGen/Tecan support",
"filenames": [
- "0.39/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-trimmomatic",
- "latest_release": "0.39",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-trimmomatic/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-trimmomatic/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/886b78ddfce96f64ae6be83548b2b219652f30a8ab8e6f78413fcf5c763a5fe3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/886b78ddfce96f64ae6be83548b2b219652f30a8ab8e6f78413fcf5c763a5fe3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-trimmomatic\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f83a71da75047a61c081c63788b045654ea1befe0da1eccfc4e3d46b96c656e5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f83a71da75047a61c081c63788b045654ea1befe0da1eccfc4e3d46b96c656e5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-trimmomatic\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/42de55829ff65764902a5aa22015e62165ede512bd9503a795afe4c4815d9e61/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/42de55829ff65764902a5aa22015e62165ede512bd9503a795afe4c4815d9e61/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-trimmomatic\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/77a4e6c187943c941ff1ee8267ebe7f72b3e5d5723a03d3ac4e91e826dc35c98/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/77a4e6c187943c941ff1ee8267ebe7f72b3e5d5723a03d3ac4e91e826dc35c98/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7472696d6d6f6d61746963\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-trimmomatic\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-trimmomatic\" class=\"anchor\" href=\"#singularity-trimmomatic\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-trimmomatic\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/usadellab/Trimmomatic\"\u003eTrimmomatic\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003etrimmomatic\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/trimmomatic/0.39\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/trimmomatic\u003c/code\u003e as \u003ccode\u003e0.39.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "HPCBio/methylseq-old",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"\" class=\"anchor\" aria-hidden=\"true\" href=\"#\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/images/methylseq_logo.png\"\u003e\u003cimg src=\"docs/images/methylseq_logo.png\" alt=\"nf-core/methylseq\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nf-core/methylseq\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a1e11b31de3d567f647c562b736ad6e010ef787d1a8aa35dce459aba5b4587ed/68747470733a2f2f7472617669732d63692e6f72672f6e662d636f72652f6d657468796c7365712e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nf-core/methylseq.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/17df893666bfa5cad487466d4476ab773ea5def560c04c50f45795017865e81c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33302e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.30.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://zenodo.org/badge/latestdoi/124913037\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/89f01223dd3cce114d92a5764aa2e589ddd0915df7208e879ab1d88a5cee4b31/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3132343931333033372e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/124913037.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://gitter.im/nf-core/Lobby\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/75a58bd7ba3966d16ebf50e1d2d55a4d21c67fa281370f9b823c2f4e53532b03/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6769747465722d2532306a6f696e253230636861742532302545322538362539322d3466623939612e737667\" alt=\"Gitter\" data-canonical-src=\"https://img.shields.io/badge/gitter-%20join%20chat%20%E2%86%92-4fb99a.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/methylseq/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fbe9131f0a48ef34c529ac997f1ac04e3b5df4586ceb45fcda42c1568a761456/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f6d657468796c7365712e737667\" alt=\"Docker Container available\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/methylseq.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/1091\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"Singularity Container\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003enf-core/methylseq\u003c/strong\u003e is a bioinformatics best-practice analysis pipeline used for Methylation (BS-Seq) data analysis.\u003c/p\u003e\n\u003cp\u003eThe pipeline uses \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a bioinformatics workflow tool. It pre-processes raw data from FastQ inputs, aligns the reads and performs extensive quality-control on the results.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-pipeline-steps\" class=\"anchor\" aria-hidden=\"true\" href=\"#pipeline-steps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline Steps\u003c/h3\u003e\n\u003cp\u003eThe pipeline allows you to choose between running either \u003ca href=\"https://github.com/FelixKrueger/Bismark\"\u003eBismark\u003c/a\u003e or \u003ca href=\"https://github.com/brentp/bwa-meth\"\u003ebwa-meth\u003c/a\u003e / \u003ca href=\"https://github.com/dpryan79/methyldackel\"\u003eMethylDackel\u003c/a\u003e.\nChoose between workflows by using \u003ccode\u003e--aligner bismark\u003c/code\u003e (default) or \u003ccode\u003e--aligner bwameth\u003c/code\u003e.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eStep\u003c/th\u003e\n\u003cth\u003eBismark workflow\u003c/th\u003e\n\u003cth\u003ebwa-meth workflow\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eGenerate Reference Genome Index \u003cem\u003e(optional)\u003c/em\u003e\n\u003c/td\u003e\n\u003ctd\u003eBismark\u003c/td\u003e\n\u003ctd\u003ebwa-meth\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eRaw data QC\u003c/td\u003e\n\u003ctd\u003eFastQC\u003c/td\u003e\n\u003ctd\u003eFastQC\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAdapter sequence trimming\u003c/td\u003e\n\u003ctd\u003eTrim Galore!\u003c/td\u003e\n\u003ctd\u003eTrim Galore!\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAlign Reads\u003c/td\u003e\n\u003ctd\u003eBismark\u003c/td\u003e\n\u003ctd\u003ebwa-meth\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDeduplicate Alignments\u003c/td\u003e\n\u003ctd\u003eBismark\u003c/td\u003e\n\u003ctd\u003ePicard MarkDuplicates\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eExtract methylation calls\u003c/td\u003e\n\u003ctd\u003eBismark\u003c/td\u003e\n\u003ctd\u003eMethylDackel\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSample report\u003c/td\u003e\n\u003ctd\u003eBismark\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSummary Report\u003c/td\u003e\n\u003ctd\u003eBismark\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAlignment QC\u003c/td\u003e\n\u003ctd\u003eQualimap\u003c/td\u003e\n\u003ctd\u003eQualimap\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eProject Report\u003c/td\u003e\n\u003ctd\u003eMultiQC\u003c/td\u003e\n\u003ctd\u003eMultiQC\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eThe nf-core/methylseq pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation and configuration\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h3\u003e\n\u003cp\u003eThese scripts were originally written for use at the \u003ca href=\"https://portal.scilifelab.se/genomics/\" rel=\"nofollow\"\u003eNational Genomics Infrastructure\u003c/a\u003e at \u003ca href=\"http://www.scilifelab.se/\" rel=\"nofollow\"\u003eSciLifeLab\u003c/a\u003e in Stockholm, Sweden.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMain author:\n\u003cul\u003e\n\u003cli\u003ePhil Ewels (\u003ca href=\"https://github.com/ewels/\"\u003e@ewels\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eContributors:\n\u003cul\u003e\n\u003cli\u003eRickard Hammar\u00e9n (\u003ca href=\"https://github.com/Hammarn/\"\u003e@Hammarn\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eAlexander Peltzer (\u003ca href=\"https://github.com/apeltzer/\"\u003e@apeltzer\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1628992066.0
+ "subscribers_count": 5,
+ "topics": [],
+ "updated_at": 1655919157.0
},
{
"data_format": 2,
- "description": "Target/Integrative Genetic Element Retriever",
+ "description": "Standalone scripts to assist with intermediate tasks in GeoEDF workflows",
"filenames": [
- "5.32.1/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-tiger",
- "latest_release": "v5.32.1",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-tiger/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-tiger/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-tiger/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-tiger/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/45b51fb9658ca6d66b992d887a9258c238463b14dc9fb58c4ed17ba4e75f2efc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7469676572\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b51fb9658ca6d66b992d887a9258c238463b14dc9fb58c4ed17ba4e75f2efc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7469676572\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-tiger\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/266d33a01bfbc88af8ef713b4ab3f12e4207aea6a693420544c401bcc4687384/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7469676572\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/266d33a01bfbc88af8ef713b4ab3f12e4207aea6a693420544c401bcc4687384/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7469676572\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-tiger\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/cd42640e858ab21849faf7ea1ae7b80b386fea232400bb8666ab226125727f09/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7469676572\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cd42640e858ab21849faf7ea1ae7b80b386fea232400bb8666ab226125727f09/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7469676572\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-tiger\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/049f66af13d64dfd0fc9fb6af0dd2b62c6d9f524419d096508747447c1c661ac/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7469676572\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/049f66af13d64dfd0fc9fb6af0dd2b62c6d9f524419d096508747447c1c661ac/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7469676572\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-tiger\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-tiger\" class=\"anchor\" href=\"#singularity-tiger\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-tiger\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/tiger\"\u003etiger\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ednaStats.pl\u003c/code\u003e, \u003ccode\u003eislander.pl\u003c/code\u003e, \u003ccode\u003eresolve.pl\u003c/code\u003e, \u003ccode\u003etater.pl\u003c/code\u003e and \u003ccode\u003etiger.pl\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/tiger/4.8.25\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/tiger\u003c/code\u003e as \u003ccode\u003e4.8.25.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/tigers/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "geoedf/workflow-utils",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-geoedf-workflow-utilities\" class=\"anchor\" aria-hidden=\"true\" href=\"#geoedf-workflow-utilities\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGeoEDF Workflow Utilities\u003c/h1\u003e\n\u003cp\u003eStandalone scripts to assist with intermediate tasks in GeoEDF workflows\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1629218294.0
+ "topics": [],
+ "updated_at": 1655911232.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity",
+ "openfoam/Singularity.of-7-from-docker"
],
- "full_name": "VUIIS/demo-singularity-matlab-fsl",
- "latest_release": "v1.0.1",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-demo-singularity-container-for-matlab-plus-fsl\" class=\"anchor\" href=\"#demo-singularity-container-for-matlab-plus-fsl\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDemo singularity container for Matlab plus FSL\u003c/h1\u003e\n\u003cp\u003eThis example container takes a Nifti image as input, zeroes out a hole in it of\nthe specified diameter, and saves the result to a new Nifti file. Quick,\npointless, and easy to tell whether it worked right.\u003c/p\u003e\n\u003cp\u003eThis is one way to organize a Matlab-based Singularity container -\nperhaps most easily conceived of as a series of wrappers around the main\ncodebase. Done this way, it\u0027s fairly easy to work on each piece in isolation,\nproblem-solving from the inside out.\u003c/p\u003e\n\u003cp\u003eThis container also includes an installation of FSL, which has a lot of handy\ntools including fsleyes to make the QA PDF. The FSL parts could be removed from\nthe Singularity file if FSL isn\u0027t used, to end up with a smaller container.\nContrariwise, all the Matlab parts could be removed to end up with an FSL-only\ncontainer.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity container\n| Primary entrypoint (shell script)\n| | X11 wrapper\n| | | Shell script preprocessing\n| | | Matlab processing (compiled)\n| | | | Matlab entrypoint\n| | | | Matlab main function\n| | | \\ Matlab sub-functions / codebase\n\\ \\ \\ Shell script postprocessing\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDependencies in terms of the actual files:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity\n src/pipeline_entrypoint.sh\n src/pipeline_main.sh\n src/copy_inputs.sh\n src/preprocessing.sh\n matlab/bin/run_matlab_entrypoint.sh\n matlab/bin/matlab_entrypoint\n / matlab/src/matlab_entrypoint.m \\ Used for compilation,\n | matlab/src/matlab_main.m | but not at container\n \\ matlab/src/* / runtime\n src/postprocessing.sh\n src/make_pdf.sh\n src/finalize.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe process of putting it together is described below. The scripts and code in\nthis repository are extensively commented, so if something isn\u0027t clear here,\nit\u0027s probably explained in the Singularity file or the example code.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-this-container-before-editing-anything\" class=\"anchor\" href=\"#building-this-container-before-editing-anything\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding this container before editing anything\u003c/h2\u003e\n\u003cp\u003eTry building this from scratch, to find any immediate issues:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eGet the installers for Matlab Compiled Runtime and FSL and place them in the\n\u003ccode\u003eexternal\u003c/code\u003e directory. URLs for these are in the \u003ccode\u003eSingularity\u003c/code\u003e file. Alternatively,\ncomment out the installer files in the \u0027%files\u0027 section and uncomment the download\nlines (\u0027wget\u0027) later - this way they will be downloaded as part of the build.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBuild the container, following the instructions below\n\u003ca href=\"https://github.com/baxpr/demo-singularity-matlab-fsl#building-the-container\"\u003ehttps://github.com/baxpr/demo-singularity-matlab-fsl#building-the-container\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-matlab-part\" class=\"anchor\" href=\"#matlab-part\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMatlab part\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-write-the-basic-matlab-code\" class=\"anchor\" href=\"#write-the-basic-matlab-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWrite the basic Matlab code\u003c/h3\u003e\n\u003cp\u003eWrite Matlab code that does what\u0027s needed. Put it in \u003ccode\u003ematlab/src\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eA popular toolbox for reading and writing Nifti files that\u0027s available on Matlab\nCentral has a lot of insidious bugs and is not being maintained. Matlab\u0027s own\nfunctions for Nifti files are quite limited. Here is an alternative, which is\nused in this example:\n\u003ca href=\"https://github.com/VUIIS/spm_readwrite_nii\"\u003ehttps://github.com/VUIIS/spm_readwrite_nii\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-write-the-matlab-entrypoint\" class=\"anchor\" href=\"#write-the-matlab-entrypoint\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWrite the Matlab entrypoint\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003ematlab/src/matlab_entrypoint.m\u003c/code\u003e exists to take command line arguments, parse\nthem, and call the main code. A convenient way to set things up is to write a\nmain function that takes a structure as its sole input, with the structure\ncontaining whatever inputs are needed. See \u003ccode\u003ematlab/src/matlab_main.m\u003c/code\u003e for an\nexample of this.\u003c/p\u003e\n\u003cp\u003eCouple of things to note in the entrypoint code are the quit/exit sections at\nbeginning and end. The bit at the beginning allows the executable to run during\nthe container build, without actually doing anything - this is needed to extract\nthe CTF archive into the container at the only time the container is writeable\n(h/t \u003ca href=\"https://twitter.com/annash128\" rel=\"nofollow\"\u003ehttps://twitter.com/annash128\u003c/a\u003e for figuring that one out). The bit at the\nend exits matlab when the function is finished. Without it, the running Matlab\nprocess won\u0027t release execution back to the calling script when it\u0027s done.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-test-the-matlab-entrypoint\" class=\"anchor\" href=\"#test-the-matlab-entrypoint\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest the Matlab entrypoint\u003c/h3\u003e\n\u003cp\u003eThe script \u003ccode\u003ematlab/src/test_matlab_entrypoint.m\u003c/code\u003e is an example of how to do\nthis. The appropriate Matlab must be installed on the testing computer.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-compile-the-matlab-code\" class=\"anchor\" href=\"#compile-the-matlab-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompile the Matlab code\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003ematlab/compile_matlab.sh\u003c/code\u003e shows how. Many compiled executables are likely to be\ntoo large to store on github. Git LFS may be a solution.\n\u003ca href=\"https://docs.github.com/en/github/managing-large-files/working-with-large-files\"\u003ehttps://docs.github.com/en/github/managing-large-files/working-with-large-files\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-test-the-compiled-matlab-code\" class=\"anchor\" href=\"#test-the-compiled-matlab-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest the compiled Matlab code\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003ematlab/test_compiled_matlab.sh\u003c/code\u003e. The appropriate Matlab Runtime must be\ninstalled on the testing computer.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-shell-script-part\" class=\"anchor\" href=\"#shell-script-part\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eShell script part\u003c/h2\u003e\n\u003cp\u003eAll of the below procedures could be done in the matlab part, if desired,\ninstead of in shell script. If so, parsing inputs should be done following the\nexample in \u003ccode\u003ematlab/src/matlab_entrypoint.m\u003c/code\u003e. But it\u0027s often easier to move\nfiles, create the QA PDF, etc using shell script and FSL. So that\u0027s what we are\ndoing in this example. All this code is in the \u003ccode\u003esrc\u003c/code\u003e directory.\u003c/p\u003e\n\u003cp\u003eAll the shell scripts called from \u003ccode\u003esrc/pipeline_entrypoint.sh\u003c/code\u003e \"know\" the\nenvironment variables that are exported there. This is a very convenient way to\npass along the input arguments, although it isn\u0027t entirely transparent, because\nthere\u0027s no hint in the shell scripts where the variables\u0027 values are coming from\nunless we explain it in the comments.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-main-entrypoint\" class=\"anchor\" href=\"#main-entrypoint\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMain entrypoint\u003c/h3\u003e\n\u003cp\u003eThis is \u003ccode\u003esrc/pipeline_entrypoint.sh\u003c/code\u003e. It uses bash to parse the command line\ninputs and export them to environment variables so they\u0027re accessible. Then it\ncalls the primary shell script \u003ccode\u003esrc/pipeline_main.sh\u003c/code\u003e which in turn calls\neverything else. The main script is run in xvfb to provide a virtual display,\noften needed by matlab and required for fsleyes.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-copy-inputs\" class=\"anchor\" href=\"#copy-inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCopy inputs\u003c/h3\u003e\n\u003cp\u003eWe copy input files to the output/working directory so we don\u0027t mess them up.\nThis also is an opportunity to rename them to something consistent. It\u0027s very\nconvenient to hard-code the filenames so we don\u0027t have to store and manipulate\nfilenames in environment variables or the like. Also, this makes it easy to\nproduce output files with consistent names - outputs of one pipeline may serve\nas inputs to another, and it\u0027s much easier to manage this if filenames are the\nsame for every run, or at least consistent.\u003c/p\u003e\n\u003cp\u003eWe generally assume the output directory starts out empty and will not be\ninterfered with by any other processes - this is true for XNAT/DAX, but\nimportant to be aware of in other contexts.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-preprocessing\" class=\"anchor\" href=\"#preprocessing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreprocessing\u003c/h3\u003e\n\u003cp\u003eFor this example, there is no preprocessing before the matlab part. But initial\nFSL steps or similar could be put here: \u003ccode\u003esrc/preprocessing.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-postprocessing\" class=\"anchor\" href=\"#postprocessing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePostprocessing\u003c/h3\u003e\n\u003cp\u003eThere isn\u0027t any postprocessing for this example either, but there could be:\n\u003ccode\u003esrc/postprocessing.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-pdf-creation\" class=\"anchor\" href=\"#pdf-creation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePDF creation\u003c/h3\u003e\n\u003cp\u003eAll assessors on VUIIS XNAT require a PDF QA report of some sort. For this\nexample, a display of the segmented ROIs overlaid on the T1 is created using\nfsleyes and ImageMagick, \u003ccode\u003esrc/make_pdf.sh\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003ePDF creation can be done in Matlab instead. It\u0027s hard to make these look good.\nAn example with some tricks, including a \u003ccode\u003e.fig\u003c/code\u003e file painstakingly made with\nMatlab\u0027s GUIDE, is\n\u003ca href=\"https://github.com/baxpr/connprep/blob/855dadc/src/connectivity_filter.m#L271\"\u003ehttps://github.com/baxpr/connprep/blob/855dadc/src/connectivity_filter.m#L271\u003c/a\u003e\nA way to show slices of functional images with a nice red/blue colormap is\n\u003ca href=\"https://github.com/baxpr/connprep/blob/855dadc/src/make_network_maps.m\"\u003ehttps://github.com/baxpr/connprep/blob/855dadc/src/make_network_maps.m\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-finalizing-the-output\" class=\"anchor\" href=\"#finalizing-the-output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFinalizing the output\u003c/h3\u003e\n\u003cp\u003eAll Niftis must be compressed for storage on XNAT, and outputs can be organized\nin an easily understandable way: \u003ccode\u003esrc/finalize.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eWrite an informative README - so tedious, yet so helpful. Include the\nappropriate citations for all the methods and software you have used. Even\nessentially write the methods section for a paper that uses the pipeline. Here\u0027s\nan excellent example: \u003ca href=\"https://github.com/MASILab/PreQual\"\u003ehttps://github.com/MASILab/PreQual\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAlternatively, git-ify some documentation like this:\n\u003ca href=\"https://github.com/VUIIS/dax/tree/main/docs\"\u003ehttps://github.com/VUIIS/dax/tree/main/docs\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eto get something like this:\n\u003ca href=\"https://dax.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003ehttps://dax.readthedocs.io/en/latest/\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-container\" class=\"anchor\" href=\"#building-the-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the container\u003c/h2\u003e\n\u003cp\u003eBe sure the Matlab code is newly compiled, see above. You can run\n\u003ccode\u003ematlab/check_for_compilation.sh\u003c/code\u003e first to make sure there\u0027s no source code\nnewer than the compiled executable.\u003c/p\u003e\n\u003cp\u003eThen from the root directory of the working copy of the repo, run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build \u0026lt;container_name\u0026gt;.simg Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eGood practice: before you build, create a release on github (if using github) or\nat least tag the commit you are about to build. Give the container a versioned\nname like \u003ccode\u003edemo-singularity-matlab-fsl_v1.0.0.simg\u003c/code\u003e that matches the repository\nname and release version/tag.\u003c/p\u003e\n\u003cp\u003eExternal binaries such as Matlab Runtime and FSL can be included by copying\nlocal copies into the container in the Singularity file\u0027s \u003ccode\u003e%files\u003c/code\u003e section. This\ntends to be a little faster when multiple builds are needed during debugging,\nor necessary for files that are not available to download, and this is what\u0027s\nbeing done in the example Singularity file. Alternatively, binaries or install\nfiles can be downloaded from their source at build time - there are some\ncommented-out sections in the Singularity file showing how that is done. (Thanks\n\u003ca href=\"https://github.com/praitayini\"\u003ehttps://github.com/praitayini\u003c/a\u003e for exploring this in detail)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-the-container\" class=\"anchor\" href=\"#running-the-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the container\u003c/h2\u003e\n\u003cp\u003eSee \u003ccode\u003etest_singularity_container.sh\u003c/code\u003e for an example run command and some\nimportant info.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-inputs\" class=\"anchor\" href=\"#inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs\u003c/h3\u003e\n\u003cp\u003ePaths to files are relative to the container.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e--t1_niigz A T1 image\n--seg_niigz Its corresponding segmentation from e.g. slant pipeline\n--diameter_mm Diameter of the hole to zero out, in mm (default 30)\n\n--label_info A label to annotate the QA PDF, e.g. info from XNAT\n\n--out_dir Where outputs will be stored (default /OUTPUTS)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-outputs\" class=\"anchor\" href=\"#outputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003ePDF/holed_image.pdf QA report\nHOLED_T1/holed_t1.nii.gz T1 image with a hole in it\nHOLED_SEG/holed_seg.nii.gz Segmentation with a hole in it\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-the-container-with-dax\" class=\"anchor\" href=\"#running-the-container-with-dax\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the container with DAX\u003c/h2\u003e\n\u003cp\u003eWith a suitable configuration file, DAX (\u003ca href=\"https://github.com/VUIIS/dax\"\u003ehttps://github.com/VUIIS/dax\u003c/a\u003e) can run this on a cluster.\u003c/p\u003e\n\u003cp\u003eInstructions are here: \u003ca href=\"https://dax.readthedocs.io/en/latest/processors.html\" rel=\"nofollow\"\u003ehttps://dax.readthedocs.io/en/latest/processors.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAn example is here:\n\u003ca href=\"https://github.com/VUIIS/dax_yaml_processor_examples/blob/master/demo-matfsl_v1.0.0_processor.yaml\"\u003ehttps://github.com/VUIIS/dax_yaml_processor_examples/blob/master/demo-matfsl_v1.0.0_processor.yaml\u003c/a\u003e\u003c/p\u003e\n",
+ "full_name": "ggruszczynski/singularity_recipies",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-recipies\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-recipies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity recipies\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4746\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eOfficial Documentation:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularityhub.github.io/singularityhub-docs/docs/getting-started/recipes\" rel=\"nofollow\"\u003ehttps://singularityhub.github.io/singularityhub-docs/docs/getting-started/recipes\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-diy\" class=\"anchor\" aria-hidden=\"true\" href=\"#diy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDIY\u003c/h2\u003e\n\u003cp\u003eHow to run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e to build\u003c/span\u003e\nsudo singularity build image.sif recipe.def\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e to run \u003c/span\u003e\nsingularity shell --cleanenv lolcow_latest.sif \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Without the --cleanenv flag, the environment on the host system will be present within the container at run time.\u003c/span\u003e\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e lolcow_latest.sif cowsay moo\nsingularity run lolcow_latest.sif\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e to download\u003c/span\u003e\nsingularity pull shub://ggruszczynski/singularity_recipies\nsingularity run singularity_recipies_latest.sif\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e to build from docker hub\u003c/span\u003e\nsingularity pull docker://openfoam/openfoam7-paraview56\nsingularity shell --cleanenv openfoam7-paraview56_latest.sif\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e --cleanenv cat /etc/os-release\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e to build from docker file\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e https://www.nas.nasa.gov/hecc/support/kb/converting-docker-images-to-singularity-for-use-on-pleiades_643.html\u003c/span\u003e\n\n$ sudo docker build -t ood-rstudio-bio.4.1.2 - \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003e Dockerfile.4.1.2\n\n$ docker images\nREPOSITORY TAG IMAGE ID CREATED SIZE\nood-rstudio-bio.4.1.2 latest 9ab18b041cba 27 minutes ago 7.05GB\n\n$ docker save 9ab18b041cba -o ood_rstudio_bio_docker_412.tar\n$ singularity build ood_rstudio_bio_singularity_412.sif docker-archive://ood_rstudio_bio_docker_412.tar\n\n$ singularity build --sandbox lolcow docker-archive://lolcow.tar\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-openfoam-notes\" class=\"anchor\" aria-hidden=\"true\" href=\"#openfoam-notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOpenFoam notes\u003c/h3\u003e\n\u003cp\u003eOF fundation: vX versioning + third party\nOF org: vYYMM versioning\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-mpi-notes\" class=\"anchor\" aria-hidden=\"true\" href=\"#mpi-notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMPI notes\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://singularity.lbl.gov/faq\" rel=\"nofollow\"\u003ehttps://singularity.lbl.gov/faq\u003c/a\u003e\nWhy do we call \u2018mpirun\u2019 from outside the container (rather than inside)?\nWith Singularity, the MPI usage model is to call \u2018mpirun\u2019 from outside the container, and reference the container from your \u2018mpirun\u2019 command. Usage would look like this:\u003c/p\u003e\n\u003cp\u003e$ mpirun -np 20 singularity exec container.img /path/to/contained_mpi_prog\nBy calling \u2018mpirun\u2019 outside the container, we solve several very complicated work-flow aspects. For example, if \u2018mpirun\u2019 is called from within the container it must have a method for spawning processes on remote nodes. Historically ssh is used for this which means that there must be an sshd running within the container on the remote nodes, and this sshd process must not conflict with the sshd running on that host! It is also possible for the resource manager to launch the job and (in Open MPI\u2019s case) the Orted processes on the remote system, but that then requires resource manager modification and container awareness.\u003c/p\u003e\n\u003cp\u003eIn the end, we do not gain anything by calling \u2018mpirun\u2019 from within the container except for increasing the complexity levels and possibly losing out on some added performance benefits (e.g. if a container wasn\u2019t built with the proper OFED as the host).\u003c/p\u003e\n\u003cp\u003eSee the Singularity on HPC page for more details.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1626126045.0
+ "updated_at": 1655827541.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity image for the scikit-hep software ecosystem",
"filenames": [
"Singularity"
],
- "full_name": "baxpr/conncalc",
- "latest_release": "v1.0.4",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-conncalc\" class=\"anchor\" href=\"#conncalc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econncalc\u003c/h1\u003e\n\u003cp\u003eComputes functional connectivity maps and matrices for a specified set of ROIs.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-inputs\" class=\"anchor\" href=\"#inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eremovegm_niigz\u003c/code\u003e, \u003ccode\u003ekeepgm_niigz\u003c/code\u003e, \u003ccode\u003emeanfmri_niigz\u003c/code\u003e. Preprocessed fMRI data from\n\u003ca href=\"https://github.com/baxpr/connprep\"\u003econnprep\u003c/a\u003e. This may be supplied in atlas space or\nsubject native space. The first two are 4D time series, the last a single 3D image.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eroi_niigz\u003c/code\u003e. ROI image. This may be an image existing within the container (e.g. the\nMNI space \u0027AABHHIP_LR.nii.gz\u0027, see src/rois/README.md). Or, it may be any supplied\nimage. In the latter case, \u003ccode\u003eroilabel_csv\u003c/code\u003e must also be supplied; this file must contain\nLabel and Region columns, or may be the STATS output of a slant assessor. The ROI\nimage must be already be aligned with the T1 and the fMRI (though needn\u0027t be sampled to\nthe same voxel grid or field of view) - no coregistration or warp is performed on any\nof the images.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003et1_niigz\u003c/code\u003e. T1 image for the PDF report.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003emask_niigz\u003c/code\u003e. Brain mask - will be binarized and dilated and used to exclude any clearly\nex-brain voxels in the stored connectivity maps. Supply \u0027none\u0027 to mask to the entire\nvolume (i.e. no masking).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003econnmaps_out\u003c/code\u003e. \u0027yes\u0027 or \u0027no\u0027 to choose whether to additionally store voxelwise\nconnectivity images for each ROI in the ROI image.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pipeline\" class=\"anchor\" href=\"#pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eResample the ROI image to match the fMRI voxel sampling. It\u0027s assumed both are already\naligned.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eExtract mean time series from the supplied fMRI for each ROI in the ROI image.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCompute functional connectivity. The ROI-to-ROI connectivity matrix is computed, and also\nvoxelwise connectivity Z maps if requested.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eR\u003c/code\u003e, the correlation coefficient\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eZ\u003c/code\u003e, the Fisher transformed correlation, \u003ccode\u003eatanh(R) * sqrt(N-3)\u003c/code\u003e where \u003ccode\u003eN\u003c/code\u003e is number of time points\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eVdf\u003c/code\u003e, \u003ccode\u003ePdf\u003c/code\u003e, \u003ccode\u003eZdf\u003c/code\u003e autocorrelation-adjusted connectivity metrics from \u003ca href=\"https://github.com/asoroosh/xDF\"\u003ehttps://github.com/asoroosh/xDF\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGenerate a PDF report and organize outputs for XNAT.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "amanmdesai/singularity-scikit-hep",
+ "latest_release": "v1.0.0",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-scikit-hep\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-scikit-hep\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-scikit-hep\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/amanmdesai/singularity-scikit-hep/actions/workflows/singularity-build-deploy.yml\"\u003e\u003cimg src=\"https://github.com/amanmdesai/singularity-scikit-hep/actions/workflows/singularity-build-deploy.yml/badge.svg?branch=master\" alt=\"Singularity Build Deploy\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://zenodo.org/badge/latestdoi/533611076\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fce93d17667e5605dd27f08f48424292886536d8ac123c1441b6e3a51b801dc4/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3533333631313037362e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/533611076.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA singularity container for scikit-hep with python packages\u003c/p\u003e\n\u003cp\u003eTo pull this image:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull oras://ghcr.io/amanmdesai/singularity-scikit-hep:latest\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis image contains the python packages.\u003c/p\u003e\n\u003cp\u003enumpy, awkward, uproot4, scikit-hep-testdata, hist, particle, hepunits, matplotlib, boost-histogram, iminuit, zfit, vector, fastjet\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1625759471.0
+ "updated_at": 1662637680.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for multiqc (https://github.com/ewels/MultiQC)",
+ "description": null,
"filenames": [
- "Singularity.1.6",
- "Singularity.1.9",
- "Singularity.1.11",
- "Singularity.1.5",
- "Singularity",
- "Singularity.1.8",
- "Singularity.1.7"
+ "misc/releases/19.06/Singularity.19.06",
+ "misc/releases/19.12/Singularity.19.12",
+ "misc/releases/20.06/Singularity.20.06",
+ "misc/releases/22.06/Singularity.22.06",
+ "misc/releases/21.12/Singularity.21.12",
+ "misc/releases/latest/Singularity"
],
- "full_name": "powerPlant/multiqc-srf",
+ "full_name": "silvansievers/weak-stubborn-sets",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for the MultiQC tool to aggregate results from bioinformatics analyses across many samples into a single report.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-hidden=\"true\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2015, 2021 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-hidden=\"true\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1625703839.0
+ "updated_at": 1659517719.0
},
{
"data_format": 2,
- "description": "Notebook template using Fink API for the LSST broker workshop",
+ "description": null,
"filenames": [
- "Singularity"
+ "misc/releases/19.06/Singularity.19.06",
+ "misc/releases/19.12/Singularity.19.12",
+ "misc/releases/20.06/Singularity.20.06",
+ "misc/releases/22.06/Singularity.22.06",
+ "misc/releases/21.12/Singularity.21.12",
+ "misc/releases/latest/Singularity"
],
- "full_name": "astrolabsoftware/fink-notebook-template",
+ "full_name": "silvansievers/merge-strategies",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fink-broker-tutorials\" class=\"anchor\" href=\"#fink-broker-tutorials\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFink broker tutorials\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://colab.research.google.com/github/astrolabsoftware/fink-notebook-template/blob/main\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667\" alt=\"Open In Colab\" data-canonical-src=\"https://colab.research.google.com/assets/colab-badge.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis repository contains materials (notebooks \u0026amp; presentation) to explore the \u003ca href=\"https://fink-broker.org\" rel=\"nofollow\"\u003eFink broker\u003c/a\u003e alert data. As of April 2021, Fink has collected more than 80 million alerts from the ZTF public stream, and processed more than 30 millions (after quality cuts). Among these, you will find extragalatic sources (supernovae, AGN, ...), galactic sources (many classes of transients incl. variables stars from our galaxy or gravitational microlensing events, ...) and moving objects from our Solar System (asteroids, comets, and made-man objects like space-debris!). Some sources are already confirmed, many are candidates!\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-materials\" class=\"anchor\" href=\"#materials\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMaterials\u003c/h2\u003e\n\u003cp\u003eThe repository contains a number of notebooks focusing on the use of the Fink REST API. We shortly present different science cases:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eExtragalactic science: AGN \u0026amp; supernovae (\u003ca href=\"extragalactic/extragalactic.ipynb\"\u003esee notebook\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eGalactic science: variable stars \u0026amp; microlensing (\u003ca href=\"galactic/galactic.ipynb\"\u003esee notebook\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eSolar system science: asteroids, comets \u0026amp; space debris (\u003ca href=\"sso/sso.ipynb\"\u003esee notebook\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eMulti-messenger astronomy: searching for kilonovae (\u003ca href=\"MMA/MMA.ipynb\"\u003esee notebook\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eBroker interfaces: presentation on the livestream service, the Science Portal and its API, and the Fink TOM module (\u003ca href=\"interfaces/README.md\"\u003esee the presentation\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThese sciences are not exhaustive and we welcome new collaborations to expand them!\u003c/p\u003e\n\u003cp\u003eYou can try the notebooks using Google Colab (follow the link above). You can also clone the repo, and try it locally (very little external libraries are required).\u003c/p\u003e\n\u003cp\u003eWe also provide a Singularity script to work in a contained environment (thanks @bregeon):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBuild with \u003ccode\u003esingularity build --fakeroot fink.sif Singularity\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun with \u003ccode\u003esingularity run fink.sif\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eOpen the link in your browser (from the host)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to-contribute\" class=\"anchor\" href=\"#how-to-contribute\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to contribute\u003c/h2\u003e\n\u003cp\u003eHow to contribute:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eClone (or fork) this repo, and open a new branch.\u003c/li\u003e\n\u003cli\u003eCreate a new folder with a meaningful name (e.g. \u003ccode\u003esupernovae\u003c/code\u003e, \u003ccode\u003egrb\u003c/code\u003e, ...)\u003c/li\u003e\n\u003cli\u003eRead and copy an existing notebook to get an idea of the structure of a tutorial.\u003c/li\u003e\n\u003cli\u003eOnce your notebook is finished, open a Pull Request such that we review the tutorial and merge it!\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-hidden=\"true\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2015, 2021 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-hidden=\"true\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 6,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1625729812.0
+ "updated_at": 1651653962.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "misc/releases/19.06/Singularity.19.06",
+ "misc/releases/19.12/Singularity.19.12",
+ "misc/releases/20.06/Singularity.20.06",
+ "misc/releases/22.06/Singularity.22.06",
+ "misc/releases/21.12/Singularity.21.12",
+ "misc/releases/latest/Singularity"
],
- "full_name": "VUIIS/demo-singularity-spm-freeview",
- "latest_release": "v1.0.1",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-demo-singularity-container-with-spm12-and-freeview\" class=\"anchor\" href=\"#demo-singularity-container-with-spm12-and-freeview\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDemo singularity container with SPM12 and Freeview\u003c/h1\u003e\n\u003cp\u003eSPM12-based pipelines require a little extra work to get them compiled and working in a\ncontainer. Freesurfer\u0027s Freeview is also included here, as it\u0027s very handy for creating\nthe PDF QA report. This example shows three different ways of creating image displays for\nthe QA PDF.\u003c/p\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/baxpr/demo-singularity-matlab-fsl\"\u003ehttps://github.com/baxpr/demo-singularity-matlab-fsl\u003c/a\u003e for a lot of detailed info about\nputting Matlab code into singularity containers. This example uses the same structure.\u003c/p\u003e\n\u003cp\u003eA licensed Matlab installation is required to compile the Matlab code, but is not needed\nto run the compiled executable in the container.\u003c/p\u003e\n\u003cp\u003eSPM12 (\u003ca href=\"https://www.fil.ion.ucl.ac.uk/spm/software/spm12/\" rel=\"nofollow\"\u003ehttps://www.fil.ion.ucl.ac.uk/spm/software/spm12/\u003c/a\u003e) is not in this repository and must\nbe installed separately on the compilation host. Edit \u003ccode\u003ematlab/compile_matlab.sh\u003c/code\u003e to point\nto it.\u003c/p\u003e\n\u003cp\u003eSPM requires jumping an extra hurdle at the compilation step - we use a modified version\nof SPM\u0027s own compiler function \u003ccode\u003espm_make_standalone.m\u003c/code\u003e, found at\n\u003ccode\u003ematlab/spm_make_standalone_local.m\u003c/code\u003e. This process captures a lot of dependencies that\ncould otherwise easily be left out of the executable, with the resulting symptom that it\ncompiles just fine but fails at run time with various cryptic error messages. In addition\nto SPM12, everything in the \u003ccode\u003ematlab/src\u003c/code\u003e directory is included in the path at compile time.\nIf Matlab toolboxes are used, they will need to be added to the list of included toolboxes\nin \u003ccode\u003ematlab/spm_make_standalone_local.m\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eThe compiled Matlab executable is stored on github using git LFS. A regular git clone will\ndownload a pointer text file instead of the executable binary. The result of building a\ncontainer from that will be a cryptic error message - so, compile it yourself. Or, if\nstoring on github, download it manually and replace the pointer text file, or include this\nstep in the Singularity file if helpful - example here:\n\u003ca href=\"https://github.com/baxpr/gf-fmri/blob/47b0552/Singularity.v1.3.4#L65\"\u003ehttps://github.com/baxpr/gf-fmri/blob/47b0552/Singularity.v1.3.4#L65\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFreesurfer requires a license to run:\n\u003ca href=\"https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall#License\" rel=\"nofollow\"\u003ehttps://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall#License\u003c/a\u003e\nBest practice is to store your license file on the host that will run the container, and\nbind it to the container at runtime - NOT to include your own license file in the\ncontainer itself.\u003c/p\u003e\n",
+ "full_name": "silvansievers/symmetric-lookups",
+ "latest_release": null,
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"https://www.fast-downward.org\" rel=\"nofollow\"\u003ehttps://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"https://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttps://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-hidden=\"true\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2019 (MSVC 19.29) and 2022 (MSVC 19.31)\u003c/td\u003e\n\u003ctd\u003e3.22\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2015, 2021 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-hidden=\"true\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1625837739.0
+ "updated_at": 1659363562.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Unofficial Sniffles repository for singularity container",
"filenames": [
- "misc/releases/20.06/Singularity.20.06",
- "misc/releases/latest/Singularity",
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/19.06/Singularity.19.06"
+ "Singularity"
],
- "full_name": "No-Diehl/FD-SAT",
+ "full_name": "touala/Sniffles",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fast-downward\" class=\"anchor\" href=\"#fast-downward\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFast Downward\u003c/h1\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2020 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"http://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttp://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributors\" class=\"anchor\" href=\"#contributors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2020 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2020 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2020 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2020 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2020 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2020 Salome Eriksson\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2018-2020 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2015 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-history\" class=\"anchor\" href=\"#history\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-sniffles\" class=\"anchor\" aria-hidden=\"true\" href=\"#sniffles\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSniffles\u003c/h1\u003e\n\u003cp\u003eUnofficial Sniffles repository for singularity container\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1625821718.0
+ "updated_at": 1657955196.0
},
{
"data_format": 2,
- "description": "FastANI is developed for fast alignment-free computation of whole-genome Average Nucleotide Identity (ANI)",
+ "description": null,
"filenames": [
- "1.33/Singularity"
+ "r4.1.3-bc3.14-cgrtextbook20200930/Singularity",
+ "r4.1.0-bc3.13-cgrtextbook20200930/Singularity"
],
- "full_name": "pscedu/singularity-fastani",
- "latest_release": "v1.3.3",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-fastani/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-fastani/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/8dc34ff6e6f588edb478bbdd040070223d6309ed57ff692ec669a99a4ce3c044/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d66617374616e69\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8dc34ff6e6f588edb478bbdd040070223d6309ed57ff692ec669a99a4ce3c044/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d66617374616e69\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-fastani\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/eee7b443f78bf774c4336377ac5dee69d66644752fb8ba1f4c38931628d44fb4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d66617374616e69\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/eee7b443f78bf774c4336377ac5dee69d66644752fb8ba1f4c38931628d44fb4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d66617374616e69\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-fastani\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/27c0f180ef8bc2d2094b529129fd31169bf0e10b3a965f25fb6ef0d8b8311868/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d66617374616e69\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/27c0f180ef8bc2d2094b529129fd31169bf0e10b3a965f25fb6ef0d8b8311868/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d66617374616e69\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-fastani\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/86bc49a261c15fbea5000ea905a561248a21175c8d281a5949cf47e66c9eae71/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d66617374616e69\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/86bc49a261c15fbea5000ea905a561248a21175c8d281a5949cf47e66c9eae71/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d66617374616e69\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-fastani\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-fastani\" class=\"anchor\" href=\"#singularity-fastani\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-fastani\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"github.com/parbliss/fastani\"\u003efastANI\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003efastANI\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/fastANI/1.33\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/fastANI\u003c/code\u003e as \u003ccode\u003e1.33.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "yh549848/singularity-r-notebook",
+ "latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1628991664.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1637718305.0
},
{
"data_format": 2,
- "description": "PHYLIP is a free package of programs for inferring phylogenies.",
+ "description": "R package for nsphs_ml_qt",
"filenames": [
- "3.697/Singularity"
+ "Singularity",
+ "scripts_local/issue_61/Singularity",
+ "scripts_bianca/Singularity"
],
- "full_name": "pscedu/singularity-phylip-suite",
- "latest_release": "v3.697",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-phylip-suite/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-phylip-suite/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-phylip-suite/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-phylip-suite/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c170f91fccaa5cf129589585cae304316c06a6c4926ef489d6ae6cec8639c69d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c170f91fccaa5cf129589585cae304316c06a6c4926ef489d6ae6cec8639c69d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-phylip-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5e02750234489a3b6681aab63cc8c7dee07d7b579324265bc6a45b0d56dad6d6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5e02750234489a3b6681aab63cc8c7dee07d7b579324265bc6a45b0d56dad6d6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-phylip-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a77ca9fdcc58325c1ddfe94710d8ad36e21b307dbe40570153f1e80be6cac559/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a77ca9fdcc58325c1ddfe94710d8ad36e21b307dbe40570153f1e80be6cac559/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-phylip-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/50a0a1f8e6d29153411b82f9caaa4f006a72cf5b55af95c617d808d70a1588b9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/50a0a1f8e6d29153411b82f9caaa4f006a72cf5b55af95c617d808d70a1588b9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7068796c69702d7375697465\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-phylip-suite\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-phylip-suite\" class=\"anchor\" href=\"#singularity-phylip-suite\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-phylip-suite\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/b55efde725f14299bbb17335a6c6f17cde58bd9f451a128b97c0cfb8fe5b4edc/68747470733a2f2f65766f6c7574696f6e2e67656e65746963732e77617368696e67746f6e2e6564752f7068796c69702e676966\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b55efde725f14299bbb17335a6c6f17cde58bd9f451a128b97c0cfb8fe5b4edc/68747470733a2f2f65766f6c7574696f6e2e67656e65746963732e77617368696e67746f6e2e6564752f7068796c69702e676966\" alt=\"Logo\" data-canonical-src=\"https://evolution.genetics.washington.edu/phylip.gif\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://evolution.genetics.washington.edu/phylip.html\" rel=\"nofollow\"\u003ePHYLIP\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/phylip-suite/3.697\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/phylip-suite\u003c/code\u003e as \u003ccode\u003e3.697.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "AJResearchGroup/nsphs_ml_qt",
+ "latest_release": "v0.3",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-nsphs_ml_qt\" class=\"anchor\" aria-hidden=\"true\" href=\"#nsphs_ml_qt\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ensphs_ml_qt\u003c/h1\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eBranch\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://github.com/richelbilderbeek/nsphs_ml_qt/actions\"\u003e\u003cimg src=\"man/figures/GitHubActions.png\" alt=\"GitHub Actions logo\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://www.codecov.io\" rel=\"nofollow\"\u003e\u003cimg src=\"man/figures/Codecov.png\" alt=\"Codecov logo\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emaster\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=master\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=master\" alt=\"R-CMD-check\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt?branch=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/be413dbe544678e8710f09ecb2ee97d7a26b0a853e40a539069148252157700f/68747470733a2f2f636f6465636f762e696f2f67682f72696368656c62696c6465726265656b2f6e737068735f6d6c5f71742f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"Codecov test coverage\" data-canonical-src=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt/branch/master/graph/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003edevelop\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=develop\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=develop\" alt=\"R-CMD-check\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt?branch=develop\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d51e07e8b43e2d93b35336c3c0437fdb29a65ac9e5d54406d980daf81cd2567f/68747470733a2f2f636f6465636f762e696f2f67682f72696368656c62696c6465726265656b2f6e737068735f6d6c5f71742f6272616e63682f646576656c6f702f67726170682f62616467652e737667\" alt=\"Codecov test coverage\" data-canonical-src=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt/branch/develop/graph/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eAll code for \u003cg-emoji class=\"g-emoji\" alias=\"lock\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f512.png\"\u003e\ud83d\udd12\u003c/g-emoji\u003e \u003ca href=\"https://github.com/AJResearchGroup/article_nsphs_ml_qt\"\u003earticle_nsphs_ml_qt\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eVideo on workflow: \u003ca href=\"https://youtu.be/FSh6i0Vsf54\" rel=\"nofollow\"\u003eYouTube\u003c/a\u003e \u003ca href=\"https://richelbilderbeek.nl/nsphs_ml_qt_workflow.ogv\" rel=\"nofollow\"\u003edownload\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"scripts_bianca/README.md\"\u003eWorkflow on Bianca\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"scripts_rackham/README.md\"\u003eWorkflow on Rackham\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"scripts_local/README.md\"\u003eWorkflow on local computer\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eResults: \u003ca href=\"https://github.com/richelbilderbeek/nsphs_ml_qt_results\"\u003esee the \u0027nsphs_ml_qt_results\u0027 repository\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"man/figures/example_architecture.png\"\u003e\u003cimg src=\"man/figures/example_architecture.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"man/figures/example_dimred.png\"\u003e\u003cimg src=\"man/figures/example_dimred.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"man/figures/legend_HO_tiny.png\"\u003e\u003cimg src=\"man/figures/legend_HO_tiny.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "bioinformatics",
- "singularity"
- ],
- "updated_at": 1629217939.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1657465920.0
},
{
"data_format": 2,
- "description": "bowtie2 is an ultrafast and memory-efficient tool for aligning sequencing reads to long reference sequences.",
+ "description": "FAIR+ template repository with support and scaffolding for Docker, Singularity, and the Open Science Grid",
"filenames": [
- "2.4.4/Singularity",
- "2.2.5/Singularity",
- "2.4.1/Singularity",
- "2.4.2/Singularity"
+ "Singularity.def"
],
- "full_name": "pscedu/singularity-bowtie2",
- "latest_release": "v2.4.4",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-bowtie2/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bowtie2/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/78e679d7d4d533686856a3aabf05836e6e4c4332ede5b3be04e448bcb0af367d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626f7774696532\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/78e679d7d4d533686856a3aabf05836e6e4c4332ede5b3be04e448bcb0af367d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626f7774696532\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bowtie2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/1de77fb074acfa00a23f3b57ec7ee2899825e96179ba08e9726d43d479a8d305/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626f7774696532\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1de77fb074acfa00a23f3b57ec7ee2899825e96179ba08e9726d43d479a8d305/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626f7774696532\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bowtie2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/022a36667f17e7d4a64d83341d6f9b3ef4e8e2ca7bbb26a5e59ea5d45b8bd4ca/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626f7774696532\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/022a36667f17e7d4a64d83341d6f9b3ef4e8e2ca7bbb26a5e59ea5d45b8bd4ca/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626f7774696532\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bowtie2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/6a118105cb6b5b857541ef5a71ff99144f58396c20ec65334f65aef06d79ae43/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626f7774696532\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6a118105cb6b5b857541ef5a71ff99144f58396c20ec65334f65aef06d79ae43/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626f7774696532\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bowtie2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-bowtie2\" class=\"anchor\" href=\"#singularity-bowtie2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bowtie2\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/bowtie2\"\u003ebowtie2\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the Perl scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bowtie2/2.4.4\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bowtie2\u003c/code\u003e as \u003ccode\u003e2.4.4.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "comses-education/fair-osg-template",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-fair-osg-template\" class=\"anchor\" aria-hidden=\"true\" href=\"#fair-osg-template\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efair-osg-template\u003c/h1\u003e\n\u003cp\u003eThis template repository provides scaffolding and support for adopting the \u003ca href=\"https://doi.org/10.15497/RDA00068\" rel=\"nofollow\"\u003eFAIR4RS Principles\u003c/a\u003e and containerization support for \u003ca href=\"https://docs.docker.com\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e, \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e, and the \u003ca href=\"https://opensciencegrid.org/\" rel=\"nofollow\"\u003eOpen Science Grid (OSG)\u003c/a\u003e. A basic Makefile is included to be customized with basic \u003ccode\u003ebuild | deploy | clean\u003c/code\u003e targets to build container images in Docker and Singularity and copy the generated Singularity image and model files to an OSG login node.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-fair4rs-principles\" class=\"anchor\" aria-hidden=\"true\" href=\"#fair4rs-principles\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFAIR4RS Principles\u003c/h2\u003e\n\u003cp\u003eMore details at \u003ca href=\"https://github.com/comses-education/fair-osg-template/wiki/FAIR-Principles-for-Research-Software\"\u003ethis template repository\u0027s wiki\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] \u003cstrong\u003eFindable\u003c/strong\u003e: create a persistent identifier for each released / published version of the software\u003c/li\u003e\n\u003cli\u003e[ ] \u003cstrong\u003eAccessible\u003c/strong\u003e: make your software open source (good start, using this!), ensure that it is well documented with descriptive metadata and narrative documentation, and make sure that this metadata remains accessible even if the software is not\u003c/li\u003e\n\u003cli\u003e[ ] \u003cstrong\u003eInteroperable\u003c/strong\u003e: your software should read, write, and exchange data using domain-relevant \u003cem\u003eopen\u003c/em\u003e community standards (e.g., netCDF, HDF, domain-specific controlled vocabularies or ontologies, etc.)*\u003c/li\u003e\n\u003cli\u003e[ ] \u003cstrong\u003eReusable\u003c/strong\u003e: Software can be executed and understood, modified, built upon, or incorporated into other software - a clear and accessible license, detailed provenance metadata, qualified persistent references to other software dependencies, domain-relevant community standards*\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] add narrative documentation in durable text formats (e.g., PDF with no special extensions, .odt OpenOffice Document file, Markdown / plaintext) about your computational model ideally with visual diagrams, flowcharts, etc., that describe expected inputs, outputs, assumptions, and consider adhering to a structured, domain-specific protocols like the \u003ca href=\"https://www.jasss.org/23/2/7.html\" rel=\"nofollow\"\u003eODD Protocol for Describing Agent-Based and other Simulation Models\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] include a README.md with a quick start for new users that addresses the following basic concerns:\u003c/li\u003e\n\u003cli\u003e[ ] What assumptions if any are embedded in the model?\u003c/li\u003e\n\u003cli\u003e[ ] Is it possible to change or extend the model?\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-containerization-and-scripts\" class=\"anchor\" aria-hidden=\"true\" href=\"#containerization-and-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainerization and Scripts\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] specify pinned software and system dependencies to be installed in Docker and Singularity\u003c/li\u003e\n\u003cli\u003e[ ] identify an appropriate base image. You can use base images prefixed with \u003ccode\u003eosg-\u003c/code\u003e for common platforms\nlike NetLogo, Julia, Python, and R at \u003ca href=\"https://hub.docker.com/u/comses\" rel=\"nofollow\"\u003ehttps://hub.docker.com/u/comses\u003c/a\u003e or create your own based on an OSG blessed\nimage (e.g., \u003ca href=\"https://github.com/opensciencegrid/osgvo-ubuntu-20.04\"\u003ehttps://github.com/opensciencegrid/osgvo-ubuntu-20.04\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] customize job-wrapper.sh\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-run-this-model\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-run-this-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run this model\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] What does this model do?\u003c/li\u003e\n\u003cli\u003e[ ] How do I run it?\u003c/li\u003e\n\u003cli\u003e[ ] What are some example inputs? What are the expected outputs for those example inputs? Where do they live?\u003c/li\u003e\n\u003cli\u003e[ ] How do I analyze or understand the outputs?\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-on-the-open-science-grid\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-on-the-open-science-grid\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning on the Open Science Grid\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-set-up-your-user-account-on-the-open-science-grid\" class=\"anchor\" aria-hidden=\"true\" href=\"#set-up-your-user-account-on-the-open-science-grid\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSet up your user account on the Open Science Grid\u003c/h3\u003e\n\u003cp\u003e\u003ca href=\"https://osg-htc.org/research-facilitation/accounts-and-projects/general/index.html\" rel=\"nofollow\"\u003ehttps://osg-htc.org/research-facilitation/accounts-and-projects/general/index.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eYou must have already gone through the OSG facilitation process with access to an Open Science Grid login node before\n\u003ccode\u003e% make deploy\u003c/code\u003e will work and you should create an alias in your \u003ccode\u003e.ssh/config\u003c/code\u003e that assigns the name \u003ccode\u003eosg\u003c/code\u003e to your OSG\nlogin node.\u003c/p\u003e\n\u003cp\u003eFor example,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eHost osg\n HostName login02.osgconnect.net\n User \u0026lt;your-assigned-osg-username\u0026gt;\n IdentityFile ~/.ssh/a-private-ssh-key that you generated and added to your OSG profile\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor more information on connecting to OSG and generating SSH keys, please see\n\u003ca href=\"https://support.opensciencegrid.org/support/solutions/articles/12000027675-generate-ssh-keys-and-activate-your-osg-login\" rel=\"nofollow\"\u003ehttps://support.opensciencegrid.org/support/solutions/articles/12000027675-generate-ssh-keys-and-activate-your-osg-login\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-customize-entry-point-scripts-and-model-metadata\" class=\"anchor\" aria-hidden=\"true\" href=\"#customize-entry-point-scripts-and-model-metadata\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCustomize entry point scripts and model metadata\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e# user to connect to OSG as\nOSG_USERNAME := ${USER}\n# name of this computational model, used as the namespace (for singularity, Docker, and as a folder to keep things\n# organized on the OSG filesystem login node). recommend that you use all lowercase alphanumeric with - or _ to\n# separate words, e.g., chime-abm or spatial-rust-model\nMODEL_NAME := ${OSG_MODEL_NAME}\n# the directory (in the container) where the computational model source\n# code or executable can be called, e.g., main.py | netlogo-headless.sh\nMODEL_CODE_DIRECTORY := /code\n# entrypoint script to be called by job-wrapper.sh\nENTRYPOINT_SCRIPT := /srv/run.sh\n# entrypoint script language\nENTRYPOINT_SCRIPT_EXECUTABLE := bash\n# the OSG output file to be transferred\nOSG_OUTPUT_FILES := output,results\n# the submit file to be executed on OSG via `condor_submit ${OSG_SUBMIT_FILE}`\nOSG_SUBMIT_FILENAME := ${OSG_MODEL_NAME}.submit\n# the initial entrypoint for the OSG job, calls ENTRYPOINT_SCRIPT\nOSG_JOB_SCRIPT := job-wrapper.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(TODO: set data via cookiecutter and cookiecutter.json in cookiecutter project + document further)\u003c/p\u003e\n\u003cp\u003eThese can be customized in the make command.\u003c/p\u003e\n\u003cp\u003eThen run\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003emake OSG_USERNAME=\u0026lt;your-username\u0026gt; build\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eto build Docker + Singularity images with the model + dependencies embedded or\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003emake OSG_USERNAME=\u0026lt;your-username\u0026gt; clean deploy\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eto build and then copy the images to your OSG login node and public directory.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-input-and-output-files\" class=\"anchor\" aria-hidden=\"true\" href=\"#input-and-output-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput and Output Files\u003c/h2\u003e\n\u003cp\u003eOSG defaults transfer all generated output files. If your model generates all files in a given directory, say \u003ccode\u003eoutput\u003c/code\u003e and/or \u003ccode\u003eresults\u003c/code\u003e, something like\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003etransfer_output_files = output,results\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eshould work, e.g., a comma separated list of\u003c/p\u003e\n\u003cp\u003eFor more information, see \u003ca href=\"https://htcondor.readthedocs.io/en/latest/users-manual/file-transfer.html#specifying-what-files-to-transfer\" rel=\"nofollow\"\u003ehttps://htcondor.readthedocs.io/en/latest/users-manual/file-transfer.html#specifying-what-files-to-transfer\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "bioinformatics",
- "singularity"
- ],
- "updated_at": 1628991557.0
+ "subscribers_count": 4,
+ "topics": [],
+ "updated_at": 1657275644.0
},
{
"data_format": 2,
- "description": "HISAT2 is a fast and sensitive alignment program for mapping next-generation sequencing reads (both DNA and RNA) to a population of human genomes as well as to a single reference genome. ",
+ "description": "A singularity container for `fastqsplit`: https://github.com/supernifty/fastqsplit",
"filenames": [
- "2.2.1/Singularity"
+ "Singularity.fastqsplit"
],
- "full_name": "pscedu/singularity-hisat2",
- "latest_release": "v2.2.1",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-hisat2/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hisat2/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/icaoberg/singularity-hisat2/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hisat2/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ea61f9228ca14a66e58889a560447e0b7c8ba73ddbaa594055242ace96eb0a84/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ea61f9228ca14a66e58889a560447e0b7c8ba73ddbaa594055242ace96eb0a84/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/4796300b08f76b423ee0574c15e8bd8ad15b0a389a36fd3f58549b8bb5df8690/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4796300b08f76b423ee0574c15e8bd8ad15b0a389a36fd3f58549b8bb5df8690/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/25eeccddaeb5bf9a3f7053b646f9b7bf540d33b801c371db1850d745da46fc95/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/25eeccddaeb5bf9a3f7053b646f9b7bf540d33b801c371db1850d745da46fc95/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f14a5cb988478f36746bb17a364f669ee4d02a32a6f6fddfbccaff9dc50a8379/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f14a5cb988478f36746bb17a364f669ee4d02a32a6f6fddfbccaff9dc50a8379/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-hisat\" class=\"anchor\" href=\"#singularity-hisat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-hisat\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://daehwankimlab.github.io/hisat2/\" rel=\"nofollow\"\u003ehisat2\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the scripts \u003ccode\u003ehisat2\u003c/code\u003e, \u003ccode\u003ehisat2-build\u003c/code\u003e and \u003ccode\u003ehisat2-inspect\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hisat2/2.2.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hisat2\u003c/code\u003e as \u003ccode\u003e2.2.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-singularity-definition-file\" class=\"anchor\" href=\"#building-the-image-using-the-singularity-definition-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the Singularity definition file\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "mjakobs/fastqsplit_singularity",
+ "latest_release": "v1.0.3",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-fastqsplit-singularity-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#fastqsplit-singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFastqSplit Singularity Container\u003c/h1\u003e\n\u003cp\u003eA Singularity container for \u003ccode\u003efastqsplit\u003c/code\u003e by \u003ca href=\"https://github.com/supernifty/fastqsplit\"\u003ehttps://github.com/supernifty/fastqsplit\u003c/a\u003e .\u003c/p\u003e\n\u003cp\u003eBased on a template by \u003ca href=\"https://github.com/singularityhub/singularity-deploy\"\u003ehttps://github.com/singularityhub/singularity-deploy\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-instructions-for-use\" class=\"anchor\" aria-hidden=\"true\" href=\"#instructions-for-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstructions for use\u003c/h2\u003e\n\u003cp\u003eTo pull this singularity container please run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity pull https://github.com/mjakobs/fastqsplit_singularity/releases/download/v1.0.2/mjakobs-fastqsplit_singularity.fastqsplit.sif\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [
- "bioinformatics",
- "singularity"
- ],
- "updated_at": 1629078604.0
+ "topics": [],
+ "updated_at": 1652199670.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.openrefine"
+ "planner/symk/Singularity",
+ "planner/symk/misc/releases/19.06/Singularity.19.06",
+ "planner/symk/misc/releases/19.12/Singularity.19.12",
+ "planner/symk/misc/releases/latest/Singularity"
],
- "full_name": "ternaustralia/coesra-singularity-openrefine",
+ "full_name": "zihangs/GRACE",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-coesra-singularity-openrefine\" class=\"anchor\" href=\"#coesra-singularity-openrefine\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-openrefine\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-grace\" class=\"anchor\" aria-hidden=\"true\" href=\"#grace\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGRACE\u003c/h1\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Environment\u003c/h3\u003e\n\u003cp\u003eThe docker image can be found \u003ca href=\"https://hub.docker.com/r/suzihang/grace\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003edocker run -it -v PathToGRACE:/mnt suzihang/grace /bin/bash\u003c/p\u003e\n\u003cp\u003eThe container should contain all dependency libraries (you can install other tools into the container). Then, build the planner with all the required dependencies in the container.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "coesra"
- ],
- "updated_at": 1610426463.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1659585039.0
},
{
"data_format": 2,
- "description": "Singularity image for honggfuzz (https://github.com/google/honggfuzz)",
+ "description": "Dockerfile for an image containing Conda, open-ssh and java-ready for installing IBM products",
"filenames": [
- "Singularity.i386",
- "Singularity.1604",
- "Singularity.1804",
- "v21/Singularity.v21"
+ "Singularity"
],
- "full_name": "shub-fuzz/honggfuzz",
- "latest_release": "0.0.2",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/shub-fuzz/honggfuzz/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/shub-fuzz/honggfuzz/actions/workflows/builder.yml/badge.svg?branch=main\" alt=\"singularity-deploy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/3641\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eWhat\u003c/strong\u003e is \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e?\u003cbr\u003e\nA containerization system primarily used by the scientific community on high-performance computing (HPC).\nOn many University HPC systems, docker is not allowed, but singularity is availble because it runs with\nuser level permisions.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eWhy\u003c/strong\u003e?\u003cbr\u003e\nFuzzing on HPC!\u003cbr\u003e\nUniversities have trememdous resources available in HPC clusters that can be used to support\nlarge-scale fuzzing evaluations.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSingularity image for honggfuzz (\u003ca href=\"https://github.com/google/honggfuzz\"\u003ehttps://github.com/google/honggfuzz\u003c/a\u003e)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eusage:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name honggfuzz.sif https://github.com/shub-fuzz/honggfuzz/releases/download/0.0.2/shub-fuzz-honggfuzz.1604.sif\n\nsingularity shell honggfuzz.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003epull Ubuntu 18.04 container\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name honggfuzz.1804.sif https://github.com/shub-fuzz/honggfuzz/releases/download/0.0.2/shub-fuzz-honggfuzz.1804.sif\u003c/pre\u003e\u003c/div\u003e\n",
+ "full_name": "cfrioux/docker_conda_ssh",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-docker_conda_ssh\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker_conda_ssh\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edocker_conda_ssh\u003c/h1\u003e\n\u003cp\u003eDockerfile for an image containing Conda, open-ssh and java-ready for installing IBM products\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1623682711.0
+ "updated_at": 1656509993.0
},
{
"data_format": 2,
- "description": "Singularity Image for AFL (https://github.com/google/AFL)",
+ "description": null,
"filenames": [
- "Singularity.i386",
- "Singularity.1604",
- "Singularity.1804"
+ "Singularity.v1"
],
- "full_name": "shub-fuzz/afl",
- "latest_release": "0.0.2",
- "readme": "\u003cp\u003eSingularity Image for AFL (\u003ca href=\"https://github.com/google/AFL\"\u003ehttps://github.com/google/AFL\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/shub-fuzz/afl/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/shub-fuzz/afl/actions/workflows/builder.yml/badge.svg?branch=main\" alt=\"singularity-deploy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhat\u003c/strong\u003e is \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e?\u003cbr\u003e\nA containerization system primarily used by the scientific community on high-performance computing (HPC).\nOn many University HPC systems, docker is not allowed, but singularity is availble because it runs with\nuser level permisions.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhy\u003c/strong\u003e?\u003cbr\u003e\nFuzzing on HPC!\u003cbr\u003e\nUniversities have trememdous resources available in HPC clusters that can be used to support\nlarge-scale fuzzing evaluations.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eusage:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name afl.sif https://github.com/shub-fuzz/afl/releases/download/0.0.2/shub-fuzz-afl.1604.sif\n\nsingularity shell afl.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003epull Ubuntu 18.04 container\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name afl.1804.sif https://github.com/shub-fuzz/afl/releases/download/0.0.2/shub-fuzz-afl.1804.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003epull Ubuntu 16.04 i386 container\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name afl_i386.sif https://github.com/shub-fuzz/afl/releases/download/0.0.2/shub-fuzz-afl.i386.sif\n\nsingularity pull --name afl_i386.sif shub://shub-fuzz/afl:i386\u003c/pre\u003e\u003c/div\u003e\n",
+ "full_name": "cschu/duk_singularity",
+ "latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1623682579.0
+ "updated_at": 1656415847.0
},
{
"data_format": 2,
- "description": "Singularity image for Eclipser (https://github.com/SoftSec-KAIST/Eclipser)",
+ "description": null,
"filenames": [
- "Singularity.1604"
+ "Singularity"
],
- "full_name": "shub-fuzz/eclipser",
- "latest_release": "0.0.2",
- "readme": "\u003cp\u003eSingularity image for Eclipser (\u003ca href=\"https://github.com/SoftSec-KAIST/Eclipser\"\u003ehttps://github.com/SoftSec-KAIST/Eclipser\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/shub-fuzz/eclipser/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/shub-fuzz/eclipser/actions/workflows/builder.yml/badge.svg?branch=main\" alt=\"singularity-deploy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhat\u003c/strong\u003e is \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e?\u003cbr\u003e\nA containerization system primarily used by the scientific community on high-performance computing (HPC).\nOn many University HPC systems, docker is not allowed, but singularity is availble because it runs with\nuser level permisions.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhy\u003c/strong\u003e?\u003cbr\u003e\nFuzzing on HPC!\u003cbr\u003e\nUniversities have trememdous resources available in HPC clusters that can be used to support\nlarge-scale fuzzing evaluations.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eusage:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name eclipser.sif https://github.com/shub-fuzz/eclipser/releases/download/0.0.2/shub-fuzz-eclipser.1604.sif\n\nsingularity shell eclipser.sif\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "kirsho/yml2sing",
+ "latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1623682705.0
+ "updated_at": 1655971591.0
},
{
"data_format": 2,
- "description": "Singularity image for Ankou (https://github.com/SoftSec-KAIST/Ankou)",
+ "description": null,
"filenames": [
- "Singularity.1604"
+ "Singularity"
],
- "full_name": "shub-fuzz/ankou",
- "latest_release": "0.0.2",
- "readme": "\u003cp\u003eSingularity image for Ankou (\u003ca href=\"https://github.com/SoftSec-KAIST/Ankou\"\u003ehttps://github.com/SoftSec-KAIST/Ankou\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/shub-fuzz/ankou/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/shub-fuzz/ankou/actions/workflows/builder.yml/badge.svg?branch=main\" alt=\"singularity-deploy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/4173\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhat\u003c/strong\u003e is \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e?\u003cbr\u003e\nA containerization system primarily used by the scientific community on high-performance computing (HPC).\nOn many University HPC systems, docker is not allowed, but singularity is availble because it runs with\nuser level permisions.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhy\u003c/strong\u003e?\u003cbr\u003e\nFuzzing on HPC!\u003cbr\u003e\nUniversities have trememdous resources available in HPC clusters that can be used to support\nlarge-scale fuzzing evaluations.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eusage:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name ankou.sif https://github.com/shub-fuzz/ankou/releases/download/0.0.2/shub-fuzz-ankou.1604.sif\n\nsingularity shell ankou.sif\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "VUIIS/examcardtotxt",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-examcard-conversion-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#examcard-conversion-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExamcard Conversion Pipeline\u003c/h1\u003e\n\u003cp\u003eThis spider converts Philips examcards from DICOM format to PDF, HTML, and TXT formats. Special thanks goes to Sha Zhao from Manchester University.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-inputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs:\u003c/h2\u003e\n\u003cp\u003eExamcard (.dcm)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs:\u003c/h2\u003e\n\u003cp\u003eExamcard (.pdf)\nExamcard (.html)\nExamcard (.txt)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-version-2212021\" class=\"anchor\" aria-hidden=\"true\" href=\"#version-2212021\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVersion 22.1.2021\u003c/h2\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1623682696.0
+ "updated_at": 1655221055.0
},
{
"data_format": 2,
- "description": "Singularity image for Angora (https://github.com/AngoraFuzzer/Angora)",
+ "description": null,
"filenames": [
- "Singularity.1604",
- "Singularity.1804"
+ "Singularity"
],
- "full_name": "shub-fuzz/angora",
- "latest_release": "0.0.2",
- "readme": "\u003cp\u003eSingularity image for Angora (\u003ca href=\"https://github.com/AngoraFuzzer/Angora\"\u003ehttps://github.com/AngoraFuzzer/Angora\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/shub-fuzz/angora/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/shub-fuzz/angora/actions/workflows/builder.yml/badge.svg?branch=main\" alt=\"singularity-deploy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/3645\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhat\u003c/strong\u003e is \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e?\u003cbr\u003e\nA containerization system primarily used by the scientific community on high-performance computing (HPC).\nOn many University HPC systems, docker is not allowed, but singularity is availble because it runs with\nuser level permisions.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003eWhy\u003c/strong\u003e?\u003cbr\u003e\nFuzzing on HPC!\u003cbr\u003e\nUniversities have trememdous resources available in HPC clusters that can be used to support\nlarge-scale fuzzing evaluations.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eusage:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name angora.sif https://github.com/shub-fuzz/angora/releases/download/0.0.2/shub-fuzz-angora.1604.sif\n\nsingularity shell angora.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003einteractive session:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell angora.sif \n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003estart fuzzing\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec angora.sif /start_fuzzing [[ -n \u0026lt;# instances\u0026gt; ] -t ] \u0026lt;target_path\u0026gt; \n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "touala/MUMmer",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-mummer\" class=\"anchor\" aria-hidden=\"true\" href=\"#mummer\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMUMmer\u003c/h1\u003e\n\u003cp\u003eAdapted from \u003ca href=\"https://forgemia.inra.fr/gafl/singularity/mummer/\" rel=\"nofollow\"\u003ehttps://forgemia.inra.fr/gafl/singularity/mummer/\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1623682691.0
+ "updated_at": 1656321189.0
},
{
"data_format": 2,
- "description": "QSYM - Concolic Execution Engine (https://github.com/sslab-gatech/qsym)",
+ "description": "Spatially explicit individual based model that simulates Coffee Leaf Rust epidemics on a coffee farm",
"filenames": [
- "Singularity.1604",
- "Singularity.1804"
+ "Singularity.def"
],
- "full_name": "shub-fuzz/qsym",
- "latest_release": "0.0.2",
- "readme": "\u003cp\u003eSingularity Image for QSYM (\u003ca href=\"https://github.com/sslab-gatech/qsym\"\u003ehttps://github.com/sslab-gatech/qsym\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/shub-fuzz/qsym/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/shub-fuzz/qsym/actions/workflows/builder.yml/badge.svg?branch=main\" alt=\"singularity-deploy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/3625\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eWhat\u003c/strong\u003e is \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e?\u003cbr\u003e\nA containerization system primarily used by the scientific community on high-performance computing (HPC).\nOn many University HPC systems, docker is not allowed, but singularity is availble because it runs with\nuser level permisions.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eWhy\u003c/strong\u003e?\u003cbr\u003e\nFuzzing on HPC!\u003cbr\u003e\nUniversities have trememdous resources available in HPC clusters that can be used to support\nlarge-scale fuzzing evaluations.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eQSYM - Concolic Execution Engine (\u003ca href=\"https://github.com/sslab-gatech/qsym\"\u003ehttps://github.com/sslab-gatech/qsym\u003c/a\u003e)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eusage:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name qsym.sif https://github.com/shub-fuzz/qsym/releases/download/0.0.2/shub-fuzz-qsym.1604.sif\n\nsingularity shell qsym.sif\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "comses-education/spatialrust-model",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-spatialrust-coffee-leaf-rust-epidemic-model\" class=\"anchor\" aria-hidden=\"true\" href=\"#spatialrust-coffee-leaf-rust-epidemic-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpatialRust: Coffee Leaf Rust Epidemic Model\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://fair-software.eu\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/06a717d034624fa1ef05f60d027c62477e5fb10c3803b2e488c18839125fa828/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f666169722d2d736f6674776172652e65752d2545322539372538462532302532302545322539372538462532302532302545322539372538422532302532302545322539372538422532302532302545322539372538422d6f72616e6765\" alt=\"fair-software.eu\" data-canonical-src=\"https://img.shields.io/badge/fair--software.eu-%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8B%20%20%E2%97%8B%20%20%E2%97%8B-orange\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/comses-education/spatialrust-model/actions/workflows/docker-image.yml\"\u003e\u003cimg src=\"https://github.com/comses-education/spatialrust-model/actions/workflows/docker-image.yml/badge.svg\" alt=\"Docker Build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/comses-education/spatialrust-model/actions/workflows/singularity-image.yml\"\u003e\u003cimg src=\"https://github.com/comses-education/spatialrust-model/actions/workflows/singularity-image.yml/badge.svg\" alt=\"Singularity Build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSpatialRust is an individual based model that simulates Coffee Leaf Rust epidemics within a coffee farm.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-installing-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling dependencies\u003c/h3\u003e\n\u003cp\u003eMove to this project\u0027s directory and run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ julia install.jl\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-the-model\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-the-model\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the model\u003c/h3\u003e\n\u003cp\u003eThere are two script files available. You can run a single simulation using a fixed parameter set using \u003ccode\u003escripts/OneRun.jl\u003c/code\u003e as follows:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ julia scripts/OneRun.jl\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eResults from this single run will be saved in a \u003ccode\u003eresults\u003c/code\u003e folder as \u003ccode\u003esinglerun.csv\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eThe second option, \u003ccode\u003escripts/ParameterRuns.jl\u003c/code\u003e, lets you run a parameter exploration experiment. The default setup of this experiment will run 2700 simulations. To modify the parameter values to be evaluated or the replicates for each combination, open \u003ccode\u003escripts/ParameterRuns.jl\u003c/code\u003e and edit lines 11 to 14. Like the first option, you can run the script from bash:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ julia scripts/ParameterRuns.jl\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eResults from this experiment will be saved in a \u003ccode\u003eresults\u003c/code\u003e folder as \u003ccode\u003eparameterexp.csv\u003c/code\u003e. Both scripts take care of creating the \u003ccode\u003eresults\u003c/code\u003e folder if it has not been created yet.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-on-open-science-grid\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-on-open-science-grid\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning on Open Science Grid\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003eEstablish an account on Open Science Grid\n\u003ca href=\"https://osg-htc.org/research-facilitation/accounts-and-projects/general/index.html\" rel=\"nofollow\"\u003ehttps://osg-htc.org/research-facilitation/accounts-and-projects/general/index.html\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eCreate a host alias for your OSG account (\u003ca href=\"https://github.com/comses-education/fair-osg-template#set-up-your-user-account-on-the-open-science-grid\"\u003ehttps://github.com/comses-education/fair-osg-template#set-up-your-user-account-on-the-open-science-grid\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eBuild a singularity image and deploy it to your OSG \u003ccode\u003e/public/\u0026lt;username\u0026gt;\u003c/code\u003e directory via \u003ccode\u003e$ make OSG_USERNAME=\u0026lt;your-osg-username\u0026gt; deploy\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003essh into the OSG login node, cd into the \u003ccode\u003espatialrust\u003c/code\u003e directory and submit the generated \u003ccode\u003espatialrust.submit\u003c/code\u003e via \u003ccode\u003e$ condor_submit spatialrust.submit\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003ethis runs the ParameterRuns.jl on OSG and should drop off a \u003ccode\u003eresults.zip\u003c/code\u003e file with the data in the same directory you submitted the job script.\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1623682731.0
+ "subscribers_count": 5,
+ "topics": [
+ "agent-based-model",
+ "computational-model",
+ "julia",
+ "simulation"
+ ],
+ "updated_at": 1655789345.0
},
{
"data_format": 2,
- "description": "FLAC (/fl\u00e6k/; Free Lossless Audio Codec) is an audio coding format for lossless compression of digital audio.",
+ "description": null,
"filenames": [
- "1.3.3/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-flac",
+ "full_name": "kirsho/conda2sing",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-flac/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-flac/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/37fadb899e2280d332672dd4ff8c55c77b6d1da4314ad56fb36c15142413fbda/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d666c6163\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/37fadb899e2280d332672dd4ff8c55c77b6d1da4314ad56fb36c15142413fbda/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d666c6163\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-flac\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5ccca52861f2fb4e7486645f35b923f2cbc790f1e7ed709d7422b0c9f2dc19d7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d666c6163\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5ccca52861f2fb4e7486645f35b923f2cbc790f1e7ed709d7422b0c9f2dc19d7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d666c6163\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-flac\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/e8f82abbc9bacec399c48512a0390d8b4d29091355a9ce463d889ecb16cd4775/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d666c6163\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e8f82abbc9bacec399c48512a0390d8b4d29091355a9ce463d889ecb16cd4775/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d666c6163\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-flac\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5325f2a609a18c54057940e4962347ba4f1beeef88a23a92c7149e8016cf4e13/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d666c6163\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5325f2a609a18c54057940e4962347ba4f1beeef88a23a92c7149e8016cf4e13/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d666c6163\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-flac\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-flac\" class=\"anchor\" href=\"#singularity-flac\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-flac\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/flac\"\u003eflac\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-about-this-repository\" class=\"anchor\" href=\"#about-this-repository\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAbout this repository\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/4d9e61b063851d778ce9938e3f7bb848d158ebf589dbcd68bf21c5d5eeef6d40/68747470733a2f2f6d65646961322e67697068792e636f6d2f6d656469612f31334867774773584630616947592f67697068792e6769663f6369643d6563663035653437396d61316e736b74386d786278726c323076377375656868343931687532306b6973786878636265267269643d67697068792e6769662663743d67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4d9e61b063851d778ce9938e3f7bb848d158ebf589dbcd68bf21c5d5eeef6d40/68747470733a2f2f6d65646961322e67697068792e636f6d2f6d656469612f31334867774773584630616947592f67697068792e6769663f6369643d6563663035653437396d61316e736b74386d786278726c323076377375656868343931687532306b6973786878636265267269643d67697068792e6769662663743d67\" alt=\"DANGER\" data-canonical-src=\"https://media2.giphy.com/media/13HgwGsXF0aiGY/giphy.gif?cid=ecf05e479ma1nskt8mxbxrl20v7suehh491hu20kisxhxcbe\u0026amp;rid=giphy.gif\u0026amp;ct=g\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe purpose of this repository is to highlight how to deploy a Singularity and Spack together.\u003c/li\u003e\n\u003cli\u003eAt this moment, the workflow is expected to fail as we have not found a good solution to deploying the images (yet).\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCOMMENT: \u003cstrong\u003eDo not deploy on any system.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the Perl scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/flac/1.3.3\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/flac\u003c/code\u003e as \u003ccode\u003e1.3.3.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [
- "utilities",
- "singularity"
- ],
- "updated_at": 1628186027.0
+ "topics": [],
+ "updated_at": 1656054479.0
},
{
"data_format": 2,
- "description": null,
+ "description": "blastfoam-CI-docker",
"filenames": [
- "1.3.1/Singularity",
- "1.3.3/Singularity"
+ "Singularity-openfoam.def"
],
- "full_name": "yh549848/singularity-rsem",
+ "full_name": "jiaqiwang969/blastfoam-project",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-bamtools/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bamtools/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/43cc1554b9e51a28dfa82673f6a9629d4b3f4151419378b68631040a1a5f52a2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/43cc1554b9e51a28dfa82673f6a9629d4b3f4151419378b68631040a1a5f52a2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bamtools\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/bb25827e818656bc2a93d95c923b954c29792611568e2828cee62c6501555455/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bb25827e818656bc2a93d95c923b954c29792611568e2828cee62c6501555455/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bamtools\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/30cf5022df93f7c848ab5284b476648b2a424ac87e287144bfdbc9460bb75256/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/30cf5022df93f7c848ab5284b476648b2a424ac87e287144bfdbc9460bb75256/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bamtools\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/72066080adaa298a3f65d9ad3d27681498685739defe4d4061e06d30f8bf5277/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/72066080adaa298a3f65d9ad3d27681498685739defe4d4061e06d30f8bf5277/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62616d746f6f6c73\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bamtools\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-bamtools\" class=\"anchor\" href=\"#singularity-bamtools\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bamtools\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/pezmaster31/bamtools\"\u003ebamtools\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebamtools\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bamtools/2.5.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bamtools\u003c/code\u003e as \u003ccode\u003e2.5.1\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-blastfoam-project\" class=\"anchor\" aria-hidden=\"true\" href=\"#blastfoam-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eblastfoam-project\u003c/h1\u003e\n\u003cp\u003eAim: High resolution fvm simulation using \u003ca href=\"https://github.com/synthetik-technologies/blastfoam\"\u003eblastfoam\u003c/a\u003e scheme\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003emv Dockerfile.step01 Dockerfile\ndocker build jiaqiknight/openfoam-blastfoam:v1 .\nmv Dockerfile.step02 Dockerfile\ndocker build jiaqiknight/openfoam-blastfoam:v2 .\nsingularity build openfoam-blastfoam-v2012.sif Singularity-openfoam.def\nsingularity shell openfoam-blastfoam-v2012.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-use-action-to-dockerhub\" class=\"anchor\" aria-hidden=\"true\" href=\"#use-action-to-dockerhub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUse Action to dockerhub\u003c/h3\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1623772549.0
+ "updated_at": 1655572084.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.3.0"
+ "Singularity"
],
- "full_name": "onuryukselen/singularity",
+ "full_name": "anastasiadoulab/machaon",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity\u003c/h1\u003e\n\u003cp\u003eDevelopment Branch\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-machaon\" class=\"anchor\" aria-hidden=\"true\" href=\"#machaon\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMachaon\u003c/h1\u003e\n\u003cbr\u003e\nThis repository contains an implementation for the method presented in the paper \"Identifying and \nprofiling structural similarities between Spike of SARS-CoV-2 and other viral or host proteins with \nMachaon\".\n\u003cp\u003ePlease consult this time-saving manual before you use Machaon. It contains an in-depth explanation\u003cbr\u003e\nabout installing, setting up and using this method.\u003cbr\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-system-requirements\" class=\"anchor\" aria-hidden=\"true\" href=\"#system-requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSystem Requirements\u003c/h2\u003e\n\u003cbr\u003e\n\u003cp\u003eThe target system for Machaon\u0027s development is Ubuntu 20.4. Machaon has limited functionality\u003cbr\u003e\non Windows and MacOS. Some post-processing modules utilize TM-Align and DSSP which are not\u003cbr\u003e\ncross-platform implementations. DSSP data might also be used for setting the targets of constrained\u003cbr\u003e\ncomparisons, which is Machaon\u0027s default behaviour.\u003c/p\u003e\n\u003cp\u003eThe recommended ways to use Machaon is either by working inside a Docker container or a Singularity\u003cbr\u003e\ncontainer or by working in an Ubuntu 20.4 environment with Anaconda (see instructions in the \u0027Installation\u0027\u003cbr\u003e\nsection below). On Windows, you could try WSL in order to get access to a UNIX environment (not tested):\u003cbr\u003e\n\u003ca href=\"https://docs.microsoft.com/en-us/windows/wsl/install\" rel=\"nofollow\"\u003ehttps://docs.microsoft.com/en-us/windows/wsl/install\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eMachaon is an I/O (input/output) intensive implementation and the performance is depended on the\u003cbr\u003e\nstorage hardware and the storage optimizations of the host operating and file systems. For every\u003cbr\u003e\nPDB file that is analyzed, there is a corresponding set of serialized data objects in the form of\u003cbr\u003e\nbinary files (pickle Python package) which hold the necessary data for the calculation of each\u003cbr\u003e\nmetric. NVMe storage is highly recommended.\u003c/p\u003e\n\u003cp\u003eMachaon is a multi-core CPU application with moderate demands on RAM memory only for\u003cbr\u003e\npost-processing and target setup for constrained comparisons due to the required alignments\u003cbr\u003e\n(especially alignments in parallel).\u003c/p\u003e\n\u003cbr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-repository-contents\" class=\"anchor\" aria-hidden=\"true\" href=\"#repository-contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRepository contents\u003c/h2\u003e\n\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eassess: this folder contains scripts for Machaon\u0027s benchmarking, evaluation and assessment\u003c/li\u003e\n\u003cli\u003econfig: configuration files\u003c/li\u003e\n\u003cli\u003edocs: It contains programming-related documentation and diagrams.\n\u003cul\u003e\n\u003cli\u003edocs/classes: Extensive API documentation for all the classes of this implementation.\u003cbr\u003e\nEach class has a dedicated HTML file with thorough description.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003esetup: Scripts for downloading and preparing some (optional) related data sources.\u003c/li\u003e\n\u003cli\u003esrc: source code\u003c/li\u003e\n\u003cli\u003etest: It contains an integrity test with testing data and expected outputs.\u003c/li\u003e\n\u003cli\u003edocker-compose.yml : A file used by Docker Compose tool.\u003c/li\u003e\n\u003cli\u003eDockerfile: A file with the commands needed to set up Machaon in a Docker container.\u003c/li\u003e\n\u003cli\u003eenvironment.yml: A file used by Anaconda Python package manager.\u003c/li\u003e\n\u003cli\u003eLICENSE.md: The license of this implementation.\u003c/li\u003e\n\u003cli\u003eREADME.md: Machaon\u0027s manual (the one you are reading).\u003c/li\u003e\n\u003cli\u003eSingularity: A file used to set up a Singularity container.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cbr\u003e \n\u003ch2\u003e\u003ca id=\"user-content-setup-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup instructions\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-local-data-sources\" class=\"anchor\" aria-hidden=\"true\" href=\"#local-data-sources\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLocal data sources\u003c/h3\u003e\n\u003cbr\u003e\nEnrichment and meta-analysis stages rely on external data sources. There are fallbacks in place for \nsome of them (webservice calls) but it is strongly recommended utilizing the available static resources. \nThis will minimize network activity, greatly speed up the process and protect the respective third party \nweb services from burden. Be sure to have enough available disk space (at least 30GB) for the initial \ndownloads (at least 12GB after the preparation).\n\u003cp\u003e\u003cb\u003eNote\u003c/b\u003e: You can use the \u003cb\u003e\u0027noThirdPartyData\u0027\u003c/b\u003e flag in the configuration, ending up only with the comparison\u003cbr\u003e\nresults. This mode does not require the set up of local data sources or other external data access. The metrics\u003cbr\u003e\n\u003cb\u003edo not rely on external information \u003c/b\u003e apart from the PDB file. Therefore, you only need to collect a set of\u003cbr\u003e\nPDB files to compare with your PDB of choice . However, you will miss enrichment and gene ID-based filtering\u003cbr\u003e\nof the results along with the functionality of the evaluation, meta-analysis, presentation modules.\u003cbr\u003e\nAlso, you will not able to perform the domain scanning since it requires the residue positions of the domains\u003cbr\u003e\n(information found in UniProt data).\u003c/p\u003e\n\u003cp\u003eChoose a folder that will be the root data \u0026amp; cache folder of Machaon and \u003cb\u003ecopy\u003c/b\u003e there the .sh files located\u003cbr\u003e\nin the setup folder. You can use symbolic links if you need to have some resources in separate locations\u003cbr\u003e\n(\u003ca href=\"https://en.wikipedia.org/wiki/Symbolic_link\" rel=\"nofollow\"\u003ehttps://en.wikipedia.org/wiki/Symbolic_link\u003c/a\u003e). Make sure the scripts have adequate execution permissions:\u003cbr\u003e\n\u003ccode\u003echmod 770 *.sh\u003c/code\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-pdb-files\" class=\"anchor\" aria-hidden=\"true\" href=\"#pdb-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePDB files:\u003c/h4\u003e\n\u003cp\u003eThere are two ways that you can obtain multiple PDB files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://www.rcsb.org/downloads\" rel=\"nofollow\"\u003ehttps://www.rcsb.org/downloads\u003c/a\u003e\u003cbr\u003e\nThe downloaded files need to be decompressed and renamed (execute in the downloaded files\u0027 folder):\u003cbr\u003e\n\u003ccode\u003els *.gz | parallel gunzip\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003efor f in *.ent; do mv -- \"$f\" \"${f%.ent}.pdb\"; done\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e(Unix or MacOS only) \u003ca href=\"https://www.rcsb.org/docs/programmatic-access/batch-downloads-with-shell-script\" rel=\"nofollow\"\u003ehttps://www.rcsb.org/docs/programmatic-access/batch-downloads-with-shell-script\u003c/a\u003e\u003cbr\u003e\nThe downloaded files need to be decompressed (execute in the downloaded files\u0027 folder):\u003cbr\u003e\n\u003ccode\u003els *.gz | parallel gunzip\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOf course, you can use RCSB search and retrieve relevant PDB IDs by a query of choice.\u003c/p\u003e\n\u003cp\u003e\u003cb\u003eNote\u003c/b\u003e: PDB files from AlphaFold\u0027s predictions are \u003cb\u003e fully \u003c/b\u003e supported. You can download them from here:\u003cbr\u003e\n\u003ca href=\"https://alphafold.ebi.ac.uk/download\" rel=\"nofollow\"\u003ehttps://alphafold.ebi.ac.uk/download\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eYou can manage the files as below:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003emkdir AF\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003etar -xvf UP000005640_9606_HUMAN_v3.tar -C AF\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003ecd AF\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003erm -rf *.cif.gz\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003els *.gz | parallel gunzip\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003cb\u003eImportant:\u003c/b\u003e Avoid underscores in custom PDB filenames. For example, in Ubuntu you can run:\u003cbr\u003e\n\u003ccode\u003erename.ul \u0027_\u0027 \u0027\u0027 *.pdb\u003c/code\u003e and remove an underscores from every filename in the folder.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-refseq\" class=\"anchor\" aria-hidden=\"true\" href=\"#refseq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRefSeq:\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003eExecute \u003ccode\u003e./download_refseq_resources.sh\u003c/code\u003e\u003cbr\u003e\nIf there are any errors during the downloads, you could try to run the script a while\nlater (\u003ca href=\"https://www.biostars.org/p/493656\" rel=\"nofollow\"\u003ehttps://www.biostars.org/p/493656\u003c/a\u003e).\u003c/li\u003e\n\u003cli\u003eExecute \u003ccode\u003e./download_refseq_resources.sh\u003c/code\u003e again for a final verification of the\ndownloaded files\u0027 integrity and then execute:\u003cbr\u003e\n\u003ccode\u003e./prepare_refseq_resources.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\u003ca id=\"user-content-uniprot-mapping\" class=\"anchor\" aria-hidden=\"true\" href=\"#uniprot-mapping\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUniprot mapping:\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003eIt is recommended to use a dedicated FTP transferring program than a browser for the following large\u003cbr\u003e\ndownloads (e.g. FileZilla: \u003ca href=\"https://filezilla-project.org/download.php\" rel=\"nofollow\"\u003ehttps://filezilla-project.org/download.php\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eVisit the following directory : \u003ca href=\"https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping\" rel=\"nofollow\"\u003ehttps://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eDownload the following files: idmapping_selected.tab.gz, idmapping.dat.gz (Be sure to have enough space for the downloads)\u003c/li\u003e\n\u003cli\u003eExecute \u003ccode\u003e./prepare_uniprot_resources.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cbr\u003e\n\u003ch3\u003e\u003ca id=\"user-content-installation-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation (Containers)\u003c/h3\u003e\n\u003ch4\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h4\u003e\n\u003cp\u003eIf you are going to use Docker, you only need to specify your data storage in docker-compose.yml file:\u003cbr\u003e\n\u003ccode\u003e- MY_BIG_STORAGE_PATH:/opt/storage\u003c/code\u003e\u003cbr\u003e\n(replace MY_BIG_STORAGE_PATH with your path of choice)\u003c/p\u003e\n\u003cp\u003eand run the following command to build and launch a Machaon-ready container:\u003cbr\u003e\n\u003ccode\u003esudo docker-compose up -d\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eYou can enter into the container and start working:\u003cbr\u003e\n\u003ccode\u003esudo docker exec -it \u0026lt;container\u0027s name\u0026gt; bash\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003econda activate machaon\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003ecd /opt/src\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003epython run.py -h\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe folder with the configurations (config) is the shared between the host system\u003cbr\u003e\nand container for ease of use (you can read and edit configuration files outside of\u003cbr\u003e\nthe container).\u003c/p\u003e\n\u003cp\u003eAlternatively, if you plan to run it in a Cloud VM instance, you need to modify the\u003cbr\u003e\nDocker configurations:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003edocker-compose.yml: Set your mounts accordingly (or remove the volume directive)\u003c/li\u003e\n\u003cli\u003eDockerfile: Add the following line before WORKDIR command:\u003cbr\u003e\n\u003ccode\u003eADD ./config /opt/machaon/config\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h4\u003e\n\u003cp\u003eThese are the instructions for creating a container with Singularity (\u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003ehttps://sylabs.io/docs/\u003c/a\u003e):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDownload the latest version from here: \u003ca href=\"https://github.com/sylabs/singularity/releases\"\u003ehttps://github.com/sylabs/singularity/releases\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eExecute:\u003cbr\u003e\n\u003ccode\u003esingularity build --fakeroot machaon.sif Singularity\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003esingularity run machaon.sif\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003econda activate machaon\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003ecd /opt/src\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003epython run.py -h\u003c/code\u003e\n\u003cbr\u003e\u003cbr\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-manual-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#manual-installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eManual Installation\u003c/h3\u003e\n\u003cbr\u003e \nThis section is a walkthrough for manual installation (please also check Dockerfile, it contains all \nneeded commands but it is recommended to execute them separately). \n\u003ch4\u003e\u003ca id=\"user-content-modified-tm-align-compilation\" class=\"anchor\" aria-hidden=\"true\" href=\"#modified-tm-align-compilation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModified TM-Align compilation\u003c/h4\u003e\n\u003cp\u003eThis well-established method is used for 3D similarity computation by the evaluation module.\u003cbr\u003e\nMachaon can run without the presence of this executable but you will miss the 3D similarity\u003cbr\u003e\nevaluation of the final candidates in the Machaon\u0027s results.\u003c/p\u003e\n\u003cp\u003eAccording to the original documentation, TM-Align is compiled as:\u003cbr\u003e\n\u003ccode\u003eg++ -static -O3 -ffast-math -lm -o TMalign TMalign.cpp\u003c/code\u003e\u003cbr\u003e\n(You might need to install g++ first: \u003ccode\u003esudo apt-get install build-essential\u003c/code\u003e )\u003cbr\u003e\nMacOS users should omit \u0027-static\u0027 option.\nFor more, you can check: \u003ca href=\"https://zhanggroup.org/TM-align\" rel=\"nofollow\"\u003ehttps://zhanggroup.org/TM-align\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-dssp\" class=\"anchor\" aria-hidden=\"true\" href=\"#dssp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDSSP\u003c/h4\u003e\n\u003cp\u003eThis well-known method is used for protein secondary structure assignment, employed in constrained\u003cbr\u003e\nsearch mode and the Gene Ontology meta-analysis process of Machaon. Alternatively, you could use\u003cbr\u003e\nprotein or hydrophobicity-focused sequences that do not require this program otherwise Machaon\u003cbr\u003e\nwill use STRIDE instead (see next section).\u003c/p\u003e\n\u003cp\u003eBelow are the steps for the compilation of DSSP 4.0 in \u003cb\u003eUbuntu 20.4\u003c/b\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eCMake:\u003cbr\u003e\n\u003ccode\u003esudo apt-get install cmake\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBoost:\u003cbr\u003e\n\u003ccode\u003esudo apt-get install libboost-all-dev\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eFor Ubuntu versions lower than 20.04, you need to install Boost from source if your latest version is lower than 1.70:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eRemove previous Boost version:\u003cbr\u003e\n\u003ccode\u003eapt remove \u0027libboost.*-dev\u0027\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eDownload and extract the latest version from: \u003ca href=\"https://www.boost.org/\" rel=\"nofollow\"\u003ehttps://www.boost.org/\u003c/a\u003e (greater than 1.70)\u003c/li\u003e\n\u003cli\u003eInstall:\u003cbr\u003e\n\u003ccode\u003echmod +x bootstrap.sh\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003e./boostrap.sh\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003esudo ./b2 link=static install\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBZIP2:\u003cbr\u003e\n\u003ccode\u003esudo apt-get install libbz2-dev\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ecifpp:\nMake sure you have cmake (\u003ccode\u003esudo apt install cmake \u003c/code\u003e) and follow the instructions in \u003ca href=\"https://github.com/PDB-REDO/libcifpp\"\u003ehttps://github.com/PDB-REDO/libcifpp\u003c/a\u003e\u003cbr\u003e\nYou might need also to install this before: \u003ca href=\"https://github.com/mhekkel/mrc\"\u003ehttps://github.com/mhekkel/mrc\u003c/a\u003e (\u003ca href=\"https://github.com/PDB-REDO/dssp/issues/4\"\u003ehttps://github.com/PDB-REDO/dssp/issues/4\u003c/a\u003e)\u003cbr\u003e\nFor Ubuntu 18.04 you also need to install these first of all:\u003cbr\u003e\n\u003ccode\u003esudo add-apt-repository ppa:ubuntu-toolchain-r/test\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003esudo apt update\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003esudo apt install gcc-9 g++-9\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003eexport CC=/usr/bin/gcc-9\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003eexport CXX=/usr/bin/g++-9\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDSSP: Please follow the instructions in \u003ca href=\"https://github.com/PDB-REDO/dssp\"\u003ehttps://github.com/PDB-REDO/dssp\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cb\u003eNote:\u003c/b\u003eThere are also other options to obtain DSSP files without setting up the program: \u003ca href=\"https://swift.cmbi.umcn.nl/gv/dssp/\" rel=\"nofollow\"\u003ehttps://swift.cmbi.umcn.nl/gv/dssp/\u003c/a\u003e\u003cbr\u003e\nIn that case, you should add them in a folder named \u0027dssp_cache\u0027 located in your specified root data \u0026amp; cache folder\u003cbr\u003e\n(\u0027rootDisk\u0027 parameter, more in \u0027Execution\u0027 section) .\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-stride\" class=\"anchor\" aria-hidden=\"true\" href=\"#stride\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSTRIDE\u003c/h4\u003e\n\u003cp\u003eSTRIDE is an established method for determining the protein secondary structure from PDB files.\nIt is used as a fallback solution for custom PDB files that do not fully follow the standard PDB\nformat and lack annotations. Please follow the instructions in \u003ca href=\"http://webclu.bio.wzw.tum.de/stride/\" rel=\"nofollow\"\u003ehttp://webclu.bio.wzw.tum.de/stride/\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-using-the-executables\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-the-executables\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing the executables\u003c/h4\u003e\n\u003cp\u003eAfter the compilations, you have to copy the mkdssp, stride, TM-Align executables\u003cbr\u003e\ninto the directory of Machaon and give them the required execute permissions:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ecd machaon/src\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003ecp /home/\u0026lt;user\u0026gt;/.local/bin/mkdssp .\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003ecp /home/\u0026lt;user\u0026gt;/.local/bin/stride .\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003echmod 770 mkdssp \u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003echmod 770 stride \u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003echmod 770 TMalign \u003c/code\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-required-system-libraries\" class=\"anchor\" aria-hidden=\"true\" href=\"#required-system-libraries\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequired system libraries:\u003c/h4\u003e\n\u003cp\u003eYou need the poppler library in order to export the figures in the EPS format\nwith Python plotly library:\u003cbr\u003e\n\u003ccode\u003esudo apt-get install libpoppler-cpp-dev\u003c/code\u003e\nThis a graphics related library for Open3D:\n\u003ccode\u003esudo apt-get install libgl1-mesa-dev\u003c/code\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-python-environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#python-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePython environment:\u003c/h4\u003e\n\u003cp\u003eAn environment setup of Anaconda Python distribution is needed : \u003ca href=\"https://www.anaconda.com\" rel=\"nofollow\"\u003ehttps://www.anaconda.com\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis distribution allows easy setup of all the requisites for Machaon.\u003c/p\u003e\n\u003cp\u003eOnce you have an operational Anaconda-enabled terminal, move into the setup folder and execute\u003cbr\u003e\nthe following command to install all the required packages:\u003cbr\u003e\n\u003ccode\u003econda env create -f environment.yml\u003c/code\u003e\u003cbr\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-testing-your-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#testing-your-installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting your installation:\u003c/h3\u003e\n\u003cp\u003eRun the test script in the /test folder:\n\u003ccode\u003epython integrity_test.py\u003c/code\u003e\u003cbr\u003e\nIf there are no differences reported at the end, than your installation should be successful.\u003cbr\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-execution\" class=\"anchor\" aria-hidden=\"true\" href=\"#execution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExecution\u003c/h2\u003e\n\u003cbr\u003e\n\u003cp\u003eAt first, you need to activate the previously installed environment in an Anaconda-enabled terminal:\u003cbr\u003e\n\u003ccode\u003econda activate machaon\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-hidden=\"true\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick start:\u003c/h3\u003e\n\u003cp\u003eExecute the following script which is located in the src folder: \u003ccode\u003e run.py -h\u003c/code\u003e\u003cbr\u003e\nThis will display all the available options and their descriptions.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-batch-jobs-recommended\" class=\"anchor\" aria-hidden=\"true\" href=\"#batch-jobs-recommended\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBatch jobs (recommended):\u003c/h3\u003e\n\u003cp\u003eEdit \u003cb\u003econfig.yaml\u003c/b\u003e file in the src folder and run \u003cb\u003e batch_run.py\u003c/b\u003e. Below is an example entry with the default\u003cbr\u003e\nvalues. You could copy it and modify it according to your needs. Configurations with \"ignore : True\" field\u003cbr\u003e\nare ignored. You could also consult with the example configurations used for the Spike protein of SARS-CoV-2.\u003c/p\u003e\n\u003cpre\u003e - rootDisk: \"\" \n referencePDBID: \"\"\n overridePDBID: \"\"\n referenceChainID: \"\"\n referenceGeneID: \"\"\n referenceSequenceLength: 0\n comparisonMode: \"\"\n pdbDatasetPath: \"\"\n outputPath: \"\"\n excludedOrganisms: []\n excludedGeneNames: []\n excludedPDBIDs: []\n isReferenceViral: False\n GOProperty: \"\"\n GOTargetProperties: []\n GOSearch: \"\"\n GOAlignmentLevel: \"secondary\"\n noThirdPartyData: False\n pdbValidation: False\n GOAnalysisOnly: False \n\u003c/pre\u003e\n\u003cp\u003eAll the options are presented below:\u003c/p\u003e\n\u003cpre\u003e\u0027rootDisk\u0027: This will also be the caching location for the extracted features.\n\u0027referencePDBID\u0027: Choose the reference PDB IDs (1 search per reference)\n\u0027overridePDBID\u0027: Override the reference PDBID for Uniprot ID retrieval (for renamed reference PDB files, e.g. 6VXX_processed.pdb)\n\u0027referenceChainID\u0027: Choose the chain of the reference PDB\n\u0027referenceGeneID\u0027: Provide the gene id (Entrez) of the reference PDB\n\u0027referenceSequenceLength\u0027: Provide the protein sequence length of the reference protein\n\u0027comparisonMode\u0027: Choose \u0027whole\u0027, \u0027domain\u0027 or \u0027segment\u0027\n\u0027alignmentLevel\u0027: Choose \u0027primary\u0027, \u0027secondary\u0027, \u0027mixed\u0027, \u0027hydrophobicity\u0027. Default is \u0027mixed\u0027. (Only from segment scans)\n\u0027pdbDatasetPath\u0027: Relative path for PDB data folder\n\u0027outputPath\u0027: The location of the outputs (can be relative or full path)\n\u0027excludedOrganisms\u0027: Filtering out structures originating from the same organism as the reference one\n\u0027excludedGeneNames\u0027: Filtering out structures originating from the same gene as the reference one\n\u0027excludedPDBIDs\u0027: Exclude PDB IDs\n\u0027isReferenceViral\u0027: Meta-analysis skips the search in viral genome data for the reference, if it is not a viral protein\n\u0027GOProperty\u0027: Choose a property type for analysis: \u0027biologicalProcess\u0027, \u0027molecularFunction\u0027, \u0027cellularComponent\u0027\n\u0027GOTargetProperties\u0027: Choose properties for analysis\n\u0027GOSearch\u0027: Choose a term to be searched in all available GO Terms belonging to the results e.g. \u0027ubiquit\u0027 (could be a stem of a word)\n\u0027GOAlignmentLevel\u0027: Choose target alignment level : [\u0027primary\u0027, \u0027secondary\u0027, \u0027mixed\u0027, \u0027hydrophobicity\u0027. Default is \u0027secondary\u0027]\n\u0027noThirdPartyData\u0027: Do not use external local or online resources. PDB data only.\n\u0027GOAnalysisOnly\u0027: Perform only GO Meta-analysis (for completed searches).\n\u0027pdbValidation\u0027: Validation for PDB files. Every file assessed as invalid is skipped from the search (very strict and slow). \n\u0027ignore\u0027: If set to True, the configuration will be ignored. Useful for storing previous job details.\n\u0027*whatever*\u0027: You can include fields of your own, like tags or notes (e.g. \u0027date\u0027 : 14-4-2003). These are not considered by the program. \n\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-constrained-mode-segments\" class=\"anchor\" aria-hidden=\"true\" href=\"#constrained-mode-segments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConstrained mode (segments):\u003c/h4\u003e\n\u003cp\u003eConstrained search on segments requires also preset about the reference segment. This is set in\u003cbr\u003e\n\u003cb\u003esegments.yaml\u003c/b\u003e file in the src folder. Below is an empty template entry. You could also consult with\u003cbr\u003e\nthe example segment definitions used for the Spike protein of SARS-CoV-2.\u003c/p\u003e\n\u003cpre\u003e- referencePDBChain: \"\"\n residues: []\n residueRanges: \"\"\n known: False\n\u003c/pre\u003e\n\u003cp\u003eAll the options are presented below:\u003c/p\u003e\n\u003cpre\u003e\u0027referencePDBChain\u0027: The reference PDB ID and chain ID separated by a dot, \u0026lt;PDB ID\u0026gt;.\u0026lt;CHAIN ID\u0026gt; e.g. \"\"6VXX.A\"\n\u0027residues\u0027: List of residue positions (one-based indexing), e.g. [1, 2, 3, 4, 5]\n\u0027residueRanges\u0027: Range definitions separated by comma, e.g. \u00271-50,70-78\u0027\n\u0027known\u0027: Select True if the segment belongs to a known site like a binding site (considered by GO Meta-analysis module).\n\u0027ignore\u0027: If set to True, the configuration will be ignored. Useful for storing past segment presets.\n\u0027*whatever*\u0027: You can include fields of your own, like tags or notes (e.g. \u0027doi\u0027 : \u0027123.3456/1234.123\u0027). These are not considered by the program. \n\nNote: \u0027residues\u0027 and \u0027residueRanges\u0027 definitions are combined, e.g. [12, 15, 59] \nand \u002713-40, 47-52\u0027 would result to the selection of residue positions from 12 to 40, \nfrom 47 to 52 and 59 (duplicate definitions are removed).\n\u003c/pre\u003e\u003cbr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-data-directory-structures\" class=\"anchor\" aria-hidden=\"true\" href=\"#data-directory-structures\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData directory structures\u003c/h2\u003e\n\u003cbr\u003e \n\u003ch4\u003e\u003ca id=\"user-content-output-folder-structure\" class=\"anchor\" aria-hidden=\"true\" href=\"#output-folder-structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput folder structure\u003c/h4\u003e\n\u003cpre\u003e (a user-specified output folder)\n |\n |__ (a user-specified top directory name)\n |\n |__metrics/ (directory for the computed metrics for all structures in the dataset)\n |\n |__candidates/ (directory for the selected final set of candidate entries, \n | the final report is saved here [HTML file])\n |\n |__plots/ (directory for plots regarding the final set)\n |\n |__go/ (directory for GO meta-analysis, mini reports and related visualizations)\n\u003c/pre\u003e\n\u003cp\u003e\u003cb\u003eNote for constrained mode search on segments\u003c/b\u003e:The corresponding output files contain a suffix\u003cbr\u003e\n\"site\u0026lt;segment index\u0026gt;\" that signify the results for a particular segment. The index comes from the\u003cbr\u003e\nconfiguration order. In the \"metrics\" folder, there is a \"*_site\u0026lt;segment index\u0026gt;-parts.csv\" file that contains\u003cbr\u003e\nthe contiguous parts of the segment as determined by the method.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-root-folder-source-data--cache-full-structure\" class=\"anchor\" aria-hidden=\"true\" href=\"#root-folder-source-data--cache-full-structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRoot folder (source data \u0026amp; cache), full structure\u003c/h4\u003e\n\u003cpre\u003e (a user-specified \u003cb\u003eroot\u003c/b\u003e folder)\n |\n |--DATA_\u0026lt;PDB directory name\u0026gt;_\u0026lt;whole or domain\u0026gt;/ \n | (directory for storing the extracted features of a PDB directory)\n |\n |--domains/ (directory for caching domain information by UniProt online requests)\n |\n |--dssp_cache/ (directory for caching DSSP results)\n |\n |--enrichment/ (directory for caching data enrichment of PDB chain entries)\n |\n |__entrez/ (cache directory for NCBI Entrez online requests)\n |\n |--pdbinfo/ (directory for caching extracted PDB meta-data)\n |\n |--prot_sec/ (directory for caching PDB sequence/secondary structure data)\n |\n |__refseq/ (RefSeq resources directory)\n |\n |--rcsbenrich/ (cache directory for RCSB enrichment data) \n |\n |--(user created PDB folders, \u003cb\u003eeach folder corresponds to a target dataset for a search\u003c/b\u003e)\n |\n |__idmapping_selected.tab.gz (UniProt idmapping resources)\n\u003c/pre\u003e\n\u003cp\u003eThere is also a cache file that is generated besides the scripts in src folder (go_cache.csv) that holds\u003cbr\u003e\nGene Ontology data.\u003cbr\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-output-format\" class=\"anchor\" aria-hidden=\"true\" href=\"#output-format\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput format\u003c/h2\u003e\n\u003cbr\u003e\nThe outputs are human interpretable CSV files with headers:\n\u003cul\u003e\n\u003cli\u003emetrics directory has comma separated CSV files\u003c/li\u003e\n\u003cli\u003ecandidates directory has tab separated CSV files\u003c/li\u003e\n\u003cli\u003eoutputs of constrained searches include columns with serialized list contents which can be parsed with eval()\u003c/li\u003e\n\u003c/ul\u003e\n\u003cbr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-special-cases\" class=\"anchor\" aria-hidden=\"true\" href=\"#special-cases\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpecial Cases\u003c/h2\u003e\n\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eIf you want to compare a polymer as a whole structure you could use pdb-tools :\n\u003ca href=\"https://github.com/haddocking/pdb-tools\"\u003ehttps://github.com/haddocking/pdb-tools\u003c/a\u003e\u003cbr\u003e\nand combine multiple chains to one. You should remove any pre-computed features of the old PDB\u003cbr\u003e\n(*_angles.pkl, *_distances.pkl, *_triangles.pkl) and the original PDB from the dataset (you could\u003cbr\u003e\nkeep these files in a separate location as back up). You need to decide which original \u0026lt;PDB ID\u0026gt; and\u003cbr\u003e\n\u0026lt;PDB chain ID\u0026gt; you will use as a reference for the third-party resources.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eIn case you encounter warnings about empty chain identifiers or missing chains, use pdb_chain\u003cbr\u003e\ncommand from pdb-tools: \u003ccode\u003epdb_chain -A no_chains.pdb \u0026gt; corrected.pdb\u003c/code\u003e to put a dummy identifier\nto a problematic PDB file.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSecondary structure data cannot be extracted from PDBs that lack experimental information so you may have to\nchange the target alignment level to primary or hydrophobicity (recommended) for constrained mode search on\nsegments (default is \u0027mixed\u0027) or GO metanalysis (default is 2D).\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cbr\u003e\n\u003ch3\u003e\u003ca id=\"user-content-trivia\" class=\"anchor\" aria-hidden=\"true\" href=\"#trivia\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTrivia\u003c/h3\u003e\n\u003cp\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Machaon_(mythology)\" rel=\"nofollow\"\u003ehttps://en.wikipedia.org/wiki/Machaon_(mythology)\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1623903591.0
+ "updated_at": 1655488848.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.isafe",
- "Singularity.breakseq",
- "Singularity.pophuman",
- "Singularity.abcmk"
+ "_profiler/Singularity"
],
- "full_name": "jmurga/bgd-pic",
+ "full_name": "mozhgan-kch/HPC_Bootcamp",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fast-downward\" class=\"anchor\" href=\"#fast-downward\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFast Downward\u003c/h1\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2020 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"http://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttp://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" href=\"#tested-software-versions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2017 (MSVC 19.16) and 2019 (MSVC 19.28)\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributors\" class=\"anchor\" href=\"#contributors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2020 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2020 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2020 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2020 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2020 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2020 Salome Eriksson\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2018-2020 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2015 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-history\" class=\"anchor\" href=\"#history\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://opensource.org/licenses/Apache-2.0\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2a2157c971b7ae1deb8eb095799440551c33dcf61ea3d965d86b496a5a65df55/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d417061636865253230322e302d626c75652e737667\" alt=\"License\" data-canonical-src=\"https://img.shields.io/badge/License-Apache%202.0-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-hpc_bootcamp\" class=\"anchor\" aria-hidden=\"true\" href=\"#hpc_bootcamp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHPC_Bootcamp\u003c/h1\u003e\n\u003cp\u003eThis repository contains training content for the HPC_Bootcamp materials. This repository includes the following file structure in the initial two levels:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e _advanced\n\u2502 \u251c\u2500\u2500 cuda_advanced\n\u2502 \u251c\u2500\u2500 multigpu\n\u2502 \u2514\u2500\u2500 openacc_advanced\n\u251c\u2500\u2500 _basic\n\u2502 \u251c\u2500\u2500 cuda_basic\n\u2502 \u251c\u2500\u2500 iso\n\u2502 \u251c\u2500\u2500 openacc_basic\n\u2502 \u2514\u2500\u2500 openmp\n\u251c\u2500\u2500 _profiler\n\u2502 \u251c\u2500\u2500 jupyter_notebook\n\u2502 \u251c\u2500\u2500 Presentations\n\u2502 \u2514\u2500\u2500 source_code\n\u251c\u2500\u2500 LICENSE\n\u251c\u2500\u2500 bootstrap.sh\n\u251c\u2500\u2500 README.md\n\u251c\u2500\u2500 _scripts\n\u2514\u2500\u2500 start_notebook\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eThe _\u003cem\u003eadvanced\u003c/em\u003e directory contains all of the advanced training materials for CUDA, OpenACC, and multiGPU.\u003c/li\u003e\n\u003cli\u003eThe _\u003cem\u003ebasic\u003c/em\u003e directory contains all of the introductory training materials for CUDA, Standard Languages, OpenMP Offloading, and OpenACC.\u003c/li\u003e\n\u003cli\u003eThe _\u003cem\u003eprofiler\u003c/em\u003e directory contains content on NVIDIA Nsight Systems and Compute.\u003c/li\u003e\n\u003cli\u003e_scripts directory contains container defintion files for each bootcamp type.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ePlease note there is a container definition file for each content in \u003ccode\u003e_advanced\u003c/code\u003e, \u003ccode\u003e_basic\u003c/code\u003e, and \u003ccode\u003e_profiler\u003c/code\u003e directory and those can be used on their own without mixing with other contents. Please check the \u003ccode\u003eREADME.md\u003c/code\u003e file inside of each for more information.\u003c/p\u003e\n\u003cp\u003eYou can either clone the whole repository and isolate contents or you can only clone without any of the directories. Please follow below steps for each method.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-cloning-the-repo-with-all-the-direcotires-and-isolate-later-using-git-sparse-checkout\" class=\"anchor\" aria-hidden=\"true\" href=\"#cloning-the-repo-with-all-the-direcotires-and-isolate-later-using-git-sparse-checkout\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCloning the repo with all the direcotires and isolate later using \u003ccode\u003egit sparse-checkout\u003c/code\u003e\n\u003c/h3\u003e\n\u003cp\u003eYou can use the \u003ccode\u003eboostrap.sh\u003c/code\u003e script at the root of the repository to isolate the content. For example, by running \u003ccode\u003ebash ./bootstrap.sh openacc\u003c/code\u003e, your working directory will include all the content related to the OpenACC Bootcamp from basic to advanced. Now, you can run the \u003ccode\u003ebootstrap.sh\u003c/code\u003e command using one of the following pre-defined bootcamp contents: \u003ccode\u003enways-basic\u003c/code\u003e, \u003ccode\u003eopenacc\u003c/code\u003e, \u003ccode\u003eprofiling\u003c/code\u003e,\u003ccode\u003ecuda\u003c/code\u003e, \u003ccode\u003emultigpu\u003c/code\u003e. See example below:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eStep 1: clone the whole repository via \u003ccode\u003egit@github.com:mozhgan-kch/HPC_Bootcamp.git\u003c/code\u003e or \u003ccode\u003ehttps://github.com/mozhgan-kch/HPC_Bootcamp.git\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eStep 2: Navigate to the bootcamp folder via \u003ccode\u003ecd HPC_Bootcamp\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eStep 3: Run \u003ccode\u003ebash ./bootstrap.sh profiling\u003c/code\u003e , this example will isolate files required for the profiling material.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-cloning-the-repo-without-directories\" class=\"anchor\" aria-hidden=\"true\" href=\"#cloning-the-repo-without-directories\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCloning the repo without directories\u003c/h3\u003e\n\u003cp\u003eYou can clone the repository and avoid filling in the working directory with the huge list of files by using the \u003ccode\u003e--no-checkout\u003c/code\u003e option as you clone. Try the below:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone --no-checkout git@github.com:mozhgan-kch/HPC_Bootcamp.git\ncd HPC_Bootcamp\ngit sparse-checkout init --cone\ngit checkout main\nbash ./bootstrap.sh profiling\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce done, navigate to \u003ccode\u003e_scripts\u003c/code\u003e via \u003ccode\u003ecd _scripts\u003c/code\u003e and build the container by following below steps.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-building-the-container-using-the-def-files-inside-the-_script-folder\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-container-using-the-def-files-inside-the-_script-folder\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the container using the def files inside the \u003ccode\u003e_script\u003c/code\u003e folder\u003c/h3\u003e\n\u003cp\u003eTo build the singularity container, run:\n\u003ccode\u003esudo singularity build miniapp.simg {Name of the content}_Singularity\u003c/code\u003e , alternatively you can use \u003ccode\u003esingularity build --fakeroot miniapp.simg {Name of the content}_Singularity\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eand copy the files to your local machine to make sure changes are stored locally:\n\u003ccode\u003esingularity run miniapp.simg cp -rT /labs ~/labs\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThen, run the container:\n\u003ccode\u003esingularity run --nv miniapp.simg jupyter-lab --notebook-dir=~/labs\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eOnce inside the container, open the jupyter lab in browser: \u003ca href=\"http://localhost:8888\" rel=\"nofollow\"\u003ehttp://localhost:8888\u003c/a\u003e, and start the lab by clicking on the \u003ccode\u003e_{Name of the content}.ipynb\u003c/code\u003e notebook. \u003ccode\u003e{Name of the content}\u003c/code\u003e can be \u003ccode\u003eprofiling\u003c/code\u003e. More alternatives will be added.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-building-the-container-using-the-def-files-inside-the-content-folder\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-container-using-the-def-files-inside-the-content-folder\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the container using the def files inside the content folder\u003c/h3\u003e\n\u003cp\u003eAlternatively, you can build containers for each content by using the recipe inside of each content.\nExample : Build container for the \u003cem\u003e_profiler\u003c/em\u003e content. Navigate to \u003ccode\u003e_profiler\u003c/code\u003e directory and read the \u003ccode\u003eREADME.md\u003c/code\u003e file for more information.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1624197047.0
+ "updated_at": 1662909782.0
},
{
"data_format": 2,
- "description": "Talking to Hinkskalle",
+ "description": null,
"filenames": [
- "Singularity"
+ "SMiRL_Code/Singularity"
],
- "full_name": "csf-ngs/hinkskalle-api",
+ "full_name": "KBoumghar/IFT4055-RL",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-hinkskalle-api\" class=\"anchor\" href=\"#hinkskalle-api\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHinkskalle API\u003c/h1\u003e\n\u003cp\u003eTalking to \u003ca href=\"https://github.com/csf-ngs/hinkskalle\"\u003eHinkskalle\u003c/a\u003e made easy\u003c/p\u003e\n\u003cp\u003eUse me to\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003elist available downloads\u003c/li\u003e\n\u003cli\u003edownload data\u003c/li\u003e\n\u003cli\u003eupload data\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-getting-started\" class=\"anchor\" href=\"#getting-started\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003cp\u003ehinkskalle-api provides\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ea small library with a thin wrapper over the JSON API\u003c/li\u003e\n\u003cli\u003ea CLI (\u003ccode\u003ehinkli\u003c/code\u003e: short for hink-cli, get it?)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cp\u003eYou will need python3 and pip. Then you can run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip3 install git+https://github.com/csf-ngs/hinkskalle-api\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-command-line-interface\" class=\"anchor\" href=\"#command-line-interface\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCommand Line Interface\u003c/h3\u003e\n\u003cp\u003eGet a list of available commands and options:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ehinkli --help\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYour first step should be logging in:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e non-VBCF.NGS users get your own instance!\u003c/span\u003e\nhinkli --base https://singularity.ngs.vbcf.ac.at/ login\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e answer prompt for username and password\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe registry and token should now be stored in \u003ccode\u003e~/.hink_api.yml\u003c/code\u003e and available for further use.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-discovering--downloading-data\" class=\"anchor\" href=\"#discovering--downloading-data\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDiscovering \u0026amp; Downloading Data\u003c/h4\u003e\n\u003cp\u003eYour most likely use case will be downloading data provided via Hinkskalle.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e shows available collections of containers\u003c/span\u003e\nhinkli list-collections\nhinkli list-containers [collection]\nhinkli list-downloads [collection]/[container]\nhinkli pull [collection]/[container]:[tag]\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e username is optional, but can be provided, too:\u003c/span\u003e\nhinkli list-collections test.hase\nhinkli list-containers test.hase/[collection]\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e etc\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBasic structure:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eA Collection holds a bunch of containers (topic, type, ...)\u003c/li\u003e\n\u003cli\u003eContainers hold tagged data\u003c/li\u003e\n\u003cli\u003eEach tag points to some data (some tags point to the same data)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIf Hinkskalle shows you these downloads in your container \u003ccode\u003etest.hase/example/FAQ4711\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e- \u003cspan class=\"pl-ent\"\u003efilename\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003ebunch_of_reads.fastq.gz\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003esize\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e41.5 MB\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003etags\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003ebasecalled,20210621\u003c/span\u003e\n- \u003cspan class=\"pl-ent\"\u003efilename\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003erawdata.tar.gz\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003esize\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e41.5 TB\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003etags\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003eraw\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can use these commands to download:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e either one fetches bunch_of_reads.fastq\u003c/span\u003e\nhinkli pull example/FAQ4711:basecalled\nhinkli pull example/FAQ4711:20210621\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e fetches rawdata.tar.gz\u003c/span\u003e\nhinkli pull example/FAQ4711:raw\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eHinkli will even check the sha256 checksum for you!\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-api\" class=\"anchor\" href=\"#api\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAPI\u003c/h3\u003e\n\u003cp\u003eNot documented - use at your own risk!\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ehinkskalle_api\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eHinkApi\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eapi\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eHinkApi\u003c/span\u003e()\n\u003cspan class=\"pl-s1\"\u003ecollections\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eapi\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003elist_collections\u003c/span\u003e()\n\u003cspan class=\"pl-c\"\u003e# etc\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-configuration\" class=\"anchor\" href=\"#configuration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguration\u003c/h2\u003e\n\u003cp\u003eBy default, hinkli reads its config from \u003ccode\u003e~/.hink_api.yml\u003c/code\u003e. This file should look like this:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003ehink_api_base\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003ehttps://singularity.ngs.vbcf.ac.at\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003ehink_api_key\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003eyour_super_secret_token\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can use these env variables to override:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003eHINK_API_BASE\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eHINK_API_KEY\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eHINK_API_CFG\u003c/code\u003e - to look for the config file in a different location\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-development\" class=\"anchor\" href=\"#development\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopment\u003c/h1\u003e\n\u003cp\u003eYou can regenerate the models from the Hinkskalle swagger/openapi definition:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip3 install git+https://ngs.vbcf.ac.at/repo/software/swagspotta.git\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e from pkg.ngs.vbcf.ac.at production:\u003c/span\u003e\nshare/create_models.sh\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e from your local hinkskalle dev server:\u003c/span\u003e\nshare/create_models.sh http://localhost:7660/swagger\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003cp\u003e#IFT4055 - Journal\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-02-05-2022\" class=\"anchor\" aria-hidden=\"true\" href=\"#02-05-2022\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e02-05-2022\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eLearned about MDP and Q-function (see MDP.pdf)\u003c/li\u003e\n\u003cli\u003eSMiRL paper up to page 6 (see Smirl.pdf).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eQuestions I need to answer :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAuxiliary objective, what is this exactly?\u003c/li\u003e\n\u003cli\u003eMinimizing the R.H.S to get maximum reward\u003c/li\u003e\n\u003cli\u003eEstimate of state marginal (cannot seem to find reference for that)\u003c/li\u003e\n\u003cli\u003eHow / how fast can we find the distribution that fits our p_{\\theta_t}(s)\u003c/li\u003e\n\u003cli\u003eMaximum likelihood estimation : OK. Maximum likelihood state density estimation process???\u003c/li\u003e\n\u003cli\u003eWe can\u0027t assume independence of states like what I\u0027ve seen. What is used for Maximum likelihood?\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eWhat I (think) I need to do next :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMore reading/watching on maximum likelihood in machine learning context\u003c/li\u003e\n\u003cli\u003eRead paper about DQN algorithm : \u003ca href=\"https://arxiv.org/pdf/1312.5602.pdf\" rel=\"nofollow\"\u003ehttps://arxiv.org/pdf/1312.5602.pdf\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eRead paper about TRPO algorithm\u003c/li\u003e\n\u003cli\u003ePart with Density estimation with learned representations?\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1626991307.0
+ "updated_at": 1652813085.0
},
{
"data_format": 2,
@@ -14345,257 +13718,248 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "shrutir11/lolcow",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-lolcow\" class=\"anchor\" href=\"#lolcow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003elolcow\u003c/h1\u003e\n",
+ "full_name": "baxpr/cersuit",
+ "latest_release": "v2.1.0",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-cersuit\" class=\"anchor\" aria-hidden=\"true\" href=\"#cersuit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecersuit\u003c/h1\u003e\n\u003cp\u003eCerebellar segmentation with the \u003ca href=\"http://diedrichsenlab.org/imaging/suit.htm\" rel=\"nofollow\"\u003eSUIT atlas and toolbox\u003c/a\u003e. In the container, the pipeline is installed in the \u003ccode\u003e/opt/cersuit\u003c/code\u003e directory. Matlab code is in the \u003ccode\u003esrc\u003c/code\u003e directory, and the entrypoint is \u003ccode\u003esrc/cersuit.m\u003c/code\u003e. Compiled Matlab code for use in the singularity container without a Matlab license is in \u003ccode\u003ebin\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eSee the \u003ccode\u003eexternal\u003c/code\u003e directory for links, references, and license information for the underlying SPM12 and SUIT Matlab software. \u003ca href=\"https://fsl.fmrib.ox.ac.uk/fsl/fslwiki\" rel=\"nofollow\"\u003eFSL version 6.0.2\u003c/a\u003e is also used for image file manipulation and creating the QA PDF.\u003c/p\u003e\n\u003cp\u003eThe container has a full installation of both SPM12 (compiled) and FSL.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-references-for-suit\" class=\"anchor\" aria-hidden=\"true\" href=\"#references-for-suit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences for SUIT\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.1016/j.neuroimage.2006.05.056\" rel=\"nofollow\"\u003eDiedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. Neuroimage, 33, 1, p. 127-138.\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.1016/j.neuroimage.2009.01.045\" rel=\"nofollow\"\u003eDiedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., \u0026amp; Ramnani, N. (2009). A probabilistic atlas of the human cerebellum. Neuroimage 46(1):39-46.\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.1016/j.neuroimage.2010.10.035\" rel=\"nofollow\"\u003eDiedrichsen, J., Maderwald, S., Kuper, M., Thurling, M., Rabe, K., Gizewski, E. R., et al. (2011). Imaging the deep cerebellar nuclei: A probabilistic atlas and normalization procedure. Neuroimage 54(3):1786-94\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.1371/journal.pone.0133402\" rel=\"nofollow\"\u003eDiedrichsen, J. \u0026amp; Zotow, E. (2015). Surface-based display of volume-averaged cerebellar data. PLoS One, 7, e0133402.\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eAdjustment of the source T1 file to axial data ordering using fslreorient2std, to meet a requirement of the SUIT toolbox.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eTranslation-only alignment of the supplied gray matter image to SPM12\u0027s gray matter probabilistic atlas (TPM.nii). This is accomplished by aligning the centers of mass. Rotations are not estimated, to avoid an issue with SUIT\u0027s bounding box computation. The supplied gray matter image must be in register with the supplied T1. The estimated registration is saved to file and also applied to the T1.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSUIT estimation of the affine transformation and warp of the cerebellar area of the T1 to the SUIT atlas.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eResampling of the T1 and related images to the SUIT atlas space. Gray matter and white matter images are resampled both with and without modulation by the Jacobian.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eResampling of the SUIT-supplied atlases to the original T1 native space.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eComputation of regional volumes for the Lobules_SUIT atlas in the native T1 space.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage-of-the-singularity-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage-of-the-singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage of the singularity container\u003c/h2\u003e\n\u003cp\u003eSee \u003ccode\u003esingularity_examples.sh\u003c/code\u003e for examples of using the container for SUIT warp estimation, and transformation from native to SUIT space and back using an existing estimated warp. The transformations can also be done directly from matlab with the \u003ccode\u003etransform_???.m\u003c/code\u003e functions in \u003ccode\u003esrc\u003c/code\u003e).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-parameters-and-inputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#parameters-and-inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParameters and inputs\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026lt;temporary-home-dir\u0026gt; Matlab will use this for temp files\n\u0026lt;tmp-dir\u0026gt; Other location for temp files \n\u0026lt;input-dir\u0026gt; Directory containing the input T1 image file\n\u0026lt;output-dir\u0026gt; Outputs will be stored here\n\u0026lt;t1-niigz-filename\u0026gt; Filename of the input T1 - expecting \u0026lt;something\u0026gt;.nii.gz\n\u0026lt;mask-threshold\u0026gt; SPM mask threshold for separating brain from background\n\u0026lt;project-name\u0026gt; Project/subject/session/scan names from XNAT, if XNAT is\n\u0026lt;subject-name\u0026gt; used. These are only used to decorate the PDF report.\n\u0026lt;session-name\u0026gt; \n\u0026lt;scan-name\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cp\u003ePDF report for quality assurance\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ePDF cersuit.pdf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTransformation from native to atlas space. Apply in this order\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eRIGID coreg_t1_to_mni.mat\nAFFINE Affine_c_t1_seg1.mat\nFLOWFIELD u_a_c_t1_seg1.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eCropped T1 in both spaces\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eT1_CROP_NATIVE c_t1.nii.gz\nT1_CROP_SUIT wc_t1.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eCerebellum mask, segmented gray matter and white matter volume fraction images in native and atlas space\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eMASK_NATIVE c_t1_pcereb.nii.gz\nGRAY_NATIVE c_t1_seg1.nii.gz\nWHITE_NATIVE c_t1_seg2.nii.gz\nMASK_SUIT wc_t1_pcereb.nii.gz\nGRAY_SUIT wc_t1_seg1.nii.gz\nWHITE_SUIT wc_t1_seg2.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eJacobian-modulated gray and white matter images in atlas space\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eGRAYMOD_SUIT wdc_t1_seg1.nii.gz\nWHITEMOD_SUIT wdc_t1_seg2.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSegmented regions in native and atlas space, with lookup table\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eATLASES_NATIVE SUIT-supplied atlases resampled to original T1 space\nATLASES_SUIT The SUIT-supplied atlases themselves\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eVolumetry of segmented regions, computed from native space images. The \"Total\" is the volume of the atlas region after transformation to native space. The \"Gray\" is the sum of voxel gray matter fraction within the atlas region, in native space; similar for \"White\".\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eNATIVE_VOLS iw_Lobules-SUIT_u_a_c_t1_seg1-volumes.csv\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1624383824.0
+ "updated_at": 1659018685.0
},
{
"data_format": 2,
- "description": null,
+ "description": "A simple utility to convert a bunch of input fastq files into their reverse complement",
"filenames": [
- "Singularity"
+ "singularity/Singularity"
],
- "full_name": "QsingularityAi/polar-pfc-master_active-crystel",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-polar-pfc-master_active-crystel\" class=\"anchor\" href=\"#polar-pfc-master_active-crystel\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epolar-pfc-master_active-crystel\u003c/h1\u003e\n",
+ "full_name": "sequana/revcomp",
+ "latest_release": "v0.9.0",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1624399268.0
+ "updated_at": 1661892371.0
},
{
"data_format": 2,
- "description": "Massively Parallel, Portable, and Reproducible Tractography",
+ "description": null,
"filenames": [
- "container/Singularity"
+ "fsl/singularity/Singularity.fsl"
],
- "full_name": "LLNL/MaPPeRTrac",
+ "full_name": "nikhil153/brain-diff",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-mappertrac\" class=\"anchor\" href=\"#mappertrac\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMaPPeRTrac\u003c/h1\u003e\n\u003cp\u003eMassively Parallel, Portable, and Reproducible Tractography (MaPPeRTrac) is a brain tractography workflow for high performance computing. It incorporates novel technologies to simplify and accelerate neuroimaging research.\n\u003cbr\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-setup\" class=\"anchor\" href=\"#setup\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h3\u003e\n\u003cp\u003eRequirements:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePython 3.5+\u003c/li\u003e\n\u003cli\u003eSLURM job scheduling on a multi-node system\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cb\u003e1. Install NumPy and Parsl\u003c/b\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003epip3 install parsl numpy scipy\u003c/code\u003e\u003cbr\u003e\n(\u003ccode\u003epip3 install parsl numpy scipy --user\u003c/code\u003e for non-root systems)\u003c/p\u003e\n\u003cp\u003e\u003cb\u003e2. Clone repository\u003c/b\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003egit clone git@github.com:LLNL/MaPPeRTrac.git\u003c/code\u003e\u003cbr\u003e\n\u003ccode\u003ecd MaPPeRTrac/\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003cb\u003e3. Load a Singularity container\u003c/b\u003e\u003c/p\u003e\n\u003cp\u003eRequirements:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity 3.0+ (\u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/\" rel=\"nofollow\"\u003ehttps://www.sylabs.io/guides/3.0/user-guide/\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eBuilding the container:\u003cbr\u003e\ni. Obtain root access (you can copy and run the image in a non-root system afterwards).\u003cbr\u003e\nii. Place a Freesurfer \u003ccode\u003elicense.txt\u003c/code\u003e in the repo directory (\u003ca href=\"https://surfer.nmr.mgh.harvard.edu/fswiki/License\" rel=\"nofollow\"\u003ehttps://surfer.nmr.mgh.harvard.edu/fswiki/License\u003c/a\u003e).\u003cbr\u003e\niii. \u003ccode\u003e./container/build.sh\u003c/code\u003e\n\u003cbr\u003e\nNotes:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMake sure to set \u003ccode\u003econtainer_path\u003c/code\u003e to the Singularity container\u0027s location.\u003c/li\u003e\n\u003cli\u003eIf you are having trouble building the container, try branch \u003ccode\u003eno_viz\u003c/code\u003e. This will disable render functionality.\u003c/li\u003e\n\u003cli\u003eAlternatively, download the image \u003ca href=\"https://drive.google.com/file/d/1lh0_5GO6-7qIznjvIcSMY-Ua8iBpZ4DJ/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\n\u003cbr\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cb\u003e4. Specify your DICOM or NIfTI data\u003c/b\u003e\u003c/p\u003e\n\u003cp\u003ePlace your data in the same filesystem as the repository.\u003c/p\u003e\n\u003cp\u003eYou can download the example data \u003ca href=\"https://drive.google.com/file/d/1YC0QzWNohq173_zJaqZfnI5d6EPb9On2/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-launch\" class=\"anchor\" href=\"#launch\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLaunch\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003e./s_run_all.py \u0026lt;config_json\u0026gt;\u003c/code\u003e\n\u003cbr\u003e\nSee \u003ccode\u003eexamples/dummy_config.json\u003c/code\u003e for example parameters.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-file-overview\" class=\"anchor\" href=\"#file-overview\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFile Overview\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003eTracktographyScripts/\n+- container/\n| +- build.sh\n| +- Singularity # Singularity build recipe\n|\n+- examples\n| +- dataset_description.json # Example of the BIDS dataset description\n| +- dummy_config.json # Example of the config JSON\n| +- dummy_dicom/\n| +- dummy_nifti/\n| +- dummy_subjects.json # Example of the subjects JSON\n|\n+- license.txt # Freesurfer license. NOTE: not included, required to build Singularity container\n+- LICENSE # MaPPeRTrac license.\n|\n+- lists/\n| +- connectome_idxs.txt # Brain region indices for .mat connectome files\n| +- list_edges_reduced.txt # Default edges to compute with Probtrackx and EDI (930 edges)\n| +- list_edges_all.txt # All possible edges (6643 edges)\n| +- render_targets.txt # NiFTI files to visualize with s4_render\n|\n+- README.md\n|\n+- s_run_all.py # Main script\n|\n+- subscripts/\n +- __init__.py\n +- maskseeds.py # Helper functions for s2b_freesurfer.py\n +- run_vtk.py # Helper script for s4_render.py\n +- s_debug.py # For debugging\n +- s1_dti_preproc.py\n +- s2a_bedpostx.py\n +- s2b_freesurfer.py\n +- s3_probtrackx.py\n +- s4_render.py\n +- utilities.py # General utility functions\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cbr\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-output-overview\" class=\"anchor\" href=\"#output-overview\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput Overview\u003c/h3\u003e\n\u003cp\u003eThe following are the most important output files. This list is not comprehensive.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026lt;OUTPUT DIRECTORY\u0026gt;/\n+- sourcedata/ # DICOM preprocessing data\n+- rawdata/ # BIDS-compliant NiFTI imaging data\n+- derivatives/\n +- sub-\u0026lt;SUBJECT NAME\u0026gt;\n +- [ses-\u0026lt;SESSION NAME\u0026gt;] # If session name specified, outputs will be in a session directory\n +- connectome_idxs.txt # Brain region indices for .mat connectome files\n +- connectome_#samples_oneway.txt # Oneway connectome in list form. Each edge has four columns:\n Column 1 is the source region\n Column 2 is the destination region\n Column 3 is number of fibers (NOF): the total count of successful streamlines between the two regions\n Column 4 is normalized NOF: the average density of successful streamlines the target region.\n +- connectome_#samples_twoway.txt # Twoway connectome in list form\n +- connectome_#samples_oneway_nof.mat # Oneway NOF connectome in matrix form\n +- connectome_#samples_twoway_nof.mat # Twoway NOF connectome in matrix form (should be symmetric)\n +- connectome_#samples_oneway_nof_normalized.mat # Oneway normalized NOF connectome in matrix form\n +- connectome_#samples_twoway_nof_normalized.mat # Twoway normalized NOF connectome in matrix form (should be symmetric)\n |\n +- EDI/\n | +- EDImaps/\n | +- FAtractsumsRaw.nii.gz # NiFTI image of total streamline density\n | +- FAtractsumsTwoway.nii.gz # NiFTI image of edge density (EDI). See Payabvash et al. (2019) for details.\n |\n +- log/ # Directory containing stdout and performance logs\n |\n +- render/ # Directory containing NiFTI image renders from step s4_render\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cbr\u003e\n\u003cbr\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-config-parameterscommand-line-arguments\" class=\"anchor\" href=\"#config-parameterscommand-line-arguments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfig Parameters/Command Line Arguments\u003c/h3\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eRequired Parameter\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003esubjects_json\u003c/td\u003e\n\u003ctd\u003eJSON file with input directories for each subject\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eoutput_dir\u003c/td\u003e\n\u003ctd\u003eThe super-directory that will contain output directories for each subject.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003escheduler_name\u003c/td\u003e\n\u003ctd\u003eScheduler to be used for running jobs. Value is \"slurm\" for LLNL, \"cobalt\" for ANL, and \"grid_engine\" for UCSF.\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e\u003cbr\u003e\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOptional Parameter\u003c/th\u003e\n\u003cth\u003eDefault\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003esteps\u003c/td\u003e\n\u003ctd\u003es1 s2a s2b s3 s4\u003c/td\u003e\n\u003ctd\u003eSteps to run\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003egpu_steps\u003c/td\u003e\n\u003ctd\u003es2a\u003c/td\u003e\n\u003ctd\u003eSteps to enable CUDA-enabled binaries\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003escheduler_bank\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eScheduler bank to charge for jobs. Required for slurm and cobalt.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003escheduler_partition\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eScheduler partition to assign jobs. Required for slurm and cobalt.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003escheduler_options\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eString to prepend to the submit script to the scheduler\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003egpu_options\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eString to prepend to the submit blocks for GPU-enabled steps, such as \u0027module load cuda/8.0;\u0027\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eworker_init\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eString to run before starting a worker, such as \u2018module load Anaconda; source activate env;\u2019\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003econtainer_path\u003c/td\u003e\n\u003ctd\u003econtainer/image.simg\u003c/td\u003e\n\u003ctd\u003ePath to Singularity container image\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eunix_username\u003c/td\u003e\n\u003ctd\u003e[[current user]]\u003c/td\u003e\n\u003ctd\u003eUnix username for Parsl job requests\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eunix_group\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eUnix group to assign file permissions\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eforce\u003c/td\u003e\n\u003ctd\u003eFalse\u003c/td\u003e\n\u003ctd\u003eForce re-compute if checkpoints already exist\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003egssapi\u003c/td\u003e\n\u003ctd\u003eFalse\u003c/td\u003e\n\u003ctd\u003eUse Kerberos GSS-API authentication\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003elocal_host_only\u003c/td\u003e\n\u003ctd\u003eTrue\u003c/td\u003e\n\u003ctd\u003eRequest all jobs on local machine, ignoring other hostnames\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eparsl_path\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003ePath to Parsl binaries, if not installed in /usr/bin or /usr/sbin\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003erender_list\u003c/td\u003e\n\u003ctd\u003elists/render_targets.txt\u003c/td\u003e\n\u003ctd\u003eText file list of NIfTI outputs for s4_render (relative to each subject output directory)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003epbtx_sample_count\u003c/td\u003e\n\u003ctd\u003e1000\u003c/td\u003e\n\u003ctd\u003eNumber of streamlines per seed voxel in s3_probtrackx\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003epbtx_random_seed\u003c/td\u003e\n\u003ctd\u003e[[random number]]\u003c/td\u003e\n\u003ctd\u003eRandom seed in s3_probtrackx\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003epbtx_max_memory\u003c/td\u003e\n\u003ctd\u003e0\u003c/td\u003e\n\u003ctd\u003eMaximum memory per node (in GB) for s3_probtrackx. Default value of 0 indicates unlimited memory bound\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003econnectome_idx_list\u003c/td\u003e\n\u003ctd\u003elists/connectome_idxs.txt\u003c/td\u003e\n\u003ctd\u003eText file with pairs of volumes and connectome indices\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ehistogram_bin_count\u003c/td\u003e\n\u003ctd\u003e256\u003c/td\u003e\n\u003ctd\u003eNumber of bins in NiFTI image histograms\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003epbtx_edge_list\u003c/td\u003e\n\u003ctd\u003elists/list_edges_reduced.txt\u003c/td\u003e\n\u003ctd\u003eText file list of edges for steps s3_probtrackx\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ecompress_pbtx_results\u003c/td\u003e\n\u003ctd\u003eTrue\u003c/td\u003e\n\u003ctd\u003eCompress probtrackx outputs to reduce inode and disk space usage\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003edynamic_walltime\u003c/td\u003e\n\u003ctd\u003eFalse\u003c/td\u003e\n\u003ctd\u003eRequest dynamically shortened walltimes, to gain priority on job queue\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es1_job_time\u003c/td\u003e\n\u003ctd\u003e00:15:00\u003c/td\u003e\n\u003ctd\u003eMax time to finish s1 on 1 subject with 1 node, if dynamic_walltime is true\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2a_job_time\u003c/td\u003e\n\u003ctd\u003e00:45:00\u003c/td\u003e\n\u003ctd\u003eMax time to finish s2a on 1 subject with 1 node, if dynamic_walltime is true\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2b_job_time\u003c/td\u003e\n\u003ctd\u003e10:00:00\u003c/td\u003e\n\u003ctd\u003eMax time to finish s2b on 1 subject with 1 node, if dynamic_walltime is true\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es3_job_time\u003c/td\u003e\n\u003ctd\u003e23:59:00\u003c/td\u003e\n\u003ctd\u003eMax time to finish s3 on 1 subject with 1 node, if dynamic_walltime is true\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es4_job_time\u003c/td\u003e\n\u003ctd\u003e00:15:00\u003c/td\u003e\n\u003ctd\u003eMax time to finish s4 on 1 subject with 1 node, if dynamic_walltime is true\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es1_cores_per_task\u003c/td\u003e\n\u003ctd\u003e1\u003c/td\u003e\n\u003ctd\u003eNumber of cores to assign each task for step s1_dti_preproc\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2a_cores_per_task\u003c/td\u003e\n\u003ctd\u003e[[core count on head node]]\u003c/td\u003e\n\u003ctd\u003eNumber of cores to assign each task for step s2a_bedpostx\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2b_cores_per_task\u003c/td\u003e\n\u003ctd\u003e[[core count on head node]]\u003c/td\u003e\n\u003ctd\u003eNumber of cores to assign each task for step s2b_freesurfer\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es3_cores_per_task\u003c/td\u003e\n\u003ctd\u003e1\u003c/td\u003e\n\u003ctd\u003eNumber of cores to assign each task for step s3_probtrackx\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es4_cores_per_task\u003c/td\u003e\n\u003ctd\u003e1\u003c/td\u003e\n\u003ctd\u003eNumber of cores to assign each task for step s4_render\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es1_hostname\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eHostname of machine to run step s1_dti_preproc, if local_host_only is false\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2a_hostname\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eHostname of machine to run step s2a_bedpostx, if local_host_only is false\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2b_hostname\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eHostname of machine to run step s2b_freesurfer, if local_host_only is false\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es3_hostname\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eHostname of machine to run step s3_probtrackx, if local_host_only is false\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es4_hostname\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eHostname of machine to run step s4_render, if local_host_only is false\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es1_walltime\u003c/td\u003e\n\u003ctd\u003e23:59:00\u003c/td\u003e\n\u003ctd\u003eWalltime for step s1\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2a_walltime\u003c/td\u003e\n\u003ctd\u003e23:59:00\u003c/td\u003e\n\u003ctd\u003eWalltime for step s2a\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2b_walltime\u003c/td\u003e\n\u003ctd\u003e23:59:00\u003c/td\u003e\n\u003ctd\u003eWalltime for step s2b\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es3_walltime\u003c/td\u003e\n\u003ctd\u003e23:59:00\u003c/td\u003e\n\u003ctd\u003eWalltime for step s3\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es4_walltime\u003c/td\u003e\n\u003ctd\u003e23:59:00\u003c/td\u003e\n\u003ctd\u003eWalltime for step s4\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es1_nodes\u003c/td\u003e\n\u003ctd\u003e[[floor(0.2 * num_subjects)]]\u003c/td\u003e\n\u003ctd\u003eNode count for step s1\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2a_nodes\u003c/td\u003e\n\u003ctd\u003e[[floor(1.0 * num_subjects)]]\u003c/td\u003e\n\u003ctd\u003eNode count for step s2a\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2b_nodes\u003c/td\u003e\n\u003ctd\u003e[[floor(1.0 * num_subjects)]]\u003c/td\u003e\n\u003ctd\u003eNode count for step s2b\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es3_nodes\u003c/td\u003e\n\u003ctd\u003e[[floor(1.0 * num_subjects)]]\u003c/td\u003e\n\u003ctd\u003eNode count for step s3\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es4_nodes\u003c/td\u003e\n\u003ctd\u003e[[floor(0.1 * num_subjects)]]\u003c/td\u003e\n\u003ctd\u003eNode count for step s4\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es1_cores\u003c/td\u003e\n\u003ctd\u003e[[core count on head node]]\u003c/td\u003e\n\u003ctd\u003eCores per node for step s1\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2a_cores\u003c/td\u003e\n\u003ctd\u003e[[core count on head node]]\u003c/td\u003e\n\u003ctd\u003eCores per node for step s2a\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es2b_cores\u003c/td\u003e\n\u003ctd\u003e[[core count on head node]]\u003c/td\u003e\n\u003ctd\u003eCores per node for step s2b\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es3_cores\u003c/td\u003e\n\u003ctd\u003e[[core count on head node]]\u003c/td\u003e\n\u003ctd\u003eCores per node for step s3\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003es4_cores\u003c/td\u003e\n\u003ctd\u003e[[core count on head node]]\u003c/td\u003e\n\u003ctd\u003eCores per node for step s4\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ebids_json\u003c/td\u003e\n\u003ctd\u003eexamples/dummy_bids_desc.json\u003c/td\u003e\n\u003ctd\u003eDescription file dataset_description.json, as specified at \u003ca href=\"https://bids-specification.readthedocs.io/en/stable/03-modality-agnostic-files.html\" rel=\"nofollow\"\u003ehttps://bids-specification.readthedocs.io/en/stable/03-modality-agnostic-files.html\u003c/a\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ebids_readme\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eFree form text file describing the dataset in more detail\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ebids_session_name\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eName for the session timepoint (e.g. 2weeks)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-download-mri-images-from-openneuro\" class=\"anchor\" href=\"#download-mri-images-from-openneuro\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownload MRI Images from OpenNeuro\u003c/h3\u003e\n\u003cp\u003eDownload MRI images from OpenNeuro repository by providing path to install data and accession ID of the MRI image.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eusage: subscripts/download_openneuro.py [-h] [--install-directory INSTALL_DIR] [-a ACC_NUM]\n\narguments:\n -h, --help show this help message and exit\n --install-directory INSTALL_DIR\n Path where data will be installed\n -a ACC_NUM, --accession ACC_NUM\n MRI Accession ID from OpenNeuro\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRequirements:\npython package datalad, git-annex\nInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install -c conda-forge datalad\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eon mac:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebrew install git-annex\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eon linux:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install -c conda-forge git-annex\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h3\u003e\n\u003cp\u003eMaPPeRTrac is distributed under the terms of the BSD-3 License.\u003c/p\u003e\n\u003cp\u003eLLNL-CODE-811655\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-brain-diff\" class=\"anchor\" aria-hidden=\"true\" href=\"#brain-diff\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebrain-diff\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-goal-brainage-prediction-with-two-timepoints\" class=\"anchor\" aria-hidden=\"true\" href=\"#goal-brainage-prediction-with-two-timepoints\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGoal: Brainage prediction with two timepoints\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-replication\" class=\"anchor\" aria-hidden=\"true\" href=\"#replication\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReplication\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e- [Paper](https://doi.org/10.1016/j.media.2020.101871): Accurate brain age prediction with lightweight deep neural networks Han Peng, Weikang Gong, Christian F. Beckmann, Andrea Vedaldi, Stephen M Smith Medical Image Analysis (2021)\n- Code [repo](https://github.com/ha-ha-ha-han/UKBiobank_deep_pretrain)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-datasets\" class=\"anchor\" aria-hidden=\"true\" href=\"#datasets\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDatasets\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e- UKBB: notebooks/1_ukb_follow_up.ipynb\n- ADNI: notebooks/2_adni_follow_up.ipynb\n- Simulations: notebooks/7_brain_diff_sim.ipynb\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResults\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e- Brainage replication: notebooks/4_brain_age.ipynb\n- Simulation: notebooks/8_brain_diff_sim_results.ipynb\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-ukb-data-wrangling\" class=\"anchor\" aria-hidden=\"true\" href=\"#ukb-data-wrangling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUKB data wrangling\u003c/h3\u003e\n\u003ch4\u003e\u003ca id=\"user-content-step-1\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 1\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003ecopy files from squashfs on Beluga\nSes-2 (n=40681): \u0026lt;neurohub_ukbb_t1w_bids_derivatives.squashfs\u0026gt;:/neurohub/ukbb/imaging/T1\nSes-3 (n=3208): \u0026lt;neurohub_ukbb_t1w_ses3_0_derivatives.squashfs\u0026gt;:/neurohub/ukbb/imaging\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\u003ca id=\"user-content-step-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 2\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003e## move them in psudo-bids\nfor i in `ls | grep sub- | grep -v json`; do \n mkdir -p ../`echo $i | cut -d \"_\" -f1`/ses-2/anat; \n mv `echo $i | cut -d \"_\" -f1`* ../`echo $i | cut -d \"_\" -f1`/ses-2/anat/; \ndone\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-adni-data-wrangling\" class=\"anchor\" aria-hidden=\"true\" href=\"#adni-data-wrangling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eADNI data wrangling\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003euse src/generate_adni_bids.py\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun instructions\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-simulations\" class=\"anchor\" aria-hidden=\"true\" href=\"#simulations\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSimulations:\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e- Simple interactive runs: notebooks/7_brain_diff_sim.ipynb\n- Batch runs: src/run_simul.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-sfcn-replication\" class=\"anchor\" aria-hidden=\"true\" href=\"#sfcn-replication\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSFCN replication:\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e- src/run_SFCN.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-slurm-setup-for-training-lsn\" class=\"anchor\" aria-hidden=\"true\" href=\"#slurm-setup-for-training-lsn\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eslurm setup for training LSN\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003emodule load singularity/3.8\u003c/li\u003e\n\u003cli\u003esingularity shell --overlay /project/rpp-aevans-ab/neurohub/ukbb/imaging/neurohub_ukbb_t1w_bids_derivatives.squashfs:ro --overlay /project/rpp-aevans-ab/neurohub/ukbb/imaging/neurohub_ukbb_t1w_bids_derivatives_ses3_0_bids.squashfs /home/nikhil/scratch/FastSurfer.sif\u003c/li\u003e\n\u003cli\u003e./run_LSN.sh\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1627333260.0
+ "updated_at": 1654635361.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for gatk (https://github.com/broadinstitute/gatk)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.4.2.6.1"
],
- "full_name": "MontrealSergiy/deformation",
+ "full_name": "powerPlant/gatk-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-deformation-field\" class=\"anchor\" href=\"#deformation-field\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeformation field\u003c/h1\u003e\n\u003cp\u003eThis PERL script is a wrapper that is calling sequence of commands for generating deformation fields scrips\n\u003ca href=\"https://wiki.mouseimaging.ca/display/MICePub/Generating+deformation+fields\" rel=\"nofollow\"\u003ehttps://wiki.mouseimaging.ca/display/MICePub/Generating+deformation+fields\u003c/a\u003e\nSource code for deformation pipeline and dependencies (MINC):\n\u003ca href=\"https://github.com/Mouse-Imaging-Centre/generate_deformation_fields\"\u003ehttps://github.com/Mouse-Imaging-Centre/generate_deformation_fields\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eUsage\u003c/p\u003e\n\u003cp\u003edeformation_2.pl -input ICBM_00100_t1_final.mnc \u0026lt;\u0026lt;this could be any anatomical minc file, for a collection of minc files\u0026gt;\u0026gt; -output dummy_hoho -deformation_ratio 0.6 -coordinate 70 100 70 10 10 10 -tolerance_space 4 \u0026lt;\u0026gt; -blur_determinant 0.25 \u0026lt;\u0026gt; -error 0.00001 \u0026lt;\u0026gt; -iteration 100\u003c/p\u003e\n\u003cp\u003eThe output of running this command looks like this:\nICBM_00100_t1_final_deformed_by_0.4atROIx70-y100-z70dimx10.dimy10.dimz10.mnc. \u003c/p\u003e\n\u003cp\u003eWe will also have a directory dummy_hoho/TMP that will contain the in-between-files.\u003c/p\u003e\n\u003cp\u003e$:/dummy_hoho/TMP$ ls\u003c/p\u003e\n\u003cp\u003eblock.mnc\u003c/p\u003e\n\u003cp\u003eblurred0.25determinant_r_0.4x70-y100-z70dimx10.dimy10.dimz10.mnc\u003c/p\u003e\n\u003cp\u003eDDDDdilated.mnc\u003c/p\u003e\n\u003cp\u003eDDDDring.mnc\u003c/p\u003e\n\u003cp\u003edeterminant_r_0.4_grid.mnc\u003c/p\u003e\n\u003cp\u003edeterminant_r_0.4x70-y100-z70dimx10.dimy10.dimz10.mnc\u003c/p\u003e\n\u003cp\u003edeterminant_r_0.4.xfm\u003c/p\u003e\n\u003cp\u003emask.mnc\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for gatk (\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003ehttps://github.com/broadinstitute/gatk\u003c/a\u003e)\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1623632255.0
+ "updated_at": 1659582311.0
},
{
"data_format": 2,
- "description": "Validate and submit reads using Webin-CLI in batch.",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "enasequence/ena-bulk-webincli",
+ "full_name": "psadil/cat12",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ena-webin-cli-bulk-submission-tool\" class=\"anchor\" href=\"#ena-webin-cli-bulk-submission-tool\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eENA Webin-CLI Bulk Submission Tool\u003c/h1\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThis tool is a wrapper to bulk submit read, un-annotated genome, targeted sequence or taxonomic reference data to the ENA using Webin-CLI.\u003c/p\u003e\n\u003cp\u003eThe tool requires an appropriate metadata spreadsheet which it uses to generate manifest files for the user and validate or submit their submission. The tool does not handle study and sample registration, therefore visit \u003ca href=\"https://ena-docs.readthedocs.io/en/latest/submit/general-guide.html\" rel=\"nofollow\"\u003eENA Submissions Documentation\u003c/a\u003e for more information on this. The documentation also provides information on manifest file fields for your type of submission (which correlate to the headers in the spreadsheet file).\u003c/p\u003e\n\u003cp\u003eAn example template spreadsheet has been provided (example_template_input.txt). This file is a tab-delimited text file, however the script also consumes spreadsheets in native MS Excel formats (e.g. .xslx) or comma-separated (.csv).\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-docker\" class=\"anchor\" href=\"#docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h4\u003e\n\u003cp\u003eTo ease in usage, the tool has been containerised using \u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e. The only requirement is to have Docker \u003ca href=\"https://docs.docker.com/get-docker/\" rel=\"nofollow\"\u003einstalled\u003c/a\u003e. Once installed, run the following commands to setup:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eClone the repository:\n\u003ccode\u003egit clone https://github.com/nadimm-rahman/ena-bulk-webincli.git \u0026amp;\u0026amp; cd ena-bulk-webincli\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eBuild the docker image:\n\u003ccode\u003edocker build --tag ena-bulk-webincli .\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eReady to go! Run the tool using docker using the following command:\n\u003ccode\u003edocker run --rm -v \u0026lt;LOCAL_DATA_DIRECTORY\u0026gt;:/data ena-bulk-webincli -h\u003c/code\u003e (for help)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u0026lt;LOCAL_DATA_DIRECTORY\u0026gt; is recommended to be the directory or parent directory on your machine containing your data files to submit. Below is an example command which would submit read data to the test server:\n\u003ccode\u003edocker run --rm -v pathto/data:/data ena-bulk-webincli -u Webin-XXXX -p XXXX -g reads -s example_template_read.txt -d /data -m submit -t\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eNote: For data files to be submitted, relative file paths in accordance to \u003ccode\u003e\u0026lt;LOCAL_DATA_DIRECTORY\u0026gt;\u003c/code\u003e must be provided within the input spreadsheet.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-other\" class=\"anchor\" href=\"#other\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOther\u003c/h4\u003e\n\u003cp\u003eTo use the tool without Docker:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eClone the repository:\n\u003ccode\u003egit clone https://github.com/nadimm-rahman/ena-bulk-webincli.git \u0026amp;\u0026amp; cd ena-bulk-webincli\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eDownload the latest version of \u003ca href=\"https://github.com/enasequence/webin-cli/releases\"\u003eWebin-CLI\u003c/a\u003e installed.\u003c/li\u003e\n\u003cli\u003eDownload tool dependencies listed below.\u003c/li\u003e\n\u003cli\u003eEdit the \u0027Configuration\u0027 section at the top of bulk_webincli.py to include the full path to the Webin-CLI jar file and whether parallel processing should be carried out.\u003c/li\u003e\n\u003cli\u003eRun the tool using \u003ccode\u003epython bulk_webincli.py --help\u003c/code\u003e(for help)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThe script accepts full paths to files (to be submitted e.g. fastq/fasta) within the input spreadsheet. To control location of outputs, a specific directory can be provided using the \u003ccode\u003e--directory/-d\u003c/code\u003e parameter, where the folders listed below will be generated.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003cp\u003eMandatory arguments include Webin submission account username and password, genetic context and metadata spreadsheet. Note that the \u003ccode\u003e--test/-t\u003c/code\u003e flag can be specified to use Webin test submission services.\u003c/p\u003e\n\u003cp\u003eBy default, the script utilises two additional directories:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u0027manifests\u0027 - which houses all generated manifest files and report files.\u003c/li\u003e\n\u003cli\u003e\u0027submissions\u0027 - housing all validation and submission related reports and files, includes analysis and receipt XMLs of submissions.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h3\u003e\n\u003cp\u003eThe tool runs using \u003ca href=\"https://www.python.org/downloads/\" rel=\"nofollow\"\u003ePython3.6+\u003c/a\u003e and requires installation of \u003ca href=\"https://pandas.pydata.org/\" rel=\"nofollow\"\u003ePython Pandas\u003c/a\u003e and \u003ca href=\"https://joblib.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003ejoblib\u003c/a\u003e. This can be installed in a \u003ca href=\"https://docs.python.org/3/tutorial/venv.html\" rel=\"nofollow\"\u003evirtual environment\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-cat12\" class=\"anchor\" aria-hidden=\"true\" href=\"#cat12\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecat12\u003c/h1\u003e\n\u003cp\u003eTo build, run \u003ccode\u003ebuild_singularity\u003c/code\u003e as root e.g.,\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo ./build_singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNote that the build expects to find a few files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003e./code/main\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e./CAT12.zip (zipped standalone copy of CAT12, \u003ca href=\"https://www.jiscmail.ac.uk/cgi-bin/wa-jisc.exe?A2=ind2102\u0026amp;L=SPM\u0026amp;P=R8713\" rel=\"nofollow\"\u003ehttps://www.jiscmail.ac.uk/cgi-bin/wa-jisc.exe?A2=ind2102\u0026amp;L=SPM\u0026amp;P=R8713\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003e./MCR_R2017b_glnxa64_installer.zip (e.g., \u003ccode\u003ewget https://ssd.mathworks.com/supportfiles/downloads/R2017b/deployment_files/R2017b/installers/glnxa64/MCR_R2017b_glnxa64_installer.zip\u003c/code\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe script \u003ccode\u003erun_a2cps_segment\u003c/code\u003e provides a minimal wrapper around the container.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./run_a2cps_segment T1w.nii.gz\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTo run cat_standalone with a different template, \u003ccode\u003e\u0026lt;template\u0026gt;\u003c/code\u003e, on T1w image, \u003ccode\u003e\u0026lt;data\u0026gt;\u003c/code\u003e, try\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --cleanenv cat12.sif -b \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etemplate\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edata\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUse the \u003ccode\u003e--cleanenv\u003c/code\u003e flag may not be necessary, depending on your host. When running with host Ubuntu 20.04, there were environment variables associated with Java that interfered with MATLAB. See the Singularity documentation on \u003ca href=\"https://sylabs.io/guides/3.8/user-guide/environment_and_metadata.html?highlight=cleanenv#environment-overview\" rel=\"nofollow\"\u003eenvironment variables\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-prebuilt-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#prebuilt-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrebuilt container\u003c/h2\u003e\n\u003cp\u003eA verison of the container has been prebuilt and shared on \u003ca href=\"https://cloud.sylabs.io\" rel=\"nofollow\"\u003ehttps://cloud.sylabs.io\u003c/a\u003e. To use it, replace the container definition with \u003ccode\u003elibrary://psadil/default/cat\u003c/code\u003e, e. g.,\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --cleanenv library://psadil/default/cat:0.0.1 -b \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etemplate\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edata\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1625847484.0
+ "updated_at": 1659538764.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "util/PATRIC/Singularity"
+ "Singularity"
],
- "full_name": "adamlabadorf/bf550",
+ "full_name": "cschu/profile_me_ci",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-bf550---foundations-in-programming-data-analytics-and-machine-learning-in-python\" class=\"anchor\" href=\"#bf550---foundations-in-programming-data-analytics-and-machine-learning-in-python\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBF550 - Foundations in Programming, Data Analytics, and Machine Learning in Python\u003c/h1\u003e\n\u003cp\u003e(unofficial title: Bioinformatics Engineering)\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://adamlabadorf.github.io/bf550/\" rel=\"nofollow\"\u003eGo to the Github Pages site\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1628214043.0
+ "updated_at": 1636023839.0
},
{
"data_format": 2,
- "description": "Multi-Label Multi/Single-Class Image Segmentation",
+ "description": "Singularity recipe files for kraken-biom (https://github.com/smdabdoub/kraken-biom)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.1.2.0"
],
- "full_name": "kbronik2017/Multi_Label_Segmentation",
+ "full_name": "powerPlant/kraken-biom-srf",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/UCLBrain/MSLS/issues\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f9cab98cc8f1052f0c0096b8b462cf9b2280a706b1adc0895d8a4859f3743314/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f55434c427261696e2f4d534c53\" alt=\"GitHub issues\" data-canonical-src=\"https://img.shields.io/github/issues/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/UCLBrain/MSLS/network\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b6c7a087c43d2a65a6ee22ec8ce2e004a29212c4b9619b117f4b2bbabf98a6c5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f55434c427261696e2f4d534c53\" alt=\"GitHub forks\" data-canonical-src=\"https://img.shields.io/github/forks/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/UCLBrain/MSLS/stargazers\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/10fab859502fd8c9b24dde937e50fecba7449e94ea057774713238ab3ec754fc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f55434c427261696e2f4d534c53\" alt=\"GitHub stars\" data-canonical-src=\"https://img.shields.io/github/stars/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/UCLBrain/MSLS/blob/master/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0d525d837b03e3b7a24b6322fc2197a134fa12e6a96188e5f18d6cd92236aa47/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f55434c427261696e2f4d534c53\" alt=\"GitHub license\" data-canonical-src=\"https://img.shields.io/github/license/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-multi-label-multisingle-class-image-segmentation\" class=\"anchor\" href=\"#multi-label-multisingle-class-image-segmentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMulti-Label Multi/Single-Class Image Segmentation\u003c/h1\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/diag.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/diag.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-publication\" class=\"anchor\" href=\"#publication\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePublication\u003c/h1\u003e\n\u003cp\u003eLe Zhang, Ryutaro Tanno, Kevin Bronik, Chen Jin, Parashkev Nachev, Frederik Barkhof, Olga Ciccarelli, and Daniel C. Alexander, Learning to Segment When Experts Disagree, International Conference on Medical image computing and Computer-Assisted Intervention (MICCAI). Springer, Cham, 2020.\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/Miccai_2020_abs.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg align=\"center\" height=\"1000\" src=\"images/Miccai_2020_abs.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\n \n \u003cp\u003eClick here to see full pdf file: \u003ca href=\"https://github.com/UCLBrain/MSLS/blob/master/MICCAI_2020.pdf\"\u003eLink to PDF\u003c/a\u003e\u003c/p\u003e\n \n\n\u003ch1\u003e\n\u003ca id=\"user-content-running-the-gui-program\" class=\"anchor\" href=\"#running-the-gui-program\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the GUI Program!\u003c/h1\u003e\n\u003cp\u003eFirst, user needs to install Anaconda \u003ca href=\"https://www.anaconda.com/\" rel=\"nofollow\"\u003ehttps://www.anaconda.com/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThen\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda env create -f conda_environment_Training_Inference.yml \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eand\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda activate traintestenv \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003efinally\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - python Training_Inference_GUI.py \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAfter lunching the graphical user interface, user will need to provide necessary information to start training/testing as follows:\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/GUI.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/GUI.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-running-the-program-from-the-command-line\" class=\"anchor\" href=\"#running-the-program-from-the-command-line\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the Program from the command line!\u003c/h1\u003e\n\u003cp\u003eFirst\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda activate traintestenv \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ethen for training\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - python segmentation_network_Training_without_GUI.py [or annotation_network_Training_without_GUI.py]\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003efor testing\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - python segmentation_network_Inference_without_GUI.py [or annotation_network_Inference_without_GUI.py]\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-testing-the-program\" class=\"anchor\" href=\"#testing-the-program\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting the Program!\u003c/h1\u003e\n\u003cp\u003eExamples of Training and Testing subjects can be found in: \u003ca href=\"https://github.com/UCLBrain/MSLS/tree/master/examples\"\u003ehttps://github.com/UCLBrain/MSLS/tree/master/examples\u003c/a\u003e (which will allow users to quickly and easily train and test the program)\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/bin_seg_ex.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/bin_seg_ex.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003cp\u003e..................................................................................................................................................................\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/multi_seg_ex.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/multi_seg_ex.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n",
+ "readme": "\u003cp\u003eSingularity recipe files for kraken-biom (\u003ca href=\"https://github.com/smdabdoub/kraken-biom\"\u003ehttps://github.com/smdabdoub/kraken-biom\u003c/a\u003e)\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [
- "segmentation",
- "multi-label"
- ],
- "updated_at": 1628469613.0
+ "subscribers_count": 0,
+ "topics": [],
+ "updated_at": 1659482439.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for glnexus (https://github.com/dnanexus-rnd/GLnexus)",
"filenames": [
- "singularity_environment/Singularity"
+ "Singularity",
+ "Singularity.1.4.3"
],
- "full_name": "cpezzato/discrete_active_inference",
+ "full_name": "powerPlant/glnexus-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-discrete_active_inference-for-robotics\" class=\"anchor\" href=\"#discrete_active_inference-for-robotics\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ediscrete_active_inference for robotics\u003c/h1\u003e\n\u003cp\u003eRepository for active inference and behavior trees for discrete decision making. This repository relies on a TIAGo simulation in a simplified retail store. Please read the associated paper for more theorethical considerations about the algorithms.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\"Active Inference and Behavior Trees for Reactive Action Planning and Execution in Robotics\"\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eCorrado Pezzato, Carlos Hernandez, Stefan Bonhof, Martijn Wisse, \u003ca href=\"https://arxiv.org/abs/2011.09756\" rel=\"nofollow\"\u003ehttps://arxiv.org/abs/2011.09756\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-content\" class=\"anchor\" href=\"#content\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContent\u003c/h2\u003e\n\u003cp\u003eThis repositiry contains a Matlab examples and a ROS package for active inference for task planning and execution.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-main-files\" class=\"anchor\" href=\"#main-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMain files\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003eMatlab:\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cem\u003eaip.m\u003c/em\u003e the active inference algorithm for decision making is illustrated in the case of heterogeneous states and actions.\u003c/li\u003e\n\u003cli\u003e\n\u003cem\u003eexample.m\u003c/em\u003e example of use of active inference for discrete decision making in a robotic case where conflicts and preconditions checks are required. A robot is assumed to be able to navigate to a point (MoveBase), reach a location with its end effector (Move MPC), and pick and place things. Actions have preconditions and are assumed not instantaneous\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eROS:\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eThe other folders are related to the ROS package containing a Python implementation of active inference and behavior trees. You can run an example use case with TIAGo in a simplified retail store after installation of the package ad dependancies.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eSimulation Environment\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eA singularity image can be downloaded from \u003ca href=\"https://drive.google.com/drive/folders/1DYuRWgCiiHCG4ck_7Pf_Kw4Kn-ZpZ-Oy?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eAlternatively, you can build the singularity yourself:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003ecreate a sub directory called \u0027pkgs\u0027 (in the \u003ccode\u003esingularity_environment\u003c/code\u003e directory)\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e mkdir pkgs\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003euse \u003ccode\u003evcstool\u003c/code\u003e (or \u003ccode\u003ewstool\u003c/code\u003e) to clone/download the dependencies (as specified in \u003ccode\u003eretail_store_lightweight_sim.repos\u003c/code\u003e).\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e vcs import \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003e retail_store_lightweight_sim.repos pkgs\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAdding packages to \u003ccode\u003epkg\u003c/code\u003e will allow \u003ccode\u003erosdep\u003c/code\u003e to install all required build and run dependencies into the image, so students can then proceed to build those packages in their own workspaces (otherwise builds would fail due to missing dependencies).\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e Packages in \u003ccode\u003epkg\u003c/code\u003e will be installed on the image, their source will \u003cstrong\u003enot\u003c/strong\u003e be included in the image itself, so there may be some elements that are not installed. So far I\u0027ve only noticed one required change.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eModify the \u003ccode\u003eCMakeList.txt\u003c/code\u003e file from the \u003ccode\u003epal_navigation_sm\u003c/code\u003e inside the \u003ccode\u003epkgs\u003c/code\u003e folder.\u003c/p\u003e\n\u003cp\u003eChange the \u003ccode\u003einstall\u003c/code\u003e instruction (starts at line 10) by adding some scripts as follows.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003einstall(\nPROGRAMS\n scripts/map_setup.py\n scripts/pal_navigation_main_sm.py\n scripts/navigation.sh\n scripts/base_maps_symlink.sh\n scripts/cp_maps_to_home.sh\n scripts/cp_pose_to_home.sh\n DESTINATION \u003cspan class=\"pl-smi\"\u003e${CATKIN_PACKAGE_BIN_DESTINATION}\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003echeck the \u003ccode\u003eVERSION\u003c/code\u003e variable inside the \u003ccode\u003edocker_build.sh\u003c/code\u003e, \u003ccode\u003ebuild.sh\u003c/code\u003e and \u003ccode\u003eSingularity\u003c/code\u003e files. This version should match the version of your singularity install (\u003ccode\u003esingularity -v\u003c/code\u003e)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003erun \u003ccode\u003edocker_build.sh\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e ./docker_build.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAfter some time and a successful build, a new docker image will be created. This requires Docker to be installed and configured.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003erun \u003ccode\u003ebuild.sh\u003c/code\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e ./build.sh\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eAfter some time and a successful build, a new \u003ccode\u003e.simg\u003c/code\u003e should be generated by \u003ccode\u003esingularity\u003c/code\u003e in the \u003ccode\u003ecwd\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eBehavior trees library\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eInstall the BT library to use this package (tested in Ubuntu 18.04 with ROS Melodic). Before proceeding, it is recommended to to install the following dependencies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo apt-get install libzmq3-dev libboost-dev\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can also easily install the \u003ca href=\"https://github.com/BehaviorTree/BehaviorTree.CPP\"\u003eBehavior Tree library\u003c/a\u003e with the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo apt-get install ros-$ROS_DISTRO-behaviortree-cpp-v3\nsudo apt-get update \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-the-code\" class=\"anchor\" href=\"#running-the-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the code\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eUsing the virtual environment\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eAccess the simngularity image by using the regular Singularity \u003ccode\u003eshell\u003c/code\u003e action:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity shell /path/to/discrete_ai_tiago.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUse the flag for nvidia drivers if applicable to your machine:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity shell --nv /path/to/discrete_ai_tiago.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen source \u003ccode\u003e/opt/ros/melodic/setup.bash\u003c/code\u003e to access all the TIAGo dependencies installed on the image.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e /opt/ros/melodic/setup.bash\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eHow to run a simple example with TIAGo\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eCreate a new workspace and clone this repository in the \u003ccode\u003esrc\u003c/code\u003e folder. Build the package using \u003ccode\u003ecatkin build\u003c/code\u003e. Run the three commands below from within the singularity image after sourcing \u003ccode\u003esource/devel/setup.bash\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eroslaunch retail_store_simulation tiago_simulation.launch\nrosrun discrete_ai tiago_perception.py\nrosrun discrete_ai active_inference_server.py\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFrom a terminal outside the singularity image run the behavior tree:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003erosrun discrete_ai demo_executeBT\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe expected outcome is the following:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"tiago_sim.gif\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"tiago_sim.gif\" alt=\"\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e: The sills used in this simulation are based on standard moveBase and moveIt actions, thus robustness (especially of IK solutions) might make TIAGo fail the grasp. Aruco detection can also imprecise and will be improved over time.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for GLnexus (\u003ca href=\"https://github.com/dnanexus-rnd/GLnexus\"\u003ehttps://github.com/dnanexus-rnd/GLnexus\u003c/a\u003e)\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1623232591.0
+ "updated_at": 1659481676.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.7",
- "Singularity.12",
- "Singularity.121",
- "Singularity.11",
- "Singularity.8",
- "Singularity.5",
- "Singularity.10",
- "Singularity.9",
- "Singularity.111",
- "Singularity.15",
- "Singularity.14",
- "Singularity.6",
- "Singularity.4",
- "Singularity.3",
- "Singularity.13"
+ "docker/Singularity.def"
],
- "full_name": "masoudrezai/Singularity",
+ "full_name": "benjrise/flood-detetection",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-octopussingularity-container\" class=\"anchor\" href=\"#octopussingularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"https://github.com/luntergroup/octopus\"\u003eOctopus\u003c/a\u003e\n\u003ca href=\"https://github.com/hpcng/singularity\"\u003eSingularity\u003c/a\u003e container\u003c/h1\u003e\n\u003cp\u003eSylvain Schmitt\nApril 28, 2021\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eBionformatics software Octopus\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eOctopus is a mapping-based variant caller that implements several\ncalling models within a unified haplotype-aware framework. Octopus takes\ninspiration from particle filtering by constructing a tree of haplotypes\nand dynamically pruning and extending the tree based on haplotype\nposterior probabilities in a sequential manner. This allows octopus to\nimplicitly consider all possible haplotypes at a given loci in\nreasonable time.\u003c/p\u003e\n\u003cp\u003eOctopus Version: 0.7.4\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://github.com/luntergroup/octopus\"\u003ehttps://github.com/luntergroup/octopus\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003eSingularity container based on the recipe: Singularity.template.def\u003c/p\u003e\n\u003cp\u003ePackage installation using Miniconda3 V4.7.12\u003c/p\u003e\n\u003cp\u003eImage singularity (V\u0026gt;=3.3) is automatically test and built and pushed\non the registry using\n\u003ca href=\"https://github.com/sylvainschmitt/singularity-template/blob/main/.github/workflows/test.yml\"\u003etest.yml\u003c/a\u003e\n\u0026amp;\n\u003ca href=\"https://github.com/sylvainschmitt/singularity-template/blob/main/.github/workflows/builder.yml\"\u003ebuilder.yml\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ebuild\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build octopus.sif Singularity\nsingularity run octopus.sif\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e octopus.sif octopus -h\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003epull\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull https://github.com/sylvainschmitt/singularity-octopus/releases/download/0.0.1/sylvainschmitt-singularity-octopus.latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003esnakemake\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e \u003cspan class=\"pl-s1\"\u003esingularity\u003c/span\u003e: \n \u003cspan class=\"pl-s\"\u003e\"https://github.com/sylvainschmitt/singularity-octopus/releases/download/0.0.1/sylvainschmitt-singularity-octopus.latest.sif\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1623238419.0
+ "updated_at": 1660656835.0
},
{
"data_format": 2,
- "description": "octopus Singularity container ",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "sylvainschmitt/singularity-octopus",
- "latest_release": "0.0.1",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-octopussingularity-container\" class=\"anchor\" href=\"#octopussingularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"https://github.com/luntergroup/octopus\"\u003eOctopus\u003c/a\u003e\n\u003ca href=\"https://github.com/hpcng/singularity\"\u003eSingularity\u003c/a\u003e container\u003c/h1\u003e\n\u003cp\u003eSylvain Schmitt\nApril 28, 2021\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eBionformatics software Octopus\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eOctopus is a mapping-based variant caller that implements several\ncalling models within a unified haplotype-aware framework. Octopus takes\ninspiration from particle filtering by constructing a tree of haplotypes\nand dynamically pruning and extending the tree based on haplotype\nposterior probabilities in a sequential manner. This allows octopus to\nimplicitly consider all possible haplotypes at a given loci in\nreasonable time.\u003c/p\u003e\n\u003cp\u003eOctopus Version: 0.7.4\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://github.com/luntergroup/octopus\"\u003ehttps://github.com/luntergroup/octopus\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003eSingularity container based on the recipe: Singularity.template.def\u003c/p\u003e\n\u003cp\u003ePackage installation using Miniconda3 V4.7.12\u003c/p\u003e\n\u003cp\u003eImage singularity (V\u0026gt;=3.3) is automatically test and built and pushed\non the registry using\n\u003ca href=\"https://github.com/sylvainschmitt/singularity-template/blob/main/.github/workflows/test.yml\"\u003etest.yml\u003c/a\u003e\n\u0026amp;\n\u003ca href=\"https://github.com/sylvainschmitt/singularity-template/blob/main/.github/workflows/builder.yml\"\u003ebuilder.yml\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ebuild\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build octopus.sif Singularity\nsingularity run octopus.sif\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e octopus.sif octopus -h\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003epull\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull https://github.com/sylvainschmitt/singularity-octopus/releases/download/0.0.1/sylvainschmitt-singularity-octopus.latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003esnakemake\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e \u003cspan class=\"pl-s1\"\u003esingularity\u003c/span\u003e: \n \u003cspan class=\"pl-s\"\u003e\"https://github.com/sylvainschmitt/singularity-octopus/releases/download/0.0.1/sylvainschmitt-singularity-octopus.latest.sif\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
+ "full_name": "kh11kim/kstar_rev",
+ "latest_release": null,
+ "readme": "\u003ch2\u003e\u003ca id=\"user-content-welcome-to-the-page-of-k-planner----a-state-of-the-art-top-k-planner-integrating-the-k-algorithm-into-fast-downward\" class=\"anchor\" aria-hidden=\"true\" href=\"#welcome-to-the-page-of-k-planner----a-state-of-the-art-top-k-planner-integrating-the-k-algorithm-into-fast-downward\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWelcome to the page of K* planner -- a state of the art Top-k planner integrating the K* algorithm into Fast Downward.\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-building\" class=\"anchor\" aria-hidden=\"true\" href=\"#building\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e./build.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e# ./fast-downward.py \u0026lt;domain_file\u0026gt; \u0026lt;problem_file\u0026gt; --search \"kstar(heuristic,k=\u0026lt;number-of-plans\u0026gt;)\"\n\n./fast-downward.py examples/gripper/domain.pddl examples/gripper/prob01.pddl --search \"kstar(blind(),k=100)\"\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cem\u003eheurisitic\u003c/em\u003e: any heuristic provided by Fast Downward\u003cbr\u003e\n(\u003ca href=\"http://www.fast-downward.org/Doc/Heuristic\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org/Doc/Heuristic\u003c/a\u003e).\u003cbr\u003e\n\u003cstrong\u003eDisclaimer\u003c/strong\u003e: Optimality of K* is only guaranteed with an admissible and consistent heuristic.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h3\u003e\n\u003cp\u003eMichael Katz, Shirin Sohrabi, Octavian Udrea and Dominik Winterer\u003cbr\u003e\n\u003cstrong\u003eA Novel Iterative Approach to Top-k Planning\u003c/strong\u003e \u003ca href=\"https://www.aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/download/17749/16971\" rel=\"nofollow\"\u003e[pdf]\u003c/a\u003e \u003ca href=\"/top_k.bib\"\u003e[bib]\u003c/a\u003e\u003cbr\u003e\n\u003cem\u003eIn ICAPS 2018\u003c/em\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-contact\" class=\"anchor\" aria-hidden=\"true\" href=\"#contact\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h3\u003e\n\u003cp\u003eFor questions and comments please get in touch with Michael Katz (\u003ca href=\"mailto:michael.katz1@ibm.com\"\u003emichael.katz1@ibm.com\u003c/a\u003e).\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1623243296.0
+ "updated_at": 1659371898.0
},
{
"data_format": 2,
- "description": "container for gatk tools",
+ "description": "code accompanying \"Nanopore sequencing of a monkeypox virus strain isolated from a pustular lesion in the Central African Republic\"",
"filenames": [
"Singularity"
],
- "full_name": "aseetharam/gatk",
+ "full_name": "mvdenbog/MPXV_NanoPoreSeq",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4700\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-container-for-the-gatk\" class=\"anchor\" href=\"#container-for-the-gatk\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainer for the GATK\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-tools-included\" class=\"anchor\" href=\"#tools-included\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTools included\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"http://www.htslib.org/\" rel=\"nofollow\"\u003eSamTools\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://bio-bwa.sourceforge.net/\" rel=\"nofollow\"\u003eBWA\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.gnu.org/software/datamash/\" rel=\"nofollow\"\u003eDatamash\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://gatk.broadinstitute.org/hc/en-us\" rel=\"nofollow\"\u003eGATK\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://broadinstitute.github.io/picard/\" rel=\"nofollow\"\u003ePicard Tools\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/lh3/bioawk\"\u003eBioAWK\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://bedtools.readthedocs.io\" rel=\"nofollow\"\u003eBedTools\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003ePlease be sure to cite all the programs if you use this container.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h2\u003e\n\u003cp\u003eto pull the image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name gatk.sif shub://aseetharam/gatk:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto use the image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec gatk.sif samtools\nsingularity exec gatk.sif bwa\nsingularity exec gatk.sif datamash\nsingularity exec gatk.sif java -jar /gatk/gatk-package-4.1.8.1-local.jar\nsingularity exec gatk.sif java -jar /picard/picard.jar\nsingularity exec gatk.sif bioawk\nsingularity exec gatk.sif bedtools\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-mpxv_nanoporeseq\" class=\"anchor\" aria-hidden=\"true\" href=\"#mpxv_nanoporeseq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMPXV_NanoPoreSeq\u003c/h1\u003e\n\u003cp\u003eThis is snakefile code accompanying \"Nanopore sequencing of a monkeypox virus strain isolated from a pustular lesion in the Central African Republic\".\u003c/p\u003e\n\u003cp\u003eVandenbogaert M, Kwasiborski A, Gonofio E, Descorps-Decl\u00e8re S, Selekon B, Nkili Meyong AA, Ouilibona RS, Gessain A, Manuguerra JC, Caro V, Nakoune E, Berthet N. Nanopore sequencing of a monkeypox virus strain isolated from a pustular lesion in the Central African Republic. Sci Rep. 2022 Jun 24;12(1):10768. doi: 10.1038/s41598-022-15073-1. PMID: 35750759; PMCID: PMC9232561.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232561/\" rel=\"nofollow\"\u003ehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232561/\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation--usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation--usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation \u0026amp; Usage\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cp\u003eUsing Docker/Singularity.\u003c/p\u003e\n\u003cp\u003eAll conda/python dependencies are defined in accompanying dependency files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003econda_installed_packages_base.txt\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003econda_installed_packages_homopolish.txt\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003epip38_installed_packages.txt\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe provided Singularity file is illustrative of the dependency definitions, and on building a target docker/singularity instance.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-preparation-of-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#preparation-of-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreparation of data\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-basecalling\" class=\"anchor\" aria-hidden=\"true\" href=\"#basecalling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBasecalling\u003c/h3\u003e\n\u003cp\u003eInput data is supposed to be basecalled, prior to using the provided snakemake file.\u003c/p\u003e\n\u003cp\u003eExample basecalling instructions (below instructions are uinsg Guppy v 3.2.4, and are indicative only):\u003c/p\u003e\n\u003cp\u003eExample using CPUs:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edir=/opt/Guppy/ont-guppy-cpu_3.4.4/ont-guppy-cpu/bin\n\n${dir}/guppy_basecaller --kit ${kit} --flowcell ${flowcell} --barcode_kits ${barcode_kit} -i ${indir}/ -s ${outdir} --num_callers 4 --cpu_threads_per_caller 20 -q 4000 --qscore_filtering --min_qscore ${min_qscore} --disable_pings --trim_barcodes\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExample using GPUs:\u003c/p\u003e\n\u003cp\u003eWorks on Tesla P100 only.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e${dir}/guppy_basecaller -i /data/fast5_pass/ --save_path /scratch/out/ --flowcell ${flowcell} --kit ${barcode_kit} --gpu_runners_per_device 8 -r --qscore_filtering --min_qscore 7 -x auto --disable_pings --trim_barcodes\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-organization-of-fastq-files\" class=\"anchor\" aria-hidden=\"true\" href=\"#organization-of-fastq-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOrganization of FASTQ files\u003c/h3\u003e\n\u003cp\u003eand reference genome (here reference NC_003310).\u003c/p\u003e\n\u003cp\u003eWorking directory will be \u003ccode\u003e/scratch/\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd /scratch/\nln ~/RawData/*.fastq .\nln ~/NC_003310.fasta .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-execution\" class=\"anchor\" aria-hidden=\"true\" href=\"#execution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExecution\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -j10 -s Snakefile\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eJupyter python/R notebooks for downstream analysis will be added shortly.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1623344768.0
+ "updated_at": 1658744372.0
},
{
"data_format": 2,
- "description": "A template project to provide software to ESCAPE.",
+ "description": "Source code, installation, configuration and submission scripts for exascale in situ visualization with ISAAC and PIConGPU",
"filenames": [
- "Singularity/Singularity"
+ "sources/crusher/picongpu/share/picongpu/dockerfiles/ubuntu-2004/Singularity",
+ "sources/summit/picongpu/share/picongpu/dockerfiles/ubuntu-2004/Singularity"
],
- "full_name": "garciagenrique/template_project_escape",
- "latest_release": "v0.0.3-dev",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-template_project_escape\" class=\"anchor\" href=\"#template_project_escape\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etemplate_project_escape\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.5281/zenodo.4923992\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/869b462bf3a319fe4fc2ffa52fb6b0f7c8e42eb4e0ed4bc2482306b9fd5aafab/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e343932333939322e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4923992.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape/-/commits/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a25ea71f12537b69d5aca8b409685333243d4e65ceb91c5a401dadb6eacea20e/68747470733a2f2f6769746c61622e696e3270332e66722f657363617065323032302f7770332f74656d706c6174655f70726f6a6563745f6573636170652f6261646765732f6d61737465722f706970656c696e652e737667\" alt=\"pipeline status\" data-canonical-src=\"https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape/badges/master/pipeline.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fd551ba4b042d89480347a0e74e31af63b356b2cac1116c7b80038f41b04a581/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d4d49542d677265656e2e737667\" alt=\"License: MIT\" data-canonical-src=\"https://img.shields.io/badge/License-MIT-green.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca href=\"https://camo.githubusercontent.com/64f9054d866a78f16e1451647c19b22fc159a58191e004612257ce5277bd6db9/68747470733a2f2f63646e2e65736f2e6f72672f696d616765732f6c617267652f616e6e3138303834612e6a7067\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/64f9054d866a78f16e1451647c19b22fc159a58191e004612257ce5277bd6db9/68747470733a2f2f63646e2e65736f2e6f72672f696d616765732f6c617267652f616e6e3138303834612e6a7067\" width=\"640\" height=\"453\" data-canonical-src=\"https://cdn.eso.org/images/large/ann18084a.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp\u003eA simple template project to provide software to ESCAPE.\u003c/p\u003e\n\u003cp\u003eThis repository shows the \u003cstrong\u003ebasic content\u003c/strong\u003e that should be included in a project (following the\n\u003ca href=\"https://opensource.guide/starting-a-project/\" rel=\"nofollow\"\u003eopensource guide\u003c/a\u003e):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAn \u003ca href=\"https://help.github.com/en/github/creating-cloning-and-archiving-repositories/licensing-a-repository#where-does-the-license-live-on-my-repository\"\u003eopen source\u003c/a\u003e\n\u003cstrong\u003elicense\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003eA \u003ca href=\"https://help.github.com/en/github/getting-started-with-github/create-a-repo#commit-your-first-change\"\u003e\u003cstrong\u003eREADME\u003c/strong\u003e file\u003c/a\u003e,\nsimilar to this one.\u003c/li\u003e\n\u003cli\u003eContributing guidelines.\n\u003cul\u003e\n\u003cli\u003eSee below the general guidelines for the ESCAPE repository.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eA \u003ca href=\"https://opensource.guide/code-of-conduct/\" rel=\"nofollow\"\u003ecode of conduct\u003c/a\u003e.\n\u003cul\u003e\n\u003cli\u003eCheck why is a good idea to add one.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eThe repository itself.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIt would be highly suitable to include too:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eA setup file as well as the basic commands to install the library (see below).\u003c/li\u003e\n\u003cli\u003eA \u003ccode\u003e.gitignore\u003c/code\u003e file.\u003c/li\u003e\n\u003cli\u003eUnitary and integration tests, and ideally a CI pipeline.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003ePlease feel free to clone / fork / template this project!\u003c/strong\u003e (For example, look to left of the\n\u003ccode\u003eClone or download\u003c/code\u003e button in the \u003ca href=\"https://github.com/garciagenrique/template_project_escape\"\u003eGitHub\u003c/a\u003e site).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFor a detailed explanation of how to submit a contribution to a project / repository (Fork, create a branch, make\na pull request...), you can have a look to the \u003ca href=\"https://opensource.guide/how-to-contribute/#how-to-submit-a-contribution\" rel=\"nofollow\"\u003eopensource guide\u003c/a\u003e\nand/or the \u003ca href=\"https://git-scm.com/doc\" rel=\"nofollow\"\u003egit\u0027s documentation\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eNot that if you have login GitLab by using the \u003ccode\u003e[Shibbolenth]\u003c/code\u003e service (eduGAIN, F\u00e9d\u00e9ration d\u0027Identit\u00e9s\nRENATER), you will need to \u003ca href=\"https://gitlab.in2p3.fr/help/ssh/README#generating-a-new-ssh-key-pair\" rel=\"nofollow\"\u003eadd a SSH key\u003c/a\u003e to\nyour GitLab profile if you want to \u0027push\u0027 your changes to the server.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-contribute-to-the-escape-ossr\" class=\"anchor\" href=\"#contribute-to-the-escape-ossr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContribute to the ESCAPE OSSR\u003c/h1\u003e\n\u003cp\u003eIf you want to provide software to the ESCAPE repository:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eCheck the \u003ca href=\"https://escape2020.pages.in2p3.fr/wp3/ossr-pages/page/contribute/contribute_ossr/\" rel=\"nofollow\"\u003eESCAPE OSSR guidelines\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFor ESCAPE members, follow the steps detailed in \u003ca href=\"https://gitlab.in2p3.fr/escape2020/wp3/onboarding\" rel=\"nofollow\"\u003ethe onboarding project\u003c/a\u003e\nto finalise your contribution and the same onboarding process.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eAll the code provided should be uploaded to the \u003ca href=\"https://zenodo.org/communities/escape2020/\" rel=\"nofollow\"\u003eZenodo ESCAPE community\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCheck the following \u003ca href=\"https://escape2020.pages.in2p3.fr/wp3/ossr-pages/page/contribute/publish_tutorial/\" rel=\"nofollow\"\u003etutorial on how to publish content in Zenodo\u003c/a\u003e,\nand how to automatise the upload of each new release of your project.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-this-project-also-includes\" class=\"anchor\" href=\"#this-project-also-includes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThis project also includes\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-1-how-to-automatise-the-building-of-a-singularity-image-and-upload-it-to-zenodo-using-the-gitlab-ci\" class=\"anchor\" href=\"#1-how-to-automatise-the-building-of-a-singularity-image-and-upload-it-to-zenodo-using-the-gitlab-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. How to automatise the building of a Singularity image and upload it to Zenodo using the GitLab-CI\u003c/h2\u003e\n\u003cp\u003eA working example of how to automatise the GitLab-CI to;\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003ecreate a Singularity image / container of your code,\u003c/li\u003e\n\u003cli\u003emake it available as a downloadable artifact within your project and\u003c/li\u003e\n\u003cli\u003eupload it to the \u003ca href=\"https://zenodo.org/communities/escape2020\" rel=\"nofollow\"\u003eESCAPE OSSR\u003c/a\u003e,\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003ecan be found in the \u003ccode\u003e.singularityci\u003c/code\u003e, and \u003ccode\u003eSingularity\u003c/code\u003e directories and in the \u003ccode\u003e.gitlab-ci.yml\u003c/code\u003e file - the\n\u003ccode\u003ebuild_singularity_image\u003c/code\u003e stage. Please read carefully all the README files.\u003c/p\u003e\n\u003cp\u003eFor an easy example of how to create a Singularity receipt from scratch (and its corresponding container when executed),\nplease have a look to the \u003ccode\u003esingularity_utils\u003c/code\u003e directory.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-2-how-to-automatise-the-building-of-a-docker-container-and-upload-it-to-the-gitlab-container-registry\" class=\"anchor\" href=\"#2-how-to-automatise-the-building-of-a-docker-container-and-upload-it-to-the-gitlab-container-registry\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. How to automatise the building of a Docker container and upload it to the GitLab Container Registry\u003c/h2\u003e\n\u003cp\u003eAn example can be found in the \u003ccode\u003eDocker\u003c/code\u003e directory and in the \u003ccode\u003e.gitlab-ci.yml\u003c/code\u003e file - the\n\u003ccode\u003ebuild_docker_image\u003c/code\u003e stage.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-install\" class=\"anchor\" href=\"#install\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h1\u003e\n\u003cp\u003eExample of how to show installing instructions (and indeed the way to install this project).\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e $ git clone https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape.git\n $ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e template_project_escape\n $ pip install \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-citing\" class=\"anchor\" href=\"#citing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCiting\u003c/h1\u003e\n\u003cp\u003eExample of citing (as well as the DOI to cite this project),\u003c/p\u003e\n\u003cp\u003eIn case of citing this repository, use the following DOI:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ev2.2 \u003ca href=\"https://doi.org/10.5281/zenodo.4923992\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/869b462bf3a319fe4fc2ffa52fb6b0f7c8e42eb4e0ed4bc2482306b9fd5aafab/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e343932333939322e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4923992.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev2.1 \u003ca href=\"https://doi.org/10.5281/zenodo.4790629\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c8f54e2f50cdf0c4d1bd5183d6472cae8b708efacd6a1319b443d8e456f41b7f/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e343739303632392e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4790629.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev2.0 \u003ca href=\"https://doi.org/10.5281/zenodo.3884963\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c27201272a77fc3ab3029c8c2c452e02a71736b7adaa0926bc45d3ac825598ed/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e333838343936332e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.3884963.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev1.1 \u003ca href=\"https://doi.org/10.5281/zenodo.3743490\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cbfe31d3a9bd48ef4554b414c3c2325276269a476a79ec0217aa9feccc87cecd/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e333734333439302e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.3743490.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev1.0 \u003ca href=\"https://doi.org/10.5281/zenodo.3572655\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5ec734ee4c1c793eaa8f9c2b189a6eae6d7d2ccb5f2a92adeb8af479409cc7bb/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e333537323635352e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.3572655.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eDo not forget to include your code / container into the \u003ca href=\"https://zenodo.org/communities/escape2020/\" rel=\"nofollow\"\u003eZenodo ESCAPE community\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cem\u003e\u003cstrong\u003eNote that\u003c/strong\u003e\u003c/em\u003e a DOI will be assigned in the moment create a new record/entry in Zenodo.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h1\u003e\n\u003cp\u003ePlease check the licenses of the code within the \u003ccode\u003e.singularityci\u003c/code\u003e directory before adding this template\nto your project.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-report-an-issue--ask-a-question\" class=\"anchor\" href=\"#report-an-issue--ask-a-question\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReport an issue / Ask a question\u003c/h1\u003e\n\u003cp\u003eUse the \u003ca href=\"https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape/-/issues\" rel=\"nofollow\"\u003eGitLab repository Issues\u003c/a\u003e.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-contact\" class=\"anchor\" href=\"#contact\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h1\u003e\n\u003cp\u003eEmail to vuillaume [at] lapp.in2p3.fr / garcia [at] lapp.in2p3.fr.\u003c/p\u003e\n",
+ "full_name": "benjha/sc2022_ISAAC_artifact",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-sc2022-artifact-description\" class=\"anchor\" aria-hidden=\"true\" href=\"#sc2022-artifact-description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSC\u00272022 Artifact Description\u003c/h1\u003e\n\u003cp\u003eWe reported the results of six experiments to evaluate the performance characteristics and portability of our in situ visualization solution. Three were run on Summit (\u003ccode\u003e64_gpus\u003c/code\u003e, \u003ccode\u003estrong_scaling\u003c/code\u003e, \u003ccode\u003eweak_scaling\u003c/code\u003e) and the other three on Crusher (\u003ccode\u003efirst_experiment\u003c/code\u003e, \u003ccode\u003esecond_experiment\u003c/code\u003e, \u003ccode\u003eweak_scaling\u003c/code\u003e). General simulations parameters:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eKelvin-Helmholtz instability simulation.\u003c/li\u003e\n\u003cli\u003e256x256x256 cells per GPU, additionally on Crusher: 512x512x512 cells per GPU.\u003c/li\u003e\n\u003cli\u003eFour particles per cell resulting in 134,217,728 macroparticles per GPU.\u003c/li\u003e\n\u003cli\u003eVolume, isosurface, particles and vector field visualization of three data sources. The threshold for isosurface visualization is set to the maximum of 1 for all sources to prevent any kind of early ray termination due to a valid isosurface.\u003c/li\u003e\n\u003cli\u003eTrilinear Interpolation is enabled, and the step size is set to the default of 0.5.\u003c/li\u003e\n\u003cli\u003eHalo exchange enabled.\u003c/li\u003e\n\u003cli\u003eTimings are averaged from 1440 time steps. Starting simulation time step is 10 to allow stabilization.\u003c/li\u003e\n\u003cli\u003eCamera view\u0027s animation is divided into four stages, each with 360 steps and a rotation around a different axis to cover most of the viewing angles.\u003c/li\u003e\n\u003cli\u003eISAAC streaming capabilities are disabled including image compression.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe interested reader can check the PIConGPU\u2019s documentation under this \u003ca href=\"https://picongpu.readthedocs.io\" rel=\"nofollow\"\u003elink\u003c/a\u003e for details on how to set up a simulation and a experiment. The configuration files used for the experiments are available following the next links:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSummit\n\u003cul\u003e\n\u003cli\u003e256x256x256 \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/simulation/summit/KelvinHelmholtz\"\u003eSimulation\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eExperiment: \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/summit/64_gpus\"\u003e64_gpus\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eExperiment: \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/summit/strong_scaling\"\u003estrong_scaling\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eExperiment: \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/summit/weak_scaling\"\u003eweak_scaling\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eCrusher\n\u003cul\u003e\n\u003cli\u003e256x256x256 \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/simulation/crusher/KelvinHelmholtz\"\u003eSimulation\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e512x512x512 \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/simulation/crusher/KelvinHelmholtz_large\"\u003eSimulation\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eExperiment: \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/crusher/first_experiment\"\u003efirst_experiment\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eExperiment: \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/crusher/second_experiment\"\u003esecond_experiment\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eExperiment: \u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/tree/main/experiments/KelvinHelmholtz/crusher/weak_scaling\"\u003eweak_scaling\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eExperiments are reproduced following the instructions of the next section.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-installation--running-experiments\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation--running-experiments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation \u0026amp; Running Experiments\u003c/h1\u003e\n\u003cp\u003eWe include three scripts to deploy the experiments in Summit and Crusher systems:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/blob/main/config_vars.sh\"\u003e\u003ccode\u003econfig_vars.sh\u003c/code\u003e\u003c/a\u003e. This script includes the configuration variables that should be set by the user to install, configure and submit the experiments to the batch system. This script is modifiable by the user and is used by the \u003ccode\u003einstall.sh\u003c/code\u003e and \u003ccode\u003erun_experimen.sh\u003c/code\u003e scripts.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/blob/main/install.sh\"\u003e\u003ccode\u003einstall.sh\u003c/code\u003e\u003c/a\u003e. This script compiles and installs ISAAC, and the Kelvin-Helmholtz instability simulation. This script is only runnable by the user and should not be modified.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/benjha/sc2022_ISAAC_artifact/blob/main/run_experiment.sh\"\u003e\u003ccode\u003erun_experiment.sh\u003c/code\u003e\u003c/a\u003e. This script submits to the batch system the experiments described previously. This script is only runnable by the user and should not be modified.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThe configuration variables defined in \u003ccode\u003econfig_vars.sh\u003c/code\u003e are described next:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eMAIL\u003c/code\u003e. Specifies what e-mail will receive a notification when a submitted experiment is running. This variable is optional.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ePROJ_ID\u003c/code\u003e. Specifies what project id to use to submit a job. This variable is mandatory.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eMY_INSTALLATION_PATH\u003c/code\u003e. Indicates the installation path of all software stack. Make sure \u003ccode\u003eMY_INSTALLATION_PATH\u003c/code\u003e is under \u003ccode\u003e$PROJWORK/\u0026lt;proj_id\u0026gt;/\u0026lt;user_id\u0026gt;\u003c/code\u003e. This variable is mandatory.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eMY_ISAAC_LOG_PATH\u003c/code\u003e. Specifies the path of the performance files generated when running the code. Make sure \u003ccode\u003eMY_ISAAC_LOG_PATH\u003c/code\u003e is under \u003ccode\u003eMY_INSTALLATION_PATH\u003c/code\u003e. This variable is mandatory.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eMY_SIMULATIONS_PATH\u003c/code\u003e. Sets the simulations\u0027 path. Make sure it is under \u003ccode\u003eMY_INSTALLATION_PATH\u003c/code\u003e. This variable is mandatory.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eMY_SIMULATION_NAME\u003c/code\u003e. Indicates the name of the simulation. This variable is mandatory.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eSYSTEM\u003c/code\u003e. Specifies the target cluster to install and execute the experiments. Available options are: \u003ccode\u003esummit\u003c/code\u003e, \u003ccode\u003ecrusher\u003c/code\u003e. This variable is mandatory\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eEXPERIMENT_NAME\u003c/code\u003e. Sets the experiment name that will be submitted to the batch system.\n\u003cul\u003e\n\u003cli\u003eOptions for summit are: \u003ccode\u003e64_gpus\u003c/code\u003e, \u003ccode\u003estrong_scaling\u003c/code\u003e, \u003ccode\u003eweak_scaling\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eOptions for crusher are: \u003ccode\u003efirst_experiment\u003c/code\u003e, \u003ccode\u003esecond_experiment\u003c/code\u003e, \u003ccode\u003eweak_scaling\u003c/code\u003e. This variable is mandatory.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eFRAMEBUFFER\u003c/code\u003e. Sets the framebuffer resolution. This option is only used on \u003ccode\u003eSYSTEM=summit\u003c/code\u003e and \u003ccode\u003eEXPERIMENT_NAME=64_gpus\u003c/code\u003e.\n\u003cul\u003e\n\u003cli\u003eAvailable options: 720 , 1080 , 1440 , 2160.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eN_GPUS\u003c/code\u003e. Sets the number of GPUs for strong scaling and weak scaling experiments.\n\u003cul\u003e\n\u003cli\u003eOptions for \u003ccode\u003eSYSTEM=summit\u003c/code\u003e and \u003ccode\u003eEXPERIMENT_NAME=strong_scaling\u003c/code\u003e: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512.\u003c/li\u003e\n\u003cli\u003eOptions for \u003ccode\u003eSYSTEM=summit\u003c/code\u003e and \u003ccode\u003eEXPERIMENT_NAME=weak_scaling\u003c/code\u003e: 1, 8, 64, 512, 1000, 2755, 4096, 5832, 8000, 10648, 13824.\u003c/li\u003e\n\u003cli\u003eOptions for \u003ccode\u003eSYSTEM=crusher\u003c/code\u003e and \u003ccode\u003eEXPERIMENT_NAME=weak_scaling\u003c/code\u003e: 1 , 8 , 64 , 216 , 512 , 1000.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eInstallation steps are as follows:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eLogin to Summit or Crusher.\u003c/li\u003e\n\u003cli\u003eClone this repository:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/benjha/sc2022_ISAAC_artifact.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eGo to \u003ccode\u003esc2022_ISAAC_artifact\u003c/code\u003e directory.\u003c/li\u003e\n\u003cli\u003eSet executable the permissions for \u003ccode\u003einstall.sh\u003c/code\u003e and \u003ccode\u003erun_experiment.sh\u003c/code\u003e scripts:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003echmod +x install.sh\nchmod +x run_experiment.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eSet the next variables according to your preferences in config_vars.sh script:\n\u003ccode\u003eMAIL\u003c/code\u003e, \u003ccode\u003ePROJ_ID\u003c/code\u003e, \u003ccode\u003eMY_INSTALLATION_PATH\u003c/code\u003e, \u003ccode\u003eMY_ISAAC_LOG_PATH\u003c/code\u003e, \u003ccode\u003eMY_SIMULATIONS_PATH\u003c/code\u003e, \u003ccode\u003eMY_SIMULATION_NAME\u003c/code\u003e,\u003ccode\u003eSYSTEM\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eFor example:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport MAIL=\"mymail@myserver.com\"\nexport PROJ_ID=ABC123\nexport MY_INSTALLATION_PATH=$PROJWORK/ABC123/myuserid/sc2022_AD/summit\nexport MY_ISAAC_LOG_PATH=$MY_INSTALLATION_PATH/isaac_logs\nexport MY_SIMULATIONS_PATH=$MY_INSTALLATION_PATH/simulations\nexport MY_SIMULATION_NAME=kh_isaac_test\nexport SYSTEM=summit\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote this example installs the software stack on Summit.\u003c/p\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003eExecute the installation script only once per system:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003e./install.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-an-experiment\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-an-experiment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning an experiment\u003c/h2\u003e\n\u003cp\u003eFor example, to run the weak_scaling experiment on Summit with 512 GPUs based on the previous section, follow the next steps:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSet the next variables in config_vars.sh script:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eexport EXPERIMENT_NAME=weak_scaling\nexport N_GPUS=512\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eRun the run_experiment.sh script:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003e./run_experiment.s\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe complete definition of variables in \u003ccode\u003econfig_vars.sh\u003c/code\u003e script for the 512 GPU weak scaling experiment on Summit is:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport MAIL=\"mymail@myserver.com\"\nexport PROJ_ID=ABC123\nexport MY_INSTALLATION_PATH=$PROJWORK/ABC123/myuserid/sc2022_AD/summit\nexport MY_ISAAC_LOG_PATH=$MY_INSTALLATION_PATH/isaac_logs\nexport MY_SIMULATIONS_PATH=$MY_INSTALLATION_PATH/simulations\nexport MY_SIMULATION_NAME=kh_isaac_test\nexport SYSTEM=summit\nexport EXPERIMENT_NAME=weak_scaling\nexport N_GPUS=512\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor completeness, a \u003ccode\u003econfig_vars.sh\u003c/code\u003e script example that is used to install the software stack and run the Crusher\u0027s \u003ccode\u003esecond_experiment\u003c/code\u003e is shown next:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport MAIL=\"mymail@myserver.com\"\nexport PROJ_ID=ABC123\nexport MY_INSTALLATION_PATH=$PROJWORK/ABC123/myuserid/sc2022_AD/crusher\nexport MY_ISAAC_LOG_PATH=$MY_INSTALLATION_PATH/isaac_logs\nexport MY_SIMULATIONS_PATH=$MY_INSTALLATION_PATH/simulations\nexport MY_SIMULATION_NAME=kh_isaac_test\nexport SYSTEM=crusher\nexport EXPERIMENT_NAME=second_experiment\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1623346169.0
+ "updated_at": 1649690153.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "bc3.10--rstudio125042r362/Singularity",
- "bc3.12--rstudio125042r405/Singularity"
+ "Singularity.def"
],
- "full_name": "yh549848/singularity-rstudio-rnaseqde",
+ "full_name": "bsande6/fa1p1_luo",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-running-rstudio-server-in-a-conda-environment\" class=\"anchor\" href=\"#running-rstudio-server-in-a-conda-environment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Rstudio Server in a Conda Environment\u003c/h1\u003e\n\u003cp\u003eI usually rely on the \u003ca href=\"https://docs.conda.io/en/latest/\" rel=\"nofollow\"\u003econda package manager\u003c/a\u003e to manage my environments during development. Thanks to \u003ca href=\"https://conda-forge.org/\" rel=\"nofollow\"\u003econda-forge\u003c/a\u003e and \u003ca href=\"https://bioconda.github.io/\" rel=\"nofollow\"\u003ebioconda\u003c/a\u003e most R packages are now also available through conda. For production,\nI \u003ca href=\"https://github.com/grst/containerize-conda\"\u003econvert them to containers\u003c/a\u003e as these are easier to share.\u003c/p\u003e\n\u003cp\u003eUnfortunately, there seems to be \u003ca href=\"https://community.rstudio.com/t/start-rstudio-server-session-in-conda-environment/12516/15\" rel=\"nofollow\"\u003eno straightforward way\u003c/a\u003e to use conda envs in Rstudio server. This repository provides three approaches to make rstudio server work with conda envs.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#running-rstudio-server-with-singularity\"\u003eRunning Rstudio Server in a Singularity Container\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#running-rstudio-server-with-podmandocker\"\u003eRunning Rstudio Server in a Docker/Podman Container\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#running-locally\"\u003eRunning Rstudio Server locally\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-rstudio-server-with-singularity\" class=\"anchor\" href=\"#running-rstudio-server-with-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Rstudio Server with Singularity\u003c/h2\u003e\n\u003cp\u003eWith this approach Rstudio Server runs in a Singularity container (based on \u003ca href=\"https://hub.docker.com/r/rocker/rstudio\" rel=\"nofollow\"\u003erocker/rstudio\u003c/a\u003e).\u003cbr\u003e\nThe conda environment gets mounted into the container - like that there\u0027s no need to rebuild the container to add a package and\n\u003ccode\u003einstall.packages\u003c/code\u003e can be used without issues. The container-based approach has the following benefits:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAuthentication works (\u003ca href=\"https://github.com/grst/rstudio-server-conda/issues/3\"\u003e#3\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eSeveral separate instances of Rstudio server can run in parallel, even without the \u003cem\u003ePro\u003c/em\u003e version.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-prerequisites\" class=\"anchor\" href=\"#prerequisites\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://sylabs.io/guides/3.0/user-guide/quick_start.html\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003econda\u003c/a\u003e or \u003ca href=\"https://github.com/conda-forge/miniforge#mambaforge\"\u003emamba\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eClone this repository\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone git@github.com:grst/rstudio-server-conda.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e rstudio-server-conda/singularity\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eActivate the target conda env or set the environment variable \u003ccode\u003eCONDA_PREFIX\u003c/code\u003e\nto point to the location of the conda env.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCheck the \u003ccode\u003erun_singularity.sh\u003c/code\u003e script. In particular, you may need to add additional bind mounts\n(e.g. a global data directory).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eExecute the \u003ccode\u003erun_singularity.sh\u003c/code\u003e script. It will automatically build the container if it is not available.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ePORT=8787 PASSWORD=notsafe ./run_singularity.sh\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eLog into Rstudio\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eopen rstudio server at \u003ccode\u003ehttp://localhost:8787\u003c/code\u003e (or whatever port you specified)\u003c/li\u003e\n\u003cli\u003elogin with your default username and the password you specified via the \u003ccode\u003ePASSWORD\u003c/code\u003e environment variable.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-rstudio-server-with-podmandocker\" class=\"anchor\" href=\"#running-rstudio-server-with-podmandocker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Rstudio Server with Podman/Docker\u003c/h2\u003e\n\u003cp\u003eThis approach is similar to \u003ca href=\"#running-rstudio-server-with-singularity\"\u003eSingularity\u003c/a\u003e, but uses\nDocker or Podman and a \u003ccode\u003edocker-compose.yml\u003c/code\u003e file instead.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-known-limitations\" class=\"anchor\" href=\"#known-limitations\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eKnown limitations\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eNo access to shared group directories (\u003ca href=\"https://github.com/grst/rstudio-server-conda/issues/14\"\u003e#14\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-prerequisites-1\" class=\"anchor\" href=\"#prerequisites-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e or \u003ca href=\"https://podman.io/\" rel=\"nofollow\"\u003ePodman\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/docker/compose\"\u003edocker-compose\u003c/a\u003e or \u003ca href=\"https://github.com/containers/podman-compose\"\u003epodman-compose\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003econda\u003c/a\u003e or \u003ca href=\"https://github.com/conda-forge/miniforge#mambaforge\"\u003emamba\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-usage-1\" class=\"anchor\" href=\"#usage-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eClone this repository\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone git@github.com:grst/rstudio-server-conda.git\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBuild the rstudio container (fetches the latest version of \u003ca href=\"https://hub.docker.com/r/rocker/rstudio\" rel=\"nofollow\"\u003erocker/rstudio\u003c/a\u003e and adds some custom scripts)\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e rstudio-server-conda/docker\ndocker-compose build \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e or podman-compose\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCopy the docker-compose.yml file into your project directory and adjust the paths.\u003c/p\u003e\n\u003cp\u003eYou may want to add additional volumes with your data.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s\"\u003e[...]\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003eports\u003c/span\u003e:\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e port on the host : port in the container (the latter is always 8787)\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e8889:8787\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003evolumes\u003c/span\u003e:\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e mount conda env into exactely the same path as on the host system - some paths are hardcoded in the env.\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003e/home/sturm/anaconda3/envs/R400:/home/sturm/anaconda3/envs/R400\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Share settings between rstudio instances\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003e/home/sturm/.local/share/rstudio/monitored/user-settings:/root/.local/share/rstudio/monitored/user-settings\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e mount the working directory containing your R project.\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003e/home/sturm/projects:/projects\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003eenvironment\u003c/span\u003e:\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e password used for authentication\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003ePASSWORD=notsafe\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e repeat the path of the conda environment (must be identical to the path in \"volumes\")\u003c/span\u003e\n - \u003cspan class=\"pl-s\"\u003eCONDAENV=/home/sturm/anaconda3/envs/R400\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun your project-specific instance of Rstudio-server\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker-compose up \u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eLog into Rstudio\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eOpen your server at \u003ccode\u003ehttp://localhost:8889\u003c/code\u003e (or whatever port you specified)\u003c/li\u003e\n\u003cli\u003eLogin with the user \u003ccode\u003erstudio\u003c/code\u003e (when using Docker) or \u003ccode\u003eroot\u003c/code\u003e (when using Podman) and the password you specified\nin the \u003ccode\u003edocker-compose.yml\u003c/code\u003e. If you are using Podman and login with \u003ccode\u003erstudio\u003c/code\u003e you won\u0027t have permissions to\naccess the mounted volumes.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-locally\" class=\"anchor\" href=\"#running-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Locally\u003c/h2\u003e\n\u003cp\u003eWith this approach a locally installed Rstudio server is ran such that it uses the conda env.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-known-limitations-1\" class=\"anchor\" href=\"#known-limitations-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eKnown limitations\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eno authentication (\u003ca href=\"https://github.com/grst/rstudio-server-conda/issues/3\"\u003e#3\u003c/a\u003e). Use this approach only in a secure network!\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-prerequisites-2\" class=\"anchor\" href=\"#prerequisites-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.rstudio.com/products/rstudio/download-server/\" rel=\"nofollow\"\u003erstudio server\u003c/a\u003e installed locally\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003econda\u003c/a\u003e or \u003ca href=\"https://github.com/conda-forge/miniforge#mambaforge\"\u003emamba\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-usage-2\" class=\"anchor\" href=\"#usage-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eClone this repo\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/grst/rstudio-server-conda.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun rstudio server in the conda env\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd rstudio-server-conda/local\nconda activate my_project\n./start_rstudio_server.sh 8787 # use any free port number here. \n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eConnect to Rstudio\u003c/p\u003e\n\u003cp\u003eYou should now be able to connect to rstudio server on the port you specify.\n\u003cstrong\u003eIf an R Session has previously been running, you\u0027ll need to rstart the Rsession now\u003c/strong\u003e.\u003c/p\u003e\n\u003cp\u003eObviously, if your env does not have a version of \u003ccode\u003eR\u003c/code\u003e installed, this will either not\nwork at all, or fall back to the system-wide R installation.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-how-it-works\" class=\"anchor\" href=\"#how-it-works\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow it works\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eRstudio server, can be started in non-daemonized mode by each user individually on a custom port (similar to a jupyter notebook). This instance can then run in a conda environment:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; conda activate my_project\n\u0026gt; /usr/lib/rstudio-server/bin/rserver \\\n --server-daemonize=0 \\\n --www-port 8787 \\\n --rsession-which-r=$(which R) \\\n --rsession-ld-library-path=$CONDA_PREFIX/lib\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eTo avoid additional problems with library paths, also \u003ccode\u003ersession\u003c/code\u003e needs to run within the conda environment. This is achieved by wrapping \u003ccode\u003ersession\u003c/code\u003e into the \u003ca href=\"https://github.com/grst/rstudio-server-conda/blob/master/local/rsession.sh\"\u003ersession.sh\u003c/a\u003e script. The path to the wrapped \u003ccode\u003ersession\u003c/code\u003e executable can be passed to \u003ccode\u003erserver\u003c/code\u003e as command line argument.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erserver # ...\n --rsession-path=rsession.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eWhen using multiple users a unique \u003ccode\u003esecret-cookie-key\u003c/code\u003e has to be generated for each user. The path to the secret cookie key can be passed to \u003ccode\u003erserver\u003c/code\u003e as a command line parameter.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003euuid \u0026gt; /tmp/rstudio-server/${USER}_secure-cookie-key\nrserver # ...\n --secure-cookie-key-file /tmp/rstudio-server/${USER}_secure-cookie-key\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-fa1p1_luo\" class=\"anchor\" aria-hidden=\"true\" href=\"#fa1p1_luo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFA1p1_Luo\u003c/h1\u003e\n\u003cp\u003eRepository for Dr. Luo\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h1\u003e\n\u003cp\u003eBefore adding to this repo it is recommended to set up a .gitignore file and add the pycache folder\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-baseline-driving-network\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-baseline-driving-network\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun baseline driving network\u003c/h1\u003e\n\u003cp\u003eCheck that the config file for the assocated folder and configuration has the IMAGE_TRANSLATION config set to False\u003c/p\u003e\n\u003cp\u003epython coiltraine.py --gpus 0 --folder nocrash --exp resnet34imnet10S1 --single-process drive -de NocrashTraining_Town01 --docker carlagear\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-translation\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-translation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun translation\u003c/h1\u003e\n\u003cp\u003eCheck that the config file for the assocated folder and configuration has the IMAGE_TRANSLATION config set to True and the STYLE and AERIAL configs are False.\u003c/p\u003e\n\u003cp\u003eChoose translation checkpoint via the -name and --which_epoch parameters.\u003c/p\u003e\n\u003cp\u003epython coiltraine.py --gpus 0 --folder nocrash --exp resnet34imnet10S1 --single-process drive -de NocrashTraining_Town01 --docker carlagear --name finetune_fromEpoch400_episodes_1000epoch_weight2000.0 --which_epoch 200 --no_instance --n_downsample_global 2\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-translation-with-stylegan\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-translation-with-stylegan\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun translation with styleGan\u003c/h1\u003e\n\u003cp\u003eThis is the model which is used for the aerial translation.\u003c/p\u003e\n\u003cp\u003eEnsure that the configuration file correctly set STYLE_TRANSLATION and AERIAL_TRANSLATION. You may also have to change these files in coil_global.py if they are not correctly adjusted.\u003c/p\u003e\n\u003cp\u003eBe sure to replace checkpoint path with the desired checkpoint\u003c/p\u003e\n\u003cp\u003epython coiltraine.py --gpus 0 --folder nocrash --exp resnet34imnet10S1 --single-process drive -de NocrashTraining_Town01 --docker carlagear --checkpoint_path pixel2style2pixel/checkpoints/carla_AtoG/checkpoints/iteration_1000000.pt\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-data_collector\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-data_collector\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun data_collector\u003c/h1\u003e\n\u003cp\u003eThe data collection must be run under the old translation environment pix2pix\u003c/p\u003e\n\u003cp\u003epython multi_gpu_collection.py -pt /path/to/data/folder -d dataset_configuration_file\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1623388496.0
+ "updated_at": 1668106102.0
},
{
"data_format": 2,
- "description": "Biobb_structure_utils is the Biobb module collection to modify or extract information from a PDB structure file, such as pulling out a particular model or chain, removing water molecules or ligands, or renumbering or sorting atoms or residues.",
+ "description": "Parametric face image generator for mooney faces",
"filenames": [
- "Singularity.latest"
+ "Singularity"
],
- "full_name": "bioexcel/biobb_structure_utils",
+ "full_name": "ShreyaKapoor18/parametric-face-image-generator",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://biobb-structure-utils.readthedocs.io/en/latest/?badge=latest\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d7c1b5de86a2921c1f759b175820fb443eba3f18bbf45e56e42f2cee72844627/68747470733a2f2f72656164746865646f63732e6f72672f70726f6a656374732f62696f62622d7374727563747572652d7574696c732f62616467652f3f76657273696f6e3d6c6174657374\" alt=\"\" data-canonical-src=\"https://readthedocs.org/projects/biobb-structure-utils/badge/?version=latest\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://anaconda.org/bioconda/biobb_structure_utils\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a477fdb1fd9bc9eb7ffa6cae6a019c6d4c3902fd468b3126f1b78e56c7dcff83/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e7376673f7374796c653d666c6174\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://quay.io/repository/biocontainers/biobb_structure_utils\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ca418e4db0b3de91a09a5df4a59446da015b6164598a8bc255918e911484f84f/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d517561792e696f2d626c7565\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/docker-Quay.io-blue\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/3836\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/Apache-2.0\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2a2157c971b7ae1deb8eb095799440551c33dcf61ea3d965d86b496a5a65df55/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d417061636865253230322e302d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/License-Apache%202.0-blue.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-biobb_structure_utils\" class=\"anchor\" href=\"#biobb_structure_utils\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebiobb_structure_utils\u003c/h1\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eBiobb_structure_utils is the Biobb module collection to modify or extract information from a PDB structure file, such as pulling out a particular model or chain, removing water molecules or ligands, or renumbering or sorting atoms or residues. Biobb (BioExcel building blocks) packages are Python building blocks that create new layer of compatibility and interoperability over popular bioinformatics tools. The latest documentation of this package can be found in our readthedocs site:\n\u003ca href=\"https://biobb-structure-utils.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003elatest API documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-version\" class=\"anchor\" href=\"#version\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVersion\u003c/h3\u003e\n\u003cp\u003ev3.6.1 2021.2\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cp\u003eUsing PIP:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eImportant:\u003c/strong\u003e PIP only installs the package. All the dependencies must be installed separately. To perform a complete installation, please use ANACONDA, DOCKER or SINGULARITY.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e pip install \"biobb_structure_utils\u0026gt;=3.6.1\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage: \u003ca href=\"https://biobb-structure-utils.readthedocs.io/en/latest/modules.html\" rel=\"nofollow\"\u003ePython API documentation\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing ANACONDA:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e conda install -c bioconda \"biobb_structure_utils\u0026gt;=3.6.1\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage: With conda installation BioBBs can be used with the \u003ca href=\"https://biobb-structure-utils.readthedocs.io/en/latest/modules.html\" rel=\"nofollow\"\u003ePython API documentation\u003c/a\u003e and the \u003ca href=\"https://biobb-structure-utils.readthedocs.io/en/latest/command_line.html\" rel=\"nofollow\"\u003eCommand Line documentation\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing DOCKER:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker pull quay.io/biocontainers/biobb_structure_utils:3.6.1--pyhdfd78af_0\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e docker run quay.io/biocontainers/biobb_structure_utils:3.6.1--pyhdfd78af_0 \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eUsing SINGULARITY:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eMacOS users\u003c/strong\u003e: it\u0027s strongly recommended to avoid Singularity and use \u003cstrong\u003eDocker\u003c/strong\u003e as containerization system.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eInstallation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity pull --name biobb_structure_utils.sif shub://bioexcel/biobb_structure_utils\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity exec biobb_structure_utils.sif \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe command list and specification can be found at the \u003ca href=\"https://biobb-structure-utils.readthedocs.io/en/latest/command_line.html\" rel=\"nofollow\"\u003eCommand Line documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-copyright--licensing\" class=\"anchor\" href=\"#copyright--licensing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCopyright \u0026amp; Licensing\u003c/h3\u003e\n\u003cp\u003eThis software has been developed in the \u003ca href=\"http://mmb.irbbarcelona.org\" rel=\"nofollow\"\u003eMMB group\u003c/a\u003e at the \u003ca href=\"http://www.bsc.es/\" rel=\"nofollow\"\u003eBSC\u003c/a\u003e \u0026amp; \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eIRB\u003c/a\u003e for the \u003ca href=\"http://bioexcel.eu/\" rel=\"nofollow\"\u003eEuropean BioExcel\u003c/a\u003e, funded by the European Commission (EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/823830\" rel=\"nofollow\"\u003e823830\u003c/a\u003e, EU H2020 \u003ca href=\"http://cordis.europa.eu/projects/675728\" rel=\"nofollow\"\u003e675728\u003c/a\u003e).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e(c) 2015-2021 \u003ca href=\"https://www.bsc.es/\" rel=\"nofollow\"\u003eBarcelona Supercomputing Center\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e(c) 2015-2021 \u003ca href=\"https://www.irbbarcelona.org/\" rel=\"nofollow\"\u003eInstitute for Research in Biomedicine\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eLicensed under the\n\u003ca href=\"https://www.apache.org/licenses/LICENSE-2.0\" rel=\"nofollow\"\u003eApache License 2.0\u003c/a\u003e, see the file LICENSE for details.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-acknolegements\" class=\"anchor\" href=\"#acknolegements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknolegements\u003c/h3\u003e\n\u003cp\u003eThis software uses functions to read and modify GRO files based in the \u003ca href=\"https://github.com/caizkun/gropy\"\u003eGROPY\u003c/a\u003e library created by Zhikun Cai (\u003ca href=\"mailto:caizkun@gmail.com\"\u003ecaizkun@gmail.com\u003c/a\u003e) under the \u003ca href=\"https://github.com/caizkun/gropy/blob/master/LICENSE\"\u003eMIT\u003c/a\u003e. In this project \u003ca href=\"https://github.com/caizkun/gropy\"\u003eGROPY\u003c/a\u003e has been adapted to Python 3 and our own needs.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/39c04282e694d49ea0d56c716a27845cd25b9931f791484540f625dcecf68af2/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/39c04282e694d49ea0d56c716a27845cd25b9931f791484540f625dcecf68af2/68747470733a2f2f62696f657863656c2e65752f77702d636f6e74656e742f75706c6f6164732f323031392f30342f42696f657863656c6c5f6c6f676f5f3130383070785f7472616e73702e706e67\" alt=\"\" title=\"Bioexcel\" data-canonical-src=\"https://bioexcel.eu/wp-content/uploads/2019/04/Bioexcell_logo_1080px_transp.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-parametric-face-image-generator\" class=\"anchor\" aria-hidden=\"true\" href=\"#parametric-face-image-generator\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eparametric-face-image-generator\u003c/h1\u003e\n\u003cp\u003eThis software enables you to generate fully parametric face images from the Basel Face Model 2017 as proposed in:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e[1] Adam Kortylewski, Bernhard Egger, Andreas Schneider, Thomas Gerig, Andreas Morel-Forster and Thomas Vetter\n\u003ca href=\"http://openaccess.thecvf.com/content_CVPRW_2019/papers/BEFA/Kortylewski_Analyzing_and_Reducing_the_Damage_of_Dataset_Bias_to_Face_CVPRW_2019_paper.pdf\" rel=\"nofollow\"\u003e\"Analyzing and Reducing the Damage of Dataset Bias to Face Recognition With Synthetic Data\"\u003c/a\u003e,\nIN: CVPRW (2019)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[2] Adam Kortylewski, Andreas Schneider, Thomas Gerig, Bernhard Egger, Andreas Morel-Forster and Thomas Vetter\n\u003ca href=\"https://arxiv.org/abs/1802.05891\" rel=\"nofollow\"\u003e\"Training Deep Face Recognition Systems with Synthetic Data\"\u003c/a\u003e,\nIN: arXiv preprint (2018)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[3] Adam Kortylewski, Bernhard Egger, Andreas Schneider, Thomas Gerig, Andreas Morel-Forster and Thomas Vetter\n\u003ca href=\"http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w41/Kortylewski_Empirically_Analyzing_the_CVPR_2018_paper.pdf\" rel=\"nofollow\"\u003e\"Empirically Analyzing the Effect of Dataset Biases on Deep Face Recognition Systems\"\u003c/a\u003e,\nIN: CVPRW (2018)\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou can control the variation of parameters such as pose, shape, color, camera and illumination based on your demand and application.\nThis dataset can be used for training and comparing machine learning techniques such as CNNs on a common ground as proposed in [1,3] by generating fully controlled training and test data.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-rendering-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#rendering-setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRendering Setup\u003c/h3\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_0.png\"\u003e\u003cimg src=\"data/example_images/0_0.png\" alt=\"0_0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_1.png\"\u003e\u003cimg src=\"data/example_images/0_1.png\" alt=\"0_1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_2.png\"\u003e\u003cimg src=\"data/example_images/0_2.png\" alt=\"0_2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/1_0.png\"\u003e\u003cimg src=\"data/example_images/1_0.png\" alt=\"1_0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/1_1.png\"\u003e\u003cimg src=\"data/example_images/1_1.png\" alt=\"1_1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/1_2.png\"\u003e\u003cimg src=\"data/example_images/1_2.png\" alt=\"1_2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAbove you can see example face images sampled from this data generator. Each row shows different images of the same facial identity.\u003c/p\u003e\n\u003cp\u003eIn the \"controlled\" setup (top row), the model parameters are sampled at equidistant positions along a certain parameter , e.g. the yaw pose.\u003c/p\u003e\n\u003cp\u003eIn the \"random\" setup (bottom row), the model parameters are sampled randomly from a custom distribution.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-rendering-different-image-modalities\" class=\"anchor\" aria-hidden=\"true\" href=\"#rendering-different-image-modalities\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRendering Different Image Modalities\u003c/h3\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_1_depth.png\"\u003e\u003cimg src=\"data/example_images/0_1_depth.png\" alt=\"0_0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_2_depth.png\"\u003e\u003cimg src=\"data/example_images/0_2_depth.png\" alt=\"0_1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_3_depth.png\"\u003e\u003cimg src=\"data/example_images/0_3_depth.png\" alt=\"0_2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_1_correspondence.png\"\u003e\u003cimg src=\"data/example_images/0_1_correspondence.png\" alt=\"1_0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_2_correspondence.png\"\u003e\u003cimg src=\"data/example_images/0_2_correspondence.png\" alt=\"1_1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_3_correspondence.png\"\u003e\u003cimg src=\"data/example_images/0_3_correspondence.png\" alt=\"1_2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eYou can render different image modalities such as e.g. depth images (top row), color coded correspondence images (bottom row), normals, albedo or illumination.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-rendering-face-regions\" class=\"anchor\" aria-hidden=\"true\" href=\"#rendering-face-regions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRendering Face Regions\u003c/h3\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_1_region_mask.png\"\u003e\u003cimg src=\"data/example_images/0_1_region_mask.png\" alt=\"0_0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_2_region_mask.png\"\u003e\u003cimg src=\"data/example_images/0_2_region_mask.png\" alt=\"0_1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_3_region_mask.png\"\u003e\u003cimg src=\"data/example_images/0_3_region_mask.png\" alt=\"0_2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_1_region_mask_bfm09.png\"\u003e\u003cimg src=\"data/example_images/0_1_region_mask_bfm09.png\" alt=\"0_0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_2_region_mask_bfm09.png\"\u003e\u003cimg src=\"data/example_images/0_2_region_mask_bfm09.png\" alt=\"0_1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/example_images/0_3_region_mask_bfm09.png\"\u003e\u003cimg src=\"data/example_images/0_3_region_mask_bfm09.png\" alt=\"0_2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eYou can render different region maps, while we provide two default ones.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-facial-landmarks\" class=\"anchor\" aria-hidden=\"true\" href=\"#facial-landmarks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFacial Landmarks\u003c/h3\u003e\n\u003cp\u003eFor each face image the location and visibilty of 19 facial landmarks is written in a .tlms file in the following format:\u003c/p\u003e\n\u003cp\u003e\"facial landmark name\" \"visibility\" \"x-position\" \"y-position\"\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003einstalled \u003ca href=\"http://www.oracle.com/technetwork/java/javase/downloads/index.html\" rel=\"nofollow\"\u003eJava\u003c/a\u003e (Version 8.0 or higher recommended)\u003c/li\u003e\n\u003cli\u003edownload jar and config file under \u003ca href=\"https://github.com/unibas-gravis/parametric-face-image-generator/releases\"\u003e\u003ccode\u003erelease\u003c/code\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://gravis.dmi.unibas.ch/PMM/\" rel=\"nofollow\"\u003edownload\u003c/a\u003e Basel Face Model 2017\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://gravis.dmi.unibas.ch/PMM/\" rel=\"nofollow\"\u003edownload\u003c/a\u003e Basel Illumination Prior 2017\u003c/li\u003e\n\u003cli\u003eget a dataset with backgrounds, e.g. the \u003ca href=\"http://www.robots.ox.ac.uk/~vgg/data/dtd/\" rel=\"nofollow\"\u003eDescribable Textures Dataset\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eadapt paths and configuration in \u003ccode\u003edata/config_files/example_config_controlled.json\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eFor generating images in the controlled setup execute:\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003ejava -Xmx2g -cp generator.jar faces.apps.ControlledFaces -c data/config_files/example_config_controlled.json\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003eFor generating images in the random setup execute:\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003ejava -Xmx2g -cp generator.jar faces.apps.RandomFaces -c data/config_files/example_config_random.json\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-for-developers\" class=\"anchor\" aria-hidden=\"true\" href=\"#for-developers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor Developers:\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003einstalled \u003ca href=\"http://www.oracle.com/technetwork/java/javase/downloads/index.html\" rel=\"nofollow\"\u003eJava\u003c/a\u003e (Version 8.0 or higher recommended)\u003c/li\u003e\n\u003cli\u003einstalled \u003ca href=\"http://www.scala-sbt.org/release/tutorial/Setup.html\" rel=\"nofollow\"\u003esbt\u003c/a\u003e (only for compiling from sources)\u003c/li\u003e\n\u003cli\u003eclone repository\u003c/li\u003e\n\u003cli\u003ecompile and run using \u003ccode\u003esbt run -mem 2000\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity:\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003ewe provide a singularity container recipe file to run the data generator directly on compute servers\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-help-needed\" class=\"anchor\" aria-hidden=\"true\" href=\"#help-needed\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHelp needed\u003c/h2\u003e\n\u003cp\u003eThere is a \u003ca href=\"https://groups.google.com/forum/#!forum/scalismo-faces\" rel=\"nofollow\"\u003escalismo-faces google group\u003c/a\u003e for general questions and discussion.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-background\" class=\"anchor\" aria-hidden=\"true\" href=\"#background\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBackground\u003c/h2\u003e\n\u003cp\u003eBesides the publications listed next, we have also freely available \u003ca href=\"http://gravis.dmi.unibas.ch/PMM/lectures/overview/\" rel=\"nofollow\"\u003electures and tutorials\u003c/a\u003e. Some of the topics covered are statistical shape modeling and model-based image analysis as part of our research about \u003ca href=\"http://gravis.dmi.unibas.ch/PMM/\" rel=\"nofollow\"\u003eProbabilistic Morphable Models\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-publications\" class=\"anchor\" aria-hidden=\"true\" href=\"#publications\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePublications\u003c/h2\u003e\n\u003cp\u003eIf you use this software you will need the Basel Face Model 2017, the Basel Illumination Prior 2017 and a dataset of backgrounds. Please cite the following papers:\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-data-generator---random-mode\" class=\"anchor\" aria-hidden=\"true\" href=\"#data-generator---random-mode\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData Generator - Random Mode\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e[1] Adam Kortylewski, Bernhard Egger, Andreas Schneider, Thomas Gerig, Andreas Morel-Forster and Thomas Vetter\n\u003ca href=\"http://openaccess.thecvf.com/content_CVPRW_2019/papers/BEFA/Kortylewski_Analyzing_and_Reducing_the_Damage_of_Dataset_Bias_to_Face_CVPRW_2019_paper.pdf\" rel=\"nofollow\"\u003e\"Analyzing and Reducing the Damage of Dataset Bias to Face Recognition With Synthetic Data\"\u003c/a\u003e,\nIN: CVPRW (2019)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[2] Adam Kortylewski, Andreas Schneider, Thomas Gerig, Bernhard Egger, Andreas Morel-Forster and Thomas Vetter\n\u003ca href=\"https://arxiv.org/abs/1802.05891\" rel=\"nofollow\"\u003e\"Training Deep Face Recognition Systems with Synthetic Data\"\u003c/a\u003e,\nIN: arXiv preprint (2018)\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-data-generator---controlled-mode\" class=\"anchor\" aria-hidden=\"true\" href=\"#data-generator---controlled-mode\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData Generator - Controlled Mode\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e[3] Adam Kortylewski, Bernhard Egger, Andreas Schneider, Thomas Gerig, Andreas Morel-Forster and Thomas Vetter\n\u003ca href=\"http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w41/Kortylewski_Empirically_Analyzing_the_CVPR_2018_paper.pdf\" rel=\"nofollow\"\u003e\"Empirically Analyzing the Effect of Dataset Biases on Deep Face Recognition Systems\"\u003c/a\u003e,\nIN: CVPRW (2018)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-basel-face-model-2017\" class=\"anchor\" aria-hidden=\"true\" href=\"#basel-face-model-2017\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBasel Face Model 2017\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e[4] Thomas Gerig, Andreas Morel-Forster, Clemens Blumer, Bernhard Egger, Marcel Luethi, Sandro Schoenborn and Thomas Vetter\n\u003ca href=\"https://arxiv.org/abs/1709.08398\" rel=\"nofollow\"\u003e\" Morphable Face Models - An Open Framework\"\u003c/a\u003e,\nIN: 13th IEEE Conference on Automatic Face and Gesture Recognition (FG 2018)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-basel-illumination-prior-2017\" class=\"anchor\" aria-hidden=\"true\" href=\"#basel-illumination-prior-2017\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBasel Illumination Prior 2017\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e[5] Bernhard Egger, Sandro Schoenborn, Andreas Schneider, Adam Kortylewski, Andreas Morel-Forster, Clemens Blumer and Thomas Vetter\n\u003ca href=\"http://gravis.dmi.unibas.ch/publications/2018/2018_Egger_IJCV.pdf\" rel=\"nofollow\"\u003e\"Occlusion-aware 3D Morphable Models and an Illumination Prior for Face Image Analysis\"\u003c/a\u003e,\nIN: International Journal of Computer Vision, 2018\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-background-dataset\" class=\"anchor\" aria-hidden=\"true\" href=\"#background-dataset\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBackground Dataset\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eA background dataset of your choice\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eBernhard Egger\u003c/li\u003e\n\u003cli\u003eAdam Kortylewski\u003c/li\u003e\n\u003cli\u003eAndreas Morel-Forster\u003c/li\u003e\n\u003cli\u003eAndreas Schneider\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-maintainers\" class=\"anchor\" aria-hidden=\"true\" href=\"#maintainers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMaintainers\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eUniversity of Basel, Graphics and Vision research: \u003ca href=\"https://github.com/unibas-gravis\"\u003e@unibas-gravis\u003c/a\u003e, \u003ca href=\"http://gravis.cs.unibas.ch\" rel=\"nofollow\"\u003ehomepage\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://www.apache.org/licenses/LICENSE-2.0\" rel=\"nofollow\"\u003eApache License, Version 2.0\u003c/a\u003e, details see LICENSE\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eCopyright 2017, University of Basel, Graphics and Vision Research\n\nLicensed under the Apache License, Version 2.0 (the \"License\");\nyou may not use this file except in compliance with the License.\nYou may obtain a copy of the License at\n\n http://www.apache.org/licenses/LICENSE-2.0\n\nUnless required by applicable law or agreed to in writing, software\ndistributed under the License is distributed on an \"AS IS\" BASIS,\nWITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\nSee the License for the specific language governing permissions and\nlimitations under the License.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 8,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1625224033.0
+ "updated_at": 1667551934.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity_fastqc",
- "Singularity_multiqc",
- "Singularity_trimmomatic"
+ "Singularity",
+ "Singularity_flipped",
+ "Singularity_test",
+ "Singularity_backup",
+ "Singularity2"
],
- "full_name": "uf-icbr-bioinformatics/biocontainers",
+ "full_name": "mwanakijiji/rrlfe",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-biocontainers\" class=\"anchor\" href=\"#biocontainers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebiocontainers\u003c/h1\u003e\n\u003cp\u003eThis repository contains recipes for containers used to perform QC, summary statistics, and pre-processing on NGS datasets.\u003c/p\u003e\n\u003cp\u003eIn the future, we may provide the containers themselves. Stay tuned. Work in progress.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-rrlfe\" class=\"anchor\" aria-hidden=\"true\" href=\"#rrlfe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003errlfe\u003c/h1\u003e\n\u003cp\u003eA code base for generating and applying calibrations for retrieving [Fe/H] from low-res spectra of RR Lyrae variable stars. See \u003ca href=\"https://rrlfe.readthedocs.io/\" rel=\"nofollow\"\u003ehttps://rrlfe.readthedocs.io/\u003c/a\u003e for documentation.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://coveralls.io/github/mwanakijiji/rrlfe?branch=main\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c783f25af909dcd1dc513f24cbf780405955d2d29da614210ef15dc39a291c35/68747470733a2f2f636f766572616c6c732e696f2f7265706f732f6769746875622f6d77616e616b696a696a692f72726c66652f62616467652e7376673f6272616e63683d6d61696e\" alt=\"Coverage Status\" data-canonical-src=\"https://coveralls.io/repos/github/mwanakijiji/rrlfe/badge.svg?branch=main\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-attribution\" class=\"anchor\" aria-hidden=\"true\" href=\"#attribution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAttribution\u003c/h2\u003e\n\u003cp\u003eIf this code has been useful for your work, please cite the source in the following BibTeX entry:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@article{esposito2018,\n Adsurl = {},\n Author = {},\n Doi = {},\n Eid = {},\n Journal = {},\n Keywords = {},\n Month = ,\n Pages = {},\n Title = {{}},\n Volume = ,\n Year = ,\n Bdsk-Url-1 = {}\n}\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1623019187.0
+ "updated_at": 1648070883.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Test species and lineage calls made by mykrobe",
"filenames": [
- "BlueprintPipeline/Resource/gemBS-2.1.1/Singularity"
+ "Python/Singularity.def"
],
- "full_name": "Irfanwustl/Research_code",
+ "full_name": "Mykrobe-tools/mykrobe-lineage-test",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-research_code\" class=\"anchor\" href=\"#research_code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResearch_code\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-mykrobe-lineage-test\" class=\"anchor\" aria-hidden=\"true\" href=\"#mykrobe-lineage-test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emykrobe-lineage-test\u003c/h1\u003e\n\u003cp\u003eThis repository contains code for testing mykrobe species and lineage calls,\nand results of the testing.\nIt is intended for mykrobe developers, for testing mykrobe species/lineage calls\nand tracking the results.\u003c/p\u003e\n\u003cp\u003eThere are two directories:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ccode\u003ePython/\u003c/code\u003e: this contains the code, and a Singularity definition file that\nmakes a container with the code plus the dependencies.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eAnalysis/\u003c/code\u003e: contains results of testing mykrobe species and lineage calls.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eFor results, please see the readme in the \u003ccode\u003eAnalysis/\u003c/code\u003e directory.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eThis repository has a main script called \u003ccode\u003emlt\u003c/code\u003e (acronym for \"mykrobe lineage\ntest\", yes we are testing species calls as well but\n\"mykrobe lineage species test\" seemed like a bad name!).\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h3\u003e\n\u003cp\u003eThe easiest way is to build a singularity container.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd Python\nsudo singularity build mlt Singularity.def\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun like that, singularity will make a container file called \u003ccode\u003emlt\u003c/code\u003e.\nYou can just treat it as an normal executable, no need to run\n\u003ccode\u003esingularity exec mlt\u003c/code\u003e unless you want to.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-source\" class=\"anchor\" aria-hidden=\"true\" href=\"#source\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSource\u003c/h3\u003e\n\u003cp\u003eIf you want to run locally, then you will need these in your \u003ccode\u003e$PATH\u003c/code\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eenaDataGet\u003c/code\u003e, which is from enaBrowserTools (have a look in \u003ccode\u003eSingularity.def\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emykrobe\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e(also \u003ccode\u003efastaq\u003c/code\u003e and \u003ccode\u003encbi-genome-download\u003c/code\u003e are required, but are installed when\nyou install \u003ccode\u003emlt\u003c/code\u003e because they are in the requirements file.)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThen run \u003ccode\u003epip install .\u003c/code\u003e from the \u003ccode\u003ePython/\u003c/code\u003e directory. The required python\npackages will be installed (they are in \u003ccode\u003erequirements.txt\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eAlternatively, you could not do pip install, and instead do this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ePYTHONPATH=/path_to/mykrobe-lineage-test/Python /path_to/mykrobe-lineage-test/Python/mlt/__main__.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThat command is equivalent to running the script \u003ccode\u003emlt\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-testing-lineage-calls\" class=\"anchor\" aria-hidden=\"true\" href=\"#testing-lineage-calls\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting lineage calls\u003c/h2\u003e\n\u003cp\u003eIn short, the process is:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003ePut your sample info in a TSV file.\u003c/li\u003e\n\u003cli\u003eDownload reads using \u003ccode\u003emlt download_data\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun mykrobe on all samples using \u003ccode\u003emlt run_mykrobe\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eMake a summary of the results using \u003ccode\u003emlt summary\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\u003ca id=\"user-content-sample-tsv\" class=\"anchor\" aria-hidden=\"true\" href=\"#sample-tsv\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esample TSV\u003c/h3\u003e\n\u003cp\u003eAll the commands need a TSV of sample information. The format is like\nthis (this is made up data!):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eaccession source species lineage\nSRR12345678 ena Mycobacterium_tuberculosis lineage1.2.3\nGCF_1234567 genbank Mycobacterium_tuberculosis lineage2.3.4\nXY123456 refseq Mycobacterium_tuberculosis lineage3.4\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou must have columns \u003ccode\u003eaccession\u003c/code\u003e, \u003ccode\u003esource\u003c/code\u003e, \u003ccode\u003especies\u003c/code\u003e and \u003ccode\u003elineage\u003c/code\u003e. They\ncan be in any order (and any extra columns are ignored). The lineage can\nbe \"NA\" if there is no lineage call and you just want to test the species\ncall.\u003c/p\u003e\n\u003cp\u003eThe source must be \u003ccode\u003eena\u003c/code\u003e, \u003ccode\u003egenbank\u003c/code\u003e, or \u003ccode\u003erefseq\u003c/code\u003e, and the \u003ccode\u003eaccession\u003c/code\u003e column\nshould have the corresponding ENA run ID, or genbank/refseq genome accession.\nSince reads are needed for mykrobe, reads are simulated from genomes using\n\u003ccode\u003efastaq to_perfect_reads\u003c/code\u003e, making perfect reads (ie no snp/indel errors)\nof length 75bp, fragment size 200, and depth 20X.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-download-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#download-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownload data\u003c/h3\u003e\n\u003cp\u003eWith a TSV file of samples \u003ccode\u003esamples.tsv\u003c/code\u003e in the above format, run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emlt download_data --cpus 3 samples.tsv Reads\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThat example downloads 3 samples in parallel. It makes a directory called\n\u003ccode\u003eReads\u003c/code\u003e containing the downloaded data. It will (well, \u003cem\u003eshould\u003c/em\u003e) not crash\non failed downloads, but carry on and get all the samples it can. Check\nstderr to see what happened.\u003c/p\u003e\n\u003cp\u003eYou can rerun on an existing directory and it will only try to get data\nthat is missing and skip the samples that are already downloaded.\nThis also means you can do hacks like different sample TSV files run\nagainst the same directory of a superset of reads, if you\u0027re feeling\nfancy.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-run-mykrobe\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-mykrobe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun mykrobe\u003c/h3\u003e\n\u003cp\u003eAssuming you have a directory of downloaded reads from \u003ccode\u003emlt download_data\u003c/code\u003e\ncalled \u003ccode\u003eReads/\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emlt run_mykrobe --cpus 10 samples.tsv Reads Results\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThat will run 10 samples in parallel. It makes a new directory (if it\ndoesn\u0027t exit already) called \u003ccode\u003eResults\u003c/code\u003e. As for \u003ccode\u003edownload_data\u003c/code\u003e, you can\nrerun against the same directory and it will only run samples that do not\nalready have a mykrobe json file of results. It will ignore samples in the TSV\nwith no reads in \u003ccode\u003eReads/\u003c/code\u003e. It\u0027s up to you to use the right TSV file/Reads\ndirectory/results directory - there is no sanity checking. This does allow\nfor more hacking and testing of samples.\u003c/p\u003e\n\u003cp\u003eIMPORTANT: the first time a sample is run in \u003ccode\u003eResults/\u003c/code\u003e, there is no\nskeletons file. If you ask for more than one CPU, the first sample will be\nrun on its own, making the skeletons file. Then the remaining samples are\nrun using multiprocessing, since they can then all use the skeletons file,\ninstead of all trying to make one at the same time and crashing.\u003c/p\u003e\n\u003cp\u003eThere is an option \u003ccode\u003e--panels_dir\u003c/code\u003e, which will use that option with mykrobe,\nso that you can override the default panels directory and use your own.\nYou probably want this, since the point here is to test species/lineage calls.\nIt is not recommended to change the panel and then use an existing results\ndirectory because the skeletons file that is already might be used!\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-summarise-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#summarise-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSummarise results\u003c/h3\u003e\n\u003cp\u003eAssuming you have a samples TSV file \u003ccode\u003esamples.tsv\u003c/code\u003e, a directory of reads\ncalled \u003ccode\u003eReads/\u003c/code\u003e, and a directory of mykrobe runs called \u003ccode\u003eResults/\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emlt summary samples.tsv Reads Results summary.tsv\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThat makes a new TSV file called \u003ccode\u003esummary.tsv\u003c/code\u003e. It is the same as \u003ccode\u003esamples.tsv\u003c/code\u003e,\nbut with added columns:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ecalled_species\u003c/code\u003e and \u003ccode\u003ecalled_lineage\u003c/code\u003e. These are the calls made by mykrobe.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecorrect\u003c/code\u003e: this is \u003ccode\u003etrue|false\u003c/code\u003e, showing if the both the called species and\nlineage were correct. If the expected lineage is \"NA\", then the true/false\ncall only depends on the species.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eNow be good and record the results in the \u003ccode\u003eAnalysis/\u003c/code\u003e directory and push\nto github.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1627949747.0
+ "updated_at": 1655217767.0
},
{
"data_format": 2,
- "description": "Hosts DockerFiles to build MRtrix3 containers",
+ "description": "Docker image for MGKit",
"filenames": [
- "Singularity"
+ "Singularity.def"
],
- "full_name": "MRtrix3/containers",
+ "full_name": "frubino/mgkit-docker-repo",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-containers-for-mrtrix3\" class=\"anchor\" href=\"#containers-for-mrtrix3\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainers for \u003cem\u003eMRtrix3\u003c/em\u003e\n\u003c/h1\u003e\n\u003cp\u003eHosts recipe files to build \u003cem\u003eMRtrix3\u003c/em\u003e containers\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-using-docker\" class=\"anchor\" href=\"#using-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing Docker\u003c/h2\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-run-terminal-command\" class=\"anchor\" href=\"#run-terminal-command\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun terminal command\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --rm -it mrtrix3 \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf not built locally, \u003ccode\u003edocker\u003c/code\u003e will download the latest image from DockerHub.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-run-gui\" class=\"anchor\" href=\"#run-gui\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun GUI\u003c/h4\u003e\n\u003cp\u003eThese instructions are for Linux.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003exhost +local:root\ndocker run --rm -it -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=$DISPLAY mrtrix3 mrview\nxhost -local:root # Run this when finished.\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-locally-build-docker-image\" class=\"anchor\" href=\"#locally-build-docker-image\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLocally build Docker image\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --tag mrtrix3 .\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSet \u003ccode\u003eDOCKER_BUILDKIT=1\u003c/code\u003e to build parts of the Docker image in parallel, which can speed up build time.\nUse \u003ccode\u003e--build-arg MAKE_JOBS=4\u003c/code\u003e to build \u003cem\u003eMRtrix3\u003c/em\u003e with 4 processors (can substitute this with any number of processors \u0026gt; 0); if omitted, \u003cem\u003eMRtrix3\u003c/em\u003e will be built using a single thread only.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-using-singularity\" class=\"anchor\" href=\"#using-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing Singularity\u003c/h2\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-build-container-natively\" class=\"anchor\" href=\"#build-container-natively\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild container natively\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build MRtrix3_\u0026lt;version\u0026gt;.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-convert-from-docker-container\" class=\"anchor\" href=\"#convert-from-docker-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConvert from Docker container\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build MRtrix3_\u0026lt;version\u0026gt;.sif docker://mrtrix/mrtrix3:\u0026lt;version\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-run-terminal-command-1\" class=\"anchor\" href=\"#run-terminal-command-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun terminal command\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003eMRtrix3_\u0026lt;version\u0026gt;.sif \u0026lt;command\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-run-gui-1\" class=\"anchor\" href=\"#run-gui-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun GUI\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec -B /run MRtrix3_\u0026lt;version\u0026gt;.sif mrview\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-developers-update-minified-external-dependencies\" class=\"anchor\" href=\"#developers-update-minified-external-dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopers: Update minified external dependencies\u003c/h2\u003e\n\u003cp\u003eThis process can only be completed by those with write access to the \u003ca href=\"https://osf.io/5rwp3/\" rel=\"nofollow\"\u003e\"\u003cem\u003eMRtrix3\u003c/em\u003e container dependencies\" OSF project\u003c/a\u003e.\nThese files contain \"minified\" versions of external neuroimaging software package dependencies, containing only those components that are utilised by \u003cem\u003eMRtrix3\u003c/em\u003e scripts.\nThese files should only need to be updated if:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAn \u003cem\u003eMRtrix3\u003c/em\u003e update introduces a new feature that invokes some new external software tool not previously utilised;\u003c/li\u003e\n\u003cli\u003eA requisite update occurs in one of these external softwares.\u003c/li\u003e\n\u003c/ul\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eInstall the \u003ccode\u003edocker\u003c/code\u003e and \u003ccode\u003eneurodocker\u003c/code\u003e Python packages.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip install docker neurodocker\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDownload the ART ACPCdetect tool from NITRC into the working directory.\u003c/p\u003e\n\u003cp\u003eThis cannot be downloaded directly via e.g. \u003ccode\u003ewget\u003c/code\u003e, as it requires logging in to NITRC; instead, visit the following link with a web browser:\n\u003ca href=\"https://www.nitrc.org/frs/download.php/10595/acpcdetect_v2.0_LinuxCentOS6.7.tar.gz\" rel=\"nofollow\"\u003e\u003ccode\u003ehttps://www.nitrc.org/frs/download.php/10595/acpcdetect_v2.0_LinuxCentOS6.7.tar.gz\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDownload test data necessary for minification process.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecurl -fL -# https://github.com/MRtrix3/script_test_data/archive/master.tar.gz | tar xz\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUpdate file \u003ccode\u003eminify.Dockerfile\u003c/code\u003e to install the desired versions of external software packages.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBuild Docker image for \u003ccode\u003eneurodocker-minify\u003c/code\u003e, with complete installations of external packages.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eDOCKER_BUILDKIT=1 docker build --tag mrtrix3:minify --file minify.Dockerfile --build-arg MAKE_JOBS=4 .\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ccode\u003eDOCKER_BUILDKIT=1\u003c/code\u003e enables BuildKit, which builds separate build stages in parallel.\nThis can speed up Docker build times in some circumstances.\nIn this case, ANTs and \u003cem\u003eMRtrix3\u003c/em\u003e will be compiled in parallel, and other downloads will be performed at the same time as well.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003eMAKE_JOBS\u003c/code\u003e argument controls how many cores are used for compilation of ANTs and \u003cem\u003eMRtrix3\u003c/em\u003e.\nIf BuildKit is utilised, do not specify all of the available threads; specify half or fewer, so that threads are not unnecessarily split across jobs and RAM usage is not excessive.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCreate a minified version of the Docker image.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --rm -itd --name mrtrix3 --security-opt=seccomp:unconfined --volume $(pwd)/script_test_data-master:/mnt mrtrix3:minify\nneurodocker-minify --dirs-to-prune /opt --container mrtrix3 --commands \"bash cmds-to-minify.sh\"\ndocker export mrtrix3 | docker import - mrtrix3:minified\ndocker stop mrtrix3\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGenerate tarballs for each of the utilised dependencies.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emkdir -p tarballs\ndocker run --rm -itd --workdir /opt --name mrtrix3 \\\n --volume $(pwd)/tarballs:/output mrtrix3:minified bash\ndocker exec mrtrix3 bash -c \"tar c art | pigz -9 \u0026gt; /output/acpcdetect_\u0026lt;version\u0026gt;.tar.gz\"\ndocker exec mrtrix3 bash -c \"tar c ants | pigz -9 \u0026gt; /output/ants_\u0026lt;version\u0026gt;.tar.gz\"\ndocker exec mrtrix3 bash -c \"tar c fsl | pigz -9 \u0026gt; /output/fsl_\u0026lt;version\u0026gt;.tar.gz\"\ndocker stop mrtrix3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor each tarball, manually replace text \"\u003ccode\u003e\u0026lt;version\u0026gt;\u003c/code\u003e\" with the version number of that particular software that was installed in the container.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUpload these files to \u003ca href=\"https://osf.io/nfx85/\" rel=\"nofollow\"\u003eOSF\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eFile \u003ccode\u003eDockerfile\u003c/code\u003e can then be modified to download the desired versions of external software packages.\nAs OSF file download links do not contain file names, which would otherwise indicate the version of each software to be downloaded, please ensure that comments within that file are updated to indicate the version of that software within the tarball.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-docker-image-for-mgkit\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker-image-for-mgkit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker Image for MGKit\u003c/h1\u003e\n\u003cp\u003eThis is a new Dockerfile that allows the use of MGKit using a container. You can run the scripts directly, for example:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003edocker run --rm -i frubino/mgkit:latest sampling-utils rand_seq\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eWill run the \u003ccode\u003esampling-utils rand_seq\u003c/code\u003e to create some randome FASTA sequences. Commands can be piped as well:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003edocker run --rm -i frubino/mgkit:latest sampling-utils rand_seq | docker run --rm -i frubino/mgkit:latest fasta-utils translate\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eWill translate the random sequneces from the first command. Highly suggested to use an alias, such as:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ealias mgkit=\u0027docker run --rm -i frubino/mgkit:latest\u0027\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThis way the above command becomes:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003emgkit sampling-utils rand_seq | mgkit fasta-utils translate\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eIf you want to run interactively a series of commands you can use \u003ccode\u003ebash\u003c/code\u003e instead of another command, but remember to add the \u003ccode\u003e-t\u003c/code\u003e option:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003edocker run --rm -it frubino/mgkit:latest bash\u003c/code\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-build-branch\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-branch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild branch\u003c/h1\u003e\n\u003cp\u003eA \u003ccode\u003efrubino/mgkit:build\u003c/code\u003e branch is present to allow the creation of Conda packages. Checkout the branch with \u003ccode\u003egit checkout build\u003c/code\u003e. A script is included to build the image and environment are used to specify output directory inside the container, the Python version to use to build and the MGKit version to use\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h1\u003e\n\u003cblockquote\u003e\n\u003cp\u003eYou need to modify the version of MGKit manually with a tag or commit id (after the \u003ccode\u003e@\u003c/code\u003e in the \u003ccode\u003epip\u003c/code\u003e line)\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eThere are 2 options to use this image with \u003cem\u003eSingularity\u003c/em\u003e, 1) create a Docker image using the \u003ccode\u003eDockerfile.singularity\u003c/code\u003e and then pull it or 2) building it with \u003cem\u003eSingularity\u003c/em\u003e, for example with \u003ca href=\"https://cloud.sylabs.io/\" rel=\"nofollow\"\u003ehttps://cloud.sylabs.io/\u003c/a\u003e (command \u003ccode\u003esingularity build --remote\u003c/code\u003e) if \u003ccode\u003eroot\u003c/code\u003e access is not available.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-docker-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker Image\u003c/h2\u003e\n\u003cp\u003eThe main difference between the 2 \u003ccode\u003eDockerfile\u003c/code\u003e is that the Singularity version removes any use of a specific user, because that is mostly done to mount a directory in the image. Also instead of using a version of MGKit in \u003ccode\u003econda\u003c/code\u003e PyPI is used instead.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-test\" class=\"anchor\" aria-hidden=\"true\" href=\"#test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest\u003c/h2\u003e\n\u003cp\u003eTry to run: \u003ccode\u003esingularity exec mgkit_0.6.0.sif sampling-utils rand_seq | singularity exec mgkit_0.6.0.sif fasta-utils info\u003c/code\u003e\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eCorrect for the image name used in the build process\u003c/p\u003e\n\u003c/blockquote\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 10,
- "topics": [],
- "updated_at": 1612696118.0
+ "subscribers_count": 1,
+ "topics": [
+ "mgkit",
+ "bioinformatics",
+ "metagenomics",
+ "metagenomic-analysis",
+ "evolution"
+ ],
+ "updated_at": 1635513477.0
},
{
"data_format": 2,
@@ -14603,120 +13967,114 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "baxpr/demo-singularity-spm-freeview",
+ "full_name": "dcgc-bfx/singularity-base",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-demo-singularity-container-with-spm12-and-freeview\" class=\"anchor\" href=\"#demo-singularity-container-with-spm12-and-freeview\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDemo singularity container with SPM12 and Freeview\u003c/h1\u003e\n\u003cp\u003eSPM12-based pipelines require a little extra work to get them compiled and working in a\ncontainer. Freesurfer\u0027s Freeview is also included here, as it\u0027s very handy for creating\nthe PDF QA report.\u003c/p\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/baxpr/demo-singularity-matlab-fsl\"\u003ehttps://github.com/baxpr/demo-singularity-matlab-fsl\u003c/a\u003e for a lot of detailed info about\nputting Matlab code into singularity containers. This example uses the same structure.\u003c/p\u003e\n\u003cp\u003eA licensed Matlab installation is required to compile the Matlab code, but is not needed\nto run the compiled executable in the container.\u003c/p\u003e\n\u003cp\u003eSPM12 (\u003ca href=\"https://www.fil.ion.ucl.ac.uk/spm/software/spm12/\" rel=\"nofollow\"\u003ehttps://www.fil.ion.ucl.ac.uk/spm/software/spm12/\u003c/a\u003e) is not in this repository and must\nbe installed separately on the compilation host. Edit \u003ccode\u003ematlab/compile_matlab.sh\u003c/code\u003e to point\nto it.\u003c/p\u003e\n\u003cp\u003eSPM requires jumping an extra hurdle at the compilation step - we use a modified version\nof SPM\u0027s own compiler function \u003ccode\u003espm_make_standalone.m\u003c/code\u003e, found at\n\u003ccode\u003ematlab/spm_make_standalone_local.m\u003c/code\u003e. This process captures a lot of dependencies that\ncould otherwise easily be left out of the executable, with the resulting symptom that it\ncompiles just fine but fails at run time with various cryptic error messages. In addition\nto SPM12, everything in the \u003ccode\u003ematlab/src\u003c/code\u003e directory is included in the path at compile time.\nIf Matlab toolboxes are used, they will need to be added to the list of included toolboxes\nin \u003ccode\u003ematlab/spm_make_standalone_local.m\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eThe compiled Matlab executable is stored on github using git LFS. A regular git clone will\ndownload a pointer text file instead of the executable binary. The result of building a\ncontainer from that will be a cryptic error message - so, compile it yourself. Or, if\nstoring on github, download it manually and replace the pointer text file, or include this\nstep in the Singularity file if helpful - example here:\n\u003ca href=\"https://github.com/baxpr/gf-fmri/blob/master/Singularity.v1.3.4#L65\"\u003ehttps://github.com/baxpr/gf-fmri/blob/master/Singularity.v1.3.4#L65\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFreesurfer requires a license to run:\n\u003ca href=\"https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall#License\" rel=\"nofollow\"\u003ehttps://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall#License\u003c/a\u003e\nBest practice is to store your license file on the host that will run the container, and\nbind it to the container at runtime - NOT to include your own license file in the\ncontainer itself.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-dcgc-base\" class=\"anchor\" aria-hidden=\"true\" href=\"#dcgc-base\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edcgc-base\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1625615789.0
+ "updated_at": 1633510107.0
},
{
"data_format": 2,
- "description": "Singularity recipe for shellcheck",
+ "description": "Final year Major Project",
"filenames": [
- "0.5.0/Singularity"
+ "gdown.pl/Singularity"
],
- "full_name": "icaoberg/singularity-shellcheck",
+ "full_name": "arshagarwal/FA-GAN",
"latest_release": null,
- "readme": "\u003cp align=\"center\"\u003e\n \u003ca href=\"https://camo.githubusercontent.com/762c1129f266494bbbb3faff3d673040cf7b1f19d45c6e13f49b08de12f5116a/68747470733a2f2f692e70617374652e706963732f38373031383966616466363638613935386338616163383366333865373939632e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/762c1129f266494bbbb3faff3d673040cf7b1f19d45c6e13f49b08de12f5116a/68747470733a2f2f692e70617374652e706963732f38373031383966616466363638613935386338616163383366333865373939632e706e67\" width=\"300\" align=\"left\" data-canonical-src=\"https://i.paste.pics/870189fadf668a958c8aac83f38e799c.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-pema\" class=\"anchor\" href=\"#pema\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePEMA:\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-a-flexible-pipeline-for-environmental-dna-metabarcoding-analysis-of-the-16s18s-rrna-its-and-coi-marker-genes\" class=\"anchor\" href=\"#a-flexible-pipeline-for-environmental-dna-metabarcoding-analysis-of-the-16s18s-rrna-its-and-coi-marker-genes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ea flexible Pipeline for Environmental DNA Metabarcoding Analysis of the 16S/18S rRNA, ITS and COI marker genes\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003ePEMA is reposited in\u003c/em\u003e \u003ca href=\"https://hub.docker.com/r/hariszaf/pema\" rel=\"nofollow\"\u003e\u003cem\u003eDocker Hub\u003c/em\u003e\u003c/a\u003e \u003cem\u003eas well as in\u003c/em\u003e \u003ca href=\"https://singularity-hub.org/collections/2295\" rel=\"nofollow\"\u003e\u003cem\u003eSingularity Hub\u003c/em\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-a-pema-tutorial-can-be-found-here\" class=\"anchor\" href=\"#a-pema-tutorial-can-be-found-here\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eA PEMA tutorial can be found \u003ca href=\"https://docs.google.com/presentation/d/1lVH23DPa2NDNBhVvOTRoip8mraw8zfw8VQwbK4vkB1U/edit?fbclid=IwAR14PpWfPtxB8lLBBnoxs7UbG3IJfkArrJBS5f2kRA__kvGDUb8wiJ2Cy_s#slide=id.g57f092f54d_1_21\" rel=\"nofollow\"\u003e\u003cstrong\u003ehere\u003c/strong\u003e\u003c/a\u003e.\u003c/h4\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-for-any-troubles-you-may-have-when-running-pema-or-for-any-potential-improvevments-you-would-like-to-suggest-please-share-on-the-pema-gitter-community\" class=\"anchor\" href=\"#for-any-troubles-you-may-have-when-running-pema-or-for-any-potential-improvevments-you-would-like-to-suggest-please-share-on-the-pema-gitter-community\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor any troubles you may have when running PEMA or for any potential improvevments you would like to suggest, please share on the \u003ca href=\"https://gitter.im/pema-helpdesk/community\" rel=\"nofollow\"\u003ePEMA Gitter community\u003c/a\u003e.\u003c/h4\u003e\n\n\u003cp\u003e\u003ca href=\"https://gitter.im/pema-helpdesk/community?utm_source=badge\u0026amp;utm_medium=badge\u0026amp;utm_campaign=pr-badge\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7385c04b449351f12fb57a4bd6f9791ebd68a483493399e50a8f096fadde4246/68747470733a2f2f6261646765732e6769747465722e696d2f70656d612d68656c706465736b2f636f6d6d756e6974792e737667\" alt=\"Gitter\" data-canonical-src=\"https://badges.gitter.im/pema-helpdesk/community.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.gnu.org/licenses/gpl-3.0\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/400c4e52df43f6a0ab8a89b74b1a78d1a64da56a7848b9110c9d2991bb7c3105/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d47504c76332d626c75652e737667\" alt=\"License: GPL v3\" data-canonical-src=\"https://img.shields.io/badge/License-GPLv3-blue.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" href=\"#table-of-contents\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTable of Contents\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#pema-biodiversity-in-all-its-different-levels\"\u003ePEMA: biodiversity in all its different levels\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#a-container-based-tool\"\u003e A container-based tool\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#how-to-run-pema\"\u003eHow to run PEMA\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#parameters-file\"\u003eParameters\u0027 file\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#pema-on-hpc\"\u003ePEMA on HPC\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#prerequisites-1\"\u003ePrerequisites\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#installing-1\"\u003eInstalling\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#running-pema-1\"\u003eRunning PEMA\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#example\"\u003eExample\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#pema-on-a-simple-pc\"\u003ePEMA on a simple PC\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#prerequisites\"\u003ePrerequisites\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#installing\"\u003eInstalling\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"#running-pema\"\u003eRunning PEMA\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#step-1---build-a-docker-container\"\u003eStep 1 - Build a Docker container\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#step-2---run-pema\"\u003eStep 2 - Run PEMA\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#the-phyloseq-r-package\"\u003ephyloseq - for a downstream ecological analysis\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#acknowledgments\"\u003eAcknowledgments\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#license\"\u003eLicense\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#citation\"\u003eCitation\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-diff\"\u003e\u003cpre\u003e\u003cspan class=\"pl-mi1\"\u003e\u003cspan class=\"pl-mi1\"\u003e+\u003c/span\u003e convertion of the Illumina raw data is now implemented in the framework of PEMA\u003c/span\u003e\n\u003cspan class=\"pl-mi1\"\u003e\u003cspan class=\"pl-mi1\"\u003e+\u003c/span\u003e PEMA now supports 2 extra marker genes, 18S rRNA and ITS. \u003c/span\u003e\n\u003cspan class=\"pl-mi1\"\u003e\u003cspan class=\"pl-mi1\"\u003e+\u003c/span\u003e PEMA is now available for macOS!\u003c/span\u003e\n\u003cspan class=\"pl-mi1\"\u003e\u003cspan class=\"pl-mi1\"\u003e+\u003c/span\u003e for anything feel free to contact me at: haris-zaf@hcmr.gr\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-pema-biodiversity-in-all-its-different-levels\" class=\"anchor\" href=\"#pema-biodiversity-in-all-its-different-levels\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePEMA: biodiversity in all its different levels\u003c/h1\u003e\n\u003cp\u003ePEMA supports the metabarcoding analysis of four marker genes, \u003cstrong\u003e16S rRNA\u003c/strong\u003e (Bacteria), \u003cstrong\u003eITS\u003c/strong\u003e (Fungi) as well as \u003cstrong\u003eCOI\u003c/strong\u003e and \u003cstrong\u003e18S rRNA\u003c/strong\u003e (metazoa). As input, PEMA accepts .fastq.gz files as returned by Illumina sequencing platforms.\u003c/p\u003e\n\u003cp\u003ePEMA processes the reads from each sample and \u003cstrong\u003ereturns an OTU- or an ASV-table with the taxonomies\u003c/strong\u003e of the taxa found and their abundances in each sample. It also returns statistics and a FASTQC diagram about the quality of the reads for each sample. Finally, PEMA supports \u003cstrong\u003edownstream ecological analysis\u003c/strong\u003e of the profiles retrieved, facilitated by the \u003ca href=\"http://joey711.github.io/phyloseq/index.html\" rel=\"nofollow\"\u003ephyloseq\u003c/a\u003e R package.\u003c/p\u003e\n\u003cp\u003ePEMA supports both OTU clustering (thanks to VSEARCH and CROP algorithms) and ASV inference (via SWARM) for all four marker genes.\u003c/p\u003e\n\u003cp\u003eFor the case of the 16S rRNA marker gene, PEMA includes two separate approaches for taxonomy assignment: alignment-based and phylogenetic-based. For the latter, a reference tree of 1000 taxa was created using SILVA_132_SSURef, EPA-ng and RaxML-ng.\u003c/p\u003e\n\u003cp\u003ePEMA has been implemented in \u003ca href=\"https://pcingola.github.io/BigDataScript/\" rel=\"nofollow\"\u003eBigDataScript\u003c/a\u003e programming language. BDS\u2019s ad hoc task parallelism and task synchronization, supports heavyweight computation. Thus, PEMA inherits such features and it also supports roll-back checkpoints and on-demand partial pipeline execution. In addition, PEMA takes advantage of all the computational power available on a specific machine; for example, if PEMA is executed on a personal laptop with 4 cores, it is going to use all four of them.\u003c/p\u003e\n\u003cp\u003eFinally, container-based technologies such as Docker and Singularity, make PEMA easy accessible for all operating systems.\nAs you can see in the \u003ca href=\"https://github.com/hariszaf/pema/blob/master/help_files/GitHub%20tutorial.pdf\"\u003ePEMA_tutorial.pdf\u003c/a\u003e, once you have either Docker or Singularity on your computational environment (see below which suits your case better), running PEMA is cakewalk. You can also find the \u003ca href=\"https://docs.google.com/presentation/d/1lVH23DPa2NDNBhVvOTRoip8mraw8zfw8VQwbK4vkB1U/edit?usp=sharing\" rel=\"nofollow\"\u003e\u003cstrong\u003ePEMA tutorial\u003c/strong\u003e\u003c/a\u003e as a Google Slides file.\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-a-container-based-tool\" class=\"anchor\" href=\"#a-container-based-tool\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eA container-based tool\u003c/h1\u003e\n\u003cp\u003ePEMA can run either on a HPC environment (server, cluster etc) or on a simple PC. However, we definitely suggest to run it on an HPC environment to exploit the full potential of PEMA. Running on a powerful server or a cluster can be time-saving since it would require significantly less computational time than in a common PC. However, for analyses with a small number of samples, a common PC can suffice.\u003c/p\u003e\n\u003cp\u003eThere is one \u003cstrong\u003emajor difference\u003c/strong\u003e between running PEMA on a common PC than running it on a HPC environment. In the first case, PEMA runs through \u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003e\u003cstrong\u003eDocker\u003c/strong\u003e\u003c/a\u003e, while in the latter one, it runs through \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003e\u003cstrong\u003eSingularity\u003c/strong\u003e\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eOn the following chapters, you can find how to install PEMA both in Docker and Singlularity including examples.\u003c/p\u003e\n\u003cp\u003eRunning PEMA is exactly \u003cstrong\u003ethe same\u003c/strong\u003e procedure in both of those cases.\u003c/p\u003e\n\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to-run-pema\" class=\"anchor\" href=\"#how-to-run-pema\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run PEMA\u003c/h2\u003e\n\u003cp\u003eAssuming you have either Docker or Singularity on your system (see below how to get them).\nYou need to create a directory where you will have everything PEMA needs - we will call it \u003cem\u003e\u003cstrong\u003eanalysis directory\u003c/strong\u003e\u003c/em\u003e.\u003c/p\u003e\n\u003cp\u003eIn this directory, you need to add the following \u003cstrong\u003emandatory\u003c/strong\u003e files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe \u003ca href=\"https://github.com/hariszaf/pema/blob/master/analysis_directory/parameters.tsv\"\u003e\u003cem\u003e\u003cstrong\u003eparameters.tsv\u003c/strong\u003e\u003c/em\u003e\u003c/a\u003e file (you can download it from this repository and then \u003cstrong\u003ecomplete it\u003c/strong\u003e according to the needs of your analysis)\u003c/li\u003e\n\u003cli\u003ea subdirectory called \u003cem\u003e\u003cstrong\u003emydata\u003c/strong\u003e\u003c/em\u003e where your .fastq.gz files will be located \u003cbr\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIf your need to perform phyloseq, in the analysis directory you also need to add the following \u003cstrong\u003eoptionally\u003c/strong\u003e files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe \u003ca href=\"https://github.com/hariszaf/pema/blob/master/analysis_directory/phyloseq_in_PEMA.R\"\u003e\u003cem\u003e\u003cstrong\u003ephyloseq_in_PEMA.R\u003c/strong\u003e\u003c/em\u003e\u003c/a\u003e which you can also download from this repository and set it the way you want (that is an R script which we have implemented and has some main features that need to stay always the same in order to be executed as part of PEMA and some parts where the user can set what exactly needs to get from the phyloseq package)\u003c/li\u003e\n\u003cli\u003ethe \u003ca href=\"https://raw.githubusercontent.com/hariszaf/pema/master/analysis_directory/metadata.csv\" rel=\"nofollow\"\u003e\u003cem\u003e\u003cstrong\u003emetadata.csv\u003c/strong\u003e\u003c/em\u003e\u003c/a\u003e file which has to be in a \u003cstrong\u003ecomma separated\u003c/strong\u003e format (you can find an example of this file on PEMA\u0027s GitHub repository).\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-attention--\" class=\"anchor\" href=\"#attention--\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003cstrong\u003eAttention!\u003c/strong\u003e \u003cbr\u003e\n\u003c/h3\u003e\n\u003cp\u003ePEMA will \u003cstrong\u003efail\u003c/strong\u003e unless you name the aforementioned files and directories \u003cstrong\u003eexactly\u003c/strong\u003e as described above.\n\u003cbr\u003e\u003c/p\u003e\n\u003cp\u003eHere is an example of how your \u003cem\u003eanalysis directory\u003c/em\u003e should be in case you do want a phyloseq analysis:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003euser@home-PC:~/Desktop/analysis_directory$ ls\nmydata parameters.tsv phyloseq_in_PEMA.R metadata.csv\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand in case you do not:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003euser@home-PC:~/Desktop/analysis_directory$ ls\nmydata parameters.tsv \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/hariszaf/pema/tree/master/analysis_directory\"\u003e\u003cstrong\u003eHere\u003c/strong\u003e\u003c/a\u003e you can find an example of an \u003cem\u003eanalysis directory\u003c/em\u003e.\u003c/p\u003e\n\u003cp\u003eAfter you have prepared this \u003cem\u003eanalysis directory\u003c/em\u003e you are ready to run PEMA (see below).\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eAn extended list with PEMA\u0027s ouput can be found \u003ca href=\"https://github.com/hariszaf/pema/blob/master/help_files/PEMA\u0027s%20output%20files.md\"\u003e\u003cstrong\u003ehere\u003c/strong\u003e\u003c/a\u003e.\u003c/strong\u003e\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-parameters-file\" class=\"anchor\" href=\"#parameters-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParameters\u0027 file\u003c/h1\u003e\n\u003cp\u003eThe most crucial component in running PEMA is the parameters file. This file must be located \u003cstrong\u003ein\u003c/strong\u003e the \u003cem\u003eanalysis directory\u003c/em\u003e and the user needs to fill it \u003cstrong\u003eevery time\u003c/strong\u003e PEMA is about to be called. If you need more than one analyses to run, then you need to make copies of the parameters\u0027 file and have one of those in eah of the analysis directrories you create.\u003c/p\u003e\n\u003cp\u003eSo, here is the \u003ca href=\"https://github.com/hariszaf/pema/blob/master/analysis_directory/parameters.tsv\"\u003e\u003cem\u003e\u003cstrong\u003eparameters.tsv\u003c/strong\u003e\u003c/em\u003e\u003c/a\u003e file as it looks like, in a study case of our own.\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-pema-on-hpc\" class=\"anchor\" href=\"#pema-on-hpc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePEMA on HPC\u003c/h1\u003e\n\u003cp\u003ePEMA is best to run on HPC (server, cluster, cloud). Usually environmental data are quite large and the whole process has huge computational demands. To get PEMA running on your HPC you (actually your system administrator) need to install Singularity as described below.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-prerequisites\" class=\"anchor\" href=\"#prerequisites\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003e\u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/quick_start.html#quick-installation-steps\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e\u003c/strong\u003e is a free, cross-platform and open-source computer program that performs operating-system-level virtualization also known as containerization. One of the main uses of Singularity is to bring containers and reproducibility to scientific computing and the high-performance computing (HPC) world.\u003c/p\u003e\n\u003cp\u003eSingularity needs a Linux/Unix system to run.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing\" class=\"anchor\" href=\"#installing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling\u003c/h2\u003e\n\u003cp\u003eAfter you install Singularity in your environment and open it, you need to download PEMA\u0027s image from Singularity Hub, by running the command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity pull shub://hariszaf/pema:v.1.1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNow you have PEMA on your environment. But there is still one really \u003cstrong\u003eimportant\u003c/strong\u003e thing that you need to do! Please \u003cstrong\u003edownload\u003c/strong\u003e the \u003ca href=\"https://github.com/hariszaf/pema/blob/master/analysis_directory/parameters.tsv\"\u003e\u003cem\u003eparameters.tsv\u003c/em\u003e\u003c/a\u003e file and move it or copy it to the same directory with your raw data.\u003c/p\u003e\n\u003cp\u003eNow you are ready to go!\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-pema\" class=\"anchor\" href=\"#running-pema\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning PEMA\u003c/h2\u003e\n\u003cp\u003eSingularity permits the use of a job scheduler that allocates computional resources on clusters and at the same time, works as a queuing system, as \u003cstrong\u003e\u003ca href=\"https://slurm.schedmd.com/overview.html\" rel=\"nofollow\"\u003eSlurm\u003c/a\u003e\u003c/strong\u003e. This way you are able to create a job as you usually do in your system and after editing the parameters file as needed, run PEMA as a job on your cluster.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-example\" class=\"anchor\" href=\"#example\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e#SBATCH --partition=batch\n#SBATCH --nodes=1\n#SBATCH --ntasks-per-node=20\n#SBATCH --mem=\n# Memory per node specification is in MB. It is optional.\n# The default limit is 3000MB per core.\n#SBATCH --job-name=\"testPema\"\n#SBATCH --output=PEMA.output\n#SBATCH --mail-user=haris-zafr@hcmr.gr\n#SBATCH --mail-type=ALL\n#SBATCH --requeue\n\n\nsingularity run -B /\u0026lt;path\u0026gt;/\u0026lt;of\u0026gt;/\u0026lt;input\u0026gt;/\u0026lt;directory\u0026gt;/:/mnt/analysis /\u0026lt;path\u0026gt;/\u0026lt;of\u0026gt;/\u0026lt;PEMA_container\u0026gt;\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIn the above example, we set the cluster \"Zorba\", to run PEMA in 1 node, with 20 cores.\u003c/p\u003e\n\u003cp\u003eFor further information, you can always check \u003ca href=\"https://docs.google.com/presentation/d/1lVH23DPa2NDNBhVvOTRoip8mraw8zfw8VQwbK4vkB1U/edit?fbclid=IwAR14PpWfPtxB8lLBBnoxs7UbG3IJfkArrJBS5f2kRA__kvGDUb8wiJ2Cy_s#slide=id.g57f092f54d_1_21\" rel=\"nofollow\"\u003ePEMA\u0027s tutorial\u003c/a\u003e.\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-pema-on-a-simple-pc\" class=\"anchor\" href=\"#pema-on-a-simple-pc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePEMA on a simple PC\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-prerequisites-1\" class=\"anchor\" href=\"#prerequisites-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eTo run PEMA in a simple PC on your own environment, you first need to install \u003ca href=\"https://docs.docker.com/install/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e, in case you do not already have it.\u003c/p\u003e\n\u003cp\u003eYou should check your software version. A version of Docker is avalable for all Windows, Mac and Linux. If you have Windows 10 Pro or your Mac\u0027s hardware in after 2010, then you can insall Docker straightforward. Otherwise, you need to install the \u003ca href=\"https://docs.docker.com/toolbox/\" rel=\"nofollow\"\u003eDocker toolbox\u003c/a\u003e instead. You can check if your System Requirements are according to the ones mentioned below in order to be sure what you need to do.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eSystem Requirements\u003c/strong\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e**__Windows 10 64bit__**:\nPro, Enterprise or Education (1607 Anniversary Update, Build 14393 or later).\nVirtualization is enabled in BIOS. Typically, virtualization is enabled by default.\nThis is different from having Hyper-V enabled. For more detail see Virtualization must be enabled in Troubleshooting.\nCPU SLAT-capable feature.\nAt least 4GB of RAM.\n\n**__Mac__**\nMac hardware must be a 2010 or newer model, with Intel\u2019s hardware support for memory management unit (MMU)\nvirtualization, including Extended Page Tables (EPT) and Unrestricted Mode. You can check to see if your machine\nhas this support by running the following command in a terminal:\nsysctl kern.hv_support macOS El Capitan 10.11 and newer macOS releases are supported.\nWe recommend upgrading to the latest version of macOS.\nAt least 4GB of RAM\nVirtualBox prior to version 4.3.30 must NOT be installed (it is incompatible with Docker for Mac).\nIf you have a newer version of VirtualBox installed, it\u2019s fine.\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-1\" class=\"anchor\" href=\"#installing-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling\u003c/h2\u003e\n\u003cp\u003eAfter you install Docker in your environment and run it, the only thing you need to do, is to download PEMA\u0027s image, by running the command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull hariszaf/pema\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe PEMA image file is a quite large (~3Gb), so it will take a while until it is downloaded in your computer system.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-pema-1\" class=\"anchor\" href=\"#running-pema-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning PEMA\u003c/h2\u003e\n\u003cp\u003eRunning PEMA has two discrete steps.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-step-1---build-a-docker-container\" class=\"anchor\" href=\"#step-1---build-a-docker-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 1 - Build a Docker container\u003c/h3\u003e\n\u003cp\u003eAt first, you need to let Docker have access in your dataset. To provide access you need to run the following command and specifying the path to where your data is stored, i.e. changing the \u0026lt;path_to_analysis_directory\u0026gt; accordingly:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -it -v /\u0026lt;path_to_analysis_directory\u0026gt;/:/mnt/analysis hariszaf/pema\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAfter you run the command above, you have now built a Docker container, in which you can run PEMA!\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-step-2---run-pema\" class=\"anchor\" href=\"#step-2---run-pema\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 2 - Run PEMA\u003c/h3\u003e\n\u003cp\u003eNow, being inside the PEMA container, the only thing remaining to do, is to run PEMA\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./PEMA_v1.bds\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePEMA is now running. The runtime of PEMA depends on the computational features of your environment, on the size of your data, as well as the parameters you chose.\u003c/p\u003e\n\u003cp\u003ePlease, keep in mind that when you need to copy a whole directory, then you always have to put \"/\" in the end of the path that describes where the directory is located.\u003c/p\u003e\n\u003cp\u003eFinally, you will find the PEMA output in the analysis directory on your computer. \u003cbr\u003e\nAs the output directory is mounted into the built Docker container, you can copy its contents wherever you want. However, in case you want to remove it permanently, you need to do this as a sudo user.\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-the-phyloseq-r-package\" class=\"anchor\" href=\"#the-phyloseq-r-package\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThe \"phyloseq\" R package\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003efor a downstream ecological analysis of OTUs/ASVs retrieved\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003ePEMA performs all the basic functions of the \"phyloseq\" R package. In addition, it performs certain functions of the \u003ca href=\"https://cran.r-project.org/web/packages/vegan/index.html\" rel=\"nofollow\"\u003e\u003cem\u003e\u003cstrong\u003evegan\u003c/strong\u003e\u003c/em\u003e\u003c/a\u003e R package.\u003c/p\u003e\n\u003cp\u003eWhen the user asks for a downstream analysis using the \"phyloseq\" R package, then an extra input file called \u003ca href=\"https://github.com/hariszaf/pema/blob/master/analysis_directory/phyloseq_in_PEMA.R\"\u003e\u003cem\u003e\u003cstrong\u003e\"phyloseq_script.R\"\u003c/strong\u003e\u003c/em\u003e\u003c/a\u003e needs to be imported in the \"analysis_directory\". In PEMA\u0027s main repository, you can find a template of this file; this file needs to be as it would run on your own computer, as you would run \u003cem\u003ephyloseq\u003c/em\u003e in any case. PEMA will create the \u003cem\u003e\"phyloseq object\"\u003c/em\u003e automatically and then it will perform the analysis as asked. The output will be placed in an extra subfolder in the main output directory of PEMA called \u003cem\u003ephyloseq_analysis\u003c/em\u003e.\u003c/p\u003e\n\u003cp\u003eIn addition, the \u003cem\u003e\u003cstrong\u003emetadata.tsv\u003c/strong\u003e\u003c/em\u003e file is also required when the phyloseq option has been selected. An example of this file you can find \u003ca href=\"https://raw.githubusercontent.com/hariszaf/pema/master/analysis_directory/metadata.csv\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-acknowledgments\" class=\"anchor\" href=\"#acknowledgments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgments\u003c/h1\u003e\n\u003cp\u003ePEMA uses a series of tools, datasets as well as Big Data Script language. We thank all the groups that developed them.\nThe tools \u0026amp; databases that PEMA uses are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBigDataScript programming language - \u003ca href=\"https://pcingola.github.io/BigDataScript/\" rel=\"nofollow\"\u003ehttps://pcingola.github.io/BigDataScript/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFASTQC - \u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003ehttps://www.bioinformatics.babraham.ac.uk/projects/fastqc/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\u03a4rimmomatic - \u003ca href=\"http://www.usadellab.org/cms/?page=trimmomatic\" rel=\"nofollow\"\u003ehttp://www.usadellab.org/cms/?page=trimmomatic\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eCutadapt - \u003ca href=\"https://cutadapt.readthedocs.io/en/stable/\" rel=\"nofollow\"\u003ehttps://cutadapt.readthedocs.io/en/stable/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eBayesHammer - included in SPAdes - \u003ca href=\"http://cab.spbu.ru/software/spades/\" rel=\"nofollow\"\u003ehttp://cab.spbu.ru/software/spades/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ePANDAseq - \u003ca href=\"https://github.com/neufeld/pandaseq\"\u003ehttps://github.com/neufeld/pandaseq\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eOBITools - \u003ca href=\"https://pythonhosted.org/OBITools/welcome.html\" rel=\"nofollow\"\u003ehttps://pythonhosted.org/OBITools/welcome.html\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eBLAST Command Line Applications - \u003ca href=\"https://www.ncbi.nlm.nih.gov/books/NBK52640/\" rel=\"nofollow\"\u003ehttps://www.ncbi.nlm.nih.gov/books/NBK52640/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eVSEARCH-2.9.1 - \u003ca href=\"https://github.com/torognes/vsearch/releases/tag/v2.9.1\"\u003ehttps://github.com/torognes/vsearch/releases/tag/v2.9.1\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eSWARM - \u003ca href=\"https://github.com/torognes/swarm\"\u003ehttps://github.com/torognes/swarm\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eCROP - \u003ca href=\"https://github.com/tingchenlab/CROP\"\u003ehttps://github.com/tingchenlab/CROP\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eCREST - \u003ca href=\"https://github.com/lanzen/CREST\"\u003ehttps://github.com/lanzen/CREST\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eRDPClassifier - \u003ca href=\"https://github.com/rdpstaff/classifier\"\u003ehttps://github.com/rdpstaff/classifier\u003c/a\u003e\n(RPDtools are required in order to execute RDPClassifier)\u003c/li\u003e\n\u003cli\u003eSILVA db - \u003ca href=\"https://www.arb-silva.de/no_cache/download/archive/current/Exports/\" rel=\"nofollow\"\u003ehttps://www.arb-silva.de/no_cache/download/archive/current/Exports/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eMIDORI db - \u003ca href=\"http://reference-midori.info/index.html\" rel=\"nofollow\"\u003ehttp://reference-midori.info/index.html\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\"phat\" algorithm, from the \"gappa\" package - \u003ca href=\"https://github.com/lczech/gappa/wiki/Subcommand:-phat\"\u003ehttps://github.com/lczech/gappa/wiki/Subcommand:-phat\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eMAFFT - \u003ca href=\"https://mafft.cbrc.jp/alignment/software/\" rel=\"nofollow\"\u003ehttps://mafft.cbrc.jp/alignment/software/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eRAxML -ng - \u003ca href=\"https://github.com/amkozlov/raxml-ng\"\u003ehttps://github.com/amkozlov/raxml-ng\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ePaPaRa - \u003ca href=\"https://cme.h-its.org/exelixis/web/software/papara/index.html\" rel=\"nofollow\"\u003ehttps://cme.h-its.org/exelixis/web/software/papara/index.html\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eEPA-ng - \u003ca href=\"https://github.com/Pbdas/epa-ng\"\u003ehttps://github.com/Pbdas/epa-ng\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ephyloseq R package - \u003ca href=\"http://joey711.github.io/phyloseq/index.html\" rel=\"nofollow\"\u003ehttp://joey711.github.io/phyloseq/index.html\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003evegan R package - \u003ca href=\"https://cran.r-project.org/web/packages/vegan/index.html\" rel=\"nofollow\"\u003ehttps://cran.r-project.org/web/packages/vegan/index.html\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAnd of course the container-based technologies:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDocker - \u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003ehttps://www.docker.com/\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eSingularity - \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003ehttps://sylabs.io/singularity/\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h1\u003e\n\u003cp\u003ePEMA is under the GNU GPLv3 license (for 3rd party components separate licenses apply).\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-citation\" class=\"anchor\" href=\"#citation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h1\u003e\n\u003cp\u003eHaris Zafeiropoulos, Ha Quoc Viet, Katerina Vasileiadou, Antonis Potirakis, Christos Arvanitidis, Pantelis Topalis, Christina Pavloudi, Evangelos Pafilis, PEMA: a flexible Pipeline for Environmental DNA Metabarcoding Analysis of the 16S/18S ribosomal RNA, ITS, and COI marker genes, GigaScience, Volume 9, Issue 3, March 2020, giaa022, \u003ca href=\"https://doi.org/10.1093/gigascience/giaa022\" rel=\"nofollow\"\u003ehttps://doi.org/10.1093/gigascience/giaa022\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch2\u003e\u003ca id=\"user-content-official-implementation-of-the-paper-titled-fa-gan-high-resolution-face-aging\" class=\"anchor\" aria-hidden=\"true\" href=\"#official-implementation-of-the-paper-titled-fa-gan-high-resolution-face-aging\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOfficial Implementation of the paper titled \u003ca href=\"https://ieeexplore.ieee.org/document/9514090\" rel=\"nofollow\"\u003eFA-GAN: High Resolution Face-Aging\u003c/a\u003e\n\u003c/h2\u003e\n\u003ch2\u003e\u003ca id=\"user-content-steps-to-run-using-docker-using-nvidia-gpus\" class=\"anchor\" aria-hidden=\"true\" href=\"#steps-to-run-using-docker-using-nvidia-gpus\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSteps to run using docker using Nvidia gpus:\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eInstall docker using \u003ca href=\"https://docs.docker.com/engine/install/ubuntu/\" rel=\"nofollow\"\u003edocker installation guide\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eInstall nvidia-docker2 using \u003ca href=\"https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker\" rel=\"nofollow\"\u003envidia-docker2 installation guide\u003c/a\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003cstrong\u003eNote: Ensure to check the latest versions of nvidia cuda runtime and coroborrate with pytorch cuda requirements , this guide was uploaded on 4/9/2020.\u003c/strong\u003e\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eBuild the image using \u003ccode\u003edocker build -f docker -t slimgan:gpu\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eRun the Container using \u003ccode\u003edocker run --gpus all --shm-size 10G -it slimgan:gpu\u003c/code\u003e.\n5.Run the \u003ccode\u003envidia-smi\u003c/code\u003e to check if gpus work.\u003c/li\u003e\n\u003cli\u003eRun thr command \u003ccode\u003epython main.py --rafd_image_dir Big_slim --num_iters 30000 --sample_step 500 --c_dim 2 --log_step 100 --model_save_step 5000 --batch_size 64 --n_critic 2 --rafd_crop_size 128 --image_size 128 --resume_iters 20000 --num_workers 5\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-steps-to-run-the-code-on-google-colab-just-3-lines-of-code\" class=\"anchor\" aria-hidden=\"true\" href=\"#steps-to-run-the-code-on-google-colab-just-3-lines-of-code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSteps to run the code on Google colab (just 3 lines of code):\u003c/h2\u003e\n\u003col start=\"0\"\u003e\n\u003cli\u003eClone the code by running the command \u003ccode\u003e!git clone https://username:password@github.com/arshagarwal/C_slim_gan.git -b arsh_spectral\u003c/code\u003e .\n\u003cstrong\u003eReplace the username and password with your github username and password respectively.\u003c/strong\u003e\n\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003ecd C_slim_gan\u003c/code\u003e to navigate to the \u003cstrong\u003eC_slim_gan\u003c/strong\u003e directory.\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003e!bash import_dataset.sh\u003c/code\u003e to import the \u003cstrong\u003eBig slim dataset\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003eRun the command \u003ccode\u003e! python main.py --rafd_image_dir Big_slim --num_iters 20000 --sample_step 500 --c_dim 2 --log_step 100 --model_save_step 5000 --batch_size 64 --n_critic 2 --rafd_crop_size 128 --image_size 128 \u003c/code\u003e to train on the \u003cstrong\u003eBig_slim_dataset\u003c/strong\u003e.\n\u003cstrong\u003eAlternatively to train on custom dataset replace the \u003ccode\u003eslim_dataset/Train_dataset\u003c/code\u003e string with the path of your custom dataset.\u003c/strong\u003e\u003cbr\u003e\nFor further options such as \u003cstrong\u003enumber of epochs, batch_size etc\u003c/strong\u003e refer \u003cstrong\u003emain.py\u003c/strong\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\u003ca id=\"user-content-note-after-running-step-3-after-every-sample-stepth-iteration-generated-samples-will-be-stored-in-stargansamples-folder-for-performance-evaluation\" class=\"anchor\" aria-hidden=\"true\" href=\"#note-after-running-step-3-after-every-sample-stepth-iteration-generated-samples-will-be-stored-in-stargansamples-folder-for-performance-evaluation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNote: After running step 3 after every sample stepth iteration generated samples will be stored in stargan/samples folder for performance evaluation.\u003c/h3\u003e\n\u003ch2\u003e\u003ca id=\"user-content-for-continuing-training-from-20000-iteration-to-30000-iteration-follow\" class=\"anchor\" aria-hidden=\"true\" href=\"#for-continuing-training-from-20000-iteration-to-30000-iteration-follow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor Continuing training from 20000 iteration to 30000 iteration follow:\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ccode\u003epython main.py --rafd_image_dir Big_slim --num_iters 30000 --sample_step 500 --c_dim 2 --log_step 100 --model_save_step 5000 --batch_size 64 --n_critic 2 --rafd_crop_size 128 --image_size 128 --resume_iters 20000\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1622859451.0
+ "updated_at": 1654958671.0
},
{
"data_format": 2,
- "description": "Singularity recipe for ABySS",
+ "description": "Script allowing to convert a NIfTI file with ROIs to the DICOM SEG format.",
"filenames": [
- "2.1.5/Singularity"
+ "Singularity.nifti-to-seg"
],
- "full_name": "icaoberg/singularity-abyss",
+ "full_name": "roger-schaer/nifti-to-seg",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-hyperfine\" class=\"anchor\" href=\"#singularity-hyperfine\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-hyperfine\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sharkdp/hyperfine\"\u003ehyperfine\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ehyperfine\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hyperfine/1.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hyperfine\u003c/code\u003e as \u003ccode\u003e1.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-nifti-to-seg-converter\" class=\"anchor\" aria-hidden=\"true\" href=\"#nifti-to-seg-converter\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNIfTI to SEG Converter\u003c/h1\u003e\n\u003cp\u003eThis project allows you to convert a NIfTI file containing\none or more non-overlapping regions-of-interest (ROIs)\ninto the DICOM Segmentation (SEG) format.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-hidden=\"true\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003cp\u003eThe following instructions will help you to perform your\nfirst NIfTI to SEG conversion.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h3\u003e\n\u003cp\u003eYou can either run the project directly with Python, or\nuse Docker instead. If you want to run it directly with\nPython, you need to install the dependencies listed in\nrequirements.txt:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enumpy\ngit+https://github.com/roger-schaer/pydicom-seg.git#egg=pydicom-seg\nSimpleITK\npalettable\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-general-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#general-usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGeneral usage\u003c/h3\u003e\n\u003cp\u003eThe script expects the following arguments:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e-i, --dicom_input\u003c/code\u003e : The path of the folder with the\noriginal DICOM images (from which ROIs were extracted)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-n, --nifti_roi\u003c/code\u003e : The path of the NIfTI file containing\nthe ROI(s) to convert to DICOM SEG\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-o, --output_seg\u003c/code\u003e : The path where the created DICOM SEG\nfile should be saved\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-l, --label_map\u003c/code\u003e : \u003cem\u003e(OPTIONAL)\u003c/em\u003e The path to a CSV file containing\npairs of \u003ccode\u003e\u0026lt;label_id\u0026gt;,\u0026lt;label_name\u0026gt;\u003c/code\u003e entries\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-d, --match-orientation\u003c/code\u003e : \u003cem\u003e(OPTIONAL)\u003c/em\u003e No value;\npresence of argument indicates that orientation of NIfTI file will be matched to DICOM images\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-s, --match-size\u003c/code\u003e : \u003cem\u003e(OPTIONAL)\u003c/em\u003e No value;\npresence of argument indicates that size of NIfTI file will be matched to DICOM images.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo execute the script, run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython nifti_to_seg.py -i /path/to/dicom/images -n /path/to/nifti.nii -o /path/to/seg.dcm\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhen the script is executed, it will analyze the provided\nNIfTI file to identify the various ROIs saved within. This\nis done by detecting the \u003cstrong\u003eunique\u003c/strong\u003e pixel values present in\nthe image.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-without-a-label-map-file-manual-label-name-entry\" class=\"anchor\" aria-hidden=\"true\" href=\"#without-a-label-map-file-manual-label-name-entry\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWithout a label map file (manual label name entry)\u003c/h4\u003e\n\u003cp\u003eIf you have not provided a label map file path, you will then\nbe prompted to map each of these values to a string describing\nthe content of the associated ROI. To know which pixel value\ncorresponds to which ROI, you may need to refer to the software\nthat generated the NIfTI file (e.g. ITK-SNAP, which uses label\nnumbers starting from 1).\u003c/p\u003e\n\u003cp\u003eThe output looks like this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFound X regions in the NIfTI file, please input a name for each of them.\n(1/X) - Please insert a name for the region with the assigned number N: ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce the names have been input, the SEG file will be\ngenerated and saved at the path provided in the \u003ccode\u003e-o\u003c/code\u003e\nargument.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-with-a-label-map-file-bulk-processing\" class=\"anchor\" aria-hidden=\"true\" href=\"#with-a-label-map-file-bulk-processing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWith a label map file (bulk processing)\u003c/h4\u003e\n\u003cp\u003eInstead of inputting the label mappings manually, you can also provide\nthe \u003ccode\u003e-l\u003c/code\u003e / \u003ccode\u003e--label_map\u003c/code\u003e parameter pointing to a CSV file containing\npairs of \u003ccode\u003e\u0026lt;label_id\u0026gt;,\u0026lt;label_name\u0026gt;\u003c/code\u003e entries.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNOTE :\u003c/strong\u003e This methods requires you to know in advance the existing\npixel values in the NIfTI segmentation file. Only exhaustive files\ncontaining a label for each identified pixel value are accepted.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage-with-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage-with-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage with Docker\u003c/h2\u003e\n\u003cp\u003eTo run the script using docker, use the following syntax:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --rm -it \\\n-v /path/to/data/on/host:/data \\\nmedgift/nifti-to-seg:latest \\\n--dicom_input=/data/dicom_folder \\\n--nifti_roi=/data/seg.nii \\\n--output_seg=/data/seg.dcm \\\n--label_map=/data/labels.csv (OPTIONAL)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe parameters are the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--rm\u003c/code\u003e removes the container once the script completes.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-it\u003c/code\u003e allows interacting with the container in the console.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emedgift/nifti-to-seg:latest\u003c/code\u003e is the Docker image.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-v\u003c/code\u003e maps a folder from your computer to the container (on \u003ccode\u003e/data\u003c/code\u003e).\nPut all necessary files in that folder (DICOM \u0026amp; NIfTI), and the\noutput will be written there as well.\u003c/li\u003e\n\u003cli\u003eThe other parameters are the same as for general Python usage.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage-with-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage with Singularity\u003c/h2\u003e\n\u003cp\u003eSee the \u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003esingularity\u003c/a\u003e pages for setup.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-building-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding Image\u003c/h3\u003e\n\u003cp\u003eEnter the directory where this readme file is located.\nBuild the singularity image with name \u003cem\u003emeshtool.sif\u003c/em\u003e by\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e sudo singularity build nifti_to_seg.sif Singularity.nifti-to-seg\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-meshtool-from-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-meshtool-from-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning MeshTool from Singularity Image\u003c/h3\u003e\n\u003cp\u003eYou can enter a shell in the singularity container by\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell -e /path/to/nifti_to_seg.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLeave the singularity shell again with \u003ccode\u003eexit\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-authors\" class=\"anchor\" aria-hidden=\"true\" href=\"#authors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eRoger Schaer\u003c/strong\u003e - \u003cem\u003eInitial work\u003c/em\u003e - \u003ca href=\"https://github.com/roger-schaer\"\u003eroger-schaer\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThis project is licensed under the MIT License - see the \u003ca href=\"LICENSE.md\"\u003eLICENSE.md\u003c/a\u003e file for details\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-acknowledgments\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgments\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/razorx89\"\u003erazorx89\u003c/a\u003e for the great work\non \u003ca href=\"https://github.com/razorx89/pydicom-seg\"\u003epydicom-seg\u003c/a\u003e,\nwhich is the core of this script\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1622730467.0
+ "updated_at": 1654849338.0
},
{
"data_format": 2,
- "description": "Singularity recipe for methylpy",
+ "description": "\u62ff\u6765\u505a\u6027\u80fd\u4f18\u5316...fork from https://github.com/ot4f/stgcn_gan",
"filenames": [
- "1.4.3/Singularity"
+ "Singularity"
],
- "full_name": "icaoberg/singularity-methylpy",
+ "full_name": "asifreal/stgcn_gan",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-hyperfine\" class=\"anchor\" href=\"#singularity-hyperfine\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-hyperfine\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sharkdp/hyperfine\"\u003ehyperfine\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ehyperfine\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hyperfine/1.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hyperfine\u003c/code\u003e as \u003ccode\u003e1.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-stgcn_gan\" class=\"anchor\" aria-hidden=\"true\" href=\"#stgcn_gan\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003estgcn_gan\u003c/h1\u003e\n\u003cp\u003eTraining STGCN with WGAN\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1622730662.0
+ "updated_at": 1658914223.0
},
{
"data_format": 2,
- "description": "Singularity recipe for hyperfine",
+ "description": null,
"filenames": [
- "1.11.0/Singularity"
+ "Singularity"
],
- "full_name": "icaoberg/singularity-hyperfine",
- "latest_release": "v1.11.0",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-hyperfine\" class=\"anchor\" href=\"#singularity-hyperfine\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-hyperfine\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sharkdp/hyperfine\"\u003ehyperfine\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ehyperfine\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hyperfine/1.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hyperfine\u003c/code\u003e as \u003ccode\u003e1.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "baxpr/makerois-PMAT-fs",
+ "latest_release": "v1.0.0",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-create-study-specific-roi-image-in-mni-space\" class=\"anchor\" aria-hidden=\"true\" href=\"#create-study-specific-roi-image-in-mni-space\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreate study-specific ROI image in MNI space\u003c/h1\u003e\n\u003cp\u003ePMAT resting state connectivity study. Freesurfer-based ROIs for followup analysis.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-inputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs:\u003c/h2\u003e\n\u003cp\u003eAll should be matched to the same T1 image.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eT1 image in atlas space (typically BIAS_NORM resource of cat12 assessor)\u003c/li\u003e\n\u003cli\u003eDeformation from T1 subject space to atlas space (typically DEF_FWD resource of cat12 assessor)\u003c/li\u003e\n\u003cli\u003eSUBJECT directory of Freesurfer output (typically SUBJECT resource of freesurfer_dev assessor)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003erois_PMAT_fs.nii.gz Region of interest image\nrois_PMAT_fs-labels.csv Region labels and volumes\nmakerois-PMAT-fs.pdf Visual report of final ROI image\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-regions-of-interest\" class=\"anchor\" aria-hidden=\"true\" href=\"#regions-of-interest\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRegions of interest\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-visual-regions-subject-space-warped\" class=\"anchor\" aria-hidden=\"true\" href=\"#visual-regions-subject-space-warped\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVisual regions (Subject space, warped)\u003c/h3\u003e\n\u003cp\u003eGenerated by Freesurfer 6. Region indices in \u003ccode\u003esrc/rois-visual-a2009s.csv\u003c/code\u003e. Method: \u003cem\u003eBruce Fischl, Andre van der Kouwe, Christophe Destrieux, Eric Halgren, Florent Segonne, David H. Salat, Evelina Busa, Larry J. Seidman, Jill Goldstein, David Kennedy, Verne Caviness, Nikos Makris, Bruce Rosen, and Anders M. Dale. Automatically Parcellating the Human Cerebral Cortex. Cerebral Cortex January 2004; 14:11-22.\u003c/em\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1624059711.0
+ "topics": [],
+ "updated_at": 1658942371.0
},
{
"data_format": 2,
- "description": "Singularity recipe for dust",
+ "description": "Singularity recipe files for DeepVariant (https://github.com/google/deepvariant)",
"filenames": [
- "0.5.4/Singularity"
+ "Singularity.1.0.0",
+ "Singularity",
+ "Singularity.1.4.0-gpu",
+ "Singularity.1.4.0"
],
- "full_name": "icaoberg/singularity-dust",
+ "full_name": "powerPlant/deepvariant-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-dust\" class=\"anchor\" href=\"#singularity-dust\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-dust\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/bootandy/dust/raw/master/media/snap.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/bootandy/dust/raw/master/media/snap.png\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/bootandy/dust\"\u003edust\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003edust\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/dust/0.5.4\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/dust\u003c/code\u003e as \u003ccode\u003e0.5.4\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch2\u003e\u003ca id=\"user-content-singularity-recipe-files-for-deepvariant\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-recipe-files-for-deepvariant\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity recipe files for Deepvariant\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/google/deepvariant\"\u003ehttps://github.com/google/deepvariant\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eGenerate symlinks for executables\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec deepvariant.1.4.0.sif find /opt/deepvariant/bin -type f -executable -printf \"%f\\n\" | xargs -L1 ln -s deepvariant.1.4.0.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-gpu-support\" class=\"anchor\" aria-hidden=\"true\" href=\"#gpu-support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGPU support\u003c/h2\u003e\n\u003cp\u003eSet \u003ccode\u003eSINGULARITY_NV=true\u003c/code\u003e to enable GPU support where required. Useful in environment modules, like,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Required to enable GPU\nsetenv SINGULARITY_NV true\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1622860644.0
+ "subscribers_count": 0,
+ "topics": [],
+ "updated_at": 1657769856.0
},
{
"data_format": 2,
- "description": "Singularity recipe for graphviz",
+ "description": null,
"filenames": [
- "2.44.0/Singularity"
+ "program/HiC-Pro_3.1.0/Singularity"
],
- "full_name": "icaoberg/singularity-graphviz",
- "latest_release": "v2.44.0",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-graphviz\" class=\"anchor\" href=\"#singularity-graphviz\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-graphviz\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/960789693fa68a8f442f9c6cc7d6a117639f1a792ec84c96648ad4764c385fcf/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f656e2f342f34382f477261706876697a4c6f676f2e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/960789693fa68a8f442f9c6cc7d6a117639f1a792ec84c96648ad4764c385fcf/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f656e2f342f34382f477261706876697a4c6f676f2e706e67\" alt=\"Logo\" data-canonical-src=\"https://upload.wikimedia.org/wikipedia/en/4/48/GraphvizLogo.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://graphviz.org/\" rel=\"nofollow\"\u003egraphviz \u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003egraphviz \u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/graphviz/2.44.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modules/graphviz \u003c/code\u003e as \u003ccode\u003e 2.44.0\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "hermanzhaozzzz/snakepipes_Hi-C",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-snakepipes_hi-c\" class=\"anchor\" aria-hidden=\"true\" href=\"#snakepipes_hi-c\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esnakepipes_Hi-C\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003e\u987b\u77e5\u003c/strong\u003e\uff1a\u672c\u4ed3\u5e93\u8fd8\u5728\u6784\u5efa\u4e2d\uff0c\u6682\u65f6\u53ea\u4f5c\u53c2\u8003\uff01\uff01\u003c/p\u003e\n\u003cp\u003e\u53c2\u8003\u548c\u5f15\u7528\u4e86\u4e00\u4e9b\u003ca href=\"https://github.com/nservant/HiC-Pro\"\u003eHiC Pro\u003c/a\u003e\u7684\u4ee3\u7801\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u73af\u5883\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u73af\u5883\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u73af\u5883\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda install python r-base bowtie2 samtools iced r-ggplot2 r-rcolorbrewer\nconda install -c bioconda java-jdk hicexplorer\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u6211\u7528\u7684\u7248\u672c\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e python=3.9.13\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e R=4.0.5\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e bowtie2=2.4.5\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e samtools=1.15.1\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e iced=0.5.10\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e java-jdk=1.8 # java openjdk version \"1.8.0_312\"\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e hicexplorer=3.7.2\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u7528\u6cd5\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u7528\u6cd5\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u7528\u6cd5\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-0-\u6d4b\u5e8f\u8d28\u91cf\u63a7\u5236\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-0-\u6d4b\u5e8f\u8d28\u91cf\u63a7\u5236\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003estep 0 \u6d4b\u5e8f\u8d28\u91cf\u63a7\u5236\u003c/h3\u003e\n\u003cp\u003e\u4f7f\u7528 \u003ca href=\"https://github.com/hermanzhaozzzz/snakepipes_fastqc-multiqc\"\u003esnakepipes_fastqc-multiqc\u003c/a\u003e\u8fdb\u884c\u8d28\u91cf\u63a7\u5236\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-1-\u8fd0\u884csnakemake-pipeline\u751f\u6210hi-c-contact-matrix\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-1-\u8fd0\u884csnakemake-pipeline\u751f\u6210hi-c-contact-matrix\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003estep 1 \u8fd0\u884cSnakemake Pipeline\uff0c\u751f\u6210Hi-C contact matrix\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cstrong\u003e\u56de\u8d34Hi-C reads\u4ee5\u53ca\u751f\u6210RAW\u77e9\u9635ICE\u6821\u6b63\u77e9\u9635\u003c/strong\u003e\u003c/li\u003e\n\u003cli\u003e\u003cstrong\u003evalidPairs convert to .hic file(Juicer)\u003c/strong\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e HiC\ngit clone https://github.com/hermanzhaozzzz/snakepipes_fastqc-multiqc.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e snakepipes_fastqc-multiqc\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e then\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e use jupyterlab or runipy to run step01_generate_samples.ipynb\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e get samples.json and check it\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e then\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e dry run, rm -n to run pipeline\u003c/span\u003e\nsnakemake -pr -j 8 -s step02_run_mapping_and_generate_matrix.py -n\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e output as below\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e HiC|\u21d2 tree . -L 1\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e .\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 bam\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 fastq\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 hic_file\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 matrix\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 qc\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 quality_checks\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 snakepipes_fastqc-multiqc\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 snakepipes_Hi-C\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u251c\u2500\u2500 temp_files\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e \u2514\u2500\u2500 valid_pairs\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-2-convert-validpairs-to-juicer-hic\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-2-convert-validpairs-to-juicer-hic\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003estep 2 Convert ValidPairs to Juicer .hic\u00b6\u003c/h3\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1622859227.0
+ "topics": [],
+ "updated_at": 1658684345.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Use SNP genotype information pulled from single cell RNA-seq data to predict ancestries",
"filenames": [
- "2.2.1/Singularity"
+ "Singularity.ancestry_prediction_scRNAseq"
],
- "full_name": "icaoberg/singularity-hisat2",
+ "full_name": "powellgenomicslab/ancestry_prediction_scRNAseq",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-hisat2/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hisat2/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ea61f9228ca14a66e58889a560447e0b7c8ba73ddbaa594055242ace96eb0a84/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ea61f9228ca14a66e58889a560447e0b7c8ba73ddbaa594055242ace96eb0a84/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/4796300b08f76b423ee0574c15e8bd8ad15b0a389a36fd3f58549b8bb5df8690/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4796300b08f76b423ee0574c15e8bd8ad15b0a389a36fd3f58549b8bb5df8690/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/25eeccddaeb5bf9a3f7053b646f9b7bf540d33b801c371db1850d745da46fc95/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/25eeccddaeb5bf9a3f7053b646f9b7bf540d33b801c371db1850d745da46fc95/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f14a5cb988478f36746bb17a364f669ee4d02a32a6f6fddfbccaff9dc50a8379/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d686973617432\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f14a5cb988478f36746bb17a364f669ee4d02a32a6f6fddfbccaff9dc50a8379/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d686973617432\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-hisat2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-hisat\" class=\"anchor\" href=\"#singularity-hisat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-hisat\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://daehwankimlab.github.io/hisat2/\" rel=\"nofollow\"\u003ehisat2\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the scripts \u003ccode\u003ehisat2*\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hisat2/2.2.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hisat2\u003c/code\u003e as \u003ccode\u003e2.2.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-singularity-definition-file\" class=\"anchor\" href=\"#building-the-image-using-the-singularity-definition-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the Singularity definition file\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-ancestry_prediction_scrnaseq\" class=\"anchor\" aria-hidden=\"true\" href=\"#ancestry_prediction_scrnaseq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eancestry_prediction_scRNAseq\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1624060173.0
+ "updated_at": 1661089200.0
},
{
"data_format": 2,
@@ -14724,893 +14082,982 @@ var data =
"filenames": [
"Singularity.def"
],
- "full_name": "granek/jupyter-MIC-2021",
+ "full_name": "roitberg-group/lammps-ani",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-hts-jupyter-notebook-container\" class=\"anchor\" href=\"#hts-jupyter-notebook-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHTS Jupyter notebook container\u003c/h1\u003e\n\u003cp\u003eWe are offering a series of 6 workshops on biological assays and data analysis for HIV researchers.\nThis series is funded by an R25 grand from the National Institute of Allergies and Infectious Disease (NIAID).\nOur goal is to provide educational enrichment for HIV researchers on current assay technologies and the statistical and bioinformatic analysis techniques necessary to process such data.\u003c/p\u003e\n\u003cp\u003eThis is the source for the Docker container used to run the course Jupyter\nnotebooks.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-using-the-image\" class=\"anchor\" href=\"#using-the-image\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing the image\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-install-docker\" class=\"anchor\" href=\"#install-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall docker\u003c/h2\u003e\n\u003cp\u003eTo run a container on your local machine or laptop, download the docker program from \u003ca href=\"https://www.docker.com\" rel=\"nofollow\"\u003ehttps://www.docker.com\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-run-image-on-your-local-computer\" class=\"anchor\" href=\"#run-image-on-your-local-computer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun image on your local computer\u003c/h2\u003e\n\u003cp\u003eOnce you have the docker program installed, open the program (you should get a terminal screen with command line). Enter the command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull dukehtscourse/jupyter-hts-2019\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will pull down the course docker image from dockerhub. It may take a few minutes. Next, run the command to start a container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --name hts-course -v YOUR_DIRECTORY_WITH_COURSE_MATERIAL:/home/jovyan/work \\\n-d -p 127.0.0.1\\:9999\\:8888 \\\n-e PASSWORD=\"YOUR_CHOSEN_NOTEBOOK_PASSWORD\" \\\n-e NB_UID=1000 \\\n-t dukehtscourse/jupyter-hts-2019\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe most important parts of this verbiage are the \u003ccode\u003eYOUR_DIRECTORY_WITH_COURSE_MATERIALS\u003c/code\u003e and \u003ccode\u003eYOUR_CHOSEN_NOTEBOOK_PASSWORD\u003c/code\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eYOUR_DIRECTORY_WITH_COURSE_MATERIALS\u003c/code\u003e (Bind mounting): The directory name is the one you extracted your course materials into. So, if you put them in your home directory, it might look something like: \u003ccode\u003e-v /home/janice/HTS2019-notebooks:/home/jovyan/work\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eYOUR_CHOSEN_NOTEBOOK_PASSWORD\u003c/code\u003e: The password is whatever you want to use to password protect your notebook. Now, this command is running the notebook so that it is only \u0027seen\u0027 by your local computer - no one else on the internet can access it, and you cannot access it remotely, so the password is a bit of overkill. Use it anyway. An example might be: \u003ccode\u003e-e PASSWORD=\"Pssst_this_is_Secret\"\u003c/code\u003e except that this is a terrible password and you should follow standard rules of not using words, include a mix of capital and lowercase and special symbols. etc.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-d -p 127.0.0.1\\:9999\\:8888\u003c/code\u003e part of the command is telling docker to run the notebook so that it is only visible to the local machine. It is absolutely possible to run it as a server to be accessed across the web - but there are some security risks associated, so if you want to do this proceed with great caution and get help.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOf course, it would be better either configure HTTPS (see the options section below) or run an Nginx proxy in front of the container instance so you get https (encryption) instead of http.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-open-the-jupyter-in-your-browser\" class=\"anchor\" href=\"#open-the-jupyter-in-your-browser\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOpen the Jupyter in your browser\u003c/h3\u003e\n\u003cp\u003eOpen a browser and point it to \u003ca href=\"http://127.0.0.1:9999\" rel=\"nofollow\"\u003ehttp://127.0.0.1:9999\u003c/a\u003e\nYou should get to a Jupyter screen asking for a password. This is the password you created in the docker run command.\nNow, you should be able to run anything you like from the course. Depending on your laptop\u0027s resources (RAM, cores), this might be slow, so be aware and start by testing only one file (vs the entire course data set).\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-stopping-docker\" class=\"anchor\" href=\"#stopping-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStopping Docker\u003c/h3\u003e\n\u003cp\u003eThe container will continue running, even if you do not have Jupyter open in a web browser. If you don\u0027t plan to use it for a while, you might want to shut it down so it isn\u0027t using resources on your computer. Here are two ways to do that:\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-kitematic\" class=\"anchor\" href=\"#kitematic\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eKitematic\u003c/h4\u003e\n\u003cp\u003eIncluded in the \u003ca href=\"https://docs.docker.com/docker-for-mac/\" rel=\"nofollow\"\u003eDocker for Mac\u003c/a\u003e and the \u003ca href=\"https://docs.docker.com/docker-for-windows/\" rel=\"nofollow\"\u003eDocker for Windows\u003c/a\u003e installations.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-commandline\" class=\"anchor\" href=\"#commandline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCommandline\u003c/h4\u003e\n\u003cp\u003eYou may want to familiarize yourself with the following Docker commands.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003edocker stop\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003edocker rm\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003edocker ps -a\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003edocker images\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003edocker rmi\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-windows-note\" class=\"anchor\" href=\"#windows-note\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWindows Note\u003c/h3\u003e\n\u003cp\u003eThese instructions have not been tested in a Windows environment. If you have problems with them, please give us feedback\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-run-image-on-a-server\" class=\"anchor\" href=\"#run-image-on-a-server\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun image on a server\u003c/h2\u003e\n\u003cp\u003eTo run on a remote server you will want to use a slightly different command from above, because you \u003cem\u003ewill need to connect remotely\u003c/em\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --name hts-course \\\n-v YOUR_DIRECTORY_WITH_COURSE_MATERIAL:/home/jovyan/work \\\n-d -p 8888:8888 \\\n-e USE_HTTPS=\"yes\" \\\n-e PASSWORD=\"YOUR_CHOSEN_NOTEBOOK_PASSWORD\" \\\n-e NB_UID=1000 \\\n-t dukehtscourse/jupyter-hts-2019\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-options\" class=\"anchor\" href=\"#options\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOptions\u003c/h2\u003e\n\u003cp\u003eYou may customize the execution of the Docker container and the Notebook server it contains with the following optional arguments.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e-e PASSWORD=\"YOURPASS\"\u003c/code\u003e - Configures Jupyter Notebook to require the given password. Should be conbined with \u003ccode\u003eUSE_HTTPS\u003c/code\u003e on untrusted networks.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-e USE_HTTPS=yes\u003c/code\u003e - Configures Jupyter Notebook to accept encrypted HTTPS connections. If a \u003ccode\u003epem\u003c/code\u003e file containing a SSL certificate and key is not provided (see below), the container will generate a self-signed certificate for you.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e(v4.0.x)\u003c/strong\u003e \u003ccode\u003e-e NB_UID=1000\u003c/code\u003e - Specify the uid of the \u003ccode\u003ejovyan\u003c/code\u003e user. Useful to mount host volumes with specific file ownership.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-e GRANT_SUDO=yes\u003c/code\u003e - Gives the \u003ccode\u003ejovyan\u003c/code\u003e user passwordless \u003ccode\u003esudo\u003c/code\u003e capability. Useful for installing OS packages. \u003cstrong\u003eYou should only enable \u003ccode\u003esudo\u003c/code\u003e if you trust the user or if the container is running on an isolated host.\u003c/strong\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-v /some/host/folder/for/work:/home/jovyan/work\u003c/code\u003e - Host mounts the default working directory on the host to preserve work even when the container is destroyed and recreated (e.g., during an upgrade).\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e(v3.2.x)\u003c/strong\u003e \u003ccode\u003e-v /some/host/folder/for/server.pem:/home/jovyan/.ipython/profile_default/security/notebook.pem\u003c/code\u003e - Mounts a SSL certificate plus key for \u003ccode\u003eUSE_HTTPS\u003c/code\u003e. Useful if you have a real certificate for the domain under which you are running the Notebook server.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003e(v4.0.x)\u003c/strong\u003e \u003ccode\u003e-v /some/host/folder/for/server.pem:/home/jovyan/.local/share/jupyter/notebook.pem\u003c/code\u003e - Mounts a SSL certificate plus key for \u003ccode\u003eUSE_HTTPS\u003c/code\u003e. Useful if you have a real certificate for the domain under which you are running the Notebook server.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-e INTERFACE=10.10.10.10\u003c/code\u003e - Configures Jupyter Notebook to listen on the given interface. Defaults to \u0027*\u0027, all interfaces, which is appropriate when running using default bridged Docker networking. When using Docker\u0027s \u003ccode\u003e--net=host\u003c/code\u003e, you may wish to use this option to specify a particular network interface.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e-e PORT=8888\u003c/code\u003e - Configures Jupyter Notebook to listen on the given port. Defaults to 8888, which is the port exposed within the Dockerfile for the image. When using Docker\u0027s \u003ccode\u003e--net=host\u003c/code\u003e, you may wish to use this option to specify a particular port.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-the-course-image-with-singularity\" class=\"anchor\" href=\"#running-the-course-image-with-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the Course Image with Singularity\u003c/h2\u003e\n\u003cp\u003eDocker requires root permissions to run, so you are unlikely to be able to run Docker on a computer that you are not fully in control of. As an alternative you can run the course image with \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e, another container system. Singularity is similar to Docker, and can run Docker images, but you do not need special permissions to run Singularity images \u003cem\u003eor\u003c/em\u003e Docker images with Singularity (as long as Singularity is actually installed on the computer).\u003c/p\u003e\n\u003cp\u003eThe following command uses Singularity to start up a container from the course Jupyter image.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec docker://dukehtscourse/jupyter-hts-2019 /usr/local/bin/start.sh jupyter notebook --ip=0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-running-the-course-image-on-a-slurm-cluster\" class=\"anchor\" href=\"#running-the-course-image-on-a-slurm-cluster\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the Course Image on a SLURM cluster\u003c/h3\u003e\n\u003cp\u003eWe will use the example of the Duke Computer Cluster, but these instructions should be easily adaptable to other clusters\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eFrom your computer run this to connect to DCC:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003essh NetID@dcc-login-03.oit.duke.edu\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eOnce you are connected run this to start a tmux session:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003etmux new -s jupyter\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eOnce you have started a tmux session you can start up Jupyter with this command:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esrun singularity exec docker://dukehtscourse/jupyter-hts-2019 /usr/local/bin/start.sh jupyter notebook --ip=0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003cblockquote\u003e\n\u003cp\u003eNote: the first time you run this, it might take a VERY long time to download the Docker image and build the Singularity image from it\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eRunning this command will print a bunch of stuff. You can ignore everything except the last two lines, which will say something like:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ehttp://dcc-chsi-01:8889/?token=08172007896ad29bb5fbd92f6f3f516a8b2f7303ed7f1df3\nor http://127.0.0.1:8889/?token=08172007896ad29bb5fbd92f6f3f516a8b2f7303ed7f1df3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou need this information for the next few steps. For the next step you need the \u201cdcc-chsi-01:8889\u201d part.\n\u201cdcc-chsi-01\u201d is the compute node that Jupyter is running on and \u201c8889\u201d is the port it is listening on. You may get a different value every time you start the container.\u003c/p\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eYou want to run the following command in another terminal on your computer to set up port forwarding.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003essh -L PORT:NODE.rc.duke.edu:PORT NetID@dcc-login-03.oit.duke.edu\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIn this command you want to replace \u201cPORT\u201d with the value you got for port from the srun command and replace \u201cNODE\u201d with the compute node that was printed by the srun command. So for the example above, the ssh port forwarding command would be:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003essh -L 8889:dcc-chsi-01.rc.duke.edu:8889 NetID@dcc-login-03.oit.duke.edu\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eNow you can put the last line that the srun command printed in your web browser and it should open your Jupyter instance running on DCC.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-notes\" class=\"anchor\" href=\"#notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eThe Jupyter session keeps running until you explicitly shut it down. If the port forwarding SSH connection drops you will need to restart SSH with the same command, but you don\u2019t need to restart Jupyter.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eThere are two ways to explicitly shut down Jupyter:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eWithin Jupyter, click on the \u003cem\u003eJupyter\u003c/em\u003e logo in the top left to go to the main Jupyter page, then click \"Quit\" in the top right\u003c/li\u003e\n\u003cli\u003eDo control-C twice in the terminal where you started Jupyter. If this connection dropped, you can reconnect to it with:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003essh NetID@dcc-login-03.oit.duke.edu\ntmux a -t jupyter\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAfter shutting down the Jupyter session you can type \u003ccode\u003eexit\u003c/code\u003e at the terminal to close the tmux session.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eIf you need more memory or more cpus you can use the \u003ccode\u003e--mem\u003c/code\u003e and/or \u003ccode\u003e--cpus-per-task\u003c/code\u003e arguments to in the \u201csrun\u201d, for example to request 4 CPUs and 10GB of RAM:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esrun --cpus-per-task=4 --mem=10G singularity exec docker://dukehtscourse/jupyter-hts-2019 /usr/local/bin/start.sh jupyter notebook --ip=0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eIf you have high priority access to a partition you can request that partition be used with the \u003ccode\u003e-A\u003c/code\u003e and \u003ccode\u003e-p\u003c/code\u003e arguments to \u003ccode\u003esrun\u003c/code\u003e:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esrun -A chsi -p chsi singularity exec docker://dukehtscourse/jupyter-hts-2019 /usr/local/bin/start.sh jupyter notebook --ip=0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eYou might want to access files that are outside of your home directory. Within a singularity container your access to the host computer is\nlimited: by default, from inside the container you can only access your home directory. If you want to access directories that are outside your home\ndirectory, you have to tell \u003cem\u003eSingularity\u003c/em\u003e when you start the container with the \u003ccode\u003e--bind\u003c/code\u003e command line argument. For example:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esrun singularity --bind /work/josh:/work/josh exec docker://dukehtscourse/jupyter-hts-2019 /usr/local/bin/start.sh jupyter notebook --ip=0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003eYou can combine several of these command line flags:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esrun -A chsi -p chsi --cpus-per-task=4 --mem=10G singularity exec --bind /work/josh:/work/josh docker://dukehtscourse/jupyter-hts-2019 /usr/local/bin/start.sh jupyter notebook --ip=0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003eIt is strongly recommended to set the \u003ccode\u003eSINGULARITY_CACHEDIR\u003c/code\u003e environment variables in your .bashrc or when running \u003ccode\u003esrun\u003c/code\u003e. This environment variable specifies where the Docker image (and the Singularity image built from it) are saved. If this variable is not specified, singularity will cache images in \u003ccode\u003e$HOME/.singularity/cache\u003c/code\u003e, which can fill up quickly. This is discussed in the \u003ca href=\"https://sylabs.io/guides/3.7/user-guide/build_env.html#cache-folders\" rel=\"nofollow\"\u003eSingularity Documentation\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eexport SINGULARITY_CACHEDIR=\"/work/josh/singularity_cache\"; srun -A chsi -p chsi --cpus-per-task=4 --mem=10G singularity exec --bind /work/josh:/work/josh docker://dukehtscourse/jupyter-hts-2019 /usr/local/bin/start.sh jupyter notebook --ip=0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-install-singularity\" class=\"anchor\" href=\"#install-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall Singularity\u003c/h3\u003e\n\u003cp\u003eHere are instructions for installing:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://sylabs.io/guides/2.6/user-guide/quick_start.html#quick-installation-steps\" rel=\"nofollow\"\u003eSingularity version 2.6\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://sylabs.io/guides/3.2/user-guide/quick_start.html#quick-installation-steps\" rel=\"nofollow\"\u003eSingularity version 3.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://sylabs.io/singularity-desktop-macos/\" rel=\"nofollow\"\u003eSingularity Desktop for macOS (Alpha Preview)\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-lammps-ani\" class=\"anchor\" aria-hidden=\"true\" href=\"#lammps-ani\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLAMMPS-ANI\u003c/h1\u003e\n\u003cp\u003eA plugin to run torchani on LAMMPS.\u003cbr\u003e\nOn hipergator, the compiled program and a working example script could be found at \u003ccode\u003e/blue/roitberg/apps/lammps-ani/examples/water/submit.sh\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requirement\" class=\"anchor\" aria-hidden=\"true\" href=\"#requirement\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirement\u003c/h2\u003e\n\u003cp\u003eRun an interactive session\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esrun --qos=roitberg --account=roitberg --nodes=1 --ntasks=2 --cpus-per-task=2 --mem=20gb --gres=gpu:2 --partition=hpg-ai -t 10:00:00 --pty /bin/bash -i\nmodule load cuda/11.4.3 gcc/9.3.0 openmpi/4.0.5 cmake/3.21.3 git/2.30.1 singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003epytorch and cudnn\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge\nconda install -c conda-forge cudnn=8.3.2\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-singularity--docker-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity--docker-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity \u0026amp; Docker Container\u003c/h2\u003e\n\u003cp\u003eYou could use the pre-built \u003ca href=\"https://github.com/roitberg-group/lammps-ani/pkgs/container/lammps-ani\"\u003edocker container\u003c/a\u003e to avoid compiling the program by yourself.\u003c/p\u003e\n\u003cp\u003eSome HPCs provide Singularity instead of Docker. The following shows the instruction for Singularity usage:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone --recursive git@github.com:roitberg-group/lammps-ani.git\nsingularity pull -F docker://ghcr.io/roitberg-group/lammps-ani:master\nmkdir -p \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/singularity-home\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e exec into container\u003c/span\u003e\nSINGULARITYENV_CUDA_VISIBLE_DEVICES=\u003cspan class=\"pl-smi\"\u003e$CUDA_VISIBLE_DEVICES\u003c/span\u003e singularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e --cleanenv -H \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/singularity-home:/home --nv lammps-ani_master.sif /bin/bash\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e test\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e lammps-ani\nnvidia-smi \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e external/torchani_sandbox \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e python setup.py install --ext --user \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e ../../ \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e tests/ \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e python save_ani.py \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e ./test_all.sh\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-hidden=\"true\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./build.sh\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-example\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-example\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun example\u003c/h2\u003e\n\u003cp\u003emake sure \u003ccode\u003eLAMMPS_PLUGIN_PATH\u003c/code\u003e and \u003ccode\u003eLAMMPS_ROOT\u003c/code\u003e are set correctly\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport LAMMPS_PLUGIN_PATH=/blue/roitberg/apps/lammps-ani/build/\ncd examples/water/\nmpirun -np 8 ${LAMMPS_ROOT}/build/lmp_mpi -in in.lammps\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1623704048.0
+ "updated_at": 1649451939.0
},
{
"data_format": 2,
- "description": "Singularity recipe for bat",
+ "description": null,
"filenames": [
- "0.17.1/Singularity"
+ "Singularity"
],
- "full_name": "icaoberg/singularity-bat",
- "latest_release": "v0.17.1",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-bat\" class=\"anchor\" href=\"#singularity-bat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bat\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/7b7c397acc5b91b4c4cf7756015185fe3c5f700f70d256a212de51294a0cf673/68747470733a2f2f696d6775722e636f6d2f724773646e44652e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7b7c397acc5b91b4c4cf7756015185fe3c5f700f70d256a212de51294a0cf673/68747470733a2f2f696d6775722e636f6d2f724773646e44652e706e67\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sharkdp/bat\"\u003ebat\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebat\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bat/0.17.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modules/bat\u003c/code\u003e as \u003ccode\u003e0.17.1\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "ddbj/singularity_omegafold",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_omegafold\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity_omegafold\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_omegafold\u003c/h1\u003e\n\u003cp\u003eUbuntu 20.04\u306bomegafold v1.1.0\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305fsingularity image\u3092\u4f5c\u6210\u3059\u308b\u305f\u3081\u306eSingularity definition file\u3067\u3059\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-image\u306e\u30d3\u30eb\u30c9\" class=\"anchor\" aria-hidden=\"true\" href=\"#image\u306e\u30d3\u30eb\u30c9\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eimage\u306e\u30d3\u30eb\u30c9\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity build omegafold-1.1.0.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u907a\u4f1d\u7814\u30b9\u30d1\u30b3\u30f3-login_gpuq\u3067\u306e\u5b9f\u884c\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u907a\u4f1d\u7814\u30b9\u30d1\u30b3\u30f3-login_gpuq\u3067\u306e\u5b9f\u884c\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u907a\u4f1d\u7814\u30b9\u30d1\u30b3\u30f3 login_gpu.q\u3067\u306e\u5b9f\u884c\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv omegafold-1.1.0.sif python3 /opt/OmegaFold/main.py input.fasta output_dir\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u30ab\u30ec\u30f3\u30c8\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b output_dir \u304c\u4f5c\u6210\u3055\u308c\u3001\u305d\u306e\u4e2d\u306b\u7d50\u679c\u304c\u51fa\u529b\u3055\u308c\u307e\u3059\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u907a\u4f1d\u7814\u30b9\u30d1\u30b3\u30f3-intelq\u3067\u306e\u5b9f\u884c\u7528\u30b8\u30e7\u30d6\u30b9\u30af\u30ea\u30d7\u30c8\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u907a\u4f1d\u7814\u30b9\u30d1\u30b3\u30f3-intelq\u3067\u306e\u5b9f\u884c\u7528\u30b8\u30e7\u30d6\u30b9\u30af\u30ea\u30d7\u30c8\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u907a\u4f1d\u7814\u30b9\u30d1\u30b3\u30f3 intel.q\u3067\u306e\u5b9f\u884c\u7528\u30b8\u30e7\u30d6\u30b9\u30af\u30ea\u30d7\u30c8\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\n#$ -S /bin/sh\n#$ -cwd\n#$ -l s_vmem=2G\n#$ -l mem_req=2G\n#$ -l intel\n#$ -pe def_slot 16\nN=16\nsingularity exec /home/y-okuda/singularity/omegafold/omegafold-1.1.0.sif \\\nsh -c \"\\\nexport OMP_NUM_THREADS=${N}; \\\npython3 /opt/OmegaFold/main.py \\\n--device cpu \\\n/home/y-okuda/singularity/omegafold/input.fasta \\\n/home/y-okuda/singularity/omegafold/output_dir \\\n\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eN\u306b\u8a2d\u5b9a\u3057\u305f\u6570\u306eCPU\u30b3\u30a2\u3092\u4f7f\u7528\u3057\u307e\u3059\u3002\u540c\u3058\u5024\u3092 -pe def_slot \u306b\u3082\u8a2d\u5b9a\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1622870361.0
+ "subscribers_count": 7,
+ "topics": [],
+ "updated_at": 1661924246.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "misc/releases/20.06/Singularity.20.06",
+ "misc/releases/19.06/Singularity.19.06",
+ "misc/releases/21.12/Singularity.21.12",
+ "misc/releases/19.12/Singularity.19.12",
+ "misc/releases/latest/Singularity"
],
- "full_name": "baxpr/demo-singularity-matlab-fsl",
+ "full_name": "silvansievers/pddl-symmetry-reduction",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-demo-singularity-container-for-matlab-plus-fsl\" class=\"anchor\" href=\"#demo-singularity-container-for-matlab-plus-fsl\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDemo singularity container for Matlab plus FSL\u003c/h1\u003e\n\u003cp\u003eThis example container takes a Nifti image as input, zeroes out a hole in it of\nthe specified diameter, and saves the result to a new Nifti file. Quick,\npointless, and easy to tell whether it worked right.\u003c/p\u003e\n\u003cp\u003eThis is one way to organize a Matlab-based Singularity container -\nperhaps most easily conceived of as a series of wrappers around the main\ncodebase. Done this way, it\u0027s fairly easy to work on each piece in isolation,\nproblem-solving from the inside out.\u003c/p\u003e\n\u003cp\u003eThis container also includes an installation of FSL, which has a lot of handy\ntools including fsleyes to make the QA PDF. The FSL parts could be removed from\nthe Singularity file if FSL isn\u0027t used, to end up with a smaller container.\nContrariwise, all the Matlab parts could be removed to end up with an FSL-only\ncontainer.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity container\n| Primary entrypoint (shell script)\n| | X11 wrapper\n| | | Shell script preprocessing\n| | | Matlab processing (compiled)\n| | | | Matlab entrypoint\n| | | | Matlab main function\n| | | \\ Matlab sub-functions / codebase\n\\ \\ \\ Shell script postprocessing\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDependencies in terms of the actual files:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity\n src/pipeline_entrypoint.sh\n src/pipeline_main.sh\n src/copy_inputs.sh\n src/preprocessing.sh\n matlab/bin/run_matlab_entrypoint.sh\n matlab/bin/matlab_entrypoint\n / matlab/src/matlab_entrypoint.m \\ Used for compilation,\n | matlab/src/matlab_main.m | but not at container\n \\ matlab/src/* / runtime\n src/postprocessing.sh\n src/make_pdf.sh\n src/finalize.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe process of putting it together is described below. The scripts and code in\nthis repository are extensively commented, so if something isn\u0027t clear here,\nit\u0027s probably explained in the Singularity file or the example code.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-matlab-part\" class=\"anchor\" href=\"#matlab-part\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMatlab part\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-write-the-basic-matlab-code\" class=\"anchor\" href=\"#write-the-basic-matlab-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWrite the basic Matlab code\u003c/h3\u003e\n\u003cp\u003eWrite Matlab code that does what\u0027s needed. Put it in \u003ccode\u003ematlab/src\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eA popular toolbox for reading and writing Nifti files that\u0027s available on Matlab\nCentral has a lot of insidious bugs and is not being maintained. Matlab\u0027s own\nfunctions for Nifti files are quite limited. Here is an alternative, which is\nused in this example:\n\u003ca href=\"https://github.com/VUIIS/spm_readwrite_nii\"\u003ehttps://github.com/VUIIS/spm_readwrite_nii\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-write-the-matlab-entrypoint\" class=\"anchor\" href=\"#write-the-matlab-entrypoint\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWrite the Matlab entrypoint\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003ematlab/src/matlab_entrypoint.m\u003c/code\u003e exists to take command line arguments, parse\nthem, and call the main code. A convenient way to set things up is to write a\nmain function that takes a structure as its sole input, with the structure\ncontaining whatever inputs are needed. See \u003ccode\u003ematlab/src/matlab_main.m\u003c/code\u003e for an\nexample of this.\u003c/p\u003e\n\u003cp\u003eCouple of things to note in the entrypoint code are the quit/exit sections at\nbeginning and end. The bit at the beginning allows the executable to run during\nthe container build, without actually doing anything - this is needed to extract\nthe CTF archive into the container at the only time the container is writeable\n(h/t \u003ca href=\"https://twitter.com/annash128\" rel=\"nofollow\"\u003ehttps://twitter.com/annash128\u003c/a\u003e for figuring that one out). The bit at the\nend exits matlab when the function is finished. Without it, the running Matlab\nprocess won\u0027t release execution back to the calling script when it\u0027s done.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-test-the-matlab-entrypoint\" class=\"anchor\" href=\"#test-the-matlab-entrypoint\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest the Matlab entrypoint\u003c/h3\u003e\n\u003cp\u003eThe script \u003ccode\u003ematlab/src/test_matlab_entrypoint.m\u003c/code\u003e is an example of how to do\nthis. The appropriate Matlab must be installed on the testing computer.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-compile-the-matlab-code\" class=\"anchor\" href=\"#compile-the-matlab-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompile the Matlab code\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003ematlab/compile_matlab.sh\u003c/code\u003e shows how. Many compiled executables are likely to be\ntoo large to store on github. Git LFS may be a solution.\n\u003ca href=\"https://docs.github.com/en/github/managing-large-files/working-with-large-files\"\u003ehttps://docs.github.com/en/github/managing-large-files/working-with-large-files\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-test-the-compiled-matlab-code\" class=\"anchor\" href=\"#test-the-compiled-matlab-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest the compiled Matlab code\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003ematlab/test_compiled_matlab.sh\u003c/code\u003e. The appropriate Matlab Runtime must be\ninstalled on the testing computer.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-shell-script-part\" class=\"anchor\" href=\"#shell-script-part\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eShell script part\u003c/h2\u003e\n\u003cp\u003eAll of the below procedures could be done in the matlab part, if desired,\ninstead of in shell script. If so, parsing inputs should be done following the\nexample in \u003ccode\u003ematlab/src/matlab_entrypoint.m\u003c/code\u003e. But it\u0027s often easier to move\nfiles, create the QA PDF, etc using shell script and FSL. So that\u0027s what we are\ndoing in this example. All this code is in the \u003ccode\u003esrc\u003c/code\u003e directory.\u003c/p\u003e\n\u003cp\u003eAll the shell scripts called from \u003ccode\u003esrc/pipeline_entrypoint.sh\u003c/code\u003e \"know\" the\nenvironment variables that are exported there. This is a very convenient way to\npass along the input arguments, although it isn\u0027t entirely transparent, because\nthere\u0027s no hint in the shell scripts where the variables\u0027 values are coming from\nunless we explain it in the comments.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-main-entrypoint\" class=\"anchor\" href=\"#main-entrypoint\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMain entrypoint\u003c/h3\u003e\n\u003cp\u003eThis is \u003ccode\u003esrc/pipeline_entrypoint.sh\u003c/code\u003e. It uses bash to parse the command line\ninputs and export them to environment variables so they\u0027re accessible. Then it\ncalls the primary shell script \u003ccode\u003esrc/pipeline_main.sh\u003c/code\u003e which in turn calls\neverything else. The main script is run in xvfb to provide a virtual display,\noften needed by matlab and required for fsleyes.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-copy-inputs\" class=\"anchor\" href=\"#copy-inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCopy inputs\u003c/h3\u003e\n\u003cp\u003eWe copy input files to the output/working directory so we don\u0027t mess them up.\nThis also is an opportunity to rename them to something consistent. It\u0027s very\nconvenient to hard-code the filenames so we don\u0027t have to store and manipulate\nfilenames in environment variables or the like. Also, this makes it easy to\nproduce output files with consistent names - outputs of one pipeline may serve\nas inputs to another, and it\u0027s much easier to manage this if filenames are the\nsame for every run, or at least consistent.\u003c/p\u003e\n\u003cp\u003eWe generally assume the output directory starts out empty and will not be\ninterfered with by any other processes - this is true for XNAT/DAX, but\nimportant to be aware of in other contexts.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-preprocessing\" class=\"anchor\" href=\"#preprocessing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreprocessing\u003c/h3\u003e\n\u003cp\u003eFor this example, there is no preprocessing before the matlab part. But initial\nFSL steps or similar could be put here: \u003ccode\u003esrc/preprocessing.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-postprocessing\" class=\"anchor\" href=\"#postprocessing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePostprocessing\u003c/h3\u003e\n\u003cp\u003eThere isn\u0027t any postprocessing for this example either, but there could be:\n\u003ccode\u003esrc/postprocessing.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-pdf-creation\" class=\"anchor\" href=\"#pdf-creation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePDF creation\u003c/h3\u003e\n\u003cp\u003eAll assessors on VUIIS XNAT require a PDF QA report of some sort. For this\nexample, a display of the segmented ROIs overlaid on the T1 is created using\nfsleyes and ImageMagick, \u003ccode\u003esrc/make_pdf.sh\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003ePDF creation can be done in Matlab instead. It\u0027s hard to make these look good.\nAn example with some tricks, including a \u003ccode\u003e.fig\u003c/code\u003e file painstakingly made with\nMatlab\u0027s GUIDE, is\n\u003ca href=\"https://github.com/baxpr/connprep/blob/855dadc/src/connectivity_filter.m#L271\"\u003ehttps://github.com/baxpr/connprep/blob/855dadc/src/connectivity_filter.m#L271\u003c/a\u003e\nA way to show slices of functional images with a nice red/blue colormap is\n\u003ca href=\"https://github.com/baxpr/connprep/blob/855dadc/src/make_network_maps.m\"\u003ehttps://github.com/baxpr/connprep/blob/855dadc/src/make_network_maps.m\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-finalizing-the-output\" class=\"anchor\" href=\"#finalizing-the-output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFinalizing the output\u003c/h3\u003e\n\u003cp\u003eAll Niftis must be compressed for storage on XNAT, and outputs can be organized\nin an easily understandable way: \u003ccode\u003esrc/finalize.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eWrite an informative README - so tedious, yet so helpful. Include the\nappropriate citations for all the methods and software you have used. Even\nessentially write the methods section for a paper that uses the pipeline. Here\u0027s\nan excellent example: \u003ca href=\"https://github.com/MASILab/PreQual\"\u003ehttps://github.com/MASILab/PreQual\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAlternatively, git-ify some documentation like this:\n\u003ca href=\"https://github.com/VUIIS/dax/tree/main/docs\"\u003ehttps://github.com/VUIIS/dax/tree/main/docs\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eto get something like this:\n\u003ca href=\"https://dax.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003ehttps://dax.readthedocs.io/en/latest/\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-container\" class=\"anchor\" href=\"#building-the-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the container\u003c/h2\u003e\n\u003cp\u003eBe sure the Matlab code is newly compiled, see above. You can run\n\u003ccode\u003ematlab/check_for_compilation.sh\u003c/code\u003e first to make sure there\u0027s no source code\nnewer than the compiled executable.\u003c/p\u003e\n\u003cp\u003eThen from the root directory of the working copy of the repo, run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build \u0026lt;container_name\u0026gt;.simg Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eGood practice: before you build, create a release on github (if using github) or\nat least tag the commit you are about to build. Give the container a versioned\nname like \u003ccode\u003edemo-singularity-matlab-fsl_v1.0.0.simg\u003c/code\u003e that matches the repository\nname and release version/tag.\u003c/p\u003e\n\u003cp\u003eExternal binaries such as Matlab Runtime and FSL can be included by copying\nlocal copies into the container in the Singularity file\u0027s \u003ccode\u003e%files\u003c/code\u003e section. This\ntends to be a little faster when multiple builds are needed during debugging,\nor necessary for files that are not available to download, and this is what\u0027s\nbeing done in the example Singularity file. Alternatively, binaries or install\nfiles can be downloaded from their source at build time - there are some\ncommented-out sections in the Singularity file showing how that is done. (Thanks\n\u003ca href=\"https://github.com/praitayini\"\u003ehttps://github.com/praitayini\u003c/a\u003e for exploring this in detail)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-the-container\" class=\"anchor\" href=\"#running-the-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the container\u003c/h2\u003e\n\u003cp\u003eSee \u003ccode\u003etest_singularity_container.sh\u003c/code\u003e for an example run command and some\nimportant info.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-inputs\" class=\"anchor\" href=\"#inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs\u003c/h3\u003e\n\u003cp\u003ePaths to files are relative to the container.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e--t1_niigz A T1 image\n--seg_niigz Its corresponding segmentation from e.g. slant pipeline\n--diameter_mm Diameter of the hole to zero out, in mm (default 30)\n\n--project Labels from XNAT, used only to annotate the QA PDF\n--subject (default UNK_*)\n--session\n--scan\n\n--out_dir Where outputs will be stored (default /OUTPUTS)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-outputs\" class=\"anchor\" href=\"#outputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003ePDF/holed_image.pdf QA report\nHOLED_T1/holed_t1.nii.gz T1 image with a hole in it\nHOLED_SEG/holed_seg.nii.gz Segmentation with a hole in it\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2022 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"http://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttp://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-hidden=\"true\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2017 (MSVC 19.16) and 2019 (MSVC 19.28)\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2022 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2022 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2022 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2022 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2022 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2022 Salom\u00e9 Eriksson\u003c/li\u003e\n\u003cli\u003e2018-2022 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2021-2022 Clemens B\u00fcchner\u003c/li\u003e\n\u003cli\u003e2021-2022 Dominik Drexler\u003c/li\u003e\n\u003cli\u003e2022 Remo Christen\u003c/li\u003e\n\u003cli\u003e2015, 2021 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2020 Rik de Graaff\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-hidden=\"true\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1625430481.0
+ "updated_at": 1657796847.0
},
{
"data_format": 2,
- "description": "Simple terminal UI for git commands.",
+ "description": "ENIGMA CHR DTI repository",
"filenames": [
- "0.28.2/Singularity",
- "0.23.1/Singularity"
+ "singularity/Singularity.def"
],
- "full_name": "icaoberg/singularity-lazygit",
- "latest_release": "v0.28.2",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-lazygit/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-lazygit/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ce43f9f05edc280dcb72fb4ca8be46c0dab1ad9b88f48b7c2d9b8273288d266f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d6c617a79676974\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ce43f9f05edc280dcb72fb4ca8be46c0dab1ad9b88f48b7c2d9b8273288d266f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d6c617a79676974\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-lazygit\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7fdf306f4f7e4fcc9fc77bc1030ff82b19deed57ab2965e952d30b70fb7b674a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d6c617a79676974\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7fdf306f4f7e4fcc9fc77bc1030ff82b19deed57ab2965e952d30b70fb7b674a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d6c617a79676974\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-lazygit\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/e8240aa02d92e2a9a5ee84af2261f39ed2c8fc86a0c2f54f6e1f6bab629e0fe5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d6c617a79676974\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e8240aa02d92e2a9a5ee84af2261f39ed2c8fc86a0c2f54f6e1f6bab629e0fe5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d6c617a79676974\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-lazygit\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/cef5da0642ce33fb4fb6a644a1c76721ffe638963e959e6812c008aa8c6ce693/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d6c617a79676974\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cef5da0642ce33fb4fb6a644a1c76721ffe638963e959e6812c008aa8c6ce693/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d6c617a79676974\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-lazygit\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-lazygit\" class=\"anchor\" href=\"#singularity-lazygit\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-lazygit\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"images/screenshot.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"images/screenshot.png\" alt=\"Screenshot\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\nSingularity recipe for \u003ca href=\"https://github.com/jesseduffield/lazygit\"\u003elazygit\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003elazygit\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/lazygit/4.8.25\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/lazygit\u003c/code\u003e as \u003ccode\u003e4.8.25.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/lazygits/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "kcho/ENIGMA_CHR_DTI",
+ "latest_release": "example_dwi_data_light",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-enigma-chr-dti-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#enigma-chr-dti-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eENIGMA CHR DTI pipeline\u003c/h1\u003e\n\u003cp\u003eKevin Cho and Yoobin Kwak\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"mailto:kevincho@bwh.harvard.edu\"\u003ekevincho@bwh.harvard.edu\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"mailto:yoobinkwak@gmail.com\"\u003eyoobinkwak@gmail.com\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contents\" class=\"anchor\" aria-hidden=\"true\" href=\"#contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContents\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eIntroduction\u003c/li\u003e\n\u003cli\u003eCitation\u003c/li\u003e\n\u003cli\u003eInstallation\u003c/li\u003e\n\u003cli\u003eArranging data for the pipeline\u003c/li\u003e\n\u003cli\u003eRunning the ENIGMA CHR DTI Pipeline\u003c/li\u003e\n\u003cli\u003eSharing outputs to other teams\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003eENIGMA CHR DTI pipeline is a toolbox for analyzing diffusion weighted imaging (DWI) data developed for ENIGMA-CHR DTI project. The pipeline expects dicom files of a single DWI scan arranged in a required structure (decribed in \"Arranging data for the pipeline\") and automatically processes available data.\u003c/p\u003e\n\u003cp\u003eThe dicom files will be converted to a Nifti file, bval, and bvec file along with the BIDS sidecar json file. Then the following steps will be applied to each subject data.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eGibbs unring (FSL)\u003c/li\u003e\n\u003cli\u003eFSL Eddy (6.0.4)\u003c/li\u003e\n\u003cli\u003eTensor decomposition to create fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) maps.\u003c/li\u003e\n\u003cli\u003eSkeletonization of the FA, AD, MD and RD maps using PNL-TBSS.\u003c/li\u003e\n\u003cli\u003eExtraction of mean diffusion measures in the major JHU bundles.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo increase the homogeneity of the diffusion acquisition parameters within the site, the pipeline curates the following dicom tags from all data, and highlight in the report if there is any deviation in dicom tags within a site.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSeriesDescription\u003c/li\u003e\n\u003cli\u003eImageType\u003c/li\u003e\n\u003cli\u003eAcquisitionMatrix\u003c/li\u003e\n\u003cli\u003eDeviceSerialNumber\u003c/li\u003e\n\u003cli\u003eEchoTime\u003c/li\u003e\n\u003cli\u003eFlipAngle\u003c/li\u003e\n\u003cli\u003eInPlanePhaseEncodingDirection\u003c/li\u003e\n\u003cli\u003eMagneticFieldStrength\u003c/li\u003e\n\u003cli\u003eManufacturer\u003c/li\u003e\n\u003cli\u003eManufacturerModelName\u003c/li\u003e\n\u003cli\u003eProtocolName\u003c/li\u003e\n\u003cli\u003eRepetitionTime\u003c/li\u003e\n\u003cli\u003eSequenceName\u003c/li\u003e\n\u003cli\u003eSliceThickness\u003c/li\u003e\n\u003cli\u003eSoftwareVersions\u003c/li\u003e\n\u003cli\u003eSpacingBetweenSlices\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAlthough it\u0027s recommended to provide dicom data as the input to the pipeline, you can also provide diffusion files in the nifti format if your DWI data requires a specific dicom to nifti conversion or if the dicom files not available by some reason. You would need to provide DWI nifti file, bvector file, bvalue file in a structure that the pipeline expects. Pleaes make sure you are providing the raw nifti file without any preprocessing. If any of the three files is missing, the pipeline will raise an error. (See \u003ccode\u003eArranging data for the pipeline\u003c/code\u003e section.) Please let the study coordinator know your situation, and the study coordinate will guide you.\u003c/p\u003e\n\u003cp\u003eThe toolbox is deployed in a container, so as long as either Docker or Singularity is installed on the server, the toolbox should be functional regardless of the operating system.\nPlease note the pipeline does not support Apple Mac with M1 Chips yet, due to an issue with tensorflow installation on M1 Chip machines. Also, since this pipeline is specifically developed for ENIGMA-CHR DTI project, it does not support EPI distortion correction using reverse-encoding maps or field maps. If your data for ENIGMA-CHR project has multiple DWI series, blip-up / blip-down, fieldmaps, or other reverse-encoding diffusion scans, please reach out to the coordinating team.\u003c/p\u003e\n\u003cp\u003ePlease let the study coordinator know if you don\u0027t have powerful enough servers to process your diffusion data. The study coordinator will arrange a cloud server for you to run the pipeline.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\u003cp\u003eThis toolbox uses the following softwares. Please cite them if you use this pipeline in your study.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/rordenlab/dcm2niix\"\u003e\u003ccode\u003edcm2niix\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/pnlbwh/CNN-Diffusion-MRIBrain-Segmentation\"\u003eCNN based diffusion MRI brain segmentation tool\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://fsl.fmrib.ox.ac.uk/\" rel=\"nofollow\"\u003eFSL (and FSL unring)\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/ANTsX/ANTs\"\u003eANTs\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/pnlbwh/TBSS\"\u003ePNL TBSS\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/kcho/objPipe\"\u003e\u003ccode\u003eobjPipe\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/pnlbwh/eddy-squeeze\"\u003e\u003ccode\u003eeddy-squeeze\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/pnlbwh/nifti-snapshot\"\u003e\u003ccode\u003enifti-snapshot\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-with-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#with-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ewith Docker\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003eInstall and configure Docker Desktop\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.docker.com/products/docker-desktop/\" rel=\"nofollow\"\u003eDownload Docker Desktop\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003ewith at least 4 cores (12 cores preferably) and 4 GB RAM (16 GB preferably)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eDownload ENIGMA CHR DTI docker image.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eIn terminal or power-shell, type\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ docker pull kcho/enigma-chr-pipeline\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-with-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ewith Singularity\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity build enigma-chr-pipeline.simg docker://kcho/enigma-chr-pipeline\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\u003ca href=\"how_to_test_pipeline.md\"\u003eTest the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-arranging-data-for-the-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#arranging-data-for-the-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eArranging data for the pipeline\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-if-you-are-providing-dicom-files-to-the-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#if-you-are-providing-dicom-files-to-the-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIf you are providing dicom files to the pipeline\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e/Users/kc244/enigma_chr_data \u0026lt;- it could be somewhere else\n\u2514\u2500\u2500 sourcedata\n \u251c\u2500\u2500 subject_01\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 MR.1.3.12.2.1107.5.2.43.166239.2022042610335278017249630.dcm\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 MR.1.3.12.2.1107.5.2.43.166239.2022042610335278017249631.dcm\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 ...\n \u2502 \u2514\u2500\u2500 MR.1.3.12.2.1107.5.2.43.166239.2022042610431388254021154.dcm\n \u251c\u2500\u2500 subject_02\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 MR.1.3.12.2.1107.5.2.43.166239.2022042610335278017239630.dcm\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 MR.1.3.12.2.1107.5.2.43.166239.2022042610335278011723631.dcm\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 ...\n \u2502 \u2514\u2500\u2500 MR.1.3.12.2.1107.5.2.43.166239.202204261043138825403154.dcm\n \u2514\u2500\u2500 subject_XX\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-if-you-are-providing-nifti-files-to-the-pipeline-as-the-raw-input\" class=\"anchor\" aria-hidden=\"true\" href=\"#if-you-are-providing-nifti-files-to-the-pipeline-as-the-raw-input\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIf you are providing nifti files to the pipeline as the raw input\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e/Users/kc244/enigma_chr_data \u0026lt;- it could be somewhere else\n\u2514\u2500\u2500 rawdata\n \u00a0\u00a0 \u251c\u2500\u2500 subject_01\n \u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 subject_01.nii.gz\n \u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 subject_01.bvec\n \u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 subject_01.bval\n \u00a0\u00a0 \u251c\u2500\u2500 subject_02\n \u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 subject_02.nii.gz\n \u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 subject_02.bvec\n \u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 subject_02.bval\n \u00a0\u00a0 \u251c\u2500\u2500 ...\n \u00a0\u00a0 \u2514\u2500\u2500 subject_XX\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-the-enigma-chr-dti-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-the-enigma-chr-dti-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the ENIGMA CHR DTI Pipeline\u003c/h2\u003e\n\u003cp\u003eOnce you have your dicom files arranged for each subject, run following command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ enigma_chr_dir=/Users/kc244/enigma_chr_data # set this to your data location\n$ docker run -it -v ${enigma_chr_dir}:/data kcho/enigma-chr-pipeline\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor singularity,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ enigma_chr_dir=/Users/kc244/enigma_chr_data # set this to your data location\n$ singularity run -e -B ${enigma_chr_dir}:/data:rw enigma-chr-pipeline.simg\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eThe pipeline is expected to take about 2~3 hours to process a single subject data.\u003c/strong\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-if-you-are-providing-nifti-data-to-the-pipeline-follow-the-steps-below\" class=\"anchor\" aria-hidden=\"true\" href=\"#if-you-are-providing-nifti-data-to-the-pipeline-follow-the-steps-below\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIf you are providing nifti data to the pipeline, follow the steps below.\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e$ enigma_chr_dir=/Users/kc244/enigma_chr_data # set this to your data location\n$ docker run -it \\\n -v ${enigma_chr_dir}:/data \\\n enigma_chr_pipeline xvfb-run -a python /opt/ENIGMA_CHR_DTI/scripts/enigma_chr_pipeline.py -b /data --nifti_input\n\n# for singularity\n$ singularity shell -e -B ${enigma_chr_dir}:/data \\\n enigma_chr_pipeline.simg xvfb-run -a python /opt/ENIGMA_CHR_DTI/scripts/enigma_chr_pipeline.py -b /data --nifti_input\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-sharing-outputs-to-other-teams\" class=\"anchor\" aria-hidden=\"true\" href=\"#sharing-outputs-to-other-teams\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSharing outputs to other teams\u003c/h2\u003e\n\u003cp\u003eRun the code below to collect and compress the files to share.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ docker run -it -v ${enigma_chr_dir}:/data kcho/enigma-chr-pipeline collect_outputs.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor singularity,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run -e -B ${enigma_chr_dir}:/data:rw enigma-chr-pipeline.simg collect_outputs.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHere is the list of files collected by \u003ccode\u003ecollect_outputs.py\u003c/code\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e/Users/kc244/enigma_chr_data\n derivatives/\n \u251c\u2500\u2500 eddy_qc\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 subject_01\n \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 eddy_summary.html\n \u2502\u00a0\u00a0 \u2514\u2500\u2500 subject_02\n \u2502\u00a0\u00a0 \u2514\u2500\u2500 eddy_summary.html\n \u251c\u2500\u2500 screenshots\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 subject_01\n \u2502\u00a0\u00a0 \u2514\u2500\u2500 subject_02\n \u251c\u2500\u2500 tbss\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 snapshots\n \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 ENIGMA\\ Template\\ FA\\ skeleton.jpg\n \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 ENIGMA\\ Template\\ FA.jpg\n \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 Mean\\ FA\\ skeleton.jpg\n \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 mean\\ FA.jpg\n \u2502\u00a0\u00a0 \u2514\u2500\u2500 stats\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u251c\u2500\u2500 AD_combined_roi.csv\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u251c\u2500\u2500 AD_combined_roi_avg.csv\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u251c\u2500\u2500 FA_combined_roi.csv\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u251c\u2500\u2500 FA_combined_roi_avg.csv\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u251c\u2500\u2500 MD_combined_roi.csv\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u251c\u2500\u2500 MD_combined_roi_avg.csv\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u251c\u2500\u2500 RD_combined_roi.csv\n \u2502\u00a0\u00a0 \u00a0\u00a0 \u2514\u2500\u2500 RD_combined_roi_avg.csv\n \u2514\u2500\u2500 web_summary\n \u251c\u2500\u2500 Study.html\n \u251c\u2500\u2500 Study.pdf\n \u251c\u2500\u2500 subject_01\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 subject_01.html\n \u2502\u00a0\u00a0 \u2514\u2500\u2500 subject_01.pdf\n \u2514\u2500\u2500 subject_02\n \u251c\u2500\u2500 subject_02.html\n \u2514\u2500\u2500 subject_02.pdf\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-enter-into-the-image-shell\" class=\"anchor\" aria-hidden=\"true\" href=\"#enter-into-the-image-shell\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEnter into the image shell\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e$ enigma_chr_dir=/Users/kc244/enigma_chr_data # set this to your data location\n$ docker run -it \\\n -v ${enigma_chr_dir}:/data \\\n enigma_chr_pipeline /bin/bash\n\n# for singularity\n$ singularity shell -e -B ${enigma_chr_dir}:/data \\\n enigma_chr_pipeline.simg /bin/bash\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1625268998.0
+ "topics": [],
+ "updated_at": 1651669505.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "containers/Singularity"
+ "singularity/Singularity"
],
- "full_name": "bananaeat/Cinnamon_assembly",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-cinnamon\" class=\"anchor\" href=\"#cinnamon\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCinnamon\u003c/h1\u003e\n\u003cp\u003eThis directory contains the code for the Cinnamon language compiler. This compiler is described in the paper:\u003c/p\u003e\n\u003cp\u003eCinnamon: A Domain-Specific Language for Binary Profiling and Monitoring,\nMahwish Arif, Ruoyu Zhou, Hsi-Ming Ho and Timothy M. Jones,\nCGO 2021\u003c/p\u003e\n\u003cp\u003ePlease cite this paper if you produce any work that builds upon this code and / or data.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-licence\" class=\"anchor\" href=\"#licence\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicence\u003c/h2\u003e\n\u003cp\u003eCinnamon is released under an Apache licence.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-cinnamon\" class=\"anchor\" href=\"#building-cinnamon\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding Cinnamon\u003c/h2\u003e\n\u003cp\u003eCinnamon can currently target three different binary frameworks; Janus, Pin and Dyninst. To build the compiler:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003eexport CINNAMON_ROOT = /path/to/cinnamon-source\ncd $(CINNAMON_ROOT)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo build the Cinnamon backend for Janus:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003emake TARGET=janus\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo build the Cinnamon backend for Pin:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003emake TARGET=pin\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo build the Cinnamon backend for Dyninst:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003emake TARGET=dyninst\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-compiling-a-sample-program\" class=\"anchor\" href=\"#compiling-a-sample-program\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompiling a sample program\u003c/h2\u003e\n\u003cp\u003eCinnamon sample programs are available in the \u003ccode\u003etests\u003c/code\u003e directory. The following commands will compile the Cinnamon program \u003ccode\u003eins.dsl\u003c/code\u003e and integrate the resulting code into one of the target frameworks. You will need to set the path to your target framework installation in the respective scripts:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003e$(CINNAMON_ROOT)/Scripts/compileToJanus.py $CINNAMON_ROOT/tests/ins.dsl\n$(CINNAMON_ROOT)/Scripts/compileToPin.py $CINNAMON_ROOT/tests/ins.dsl\n$(CINNAMON_ROOT)/Scripts/compileToDyn.py $CINNAMON_ROOT/tests/ins.dsl\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAfter this, the final tool can be built and run using the target framework\u0027s build instructions.\u003c/p\u003e\n\u003cp\u003eIf you just want to compile the Cinnamon DSL code and not yet integrate it into a target framework, run the following command. This will generate a number of different files containing relevant code for the cinnamon program:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003ecd $CINNAMON_ROOT\n./bdc $CINNAMON_ROOT/tests/ins.dsl\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-target-frameworks\" class=\"anchor\" href=\"#target-frameworks\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTarget frameworks\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-janus\" class=\"anchor\" href=\"#janus\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eJanus\u003c/h3\u003e\n\u003cp\u003eYou can get the Janus implementation with placeholders, templates and utility libraries for Cinnamon from the main Janus repository at \u003ca href=\"https://github.com/timothymjones/Janus.git\"\u003ehttps://github.com/timothymjones/Janus.git\u003c/a\u003e, then switch to the \u003ccode\u003ecinnamon\u003c/code\u003e branch.\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003egit clone https://github.com/timothymjones/Janus.git\ncd Janus\ngit checkout -b cinnamon origin/cinnamon\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNext set \u003ccode\u003eJanusPATH\u003c/code\u003e in \u003ccode\u003ecompileToJanus.py\u003c/code\u003e to be the location that you have cloned Janus.\u003c/p\u003e\n\u003cp\u003eOnce the code for Janus has been generated and integrated (after running the \u003ccode\u003ecompileToJanus.py\u003c/code\u003e script from above), you can build the final tool using the following commands:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003e(cd build; cmake ..; make -j8)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run the final tool on the target binary:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003e./janus/jdsl_run \u0026lt;target_binary\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-pin\" class=\"anchor\" href=\"#pin\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePin\u003c/h3\u003e\n\u003cp\u003eEverything required for Pin is contained within the \u003ccode\u003etargets/Pin\u003c/code\u003e directory. Copy the \u003ccode\u003eMyDSLTool\u003c/code\u003e directory to \u003ccode\u003epath-to-your-pin-root-dir/source/tools\u003c/code\u003e, where \u003ccode\u003epath-to-your-pin-root\u003c/code\u003e should be self-explanatory.\u003c/p\u003e\n\u003cp\u003eNext set \u003ccode\u003ePinPATH=your-pin-root-dir/source/tools/MyDSLTool\u003c/code\u003e in \u003ccode\u003ecompileToPin.py\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eOnce the code for Pin has been generated and integrated (after running the \u003ccode\u003ecompileToPin.py\u003c/code\u003e script from above), you can build the final tool using the following commands:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003ecd your-pin-root-dir/source/tools/MyDSLTool\nmake obj-intel64/MyDSLTool.so\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run the final tool on the target binary:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003eyour-pin-root-dir/pin -t obj-intel64/MyDSLTool.so -- \u0026lt;target_binary\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-dyninst\" class=\"anchor\" href=\"#dyninst\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDyninst\u003c/h3\u003e\n\u003cp\u003eYou can obtain Dyninst version 10.1.0 as follows:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003ewget https://github.com/dyninst/dyninst/archive/v10.1.0.tar.gz``\ntar xzvf v10.1.0.tar.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce extracted, add \u003ccode\u003ec_LoadInsn\u003c/code\u003e and \u003ccode\u003ec_StoreInsn\u003c/code\u003e into \u003ccode\u003eenum InsnCategory\u003c/code\u003e in \u003ccode\u003edyninst-10.1.0/instructionAPI/h/InstructionCategories.h\u003c/code\u003e and then build by following the Dyninst build instructions.\u003c/p\u003e\n\u003cp\u003eEverything else required for Dyninst is contained within the \u003ccode\u003etargets/Dyninst\u003c/code\u003e directory. Copy the \u003ccode\u003eMyDSLTool\u003c/code\u003e directory to \u003ccode\u003epath-to-your-dyn-root-dir/examples\u003c/code\u003e, where \u003ccode\u003epath-to-your-dyn-root-dir\u003c/code\u003e should be self-explanatory.\u003c/p\u003e\n\u003cp\u003eNext set \u003ccode\u003eDynPATH=path-to-your-dyn-root-dir/examples/MyDSLTool\u003c/code\u003e in \u003ccode\u003ecompileToDyn.py\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eOnce the code for Dyninst has been generated and integrated (after running the \u003ccode\u003ecompileToDyn.py\u003c/code\u003e script from above), you can build the final tool using the following commands:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003ecd path-to-your-dyn-root-dir/examples/MyDSLTool\nmake\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run the final tool on the target binary:\u003c/p\u003e\n\u003cpre lang=\"shell-session\"\u003e\u003ccode\u003epath-to-your-dyn-root-dir/examples/MyDSLTool/DSLtool -m static -o \u0026lt;output_binary\u0026gt; \u0026lt;input_binary\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "sequana/variant_calling",
+ "latest_release": "v0.12.0",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1625671641.0
+ "updated_at": 1646920385.0
},
{
"data_format": 2,
- "description": "Singularity recipe for singularity-term-img-cli",
+ "description": null,
"filenames": [
- "4.1.0/Singularity"
+ "Singularity.cellranger"
],
- "full_name": "icaoberg/singularity-term-img-cli",
+ "full_name": "georgia-katsoula/cellranger",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-term-img-cli\" class=\"anchor\" href=\"#singularity-term-img-cli\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-term-img-cli\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/sindresorhus/term-img-cli/raw/main/screenshot.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/sindresorhus/term-img-cli/raw/main/screenshot.jpg\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sindresorhus/term-img-cli\"\u003eterm-img\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eterm-img\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/term-img/3.0.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/term-img\u003c/code\u003e as \u003ccode\u003e3.0.0\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-deploy\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-deploy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Deploy\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/shpc.png\"\u003e\u003cimg src=\"img/shpc.png\" alt=\"img/shpc.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWouldn\u0027t it be nice to build Singularity images without a registry proper,\nand just keep them alongside the GitHub codebase? This is now possible!\nThis small repository provides an example to get you started. It will\nbuild one or more images (whatever Singularity.* files that are present at\nthe root) and then release them as assets to your GitHub repository so\nthat they can be programatically obtained. It is associated with\n\u003ca href=\"https://github.com/singularityhub/singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e to allow\nyou to then define LMOD modules for these same containers.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eCan I upload the largest of chonkers?\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eYes and no. Note that assets are limited to 2 GB in size, which is still fairly good. You can use\nit as a template for your own recipes as is, or modify it for your custom\nuse case. Instructions are below!\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e Currently recipe extensions are associated with tags, and the GitHub release is\nassociated with a digest. We likely will change this in the next few weeks so that GitHub\nreleases are tags, and the \"digests\" are flie names. Stay tuned for updates!\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-hidden=\"true\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-template-or-fork\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-template-or-fork\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Template or Fork\u003c/h3\u003e\n\u003cp\u003eIf you haven\u0027t already, template or fork this repository. You can then clone\nyour fork:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git clone git@github.com:\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eusername\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/singularity-deploy\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou likely want to name the repository by the container. For example, if I would\nhave created a container on Docker Hub or similar with the name \u003ccode\u003evsoch/salad\u003c/code\u003e,\nhere I\u0027d call the repository \u003ccode\u003esalad\u003c/code\u003e. You obviously are limited to your username\nor an organizational namespace.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-write-your-singularity-recipes\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-write-your-singularity-recipes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Write your Singularity Recipe(s)\u003c/h3\u003e\n\u003cp\u003eFirst, you should write your container recipe(s) in the present working directory.\nFor good practice, when you are updating recipes you should checkout a new branch\nand open a pull request, as the repository comes with a workflow to trigger on a PR\nto \u003ca href=\".github/workflows/test.yml\"\u003etest your container build\u003c/a\u003e. Note that in the main workflow\nthat deploys the releases, the current branch is set to be \u003ccode\u003emain-branch\u003c/code\u003e. You should\nupdate this to be your main \"production\" branch that you want to deploy releases on merge.\nYou are also free to choose a different trigger and release strategy. You can add any additional\ntests that that you might need. By default, any Singularity.* file will be automatically detected.\nIf there is no extension (the name Singularity), the name used will be \"latest.\"\nYou can use these tags across multiple releases of your containers. For example,\nthese files would generate packages with sifs named as follows:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.pokemon\"\u003eSingularity.pokemon\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.salad\"\u003eSingularity.salad\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor each name, you can see the direct download URL contains the repository (singularityhub/singularity-deploy),\nYou should not use any \u003ccode\u003e:\u003c/code\u003e characters in either your container tag (the GitHub extension) or\nthe GitHub tags (the release tags) as this might interfere with parsing.\nThe GitHub release tag (0.0.1 in the example above) is discussed next.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-2-update-the-version-file\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-update-the-version-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Update the VERSION file\u003c/h3\u003e\n\u003cp\u003eAny time that you prepare new container recipes, you should update the \u003ca href=\"VERSION\"\u003eVERSION\u003c/a\u003e\nfile. The way that this repository works is to generate a release based on the\nstring in \u003ccode\u003eVERSION\u003c/code\u003e. A version is just a tag, so it could be something like\n\u003ccode\u003e0.0.1\u003c/code\u003e or \u003ccode\u003e0.0.1-slim\u003c/code\u003e. Keep in mind that GitHub releases cannot have duplicated\nnames, so you should not repeat the same tag. Do not use \u003ccode\u003e:\u003c/code\u003e in your tag names.\nIf you do need to re-release a tag (not recommended if a user might be using it and then it\u0027s changed) you can manually delete\nthe release and the tag in the GitHub interface. This is a nice structure because it\nmeans you can have containers with different names under the same tag. In the example\nabove, we have each of \"pokemon,\" \"latest,\" and \"salad\" released under tag 0.0.1.\nThis is how it looks on GitHub:\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/releases.png\"\u003e\u003cimg src=\"img/releases.png\" alt=\"img/releases.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-3-how-to-develop\" class=\"anchor\" aria-hidden=\"true\" href=\"#3-how-to-develop\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. How to Develop\u003c/h3\u003e\n\u003cp\u003eAs we mentioned previously, the container builds will be tested on a pull request,\nand the release will trigger on merge into your main branch (main). See the \u003ca href=\".github/workflows/builder.yml\"\u003e.github/workflows/builder.yml\u003c/a\u003e)\nto edit this. The idea is that you can:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDevelop your container via a development branch\u003c/li\u003e\n\u003cli\u003eOpen a pull request to test the container (the \u003ca href=\".github/workflows/test.yml\"\u003e.github/workflows/test.yml\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eOn merge, your container will be released!\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\u003ca id=\"user-content-4-how-to-pull\" class=\"anchor\" aria-hidden=\"true\" href=\"#4-how-to-pull\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. How to pull\u003c/h3\u003e\n\u003cp\u003eTechnically, Singularity can pull just knowing the URL. For example:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eHowever, the \u003ca href=\"singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e tool (will be) designed to be able to parse and handle\nthese container uris automatically. For the containers here, you could do:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:latest\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:salad\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:pokemon\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor write the container URI into a registry entry:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egh: singularityhub/singularity-deploy\nlatest:\n latest: \"0.0.1\"\ntags:\n \"latest\": \"0.0.1\"\n \"salad\": \"0.0.1\"\n \"pokemon\": \"0.0.1\"\nmaintainer: \"@vsoch\"\nurl: https://github.com/singularityhub/singularity-deploy\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(This part is still under development!)\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1622923859.0
+ "updated_at": 1661761753.0
},
{
"data_format": 2,
- "description": null,
+ "description": "This is the Singularity file for build singularity image of biomarkers module",
"filenames": [
- "ext/Singularity"
+ "Biomarkers/Singularity"
],
- "full_name": "OSC/shiny_launcher",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-wip-batch-connect---osc-shiny-app-launcher\" class=\"anchor\" href=\"#wip-batch-connect---osc-shiny-app-launcher\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e[WIP] Batch Connect - OSC Shiny App Launcher\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/5e71a5a07e8e6e15f922edb76b5fb68e7ee6087e336807c38095861b8c7f5fc2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f7368696e795f6c61756e636865722e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5e71a5a07e8e6e15f922edb76b5fb68e7ee6087e336807c38095861b8c7f5fc2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f7368696e795f6c61756e636865722e737667\" alt=\"GitHub Release\" data-canonical-src=\"https://img.shields.io/github/release/osc/shiny_launcher.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA Batch Connect app designed for OSC OnDemand that launches a Shiny App within\nan Owens batch job.\u003c/p\u003e\n\u003cp\u003eThe Shiny app is included a submodule and each deployment can modified which\nShiny app to deploy using git config to specify the URL for the submodule. This\nway the launcher code can be reused for multiple apps but the launcher and the\napp itself can be managed separately.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-prerequisites\" class=\"anchor\" href=\"#prerequisites\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eThis Batch Connect app requires the following software be installed on the\n\u003cstrong\u003ecompute nodes\u003c/strong\u003e that the batch job is intended to run on (\u003cstrong\u003eNOT\u003c/strong\u003e the\nOnDemand node):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://shiny.rstudio.com/\" rel=\"nofollow\"\u003eShiny\u003c/a\u003e x.y.z+\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.tacc.utexas.edu/research-development/tacc-projects/lmod\" rel=\"nofollow\"\u003eLmod\u003c/a\u003e 6.0.1+ or any other \u003ccode\u003emodule purge\u003c/code\u003e and \u003ccode\u003emodule load \u0026lt;modules\u0026gt;\u003c/code\u003e based\nCLI used to load appropriate environments within the batch job\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-install\" class=\"anchor\" href=\"#install\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eTODO\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eAgain, you do not need to restart the app as it isn\u0027t a Passenger app.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributing\" class=\"anchor\" href=\"#contributing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eFork it ( \u003ca href=\"https://github.com/OSC/bc_osc_example_shiny/fork\"\u003ehttps://github.com/OSC/bc_osc_example_shiny/fork\u003c/a\u003e )\u003c/li\u003e\n\u003cli\u003eCreate your feature branch (\u003ccode\u003egit checkout -b my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCommit your changes (\u003ccode\u003egit commit -am \u0027Add some feature\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003ePush to the branch (\u003ccode\u003egit push origin my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a new Pull Request\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "full_name": "tperezdevelopment/Singularity-Tools",
+ "latest_release": "1.0.0",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-tools\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity-Tools\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://zenodo.org/badge/latestdoi/270368691\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b74d900bff6714a691edb3ec8bc54abcbf1653a66cc2dfeb1eb05e5e3f452b05/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3237303336383639312e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/270368691.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eList of Singularity file to build Tools\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1569007230.0
+ "updated_at": 1661186876.0
},
{
"data_format": 2,
- "description": "Command Line Interface and Python API for Forskalle",
+ "description": "Code repository for my Masters thesis with the title \"Temporal Planning for Droplet Routing on Microfluidic Biochips\".",
"filenames": [
"Singularity"
],
- "full_name": "csf-ngs/forskalle-api",
+ "full_name": "Altava/droplet-routing",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fsk-api--cli\" class=\"anchor\" href=\"#fsk-api--cli\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFSK API + cli\u003c/h1\u003e\n\u003cp\u003ePython library for Fsk3 API. Will add functionality as needed.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eInstall from the VBCF.NGS repository:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip3 install git+https://ngs.vbcf.ac.at/repo/software/forskalle-api.git\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e or github\u003c/span\u003e\npip3 install git+https://github.com/csf-ngs/forskalle-api.git\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-cli\" class=\"anchor\" href=\"#cli\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCLI\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003efsk-cli [command] [options] etc\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePoint it at your favorite Forskalle instance either by\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esetting environment variables: \u003ccode\u003eFSK_API_BASE\u003c/code\u003e and \u003ccode\u003eFSK_API_KEY\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eusing a config file in \u003ccode\u003e~/.fsk_api.yml\u003c/code\u003e, please see \u003ca href=\"doc/\"\u003edoc/\u003c/a\u003e for an example\u003c/li\u003e\n\u003cli\u003eproviding \u003ccode\u003e--base\u003c/code\u003e and \u003ccode\u003e--key\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTry \u003ccode\u003efsk-cli --help\u003c/code\u003e for some hints!\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-examples\" class=\"anchor\" href=\"#examples\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExamples\u003c/h4\u003e\n\u003cp\u003eSet all sequenced samples of a multiplex to Ok:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003efsk-cli multi get M4711 \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e jq \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e.multiplex_samples[].sample_id\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \\\n \u003cspan class=\"pl-k\"\u003ewhile\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003eread\u003c/span\u003e sample_id\u003cspan class=\"pl-k\"\u003e;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003edo\u003c/span\u003e \n fsk-cli set-sequencing-status \u003cspan class=\"pl-smi\"\u003e$sample_id\u003c/span\u003e --status Ok\n \u003cspan class=\"pl-k\"\u003edone\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIn place editing with jq and updating:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e update all request lanes to status Ready\u003c/span\u003e\nfsk-cli request get R4711 \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \\\n jq \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e.request_lanes[].status=\"Ready\"\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \\\n fsk-cli request update R4711\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-library\" class=\"anchor\" href=\"#library\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLibrary\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003efrom forskalle_api import FskApi\n\nfsk_api = FskApi()\nsample_json = fsk_api.get_sample(54321)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003efrom forskalle_api import FskApi\nfrom forskalle_api.auto.queryparams import IlluminaRunFilters\nfrom forskalle_api.fsk_query import FskQuery\n\nfsk_api = FskApi()\nirf = IlluminaRunFilters(sequenced_after=\"2020-05-01\")\nq = FskQuery(filters=irf)\nruns = fsk_api.get_runs_illumina(q)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThere is no API-doc or similar, but we all love reading python source code!\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-models\" class=\"anchor\" href=\"#models\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModels\u003c/h3\u003e\n\u003cp\u003eModels and Query Parameters are autogenerated from forskalle. Return values of most api calls are thin class layers with type hints, e.g. forskalle_api.auto.models.Sample with all properties and relationships to allow easy navigation in your source code editor.\u003c/p\u003e\n\u003cp\u003eYou can also find de/serialization helpers (serializeSample from Class to dict, plainToSample from dict to Class).\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-droplet-routing\" class=\"anchor\" aria-hidden=\"true\" href=\"#droplet-routing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edroplet-routing\u003c/h1\u003e\n\u003cp\u003eCode repository for my Masters thesis with the title \"Temporal Planning for Droplet Routing on Microfluidic Biochips\".\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1625599328.0
+ "updated_at": 1654011059.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Eugene is an integrative genome annotation software",
"filenames": [
- "volsung-cudnn8-runtime-ubuntu18.04/Singularity",
- "vdt_base/Singularity"
+ "eugene/singularity/4.3/Singularity"
],
- "full_name": "AvciRecep/chaste_nesi",
- "latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4539\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eUsing conventions described here.\n\u003ca href=\"https://singularityhub.github.io/singularityhub-docs/docs/getting-started/naming\" rel=\"nofollow\"\u003ehttps://singularityhub.github.io/singularityhub-docs/docs/getting-started/naming\u003c/a\u003e\u003c/p\u003e\n",
+ "full_name": "tschiex/eugene",
+ "latest_release": "v4.3a",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-welcome-to-eugene\" class=\"anchor\" aria-hidden=\"true\" href=\"#welcome-to-eugene\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWelcome to eugene\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-an-integrative-gene-finder-for-eukaryotic-and-prokaryotic-genomes\" class=\"anchor\" aria-hidden=\"true\" href=\"#an-integrative-gene-finder-for-eukaryotic-and-prokaryotic-genomes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAn integrative gene finder for eukaryotic and prokaryotic genomes\u003c/h2\u003e\n\u003cp\u003eThis software is OSI Certified Open Source Software. OSI Certified is\na certification mark of the Open Source Initiative. eugene is\ngoverned by the ARTISTIC LICENSE (see \u003ca href=\"http://www.opensource.org\" rel=\"nofollow\"\u003ewww.opensource.org\u003c/a\u003e). Please see\nthe file COPYING for details. For documentation, please see the files\nin the doc subdirectory. For building and installation instructions\nplease see the INSTALL file. For creating a new eugene release, please\nsee the RELEASE file.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-for-more-information\" class=\"anchor\" aria-hidden=\"true\" href=\"#for-more-information\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor more information\u003c/h2\u003e\n\u003cp\u003eVisit eugene\u0027s web site at \u003ca href=\"http://eugene.toulouse.inrae.fr\" rel=\"nofollow\"\u003eINRAE\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1625528992.0
+ "updated_at": 1660811863.0
},
{
"data_format": 2,
- "description": "METHYLPY, is an analysis pipeline for DNA methylation data.",
+ "description": "Recipes and definition files for building singularity",
"filenames": [
- "1.4.3/Singularity"
+ "flameshot/Singularity",
+ "ansible/Singularity"
],
- "full_name": "pscedu/singularity-methylpy",
- "latest_release": "v1.4.3",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-methylpy/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-methylpy/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-methylpy/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-methylpy/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/68dce811b911761f8ba92aae500e0e1400720248c31724fc8f3215bead82ab11/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6d657468796c7079\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/68dce811b911761f8ba92aae500e0e1400720248c31724fc8f3215bead82ab11/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6d657468796c7079\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-methylpy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/fe10607a3df63b8791aff64a9cb4897318e187e28b12c3a563a6a0a76bbb8f73/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6d657468796c7079\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fe10607a3df63b8791aff64a9cb4897318e187e28b12c3a563a6a0a76bbb8f73/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6d657468796c7079\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-methylpy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ca28e9dbb4ca3fb891088deca8c37945a3dd96b32bfc0e01a8eef88efa3fe02e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6d657468796c7079\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ca28e9dbb4ca3fb891088deca8c37945a3dd96b32bfc0e01a8eef88efa3fe02e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6d657468796c7079\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-methylpy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c59e0399bb825884a9fa4f45b91bdba428f86d1decc49df207e011187efa29b1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6d657468796c7079\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c59e0399bb825884a9fa4f45b91bdba428f86d1decc49df207e011187efa29b1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6d657468796c7079\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-methylpy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-methylpy\" class=\"anchor\" href=\"#singularity-methylpy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-methylpy\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/METHYLPY\"\u003eMETHYLPY\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the Perl scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/methylpy/1.4.3\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/methylpy\u003c/code\u003e as \u003ccode\u003e1.4.3.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "serheang/singularity",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"https://sylabs.io/guides/3.6/user-guide/introduction.html\" rel=\"nofollow\"\u003esingularity\u003c/a\u003e\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-build\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to build\u003c/h2\u003e\n\u003cp\u003eThe simplest way to build a singularity container is to build from docker:\n\u003ccode\u003esingularity pull docker://centos:latest\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eHowever, if you have a definition file like this:\ndocker.def:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap: docker\nFrom: centos:7\n\n%labels\n\tAUTHOR SerTan\n\tVERSION 1.0\n\n%environment\n\texport PATH=/usr/local/bin:$PATH\n\texport LANG=en_US.UTF-8\n\texport LC_ALL=C\n\n%files\n\n%post\n\tyum -y install emacs\n\n%runscript\n\techo \"This is a container\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen, you can build the SIF from it:\n\u003ccode\u003esudo singularity build test.sif docker.def\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eYou can refer to this \u003ca href=\"https://sylabs.io/guides/3.6/user-guide/quick_start.html\" rel=\"nofollow\"\u003equickstart guide\u003c/a\u003e to have more information.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-run-the-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-run-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run the image?\u003c/h2\u003e\n\u003cp\u003eTo run a SIF:\n\u003ccode\u003esingularity run -B $XDG_RUNTIME_DIR \u0026lt;sif file\u0026gt;\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eIt require to bind $XDG_RUNTIME_DIR into the container so that we can utilize the host\u0027s X session capacity.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1629218072.0
+ "subscribers_count": 2,
+ "topics": [],
+ "updated_at": 1660644642.0
},
{
"data_format": 2,
- "description": null,
+ "description": "patroon with openms singularity image",
"filenames": [
- "misc/releases/20.06/Singularity.20.06",
- "misc/releases/latest/Singularity",
- "misc/releases/19.12/Singularity.19.12",
- "misc/releases/19.06/Singularity.19.06"
+ "Singularity"
],
- "full_name": "salome-eriksson/downward-issue751-prototype",
+ "full_name": "romxero/patroonOpenmsSingularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fast-downward\" class=\"anchor\" href=\"#fast-downward\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFast Downward\u003c/h1\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2020 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"http://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttp://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" href=\"#tested-software-versions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2017 (MSVC 19.16) and 2019 (MSVC 19.28)\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributors\" class=\"anchor\" href=\"#contributors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2020 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2020 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2020 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2020 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2020 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2020 Salome Eriksson\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2018-2020 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2015 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-history\" class=\"anchor\" href=\"#history\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1625214736.0
+ "updated_at": 1659137230.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity definition files for building various software to run on HPC systems",
"filenames": [
- "Singularity"
+ "coinfinder.def",
+ "octopus.def",
+ "demultiplex.def",
+ "sibeliusz.def",
+ "orthofinder.def",
+ "torstyverse.def",
+ "openmpibase.def",
+ "amiga.def",
+ "panx.def",
+ "instrain.def",
+ "eggnogmapper.def",
+ "motulizer.def",
+ "orthofinder_usemem.def",
+ "raxspectree.def",
+ "tychfinder.def",
+ "wgasuite.def",
+ "checkm.def",
+ "pheniqs.def"
],
- "full_name": "mherkazandjian/ismcpak",
+ "full_name": "slhogle/singularity_def_files",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://cloud.sylabs.io/library/_container/5f9bd736bccfe9cf4578f166\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-quickstart\" class=\"anchor\" href=\"#quickstart\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuickstart\u003c/h1\u003e\n\u003cp\u003eTo run a quick example, the following container can be used:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone -b alpha-master https://github.com/mherkazandjian/ismcpak.git ~/ismcpak\n$ cd ~/ismcpak/tests\n$ singularity exec library://mher/default/ismcpak:latest mpiexec python run_singleMesh.py \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis is a package which implements some utilities useful for modelling and\nanalyzing simulation output of PDRs.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ejupyter notebooks\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eTo run a jupyter server inside the container with the full ismcpak environment:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec --scratch /run/user library://mher/default/ismcpak:latest jupyter-lab\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-build-the-container-locally\" class=\"anchor\" href=\"#build-the-container-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild the container locally\u003c/h2\u003e\n\u003cp\u003eThe following command build the singularity container on a local machine. The\nonly prerequisite is to have singularity installed and to have sudo access.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone -b alpha-master https://github.com/mherkazandjian/ismcpak.git ~/ismcpak\n$ cd ~/ismcpak\n$ sudo make singularity\n$ cd tests\n$ singularity exec ../container.sif mpiexec python run_singleMesh.py \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-prerequisites\" class=\"anchor\" href=\"#prerequisites\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h1\u003e\n\u003cp\u003eamuse - mpich\nPyQt4\nipython\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-installing-the-pdr-code\" class=\"anchor\" href=\"#installing-the-pdr-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the PDR code\u003c/h1\u003e\n\u003cp\u003eThe PDR code should be copied into:\namuse/src/amuse/community/pdr\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-compiling-the-pdr-code\" class=\"anchor\" href=\"#compiling-the-pdr-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompiling the PDR code\u003c/h1\u003e\n\u003cp\u003eThe PDR code can be compiled using:\n~\u0026gt; cd amuse/src/amuse/community/pdr\n~\u0026gt; make all\nThe generates the libpdr.a library\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-setting-up-the-working-environment\" class=\"anchor\" href=\"#setting-up-the-working-environment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetting up the working environment\u003c/h1\u003e\n\u003cp\u003eThe path to ismcpak should be added to the PYTHONPATH environment variable. For\nbash, the following line should be added:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport PYTHONPATH=/PATH/TO/ismcpak:$PYTHONPATH\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto tcsh :\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esetenv PYTHONPATH /PATH/TO/ismcpak:$PYTHONPATH\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-running-the-code\" class=\"anchor\" href=\"#running-the-code\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the code\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-basic-test---single-model\" class=\"anchor\" href=\"#basic-test---single-model\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBasic test - single model\u003c/h2\u003e\n\u003cp\u003eThe PDR code can only be run through the AMUSE ( \u003ca href=\"http://amusecode.org\" rel=\"nofollow\"\u003ehttp://amusecode.org\u003c/a\u003e ).\nDepending on the mpi environment installed with AMUSE, it might be\nnecessary to launch the mpd deamon before executing either:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e~\u0026gt; mpirun -np 1 python run_singleMesh.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor via\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e~\u0026gt; python run_singleMesh.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-running-a-grid-of-models\" class=\"anchor\" href=\"#running-a-grid-of-models\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning a Grid of models\u003c/h1\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-setup-the-working-environment-variables\" class=\"anchor\" href=\"#setup-the-working-environment-variables\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esetup the working environment variables\u003c/h1\u003e\n\u003col\u003e\n\u003cli\u003esource setdev\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-install-the-pdr-code-into-amuse-make-sure-the-correct\" class=\"anchor\" href=\"#install-the-pdr-code-into-amuse-make-sure-the-correct\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003einstall the pdr code into amuse (make sure the correct\u003c/h1\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-path-of-amuse-is-set-in-setenv\" class=\"anchor\" href=\"#path-of-amuse-is-set-in-setenv\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epath of amuse is set in setenv\u003c/h1\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003emake pdr_install\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-after-these-two-steps-the-tests\" class=\"anchor\" href=\"#after-these-two-steps-the-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eafter these two steps, the tests\u003c/h1\u003e\n\u003cp\u003erun_singleMesh.py\nchemical_network_pdr_code.py\nshould run without errors\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\n\u003cp\u003eto run a grid, use the following under ismcpak:\n~\u0026gt; ipython --pylab=qt tests/run_oneSidedGrid.py\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eafter the model data is written to\ntests/oneSidedGrid/meshes\nwe need to construct the database files .db using constructReadArchive.py\n~\u0026gt; ipython --pylab=qt constructReadArchive.py\u003c/p\u003e\n\u003cp\u003eafter the database is constructed we must have the file\nmeshes.db meshes.db.info\nin the output directory and a message\narchive integrity test passed\nmust be displayed\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eafter creating the database, a reference file must be generated which\nstores information about the parameters which have been used in\ngenerating the data. A template of this file is located under\nruns/tests/templateDir/used_params.py\nwhere the parameters used by run_oneSidedGrid.py should be filled in\nby hand. Once the values are changed :\n~\u0026gt; python used_parms.py\ngenerates the pickle file\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eset the desired display parameters in analyzeArchive.py and invoke :\n~\u0026gt; ipython --pylab=qt analyzeArchive.py\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eto generate the radex databases, the bottom part of analyzeArchive.py should be enabled to\nallow radex databases to be computed and written do disk. Set the desired values of\nAv to compute and the species whose emission will be computed and re-run:\n~\u0026gt; ipython --pylab=qt analyzeArchive.py\nAs a check, the data in\ntests/oneSidedGrid/radexDbs\nshould have directories with the Avs we have set and each directory should\nhave files for each species we have specified.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eafter producing the radex database files, we can convert that data to ascii data using :\n~\u0026gt; ipython ismcpak2Ascii.py\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-disclaimer\" class=\"anchor\" href=\"#disclaimer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDisclaimer\u003c/h1\u003e\n\u003cp\u003eTHIS SOFTWARE IS PROVIDED UNDER THE GPL LICENSE BY THE COPYRIGHT HOLDERS AND\nCONTRIBUTORS \u201cAS IS\u201d AND DOES NOT EXPRESS OR PROVIDE IMPLIED WARRANTIES,\nINCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND F\nITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT\nOWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,\nEXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT\nOF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\nINTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT\n, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY\nWAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH\nDAMAGE.\u003c/p\u003e\n\u003cp\u003eSee LICENSE.txt for more information about the GPL license.\u003c/p\u003e\n\u003cp\u003ePlease cite the following papers if any part of this package is used in your\nresearch.\u003c/p\u003e\n\u003cp\u003eKazandjian, M. V., Meijerink, R., Pelupessy, I., Israel, F. P., Spaans, M.,\narXiv:1403.7000\u003c/p\u003e\n\u003cp\u003eKazandjian, M. V., Meijerink, R., Pelupessy, I., Israel, F. P., Spaans, M.,\n2012, A\u0026amp;A, 542, A65, 26\u003c/p\u003e\n\u003cp\u003eMeijerink, R., Spaans, M., \u0026amp; Israel, F. P. 2007, A\u0026amp;A, 461, 793\u003c/p\u003e\n\u003cp\u003eMeijerink, R. \u0026amp; Spaans, M. 2005, A\u0026amp;A, 436, 397\u003c/p\u003e\n\u003cp\u003eIsmpak makes makes use of \"Radex\" internally to compute the line emissions. Please\nreference the RADEX paper as well:\u003c/p\u003e\n\u003cp\u003eVan der Tak, F.F.S., Black, J.H., Sch\u00f6ier, F.L., Jansen, D.J., van Dishoeck, E.F. 2007, A\u0026amp;A 468, 627\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1625261030.0
+ "updated_at": 1639279998.0
},
{
"data_format": 2,
- "description": "Docker image",
+ "description": "definition files for containers used in Hanlab",
"filenames": [
- "Singularity.latest"
+ "singularity.R.3.6.3.Bioc/R.3.6.3.Bioc.def",
+ "singularity.Rconda/R.3.6.3.def",
+ "singularity.mkl/mkl.def",
+ "singularity.mkl/mkl.ubuntu.def",
+ "singularity.R.4.0.2.Bioc/R.4.0.2.Bioc.def",
+ "singularity.py37.ml.openblas/py37.ml.openblas.def",
+ "singularity.R.3.6.3.phylo/R.3.6.3.phylo.def",
+ "singularity.SAD/SAD.def",
+ "singularity.phylo/phylo.def",
+ "singularity.py37.ml.mkl/py37.ml.mkl.def",
+ "singularity.rnaseq/rnaseq.def"
],
- "full_name": "AdamWilsonLab/docker_geospatial_plus",
+ "full_name": "HanLabUNLV/hanlab_singularity_defs",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-geospatial-plus\" class=\"anchor\" href=\"#geospatial-plus\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGeospatial Plus\u003c/h1\u003e\n\u003cp\u003eBuilding on the versioned geospatial Rocker image.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-github-actions\" class=\"anchor\" href=\"#github-actions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGithub Actions\u003c/h1\u003e\n\u003cp\u003eThis repository uses GitHub Actions to test the docker image prior to making it available as a GitHub package.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1624971946.0
+ "updated_at": 1648241982.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.cosmic_tagging_tf_2010"
],
- "full_name": "yuma-35/wave-U-guiter",
+ "full_name": "maxpkatz/singularity_image_files",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-wave-u-net-pytorch\" class=\"anchor\" href=\"#wave-u-net-pytorch\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWave-U-Net (Pytorch)\u003c/h1\u003e\n\u003cp\u003eImproved version of the \u003ca href=\"https://arxiv.org/abs/1806.03185\" rel=\"nofollow\"\u003eWave-U-Net\u003c/a\u003e for audio source separation, implemented in Pytorch.\u003c/p\u003e\n\u003cp\u003eClick \u003ca href=\"www.github.com/f90/Wave-U-Net\"\u003ehere\u003c/a\u003e for the original Wave-U-Net implementation in Tensorflow.\nYou can find more information about the model and results there as well.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-improvements\" class=\"anchor\" href=\"#improvements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImprovements\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eMulti-instrument separation by default, using a separate standard Wave-U-Net for each source (can be set to one model as well)\u003c/li\u003e\n\u003cli\u003eMore scalable to larger data: A depth parameter D can be set that employs D convolutions for each single convolution in the original Wave-U-Net\u003c/li\u003e\n\u003cli\u003eMore configurable: Layer type, resampling factor at each level etc. can be easily changed (different normalization, residual connections...)\u003c/li\u003e\n\u003cli\u003eFast training: Preprocesses the given dataset by saving the audio into HDF files, which can be read very quickly during training, thereby avoiding slowdown due to resampling and decoding\u003c/li\u003e\n\u003cli\u003eModular thanks to Pytorch: Easily replace components of the model with your own variants/layers/losses\u003c/li\u003e\n\u003cli\u003eBetter output handling: Separate output convolution for each source estimate with linear activation so amplitudes near 1 and -1 can be easily predicted, at test time thresholding to valid amplitude range [-1,1]\u003c/li\u003e\n\u003cli\u003eFixed or dynamic resampling: Either use fixed lowpass filter to avoid aliasing during resampling, or use a learnable convolution\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h1\u003e\n\u003cp\u003eGPU strongly recommended to avoid very long training times.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-option-1-direct-install-recommended\" class=\"anchor\" href=\"#option-1-direct-install-recommended\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOption 1: Direct install (recommended)\u003c/h3\u003e\n\u003cp\u003eSystem requirements:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eLinux-based OS\u003c/li\u003e\n\u003cli\u003ePython 3.6\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://mega-nerd.com/libsndfile/\" rel=\"nofollow\"\u003elibsndfile\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.ffmpeg.org/\" rel=\"nofollow\"\u003effmpeg\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003eCUDA 10.1 for GPU usage\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eClone the repository:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/f90/Wave-U-Net-Pytorch.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRecommended: Create a new virtual environment to install the required Python packages into, then activate the virtual environment:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003evirtualenv --python /usr/bin/python3.6 waveunet-env\nsource waveunet-env/bin/activate\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eInstall all the required packages listed in the \u003ccode\u003erequirements.txt\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip3 install -r requirements.txt\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-option-2-singularity\" class=\"anchor\" href=\"#option-2-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOption 2: Singularity\u003c/h3\u003e\n\u003cp\u003eWe also provide a Singularity container which allows you to avoid installing the correct Python, CUDA and other system libraries, however we don\u0027t provide specific advice on how to run the container and so only do this if you have to or know what you are doing (since you need to mount dataset paths to the container etc.)\u003c/p\u003e\n\u003cp\u003eTo pull the container, run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://f90/Wave-U-Net-Pytorch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen run the container from the directory where you cloned this repository to, using the commands listed further below in this readme.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-download-datasets\" class=\"anchor\" href=\"#download-datasets\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownload datasets\u003c/h1\u003e\n\u003cp\u003eTo directly use the pre-trained models we provide for download to separate your own songs, now skip directly to the \u003ca href=\"#test\"\u003elast section\u003c/a\u003e, since the datasets are not needed in that case.\u003c/p\u003e\n\u003cp\u003eTo start training your own models, download the \u003ca href=\"https://sigsep.github.io/datasets/musdb.html\" rel=\"nofollow\"\u003efull MUSDB18HQ dataset\u003c/a\u003e and extract it into a folder of your choice. It should have two subfolders: \"test\" and \"train\" as well as a README.md file.\u003c/p\u003e\n\u003cp\u003eYou can of course use your own datasets for training, but for this you would need to modify the code manually, which will not be discussed here. However, we provide a loading function for the normal MUSDB18 dataset as well.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-training-the-models\" class=\"anchor\" href=\"#training-the-models\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTraining the models\u003c/h1\u003e\n\u003cp\u003eTo train a Wave-U-Net, the basic command to use is\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython3.6 train.py --dataset_dir /PATH/TO/MUSDB18HQ \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere the path to MUSDB18HQ dataset needs to be specified, which contains the \u003ccode\u003etrain\u003c/code\u003e and \u003ccode\u003etest\u003c/code\u003e subfolders.\u003c/p\u003e\n\u003cp\u003eAdd more command line parameters as needed:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--cuda\u003c/code\u003e to activate GPU usage\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--hdf_dir PATH\u003c/code\u003e to save the preprocessed data (HDF files) to custom location PATH, instead of the default \u003ccode\u003ehdf\u003c/code\u003e subfolder in this repository\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--checkpoint_dir\u003c/code\u003e and \u003ccode\u003e--log_dir\u003c/code\u003e to specify where checkpoint files and logs are saved/loaded\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--load_model checkpoints/model_name/checkpoint_X\u003c/code\u003e to start training with weights given by a certain checkpoint\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor more config options, see \u003ccode\u003etrain.py\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eTraining progress can be monitored by using Tensorboard on the respective \u003ccode\u003elog_dir\u003c/code\u003e.\nAfter training, the model is evaluated on the MUSDB18HQ test set, and SDR/SIR/SAR metrics are reported for all instruments and written into both the Tensorboard, and in more detail also into a \u003ccode\u003eresults.pkl\u003c/code\u003e file in the \u003ccode\u003echeckpoint_dir\u003c/code\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content--test-trained-models-on-songs\" class=\"anchor\" href=\"#-test-trained-models-on-songs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca name=\"user-content-test\"\u003e\u003c/a\u003e Test trained models on songs!\u003c/h1\u003e\n\u003cp\u003eWe provide the default model in a pre-trained form as download so you can separate your own songs right away.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-downloading-our-pretrained-models\" class=\"anchor\" href=\"#downloading-our-pretrained-models\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownloading our pretrained models\u003c/h2\u003e\n\u003cp\u003eDownload our pretrained model \u003ca href=\"https://www.dropbox.com/s/r374hce896g4xlj/models.7z?dl=1\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\nExtract the archive into the \u003ccode\u003echeckpoints\u003c/code\u003e subfolder in this repository, so that you have one subfolder for each model (e.g. \u003ccode\u003eREPO/checkpoints/waveunet\u003c/code\u003e)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-run-pretrained-model\" class=\"anchor\" href=\"#run-pretrained-model\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun pretrained model\u003c/h2\u003e\n\u003cp\u003eTo apply our pretrained model to any of your own songs, simply point to its audio file path using the \u003ccode\u003einput_path\u003c/code\u003e parameter:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython3.6 predict.py --load_model checkpoints/waveunet/model --input \"audio_examples/Cristina Vane - So Easy/mix.mp3\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eAdd \u003ccode\u003e--cuda \u003c/code\u003e when using a GPU, it should be much quicker\u003c/li\u003e\n\u003cli\u003ePoint \u003ccode\u003e--input\u003c/code\u003e to the music file you want to separate\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eBy default, output is written where the input music file is located, using the original file name plus the instrument name as output file name. Use \u003ccode\u003e--output\u003c/code\u003e to customise the output directory.\u003c/p\u003e\n\u003cp\u003eTo run your own model:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePoint \u003ccode\u003e--load_model\u003c/code\u003e to the checkpoint file of the model you are using. If you used non-default hyper-parameters to train your own model, you must specify them here again so the correct model is set up and can receive the weights!\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1624842105.0
+ "updated_at": 1609779903.0
},
{
"data_format": 2,
- "description": "Recipes for docker and singularity containers for COHERENT projects",
+ "description": "Singularity recipe files for sambamba (https://github.com/biod/sambamba)",
"filenames": [
- "geant4/Singularity_geant4",
- "geant4/Singularity"
+ "Singularity.0.8.0",
+ "Singularity"
],
- "full_name": "NuTufts/coherent-containers",
+ "full_name": "powerPlant/sambamba-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-coherent-containers\" class=\"anchor\" href=\"#coherent-containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoherent-containers\u003c/h1\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for Sambamba, a high performance highly parallel robust and fast tool (and library), written in the D programming language, for working with SAM and BAM files.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1626189399.0
+ "updated_at": 1613348079.0
},
{
"data_format": 2,
- "description": "Nextflow pipelines for a variety of bioinformatics outputs",
+ "description": null,
"filenames": [
- "nextstrain/environments/Singularity"
+ "Singularity.4.4.2",
+ "Singularity.4.0.14"
],
- "full_name": "matt-sd-watson/nextflow_for_bioinformatics",
+ "full_name": "sschmeier/fishtank-gpu2",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nextflow_for_bioinformatics\" class=\"anchor\" href=\"#nextflow_for_bioinformatics\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enextflow_for_bioinformatics\u003c/h1\u003e\n\u003cp\u003eNextflow pipelines for routine bioinformatics analyses\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-nextstrain\" class=\"anchor\" href=\"#nextstrain\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enextstrain\u003c/h2\u003e\n\u003cp\u003eThe nextstrain workflow is the most up-to-date and maintained pipeline in this repo. It can be used to generate a serie sof parallel nextstrain builds or for parameter testing. A specific README for this pipeline is provided in the named directory.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-rna-seq-and-tree_annotation\" class=\"anchor\" href=\"#rna-seq-and-tree_annotation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003erna-seq and tree_annotation\u003c/h2\u003e\n\u003cp\u003eIn development.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-fishtank-gpu2\" class=\"anchor\" aria-hidden=\"true\" href=\"#fishtank-gpu2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efishtank-gpu2\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1629726178.0
+ "updated_at": 1614062687.0
},
{
"data_format": 2,
- "description": "FastTree infers approximately-maximum-likelihood phylogenetic trees from alignments of nucleotide or protein sequences. ",
+ "description": "Container with Jupyter and rstudio server",
"filenames": [
- "2.1.11/Singularity"
+ "Singularity.0.2.0",
+ "Singularity.0.2.1",
+ "Singularity",
+ "Singularity.0.1"
],
- "full_name": "pscedu/singularity-fasttree",
- "latest_release": "v2.1.11",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-fasttree/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-fasttree/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-fasttree/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-fasttree/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/776c7e7d72b508b47ce8bd555bc38368be7629ae529461cdfcfaf5af2920c141/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6661737474726565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/776c7e7d72b508b47ce8bd555bc38368be7629ae529461cdfcfaf5af2920c141/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6661737474726565\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-fasttree\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/6ba1353dc0bb816d3bca4dafd9f90d560fb7d5234867b2ac4b80d0557d1bdc90/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6661737474726565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6ba1353dc0bb816d3bca4dafd9f90d560fb7d5234867b2ac4b80d0557d1bdc90/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6661737474726565\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-fasttree\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a6aa9ae28b1371a303884250204eea3a43e273bae8eb19f063f732416f9d6bec/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6661737474726565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a6aa9ae28b1371a303884250204eea3a43e273bae8eb19f063f732416f9d6bec/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6661737474726565\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-fasttree\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0cc26b73063b0fb2d5f502b2eeb83e3568bac891ce91b016300d28524b83b564/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6661737474726565\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0cc26b73063b0fb2d5f502b2eeb83e3568bac891ce91b016300d28524b83b564/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6661737474726565\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-fasttree\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-fasttree\" class=\"anchor\" href=\"#singularity-fasttree\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-fasttree\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eFastTree\u003c/code\u003e, \u003ccode\u003eFastTreeMP\u003c/code\u003e and \u003ccode\u003eFastTreeDbl\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/FastTree/2.1.11\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/FastTree\u003c/code\u003e as \u003ccode\u003e2.1.11.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "dcgc-bfx/singularity-jupyter-rstudio",
+ "latest_release": null,
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/dcgc-bfx/dcgc-jupyter-rstudio/workflows/Build/badge.svg?branch=main\"\u003e\u003cimg src=\"https://github.com/dcgc-bfx/dcgc-jupyter-rstudio/workflows/Build/badge.svg?branch=main\" alt=\"Build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/5253\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-dcgc-jupyter-rstudio\" class=\"anchor\" aria-hidden=\"true\" href=\"#dcgc-jupyter-rstudio\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edcgc-jupyter-rstudio\u003c/h1\u003e\n\u003cp\u003eContainer with Jupyter and rstudio server\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1629226128.0
+ "subscribers_count": 4,
+ "topics": [],
+ "updated_at": 1622118476.0
},
{
"data_format": 2,
- "description": null,
+ "description": "DSL 2 version of https://github.com/jhoneycuttr/nf-wgs ",
"filenames": [
"Singularity"
],
- "full_name": "baxpr/bedpost-singularity",
- "latest_release": "v3.0.0",
- "readme": "\u003cp\u003eRuns FSL\u0027s bedpostx on the input DWI data set, and creates a PDF report of the results.\nQuite simple - see /opt/src/pipeline.sh for the main script.\u003c/p\u003e\n",
+ "full_name": "Finterly/nf-wgs-dsl2",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-optimized-gatk4-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#optimized-gatk4-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOptimized GATK4 Pipeline\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-part-1-nextflow-dsl-2-workflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#part-1-nextflow-dsl-2-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePart 1 Nextflow DSL 2 Workflow\u003c/h2\u003e\n\u003cp\u003eAdapted from:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/Karaniare/Optimized_GATK4_pipeline\"\u003ehttps://github.com/Karaniare/Optimized_GATK4_pipeline\u003c/a\u003e (shell script)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/jhoneycuttr/nf-wgs\"\u003ehttps://github.com/jhoneycuttr/nf-wgs\u003c/a\u003e (Nextflow DSL 1)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-setting-parameters\" class=\"anchor\" aria-hidden=\"true\" href=\"#setting-parameters\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetting Parameters\u003c/h3\u003e\n\u003cp\u003eModify the nextflow.config file:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eParameters\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003einputdir\u003c/td\u003e\n\u003ctd\u003eThe folder that contains all the fastq files (default \u0027data\u0027)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eoutdir\u003c/td\u003e\n\u003ctd\u003eThe folder where you want the resulting data to be save (default \u0027results\u0027)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003erefdir\u003c/td\u003e\n\u003ctd\u003eThe folder that contains reference genomes and bed files (default \u0027genomes\u0027)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003etrimadapter\u003c/td\u003e\n\u003ctd\u003eThe adapter used for initial trimming of reads (default \u0027TruSeq3-PE.fa\u0027)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOther Parameters\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003ereads\u003c/td\u003e\n\u003ctd\u003eThe fastq files in the inputdir folder\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eref\u003c/td\u003e\n\u003ctd\u003eThe reference genome (default \u0027Pf3D7_human.fa\u0027)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003erscript\u003c/td\u003e\n\u003ctd\u003eThe r script for generating report\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eAdditionally, the nextflow parameter \u003ccode\u003e-profile\u003c/code\u003e can be use to target the infrastructure you wish to run the pipeline on. The different profiles are listed below, including any setup that is required.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h3\u003e\n\u003cp\u003eUnder construction \u003cg-emoji class=\"g-emoji\" alias=\"construction\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f6a7.png\"\u003e\ud83d\udea7\u003c/g-emoji\u003e !\u003c/p\u003e\n\u003cp\u003eIf using singularity, please run the command below to generate the singularity image.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build nf-wgs-dsl2.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAnd then include the \u003ccode\u003esingularity\u003c/code\u003e profile on the command line.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNote: you should also include executor you wish to run\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf -profile sge,singularity -c conf/custom.config\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBelow is an example using the genome parameter:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf --readDIR \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/MAD4HATTER_example_data/single -w \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/work --target v4 -profile sge,singularity --genome PlasmoDB-59_Pfalciparum3D7_Genome.fasta -c conf/custom.config\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h3\u003e\n\u003cp\u003eThe pipeline can be easily run with docker and is the recommended way to run it when not using an HPC.\u003c/p\u003e\n\u003cp\u003eFollow the steps below to setup your docker image:\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNote: \u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003edocker\u003c/a\u003e is a prerequisite.\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker build -t finterly/nf-wgs-dsl2 \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAnd you\u0027re done! To run the pipeline, simply add \u003ccode\u003e-profile docker\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf -profile docker\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-conda\" class=\"anchor\" aria-hidden=\"true\" href=\"#conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConda\u003c/h3\u003e\n\u003cp\u003eUnder construction \u003cg-emoji class=\"g-emoji\" alias=\"construction\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f6a7.png\"\u003e\ud83d\udea7\u003c/g-emoji\u003e !\u003c/p\u003e\n\u003cp\u003eTo use conda, you must first install either \u003ca href=\"https://docs.conda.io/en/latest/\" rel=\"nofollow\"\u003econda\u003c/a\u003e or \u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003eminiconda\u003c/a\u003e. Once installed, include the \u003ccode\u003econda\u003c/code\u003e profile on the command line.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf --readDIR single --target v3 -profile conda\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-customizing-for-your-institution\" class=\"anchor\" aria-hidden=\"true\" href=\"#customizing-for-your-institution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCustomizing for your institution\u003c/h3\u003e\n\u003cp\u003eThere is a file named \u003ccode\u003ecustom.config\u003c/code\u003e in \u003ccode\u003econf/\u003c/code\u003e that can be used to tailor processes to your environment. By default,\nthis file is used to tailor the pipeline for Wynton HPC at UCSF. This file may be altered to fit your institution\u0027s profile.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-examples\" class=\"anchor\" aria-hidden=\"true\" href=\"#examples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExamples\u003c/h3\u003e\n\u003cp\u003eUnder construction \u003cg-emoji class=\"g-emoji\" alias=\"construction\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f6a7.png\"\u003e\ud83d\udea7\u003c/g-emoji\u003e !\u003c/p\u003e\n\u003cp\u003ePotential ways to execute the pipeline:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e local executor\u003c/span\u003e\nnextflow run main.nf\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e with a profile (currently only supports sge)\u003c/span\u003e\nnextflow run main.nf -profile sge\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e run with singularity on an HPC with specified reference sequences\u003c/span\u003e\nnextflow run main.nf --readDIR single -profile sge,singularity --refseq_fasta v4_refseq.fasta --target v4\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e or locally with docker\u003c/span\u003e\nnextflow run main.nf --readDIR \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/MAD4HATTER_example_data/single/ --target v4 -profile docker --refseq_fasta v4_refseq.fasta\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e genomes can be provided in lieu of reference sequences, which will be generated with the amplicon table\u003c/span\u003e\nnextflow run main.nf --readDIR \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/MAD4HATTER_example_data/single/ -w \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/work --target v4 -profile docker --genome PlasmoDB-59_Pfalciparum3D7_Genome.fasta\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf you need to resume after some processes were successfully executed, add -resume at the end of it\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1626106357.0
+ "updated_at": 1671034942.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.v1.0.0"
+ "Singularity"
],
- "full_name": "mchugomk/cat12_long",
- "latest_release": null,
- "readme": "",
+ "full_name": "aarandad/ampseq_workflow",
+ "latest_release": "v0.0.4",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-ampseq-workflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#ampseq-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAmpSeq Workflow\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-setting-parameters\" class=\"anchor\" aria-hidden=\"true\" href=\"#setting-parameters\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetting Parameters\u003c/h3\u003e\n\u003cp\u003eModify the nextflow.config file:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eParameter\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003ereadDIR\u003c/td\u003e\n\u003ctd\u003eThe folder that contains all the fastq files (\u003cem\u003erequired\u003c/em\u003e)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eoutDIR\u003c/td\u003e\n\u003ctd\u003eThe folder where you want the resulting data to be save (default \u0027results\u0027)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esequencer\u003c/td\u003e\n\u003ctd\u003eThe sequencer used to produce your data (default \u0027nextseq\u0027)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eQC_only\u003c/td\u003e\n\u003ctd\u003eWhether to only run QC related workflows or all workflows\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003erefseq_fasta \u003cstrong\u003eor\u003c/strong\u003e genome\u003c/td\u003e\n\u003ctd\u003ePath to reference sequences \u003cstrong\u003eor\u003c/strong\u003e path to genome (\u003cem\u003eone\u003c/em\u003e is \u003cstrong\u003erequired\u003c/strong\u003e)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eAdditionally, the nextflow parameter \u003ccode\u003e-profile\u003c/code\u003e can be use to target the infrastructure you wish to run the pipeline on. The different profiles are listed below, including any setup that is required.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h3\u003e\n\u003cp\u003eIf using singularity, please run the command below to generate the singularity image.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build ampseq_workflow.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAnd then include the \u003ccode\u003esingularity\u003c/code\u003e profile on the command line.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNote: you should also include executor you wish to run\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf --readDIR single --refseq_fasta v4_refseq.fasta --target v4 -profile sge,singularity -c conf/custom.config\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBelow is an example using the genome parameter:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf --readDIR \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/MAD4HATTER_example_data/single -w \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/work --target v4 -profile sge,singularity --genome PlasmoDB-59_Pfalciparum3D7_Genome.fasta -c conf/custom.config\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h3\u003e\n\u003cp\u003eThe pipeline can be easily run with docker and is the recommended way to run it when not using an HPC.\u003c/p\u003e\n\u003cp\u003eFollow the steps below to setup your docker image:\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNote: \u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003edocker\u003c/a\u003e is a prerequisite.\u003c/em\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker build -t aarandad/ampseq_worfklow \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAnd you\u0027re done! To run the pipeline, simply add \u003ccode\u003e-profile docker\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf --readDIR single --target v4-profile -profile docker\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-conda\" class=\"anchor\" aria-hidden=\"true\" href=\"#conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConda\u003c/h3\u003e\n\u003cp\u003eTo use conda, you must first install either \u003ca href=\"https://docs.conda.io/en/latest/\" rel=\"nofollow\"\u003econda\u003c/a\u003e or \u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003eminiconda\u003c/a\u003e. Once installed, include the \u003ccode\u003econda\u003c/code\u003e profile on the command line.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run main.nf --readDIR single --target v3 -profile conda\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-customizing-for-your-institution\" class=\"anchor\" aria-hidden=\"true\" href=\"#customizing-for-your-institution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCustomizing for your institution\u003c/h3\u003e\n\u003cp\u003eThere is a file named \u003ccode\u003ecustom.config\u003c/code\u003e in \u003ccode\u003econf/\u003c/code\u003e that can be used to tailor processes to your environment. By default,\nthis file is used to tailor the pipeline for Wynton HPC at UCSF. This file may be altered to fit your institution\u0027s profile.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-examples\" class=\"anchor\" aria-hidden=\"true\" href=\"#examples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExamples\u003c/h3\u003e\n\u003cp\u003ePotential ways to execute the pipeline:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e local executor\u003c/span\u003e\nnextflow run main.nf --target v3\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e with a profile (currently only supports sge)\u003c/span\u003e\nnextflow run main.nf -profile sge --target v3\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e run with singularity on an HPC with specified reference sequences\u003c/span\u003e\nnextflow run main.nf --readDIR single -profile sge,singularity --refseq_fasta v4_refseq.fasta --target v4\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e or locally with docker\u003c/span\u003e\nnextflow run main.nf --readDIR \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/MAD4HATTER_example_data/single/ --target v4 -profile docker --refseq_fasta v4_refseq.fasta\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e genomes can be provided in lieu of reference sequences, which will be generated with the amplicon table\u003c/span\u003e\nnextflow run main.nf --readDIR \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Documents/MAD4HATTER_example_data/single/ -w \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/work --target v4 -profile docker --genome PlasmoDB-59_Pfalciparum3D7_Genome.fasta\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf you need to resume after some processes were successfully executed, add -resume at the end of it\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1627066402.0
+ "updated_at": 1659049973.0
},
{
"data_format": 2,
- "description": "A Nextflow pipeline for automatically running QC on Nano runs",
+ "description": null,
"filenames": [
- "environments/illumina/Singularity"
+ "Singularity"
],
- "full_name": "WalesGenePark/NanoSeqQC",
+ "full_name": "rses-singularity/tensorflow-cpu",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nanoseqqc\" class=\"anchor\" href=\"#nanoseqqc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNanoSeqQC\u003c/h1\u003e\n\u003cp\u003eA Nextflow pipeline for automatically running QC on Nano runs\u003c/p\u003e\n\u003cp\u003eWARNING - UNDER CURRENT DEVELOPMENT AND NOT FULLY FUNCTIONAL\u003c/p\u003e\n\u003cp\u003elarge sections of nextflow coding are based off the excellent ncov2019-artic-nf pipeline \u003ccode\u003econnor-lab/ncov2019-artic-nf\u003c/code\u003e\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h4\u003e\n\u003chr\u003e\n\u003cp\u003eThe running of this will automatically take fastq reads from a Nano sequencing read, run FastP read diagnostics and trimming before performing some comparative statistics based on library metadata such as RIN and concentration.\nAdditionally, reads will be run through Kraken2 to confirm species profile (and lack of contamination!)\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-quick-start\" class=\"anchor\" href=\"#quick-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick-start\u003c/h4\u003e\n\u003ch5\u003e\n\u003ca id=\"user-content-illumina\" class=\"anchor\" href=\"#illumina\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIllumina\u003c/h5\u003e\n\u003cp\u003e\u003ccode\u003enextflow run WalesGenePark/NanoSeqQC --profile singularity,slurm --prefix \"job_output\" --directory /path/to/reads --outdir /path/to/outfile\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eOptions\u003cbr\u003e\n--fastpInputVer (paired, single, merged)\u003c/p\u003e\n\u003chr\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h4\u003e\n\u003cp\u003eAn up-to-date version of Nextflow is required because the pipeline is written in DSL2. Following the instructions at \u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003ehttps://www.nextflow.io/\u003c/a\u003e to download and install Nextflow should get you a recent-enough version.\u003c/p\u003e\n\u003cp\u003e1: git clone the repository\u003cbr\u003e\n2: chmod +x the two scripts in NanoSeqQC/scripts/\u003cbr\u003e\n3: run the singularity build\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-executor\" class=\"anchor\" href=\"#executor\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExecutor\u003c/h4\u003e\n\u003cp\u003eBy default, the pipeline runs locally unless specifying \u003ccode\u003e-profile slurm\u003c/code\u003e to send to a SLURM cluster.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-config\" class=\"anchor\" href=\"#config\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfig\u003c/h4\u003e\n\u003cp\u003eCommon config options are set in \u0027conf/base.config\u0027.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-tensorflow-gpu-and-keras\" class=\"anchor\" aria-hidden=\"true\" href=\"#tensorflow-gpu-and-keras\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTensorflow (GPU) and Keras\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eSee \u003ca href=\"build.sh\"\u003ebuild.sh\u003c/a\u003e for info on how to build and run the image\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e file for the definition of the image, including\n\u003cul\u003e\n\u003cli\u003eThe (Docker) image it is based on\u003c/li\u003e\n\u003cli\u003eWhat OS packages are installed\u003c/li\u003e\n\u003cli\u003eWhat environment variables are set\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e project website for more info on Singularity in general and detailed documentaiton.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1627380153.0
+ "updated_at": 1542376589.0
},
{
"data_format": 2,
- "description": "modified version of nicMSlesions",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "jstutters/nicpython36",
+ "full_name": "amanmdesai/singularity-python-packages",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ms_cnn\" class=\"anchor\" href=\"#ms_cnn\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMS_CNN\u003c/h1\u003e\n\u003cp\u003e[This is a modified version of nicMSlesions (\u003ca href=\"https://github.com/NIC-VICOROB/nicMSlesions\"\u003ehttps://github.com/NIC-VICOROB/nicMSlesions\u003c/a\u003e)]\n\u003cbr\u003e\n\u003ca href=\"CNN.jpeg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"300\" src=\"CNN.jpeg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-this--version-support-additionally-the-following-functionalities\" class=\"anchor\" href=\"#this--version-support-additionally-the-following-functionalities\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThis version support additionally the following functionalities:\u003c/h1\u003e\n\u003cdl\u003e\n \u003cdt\u003e(1) Runnable on a Mac system/computer\u003c/dt\u003e\n \u003cdt\u003e(2) Cold start and warm start support:\u003c/dt\u003e\n \u003cdd\u003e- Allowing to re-create the architecture of the model\u003c/dd\u003e\n \u003cdd\u003e- Allowing to use the saved weights of the model\u003c/dd\u003e\n \u003cdd\u003e- Allowing to use the training configuration and avoiding to run preprocessing again\u003c/dd\u003e\n \u003cdd\u003e- Allowing to resume training exactly where it left off(interrupting the training is \n allowed throughout the training process)\u003c/dd\u003e\n \u003cdd\u003e- Allowing to use pretrained model\u003c/dd\u003e\n \u003cdt\u003e(3) Supporting Python 3\u003c/dt\u003e\n \u003cdt\u003e(4) Integrated Tensorborad [to provide the measurements and visualisations of TensorFlow execution (to understand, debug, and optimisation of the TensorFlow programs)]\u003c/dt\u003e\n \u003cdt\u003e(5) Checking whether a file or directory is relevant for Training and Testing\u003c/dt\u003e \n \u003cdt\u003e(6) Easy HPC (High Performance Computing) support\u003c/dt\u003e \n \u003cdt\u003e(7) Bias correction of masks using FSL\u003c/dt\u003e\n \u003cdt\u003e(8) Registration, moving all images to the Flair, T1 or Standard space\u003c/dt\u003e\n\u003c/dl\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"BR.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"500\" src=\"BR.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n \n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"note.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"100\" src=\"note.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n \n# Running the Program!\n\u003cp\u003eThis modified version can be run with or without a GUI (similar to original version)\u003c/p\u003e\n\u003cp\u003eAfter lunching the graphical user interface, user will need to provide necessary information to start training/testing as follows:\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"GUI_NM.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"500\" src=\"GUI_NM.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n \n\u003ch1\u003e\u003c/h1\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-running-the-program-on-the-hpc-cluster-using-nvidia-gpuswithout-any-additional-librarydependency-installation\" class=\"anchor\" href=\"#running-the-program-on-the-hpc-cluster-using-nvidia-gpuswithout-any-additional-librarydependency-installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the Program on the HPC cluster using NVIDIA GPUs(without any additional library/dependency installation):\u003c/h1\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"hpc.jpeg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"200\" src=\"hpc.jpeg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n \n\u003cp\u003eFirst, user will need to be sure that \"singularity\"\n\u003ca href=\"https://singularity.lbl.gov/\" rel=\"nofollow\"\u003ehttps://singularity.lbl.gov/\u003c/a\u003e\nis available on local or remote machine.\u003c/p\u003e\n\u003cp\u003eThen:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - singularity pull docker://kbronik/ms_cnn_ucl:latest \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAfter running the above, a singularity image using docker hub (docker://kbronik/ms_cnn_ucl:latest) will be generated:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - path to singularity//..///ms_cnn_ucl_latest.sif \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFinally:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - singularity run --nv (path to singularity)//..///ms_cnn_ucl_latest.sif python (path to nicpython36)/nic_train_network_batch.py (or other nic-python code)\u003c/pre\u003e\u003c/div\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"note_HPC.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"120\" src=\"note_HPC.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n \n\u003ch1\u003e\n\u003ca id=\"user-content-for-an-interactive-session\" class=\"anchor\" href=\"#for-an-interactive-session\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor an interactive session:\u003c/h1\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - singularity shell (path to singularity)//..///ms_cnn_ucl_latest.sif \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - \u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e activate idp\n - python (path to nicpython36)/app.py\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-for-an-interactive-session-tensorflow-on-cpu-only\" class=\"anchor\" href=\"#for-an-interactive-session-tensorflow-on-cpu-only\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor an interactive session (TensorFlow on CPU only):\u003c/h1\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - singularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e docker://kbronik/ms-ucl-cnn-cpu:CPU_Latest python (path to nicpython36)/app.py \u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-python-packages\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-python-packages\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-python-packages\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1624933808.0
+ "updated_at": 1673367679.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Hello World image for Singularity",
"filenames": [
- "Singularity.0.1.1",
- "Singularity.0.1",
"Singularity"
],
- "full_name": "dcgc-bfx/singularity-base-conda",
- "latest_release": "v0.1-alpha",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/dcgc-bfx/dcgc-base-conda/workflows/Build/badge.svg?branch=main\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/dcgc-bfx/dcgc-base-conda/workflows/Build/badge.svg?branch=main\" alt=\"Build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/5252\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-dcgc-base-conda\" class=\"anchor\" href=\"#dcgc-base-conda\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edcgc-base-conda\u003c/h1\u003e\n",
+ "full_name": "amanmdesai/hello-world-singularity",
+ "latest_release": "v1.0.0",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-hello-world-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#hello-world-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ehello-world-singularity\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/amanmdesai/hello-world-singularity/actions/workflows/singularity-build-deploy.yml\"\u003e\u003cimg src=\"https://github.com/amanmdesai/hello-world-singularity/actions/workflows/singularity-build-deploy.yml/badge.svg?branch=master\" alt=\"Singularity Build Deploy\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA simple singularity image to demonstrate how to use singularity.\u003c/p\u003e\n\u003cp\u003eTo pull this image:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull oras://ghcr.io/amanmdesai/hello-world-singularity:latest\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1626686541.0
+ "updated_at": 1672229206.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity bootstrap files inheriting from tensorflow Docker images",
"filenames": [
- "docker/Singularity.snowflake"
+ "Singularity"
],
- "full_name": "pnplab/preprocessing",
+ "full_name": "zhaojuanwendy/singularity-tensorflow",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-useful-utilities-for-single-cell-processing-with-alevin-fry\" class=\"anchor\" href=\"#useful-utilities-for-single-cell-processing-with-alevin-fry\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUseful utilities for single-cell processing with alevin-fry\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/COMBINE-lab/alevin-fry\"\u003eAlevin-fry\u003c/a\u003e is a fast, accurate and memory-frugal tool for preprocessing single-cell and single-nucleus RNA-seq data. You can read more about alevin-fry in \u003ca href=\"https://www.biorxiv.org/content/10.1101/2021.06.29.450377v1\" rel=\"nofollow\"\u003eits pre-print\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThis respoistory contains scripts, functions and utilities that are useful for preparing data for processing with alevin-fry, as well as for reading alevin-fry data into other packages for downstream analysis.\u003c/p\u003e\n\u003cp\u003eThe different utilities are broken down in this repository by the language in which they are written (right now, Python, R and bash). A brief listing of\nthe available utilities currently in the repository is:\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-r-language\" class=\"anchor\" href=\"#r-language\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR language\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e \u2014 A script to build a spliced + intron (splici) ref for indexing and quantification with \u003ccode\u003ealevin-fry\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esplici.R\u003c/code\u003e \u2014 Contains the \u003ccode\u003emake_splici_txome\u003c/code\u003e function, which is the function called by the \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e wrapper script. If you want to build a splici reference programatically in R code, you can use this function.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecellRangerLikeEmptyDrops.R\u003c/code\u003e \u2014 An implementation of the hybrid UMI count filtering and \u003ca href=\"https://github.com/MarioniLab/DropletUtils\"\u003e\u003ccode\u003eemptyDrops\u003c/code\u003e\u003c/a\u003e used by CellRanger (and subsequently by \u003ca href=\"https://github.com/alexdobin/STAR\"\u003eSTARsolo\u003c/a\u003e). This R implementation is a translation of the implemntation in STARsolo, which itself was reverse-engineered from CellRanger.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eload_fry.R\u003c/code\u003e \u2014 Contains a function to load \u003ccode\u003ealevin-fry\u003c/code\u003e output (including from USA mode quantification) into a \u003ca href=\"https://bioconductor.org/packages/release/bioc/html/SingleCellExperiment.html\" rel=\"nofollow\"\u003e\u003ccode\u003eSingleCellExperiment\u003c/code\u003e\u003c/a\u003e object.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-python-language\" class=\"anchor\" href=\"#python-language\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePython language\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eload_fry.py\u003c/code\u003e \u2014 Contains a Python function \u003ccode\u003eload_fry\u003c/code\u003e which is intended to load \u003ccode\u003ealevin-fry\u003c/code\u003e output (including from USA mode quantification) into a \u003ca href=\"https://github.com/theislab/scanpy\"\u003e\u003ccode\u003eScanpy\u003c/code\u003e\u003c/a\u003e object.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-bash\" class=\"anchor\" href=\"#bash\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBash\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eget_10x_permit_lists.sh\u003c/code\u003e \u2014 Provides a script to download the 10x chromium v2 or v3 permit lists.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esimpleaf\u003c/code\u003e \u2014 Provides a script to run the entire \u003ccode\u003esalmon -\u0026gt; alevin-fry (generate-permit-list \u0026gt; collate \u0026gt; quant)\u003c/code\u003e pipeline, though providing only a simplified set of options.\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-using-simpleaf\" class=\"anchor\" href=\"#using-simpleaf\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing simpleaf\u003c/h2\u003e\n\u003cp\u003eThe \u003ccode\u003esimpleaf\u003c/code\u003e script that resides in the \u003ccode\u003ebash\u003c/code\u003e subdirectory is intended to simply the running of \u003ccode\u003ealevin-fry\u003c/code\u003e in common usage scenarios. By limiting some of the different options that can be set, it provides a streamlined way to build the splici reference and index in a single command, as well as to process an experiment from raw FASTQ files to a count matrix in a single command.\u003c/p\u003e\n\u003cp\u003eTo work properly, \u003ccode\u003esimpleaf\u003c/code\u003e has a few requirements. First, it should be run from \u003cem\u003ewithin\u003c/em\u003e the \u003ccode\u003ebash\u003c/code\u003e subdirectory of this repository. This is because it currently makes assumptions about the relative paths of the scripts \u003ccode\u003eget_10x_permit_lists.sh\u003c/code\u003e and \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e. Additionally, the following environment variables are used within \u003ccode\u003esimpleaf\u003c/code\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eALEVIN_FRY_HOME\u003c/code\u003e \u003cstrong\u003eREQUIRED\u003c/strong\u003e \u2014 This directory will be used for persistent configuration and small file (\u0026lt;1G) storage between runs. If you provide a directory and it doesn\u0027t exist, it will be created. It is easiest to just set this in your enviornment globally so that the same home can be used over many runs without you having to provide the variable explicitly each time. A good choice for this variable might be something like \u003ccode\u003e~/.alevin_fry_home\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eSALMON_BIN\u003c/code\u003e \u003cstrong\u003eOPTIONAL\u003c/strong\u003e \u2014 This should provide the path to a \u003ccode\u003esalmon\u003c/code\u003e executable of version \u0026gt;= 1.5.1. If not provided, the script will assume it can simply invoke \u003ccode\u003esalmon\u003c/code\u003e in the current enviornment.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eFRY_BIN\u003c/code\u003e \u003cstrong\u003eOPTIONAL\u003c/strong\u003e \u2014 This should provide the path to a \u003ccode\u003ealevin-fry\u003c/code\u003e executable of version \u0026gt;= 0.4.0. If not provided, the script will assume it can simply invoke \u003ccode\u003ealevin-fry\u003c/code\u003e in the current enviornment.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eTIME_BIN\u003c/code\u003e \u003cstrong\u003eOPTIONAL\u003c/strong\u003e \u2014 This should provide the path to a \u003ca href=\"https://www.gnu.org/software/time/\" rel=\"nofollow\"\u003eGNU time\u003c/a\u003e executable; this is different from the shell \u003ccode\u003etime\u003c/code\u003e command, and on most linux systems exists at \u003ccode\u003e/usr/bin/time\u003c/code\u003e. If this variable is not provided, the script will assume it can use \u003ccode\u003e/usr/bin/time\u003c/code\u003e. On OSX systems, you should install GNU time explicitly. This can be done with \u003ca href=\"https://anaconda.org/conda-forge/time\" rel=\"nofollow\"\u003econda\u003c/a\u003e or homebrew.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe \u003ccode\u003esimpleaf\u003c/code\u003e script has two sub-commands:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eindex\u003c/code\u003e \u2014 The \u003ccode\u003eindex\u003c/code\u003e command will take a reference genome FASTA and GTF as input, build a splici reference using the \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e script, and then build a sparse \u003ccode\u003esalmon\u003c/code\u003e index on the resulting reference. \u003cstrong\u003eNote\u003c/strong\u003e: The \u003ccode\u003eindex\u003c/code\u003e command requires the \u003ccode\u003eRscript\u003c/code\u003e executable to be in the path, as well as all of theR packages that are required by \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e. The relevant options (which you can obtain by running \u003ccode\u003e./simpleaf index -h\u003c/code\u003e) are:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre lang=\"{bash}\"\u003e\u003ccode\u003eUsage: ./simpleaf index [options]\n options:\n -f, --fasta REQUIRED genome reference FASTA file\n -g, --gtf REQUIRED GTF file with gene annotations\n -l, --rlen REQUIRED the target read length the index will be built for\n -o, --output REQUIRED path to output directory (will be created if it doesn\u0027t exist)\n -s, --spliced OPTIONAL path to FASTA file with extra spliced sequence to add to the index\n -u, --unspliced OPTIONAL path to FASTA file with extra unspliced sequence to add to the index\n -d, --dedup FLAG OPTIONAL deduplicate identical sequences inside the R script when building the splici reference\n -t, --threads OPTIONAL number of threads to use when running [default: min(16, num cores)]\n -h, --help display this help message\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003equant\u003c/code\u003e \u2014 The \u003ccode\u003equant\u003c/code\u003e command takes as input the index, reads, and relevant information about the experiment (e.g. chemistry), and runs all of the steps of the \u003ccode\u003ealevin-fry\u003c/code\u003e pipeline, from mapping with \u003ccode\u003esalmon\u003c/code\u003e through \u003ccode\u003equant\u003c/code\u003e with \u003ccode\u003ealevin-fry\u003c/code\u003e. The relevant options (which you can obtain by running \u003ccode\u003e./simpleaf quant -h\u003c/code\u003e) are:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre lang=\"{bash}\"\u003e\u003ccode\u003eUsage: ./simpleaf quant [options]\n options:\n -1, --r1 REQUIRED comma separated list of left reads\n -2, --r2 REQUIRED comma separated list of right reads\n -i, --index REQUIRED path to a (sparse or dense) salmon splici index\n -o, --output REQUIRED path to output directory (will be created if it doesn\u0027t exist)\n -f, --fmode REQUIRED permit list filter mode, one of {knee, k, unfilt, u}\n -c, --chem REQUIRED chemistry of experiment, one of {v2, v3}\n -r, --res REQUIRED resolution strategy for alevin-fry, one of {cr-like, cr-like-em}\n -m, --t2g REQUIRED three-column txp-to-gene file to pass to alevin-fry quant command\n -t, --threads OPTIONAL number of threads to use when running [default: min(16, num cores)]\n -h, --help display this help message\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-tensorflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-tensorflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-tensorflow\u003c/h1\u003e\n\u003cp\u003eStore singularity bootstrap files for tensorflow with accre mount points included.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1626495060.0
+ "updated_at": 1646281475.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "docker/Singularity.snowflake"
+ "Singularity.def"
],
- "full_name": "nuKs/preprocessing",
+ "full_name": "paplessix/Recvis22",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-useful-utilities-for-single-cell-processing-with-alevin-fry\" class=\"anchor\" href=\"#useful-utilities-for-single-cell-processing-with-alevin-fry\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUseful utilities for single-cell processing with alevin-fry\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/COMBINE-lab/alevin-fry\"\u003eAlevin-fry\u003c/a\u003e is a fast, accurate and memory-frugal tool for preprocessing single-cell and single-nucleus RNA-seq data. You can read more about alevin-fry in \u003ca href=\"https://www.biorxiv.org/content/10.1101/2021.06.29.450377v1\" rel=\"nofollow\"\u003eits pre-print\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThis respoistory contains scripts, functions and utilities that are useful for preparing data for processing with alevin-fry, as well as for reading alevin-fry data into other packages for downstream analysis.\u003c/p\u003e\n\u003cp\u003eThe different utilities are broken down in this repository by the language in which they are written (right now, Python, R and bash). A brief listing of\nthe available utilities currently in the repository is:\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-r-language\" class=\"anchor\" href=\"#r-language\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR language\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e \u2014 A script to build a spliced + intron (splici) ref for indexing and quantification with \u003ccode\u003ealevin-fry\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esplici.R\u003c/code\u003e \u2014 Contains the \u003ccode\u003emake_splici_txome\u003c/code\u003e function, which is the function called by the \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e wrapper script. If you want to build a splici reference programatically in R code, you can use this function.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecellRangerLikeEmptyDrops.R\u003c/code\u003e \u2014 An implementation of the hybrid UMI count filtering and \u003ca href=\"https://github.com/MarioniLab/DropletUtils\"\u003e\u003ccode\u003eemptyDrops\u003c/code\u003e\u003c/a\u003e used by CellRanger (and subsequently by \u003ca href=\"https://github.com/alexdobin/STAR\"\u003eSTARsolo\u003c/a\u003e). This R implementation is a translation of the implemntation in STARsolo, which itself was reverse-engineered from CellRanger.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eload_fry.R\u003c/code\u003e \u2014 Contains a function to load \u003ccode\u003ealevin-fry\u003c/code\u003e output (including from USA mode quantification) into a \u003ca href=\"https://bioconductor.org/packages/release/bioc/html/SingleCellExperiment.html\" rel=\"nofollow\"\u003e\u003ccode\u003eSingleCellExperiment\u003c/code\u003e\u003c/a\u003e object.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-python-language\" class=\"anchor\" href=\"#python-language\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePython language\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eload_fry.py\u003c/code\u003e \u2014 Contains a Python function \u003ccode\u003eload_fry\u003c/code\u003e which is intended to load \u003ccode\u003ealevin-fry\u003c/code\u003e output (including from USA mode quantification) into a \u003ca href=\"https://github.com/theislab/scanpy\"\u003e\u003ccode\u003eScanpy\u003c/code\u003e\u003c/a\u003e object.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-bash\" class=\"anchor\" href=\"#bash\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBash\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eget_10x_permit_lists.sh\u003c/code\u003e \u2014 Provides a script to download the 10x chromium v2 or v3 permit lists.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esimpleaf\u003c/code\u003e \u2014 Provides a script to run the entire \u003ccode\u003esalmon -\u0026gt; alevin-fry (generate-permit-list \u0026gt; collate \u0026gt; quant)\u003c/code\u003e pipeline, though providing only a simplified set of options.\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-using-simpleaf\" class=\"anchor\" href=\"#using-simpleaf\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing simpleaf\u003c/h2\u003e\n\u003cp\u003eThe \u003ccode\u003esimpleaf\u003c/code\u003e script that resides in the \u003ccode\u003ebash\u003c/code\u003e subdirectory is intended to simply the running of \u003ccode\u003ealevin-fry\u003c/code\u003e in common usage scenarios. By limiting some of the different options that can be set, it provides a streamlined way to build the splici reference and index in a single command, as well as to process an experiment from raw FASTQ files to a count matrix in a single command.\u003c/p\u003e\n\u003cp\u003eTo work properly, \u003ccode\u003esimpleaf\u003c/code\u003e has a few requirements. First, it should be run from \u003cem\u003ewithin\u003c/em\u003e the \u003ccode\u003ebash\u003c/code\u003e subdirectory of this repository. This is because it currently makes assumptions about the relative paths of the scripts \u003ccode\u003eget_10x_permit_lists.sh\u003c/code\u003e and \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e. Additionally, the following environment variables are used within \u003ccode\u003esimpleaf\u003c/code\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eALEVIN_FRY_HOME\u003c/code\u003e \u003cstrong\u003eREQUIRED\u003c/strong\u003e \u2014 This directory will be used for persistent configuration and small file (\u0026lt;1G) storage between runs. If you provide a directory and it doesn\u0027t exist, it will be created. It is easiest to just set this in your enviornment globally so that the same home can be used over many runs without you having to provide the variable explicitly each time. A good choice for this variable might be something like \u003ccode\u003e~/.alevin_fry_home\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eSALMON_BIN\u003c/code\u003e \u003cstrong\u003eOPTIONAL\u003c/strong\u003e \u2014 This should provide the path to a \u003ccode\u003esalmon\u003c/code\u003e executable of version \u0026gt;= 1.5.1. If not provided, the script will assume it can simply invoke \u003ccode\u003esalmon\u003c/code\u003e in the current enviornment.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eFRY_BIN\u003c/code\u003e \u003cstrong\u003eOPTIONAL\u003c/strong\u003e \u2014 This should provide the path to a \u003ccode\u003ealevin-fry\u003c/code\u003e executable of version \u0026gt;= 0.4.0. If not provided, the script will assume it can simply invoke \u003ccode\u003ealevin-fry\u003c/code\u003e in the current enviornment.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003eTIME_BIN\u003c/code\u003e \u003cstrong\u003eOPTIONAL\u003c/strong\u003e \u2014 This should provide the path to a \u003ca href=\"https://www.gnu.org/software/time/\" rel=\"nofollow\"\u003eGNU time\u003c/a\u003e executable; this is different from the shell \u003ccode\u003etime\u003c/code\u003e command, and on most linux systems exists at \u003ccode\u003e/usr/bin/time\u003c/code\u003e. If this variable is not provided, the script will assume it can use \u003ccode\u003e/usr/bin/time\u003c/code\u003e. On OSX systems, you should install GNU time explicitly. This can be done with \u003ca href=\"https://anaconda.org/conda-forge/time\" rel=\"nofollow\"\u003econda\u003c/a\u003e or homebrew.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe \u003ccode\u003esimpleaf\u003c/code\u003e script has two sub-commands:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eindex\u003c/code\u003e \u2014 The \u003ccode\u003eindex\u003c/code\u003e command will take a reference genome FASTA and GTF as input, build a splici reference using the \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e script, and then build a sparse \u003ccode\u003esalmon\u003c/code\u003e index on the resulting reference. \u003cstrong\u003eNote\u003c/strong\u003e: The \u003ccode\u003eindex\u003c/code\u003e command requires the \u003ccode\u003eRscript\u003c/code\u003e executable to be in the path, as well as all of theR packages that are required by \u003ccode\u003ebuild_splici_ref.R\u003c/code\u003e. The relevant options (which you can obtain by running \u003ccode\u003e./simpleaf index -h\u003c/code\u003e) are:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre lang=\"{bash}\"\u003e\u003ccode\u003eUsage: ./simpleaf index [options]\n options:\n -f, --fasta REQUIRED genome reference FASTA file\n -g, --gtf REQUIRED GTF file with gene annotations\n -l, --rlen REQUIRED the target read length the index will be built for\n -o, --output REQUIRED path to output directory (will be created if it doesn\u0027t exist)\n -s, --spliced OPTIONAL path to FASTA file with extra spliced sequence to add to the index\n -u, --unspliced OPTIONAL path to FASTA file with extra unspliced sequence to add to the index\n -d, --dedup FLAG OPTIONAL deduplicate identical sequences inside the R script when building the splici reference\n -t, --threads OPTIONAL number of threads to use when running [default: min(16, num cores)]\n -h, --help display this help message\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003equant\u003c/code\u003e \u2014 The \u003ccode\u003equant\u003c/code\u003e command takes as input the index, reads, and relevant information about the experiment (e.g. chemistry), and runs all of the steps of the \u003ccode\u003ealevin-fry\u003c/code\u003e pipeline, from mapping with \u003ccode\u003esalmon\u003c/code\u003e through \u003ccode\u003equant\u003c/code\u003e with \u003ccode\u003ealevin-fry\u003c/code\u003e. The relevant options (which you can obtain by running \u003ccode\u003e./simpleaf quant -h\u003c/code\u003e) are:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre lang=\"{bash}\"\u003e\u003ccode\u003eUsage: ./simpleaf quant [options]\n options:\n -1, --r1 REQUIRED comma separated list of left reads\n -2, --r2 REQUIRED comma separated list of right reads\n -i, --index REQUIRED path to a (sparse or dense) salmon splici index\n -o, --output REQUIRED path to output directory (will be created if it doesn\u0027t exist)\n -f, --fmode REQUIRED permit list filter mode, one of {knee, k, unfilt, u}\n -c, --chem REQUIRED chemistry of experiment, one of {v2, v3}\n -r, --res REQUIRED resolution strategy for alevin-fry, one of {cr-like, cr-like-em}\n -m, --t2g REQUIRED three-column txp-to-gene file to pass to alevin-fry quant command\n -t, --threads OPTIONAL number of threads to use when running [default: min(16, num cores)]\n -h, --help display this help message\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-planning-with-diffusion--\" class=\"anchor\" aria-hidden=\"true\" href=\"#planning-with-diffusion--\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePlanning with Diffusion \u00a0\u00a0 \u003ca href=\"https://colab.research.google.com/drive/1YajKhu-CUIGBJeQPehjVPJcK_b38a8Nc?usp=sharing\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667\" alt=\"Open In Colab\" data-canonical-src=\"https://colab.research.google.com/assets/colab-badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003eTraining and visualizing of diffusion models from \u003ca href=\"https://diffusion-planning.github.io/\" rel=\"nofollow\"\u003ePlanning with Diffusion for Flexible Behavior Synthesis\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://github.com/jannerm/diffuser/tree/main\"\u003emain branch\u003c/a\u003e contains code for training diffusion models and planning via value-function guided sampling on the D4RL locomotion environments.\nThe \u003ca href=\"https://github.com/jannerm/diffuser/tree/kuka\"\u003ekuka branch\u003c/a\u003e contains block-stacking experiments.\nThe \u003ca href=\"https://github.com/jannerm/diffuser/tree/maze2d\"\u003emaze2d branch\u003c/a\u003e contains goal-reaching via inpainting in the Maze2D environments.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/184a6bb0418c60d778dcfa9f81dfddfdea0c0a3238b1d0cc4aa8666dd32ad3ca/68747470733a2f2f646966667573696f6e2d706c616e6e696e672e6769746875622e696f2f696d616765732f64696666757365722d636172642e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/184a6bb0418c60d778dcfa9f81dfddfdea0c0a3238b1d0cc4aa8666dd32ad3ca/68747470733a2f2f646966667573696f6e2d706c616e6e696e672e6769746875622e696f2f696d616765732f64696666757365722d636172642e706e67\" width=\"60%\" title=\"Diffuser model\" data-canonical-src=\"https://diffusion-planning.github.io/images/diffuser-card.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eUpdates\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e12/09/2022: Diffuser (the RL model) has been integrated into \u003cg-emoji class=\"g-emoji\" alias=\"hugs\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f917.png\"\u003e\ud83e\udd17\u003c/g-emoji\u003e Diffusers (the Hugging Face diffusion model library)! See \u003ca href=\"https://huggingface.co/docs/diffusers/using-diffusers/rl\" rel=\"nofollow\"\u003ethese docs\u003c/a\u003e for how to run Diffuser using their pipeline.\u003c/li\u003e\n\u003cli\u003e10/17/2022: A bug in the value function scaling has been fixed in \u003ca href=\"https://github.com/jannerm/diffuser/commit/3d7361c2d028473b601cc04f5eecd019e14eb4eb\"\u003ethis commit\u003c/a\u003e. Thanks to \u003ca href=\"https://scholar.google.com/citations?user=Q6UMpRYAAAAJ\u0026amp;hl=en\" rel=\"nofollow\"\u003ePhilemon Brakel\u003c/a\u003e for catching it!\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-quickstart\" class=\"anchor\" aria-hidden=\"true\" href=\"#quickstart\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuickstart\u003c/h2\u003e\n\u003cp\u003eLoad a pretrained diffusion model and sample from it in your browser with \u003ca href=\"https://colab.research.google.com/drive/1YajKhu-CUIGBJeQPehjVPJcK_b38a8Nc?usp=sharing\" rel=\"nofollow\"\u003escripts/diffuser-sample.ipynb\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml\nconda activate diffuser\npip install -e .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-using-pretrained-models\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-pretrained-models\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing pretrained models\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-downloading-weights\" class=\"anchor\" aria-hidden=\"true\" href=\"#downloading-weights\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownloading weights\u003c/h3\u003e\n\u003cp\u003eDownload pretrained diffusion models and value functions with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./scripts/download_pretrained.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis command downloads and extracts a \u003ca href=\"https://drive.google.com/file/d/1wc1m4HLj7btaYDN8ogDIAV9QzgWEckGy/view?usp=share_link\" rel=\"nofollow\"\u003etarfile\u003c/a\u003e containing \u003ca href=\"https://drive.google.com/drive/folders/1ie6z3toz9OjcarJuwjQwXXzDwh1XnS02?usp=sharing\" rel=\"nofollow\"\u003ethis directory\u003c/a\u003e to \u003ccode\u003elogs/pretrained\u003c/code\u003e. The models are organized according to the following structure:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u2514\u2500\u2500 logs/pretrained\n \u251c\u2500\u2500 ${environment_1}\n \u2502 \u251c\u2500\u2500 diffusion\n \u2502 \u2502 \u2514\u2500\u2500 ${experiment_name}\n \u2502 \u2502 \u251c\u2500\u2500 state_${epoch}.pt\n \u2502 \u2502 \u251c\u2500\u2500 sample-${epoch}-*.png\n \u2502 \u2502 \u2514\u2500\u2500 {dataset, diffusion, model, render, trainer}_config.pkl\n \u2502 \u251c\u2500\u2500 values\n \u2502 \u2502 \u2514\u2500\u2500 ${experiment_name}\n \u2502 \u2502 \u251c\u2500\u2500 state_${epoch}.pt\n \u2502 \u2502 \u2514\u2500\u2500 {dataset, diffusion, model, render, trainer}_config.pkl\n \u2502 \u2514\u2500\u2500 plans\n \u2502 \u2514\u2500\u2500 defaults\n \u2502 \u251c\u2500\u2500 0\n \u2502 \u251c\u2500\u2500 1\n \u2502 \u251c\u2500\u2500 ...\n \u2502 \u2514\u2500\u2500 149\n \u2502\n \u251c\u2500\u2500 ${environment_2}\n \u2502 \u2514\u2500\u2500 ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003estate_${epoch}.pt\u003c/code\u003e files contain the network weights and the \u003ccode\u003econfig.pkl\u003c/code\u003e files contain the instantation arguments for the relevant classes.\nThe png files contain samples from different points during training of the diffusion model.\nWithin the \u003ccode\u003eplans\u003c/code\u003e subfolders, there are the results of 150 evaluation trials for each environment using the default hyperparameters.\u003c/p\u003e\n\u003cdetails\u003e\n\u003csummary\u003eTo aggregate the results of the evaluations in the \u003ccode\u003elogs\u003c/code\u003e folder, run \u003ccode\u003epython scripts/read_results.py\u003c/code\u003e. (Expand to view the output of this command on the plans downloaded from Google Drive.)\n\u003c/summary\u003e\n\u003cpre\u003e\u003ccode\u003ehopper-medium-replay-v2 | defaults | logs/pretrained/hopper-medium-replay-v2/plans | 150 scores\n 93.6 +/- 0.37\nhopper-medium-v2 | defaults | logs/pretrained/hopper-medium-v2/plans | 150 scores\n 74.3 +/- 1.36\nhopper-medium-expert-v2 | defaults | logs/pretrained/hopper-medium-expert-v2/plans | 150 scores\n 103.3 +/- 1.30\nwalker2d-medium-replay-v2 | defaults | logs/pretrained/walker2d-medium-replay-v2/plans | 150 scores\n 70.6 +/- 1.60\nwalker2d-medium-v2 | defaults | logs/pretrained/walker2d-medium-v2/plans | 150 scores\n 79.6 +/- 0.55\nwalker2d-medium-expert-v2 | defaults | logs/pretrained/walker2d-medium-expert-v2/plans | 150 scores\n 106.9 +/- 0.24\nhalfcheetah-medium-replay-v2 | defaults | logs/pretrained/halfcheetah-medium-replay-v2/plans | 150 scores\n 37.7 +/- 0.45\nhalfcheetah-medium-v2 | defaults | logs/pretrained/halfcheetah-medium-v2/plans | 150 scores\n 42.8 +/- 0.32\nhalfcheetah-medium-expert-v2 | defaults | logs/pretrained/halfcheetah-medium-expert-v2/plans | 150 scores\n 88.9 +/- 0.25\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/details\u003e\n\u003cdetails\u003e\n\u003csummary\u003eTo create the table of offline RL results from the paper, run \u003ccode\u003epython plotting/table.py\u003c/code\u003e. This will print a table that can be copied into a Latex document. (Expand to view table source.)\u003c/summary\u003e\n\u003cpre\u003e\u003ccode\u003e\\definecolor{tblue}{HTML}{1F77B4}\n\\definecolor{tred}{HTML}{FF6961}\n\\definecolor{tgreen}{HTML}{429E9D}\n\\definecolor{thighlight}{HTML}{000000}\n\\newcolumntype{P}{\u0026gt;{\\raggedleft\\arraybackslash}X}\n\\begin{table*}[hb!]\n\\centering\n\\small\n\\begin{tabularx}{\\textwidth}{llPPPPPPPPr}\n\\toprule\n\\multicolumn{1}{r}{\\bf \\color{black} Dataset} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} Environment} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} BC} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} CQL} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} IQL} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} DT} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} TT} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} MOPO} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} MOReL} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} MBOP} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} Diffuser} \\\\ \n\\midrule\nMedium-Expert \u0026amp; HalfCheetah \u0026amp; $55.2$ \u0026amp; $91.6$ \u0026amp; $86.7$ \u0026amp; $86.8$ \u0026amp; $95.0$ \u0026amp; $63.3$ \u0026amp; $53.3$ \u0026amp; $\\textbf{\\color{thighlight}105.9}$ \u0026amp; $88.9$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.3$}} \\\\ \nMedium-Expert \u0026amp; Hopper \u0026amp; $52.5$ \u0026amp; $\\textbf{\\color{thighlight}105.4}$ \u0026amp; $91.5$ \u0026amp; $\\textbf{\\color{thighlight}107.6}$ \u0026amp; $\\textbf{\\color{thighlight}110.0}$ \u0026amp; $23.7$ \u0026amp; $\\textbf{\\color{thighlight}108.7}$ \u0026amp; $55.1$ \u0026amp; $103.3$ \\scriptsize{\\raisebox{1pt}{$\\pm 1.3$}} \\\\ \nMedium-Expert \u0026amp; Walker2d \u0026amp; $\\textbf{\\color{thighlight}107.5}$ \u0026amp; $\\textbf{\\color{thighlight}108.8}$ \u0026amp; $\\textbf{\\color{thighlight}109.6}$ \u0026amp; $\\textbf{\\color{thighlight}108.1}$ \u0026amp; $101.9$ \u0026amp; $44.6$ \u0026amp; $95.6$ \u0026amp; $70.2$ \u0026amp; $\\textbf{\\color{thighlight}106.9}$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.2$}} \\\\ \n\\midrule\nMedium \u0026amp; HalfCheetah \u0026amp; $42.6$ \u0026amp; $44.0$ \u0026amp; $\\textbf{\\color{thighlight}47.4}$ \u0026amp; $42.6$ \u0026amp; $\\textbf{\\color{thighlight}46.9}$ \u0026amp; $42.3$ \u0026amp; $42.1$ \u0026amp; $44.6$ \u0026amp; $42.8$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.3$}} \\\\ \nMedium \u0026amp; Hopper \u0026amp; $52.9$ \u0026amp; $58.5$ \u0026amp; $66.3$ \u0026amp; $67.6$ \u0026amp; $61.1$ \u0026amp; $28.0$ \u0026amp; $\\textbf{\\color{thighlight}95.4}$ \u0026amp; $48.8$ \u0026amp; $74.3$ \\scriptsize{\\raisebox{1pt}{$\\pm 1.4$}} \\\\ \nMedium \u0026amp; Walker2d \u0026amp; $75.3$ \u0026amp; $72.5$ \u0026amp; $\\textbf{\\color{thighlight}78.3}$ \u0026amp; $74.0$ \u0026amp; $\\textbf{\\color{thighlight}79.0}$ \u0026amp; $17.8$ \u0026amp; $\\textbf{\\color{thighlight}77.8}$ \u0026amp; $41.0$ \u0026amp; $\\textbf{\\color{thighlight}79.6}$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.55$}} \\\\ \n\\midrule\nMedium-Replay \u0026amp; HalfCheetah \u0026amp; $36.6$ \u0026amp; $45.5$ \u0026amp; $44.2$ \u0026amp; $36.6$ \u0026amp; $41.9$ \u0026amp; $\\textbf{\\color{thighlight}53.1}$ \u0026amp; $40.2$ \u0026amp; $42.3$ \u0026amp; $37.7$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.5$}} \\\\ \nMedium-Replay \u0026amp; Hopper \u0026amp; $18.1$ \u0026amp; $\\textbf{\\color{thighlight}95.0}$ \u0026amp; $\\textbf{\\color{thighlight}94.7}$ \u0026amp; $82.7$ \u0026amp; $\\textbf{\\color{thighlight}91.5}$ \u0026amp; $67.5$ \u0026amp; $\\textbf{\\color{thighlight}93.6}$ \u0026amp; $12.4$ \u0026amp; $\\textbf{\\color{thighlight}93.6}$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.4$}} \\\\ \nMedium-Replay \u0026amp; Walker2d \u0026amp; $26.0$ \u0026amp; $77.2$ \u0026amp; $73.9$ \u0026amp; $66.6$ \u0026amp; $\\textbf{\\color{thighlight}82.6}$ \u0026amp; $39.0$ \u0026amp; $49.8$ \u0026amp; $9.7$ \u0026amp; $70.6$ \\scriptsize{\\raisebox{1pt}{$\\pm 1.6$}} \\\\ \n\\midrule\n\\multicolumn{2}{c}{\\bf Average} \u0026amp; 51.9 \u0026amp; \\textbf{\\color{thighlight}77.6} \u0026amp; \\textbf{\\color{thighlight}77.0} \u0026amp; 74.7 \u0026amp; \\textbf{\\color{thighlight}78.9} \u0026amp; 42.1 \u0026amp; 72.9 \u0026amp; 47.8 \u0026amp; \\textbf{\\color{thighlight}77.5} \\hspace{.6cm} \\\\ \n\\bottomrule\n\\end{tabularx}\n\\vspace{-.0cm}\n\\caption{\n}\n\\label{table:locomotion}\n\\end{table*}\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/diffusion-planning/diffusion-planning.github.io/blob/master/images/table.png\"\u003e\u003cimg src=\"https://github.com/diffusion-planning/diffusion-planning.github.io/raw/master/images/table.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003c/details\u003e\n\u003ch3\u003e\u003ca id=\"user-content-planning\" class=\"anchor\" aria-hidden=\"true\" href=\"#planning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePlanning\u003c/h3\u003e\n\u003cp\u003eTo plan with guided sampling, run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/plan_guided.py --dataset halfcheetah-medium-expert-v2 --logbase logs/pretrained\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003e--logbase\u003c/code\u003e flag points the \u003ca href=\"scripts/plan_guided.py#L22-L30\"\u003eexperiment loaders\u003c/a\u003e to the folder containing the pretrained models.\nYou can override planning hyperparameters with flags, such as \u003ccode\u003e--batch_size 8\u003c/code\u003e, but the default\nhyperparameters are a good starting point.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-training-from-scratch\" class=\"anchor\" aria-hidden=\"true\" href=\"#training-from-scratch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTraining from scratch\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eTrain a diffusion model with:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/train.py --dataset halfcheetah-medium-expert-v2\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe default hyperparameters are listed in \u003ca href=\"config/locomotion.py#L22-L65\"\u003elocomotion:diffusion\u003c/a\u003e.\nYou can override any of them with flags, eg, \u003ccode\u003e--n_diffusion_steps 100\u003c/code\u003e.\u003c/p\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eTrain a value function with:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/train_values.py --dataset halfcheetah-medium-expert-v2\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee \u003ca href=\"config/locomotion.py#L67-L108\"\u003elocomotion:values\u003c/a\u003e for the corresponding default hyperparameters.\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003ePlan using your newly-trained models with the same command as in the pretrained planning section, simply replacing the logbase to point to your new models:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/plan_guided.py --dataset halfcheetah-medium-expert-v2 --logbase logs\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee \u003ca href=\"config/locomotion.py#L110-L149\"\u003elocomotion:plans\u003c/a\u003e for the corresponding default hyperparameters.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eDeferred f-strings.\u003c/strong\u003e Note that some planning script arguments, such as \u003ccode\u003e--n_diffusion_steps\u003c/code\u003e or \u003ccode\u003e--discount\u003c/code\u003e,\ndo not actually change any logic during planning, but simply load a different model using a deferred f-string.\nFor example, the following flags:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e---horizon 32 --n_diffusion_steps 20 --discount 0.997\n--value_loadpath \u0027f:values/defaults_H{horizon}_T{n_diffusion_steps}_d{discount}\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewill resolve to a value checkpoint path of \u003ccode\u003evalues/defaults_H32_T20_d0.997\u003c/code\u003e. It is possible to\nchange the horizon of the diffusion model after training (see \u003ca href=\"https://colab.research.google.com/drive/1YajKhu-CUIGBJeQPehjVPJcK_b38a8Nc?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e for an example),\nbut not for the value function.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eBuild the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003edocker build -f Dockerfile . -t diffuser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eTest the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -it --rm --gpus all \\\n --mount type=bind,source=$PWD,target=/home/code \\\n --mount type=bind,source=$HOME/.d4rl,target=/root/.d4rl \\\n diffuser \\\n bash -c \\\n \"export PYTHONPATH=$PYTHONPATH:/home/code \u0026amp;\u0026amp; \\\n python /home/code/scripts/train.py --dataset halfcheetah-medium-expert-v2 --logbase logs\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eBuild the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build --fakeroot diffuser.sif Singularity.def\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eTest the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv --writable-tmpfs diffuser.sif \\\n bash -c \\\n \"pip install -e . \u0026amp;\u0026amp; \\\n python scripts/train.py --dataset halfcheetah-medium-expert-v2 --logbase logs\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-on-azure\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-on-azure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning on Azure\u003c/h2\u003e\n\u003ch4\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003eTag the Docker image (built in the \u003ca href=\"#Docker\"\u003eDocker section\u003c/a\u003e) and push it to Docker Hub:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eexport DOCKER_USERNAME=$(docker info | sed \u0027/Username:/!d;s/.* //\u0027)\ndocker tag diffuser ${DOCKER_USERNAME}/diffuser:latest\ndocker image push ${DOCKER_USERNAME}/diffuser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\n\u003cp\u003eUpdate \u003ca href=\"azure/config.py\"\u003e\u003ccode\u003eazure/config.py\u003c/code\u003e\u003c/a\u003e, either by modifying the file directly or setting the relevant \u003ca href=\"azure/config.py#L47-L52\"\u003eenvironment variables\u003c/a\u003e. To set the \u003ccode\u003eAZURE_STORAGE_CONNECTION\u003c/code\u003e variable, navigate to the \u003ccode\u003eAccess keys\u003c/code\u003e section of your storage account. Click \u003ccode\u003eShow keys\u003c/code\u003e and copy the \u003ccode\u003eConnection string\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDownload \u003ca href=\"https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10\" rel=\"nofollow\"\u003e\u003ccode\u003eazcopy\u003c/code\u003e\u003c/a\u003e: \u003ccode\u003e./azure/download.sh\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch4\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h4\u003e\n\u003cp\u003eLaunch training jobs with \u003ccode\u003epython azure/launch.py\u003c/code\u003e. The launch script takes no command-line arguments; instead, it launches a job for every combination of hyperparameters in \u003ca href=\"azure/launch_train.py#L36-L38\"\u003e\u003ccode\u003eparams_to_sweep\u003c/code\u003e\u003c/a\u003e.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-viewing-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#viewing-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eViewing results\u003c/h4\u003e\n\u003cp\u003eTo rsync the results from the Azure storage container, run \u003ccode\u003e./azure/sync.sh\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eTo mount the storage container:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eCreate a blobfuse config with \u003ccode\u003e./azure/make_fuse_config.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003e./azure/mount.sh\u003c/code\u003e to mount the storage container to \u003ccode\u003e~/azure_mount\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eTo unmount the container, run \u003ccode\u003esudo umount -f ~/azure_mount; rm -r ~/azure_mount\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-reference\" class=\"anchor\" aria-hidden=\"true\" href=\"#reference\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReference\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e@inproceedings{janner2022diffuser,\n title = {Planning with Diffusion for Flexible Behavior Synthesis},\n author = {Michael Janner and Yilun Du and Joshua B. Tenenbaum and Sergey Levine},\n booktitle = {International Conference on Machine Learning},\n year = {2022},\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-acknowledgements\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgements\u003c/h2\u003e\n\u003cp\u003eThe diffusion model implementation is based on Phil Wang\u0027s \u003ca href=\"https://github.com/lucidrains/denoising-diffusion-pytorch\"\u003edenoising-diffusion-pytorch\u003c/a\u003e repo.\nThe organization of this repo and remote launcher is based on the \u003ca href=\"https://github.com/jannerm/trajectory-transformer\"\u003etrajectory-transformer\u003c/a\u003e repo.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1626495005.0
+ "updated_at": 1672051619.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for bonito (https://github.com/nanoporetech/bonito)",
+ "description": "Gnuplot is a portable command-line driven graphing utility for Linux, OS/2, MS Windows, OSX, VMS, and many other platforms. ",
"filenames": [
- "Singularity.0.3.6",
- "Singularity",
- "Singularity.0.4.0"
+ "5.4.5/Singularity",
+ "5.4/Singularity"
],
- "full_name": "powerPlant/bonito-srf",
- "latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for bonito, a PyTorch Basecaller for Oxford Nanopore Reads\n\u003ca href=\"https://github.com/nanoporetech/bonito\"\u003ehttps://github.com/nanoporetech/bonito\u003c/a\u003e\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-gnuplot",
+ "latest_release": "v5.4.5",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-gnuplot/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-gnuplot/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-gnuplot/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-gnuplot/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/23d82eb0668fe3492dd30f22157fb3d1c693125f1407bfafe285593dfe346f67/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d676e75706c6f74\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/23d82eb0668fe3492dd30f22157fb3d1c693125f1407bfafe285593dfe346f67/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d676e75706c6f74\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-gnuplot\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/27c0620478c0935ec0cab6420ee06920e72867db97fbb4890da926ece01c51f4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d676e75706c6f74\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/27c0620478c0935ec0cab6420ee06920e72867db97fbb4890da926ece01c51f4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d676e75706c6f74\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-gnuplot\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/2f454c6e98eda6f83fef993dad87279c761ee7b8c6e35dee322338d61fc7c66a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d676e75706c6f74\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2f454c6e98eda6f83fef993dad87279c761ee7b8c6e35dee322338d61fc7c66a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d676e75706c6f74\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-gnuplot\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/74c6e2027d7219588767058a259260a20db37f4dd71ce7104696072751036512/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d676e75706c6f74\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/74c6e2027d7219588767058a259260a20db37f4dd71ce7104696072751036512/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d676e75706c6f74\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-gnuplot\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-gnuplot\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-gnuplot\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-gnuplot\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/d8469d53dc10c159651aa0f44ad8eced294e0cdb843467ee1ec27671a69f551e/687474703a2f2f676e75706c6f742e736f75726365666f7267652e6e65742f64656d6f2f616e696d617465322e312e676966\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d8469d53dc10c159651aa0f44ad8eced294e0cdb843467ee1ec27671a69f551e/687474703a2f2f676e75706c6f742e736f75726365666f7267652e6e65742f64656d6f2f616e696d617465322e312e676966\" alt=\"Plot\" data-canonical-src=\"http://gnuplot.sourceforge.net/demo/animate2.1.gif\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"http://gnuplot.info/\" rel=\"nofollow\"\u003egnuplot\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003egnuplot\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/gnuplot/5.4\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/gnuplot\u003c/code\u003e as \u003ccode\u003e5.4.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1627353613.0
+ "subscribers_count": 3,
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1668307366.0
},
{
"data_format": 2,
- "description": null,
+ "description": "GNU Octave is software featuring a high-level programming language, primarily intended for numerical computations",
"filenames": [
- "Singularity.root5",
- "Singularity.17.09",
- "Singularity.18.02.1",
- "Singularity.18.02"
+ "6.3.0/Singularity",
+ "7.3.0/Singularity",
+ "6.2.0/Singularity",
+ "7.1.0/Singularity",
+ "7.2.0/Singularity",
+ "6.4.0/Singularity"
],
- "full_name": "NuWro/builds",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nuwro-singularity-recipes\" class=\"anchor\" href=\"#nuwro-singularity-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNuWro Singularity recipes\u003c/h1\u003e\n\u003cp\u003eThis repository contains Singularity recipes for containers with \u003ca href=\"https://github.com/NuWro/nuwro\"\u003eNuWro\u003c/a\u003e releases (starting from 17.09).\u003c/p\u003e\n\u003cp\u003eThe builds can be found in \u003ca href=\"https://singularity-hub.org/collections/265\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eInstructions on how to use NuWro containers can be found in \u003ca href=\"https://nuwro.github.io/user-guide/singularity/\" rel=\"nofollow\"\u003eUser Guide\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor more information about Singularity please visit \u003ca href=\"http://singularity.lbl.gov/user-guide\" rel=\"nofollow\"\u003eSingularity Used Guide\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-octave",
+ "latest_release": "v7.2.0",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-octave/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-octave/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-octave/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-octave/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f0eef640ab704754409e5b3805cf764e1ae5c4a70f474b51e86e21ca7c7ce71a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6f6374617665\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f0eef640ab704754409e5b3805cf764e1ae5c4a70f474b51e86e21ca7c7ce71a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6f6374617665\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-octave\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/af95265639886aed45e4f673056ff5d595df2b5d5760eb36abe563365c430bb7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6f6374617665\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/af95265639886aed45e4f673056ff5d595df2b5d5760eb36abe563365c430bb7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6f6374617665\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-octave\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/4f62994add717900b8861b5c16791ebf7c20c850bdd05ed86990f15629ef2696/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6f6374617665\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4f62994add717900b8861b5c16791ebf7c20c850bdd05ed86990f15629ef2696/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6f6374617665\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-octave\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a17a4ce476d76eb74b11af4b5598c58d76785b012ef2ed56b3eb98106a68fdab/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6f6374617665\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a17a4ce476d76eb74b11af4b5598c58d76785b012ef2ed56b3eb98106a68fdab/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6f6374617665\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-octave\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-octave\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-octave\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-octave\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/21d293a8bfd3418f027c62e2ef688e8549d00a26a56b2c3bb9810bc6d5adf754/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f7468756d622f362f36612f476e752d6f63746176652d6c6f676f2e7376672f3139323070782d476e752d6f63746176652d6c6f676f2e7376672e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/21d293a8bfd3418f027c62e2ef688e8549d00a26a56b2c3bb9810bc6d5adf754/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f7468756d622f362f36612f476e752d6f63746176652d6c6f676f2e7376672f3139323070782d476e752d6f63746176652d6c6f676f2e7376672e706e67\" width=\"15%\" data-canonical-src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Gnu-octave-logo.svg/1920px-Gnu-octave-logo.svg.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://www.gnu.org/software/octave/\" rel=\"nofollow\"\u003eOctave\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eoctave-cli\u003c/code\u003e, \u003ccode\u003epandoc\u003c/code\u003e and \u003ccode\u003egnuplot\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/octave/6.3.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/octave\u003c/code\u003e as \u003ccode\u003e6.3.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [],
- "updated_at": 1522301666.0
+ "subscribers_count": 2,
+ "topics": [
+ "singularity",
+ "numerical-computation"
+ ],
+ "updated_at": 1633062005.0
},
{
"data_format": 2,
- "description": "Docker image, environent, and scripts to convert dockerfiles to singularity recipes.",
+ "description": "mpi 4.1.4",
"filenames": [
- "examples/cusignal/Singularity.def",
- "examples/seti_bl/Singularity.def"
+ "Singularity"
],
- "full_name": "jeffreyegan/docker2singularity",
+ "full_name": "riro3277/SimvascularSIngularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-docker2singularity\" class=\"anchor\" href=\"#docker2singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edocker2singularity\u003c/h1\u003e\n\u003cp\u003eDocker image, environent, and scripts to convert dockerfiles to singularity recipes.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003eStage the \u003ccode\u003eDockerfile\u003c/code\u003e you wish to convert in the \u003ccode\u003econvert\u003c/code\u003e directory and then run the following at terminal to execute conversion to a \u003ccode\u003eSingularity.def\u003c/code\u003e output file. The output is produced int he same \u003ccode\u003econvert\u003c/code\u003e directory.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -v ~/repos/docker2singularity/convert:/convert -it docker2singularity\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1628008337.0
+ "updated_at": 1664487305.0
},
{
"data_format": 2,
- "description": "TOMTOM docker/singularity container for scanem",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "jacobhepkema/scanem-motif",
+ "full_name": "rses-singularity/torch",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://quay.io/repository/jacobhepkema/scanem-motif\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f763ec0804bf9dcf1c8c53c453a9add6992333ec5501b757f4c23948408962c5/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6a61636f626865706b656d612f7363616e656d2d6d6f7469662f737461747573\" alt=\"Docker Repository on Quay\" title=\"Docker Repository on Quay\" data-canonical-src=\"https://quay.io/repository/jacobhepkema/scanem-motif/status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-scanem-motif\" class=\"anchor\" href=\"#scanem-motif\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003escanem-motif\u003c/h1\u003e\n\u003cp\u003eTOMTOM docker/singularity container for \u003ca href=\"https://github.com/jacobhepkema/scanem\"\u003e\u003cstrong\u003escanem\u003c/strong\u003e\u003c/a\u003e. Quay.io docker repo at \u003ca href=\"https://quay.io/repository/jacobhepkema/scanem-motif\" rel=\"nofollow\"\u003ehttps://quay.io/repository/jacobhepkema/scanem-motif\u003c/a\u003e (see build status above).\u003c/p\u003e\n\u003cp\u003eUsually this container is used in the Nextflow pipeline for \u003ca href=\"https://github.com/jacobhepkema/scanem\"\u003e\u003cstrong\u003escanem\u003c/strong\u003e\u003c/a\u003e. This container contains the MEME suite, which includes the Tomtom motif comparison tool\u003csup\u003e1\u003c/sup\u003e.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eShobhit Gupta, JA Stamatoyannopolous, Timothy Bailey and William Stafford Noble, \"Quantifying similarity between motifs\", Genome Biology, 8(2):R24, 2007.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eRun tools by prepending \u003ccode\u003e/opt/bin\u003c/code\u003e to your command, e.g. \u003ccode\u003e/opt/bin/tomtom [args]\u003c/code\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-torch\" class=\"anchor\" aria-hidden=\"true\" href=\"#torch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTorch\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eSee \u003ca href=\"build.sh\"\u003ebuild.sh\u003c/a\u003e for info on how to build and run the image\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e file for the definition of the image, including\n\u003cul\u003e\n\u003cli\u003eThe (Docker) image it is based on\u003c/li\u003e\n\u003cli\u003eWhat OS packages are installed\u003c/li\u003e\n\u003cli\u003eWhat environment variables are set\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e project website for more info on Singularity in general and detailed documentaiton.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1627983632.0
+ "updated_at": 1542376613.0
},
{
"data_format": 2,
- "description": "Singularity recipe for RATTLE.",
+ "description": "A suite for benchmarking sparse format conversions using IntelMKL, SPARSKIT and TACO. The tool uses 14 sparse data sources from https://sparse.tamu.edu/ for benchmarking. It also uses a singularity conrtainer making it easy to run test on various machines.",
"filenames": [
- "Singularity",
- "Singularity-0.0"
+ "container/Singularity.experiments.def",
+ "container/Singularity.intel-mkl.def",
+ "container/Singularity.taco-experiments.def",
+ "container/Singularity.sparskit.def"
],
- "full_name": "powerPlant/rattle-srf",
+ "full_name": "BoiseState-AdaptLab/Sparse_Format_Conversion_Experiments",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe for RATTLE : Reference-free reconstruction and quantification of transcriptomes from long-read sequencing\n\u003ca href=\"https://github.com/comprna/RATTLE\"\u003ehttps://github.com/comprna/RATTLE\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-sparse_format_conversion_experiments\" class=\"anchor\" aria-hidden=\"true\" href=\"#sparse_format_conversion_experiments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSparse_Format_Conversion_Experiments\u003c/h1\u003e\n\u003cp\u003eA suite for benchmarking sparse format conversions using IntelMKL, SPARSKIT and TACO. The tool uses 14 sparse data sources from \u003ca href=\"https://sparse.tamu.edu/\" rel=\"nofollow\"\u003ehttps://sparse.tamu.edu/\u003c/a\u003e for benchmarking. It also uses a singularity conrtainer making it easy to run test on various machines.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1627958435.0
+ "updated_at": 1594315503.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Open OnDemand Apps used by the ACCRE Visualization Portal",
"filenames": [
- "Singularity.mpich33"
+ "rstudio/Singularity",
+ "rstudio_gpu/Singularity"
],
- "full_name": "cjknight/singularity_test",
+ "full_name": "accre/ood_apps",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity_test\" class=\"anchor\" href=\"#singularity_test\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_test\u003c/h1\u003e\n\u003cp\u003eSimple singularity example originally from here: \u003ca href=\"https://github.com/jtchilders/singularity_image_recipes\"\u003ehttps://github.com/jtchilders/singularity_image_recipes\u003c/a\u003e .\u003c/p\u003e\n\u003cp\u003eTrying to replicate steps here: \u003ca href=\"https://www.alcf.anl.gov/support-center/theta/singularity-theta\" rel=\"nofollow\"\u003ehttps://www.alcf.anl.gov/support-center/theta/singularity-theta\u003c/a\u003e .\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-ood_apps\" class=\"anchor\" aria-hidden=\"true\" href=\"#ood_apps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eood_apps\u003c/h1\u003e\n\u003cp\u003eOpen OnDemand Apps used by the ACCRE Visualization Portal\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 11,
"topics": [],
- "updated_at": 1627936122.0
+ "updated_at": 1663612575.0
},
{
"data_format": 2,
- "description": "One place for all the different container recipes",
+ "description": null,
"filenames": [
- "uboonecode/Singularity.uboonecode",
- "ubdl/Singularity.ubdldeps.u16.04_py3.6.11",
- "ubdl/Singularity.ubdldev",
- "ubdl/Singularity.ubdldev.python3",
- "sparseconvnet/Singularity.sparseconvnet"
+ "Singularity"
],
- "full_name": "LArbys/larbys-containers",
+ "full_name": "amanmdesai/singularity-python-packages-demo",
"latest_release": null,
- "readme": "\u003cp\u003eRepository to hold various Docker and singularity container building scripts\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-are-containers\" class=\"anchor\" href=\"#what-are-containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat are containers?\u003c/h2\u003e\n\u003cp\u003eContainers according to Amazon:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eContainers provide a standard way to package your application\u0027s code, configurations, and dependencies into a single object.\nContainers share an operating system installed on the server and run as resource-isolated processes, ensuring quick,\nreliable, and consistent deployments, regardless of environment.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eAs far as our group is concerned, we use containers to be able to run the same piece of code on\nthe various compute platforms we have access to.\nThis is primary the Tufts cluster, which requires us to put our code into \u003ccode\u003eSingularity\u003c/code\u003e containers.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-whats-the-repo-for\" class=\"anchor\" href=\"#whats-the-repo-for\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat\u0027s the repo for?\u003c/h2\u003e\n\u003cp\u003eWe hold instructions on how to build particularly useful containers for our work.\nIn addition to packing up the code, containers can be built on top of another allow us to build, for example,\na container holding the common dependencies of our different software packages.\u003c/p\u003e\n\u003cp\u003eThis allows one to build a container for a specific analysis without having to repackage the whole stack of code again.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-are-you-going-to-make-me-build-all-of-these-myself\" class=\"anchor\" href=\"#are-you-going-to-make-me-build-all-of-these-myself\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAre you going to make me build all of these myself?\u003c/h2\u003e\n\u003cp\u003eNo! We keep copies of the containers on our \u003ca href=\"dockerhub\"\u003edockerhub\u003c/a\u003e and \u003ca href=\"https://www.singularity-hub.org/collections/2494\" rel=\"nofollow\"\u003esingularity\u003c/a\u003e hub pages.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-containers-and-the-heirarchy\" class=\"anchor\" href=\"#containers-and-the-heirarchy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainers (and the heirarchy)\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/232863cf1838592aed70d01a47bdf2e517095bcbf4637bbf2fccda3c9dc523ab/68747470733a2f2f672e67726176697a6f2e636f6d2f736f757263652f637573746f6d5f6d61726b31303f68747470732533412532462532467261772e67697468756275736572636f6e74656e742e636f6d2532464c41726279732532466c61726279732d636f6e7461696e6572732532466d6173746572253246636f6e7461696e65725f67726170682e646f74\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/232863cf1838592aed70d01a47bdf2e517095bcbf4637bbf2fccda3c9dc523ab/68747470733a2f2f672e67726176697a6f2e636f6d2f736f757263652f637573746f6d5f6d61726b31303f68747470732533412532462532467261772e67697468756275736572636f6e74656e742e636f6d2532464c41726279732532466c61726279732d636f6e7461696e6572732532466d6173746572253246636f6e7461696e65725f67726170682e646f74\" alt=\"Alt text\" data-canonical-src=\"https://g.gravizo.com/source/custom_mark10?https%3A%2F%2Fraw.githubusercontent.com%2FLArbys%2Flarbys-containers%2Fmaster%2Fcontainer_graph.dot\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eContainer\u003c/th\u003e\n\u003cth align=\"left\"\u003eDescripton\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003eubuntu\u003c/td\u003e\n\u003ctd align=\"left\"\u003e\n\u003ca href=\"https://hub.docker.com/r/nvidia/cuda/\" rel=\"nofollow\"\u003envidia containers\u003c/a\u003e which include cuda and cuDNN libraries\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003eROOT\u003c/td\u003e\n\u003ctd align=\"left\"\u003ebuild of CERN\u0027s \u003ca href=\"https://github.com/root-project/root\"\u003eROOT\u003c/a\u003e data-analysis library\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003eOpenCV\u003c/td\u003e\n\u003ctd align=\"left\"\u003eopen source \u003ca href=\"https://github.com/opencv/opencv\"\u003elibrary\u003c/a\u003e of computer vision algorithms\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003ePyTorch\u003c/td\u003e\n\u003ctd align=\"left\"\u003edeep learning \u003ca href=\"https://pytorch.org/\" rel=\"nofollow\"\u003elibrary\u003c/a\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003eSparseConvNet\u003c/td\u003e\n\u003ctd align=\"left\"\u003eincludes submanifold convolution library for pytorch\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003edllee_unified\u003c/td\u003e\n\u003ctd align=\"left\"\u003ecurrent-gen analysis code for MicroBooNE DL low-energy excess analysis\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003eubdl\u003c/td\u003e\n\u003ctd align=\"left\"\u003erepository with next-gen LArbys tools for MicroBooNE DL-working group analysis\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-specific-versions\" class=\"anchor\" href=\"#specific-versions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpecific Versions\u003c/h2\u003e\n\u003cp\u003eHere we list official stack versions to be used for production and analysis studies\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eStack Name\u003c/th\u003e\n\u003cth\u003eubuntu\u003c/th\u003e\n\u003cth\u003epython\u003c/th\u003e\n\u003cth\u003eROOT\u003c/th\u003e\n\u003cth\u003eOpenCV\u003c/th\u003e\n\u003cth\u003ePyTorch\u003c/th\u003e\n\u003cth\u003eSubConvNet (nutufts-fork)\u003c/th\u003e\n\u003cth\u003edllee_unified\u003c/th\u003e\n\u003cth\u003eubdl\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003edllee_unified\u003c/td\u003e\n\u003ctd\u003e16.04 LTS+CUDA 10.0+cuDNN 7\u003c/td\u003e\n\u003ctd\u003e2.7\u003c/td\u003e\n\u003ctd\u003e6.16/00\u003c/td\u003e\n\u003ctd\u003e3.4\u003c/td\u003e\n\u003ctd\u003e1.0.1post2\u003c/td\u003e\n\u003ctd\u003etagXXXXXX\u003c/td\u003e\n\u003ctd\u003etagXXXXXXXX\u003c/td\u003e\n\u003ctd\u003en/a\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003eubdl\u003c/td\u003e\n\u003ctd\u003e16.04 LTS+CUDA 10.0+cuDNN 7\u003c/td\u003e\n\u003ctd\u003e2.7\u003c/td\u003e\n\u003ctd\u003e6.16/00\u003c/td\u003e\n\u003ctd\u003e3.4\u003c/td\u003e\n\u003ctd\u003e1.0.1post2\u003c/td\u003e\n\u003ctd\u003etagXXXXXX\u003c/td\u003e\n\u003ctd\u003en/a\u003c/td\u003e\n\u003ctd\u003etagxxxx\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003eubdl dependences\u003c/td\u003e\n\u003ctd\u003e16.04 LTS+CUDA 11.0+cuDNN 8\u003c/td\u003e\n\u003ctd\u003e3.6.11\u003c/td\u003e\n\u003ctd\u003e6.22/06\u003c/td\u003e\n\u003ctd\u003e3.4.11\u003c/td\u003e\n\u003ctd\u003e1.7.1\u003c/td\u003e\n\u003ctd\u003e7dfbd0f\u003c/td\u003e\n\u003ctd\u003en/a\u003c/td\u003e\n\u003ctd\u003en/a\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eThe \u003ccode\u003eubdl dependencies\u003c/code\u003e container is used to build the \u003ccode\u003eubdl\u003c/code\u003e repository on Tufts.\nThis provides a development environment.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-built-containers-on-tufts\" class=\"anchor\" href=\"#built-containers-on-tufts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilt containers on Tufts\u003c/h2\u003e\n\u003cp\u003eOn the Tufts Cluster you can find the containers at:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e/cluster/tufts/wongjiradlab/larbys/larbys-containers\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-instructions\" class=\"anchor\" href=\"#instructions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstructions\u003c/h1\u003e\n\u003cp\u003eWe use two packages: \u003ca href=\"https://www.docker.com/why-docker\" rel=\"nofollow\"\u003edocker\u003c/a\u003e and \u003ca href=\"https://www.sylabs.io/singularity/\" rel=\"nofollow\"\u003esingularity\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eTypically, we will use \u003ccode\u003edocker\u003c/code\u003e to build the containers and then convert the docker image into a \u003ccode\u003esingularity\u003c/code\u003e container.\u003c/p\u003e\n\u003cp\u003eIn the end, it is not important what tool we use to build the containers (one could use just singularity), but ultimately we must end up with a singularity container to run on the Tufts cluster. (The reason is that docker is not supported on the cluster due to security concerns with docker.)\u003c/p\u003e\n\u003cp\u003eYou can run both docker and singularity from your personal machine. You can also use lab machines at:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eTufts: meitner, rubin\u003c/li\u003e\n\u003cli\u003eMIT: nudot, trex\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto build your containers.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-do-i-need-to-do-to-build-a-container\" class=\"anchor\" href=\"#what-do-i-need-to-do-to-build-a-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat do I need to do to build a container?\u003c/h2\u003e\n\u003cp\u003e(still under construction)\u003c/p\u003e\n\u003cp\u003eIn general, you just need to know the instructions you\u0027d type to install the software in question.\nYou put those instructions into a recipe file and tell docker or singularity to build the container.\u003c/p\u003e\n\u003cp\u003eAs an example, we will use the anticipated most-likely case, which is to make a container with a new version of analysis code (\u003ccode\u003eubdl\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eIn the folder \u003ccode\u003eubdl\u003c/code\u003e, there is the docker recipe file to build this container.\nIt probably looks something like the following (assuming it hasn\u0027t changed too much since the time this README was written):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFROM larbys/sparseconvnet:ubuntu16.04_latest\n\nMAINTAINER taritree.wongjirad@tufts.edu\n\n# UBDL\nRUN apt-get update -y \u0026amp;\u0026amp; apt install -y rsync \u0026amp;\u0026amp; apt-get autoremove -y \u0026amp;\u0026amp; apt-get clean -y\nRUN pip install pyyaml typing figcan zmq\nRUN cd /usr/local \u0026amp;\u0026amp; git clone --recursive https://github.com/larbys/ubdl \u0026amp;\u0026amp; \\\n cd ubdl \u0026amp;\u0026amp; chmod +x setenv.sh \u0026amp;\u0026amp; chmod +x buildall.sh \u0026amp;\u0026amp; chmod +x configure.sh\nRUN cd /usr/local/ubdl/larcv \u0026amp;\u0026amp; cp misc/FindCUDA.cmake /usr/local/share/cmake-3.13/Modules/\nRUN cd /usr/local/ubdl \u0026amp;\u0026amp; bash -c \"source /usr/local/root/build/bin/thisroot.sh \u0026amp;\u0026amp; source setenv.sh \u0026amp;\u0026amp; source configure.sh \u0026amp;\u0026amp; source buildall.sh\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe first line tells docker to build off of an existing image.\nThis happens to be the \u003ccode\u003elarbys/sparseconvnet\u003c/code\u003e image,\nwhich contains the software stack up to the Sparse Convolutional Network library.\nThe SparseConvNet library is the last dependency for the \u003ccode\u003eubdl\u003c/code\u003e code.\nSo all that\u0027s left to finish the container is to build \u003ccode\u003eubdl\u003c/code\u003e into the container.\u003c/p\u003e\n\u003cp\u003eThe docker file is just the list of instructions to install \u003ccode\u003eubdl\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eTo build it, run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build -t larbys/ubdl:dev . -f Dockerfile_ubuntu16.04\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003e-t\u003c/code\u003e flag is to the set the \"name\" or \"tag\" of the image.\n\u003ccode\u003e.\u003c/code\u003e tells Docker where to find the docker recipe file.\nAnd \u0027-f\u0027 is what recipe file to use (in \u0027.\u0027).\u003c/p\u003e\n\u003cp\u003eWith the image with ubdl built, the next step if one wants to create a container to run\nat Tufts, is to create a singularity container.\nLike the docker build file above,\nwe list the commands we would run to configure the computer for \u003ccode\u003eubdl\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eAs an example, in the \u003ccode\u003eubdl\u003c/code\u003e folder,\nyou\u0027ll see a file called \u003ccode\u003eSingularity.ubdl\u003c/code\u003e,\nwhich contains the instructions to build the \u003ccode\u003eubdl\u003c/code\u003e repository.\nIt\u0027ll look something that the following:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebootstrap: docker\nFrom: larbys/ubdl:latest\n\n%post\n mkdir -p /cluster/home\n mkdir -p /cluster/kappa\n mkdir -p /cluster/shared\n mkdir -p /opt/shared\n\n%environment\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-alternative-build-ubdl-outside-the-container\" class=\"anchor\" href=\"#alternative-build-ubdl-outside-the-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAlternative, build \u003ccode\u003eubdl\u003c/code\u003e outside the container\u003c/h2\u003e\n\u003cp\u003eHere, we of course start with the container we built with docker above, \u003ccode\u003elarbys/ubdl:latest\u003c/code\u003e.\nYou can see all we do is create four folders.\nThese folders server to provide a mount point for our container to the network storage area.\nWhen making singularity containers for the Tufts cluster,\nplease include these commands.\u003c/p\u003e\n\u003cp\u003eNote that the instructinos here were about installing \u003ccode\u003eubdl\u003c/code\u003e into the container.\nHowever, an alternative is to clone the \u003ccode\u003eubdl\u003c/code\u003e code into some folder and then compile that source\nusing the libraries found in the container.\nWe provide the \u003ccode\u003eubdl-dependencies\u003c/code\u003e container for this.\u003c/p\u003e\n\u003cp\u003eInstructions on how to do that can be found \u003ca href=\"https://github.com/LArbys/ubdl/wiki/Build-development-copy-of-UBDL-with-container\"\u003ehere\u003c/a\u003e\nas part of the \u003ccode\u003eubdl\u003c/code\u003e wiki.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-python-packages\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-python-packages\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-python-packages\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1629120346.0
+ "updated_at": 1675056243.0
+ },
+ {
+ "data_format": 2,
+ "description": "ABC-MK estimations",
+ "filenames": [
+ "scripts/singularity/Singularity"
+ ],
+ "full_name": "jmurga/MKtest.jl",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-abc-mk\" class=\"anchor\" aria-hidden=\"true\" href=\"#abc-mk\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eABC-MK\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://jmurga.github.io/MKtest.jl/dev\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/56f8252ba8e9d3f0b810769543f77823d2fe031ce560d4c2d69fb1fcad800383/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f63732d6c61746573742d626c75652e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/badge/docs-latest-blue.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eMKtest.jl is a Julia package including a fast Approximate Bayesian Computation version of the McDonald-Kreitman test (ABC-MK) presented in \u003ca href=\"https://doi.org/10.1038/s41559-019-0890-6\" rel=\"nofollow\"\u003eUricchio et al. (2019)\u003c/a\u003e. The new ABC-MK implementation significantly improves the efficiency of the population genetics inferences. Following \u003ca href=\"https://doi.org/10.1038/s41559-019-0890-6\" rel=\"nofollow\"\u003eUricchio et al.(2019)\u003c/a\u003e, the analytical estimations were used to explore the effect of background selection and selective interference on weakly beneficial alleles. Nonetheless, we developed a more straightforward and computationally efficient ABC-based inference procedure that accounts for the DFE of deleterious and beneficial alleles and partial recombination between selected genomic elements. Our approach estimates $\\alpha$, $\\alpha_W$, $\\alpha_S$, and the Gamma distribution DFE parameters.\u003c/p\u003e\n\u003cp\u003eIn addition, the package automatizes other MK-like analyses parsing polymorphic and divergence data as well as including several extensions such as \u003ca href=\"https://doi.org/10.1371/journal.pgen.1005774\" rel=\"nofollow\"\u003eGrapes\u003c/a\u003e, \u003ca href=\"https://doi.org/10.1073/pnas.1220835110\" rel=\"nofollow\"\u003eaMK\u003c/a\u003e, \u003ca href=\"https://doi.org/10.1093/g3journal/jkac206\" rel=\"nofollow\"\u003eimputedMK\u003c/a\u003e or \u003ca href=\"https://doi.org/10.1038/4151024a\" rel=\"nofollow\"\u003efwwMK\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eSee the \u003ca href=\"https://jmurga.github.io/MKtest.jl/dev\" rel=\"nofollow\"\u003edocumentation\u003c/a\u003e for details.\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1646232582.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "util/PATRIC/Singularity"
+ "Singularity"
],
- "full_name": "adamlabadorf/bf500",
+ "full_name": "rhassett-cshl/SimPolv2",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-bf500---bioinformatics-engineering\" class=\"anchor\" href=\"#bf500---bioinformatics-engineering\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBF500 - Bioinformatics Engineering)\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://adamlabadorf.github.io/bf500/\" rel=\"nofollow\"\u003eGo to the Github Pages site\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-simpol--simulating-the-dynamics-of-rna-polymerase-rnap-on-dna-template\" class=\"anchor\" aria-hidden=\"true\" href=\"#simpol--simulating-the-dynamics-of-rna-polymerase-rnap-on-dna-template\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSimPol \u2014 Simulating the dynamics of RNA Polymerase (RNAP) on DNA template\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-hidden=\"true\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOverview\u003c/h2\u003e\n\u003cp\u003eSimPol tracks the independent movement of RNAPs along the DNA templates of a large\nnumber of cells. It accepts several key\nuser-specified parameters, including the initiation rate, pause-escape rate,\na constant or variable elongation rate, the mean and variance of pause sites across cells,\nas well as the center-to-center spacing constraint between RNAPs,\nthe number of cells being simulated, the gene length, and the total time of transcription.\nThe simulator simply allows each RNAP to move forward or not,\nin time slices of $10^{-4}$ minutes, according to the specified position-specific\nrate parameters. It assumes that at most one movement of each RNAP can occur per\ntime slice. The simulator monitors for collisions between adjacent RNAPs, prohibiting\none RNAP to advance if it is at the boundary of the allowable distance from the next.\nAfter running for the specified time, SimPol outputs either a file in HDF5 format or files in CSV format that records all RNAP position for the last specified number of steps. See more options and details about parameters and outputs below.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"figures/simulator.png\"\u003e\u003cimg src=\"figures/simulator.png\" alt=\"simulator\" width=\"600\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n\tFig.1 Design of SimPol (\u201cSimulator of Polymerases\u201d)\n\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-setup-environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup Environment\u003c/h2\u003e\n\u003cp\u003eWe provide two different approaches to set up the environment for SimPol, one with\n\u003ca href=\"https://docs.conda.io/projects/conda/en/stable/user-guide/getting-started.html\" rel=\"nofollow\"\u003eConda\u003c/a\u003e\nand the other with \u003ca href=\"https://docs.sylabs.io/guides/latest/user-guide/quick_start.html#\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e.\nPre-built debug and release executables can be found in the bin folder\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-conda\" class=\"anchor\" aria-hidden=\"true\" href=\"#conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConda\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml\n\nconda activate simpol\n\nbin/simPol_Release --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build --fakeroot simPol.sif Singularity\n\nsingularity shell simPol.sif\n\nbin/simPol_Release --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-from-source\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-from-source\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild from source\u003c/h2\u003e\n\u003cp\u003eThere is the option to build in either debug mode with debug symbols or release mode with compiler optimizations (e.g. -O2).\u003c/p\u003e\n\u003cp\u003eTo create a build directory in release mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecmake -S . -B Release/ -D CMAKE_BUILD_TYPE=Release\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo clean the release mode build directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecmake --build Release/ --target clean\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo build in release mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecmake --build Release/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote: Replace all instances of \u0027Release\u0027 with \u0027Debug\u0027 to build in Debug mode\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Locally\u003c/h2\u003e\n\u003cp\u003eSet Number of Threads [By default uses all available threads]\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport OMP_NUM_THREADS=\u0026lt;number of threads to use\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun in Release Mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./Release/simPol [options]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun in Debug Mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./Debug/simPol [options]\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun program with file containing command line arguments\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e ./Release/simPol $(\u0026lt;simPol_arguments.dat)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-with-uge-workload-manager-within-cshl\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-with-uge-workload-manager-within-cshl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun with UGE Workload Manager (within CSHL)\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eqsub -pe OpenMP 5 -cwd -b y ./Release/simPol -n 100 --csv 10\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eNote: This allocates 5 threads for the program in the OpenMP parallel environment\u003c/li\u003e\n\u003cli\u003eCheck available parallel environments: qconf -spl\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eOptions:\n\t-h, --help\n\t\tShow this help message and exit\n\n\t-k INTEGER, --tssLen=INTEGER\n\t\tdefine the mean of pause sites across cells [default 50bp]\n\n\t--kSd=DOUBLE\n\t\tdefine the standard deviation of pause sites across cells [default 0]\n\n\t--kMin=INTEGER\n\t\tupper bound of pause site allowed [default 17bp]\n\n\t--kMax=INTEGER\n\t\tlower bound of pause site allowed [default 200bp]\n\n\t--geneLen=INTEGER\n\t\tdefine the length of the whole gene [default 2000bp]\n\n\t-a DOUBLE, --alpha=DOUBLE\n\t\tinitiation rate [default 1 event per min]\n\n\t-b DOUBLE, --beta=DOUBLE\n\t\tpause release rate [default 1 event per min]\n\n\t-z DOUBLE, --zeta=DOUBLE\n\t\tthe mean of elongation rates across sites [default 2000bp per min]\n\n\t--zetaSd=DOUBLE\n\t\tthe standard deviation of elongation rates across sites [default 1000]\n\n\t--zetaMax=DOUBLE\n\t\tthe maximum of elongation rates allowed [default 2500bp per min]\n\n\t--zetaMin=DOUBLE\n\t\tthe minimum of elongation rates allowed [default 1500bp per min]\n\n\t--zetaVec=CHARACTER\n\t\ta file contains vector to scale elongation rates. All cells share the same set of parameters [default \"\"]\n\n\t-n INTEGER, --cellNum=INTEGER\n\t\tNumber of cells being simulated [default 10]\n\n\t-s INTEGER, --polSize=INTEGER\n\t\tPolymerase II size [default 33bp]\n\n\t--addSpace=INTEGER\n\t\tAdditional space in addition to RNAP size [default 17bp]\n\n\t-t DOUBLE, --time=DOUBLE\n\t\tTotal time of simulating data in a cell [default 0.1 min]\n\n\t--hdf5=INTEGER\n\t\tRecord position matrix to HDF5 file for remaining number of steps specified [default: 0 steps]\n\n\t--csv=INTEGER\n\t\tRecord position matrix to csv file for remaining number of steps specified [default: 1 step]\n\n\t-d CHARACTER, --outputDir=CHARACTER\n\t\tDirectory for saving results [default: \u0027results\u0027]\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cp\u003eAfter simulation, SimPol produces multiple output files:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eprobability_vector.csv\u003c/li\u003e\n\u003cli\u003epause_sites.csv\u003c/li\u003e\n\u003cli\u003ecombined_cell_data.csv: Stores the total # of polymerase at each site across all cells\u003c/li\u003e\n\u003cli\u003eposition_matrices.h5: An HDF5 file containing a group of position matrices for the last number of specified steps. The file can be viewed by importing it into the HDFView app. Download Here: \u003ca href=\"https://www.hdfgroup.org/downloads/hdfview/#download\" rel=\"nofollow\"\u003ehttps://www.hdfgroup.org/downloads/hdfview/#download\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eUsing HighFive interface to generate HDF5 file \u003ca href=\"https://github.com/BlueBrain/HighFive\"\u003ehttps://github.com/BlueBrain/HighFive\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eUses chunking and ZLIB (deflate) compression at level 9\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003epositions/position_matrix_#.csv: CSV files containing the position matrix at a specified step\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-sampling-nascent-rna-sequencing-read-counts\" class=\"anchor\" aria-hidden=\"true\" href=\"#sampling-nascent-rna-sequencing-read-counts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSampling nascent RNA sequencing read counts\u003c/h2\u003e\n\u003cp\u003eIf you prefer to simulate nascent RNA sequencing read counts in addition to the RNAP positions,\nyou can also follow the tutorial in \u003ccode\u003escripts/sample_read_counts.Rmd\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\u003cp\u003eZhao, Y., Liu, L. \u0026amp; Siepel, A. Model-based characterization of the equilibrium dynamics of transcription initiation and promoter-proximal pausing in human cells. 2022.10.19.512929 Preprint at \u003ca href=\"https://doi.org/10.1101/2022.10.19.512929\" rel=\"nofollow\"\u003ebioRxiv\u003c/a\u003e (2022).\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1631274450.0
+ "updated_at": 1673019793.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.canopy"
+ "analysis/assembly/containers/Singularity.canu"
],
- "full_name": "ternaustralia/coesra-singularity-canopy",
+ "full_name": "justicengom/head_to_head_pipeline-",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-coesra-singularity-canopy\" class=\"anchor\" href=\"#coesra-singularity-canopy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-canopy\u003c/h1\u003e\n\u003cp\u003eAuthor: Hoang Nguyen\nCreated: 22 July 2019\nThis will create a image with Singularity 2.5.1\u003c/p\u003e\n",
+ "readme": "\u003ch3\u003e\u003ca id=\"user-content-preprint\" class=\"anchor\" aria-hidden=\"true\" href=\"#preprint\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreprint\u003c/h3\u003e\n\u003cblockquote\u003e\n\u003cp\u003eHall, M. B. \u003cem\u003eet al\u003c/em\u003e. Nanopore sequencing for \u003cem\u003eMycobacterium tuberculosis\u003c/em\u003e drug susceptibility testing and outbreak investigation. \u003cem\u003eMedrxiv\u003c/em\u003e 2022.03.04.22271870 (2022) \u003ca href=\"https://doi.org/10.1101/2022.03.04.22271870\" rel=\"nofollow\"\u003edoi:10.1101/2022.03.04.22271870\u003c/a\u003e.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003chr\u003e\n\u003cp\u003eThis repository holds the pipelines/scripts used for our paper analysing Illumina and\nNanopore for \u003cem\u003eM.tuberculosis\u003c/em\u003e drug resistance calling and transmission clustering.\u003c/p\u003e\n\u003cp\u003eFor people wanting to analyse their Nanopore data in the same manner as we did in this paper, we would suggest using \u003ca href=\"https://github.com/mbhall88/tbpore\"\u003ehttps://github.com/mbhall88/tbpore\u003c/a\u003e, which is a python program that runs the drug resistance prediction and clustering (with a smaller decontamination database) components of this pipeline. It is actively maintained and much easier to use.\u003c/p\u003e\n\u003cp\u003eAll pipelines require the following dependencies to be installed:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://snakemake.github.io/\" rel=\"nofollow\"\u003eSnakemake\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://docs.conda.io/en/latest/\" rel=\"nofollow\"\u003eConda\u003c/a\u003e (and\n\u003ca href=\"https://github.com/mamba-org/mamba\"\u003eMamba\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://sylabs.io/docs\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003eThe Python library \u003ca href=\"https://pandas.pydata.org/\" rel=\"nofollow\"\u003e\u003ccode\u003epandas\u003c/code\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSee subdirectories for more specific information about different pipelines. They are\nnested according to their dependence on the outputs of each pipeline.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"data/QC\"\u003eQuality Control\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"analysis/assembly\"\u003eAssembly\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"analysis/baseline_variants\"\u003eBaseline variant analysis\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"analysis/transmission_clustering\"\u003eTransmission clustering\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"analysis/resistance_prediction\"\u003eDrug Resistance Prediction\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe following pipelines are not relevant to the work in the final paper.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"data/H37Rv_PRG\"\u003eH37Rv PRG construction\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"analysis/pandora_variants\"\u003ePandora variant analysis\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-data-availability\" class=\"anchor\" aria-hidden=\"true\" href=\"#data-availability\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData availability\u003c/h1\u003e\n\u003cp\u003eAll data is submitted under the Project accession \u003cstrong\u003ePRJEB49093\u003c/strong\u003e.\u003c/p\u003e\n\u003cp\u003eThe accessions and all relevant sample metadata for this study can be found at \u003ca href=\"https://doi.org/10.6084/m9.figshare.19304648\" rel=\"nofollow\"\u003ehttps://doi.org/10.6084/m9.figshare.19304648\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe raw Nanopore data is available to download from: \u003ca href=\"https://ftp.ebi.ac.uk/pub/databases/ont_tb_eval2022/\" rel=\"nofollow\"\u003ehttps://ftp.ebi.ac.uk/pub/databases/ont_tb_eval2022/\u003c/a\u003e. See the sample metadata file for mappings between samples and the relevant Nanopore runs and barcode numbers.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "coesra"
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1671672013.0
+ },
+ {
+ "data_format": 2,
+ "description": "Quantifying the life of pollen.",
+ "filenames": [
+ "singularity/Singularity"
],
- "updated_at": 1610425023.0
+ "full_name": "cedarwarman/pollen_cv",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-pollen_cv\" class=\"anchor\" aria-hidden=\"true\" href=\"#pollen_cv\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epollen_cv\u003c/h1\u003e\n\u003cp\u003eQuantifying the life of pollen.\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1665173991.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.qgis"
+ "bc3.10-rs125042r362/Singularity",
+ "bc3.12-r405rs125042/Singularity",
+ "bc3.15-r421tv132rs2022072.576/Singularity"
],
- "full_name": "ternaustralia/coesra-singularity-qgis",
+ "full_name": "yh549848/singularity-rstudio-methylseq",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-coesra-singularity-qgis\" class=\"anchor\" href=\"#coesra-singularity-qgis\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-qgis\u003c/h1\u003e\n\u003cp\u003eHoang Nguyen 24 July 2019\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1610427940.0
+ "updated_at": 1665633405.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Building an online mousetracking tool",
"filenames": [
- "Singularity.rstudio"
+ "Singularity"
],
- "full_name": "ternaustralia/coesra-singularity-rstudio",
+ "full_name": "paulstillman/Online-Mousetracking",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-coesra-singularity-rstudio\" class=\"anchor\" href=\"#coesra-singularity-rstudio\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-rstudio\u003c/h1\u003e\n\u003cp\u003eHoang Nguyen\n25 July 2019\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-online-mousetracking\" class=\"anchor\" aria-hidden=\"true\" href=\"#online-mousetracking\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOnline-Mousetracking\u003c/h1\u003e\n\u003cp\u003eBuilding an online mousetracking tool\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1663958736.0
+ },
+ {
+ "data_format": 2,
+ "description": " MrBayes, a program for Bayesian inference and model choice across a wide range of phylogenetic and evolutionary models.",
+ "filenames": [
+ "Singularity.3.2.7a-mpi"
+ ],
+ "full_name": "sghignone/MrBayes",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-mrbayes\" class=\"anchor\" aria-hidden=\"true\" href=\"#mrbayes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMrBayes\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4216\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eMrBayes v.3.2.7, a program for Bayesian inference and model choice across a wide range of phylogenetic and evolutionary models.\u003c/p\u003e\n\u003cp\u003eThe current release is based on MrBayes version 3.2.7a, released March 6, 2019. This version is compiled with MPI support and without the Beagle library\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [
- "coesra"
+ "singularity",
+ "container",
+ "bayesian-inference",
+ "phylogenomics",
+ "phylogenetics"
],
- "updated_at": 1610424737.0
+ "updated_at": 1663758431.0
},
{
"data_format": 2,
- "description": "Copy of the template_project_escape to test the GitHub CI",
+ "description": null,
"filenames": [
- "Singularity/Singularity"
+ "Singularity"
],
- "full_name": "escape2020/template_project_escape",
- "latest_release": "v0.1.4",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-template_project_escape\" class=\"anchor\" href=\"#template_project_escape\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etemplate_project_escape\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.5281/zenodo.4923992\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/869b462bf3a319fe4fc2ffa52fb6b0f7c8e42eb4e0ed4bc2482306b9fd5aafab/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e343932333939322e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4923992.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape/-/commits/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a25ea71f12537b69d5aca8b409685333243d4e65ceb91c5a401dadb6eacea20e/68747470733a2f2f6769746c61622e696e3270332e66722f657363617065323032302f7770332f74656d706c6174655f70726f6a6563745f6573636170652f6261646765732f6d61737465722f706970656c696e652e737667\" alt=\"pipeline status\" data-canonical-src=\"https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape/badges/master/pipeline.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fd551ba4b042d89480347a0e74e31af63b356b2cac1116c7b80038f41b04a581/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d4d49542d677265656e2e737667\" alt=\"License: MIT\" data-canonical-src=\"https://img.shields.io/badge/License-MIT-green.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca href=\"https://camo.githubusercontent.com/64f9054d866a78f16e1451647c19b22fc159a58191e004612257ce5277bd6db9/68747470733a2f2f63646e2e65736f2e6f72672f696d616765732f6c617267652f616e6e3138303834612e6a7067\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/64f9054d866a78f16e1451647c19b22fc159a58191e004612257ce5277bd6db9/68747470733a2f2f63646e2e65736f2e6f72672f696d616765732f6c617267652f616e6e3138303834612e6a7067\" width=\"640\" height=\"453\" data-canonical-src=\"https://cdn.eso.org/images/large/ann18084a.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp\u003eA simple template project to provide software to ESCAPE.\u003c/p\u003e\n\u003cp\u003eThis repository shows the \u003cstrong\u003ebasic content\u003c/strong\u003e that should be included in a project (following the\n\u003ca href=\"https://opensource.guide/starting-a-project/\" rel=\"nofollow\"\u003eopensource guide\u003c/a\u003e):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAn \u003ca href=\"https://help.github.com/en/github/creating-cloning-and-archiving-repositories/licensing-a-repository#where-does-the-license-live-on-my-repository\"\u003eopen source\u003c/a\u003e\n\u003cstrong\u003elicense\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003eA \u003ca href=\"https://help.github.com/en/github/getting-started-with-github/create-a-repo#commit-your-first-change\"\u003e\u003cstrong\u003eREADME\u003c/strong\u003e file\u003c/a\u003e,\nsimilar to this one.\u003c/li\u003e\n\u003cli\u003eContributing guidelines.\n\u003cul\u003e\n\u003cli\u003eSee below the general guidelines for the ESCAPE repository.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eA \u003ca href=\"https://opensource.guide/code-of-conduct/\" rel=\"nofollow\"\u003ecode of conduct\u003c/a\u003e.\n\u003cul\u003e\n\u003cli\u003eCheck why is a good idea to add one.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eThe repository itself.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIt would be highly suitable to include too:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eA setup file as well as the basic commands to install the library (see below).\u003c/li\u003e\n\u003cli\u003eA \u003ccode\u003e.gitignore\u003c/code\u003e file.\u003c/li\u003e\n\u003cli\u003eUnitary and integration tests, and ideally a CI pipeline.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003ePlease feel free to clone / fork / template this project!\u003c/strong\u003e (For example, look to left of the\n\u003ccode\u003eClone or download\u003c/code\u003e button in the \u003ca href=\"https://github.com/garciagenrique/template_project_escape\"\u003eGitHub\u003c/a\u003e site).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFor a detailed explanation of how to submit a contribution to a project / repository (Fork, create a branch, make\na pull request...), you can have a look to the \u003ca href=\"https://opensource.guide/how-to-contribute/#how-to-submit-a-contribution\" rel=\"nofollow\"\u003eopensource guide\u003c/a\u003e\nand/or the \u003ca href=\"https://git-scm.com/doc\" rel=\"nofollow\"\u003egit\u0027s documentation\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eNot that if you have login GitLab by using the \u003ccode\u003e[Shibbolenth]\u003c/code\u003e service (eduGAIN, F\u00e9d\u00e9ration d\u0027Identit\u00e9s\nRENATER), you will need to \u003ca href=\"https://gitlab.in2p3.fr/help/ssh/README#generating-a-new-ssh-key-pair\" rel=\"nofollow\"\u003eadd a SSH key\u003c/a\u003e to\nyour GitLab profile if you want to \u0027push\u0027 your changes to the server.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-contribute-to-the-escape-ossr\" class=\"anchor\" href=\"#contribute-to-the-escape-ossr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContribute to the ESCAPE OSSR\u003c/h1\u003e\n\u003cp\u003eIf you want to provide software to the ESCAPE repository:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eCheck the \u003ca href=\"https://escape2020.pages.in2p3.fr/wp3/ossr-pages/page/contribute/contribute_ossr/\" rel=\"nofollow\"\u003eESCAPE OSSR guidelines\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFor ESCAPE members, follow the steps detailed in \u003ca href=\"https://gitlab.in2p3.fr/escape2020/wp3/onboarding\" rel=\"nofollow\"\u003ethe onboarding project\u003c/a\u003e\nto finalise your contribution and the same onboarding process.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eAll the code provided should be uploaded to the \u003ca href=\"https://zenodo.org/communities/escape2020/\" rel=\"nofollow\"\u003eZenodo ESCAPE community\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eCheck the following \u003ca href=\"https://escape2020.pages.in2p3.fr/wp3/ossr-pages/page/contribute/publish_tutorial/\" rel=\"nofollow\"\u003etutorial on how to publish content in Zenodo\u003c/a\u003e,\nand how to automatise the upload of each new release of your project.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-this-project-also-includes\" class=\"anchor\" href=\"#this-project-also-includes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThis project also includes\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-1-how-to-automatise-the-building-of-a-singularity-image-and-upload-it-to-zenodo-using-the-gitlab-ci\" class=\"anchor\" href=\"#1-how-to-automatise-the-building-of-a-singularity-image-and-upload-it-to-zenodo-using-the-gitlab-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. How to automatise the building of a Singularity image and upload it to Zenodo using the GitLab-CI\u003c/h2\u003e\n\u003cp\u003eA working example of how to automatise the GitLab-CI to;\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003ecreate a Singularity image / container of your code,\u003c/li\u003e\n\u003cli\u003emake it available as a downloadable artifact within your project and\u003c/li\u003e\n\u003cli\u003eupload it to the \u003ca href=\"https://zenodo.org/communities/escape2020\" rel=\"nofollow\"\u003eESCAPE OSSR\u003c/a\u003e,\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003ecan be found in the \u003ccode\u003e.singularityci\u003c/code\u003e, and \u003ccode\u003eSingularity\u003c/code\u003e directories and in the \u003ccode\u003e.gitlab-ci.yml\u003c/code\u003e file - the\n\u003ccode\u003ebuild_singularity_image\u003c/code\u003e stage. Please read carefully all the README files.\u003c/p\u003e\n\u003cp\u003eFor an easy example of how to create a Singularity receipt from scratch (and its corresponding container when executed),\nplease have a look to the \u003ccode\u003esingularity_utils\u003c/code\u003e directory.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-2-how-to-automatise-the-building-of-a-docker-container-and-upload-it-to-the-gitlab-container-registry\" class=\"anchor\" href=\"#2-how-to-automatise-the-building-of-a-docker-container-and-upload-it-to-the-gitlab-container-registry\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. How to automatise the building of a Docker container and upload it to the GitLab Container Registry\u003c/h2\u003e\n\u003cp\u003eAn example can be found in the \u003ccode\u003eDocker\u003c/code\u003e directory and in the \u003ccode\u003e.gitlab-ci.yml\u003c/code\u003e file - the\n\u003ccode\u003ebuild_docker_image\u003c/code\u003e stage.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-install\" class=\"anchor\" href=\"#install\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h1\u003e\n\u003cp\u003eExample of how to show installing instructions (and indeed the way to install this project).\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e $ git clone https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape.git\n $ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e template_project_escape\n $ pip install \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-citing\" class=\"anchor\" href=\"#citing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCiting\u003c/h1\u003e\n\u003cp\u003eExample of citing (as well as the DOI to cite this project),\u003c/p\u003e\n\u003cp\u003eIn case of citing this repository, use the following DOI:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ev2.2 \u003ca href=\"https://doi.org/10.5281/zenodo.4923992\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/869b462bf3a319fe4fc2ffa52fb6b0f7c8e42eb4e0ed4bc2482306b9fd5aafab/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e343932333939322e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4923992.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev2.1 \u003ca href=\"https://doi.org/10.5281/zenodo.4790629\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c8f54e2f50cdf0c4d1bd5183d6472cae8b708efacd6a1319b443d8e456f41b7f/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e343739303632392e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4790629.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev2.0 \u003ca href=\"https://doi.org/10.5281/zenodo.3884963\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c27201272a77fc3ab3029c8c2c452e02a71736b7adaa0926bc45d3ac825598ed/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e333838343936332e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.3884963.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev1.1 \u003ca href=\"https://doi.org/10.5281/zenodo.3743490\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cbfe31d3a9bd48ef4554b414c3c2325276269a476a79ec0217aa9feccc87cecd/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e333734333439302e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.3743490.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ev1.0 \u003ca href=\"https://doi.org/10.5281/zenodo.3572655\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5ec734ee4c1c793eaa8f9c2b189a6eae6d7d2ccb5f2a92adeb8af479409cc7bb/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e333537323635352e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.3572655.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eDo not forget to include your code / container into the \u003ca href=\"https://zenodo.org/communities/escape2020/\" rel=\"nofollow\"\u003eZenodo ESCAPE community\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cem\u003e\u003cstrong\u003eNote that\u003c/strong\u003e\u003c/em\u003e a DOI will be assigned in the moment create a new record/entry in Zenodo.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h1\u003e\n\u003cp\u003ePlease check the licenses of the code within the \u003ccode\u003e.singularityci\u003c/code\u003e directory before adding this template\nto your project.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-report-an-issue--ask-a-question\" class=\"anchor\" href=\"#report-an-issue--ask-a-question\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReport an issue / Ask a question\u003c/h1\u003e\n\u003cp\u003eUse the \u003ca href=\"https://gitlab.in2p3.fr/escape2020/wp3/template_project_escape/-/issues\" rel=\"nofollow\"\u003eGitLab repository Issues\u003c/a\u003e.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-contact\" class=\"anchor\" href=\"#contact\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h1\u003e\n\u003cp\u003eEmail to vuillaume [at] lapp.in2p3.fr / garcia [at] lapp.in2p3.fr.\u003c/p\u003e\n",
+ "full_name": "rses-singularity/theano",
+ "latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1631872285.0
+ "updated_at": 1674934802.0
},
{
"data_format": 2,
- "description": "Docker recipe for building Interproscan",
+ "description": null,
"filenames": [
- "Singularity.open",
"Singularity"
],
- "full_name": "biocorecrg/interproscan_docker",
- "latest_release": "5.48-83.0",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-interproscan_docker\" class=\"anchor\" href=\"#interproscan_docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003einterproscan_docker\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://zenodo.org/badge/latestdoi/150708687\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5867fa2b54b675356b6c4b17144ce558f6902bee46de35012c7bdafc38d90f88/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3135303730383638372e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/150708687.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eContainer recipes for building \u003ca href=\"https://interproscan-docs.readthedocs.io\" rel=\"nofollow\"\u003eInterproscan\u003c/a\u003e. Both \u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e and \u003ca href=\"https://singularity.hpcng.org/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e versions are provided (the latter recomended).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eIf you want to use Interproscan external privative software, these programs must be obtained first with granted academic permissions.\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"http://www.cbs.dtu.dk/services/SignalP/\" rel=\"nofollow\"\u003eSignalP\u003c/a\u003e \u003ccode\u003esignalp-4.1b.Linux.tar.Z\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://www.cbs.dtu.dk/services/TMHMM/\" rel=\"nofollow\"\u003eTMHMM\u003c/a\u003e \u003ccode\u003etmhmm-2.0c.Linux.tar.gz\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://phobius.sbc.su.se/\" rel=\"nofollow\"\u003ePhobious\u003c/a\u003e \u003ccode\u003ephobius101_linux.tar.gz\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eRegarding phobius: \u003ca href=\"https://www.biostars.org/p/238642/\" rel=\"nofollow\"\u003ehttps://www.biostars.org/p/238642/\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eKeep in mind that some other modifications are also needed in those programs above in advance, e. g., replacing \u003ccode\u003e/usr/bin/perl\u003c/code\u003e for \u003ccode\u003e/usr/bin/env perl\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eLast software package versions of Interproscan include the whole data by default. For container performance and distribution, we don\u0027t keep Interproscan data directory.\u003c/p\u003e\n\u003cp\u003eIt is important to ensure that program and data versions match and that this is adequately reflected in \u003ccode\u003einterproscan.properties\u003c/code\u003e or \u003ccode\u003einterproscan.open.properties\u003c/code\u003e files. Otherwise Interproscan is not likely to work.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pregenerated-images\" class=\"anchor\" href=\"#pregenerated-images\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePregenerated images\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://biocore.crg.eu/iprscan/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://hub.docker.com/r/biocorecrg/interproscan\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-from-docker-recipes\" class=\"anchor\" href=\"#building-from-docker-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding from Docker recipes\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e# With privative software\ndocker build -t iprscan:5.48-83.0 -f Dockerfile .\nsudo singularity build iprscan-5.48-83.0.sif docker-daemon://iprscan:5.48-83.0\n# Without privative software\ndocker build -t iprscan-open:5.48-83.0 -f Dockerfile.open .\nsudo singularity build iprscan-5.48-83.0.open.sif docker-daemon://iprscan-open:5.48-83.0\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-from-singularity-recipes\" class=\"anchor\" href=\"#building-from-singularity-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding from Singularity recipes\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e# With privative software\nsudo singularity build iprscan-5.48-83.0.sif Singularity\n# Without privative software\nsudo singularity build iprscan-5.48-83.0.open.sif Singularity.open\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can avoid using \u003ccode\u003esudo\u003c/code\u003e with \u003ccode\u003e--fakeroot\u003c/code\u003e Singularity build option.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running\" class=\"anchor\" href=\"#running\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning\u003c/h2\u003e\n\u003cp\u003eFor running the container images, it is mandatory to mount a data directory that fits the same Interproscan version. Below some example commands:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Docker\ndocker run --volume /path/to/data:/usr/local/interproscan/data --volume /path/to/scratch:/scratch -t biocorecrg/interproscan:5.48-83.0 /usr/local/interproscan/interproscan.sh -i /scratch/test.fa --goterms --iprlookup --pathways -o /scratch/out_interpro -f TSV\n\n# Singularity\nsingularity exec -e iprscan-5.47-82.0.open.sif /usr/local/interproscan/interproscan.sh -i /path/to/test2.fa --goterms --iprlookup --pathways -o /path/to/out_interpro -f TSV\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-notes\" class=\"anchor\" href=\"#notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNOTES\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eMoreover, keep into account that a user with suitable permissions may need first to index \u003ccode\u003e/usr/local/interproscan/data\u003c/code\u003e directory (e.g., with \u003ccode\u003epython3 /usr/local/interproscan/initial_setup.py\u003c/code\u003e). You can use the very container images. Details here: \u003ca href=\"https://interproscan-docs.readthedocs.io/en/5.48-83.0/HowToRun.html\" rel=\"nofollow\"\u003ehttps://interproscan-docs.readthedocs.io/en/5.48-83.0/HowToRun.html\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eDepending on your setup, you may need to change \u003ccode\u003eSINGULARITY_TMPDIR\u003c/code\u003e (and \u003ccode\u003eSINGULARITY_CACHEDIR\u003c/code\u003e) environment variables for pointing to a location with enough space. More details at: \u003ca href=\"https://singularity.hpcng.org/admin-docs/master/installation.html\" rel=\"nofollow\"\u003ehttps://singularity.hpcng.org/admin-docs/master/installation.html\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "rses-singularity/digits",
+ "latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1631532581.0
+ "updated_at": 1674934803.0
},
{
"data_format": 2,
- "description": "Singularity image for alienpy",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "adriansev/alienpy.sing",
+ "full_name": "rses-singularity/tfgpu-theano-pytorch-keras",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-alienpysing\" class=\"anchor\" href=\"#alienpysing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ealienpy.sing\u003c/h1\u003e\n\u003cp\u003eSingularity image for alienpy\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-tensorflow-gpu-theano-keras-and-pytorch-gpu-with-opencv\" class=\"anchor\" aria-hidden=\"true\" href=\"#tensorflow-gpu-theano-keras-and-pytorch-gpu-with-opencv\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTensorflow (GPU), Theano, Keras and PyTorch (GPU) with OpenCV\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eSee \u003ca href=\"build.sh\"\u003ebuild.sh\u003c/a\u003e for info on how to build and run the image\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e file for the definition of the image, including\n\u003cul\u003e\n\u003cli\u003eThe (Docker) image it is based on\u003c/li\u003e\n\u003cli\u003eWhat OS packages are installed\u003c/li\u003e\n\u003cli\u003eWhat environment variables are set\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e project website for more info on Singularity in general and detailed documentaiton.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-software-listing\" class=\"anchor\" aria-hidden=\"true\" href=\"#software-listing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSoftware listing\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003ev1\n\u003cul\u003e\n\u003cli\u003eUbuntu 16.04\u003c/li\u003e\n\u003cli\u003eCUDA 8 + cuDNN 6\u003c/li\u003e\n\u003cli\u003ePython 3.5\u003c/li\u003e\n\u003cli\u003eTheano 1.0.0\u003c/li\u003e\n\u003cli\u003eTensorflow (GPU) 1.4.1\u003c/li\u003e\n\u003cli\u003ePyTorch (GPU) 0.3.0\u003c/li\u003e\n\u003cli\u003eOpenCV 3.3.0\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1629840214.0
+ "updated_at": 1674934803.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "2.63/Singularity"
+ "recipes/single-cell-genomics/mosaic/Singularity.mosaic-v03",
+ "recipes/peakcallers/macs2/Singularity.macs2-2271",
+ "recipes/peakcallers/hiddendomains/Singularity.hiddendomains-31",
+ "recipes/quality-control/fastqc/Singularity.fastqc-0119cv6",
+ "recipes/quality-control/fastqc/Singularity.fastqc-0119cv8",
+ "recipes/quality-control/fastqc/Singularity.fastqc-0119cv7",
+ "recipes/mapping/bowtie2samtools/Singularity.bowtie2samtools-v245v115",
+ "recipes/mapping/bowtie2/Singularity.bowtie2-245",
+ "recipes/mapping/bowtie2/Singularity.bowtie2-241cv1",
+ "recipes/fastq-operations/parallelfastqdump/Singularity.parallelfastqdump-v063",
+ "recipes/fastq-operations/trimgalore/Singularity.trimgalore-v067",
+ "recipes/os-environments/alpine/Singularity.alpine-3160",
+ "recipes/rpackages/bioconductor/genomeinfodb/Singularity.genomeinfodb-1323",
+ "recipes/rpackages/bioconductor/genomicranges/Singularity.genomicranges-1480",
+ "recipes/rpackages/snakemake-pipelines/chipseq/Singularity.snakemakechipseq-v001",
+ "recipes/rpackages/bedtools/Singularity.bedr-107",
+ "recipes/image-analysis/deeplabcut/Singularity.deeplabcut-2202",
+ "recipes/image-analysis/cellpose/Singularity.cellpose-2.0.5",
+ "recipes/image-analysis/chimerax/Singularity.chimerax-1.3",
+ "recipes/chipseq/spikchip/Singularity.spikchip-v099",
+ "recipes/chipseq/spikchipcustom/Singularity.spikchipcustom-v099",
+ "recipes/analysissuites/picardtools/Singularity.picardtools-2221",
+ "recipes/analysissuites/picardtools/Singularity.picardtools-2271",
+ "recipes/analysissuites/deeptools/Singularity.deeptools-351",
+ "recipes/analysissuites/samtools/Singularity.samtools-114",
+ "recipes/analysissuites/samtools/Singularity.samtools-115",
+ "recipes/analysissuites/bedops/Singularity.bedops-2440"
],
- "full_name": "yh549848/singularity-ngsplot",
+ "full_name": "descostesn/singularityhub-emblrome",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularityhub-embl-rome-gitlab-version\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularityhub-embl-rome-gitlab-version\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularityhub EMBL Rome (Gitlab version)\u003c/h1\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"#introduction\"\u003eIntroduction\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#pulling\"\u003ePulling\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#contributing\"\u003eContributing\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003eThis repository aims at sharing singularity images among the EMBL community. We try to follow a strict model to provide uniformly designed singularities. Please let us know if we should modify anything.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eImportant: Since we do not have a premium account, I tried to find some workaround. We cannot secure completely that master will stay green. Please be careful to strictly follow the instructions.\u003c/strong\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pulling\" class=\"anchor\" aria-hidden=\"true\" href=\"#pulling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePulling\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003ePlease read the entire section before trying to pull any singularities\u003c/strong\u003e.\u003c/p\u003e\n\u003cp\u003eTo pull an existing singularity, first have a look at the image of interest in the list \u003ca href=\"https://git.embl.de/descoste/singularityhub-emblrome/container_registry\" rel=\"nofollow\"\u003ehere\u003c/a\u003e or in this \u003ca href=\"https://git.embl.de/descoste/singularityhub-emblrome/-/tree/main/recipes\" rel=\"nofollow\"\u003efolder\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the script below in a \u003ccode\u003edownload.sh\u003c/code\u003e file and run the command: \u003ccode\u003ebash dowload.sh username containername imagename\u003c/code\u003e. For example, \u003ccode\u003ebash download.sh descoste fastqcv0019cv8.sif \u0027fastqc:0119cv8\u0027\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/usr/bin/bash\n\nUSERNAME=$1\nCONTAINERNAME=$2\nIMAGE=$3\n\nsingularity pull --docker-username $USERNAME --docker-password $SINGULARITY_DOCKER_PASSWORD $CONTAINERNAME oras://git.embl.de:4567/descoste/singularityhub-emblrome/$IMAGE\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eImportant\u003c/strong\u003e: You need to define a git token to be able to use the \u003ccode\u003e$SINGULARITY_DOCKER_PASSWORD\u003c/code\u003e variable. Follow these steps:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eClick on your avatar at the top right of your gitlab page.\u003c/li\u003e\n\u003cli\u003eClick on \u003ccode\u003epreferences\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eClick on \u003ccode\u003eAccess Tokens\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eEnter a Token name. ex: \"singularitypull\".\u003c/li\u003e\n\u003cli\u003eIn the \u003ccode\u003eSelect scopes\u003c/code\u003e section, select \u003ccode\u003eread_registry\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eClick \u003ccode\u003eCreate personal access token\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eAt the beginning of the new loaded page, click on the folder icon to copy your new personal access token.\u003c/li\u003e\n\u003cli\u003eEdit your \u003ccode\u003e.bashrc\u003c/code\u003e (\u003ccode\u003eemacs -nw ~/.bashrc\u003c/code\u003e or \u003ccode\u003evim ~/.bashrc\u003c/code\u003e) by adding \u003ccode\u003eexport SINGULARITY_DOCKER_PASSWORD=\"paste_your_copied_access_token_here\"\u003c/code\u003e wherever you like.\u003c/li\u003e\n\u003cli\u003eAfter closing your editor, run \u003ccode\u003eexec bash\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eNow try to pull a particular singularity following the instructions above.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e: Make sure that you do use bash and not something else like zsh.\u003c/p\u003e\n\u003cp\u003eIf it does not work please do:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eAdd the remote: \u003ccode\u003esingularity remote add --no-login embl https://git.embl.de:4567\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eUse the remote: \u003ccode\u003esingularity remote use embl\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eLog to the remote: \u003ccode\u003esingularity remote login oras://git.embl.de:4567\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003cp\u003eThis repository is maintained by Nicolas Descostes.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eImportant: Since we do not have a premium account, I tried to find some workaround. We cannot secure completely that master will stay green. Please be careful to strictly follow the instructions.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eImportant Bis: Each singularity should contain a single tool. Contact me ahead if you plan otherwise.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eTo add a new singularity recipe, you need to:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eClone the repository: \u003ccode\u003egit clone git@git.embl.de:descoste/singularityhub-emblrome.git\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eEnter the folder: \u003ccode\u003ecd singularityhub-emblrome/\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003ePosition yourself on the \"submission\" branch: \u003ccode\u003egit checkout submission\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eMake sure that the content of the branch is up-to-date: \u003ccode\u003egit reset --hard main\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eAdd a singularity recipe inside \u003ccode\u003erecipes\u003c/code\u003e in the adapted folder.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e\u003cstrong\u003eRespect the naming format \u003ccode\u003eSingularity.toolName-tag\u003c/code\u003e (with a upper-case S). Please use common sense to choose the folder\u003c/strong\u003e. If you are not sure, please contact me by email or by chat.\u003c/p\u003e\n\u003cp\u003eFor instance, if you want to submit fastqc version 0119cv8, your file name will be \u003ccode\u003eSingularity.fastqc-0119cv8\u003c/code\u003e.\u003c/p\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003eCommit and push to the repository: `git add myrecipe \u0026amp;\u0026amp; git commit -m \"initial commit\" \u0026amp;\u0026amp; git push origin submission\"\u003c/li\u003e\n\u003cli\u003eModify \u003ccode\u003e.gitlab-ci.yml\u003c/code\u003e in the \"submission area\" using the following template (replace \u003ccode\u003etoolName\u003c/code\u003e, \u003ccode\u003etag\u003c/code\u003e, and \u003ccode\u003epath_to_recipe_folder\u003c/code\u003e):\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003etoolName-tag-test:\n extends: .templateTest\n variables:\n BASENAME: toolName\n TAG: tag\n RECIPE_PATH: recipes/path_to_recipe_folder_without_file\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor instance, if you want to submit fastqc version 0119cv8, your rule name will be \u003ccode\u003efastqc-0119cv8-test\u003c/code\u003e and the path to the recipe \u003ccode\u003erecipes/quality-control/fastqc\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote 1:\u003c/strong\u003e There is no slash at the end of the path and the file name is \u003cstrong\u003enot\u003c/strong\u003e precised.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote 2:\u003c/strong\u003e The BASENAME and the TAG are used to create the file name (Singularity.BASENAME-TAG). Please verify that it matches.\u003c/p\u003e\n\u003col start=\"8\"\u003e\n\u003cli\u003eIn the following instruction, \u003cstrong\u003eplease add toolName-tag-test` as a commit message\u003c/strong\u003e.\u003c/li\u003e\n\u003cli\u003ePush the file \u003ccode\u003e.gitlab-ci.yml\u003c/code\u003e to the repository: \u003ccode\u003egit add .gitlab-ci.yml \u0026amp;\u0026amp; git commit -m \"toolName-tag-test\" \u0026amp;\u0026amp; git push origin submission\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eVisit this \u003ca href=\"https://git.embl.de/descoste/singularityhub-emblrome/-/merge_requests\" rel=\"nofollow\"\u003epage\u003c/a\u003e to submit a merge request.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eAs title: toolName-tag-test\u003c/li\u003e\n\u003cli\u003edescription: A one-line sentence to explain what the tool is. Please precise any important information as well.\u003c/li\u003e\n\u003cli\u003eReviewer: Choose Nicolas Descostes\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eBe careful:\u003c/strong\u003e Uncheck the \u003ccode\u003eDelete source branch when merge request is accepted.\u003c/code\u003e before submitting.\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"11\"\u003e\n\u003cli\u003eNow it is time to test the build of your singularity. You will see a gear on the right of \u003ccode\u003eDetached merge request pipeline #32160 waiting for manual action for \u003c/code\u003e. Click on it and hit the play button next to your rule.\u003c/li\u003e\n\u003cli\u003eIn the \u003ccode\u003eCI/CD \u0026gt; jobs\u003c/code\u003e (menu on the left), you can see your job running.\u003c/li\u003e\n\u003cli\u003eOnce your job passes the test (green checkmark), I will merge and deploy your singularity. I will let you know when this is done.\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1629677826.0
+ "updated_at": 1674643692.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "1.0.3/Singularity"
+ "planner/downward/misc/releases/19.12/Singularity.19.12",
+ "planner/downward/misc/releases/20.06/Singularity.20.06",
+ "planner/downward/misc/releases/latest/Singularity",
+ "planner/downward/misc/releases/19.06/Singularity.19.06"
],
- "full_name": "yh549848/singularity-sicer2",
+ "full_name": "drexlerd/downward-hffpi",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-downward-hffpi\" class=\"anchor\" aria-hidden=\"true\" href=\"#downward-hffpi\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edownward-hffpi\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eClone recursively\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003egit clone --recursively \u0026lt;link_to_repo\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eCreate python3 virtual environment\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003epython3 -m venv --prompt hffpi .venv\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eActivate virtual environment\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003esource .venv/bin/activate\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eInstall python packages (needed for experimental code)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003epip install -r requirements.txt\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eInstall planner\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e./planner/downward/build.py\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-run-the-planner\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-run-the-planner\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run the planner\u003c/h2\u003e\n\u003cp\u003eSee \u003ccode\u003eexperiments/experiment-hffpi.py\u003c/code\u003e on example callstrings.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-run-the-experiments\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-run-the-experiments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run the experiments\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd experiments\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e./experiment-hffpi.py --all\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1629665658.0
+ "updated_at": 1675861881.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity Recipe for accessing GPU"
],
- "full_name": "baxpr/sct-fmri",
+ "full_name": "salammemphis/GPU-and-singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-sct-fmri-processing\" class=\"anchor\" href=\"#sct-fmri-processing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSCT fMRI processing\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-inputs\" class=\"anchor\" href=\"#inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs\u003c/h2\u003e\n\u003cp\u003eSee \u003ccode\u003etest_container.sh\u003c/code\u003e for an example run command.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e--fmri_niigz 4D spinal cord fMRI, fully qualified path and filename\n--masksize Size of mask to create in mm\n--label_info Text to label the PDF, e.g. from XNAT project/subject\n--out_dir Outputs directory (and working directory)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pipeline\" class=\"anchor\" href=\"#pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline\u003c/h2\u003e\n\u003cp\u003eSee \u003ccode\u003esrc/main.sh\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-outputs\" class=\"anchor\" href=\"#outputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003efmri0.nii.gz First volume of fMRI\n\nfmri_mask??.nii.gz Created analysis mask\n\nfmri_centerline.nii.gz Cord centerline\nfmri_centerline.csv\n\nfmri_moco.nii.gz Moco outputs\nfmri_moco_mean.nii.gz\nmoco_params.tsv\nmoco_params_x.nii.gz\nmoco_params_y.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe to access GPU from host machine. It will spin up a jupyter notebook from singularity.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-cuda-110-and-tensorflow-220-and-keras-240\" class=\"anchor\" aria-hidden=\"true\" href=\"#cuda-110-and-tensorflow-220-and-keras-240\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCUDA 11.0 and tensorflow 2.2.0 and keras 2.4.0\u003c/h1\u003e\n\u003cp\u003eBootstrap: docker\n#From: tensorflow/tensorflow:latest-gpu-py3-jupyter\nFrom: nvcr.io/nvidia/tensorflow:20.08-tf2-py3\n%help\nThis container is made by Shahinur Alam (\u003ca href=\"mailto:sajonbuet@gmail.com\"\u003esajonbuet@gmail.com\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e%setup\u003c/p\u003e\n\u003cp\u003e%files\u003c/p\u003e\n\u003cp\u003e%labels\nMaintainer Shahinur\nVersion 1.0\u003c/p\u003e\n\u003cp\u003e%environment\u003c/p\u003e\n\u003cp\u003e%post\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip install numpy pandas sklearn webcolors plotly matplotlib statsmodels factorial pynrrd pillow\npip install torch\npip install scikit-image medpy Tables nilearn SimpleITK h5py glob3 nibabel tifffile scipy opencv-python\npip install --upgrade keras\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e%runscript\necho \"Arguments received: $*\"\nport=$1\nroot_dir=$2\nport=\u003ccode\u003eecho $port| sed \u0027s/ *$//g\u0027\u003c/code\u003e\nroot_dir=\u003ccode\u003eecho $root_dir| sed \u0027s/ *$//g\u0027\u003c/code\u003e\necho $port\njupyter notebook --no-browser --port $port --notebook-dir $root_dir --ip 0.0.0.0\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-works-with-cuda-101\" class=\"anchor\" aria-hidden=\"true\" href=\"#works-with-cuda-101\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWorks with CUDA 10.1\u003c/h1\u003e\n\u003cp\u003eBootstrap: docker\nFrom: tensorflow/tensorflow:latest-gpu-py3-jupyter\n%help\nThis container is made by Shahinur Alam (\u003ca href=\"mailto:sajonbuet@gmail.com\"\u003esajonbuet@gmail.com\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003e%setup\u003c/p\u003e\n\u003cp\u003e%files\u003c/p\u003e\n\u003cp\u003e%labels\nMaintainer Shahinur\nVersion 1.0\u003c/p\u003e\n\u003cp\u003e%environment\u003c/p\u003e\n\u003cp\u003e%post\n#pip install numpy pandas sklearn webcolors plotly matplotlib statsmodels factorial pynrrd pillow\n#pip install torch\n#pip install scikit-image medpy Tables tensorflow_addons nilearn SimpleITK h5py glob3 nibabel tifffile scipy opencv-python\npip uninstall -y tensorflow tensorflow-addons tensorflow-estimator tensorflow-gpu tensorboard tensorboard-plugin-wit\npip install --upgrade keras\npip install --upgrade tensorflow\npip install tensorflow-addons==0.11.2\npip install tensorflow-estimator==2.3.0\npip install tensorflow-gpu==2.3.0\npip install tensorboard==2.3.0\npip install tensorboard-plugin-wit==1.7.0\u003c/p\u003e\n\u003cp\u003e%runscript\necho \"Arguments received: $*\"\nport=$1\nroot_dir=$2\nport=\u003ccode\u003eecho $port| sed \u0027s/ *$//g\u0027\u003c/code\u003e\nroot_dir=\u003ccode\u003eecho $root_dir| sed \u0027s/ *$//g\u0027\u003c/code\u003e\necho $port\njupyter notebook --no-browser --port $port --notebook-dir $root_dir --ip 0.0.0.0\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1629493665.0
+ "updated_at": 1675440928.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "v4.7.1/Singularity"
],
- "full_name": "porchard/ATACseq-NextFlow",
+ "full_name": "yh549848/singularity-code-server",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nextflow-pipeline-for-atac-seq-data\" class=\"anchor\" href=\"#nextflow-pipeline-for-atac-seq-data\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNextFlow pipeline for ATAC-seq data\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eIf you have Singularity installed, you can use the config provided here (\u0027Singularity\u0027) to build a container with all the dependencies.\u003c/p\u003e\n\u003cp\u003eOtherwise, you\u0027ll need to have the following installed:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003ecta\u003c/li\u003e\n\u003cli\u003ebedtools\u003c/li\u003e\n\u003cli\u003ebwa\u003c/li\u003e\n\u003cli\u003epicardtools\u003c/li\u003e\n\u003cli\u003efastqc\u003c/li\u003e\n\u003cli\u003esamtools\u003c/li\u003e\n\u003cli\u003eataqv\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThis pipeline works with NextFlow versions \u0026gt;= 20.07.1\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-configuration\" class=\"anchor\" href=\"#configuration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguration\u003c/h2\u003e\n\u003cp\u003ePaths to various generic files (e.g., bwa indices) must be included in the nextflow.config file -- check that file and change paths accordingly. These include:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eBlacklist bed files for each genome\u003c/li\u003e\n\u003cli\u003eChrom size files for each genome\u003c/li\u003e\n\u003cli\u003eBWA indices\u003c/li\u003e\n\u003cli\u003eTSS files (BED6 files denoting TSS positions)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eYou\u0027ll also need to set the params.results variable -- either in the nextflow.config file itself, or on the command line when you run the pipeline (\u0027--results /path/to/results\u0027).\u003c/p\u003e\n\u003cp\u003eLastly, you\u0027ll need to include information about each ATAC-seq library, including the genome that each library should be mapped to and the paths to the fastq files for each readgroup. Organize this information in a JSON file, as in library-config.json.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running\" class=\"anchor\" href=\"#running\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning\u003c/h2\u003e\n\u003cp\u003eOnce you have all of the above information, you can run the pipeline as follows (in this case, indicating the path to the results on the command line):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run -with-singularity /path/to/Singularity.simg -with-trace -with-report -with-dag -with-timeline -params-file library-config.json --results /path/to/results /path/to/main.nf\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1629490022.0
+ "updated_at": 1675855529.0
},
{
"data_format": 2,
- "description": "ASCIIGenome is a genome browser based on command line interface and designed for console terminals.",
+ "description": "Getting up to speed with Singularity",
"filenames": [
- "1.16.0/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-asciigenome",
- "latest_release": "v1.16.0",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-asciigenome/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-asciigenome/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-asciigenome/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-asciigenome/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/fc6d0c140fd5a29bf338bd86c146a7c92b4c8062434faaf70ef0f6c0deb67aa6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fc6d0c140fd5a29bf338bd86c146a7c92b4c8062434faaf70ef0f6c0deb67aa6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-asciigenome\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/4ebf7a2007abd25cbc70d78eea4b3e18e84b103736a8a5edb364f1677212c427/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4ebf7a2007abd25cbc70d78eea4b3e18e84b103736a8a5edb364f1677212c427/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-asciigenome\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/6e5331506177fef5e181d308bb0030987e5b6b8ed2eac29c791694f6339a6115/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6e5331506177fef5e181d308bb0030987e5b6b8ed2eac29c791694f6339a6115/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-asciigenome\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/b6afd6a92e3bec558c0c64e9a5bdc6d25c18335230778d4b78f8b2f869f15e4d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b6afd6a92e3bec558c0c64e9a5bdc6d25c18335230778d4b78f8b2f869f15e4d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d617363696967656e6f6d65\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-asciigenome\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-asciigenome\" class=\"anchor\" href=\"#singularity-asciigenome\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-asciigenome\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/fc29589526166dc2ee7ce341088c93b17e02dca1cf81bba1cf477425249fa4f3/68747470733a2f2f617363696967656e6f6d652e72656164746865646f63732e696f2f656e2f6c61746573742f5f696d616765732f6c656973686d616e69615f7472616e736372697074732e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fc29589526166dc2ee7ce341088c93b17e02dca1cf81bba1cf477425249fa4f3/68747470733a2f2f617363696967656e6f6d652e72656164746865646f63732e696f2f656e2f6c61746573742f5f696d616765732f6c656973686d616e69615f7472616e736372697074732e706e67\" width=\"50%\" data-canonical-src=\"https://asciigenome.readthedocs.io/en/latest/_images/leishmania_transcripts.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/dariober/ASCIIGenome\"\u003easciigenome\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003easciigenome\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/asciigenome/1.16.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/asciigenome\u003c/code\u003e as \u003ccode\u003e1.16.0\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "netscruff/SingularityTest",
+ "latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1629217403.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1511296488.0
},
{
"data_format": 2,
- "description": "Container used to run IMI spikeScreen",
+ "description": "Nextflow workflow for benchmarking biohansel and Snippy with NCBI SRA genomes",
"filenames": [
"Singularity"
],
- "full_name": "IMIMF-UNILJSI/spikeScreenContainer",
+ "full_name": "peterk87/nf-biohansel-sra-benchmark",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-spikescreencontainer\" class=\"anchor\" href=\"#spikescreencontainer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003espikeScreenContainer\u003c/h1\u003e\n\u003cp\u003eContainer used to run IMI spikeScreen\nThis repo is meant to increase portability through automatic automatic container builds on shub.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-nf-biohansel-sra-benchmark\" class=\"anchor\" aria-hidden=\"true\" href=\"#nf-biohansel-sra-benchmark\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enf-biohansel-sra-benchmark\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://dev.azure.com/peterkruczkiewicz0831/nf-biohansel-sra-benchmark/_build/latest?definitionId=2\u0026amp;branchName=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5bffa2b25d6120420c8ab60e72373cb3d1ee278f01b086b8f0abb4d334b9bb23/68747470733a2f2f6465762e617a7572652e636f6d2f70657465726b7275637a6b69657769637a303833312f6e662d62696f68616e73656c2d7372612d62656e63686d61726b2f5f617069732f6275696c642f7374617475732f70657465726b38372e6e662d62696f68616e73656c2d7372612d62656e63686d61726b3f6272616e63684e616d653d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://dev.azure.com/peterkruczkiewicz0831/nf-biohansel-sra-benchmark/_apis/build/status/peterk87.nf-biohansel-sra-benchmark?branchName=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/3444\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eNextflow workflow for benchmarking \u003ca href=\"https://github.com/phac-nml/biohansel\"\u003ebiohansel\u003c/a\u003e and \u003ca href=\"https://github.com/tseemann/snippy/\"\u003eSnippy\u003c/a\u003e with NCBI SRA genomes.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pre-reqs\" class=\"anchor\" aria-hidden=\"true\" href=\"#pre-reqs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePre-reqs\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eInstall \u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eInstall \u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003eConda\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eOne or more directories each with the following files (see \u003ccode\u003eschemes/enteritidis_v1.0.7\u003c/code\u003e for an example)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eaccessions\u003c/code\u003e - List of SRA run accessions (e.g. \u003ccode\u003eSRR8820085\u003c/code\u003e) in a file (one accession per line)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003escheme.fasta\u003c/code\u003e - biohansel scheme definition file\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eref.gb\u003c/code\u003e - Genbank format reference genome\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emetadata.tsv\u003c/code\u003e tab delimited metadata file or empty file\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eInput scheme directory included with this repo:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eschemes\n\u2514\u2500\u2500 enteritidis_v1.0.7\n \u251c\u2500\u2500 accessions\n \u251c\u2500\u2500 metatadata.tsv\n \u251c\u2500\u2500 ref.gb\n \u2514\u2500\u2500 scheme.fasta\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003eShow help message:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run peterk87/nf-biohansel-sra-benchmark --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eShould see something like:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eN E X T F L O W ~ version 19.07.0-edge\nLaunching `main.nf` [drunk_dalembert] - revision: 97a449f5b6\n==================================================================\npeterk87/nf-biohansel-sra-benchmark ~ version 1.0dev\n==================================================================\n\nGit info: null - null [null]\n\nUsage:\n The typical command for running the pipeline is as follows:\n\n nextflow run peterk87/nf-biohansel-sra-benchmark \\\n --outdir results \\\n --schemesdir schemes \\\n --n_genomes 96 \\\n --iterations 10 \\\n -work workdir \\\n -profile standard\n\nOptions:\n --outdir Output directory (default: results)\n --schemesdir Directory with subtyping schemes and accessions to benchmark with biohansel (default: schemes)\n --n_genomes Number of SRA genomes to download and analyze per scheme (default: 96)\n --iterations Number of iterations per biohansel benchmark (default: 10)\n --thread_combos List of integer number of threads to test biohansel and snippy with delimited by comma (default: 1,2,4,8,16,32)\nOther options:\n -w/--work-dir The temporary directory where intermediate data will be saved (default: work)\n -profile Configuration profile to use. [singularity, conda, slurm] (default: standard)\nCluster options:\n -profile Only \"-profile slurm\" is accepted\n --slurm_queue Name of SLURM queue to submit jobs to (e.g. \"HighPriority\").\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun test profile creating Conda environment:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run peterk87/nf-biohansel-sra-benchmark -profile test,conda\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun included benchmark dataset with Singularity and default parameters (i.e. 96 genomes, 10 iterations for biohansel, run Snippy and biohansel with 1,2,4,8,16,32 threads/CPUs):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# clone/download this repo so that the scheme included with this repo can be run with the workflow\ngit clone https://github.com/peterk87/nf-biohansel-sra-benchmark.git\nnextflow run peterk87/nf-biohansel-sra-benchmark -profile singularity --schemesdir nf-biohansel-sra-benchmark/schemes\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun above on a cluster with SLURM:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/peterk87/nf-biohansel-sra-benchmark.git\nnextflow run peterk87/nf-biohansel-sra-benchmark -profile singularity,slurm --slurm_queue \u0026lt;QueueName\u0026gt; --schemesdir nf-biohansel-sra-benchmark/schemes\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pipeline-run-information\" class=\"anchor\" aria-hidden=\"true\" href=\"#pipeline-run-information\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline run information\u003c/h2\u003e\n\u003cp\u003eWithin your output directory (e.g. \u003ccode\u003eresults/\u003c/code\u003e), you should find a \u003ccode\u003epipeline_info\u003c/code\u003e directory with runtime information about your analysis including trace information (see \u003ca href=\"https://www.nextflow.io/docs/latest/tracing.html\" rel=\"nofollow\"\u003ehttps://www.nextflow.io/docs/latest/tracing.html\u003c/a\u003e for more info about these output files)\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1629128736.0
+ "updated_at": 1566494312.0
},
{
"data_format": 2,
- "description": "BWA is a program for aligning sequencing reads against a large reference genome (e.g. human genome). ",
+ "description": null,
"filenames": [
- "0.7.17a/Singularity",
- "0.7.3a/Singularity"
+ "misc/releases/19.12/Singularity.19.12",
+ "misc/releases/20.06/Singularity.20.06",
+ "misc/releases/latest/Singularity",
+ "misc/releases/19.06/Singularity.19.06"
],
- "full_name": "pscedu/singularity-bwa",
- "latest_release": "v0.7.3a",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-bwa/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bwa/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-bwa/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bwa/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/dbf644fd78a6a349b822d2b6db36a3f1ab2e4155f5d67671d27202073ac6cb6a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d627761\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/dbf644fd78a6a349b822d2b6db36a3f1ab2e4155f5d67671d27202073ac6cb6a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d627761\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bwa\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0f4fa8203031531a1e542e55475a3668dbdc3d10e36a3ce505f5f098b465b1ea/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d627761\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0f4fa8203031531a1e542e55475a3668dbdc3d10e36a3ce505f5f098b465b1ea/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d627761\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bwa\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5c10a09139792e339dfd18dbbab5079f2bf2027194d2dcfc6796e85d1bab3b88/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d627761\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c10a09139792e339dfd18dbbab5079f2bf2027194d2dcfc6796e85d1bab3b88/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d627761\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bwa\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a1977c9c08b068aecc0940ff8e8665b3e38fd423b0e217273d28b8ada424e70a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d627761\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a1977c9c08b068aecc0940ff8e8665b3e38fd423b0e217273d28b8ada424e70a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d627761\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bwa\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-bwa\" class=\"anchor\" href=\"#singularity-bwa\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bwa\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/Bwa\"\u003ebwa\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebwa\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bwa/0.7.3a\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bwa\u003c/code\u003e as \u003ccode\u003e0.7.3a.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "utop1an/rule-based-heuristic",
+ "latest_release": null,
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"misc/images/fast-downward.svg\"\u003e\u003cimg src=\"misc/images/fast-downward.svg\" width=\"800\" alt=\"Fast Downward\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFast Downward is a domain-independent classical planning system.\u003c/p\u003e\n\u003cp\u003eCopyright 2003-2020 Fast Downward contributors (see below).\u003c/p\u003e\n\u003cp\u003eFor further information:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFast Downward website: \u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReport a bug or file an issue: \u003ca href=\"http://issues.fast-downward.org\" rel=\"nofollow\"\u003ehttp://issues.fast-downward.org\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward mailing list: \u003ca href=\"https://groups.google.com/forum/#!forum/fast-downward\" rel=\"nofollow\"\u003ehttps://groups.google.com/forum/#!forum/fast-downward\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eFast Downward main repository: \u003ca href=\"https://github.com/aibasel/downward\"\u003ehttps://github.com/aibasel/downward\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tested-software-versions\" class=\"anchor\" aria-hidden=\"true\" href=\"#tested-software-versions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTested software versions\u003c/h2\u003e\n\u003cp\u003eThis version of Fast Downward has been tested with the following software versions:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eOS\u003c/th\u003e\n\u003cth\u003ePython\u003c/th\u003e\n\u003cth\u003eC++ compiler\u003c/th\u003e\n\u003cth\u003eCMake\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 20.04\u003c/td\u003e\n\u003ctd\u003e3.8\u003c/td\u003e\n\u003ctd\u003eGCC 9, GCC 10, Clang 10, Clang 11\u003c/td\u003e\n\u003ctd\u003e3.16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUbuntu 18.04\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eGCC 7, Clang 6\u003c/td\u003e\n\u003ctd\u003e3.10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emacOS 10.15\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eAppleClang 12\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWindows 10\u003c/td\u003e\n\u003ctd\u003e3.6\u003c/td\u003e\n\u003ctd\u003eVisual Studio Enterprise 2017 (MSVC 19.16) and 2019 (MSVC 19.28)\u003c/td\u003e\n\u003ctd\u003e3.19\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eWe test LP support with CPLEX 12.9, SoPlex 3.1.1 and Osi 0.107.9.\nOn Ubuntu, we test both CPLEX and SoPlex. On Windows, we currently\nonly test CPLEX, and on macOS, we do not test LP solvers (yet).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributors\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\u003cp\u003eThe following list includes all people that actively contributed to\nFast Downward, i.e. all people that appear in some commits in Fast\nDownward\u0027s history (see below for a history on how Fast Downward\nemerged) or people that influenced the development of such commits.\nCurrently, this list is sorted by the last year the person has been\nactive, and in case of ties, by the earliest year the person started\ncontributing, and finally by last name.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e2003-2020 Malte Helmert\u003c/li\u003e\n\u003cli\u003e2008-2016, 2018-2020 Gabriele Roeger\u003c/li\u003e\n\u003cli\u003e2010-2020 Jendrik Seipp\u003c/li\u003e\n\u003cli\u003e2010-2011, 2013-2020 Silvan Sievers\u003c/li\u003e\n\u003cli\u003e2012-2020 Florian Pommerening\u003c/li\u003e\n\u003cli\u003e2013, 2015-2020 Salome Eriksson\u003c/li\u003e\n\u003cli\u003e2016-2020 Cedric Geissmann\u003c/li\u003e\n\u003cli\u003e2017-2020 Guillem Franc\u00e8s\u003c/li\u003e\n\u003cli\u003e2018-2020 Augusto B. Corr\u00eaa\u003c/li\u003e\n\u003cli\u003e2018-2020 Patrick Ferber\u003c/li\u003e\n\u003cli\u003e2015-2019 Manuel Heusner\u003c/li\u003e\n\u003cli\u003e2017 Daniel Killenberger\u003c/li\u003e\n\u003cli\u003e2016 Yusra Alkhazraji\u003c/li\u003e\n\u003cli\u003e2016 Martin Wehrle\u003c/li\u003e\n\u003cli\u003e2014-2015 Patrick von Reth\u003c/li\u003e\n\u003cli\u003e2015 Thomas Keller\u003c/li\u003e\n\u003cli\u003e2009-2014 Erez Karpas\u003c/li\u003e\n\u003cli\u003e2014 Robert P. Goldman\u003c/li\u003e\n\u003cli\u003e2010-2012 Andrew Coles\u003c/li\u003e\n\u003cli\u003e2010, 2012 Patrik Haslum\u003c/li\u003e\n\u003cli\u003e2003-2011 Silvia Richter\u003c/li\u003e\n\u003cli\u003e2009-2011 Emil Keyder\u003c/li\u003e\n\u003cli\u003e2010-2011 Moritz Gronbach\u003c/li\u003e\n\u003cli\u003e2010-2011 Manuela Ortlieb\u003c/li\u003e\n\u003cli\u003e2011 Vidal Alc\u00e1zar Saiz\u003c/li\u003e\n\u003cli\u003e2011 Michael Katz\u003c/li\u003e\n\u003cli\u003e2011 Raz Nissim\u003c/li\u003e\n\u003cli\u003e2010 Moritz Goebelbecker\u003c/li\u003e\n\u003cli\u003e2007-2009 Matthias Westphal\u003c/li\u003e\n\u003cli\u003e2009 Christian Muise\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-history\" class=\"anchor\" aria-hidden=\"true\" href=\"#history\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHistory\u003c/h2\u003e\n\u003cp\u003eThe current version of Fast Downward is the merger of three different\nprojects:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ethe original version of Fast Downward developed by Malte Helmert\nand Silvia Richter\u003c/li\u003e\n\u003cli\u003eLAMA, developed by Silvia Richter and Matthias Westphal based on\nthe original Fast Downward\u003c/li\u003e\n\u003cli\u003eFD-Tech, a modified version of Fast Downward developed by Erez\nKarpas and Michael Katz based on the original code\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn addition to these three main sources, the codebase incorporates\ncode and features from numerous branches of the Fast Downward codebase\ndeveloped for various research papers. The main contributors to these\nbranches are Malte Helmert, Gabi R\u00f6ger and Silvia Richter.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe following directory is not part of Fast Downward as covered by\nthis license:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, either version 3 of the License, or (at\nyour option) any later version.\n\nFast Downward is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\nGeneral Public License for more details.\n\nYou should have received a copy of the GNU General Public License\nalong with this program. If not, see \u0026lt;https://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "bioinformatics",
- "singularity"
- ],
- "updated_at": 1629083200.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1672794609.0
},
{
"data_format": 2,
- "description": "Aspera Connect helps you securely move file and folders of any size.",
+ "description": "libmicropython touch screen OS for nxp mxmrt 1062 and/or a souped up Teensy 4.1",
"filenames": [
- "3.11.0.5/Singularity"
+ "ports/libmicropython/IRIDESCENT/__PYTHONMODULES/music21_deps/pygments-master/tests/examplefiles/singularity/Singularity"
],
- "full_name": "pscedu/singularity-aspera-connect",
+ "full_name": "8888clockradio/iridescentmicropython",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-aspera-connect/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-aspera-connect/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-aspera-connect/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-aspera-connect/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/9163de09dca2f8ae61af41ff4d7baf31f1a6c6d4b86d2a361d93909e155b3ab5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9163de09dca2f8ae61af41ff4d7baf31f1a6c6d4b86d2a361d93909e155b3ab5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-aspera-connect\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5ec7de4d9f3ea32793203e28d5147d5dc6cc8b9bd7cf2ab08eb5692796de5c23/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5ec7de4d9f3ea32793203e28d5147d5dc6cc8b9bd7cf2ab08eb5692796de5c23/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-aspera-connect\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/adf1ed132e277181fe81068629a01b5494834d8fb83cc84fc3b132e50f6e08ac/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/adf1ed132e277181fe81068629a01b5494834d8fb83cc84fc3b132e50f6e08ac/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-aspera-connect\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ca701dddc8865d68b18f35dbdd6e33054e2977f14c0409a15baeb30435b74962/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ca701dddc8865d68b18f35dbdd6e33054e2977f14c0409a15baeb30435b74962/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6173706572612d636f6e6e656374\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-aspera-connect\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-aspera-connect\" class=\"anchor\" href=\"#singularity-aspera-connect\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-aspera-connect\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eascp\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/aspera-connect/3.11.0.5\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/aspera-connect\u003c/code\u003e as \u003ccode\u003e3.11.0.5.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally. As of today, Does not work on MacOSX.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eiridescentmicropython\nANY COMMERCIAL USE OF ANY IRIDESCENT FILES REQUIRES LICENSING contact \u003ca href=\"mailto:george@georgerosar.com\"\u003egeorge@georgerosar.com\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eplease email \u003ca href=\"mailto:george@georgerosar.com\"\u003egeorge@georgerosar.com\u003c/a\u003e if you want to be a contributer\u003c/p\u003e\n\u003cp\u003eCopyright 2023 George Charles Rosar II\u003c/p\u003e\n\u003cp\u003eTeensy 4.1 should have at least 16MB or more of external RAM soldered into Teensy 4.1 PSRAM pads. Should either be soldered or connected to the Teensy Audio Adapter Card, also Teensy Audio Adapter Card should have an additional 2Gbit of Flash RAM soldered in the Audio Adapter.\u003c/p\u003e\n\u003cp\u003eThe MOST IMPORTANT development issue is getting micropython to recieve and send text to Serial.print() or Serial.read(), mphalport.cpp is not functioning properly.\u003c/p\u003e\n\u003cp\u003einstalling\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emkdir iridescentBUILD; cd iridescentBUILD\ngit clone https://github.com/8888clockradio/iridescentmicropython.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eedit iridescentBUILD/iridescentmicropython/toolchain.mk\u003c/p\u003e\n\u003cp\u003echange LIBPATHFILEDROP, COMPILERPATH, TOOLSPATH and maybe also IS_WINDOWS_TOOLCHAIN_QUESTION_MARK to the proper values. Use absolute paths, works better for the tiered makefile system\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eLIBPATHFILEDROP=\"/Users/iridescent/iridescent/iridescentCoconutSynth2/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64/lib/clang-runtimes/armv7em_hard_fpv5_d16/lib\"\nCOMPILERPATH=\"/Users/iridescent/iridescent/iridescentCoconutSynth2/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64/bin\"\nTOOLSPATH=\"/Applications/Teensyduino.app/Contents/Java/hardware/tools\"\nCROSSCOMPILEPREFIX = clang\nADDITIONAL_TOOLS = llvm\nCLANG_TOOLCHAIN = --config \"$(COMPILERPATH)/armv7em_hard_fpv5_d16.cfg\"\n\nIS_WINDOWS_TOOLCHAIN_QUESTION_MARK=\n#uncomment below if windows\n#IS_WINDOWS_TOOLCHAIN_QUESTION_MARK=.exe\n\nAR := \"$(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ar$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\"\nAS := \"$(COMPILERPATH)/$(ADDITIONAL_TOOLS)-as$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\" $(ASFLAGS)\nCC := \"$(COMPILERPATH)/$(CROSSCOMPILEPREFIX)$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\" $(CLANG_TOOLCHAIN)\nCPP := $(CC) -E\nCXX := \"$(COMPILERPATH)/$(CROSSCOMPILEPREFIX)++$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\" $(CLANG_TOOLCHAIN)\n#GDB = $(CROSS_COMPILE)-gdb\nLD := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ld$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nOBJCOPY := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-objcopy$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nSIZE := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-size$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nSTRIP := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-strip$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nAR := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ar$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nar := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ar$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto the path of your LLVM clang and clang++ toolchain, download LLVM-embedded-toolchain-for-Arm\n\u003ca href=\"https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm/releases/download/release-15.0.2/LLVMEmbeddedToolchainForArm-15.0.2-Windows-x86_64.zip\"\u003ehttps://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm/releases/download/release-15.0.2/LLVMEmbeddedToolchainForArm-15.0.2-Windows-x86_64.zip\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewindows\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor\n\u003ca href=\"https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm/releases/download/release-15.0.2/LLVMEmbeddedToolchainForArm-15.0.2-Linux-x86_64.tar.gz\"\u003ehttps://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm/releases/download/release-15.0.2/LLVMEmbeddedToolchainForArm-15.0.2-Linux-x86_64.tar.gz\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003elinux\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor (PREFERRED)\n\u003ca href=\"https://github.com/8888clockradio/iridescentmicropython/raw/main/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64.tar.gz\"\u003ehttps://github.com/8888clockradio/iridescentmicropython/raw/main/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64.tar.gz\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emacOS x64 Intel\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ekeep lib/clang-runtimes/armv7em_hard_fpv5_d16/lib in the LIBPATHFILEDROP and make sure you add /bin to COMPILERPATH\u003c/p\u003e\n\u003cp\u003echange /Applications/Teensyduino.app in TOOLSPATH if Teensyduino is installed in a non-standard location\u003c/p\u003e\n\u003cp\u003ecopy the .tar.gz file to iridescentBUILD/\nextract the .tar.gz file in iridescentBUILD/\nshould look like\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eiridescentBUILD/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64/...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eexample:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eLIBPATHFILEDROP=\"/Users/iridescent/iridescent/iridescentCoconutSynth2/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64/lib/clang-runtimes/armv7em_hard_fpv5_d16/lib\"\nCOMPILERPATH=\"/Users/iridescent/iridescent/iridescentCoconutSynth2/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64/bin\"\nTOOLSPATH=\"/Applications/Teensyduino.app/Contents/Java/hardware/tools\"\nCROSSCOMPILEPREFIX = clang\nADDITIONAL_TOOLS = llvm\nCLANG_TOOLCHAIN = --config \"$(COMPILERPATH)/armv7em_hard_fpv5_d16.cfg\"\n\nIS_WINDOWS_TOOLCHAIN_QUESTION_MARK=\n#uncomment below if windows\n#IS_WINDOWS_TOOLCHAIN_QUESTION_MARK=.exe\n\nAR := \"$(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ar$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\"\nAS := \"$(COMPILERPATH)/$(ADDITIONAL_TOOLS)-as$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\" $(ASFLAGS)\nCC := \"$(COMPILERPATH)/$(CROSSCOMPILEPREFIX)$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\" $(CLANG_TOOLCHAIN)\nCPP := $(CC) -E\nCXX := \"$(COMPILERPATH)/$(CROSSCOMPILEPREFIX)++$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\" $(CLANG_TOOLCHAIN)\n#GDB = $(CROSS_COMPILE)-gdb\nLD := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ld$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nOBJCOPY := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-objcopy$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nSIZE := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-size$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nSTRIP := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-strip$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nAR := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ar$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\nar := $(COMPILERPATH)/$(ADDITIONAL_TOOLS)-ar$(IS_WINDOWS_TOOLCHAIN_QUESTION_MARK)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eyou then need to copy the FPU library for heavy mathematics (specifically needed for audio, which isn\u0027t required yet\u2013 but this step is still required for linking) (THE REGULAR TEENSY LIBRARY USES SOFT FLOAT ON A HARD FLOAT BULD?! \u2013 THIS IS CORRECTED HERE)\ndownload: \u003ca href=\"https://github.com/ARM-software/CMSIS/raw/master/CMSIS/Lib/GCC/libarm_cortexM7lfdp_math.a\"\u003ehttps://github.com/ARM-software/CMSIS/raw/master/CMSIS/Lib/GCC/libarm_cortexM7lfdp_math.a\u003c/a\u003e\nand place into the $(LIBPATHFILEDROP) defined in toolchain.mk so like:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecp ~/Downloads/libarm_cortexM7lfdp_math.a /Users/iridescent/iridescent/iridescentCoconutSynth2/LLVMEmbeddedToolchainForArm-16.0.0-Darwin-x86_64/lib/clang-runtimes/armv7em_hard_fpv5_d16/lib/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto build:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd iridescentmicropython/ports/libmicropython\nmake submodules #only need to run make submodules once usually\nmake clean; make V=1 #you can repeat this specific command to rebuild from scratch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eif you want to get daring copy the python modules for kivy, virtual environment, numpy, intelbinhex, pygame, matplotlib, music21, et cetera :\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecp -R iridescentBUILD/iridescentmicropython/ports/libmicropython/modulesTakenOut/* iridescentBUILD/iridescentmicropython/ports/libmicropython/modules/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand build again\ndoubtful there\u0027s any hardware that will support it at the moment, however due to tiny flash ram size on hardware\u003c/p\u003e\n\u003cp\u003ea board is in development for this firmware/OS\u003c/p\u003e\n\u003cp\u003eif you have kdbg installed through brew\nyou can run to debug in a very basic way\nNOTE: probably doesn\u0027t work since addition of clang\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd iridescentmicropython/ports/libmicropython; ./kdbg.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTHIS PROBABLY DOESN\u0027T MATTER ANYMORE\nNOTE: need to add FLASHMEM to all micropython boot up steps and modify startup.c to run boot clock start\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eiridescentBUILD/iridescentmicropython/ports/libmicropython/IRIDESCENT/cores-master/teensy4/startup.c\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003egenerate extern blocks on FLASHMEM with #include \u0026lt;avr/pgmspace.h\u0026gt; from:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eiridescentBUILD/iridescentmicropython/ports/libmicropython/board_init.c\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAND THESE:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eiridescentBUILD/iridescentmicropython/lib/nxp_driver/sdk/devices/MIMXRT1062/system_MIMXRT1062.c\niridescentBUILD/iridescentmicropython/lib/nxp_driver/sdk/devices/MIMXRT1062/system_MIMXRT1062.h\niridescentBUILD/iridescentmicropython/ports/libmicropython/boards/MIMXRT1062_clock_config.c\niridescentBUILD/iridescentmicropython/ports/libmicropython/boards/MIMXRT1062_clock_config.h\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBy inserting in: iridescentBUILD/iridescentmicropython/ports/libmicropython/IRIDESCENT/cores-master/teensy4/startup.c in function void ResetHandler(void)\u003c/p\u003e\n\u003cp\u003eALSO THESE FILES PROBABLY NEED FLASHMEM TOO (just in .h files) on functions (plus #include \u0026lt;avr/pgmspace.h\u0026gt;):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eiridescentBUILD/iridescentmicropython/lib/nxp_driver/sdk/devices/MIMXRT1062/fsl_device_registers.h\niridescentBUILD/iridescentmicropython/lib/nxp_driver/sdk/devices/MIMXRT1062/drivers/fsl_gpio.h\niridescentBUILD/iridescentmicropython/lib/nxp_driver/sdk/devices/MIMXRT1062/drivers/fsl_iomuxc.h\niridescentBUILD/iridescentmicropython/lib/nxp_driver/sdk/devices/MIMXRT1062/drivers/fsl_clock.h\niridescentBUILD/iridescentmicropython/lib/nxp_driver/sdk/devices/MIMXRT1062/drivers/fsl_lpuart.h\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLD Script is located:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eiridescentBUILD/iridescentmicropython/ports/libmicropython/IRIDESCENT/imxmrt_ld/picoimxrt1062_t41.ld\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eTHIS MATTERS THO\nMost of the desktop OS will be based off this concept, as matlibplot and kivy will work together with music21:\nSo either build GUI with matlibplot through kivy or just through kivy\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eiridescentBUILD/iridescentmicropython/ports/libmicropython/modulesTakenOut/kivy/garden/garden/matplotlib/examples\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1629217755.0
+ "topics": [],
+ "updated_at": 1672487253.0
},
{
"data_format": 2,
- "description": "The ViennaRNA Package consists of a C code library and several stand-alone programs for the prediction and comparison of RNA secondary structures.",
+ "description": "Pulsar Timing Environments",
"filenames": [
- "2.4.14/Singularity"
+ "containers/Singularity"
],
- "full_name": "pscedu/singularity-viennarna",
- "latest_release": "v2.4.14",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-viennarna/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-viennarna/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/57ccfd894f989623760a4ef3f10260f771a1fc248f5bf2218fa3c1f6a92ed7b7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/57ccfd894f989623760a4ef3f10260f771a1fc248f5bf2218fa3c1f6a92ed7b7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-viennarna\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/edfc9b50cfd2fd753e7bf402f10073da81e6ac134bb5f9d5c154d8ca266689e2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/edfc9b50cfd2fd753e7bf402f10073da81e6ac134bb5f9d5c154d8ca266689e2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-viennarna\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/db9a3b8ac1a85b49dcb1110778b0b6f49678043557b898cfcf02c5c8ad330245/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/db9a3b8ac1a85b49dcb1110778b0b6f49678043557b898cfcf02c5c8ad330245/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-viennarna\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/09f05ae67886e7f3f5559d192fecf3d45a6bb4495adbb67e1891e55a262309d9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/09f05ae67886e7f3f5559d192fecf3d45a6bb4495adbb67e1891e55a262309d9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7669656e6e61726e61\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-viennarna\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-viennarna\" class=\"anchor\" href=\"#singularity-viennarna\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-viennarna\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"http://rna.tbi.univie.ac.at\" rel=\"nofollow\"\u003eviennarna\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eAnalyseDists\u003c/code\u003e, \u003ccode\u003eAnalyseSeqs\u003c/code\u003e, \u003ccode\u003eKinfold\u003c/code\u003e, \u003ccode\u003eRNA2Dfold\u003c/code\u003e, \u003ccode\u003eRNAaliduplex\u003c/code\u003e, \u003ccode\u003eRNAalifold\u003c/code\u003e, \u003ccode\u003eRNAcofold\u003c/code\u003e, \u003ccode\u003eRNAdistance\u003c/code\u003e, \u003ccode\u003eRNAduplex\u003c/code\u003e, \u003ccode\u003eRNAeval\u003c/code\u003e, \u003ccode\u003eRNAfold\u003c/code\u003e, \u003ccode\u003eRNAforester\u003c/code\u003e, \u003ccode\u003eRNAheat\u003c/code\u003e, \u003ccode\u003eRNAinverse\u003c/code\u003e, \u003ccode\u003eRNALalifold\u003c/code\u003e, \u003ccode\u003eRNALfold\u003c/code\u003e, \u003ccode\u003eRNApaln\u003c/code\u003e, \u003ccode\u003eRNApdist\u003c/code\u003e, \u003ccode\u003eRNAparconv\u003c/code\u003e, \u003ccode\u003eRNAPKplex\u003c/code\u003e, \u003ccode\u003eRNAplex\u003c/code\u003e, \u003ccode\u003eRNAplfold\u003c/code\u003e, \u003ccode\u003eRNAplot\u003c/code\u003e, \u003ccode\u003eRNAsnoop\u003c/code\u003e, \u003ccode\u003eRNAsubopt\u003c/code\u003e, \u003ccode\u003eRNAup\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/viennarna/2.4.14\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/viennarna\u003c/code\u003e as \u003ccode\u003e2.4.14.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "ipta/pulsar-env",
+ "latest_release": null,
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/IPTA/pulsar-env/actions/workflows/test_CondaEnv.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/IPTA/pulsar-env/actions/workflows/test_CondaEnv.yml/badge.svg\" alt=\"Conda Env Test\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/IPTA/pulsar-env/actions/workflows/test_Singularity.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/IPTA/pulsar-env/actions/workflows/test_Singularity.yml/badge.svg\" alt=\"Apptainer Build (Ubuntu)\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-pulsar-timing-environments\" class=\"anchor\" aria-hidden=\"true\" href=\"#pulsar-timing-environments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePulsar Timing Environments\u003c/h1\u003e\n\u003cp\u003eThis repository offers a centeralized location for the IPTA Pulsar Timing \u0026amp; Data Combination Teams\u0027 environment.\u003c/p\u003e\n\u003cp\u003eCurrently, this repository presents the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eAn Anaconda Environment for Pulsar Science (\u003ccode\u003eanaconda_env.yml\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eSingularity/Apptainer Container for HPC Resources (\u003ccode\u003econtainers/Singularity\u003c/code\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation-of-the-conda-environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation-of-the-conda-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation of the Conda Environment\u003c/h2\u003e\n\u003cp\u003ePlease note, we highly encourage using a fresh install of \u003ca href=\"https://github.com/conda-forge/miniforge#mambaforge\"\u003eMambaforge\u003c/a\u003e or \u003ca href=\"https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html\" rel=\"nofollow\"\u003eMicroMamba\u003c/a\u003eover a default install of Anaconda/Miniconda. If you must use an Anaconda/Miniconda installation, from a fresh environment install the \u003ca href=\"https://github.com/mamba-org/mamba\"\u003eMamba Environment \u0026amp; Package Handler\u003c/a\u003e via \u003ccode\u003econda install -c conda-forge mamba\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote:\u003c/strong\u003e As of \u003ccode\u003econda\u003c/code\u003e version 22.11, \u003ccode\u003elibmamba\u003c/code\u003e can be used as a solver to speed up basic Anaconda installs (though there are growing pains). You can find out more \u003ca href=\"https://www.anaconda.com/blog/a-faster-conda-for-a-growing-community\" rel=\"nofollow\"\u003eat the official posting\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eTo install this environment in your flavor of Anaconda, proceed through the following steps:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eClone this directory: \u003ccode\u003egit clone https://github.com/ipta/pulsar-env.git\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eEnter the cloned directory: \u003ccode\u003ecd pulsar-env\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eUsing \u003ccode\u003emamba\u003c/code\u003e, install the environment: \u003ccode\u003emamba env create -f anaconda-env.yml\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eActivate the environment: \u003ccode\u003emamba activate IPTA_Env\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\u003ca id=\"user-content-important-note-regarding-the-included-openmpi\" class=\"anchor\" aria-hidden=\"true\" href=\"#important-note-regarding-the-included-openmpi\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImportant Note Regarding the Included OpenMPI\u003c/h3\u003e\n\u003cp\u003eFor Linux 64, Open MPI is built with CUDA awareness but this support is disabled by default. To enable it, please set the environment variable \u003ccode\u003eOMPI_MCA_opal_cuda_support=true\u003c/code\u003e before launching your MPI processes. Equivalently, you can set the MCA parameter in the command line: \u003ccode\u003empiexec --mca opal_cuda_support 1 ...\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eIn addition, the UCX support is also built but disabled by default. To enable it, first install UCX (\u003ccode\u003econda install -c conda-forge ucx\u003c/code\u003e). Then, set the environment variables \u003ccode\u003eOMPI_MCA_pml=\"ucx\"\u003c/code\u003e and \u003ccode\u003eOMPI_MCA_osc=\"ucx\"\u003c/code\u003e before launching your MPI processes. Equivalently, you can set the MCA parameters in the command line: \u003ccode\u003empiexec --mca pml ucx --mca osc ucx ...\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eNote that you might also need to set \u003ccode\u003eUCX_MEMTYPE_CACHE=n\u003c/code\u003e for CUDA awareness via UCX. Please consult UCX\u0027s documentation for detail.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1631407623.0
+ "subscribers_count": 7,
+ "topics": [],
+ "updated_at": 1669905442.0
},
{
"data_format": 2,
- "description": "Command line ASCII boxes unlimited!",
+ "description": "Docker and Singularity images to run Biodiverse software",
"filenames": [
- "1.3/Singularity"
+ "SingularityDef.def",
+ "SingularityDef_NoPerlbrew.def"
],
- "full_name": "icaoberg/singularity-boxes",
- "latest_release": "1.3",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-boxes/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-boxes/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/icaoberg/singularity-boxes/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-boxes/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a3f198a87deb5330effce45fa5f8a588e4f8f261b175507874e098ebd9458adf/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d626f786573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3f198a87deb5330effce45fa5f8a588e4f8f261b175507874e098ebd9458adf/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d626f786573\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-boxes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/6d68d10803a8f101a59999b34c1be8b23084c82097bd1506f6b69eca3546ed7b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d626f786573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6d68d10803a8f101a59999b34c1be8b23084c82097bd1506f6b69eca3546ed7b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d626f786573\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-boxes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/699ba19f5376b37177283fe5acc1e075c4a846491fedbbedc3fc349b3693bc30/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d626f786573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/699ba19f5376b37177283fe5acc1e075c4a846491fedbbedc3fc349b3693bc30/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d626f786573\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-boxes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0e74e828eef6e3d5d7627cf27223de60469083957af4cdf436c4b767a7e870d6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d626f786573\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0e74e828eef6e3d5d7627cf27223de60469083957af4cdf436c4b767a7e870d6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d626f786573\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-boxes\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-boxes\" class=\"anchor\" href=\"#singularity-boxes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-boxes\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://boxes.thomasjensen.com/\" rel=\"nofollow\"\u003eboxes\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://www.andrew.cmu.edu/~icaoberg\" rel=\"nofollow\"\u003eicaoberg\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "vmikk/biodiverse-docker",
+ "latest_release": "v.1.0.0",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-biodiverse\" class=\"anchor\" aria-hidden=\"true\" href=\"#biodiverse\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBiodiverse\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/vmikk/biodiverse-docker/blob/main/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1491d736cc21d494e4262c1cd8e116d4f865ff2f4bd64a2d79fa990778e324c8/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f766d696b6b2f62696f646976657273652d646f636b6572\" alt=\"GitHub license\" data-canonical-src=\"https://img.shields.io/github/license/vmikk/biodiverse-docker\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/vmikk/biodiverse\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ae1010d045b7a869f8b06b818b364a2ec0227e7f3d7fe3ab8cb4f280c386b732/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f486f737465642d446f636b65724875622d626c7565\" alt=\"Hosted_DockerHub\" data-canonical-src=\"https://img.shields.io/badge/Hosted-DockerHub-blue\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://cloud.sylabs.io/library/vmiks/gbif/biodiverse\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fe9171fa5097d0f35af6c0988f42c6d6571880fc954aea1ee3a4259dc7603ae8/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f486f737465642d53696e67756c61726974794c6962726172792d626c7565\" alt=\"Hosted_SingularityLibrary\" data-canonical-src=\"https://img.shields.io/badge/Hosted-SingularityLibrary-blue\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis repository contains definition files the \u003ca href=\"https://shawnlaffan.github.io/biodiverse/\" rel=\"nofollow\"\u003eBiodiverse\u003c/a\u003e (Laffan et al., 2010) containers.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-docker-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker image\u003c/h1\u003e\n\u003cp\u003eTo build the \u003ca href=\"https://www.docker.com/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e image with Biodiverse run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --tag biodiverse --file Dockerfile_NoPerlbrew . \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003eDockerfile_NoPerlbrew\u003c/code\u003e should be present in the current directory.\u003c/p\u003e\n\u003cp\u003eA ready-to-use image is available at \u003ca href=\"https://hub.docker.com/r/vmikk/biodiverse\" rel=\"nofollow\"\u003eDocker Hub\u003c/a\u003e and can be downloaded with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull vmikk/biodiverse:1.0.0\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity image\u003c/h1\u003e\n\u003cp\u003eTo build the \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e image with Biodiverse run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build Biodiverse.sif SingularityDef_NoPerlbrew.def\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003eSingularityDef_NoPerlbrew.def\u003c/code\u003e should be present in the current directory.\u003c/p\u003e\n\u003cp\u003eA ready-to-use image is available at the \u003ca href=\"https://cloud.sylabs.io/library/vmiks/gbif/biodiverse\" rel=\"nofollow\"\u003eSingularity Library\u003c/a\u003e and can be downloaded with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --arch amd64 library://vmiks/gbif/biodiverse:1-0-0\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h1\u003e\n\u003cp\u003eLaffan SW, Lubarsky E, Rosauer DF (2010) Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography, 33: 643-647. \u003ca href=\"https://onlinelibrary.wiley.com/doi/10.1111/j.1600-0587.2010.06237.x\" rel=\"nofollow\"\u003eDOI: 10.1111/j.1600-0587.2010.06237.x\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [
- "singularity",
- "utilities"
+ "biodiversity",
+ "docker",
+ "endemism",
+ "phylogenetic-diversity",
+ "singularity"
],
- "updated_at": 1631084542.0
+ "updated_at": 1650613175.0
},
{
"data_format": 2,
- "description": "The FASTX-Toolkit is a collection of command line tools for Short-Reads FASTA/FASTQ files preprocessing.",
+ "description": "Resource monitor that shows usage and stats for processor, memory, disks, network and processes.",
"filenames": [
- "0.0.14/Singularity"
+ "1.0.68/Singularity"
],
- "full_name": "pscedu/singularity-fastx-toolkit",
- "latest_release": null,
+ "full_name": "pscedu/singularity-bpytop",
+ "latest_release": "v1.0.68",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-bpytop/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bpytop/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-bpytop/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bpytop/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/6086d29389cadd3479a8523980b1ec9dd37bee0ee7f391f6e84294e38555ec6b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d627079746f70\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6086d29389cadd3479a8523980b1ec9dd37bee0ee7f391f6e84294e38555ec6b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d627079746f70\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bpytop\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/1dcdee2b45c87cb810de1b868a733f10f65a3a4a6ccf69522c58b89d6da6cae2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d627079746f70\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1dcdee2b45c87cb810de1b868a733f10f65a3a4a6ccf69522c58b89d6da6cae2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d627079746f70\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bpytop\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/33f6a11260743e3ce7aaa7df6f4f4605ae789e6bac5ed0488e1e3b17338a5e64/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d627079746f70\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/33f6a11260743e3ce7aaa7df6f4f4605ae789e6bac5ed0488e1e3b17338a5e64/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d627079746f70\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bpytop\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/c6693f25e42eaf97446bdc6be30ff9d42dab77028422ec377407a7c3f33c4635/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d627079746f70\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c6693f25e42eaf97446bdc6be30ff9d42dab77028422ec377407a7c3f33c4635/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d627079746f70\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bpytop\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-bpytop\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-bpytop\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bpytop\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for bpytop.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebpytop\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bpytop/1.2.13\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bpytop\u003c/code\u003e as \u003ccode\u003e1.2.13.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [
"singularity",
- "bioinformatics"
+ "utilities"
],
- "updated_at": 1628888079.0
+ "updated_at": 1670890527.0
},
{
"data_format": 2,
- "description": "Examples of Dockerfiles and Singularity recipes",
+ "description": null,
"filenames": [
- "python-env/Singularity"
+ "controllers/PythonBlocks/downward/misc/releases/19.12/Singularity.19.12",
+ "controllers/PythonBlocks/downward/misc/releases/21.12/Singularity.21.12",
+ "controllers/PythonBlocks/downward/misc/releases/20.06/Singularity.20.06",
+ "controllers/PythonBlocks/downward/misc/releases/22.06/Singularity.22.06",
+ "controllers/PythonBlocks/downward/misc/releases/latest/Singularity",
+ "controllers/PythonBlocks/downward/misc/releases/19.06/Singularity.19.06"
],
- "full_name": "kaczmarj/container-examples",
+ "full_name": "dylankrieg/block-stacking",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-container-examples\" class=\"anchor\" href=\"#container-examples\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainer examples\u003c/h1\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-build-with-docker\" class=\"anchor\" href=\"#build-with-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuild with docker\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-bedtoolsdockerfile\" class=\"anchor\" href=\"#bedtoolsdockerfile\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebedtools.Dockerfile\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --tag bedtools --file bedtools.Dockerfile .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-condadockerfile\" class=\"anchor\" href=\"#condadockerfile\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econda.Dockerfile\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --tag conda --file conda.Dockerfile .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-running-jupyter-notebook\" class=\"anchor\" href=\"#running-jupyter-notebook\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003erunning jupyter notebook\u003c/h3\u003e\n\u003cp\u003eplease note that we set \u003ccode\u003e--ip 0.0.0.0\u003c/code\u003e. and we need to publish the port from the\ncontainer onto the host. otherwise, the port is only accessible inside the container\nand will not be seen by our web browser (which is outside of the container).\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run --rm -it --publish 8888:8888 conda --port 8888 --ip 0.0.0.0 --no-browser\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-tensorflow24dockerfile\" class=\"anchor\" href=\"#tensorflow24dockerfile\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etensorflow24.Dockerfile\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --tag tensorflow:2.4 --file tensorflow24.Dockerfile .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-python-env\" class=\"anchor\" href=\"#python-env\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epython-env\u003c/h2\u003e\n\u003cp\u003ethis is an example of building a docker image for a python environment. that directory\nincludes a \u003ccode\u003erequirements.txt\u003c/code\u003e file, which lists dependencies. we copy that file into\nthe docker image when it is being built, and we install the python packages listed\nthere.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --tag mypyenv python-env\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-build-with-singularity\" class=\"anchor\" href=\"#build-with-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuild with singularity\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-python-env-1\" class=\"anchor\" href=\"#python-env-1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epython-env\u003c/h2\u003e\n\u003cp\u003ethis example builds a singularity image of \u003ccode\u003epython-env\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd python-env\nsudo singularity build python-env.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eexample of running the image. arguments after the image name are passed to the\nentrypoint. because our entrypoint is \u003ccode\u003epython\u003c/code\u003e, the command-line arguments are passed\nto that.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run python-env.sif -c \u0027import numpy; print(numpy.__version__)\u0027\n1.21.1\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand here\u0027s an example to show that users stay themselves in containers...\u003c/p\u003e\n\u003cp\u003eremember, just be yourself.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec python-env.sif whoami\njakub\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ethis is not the case in docker. you need \u003ccode\u003esudo\u003c/code\u003e to run the containers, so inside the\ncontainer, you can be root. this is not ideal, especially on shared clusters.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1628778703.0
+ "updated_at": 1668580222.0
},
{
"data_format": 2,
- "description": "R and bioinformatic packages Singularity container",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "sylvainschmitt/singularity-r-bioinfo",
- "latest_release": "0.0.3",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-r-and-bioinformatic-packages-singularity-container\" class=\"anchor\" href=\"#r-and-bioinformatic-packages-singularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR and bioinformatic packages Singularity container\u003c/h1\u003e\n\u003cp\u003eSylvain Schmitt\nAugust 6, 2021\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eR and bioinformatic packages\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eThis container includes:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eR\u003c/code\u003e 4.0.3\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003etidyverse\u003c/code\u003e 1.3.0\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eBiostrings\u003c/code\u003e 2.58.0\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003evcfR\u003c/code\u003e 1.12.0\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003evroom\u003c/code\u003e 1.3.2\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecsv2sql\u003c/code\u003e 0.1.0\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ereshape2\u003c/code\u003e 1.4.4\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe \u003ccode\u003etidyverse\u003c/code\u003e is an opinionated collection of R packages designed for\ndata science. All packages share an underlying design philosophy,\ngrammar, and data structures.\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://www.tidyverse.org/\" rel=\"nofollow\"\u003ehttps://www.tidyverse.org/\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eBiostrings\u003c/code\u003e is a memory efficient string containers, string matching\nalgorithms, and other utilities, for fast manipulation of large\nbiological sequences or sets of sequences.\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://bioconductor.org/packages/release/bioc/html/Biostrings.html\" rel=\"nofollow\"\u003ehttps://bioconductor.org/packages/release/bioc/html/Biostrings.html\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003eThe R package \u003ccode\u003evcfR\u003c/code\u003e is a set of tools designed to read, write,\nmanipulate and analyze VCF data.\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://knausb.github.io/vcfR_documentation/\" rel=\"nofollow\"\u003ehttps://knausb.github.io/vcfR_documentation/\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003evroom\u003c/code\u003e is the fastest delimited reader for R, 1.23 GB/sec.\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://vroom.r-lib.org/\" rel=\"nofollow\"\u003ehttps://vroom.r-lib.org/\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003ecsv2sql\u003c/code\u003e is a wrapper to convert csv files to sql database.\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://github.com/kcf-jackson/csv2sql\"\u003ehttps://github.com/kcf-jackson/csv2sql\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ereshape2\u003c/code\u003e is an R package written by Hadley Wickham that makes it easy\nto transform data between wide and long formats.\u003c/p\u003e\n\u003cp\u003e[\u003ca href=\"https://seananderson.ca/2013/10/19/reshape/\" rel=\"nofollow\"\u003ehttps://seananderson.ca/2013/10/19/reshape/\u003c/a\u003e]\u003c/p\u003e\n\u003cp\u003eSingularity container based on the recipe:\n\u003ca href=\"https://github.com/sylvainschmitt/singularity-r-bioinfo/blob/main/Singularity\"\u003e\u003ccode\u003eSingularity\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eImage singularity (V\u0026gt;=3.3) is automatically test and built and pushed\non the registry using\n\u003ca href=\"https://github.com/sylvainschmitt/singularity-template/blob/main/.github/workflows/test.yml\"\u003etest.yml\u003c/a\u003e\n\u0026amp;\n\u003ca href=\"https://github.com/sylvainschmitt/singularity-template/blob/main/.github/workflows/builder.yml\"\u003ebuilder.yml\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ebuild\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build Biostrings.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003epull\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull https://github.com/sylvainschmitt/singularity-r-bioinfo/releases/download/0.0.3/sylvainschmitt-singularity-r-bioinfo.latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003esnakemake\u003c/strong\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e \u003cspan class=\"pl-s1\"\u003esingularity\u003c/span\u003e: \n \u003cspan class=\"pl-s\"\u003e\"https://github.com/sylvainschmitt/singularity-r-bioinfo/releases/download/0.0.3/sylvainschmitt-singularity-r-bioinfo.latest.sif\"\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
+ "full_name": "psadil/cat12_app",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-cat12_app\" class=\"anchor\" aria-hidden=\"true\" href=\"#cat12_app\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecat12_app\u003c/h1\u003e\n\u003cp\u003eBundle cat12 as prefect workflow\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ pip install cat12_app\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eTODO\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003cp\u003eInterested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003ecat12_app\u003c/code\u003e was created by Patrick Sadil. It is licensed under the terms of the MIT license.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003ecat12_app\u003c/code\u003e was created with \u003ca href=\"https://cookiecutter.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003e\u003ccode\u003ecookiecutter\u003c/code\u003e\u003c/a\u003e and the \u003ccode\u003epy-pkgs-cookiecutter\u003c/code\u003e \u003ca href=\"https://github.com/py-pkgs/py-pkgs-cookiecutter\"\u003etemplate\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1628683690.0
+ "updated_at": 1668356057.0
},
{
"data_format": 2,
- "description": "Code and scripts for the bluebird bio technical exam",
+ "description": null,
"filenames": [
- "question_1/RNAseq_DE_analysis/environments/Singularity"
+ "Singularity"
],
- "full_name": "esha-joshi/bluebird_bio_exam",
+ "full_name": "pranavad/tipsytowers",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-bluebird_bio_exam\" class=\"anchor\" href=\"#bluebird_bio_exam\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebluebird_bio_exam\u003c/h1\u003e\n\u003cp\u003eCode and scripts for the bluebird bio technical exam taken on 2021-07-21\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-question_1\" class=\"anchor\" href=\"#question_1\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003equestion_1\u003c/h2\u003e\n\u003cp\u003eThis directory contains the Nextflow file, Singularity config files, R script for DE analysis and additional bash scripts for pre-processing for the implementation to analyze the cancer cell-lines. There is README describing the software requirements, dependencies and running of the program as well.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-question_2\" class=\"anchor\" href=\"#question_2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003equestion_2\u003c/h2\u003e\n\u003cp\u003eThis directory contains the R script for making the SQL queries to the UCSC database to generate a BED file for BRCA1 and BRCA2.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-tipsytowers\" class=\"anchor\" aria-hidden=\"true\" href=\"#tipsytowers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etipsytowers\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1628654340.0
+ "updated_at": 1665153756.0
},
{
"data_format": 2,
- "description": "nextflow pipeline for cellranger atac 10x analysis and qc",
+ "description": null,
"filenames": [
- "container/Singularity_sc-atac-10x-builder"
+ "Singularity"
],
- "full_name": "perllb/ctg-sc-atac-10x",
+ "full_name": "truatpasteurdotfr/singularity-docker-miniconda-py39-cuda11.2-cudnn81-tf-gpu28",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ctg-sc-atac-10x\" class=\"anchor\" href=\"#ctg-sc-atac-10x\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ectg-sc-atac-10x\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-nextflow-pipeline-for-preprocessing-of-10x-chromium-sc-atac-data-with-cellranger\" class=\"anchor\" href=\"#nextflow-pipeline-for-preprocessing-of-10x-chromium-sc-atac-data-with-cellranger\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNextflow pipeline for preprocessing of 10x chromium sc-ATAC data with cellranger.\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDesigned to handle multiple projects in one sequencing run (but also works with only one project)\u003c/li\u003e\n\u003cli\u003eSupports mm10 and hg38 references, but can also be run with custom reference genome and annotation (must be added via nextflow.config). See custom genome below.\u003c/li\u003e\n\u003cli\u003eSupports nuclei samples\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUSAGE\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eClone and build the Singularity container for this pipeline: \u003ca href=\"https://github.com/perllb/ctg-sc-atac-10x/tree/master/container/ctg-sc-atac-10x\"\u003ehttps://github.com/perllb/ctg-sc-atac-10x/tree/master/container/ctg-sc-atac-10x\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eEdit your samplesheet to match the example samplesheet. See section \u003ccode\u003eSampleSheet\u003c/code\u003e below\u003c/li\u003e\n\u003cli\u003eEdit the nextflow.config file to fit your project and system.\u003c/li\u003e\n\u003cli\u003eRun pipeline\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enohup nextflow run pipe-sc-atac-10x.nf \u0026gt; log.pipe-sc-atac-10x.txt \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-input-files\" class=\"anchor\" href=\"#input-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput files\u003c/h2\u003e\n\u003cp\u003eThe following files must be in the runfolder to start pipeline successfully.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSamplesheet (\u003ccode\u003eCTG_SampleSheet.sc-atac-10x.csv\u003c/code\u003e)\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-samplesheet-requirements\" class=\"anchor\" href=\"#samplesheet-requirements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSamplesheet requirements:\u003c/h3\u003e\n\u003cp\u003eNote: no header! only the rows shown below, starting with the column names.\nNote: Must be in comma-separated values format (.csv)\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eSample_ID\u003c/th\u003e\n\u003cth\u003eindex\u003c/th\u003e\n\u003cth\u003eSample_Project\u003c/th\u003e\n\u003cth\u003eSample_Species\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eSi1\u003c/td\u003e\n\u003ctd\u003eSI-GA-D9\u003c/td\u003e\n\u003ctd\u003e2021_012\u003c/td\u003e\n\u003ctd\u003ehuman\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSi2\u003c/td\u003e\n\u003ctd\u003eSI-GA-H9\u003c/td\u003e\n\u003ctd\u003e2021_012\u003c/td\u003e\n\u003ctd\u003ehuman\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSample1\u003c/td\u003e\n\u003ctd\u003eSI-GA-C9\u003c/td\u003e\n\u003ctd\u003e2021_013\u003c/td\u003e\n\u003ctd\u003emouse\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSample2\u003c/td\u003e\n\u003ctd\u003eSI-GA-C9\u003c/td\u003e\n\u003ctd\u003e2021_013\u003c/td\u003e\n\u003ctd\u003emouse\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-the-nf-pipeline-takes-the-following-columns-from-samplesheet-to-use-in-channels\" class=\"anchor\" href=\"#the-nf-pipeline-takes-the-following-columns-from-samplesheet-to-use-in-channels\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThe nf-pipeline takes the following Columns from samplesheet to use in channels:\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSample_ID\u003c/code\u003e : ID of sample. Sample_ID can only contain a-z, A-Z and \"_\". E.g space and hyphen (\"-\") are not allowed! If \u0027Sample_Name\u0027 is present, it will be ignored.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eindex\u003c/code\u003e : Must use index ID (10x ID) if dual index. For single index, the index sequence works too.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eSample_Project\u003c/code\u003e : Project ID. E.g. 2021_033, 2021_192.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eSample_Species\u003c/code\u003e : Only \u0027human\u0027/\u0027mouse\u0027/\u0027custom\u0027 are accepted. If species is not human or mouse, set \u0027custom\u0027. This custom reference genome has to be specified in the nextflow config file. See below how to edit the config file.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-samplesheet-template\" class=\"anchor\" href=\"#samplesheet-template\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSamplesheet template\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eSamplesheet name \u003ccode\u003eCTG_SampleSheet.sc-atac-10x.csv\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003eSample_ID,index,Sample_Project,Sample_Species \nSi1,Sn1,SI-GA-D9,2021_012,human \nSi2,Sn2,SI-GA-H9,2021_012,human \nSample1,S1,SI-GA-C9,2021_013,mouse \nSample2,S23,SI-GA-C9,2021_013,mouse\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pipeline-steps\" class=\"anchor\" href=\"#pipeline-steps\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline steps:\u003c/h2\u003e\n\u003cp\u003eCellranger version: cellranger atac v2.0.0\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eDemultiplexing\u003c/code\u003e (cellranger mkfastq): Converts raw basecalls to fastq, and demultiplex samples based on index (\u003ca href=\"https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/mkfastq\" rel=\"nofollow\"\u003ehttps://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/mkfastq\u003c/a\u003e).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eFastQC\u003c/code\u003e: FastQC calculates quality metrics on raw sequencing reads (\u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003ehttps://www.bioinformatics.babraham.ac.uk/projects/fastqc/\u003c/a\u003e). MultiQC summarizes FastQC reports into one document (\u003ca href=\"https://multiqc.info/\" rel=\"nofollow\"\u003ehttps://multiqc.info/\u003c/a\u003e).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eAlign\u003c/code\u003e + \u003ccode\u003eCounts\u003c/code\u003e (cellranger count): Aligns fastq files to reference genome, counts genes for each cell/barcode, perform secondary analysis such as clustering and generates the cloupe files (\u003ca href=\"https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/count\" rel=\"nofollow\"\u003ehttps://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/count\u003c/a\u003e).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eAggregation\u003c/code\u003e (cellranger aggr): Automatically creates the input csv pointing to molecule_info.h5 files for each sample to be aggregated and executes aggregation (\u003ca href=\"https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/aggr\" rel=\"nofollow\"\u003ehttps://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/aggr\u003c/a\u003e). This is only run if there is more than one sample pr project.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eCellranger count metrics\u003c/code\u003e (bin/ctg-sc-count-metrics-concat.py): Collects main count metrics (#cells and #reads/cell etc.) from each sample and collect in table\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emultiQC\u003c/code\u003e: Compile fastQC and cellranger count metrics in multiqc report\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emd5sum\u003c/code\u003e: md5sum of all generated files\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-output\" class=\"anchor\" href=\"#output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003ectg-PROJ_ID-output\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eqc\u003c/code\u003e: Quality control output.\n\u003cul\u003e\n\u003cli\u003ecellranger metrics: Main metrics summarising the count / cell output\u003c/li\u003e\n\u003cli\u003efastqc output (\u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003ehttps://www.bioinformatics.babraham.ac.uk/projects/fastqc/\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003emultiqc output: Summarizing FastQC output and demultiplexing (\u003ca href=\"https://multiqc.info/\" rel=\"nofollow\"\u003ehttps://multiqc.info/\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003efastq\u003c/code\u003e: Contains raw fastq files from cellranger mkfastq.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecount-cr\u003c/code\u003e: Cellranger count output. Here you find gene/cell count matrices, secondary analysis output, and more. See (\u003ca href=\"https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/count\" rel=\"nofollow\"\u003ehttps://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/count\u003c/a\u003e) for more information on the output files.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esummaries\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eweb-summary files which provide an overview of essential metrics from the 10x run.\u003c/li\u003e\n\u003cli\u003ecloupe files which can be used to explore the data interactively in the Loupe browser (\u003ca href=\"https://support.10xgenomics.com/single-cell-atac/software/visualization/latest/what-is-loupe-cell-browser\" rel=\"nofollow\"\u003ehttps://support.10xgenomics.com/single-cell-atac/software/visualization/latest/what-is-loupe-cell-browser\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eaggregate\u003c/code\u003e:\n\u003cul\u003e\n\u003cli\u003eOutput from cellranger aggregation. This is only run if there is more than one sample pr project.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ectg-md5.PROJ_ID.txt\u003c/code\u003e: text file with md5sum recursively from output dir root\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-container\" class=\"anchor\" href=\"#container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainer\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-custom-genome\" class=\"anchor\" href=\"#custom-genome\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCustom genome\u003c/h2\u003e\n\u003cp\u003eIf custom genome (not hg38 or mm10) is used\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSet \"Sample_Species\" column to \u0027custom\u0027 in samplesheet:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eSample_ID\u003c/th\u003e\n\u003cth\u003eSample_Name\u003c/th\u003e\n\u003cth\u003eindex\u003c/th\u003e\n\u003cth\u003eSample_Project\u003c/th\u003e\n\u003cth\u003eSample_Species\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eSi1\u003c/td\u003e\n\u003ctd\u003eSn1\u003c/td\u003e\n\u003ctd\u003eSI-GA-D9\u003c/td\u003e\n\u003ctd\u003eproj_2021_012\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003ecustom\u003c/strong\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSi2\u003c/td\u003e\n\u003ctd\u003eSn2\u003c/td\u003e\n\u003ctd\u003eSI-GA-H9\u003c/td\u003e\n\u003ctd\u003eproj_2021_012\u003c/td\u003e\n\u003ctd\u003e\u003cstrong\u003ecustom\u003c/strong\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eIn nextflow.config, set\n\u003ccode\u003ecustom_genome=/PATH/TO/CUSTOMGENOME\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-add-custom-genes-eg-reporters-to-cellranger-annotation\" class=\"anchor\" href=\"#add-custom-genes-eg-reporters-to-cellranger-annotation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAdd custom genes (e.g. reporters) to cellranger annotation\u003c/h3\u003e\n\u003cp\u003eYou can use this script to add custom genes to the cellranger ref\n\u003ca href=\"https://github.com/perllb/ctg-cellranger-add2ref\"\u003ehttps://github.com/perllb/ctg-cellranger-add2ref\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003enextflow version 19.04.1.5072\u003c/li\u003e\n\u003cli\u003eSingularity (v 3.7.0-1.el7)\u003c/li\u003e\n\u003cli\u003ejava (openjdk version \"10.0.2\" 2018-07-17)\u003c/li\u003e\n\u003cli\u003eOpenJDK Runtime Environment Zulu10.3+5 (build 10.0.2+13)\u003c/li\u003e\n\u003cli\u003eOpenJDK 64-Bit Server VM Zulu10.3+5 (build 10.0.2+13, mixed mode)\u003c/li\u003e\n\u003cli\u003eSingularity container (\u003ca href=\"https://github.com/perllb/ctg-sc-atac-10x/blob/main/container/Singularity_sc-atac-10x-builder\"\u003ehttps://github.com/perllb/ctg-sc-atac-10x/blob/main/container/Singularity_sc-atac-10x-builder\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eCellranger 10x ATAC or ARC references (e.g. refdata-cellranger-arc-GRCh38-2020-A-2.0.0 and refdata-cellranger-arc-mm10-2020-A-2.0.0)\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-a-miniconda-based--container-with-python-39-with-cudnn-81-cuda-112-with-tensorflow-gpu-28\" class=\"anchor\" aria-hidden=\"true\" href=\"#a-miniconda-based--container-with-python-39-with-cudnn-81-cuda-112-with-tensorflow-gpu-28\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ea miniconda based container with python 3.9 with cudnn 8.1 cuda 11.2 with tensorflow-gpu 2.8\u003c/h1\u003e\n\u003cp\u003edocker: \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-miniconda-py39-cuda11.2-cudnn81-tf-gpu28/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-miniconda-py39-cuda11.2-cudnn81-tf-gpu28/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-miniconda-py39-cuda11.2-cudnn81-tf-gpu28:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003esingularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv oras://ghcr.io/truatpasteurdotfr/singularity-docker-miniconda-py39-cuda11.2-cudnn81-tf-gpu28:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1629907530.0
+ "updated_at": 1667825933.0
},
{
"data_format": 2,
- "description": "Implements GA-DQN tuner which consists of a genetic algorithm that uses two deep Q-network agents.",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity-mpi.def",
+ "Singularity-test.def",
+ "Singularity.def"
],
- "full_name": "lhutton1/ga-dqn-tuner",
+ "full_name": "lalilalalalu/fuchs-and-local-container",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-generating-high-performance-code-for-deep-learning-workloads-a-reinforcement-learning-based-approach\" class=\"anchor\" href=\"#generating-high-performance-code-for-deep-learning-workloads-a-reinforcement-learning-based-approach\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGenerating high-performance code for deep learning workloads: a reinforcement learning based approach.\u003c/h1\u003e\n\u003cp\u003e\u003cem\u003eImplemented as part of a final year dissertation. Should not be considered for production use.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eThis project aims to apply reinforcement learning to auto-tuning in AutoTVM (part of the TVM machine learning compiler),\nin order to improve the experience of the end user. Currently, reinforcement learning is applied to the GATuner - a genetic algorithm\nthat repeatedly applies elitism, 2-point crossover and mutation to a population. Named \u003cstrong\u003eGA-DQN\u003c/strong\u003e, the new tuner uses two independent\ndeep Q-network (DQN)\u0027s that are applied to crossover and mutation. Crossover is completed by allowing DQN to suggest the point at\nwhich to crossover a gene, while, mutation is completed by allowing DQN to select which detail to randomly mutate. In addition, an evaluation\nframework is provided to assess the performance of GA-DQN.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"/assets/ga-dqn-pipeline.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"/assets/ga-dqn-pipeline.png\" alt=\"GA-DQN tuning pipeline\" title=\"GA-DQN tuning pipeline\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003eTo use the tuner, TVM must be installed and visible within your python environment. Due to needing additional features not available in a released\nversion of TVM, a forked version of TVM is used which applies a small amount debugging code and a fix to the PyTorch front-end parser. A pinned\nversion is also used as TVM is mostly in a development stage and the API\u0027s used are unstable. Consequently, the GA-DQN tuner has only been tested\nwith this specific commit, along with small modifications ontop. The required version can be pulled from git like so:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone --recursive https://github.com/lhutton1/tvm.git tvm\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e tvm\ngit checkout autotvm-measure-remote-time\ngit checkout d2452502b9486a7993d9dec3d04e449efdd81cf7\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTVM also requires a number of dependencies such as: Cuda, Python3.6, LLVM, XGBoost (for the XGBTuner) and PyTorch (for the GA-DQN tuner). As such, we recommend using a containerised environment powered by Singularity. Similar to docker, an image must be built from which containers can be run based on the image. First install Singularity, then build the image using a simple script provided:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Install Singularity\u003c/span\u003e\nsudo wget -O- http://neuro.debian.net/lists/xenial.us-ca.full \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e sudo tee /etc/apt/sources.list.d/neurodebian.sources.list \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \\\n sudo apt-key adv --recv-keys --keyserver hkp://pool.sks-keyservers.net:80 0xA5D32F012649A5A9 \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \\\n sudo apt-get update\n \nsudo apt-get install -y singularity-container\n \n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Build image\u003c/span\u003e\n./create_image.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFrom this a container can be created and GA-DQN can be run from within this container using the presented shell:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./create_container.sh rl-tuner.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNow in the shell, test your container works correctly by attempting to run the evaluation framework help prompt:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython driver.py --help\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cem\u003eNote: This has been tested on a Ubuntu 18.04 setup and is not guaranteed to work with other operating systems. These scripts have also been tested on the University of Leeds HPC cluster, ARC.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNote: it is possible to build TVM and install its dependencies from scratch, although this is not recommended due to the number of packages required. The process required should be similar to that provided in \u003ccode\u003ecreate_image.sh\u003c/code\u003e script. However, it is recommended you create a new virtual environment for python in this process.\u003c/em\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-rl-tuner\" class=\"anchor\" href=\"#rl-tuner\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRL Tuner\u003c/h2\u003e\n\u003cp\u003eGA-DQN is a tuner that combines advancements in reinforcement learning and the genetic algorithm tuner that currently exists in TVM. Two independent deep Q-network (DQN)\u0027s are used to suggest where to crossover genes and which detail of a gene to mutate.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-ga-tuner\" class=\"anchor\" href=\"#ga-tuner\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGA Tuner\u003c/h2\u003e\n\u003cp\u003eThe GA tuner is code obtained from the open source TVM compiler. It is here for convenience and to allow a small amount of debug code to be added so that it can be evaluated. This work is not my own.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-evaluation-framework-tools\" class=\"anchor\" href=\"#evaluation-framework-tools\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEvaluation framework (tools)\u003c/h2\u003e\n\u003cp\u003eProvides a series of tools and experiments to quickly test various tuning algorithms in AutoTVM. Use tune and benchmark commands on a series of pre-trained models to evaluate random, genetic algorithm, extreme gradient boost and GA-DQN algorithms. Use the experiment framework to evaluate various aspects of GA-DQN, with graphical monitoring.\u003c/p\u003e\n\u003cp\u003eA command line driver is provided for this framework:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython driver.py -m=tune -c=../config-example.json\npython driver.py -m=benchmark -c=../config-example.json\npython driver.py -m=experiment -c=../config-example.json\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-ga-dqn-pipeline-example\" class=\"anchor\" href=\"#ga-dqn-pipeline-example\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGA-DQN pipeline example\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"/assets/ga-dqn-pipeline-example.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"/assets/ga-dqn-pipeline-example.png\" alt=\"GA-DQN pipeline example\" title=\"GA-DQN pipeline example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1628544168.0
+ "updated_at": 1667539488.0
},
{
"data_format": 2,
- "description": null,
+ "description": "OpenHPC recipe for NVIDIA\u0027s container maker",
"filenames": [
- "Singularity"
+ "Singularity.def",
+ "container-backups/Singularity.def"
],
- "full_name": "caoky8989/LVAD",
+ "full_name": "kaisucode/ohpc-container-recipe",
"latest_release": null,
+ "readme": "\u003ch2\u003e\u003ca id=\"user-content-openhpc-container-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#openhpc-container-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOpenHPC Container Recipe\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003esingularity exec ohpc-recipe4.simg python /benchmark.py\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003enote: scale down the memory usage in \u003ccode\u003eVagrantfile\u003c/code\u003e if your system can\u0027t support the specified amount (4096)\u003c/p\u003e\n\u003cp\u003eThis is a container recipe for \u003ca href=\"https://github.com/NVIDIA/hpc-container-maker\"\u003eNVIDIA\u0027s HPC container maker\u003c/a\u003e. The base image is \u003ca href=\"https://quay.io/repository/ohpc/ohpc-gnu9\" rel=\"nofollow\"\u003eOpenHPC\u0027s development environment\u003c/a\u003e, with added Python, TensorFlow, and Keras support\u003c/p\u003e\n\u003chr\u003e\n\u003cp\u003e[share]$ nvcc --version\nnvcc: NVIDIA (R) Cuda compiler driver\nCopyright (c) 2005-2015 NVIDIA Corporation\nBuilt on Tue_Aug_11_14:27:32_CDT_2015\nCuda compilation tools, release 7.5, V7.5.17\u003c/p\u003e\n\u003cp\u003emodule: loading \u0027cuda/7.5.18\u0027\u003c/p\u003e\n\u003chr\u003e\n\u003cp\u003etensorflow-2.6.0\ncuDNN 8.1\ncuda 11.2\u003c/p\u003e\n\u003cp\u003ein sbatch script,\nmodule load cuda/11.3.1\nmodule load cudnn/8.1.0\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.tensorflow.org/install/source\" rel=\"nofollow\"\u003ehttps://www.tensorflow.org/install/source\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage-examples\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage-examples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage examples\u003c/h2\u003e\n\u003ch4\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h4\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ehpccm --recipe ohpc-recipe.py --format docker \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e Dockerfile\ndocker build -t ohpc-recipe -f Dockerfile \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\ndocker run -v \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e/python_scripts/:/mnt/python_scripts/ -it --rm ohpc-recipe python3.7 /mnt/python_scripts/test.py\u003c/pre\u003e\u003c/div\u003e\n\u003ch4\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h4\u003e\n\u003cp\u003eNote: For singularity builds, root access is required. If you are on MacOS or Windows, please check out the instructions \u003ca href=\"https://docs.sylabs.io/guides/3.0/user-guide/installation.html#mac\" rel=\"nofollow\"\u003ehere\u003c/a\u003e on how to use Vagrant to build a Singularity virtual machine\u003c/p\u003e\n\u003cp\u003ehpccm --recipe ohpc-recipe.py --singularity-version=3.8 --format singularity \u0026gt; Singularity.def\nversion 3.8 for multistage\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ehpccm --recipe ohpc-recipe.py --format singularity \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e Singularity.def\nsudo singularity build ohpc-recipe.simg Singularity.def\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e --nv ohpc-recipe.simg python3 \u003cspan class=\"pl-smi\"\u003e$PWD\u003c/span\u003e/python_scripts/benchmark.py\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAn alternate solution is to build using Docker, then rebuild as singularity\n\u003ccode\u003esingularity build ohpc-recipe.simg docker://kevinhsuk/ohpc-recipe\u003c/code\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1628703776.0
+ "updated_at": 1667364910.0
},
{
"data_format": 2,
- "description": "Multi-Label Multi/Single-Class Image Segmentation",
+ "description": null,
"filenames": [
- "Singularity"
+ "waveunet/Singularity"
],
- "full_name": "kbronik2017/Multi_Label_Segmentation_UCL",
+ "full_name": "bbaysal/BSS",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/UCLBrain/MSLS/issues\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f9cab98cc8f1052f0c0096b8b462cf9b2280a706b1adc0895d8a4859f3743314/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f55434c427261696e2f4d534c53\" alt=\"GitHub issues\" data-canonical-src=\"https://img.shields.io/github/issues/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/UCLBrain/MSLS/network\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b6c7a087c43d2a65a6ee22ec8ce2e004a29212c4b9619b117f4b2bbabf98a6c5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f55434c427261696e2f4d534c53\" alt=\"GitHub forks\" data-canonical-src=\"https://img.shields.io/github/forks/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/UCLBrain/MSLS/stargazers\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/10fab859502fd8c9b24dde937e50fecba7449e94ea057774713238ab3ec754fc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f55434c427261696e2f4d534c53\" alt=\"GitHub stars\" data-canonical-src=\"https://img.shields.io/github/stars/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/UCLBrain/MSLS/blob/master/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0d525d837b03e3b7a24b6322fc2197a134fa12e6a96188e5f18d6cd92236aa47/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f55434c427261696e2f4d534c53\" alt=\"GitHub license\" data-canonical-src=\"https://img.shields.io/github/license/UCLBrain/MSLS\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-multi-label-multisingle-class-image-segmentation\" class=\"anchor\" href=\"#multi-label-multisingle-class-image-segmentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMulti-Label Multi/Single-Class Image Segmentation\u003c/h1\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/diag.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/diag.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-publication\" class=\"anchor\" href=\"#publication\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePublication\u003c/h1\u003e\n\u003cp\u003eLe Zhang, Ryutaro Tanno, Kevin Bronik, Chen Jin, Parashkev Nachev, Frederik Barkhof, Olga Ciccarelli, and Daniel C. Alexander, Learning to Segment When Experts Disagree, International Conference on Medical image computing and Computer-Assisted Intervention (MICCAI). Springer, Cham, 2020.\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/Miccai_2020_abs.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg align=\"center\" height=\"1000\" src=\"images/Miccai_2020_abs.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\n \n \u003cp\u003eClick here to see full pdf file: \u003ca href=\"https://github.com/UCLBrain/MSLS/blob/master/MICCAI_2020.pdf\"\u003eLink to PDF\u003c/a\u003e\u003c/p\u003e\n \n\n\u003ch1\u003e\n\u003ca id=\"user-content-running-the-gui-program\" class=\"anchor\" href=\"#running-the-gui-program\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the GUI Program!\u003c/h1\u003e\n\u003cp\u003eFirst, user needs to install Anaconda \u003ca href=\"https://www.anaconda.com/\" rel=\"nofollow\"\u003ehttps://www.anaconda.com/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThen\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda env create -f conda_environment_Training_Inference.yml \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eand\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda activate traintestenv \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003efinally\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - python Training_Inference_GUI.py \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAfter lunching the graphical user interface, user will need to provide necessary information to start training/testing as follows:\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/GUI.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/GUI.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003ch1\u003e\n\u003ca id=\"user-content-running-the-program-from-the-command-line\" class=\"anchor\" href=\"#running-the-program-from-the-command-line\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the Program from the command line!\u003c/h1\u003e\n\u003cp\u003eFirst\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - conda activate traintestenv \u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ethen for training\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - python segmentation_network_Training_without_GUI.py [or annotation_network_Training_without_GUI.py]\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003efor testing\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e - python segmentation_network_Inference_without_GUI.py [or annotation_network_Inference_without_GUI.py]\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-testing-the-program\" class=\"anchor\" href=\"#testing-the-program\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting the Program!\u003c/h1\u003e\n\u003cp\u003eExamples of Training and Testing subjects can be found in: \u003ca href=\"https://github.com/UCLBrain/MSLS/tree/master/examples\"\u003ehttps://github.com/UCLBrain/MSLS/tree/master/examples\u003c/a\u003e (which will allow users to quickly and easily train and test the program)\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/bin_seg_ex.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/bin_seg_ex.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003cp\u003e..................................................................................................................................................................\u003c/p\u003e\n\u003cbr\u003e\n \u003cp\u003e\u003ca href=\"images/multi_seg_ex.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg height=\"510\" src=\"images/multi_seg_ex.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-bss\" class=\"anchor\" aria-hidden=\"true\" href=\"#bss\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBSS\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [
- "segmentation",
- "multi-label"
- ],
- "updated_at": 1628544698.0
+ "topics": [],
+ "updated_at": 1666637248.0
},
{
"data_format": 2,
- "description": "Markdown Files to Explain Running anvi\u0027o in Singularity",
+ "description": null,
"filenames": [
- "anvio-pangenomics/Singularity"
+ "bc3.10-rs125042r362/Singularity",
+ "bc3.12-r405rs125/Singularity",
+ "bc3.15-r421tv132rs2022072.576/Singularity"
],
- "full_name": "rbartelme/anvio-singularity",
+ "full_name": "yh549848/singularity-rstudio-rnaseq",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-running-anvio-in-singularity-containers\" class=\"anchor\" href=\"#running-anvio-in-singularity-containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning anvi\u0027o in Singularity containers\u003c/h1\u003e\n\u003cp\u003eRyan Bartelme, PhD\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-preparation\" class=\"anchor\" href=\"#preparation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreparation\u003c/h2\u003e\n\u003cp\u003eIf you want to test anvi\u0027o on an HPC system, here are a few strategies:\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-pulling-anvio-docker-image-into-singularity\" class=\"anchor\" href=\"#pulling-anvio-docker-image-into-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePulling anvi\u0027o docker image into Singularity\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003eStart by using singularity to pull the latest version of the anvi\u0027o image from dockerhub:\u003c/strong\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull docker://meren/anvio\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eAfter seeing the standard output of the docker pull command, Singularity will print out something like:\u003c/strong\u003e\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eINFO: Creating SIF file...\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eAnd the \u003ccode\u003e*.sif\u003c/code\u003e file should appear in the directory:\u003c/strong\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ ls\nanvio_latest.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eThe latest docker image of anvi\u0027o will \u003cstrong\u003eNOT\u003c/strong\u003e have the databases configured. This is also an opportune time to create your own customized docker image from the \u003ccode\u003emeren/anvio:latest\u003c/code\u003e docker image tag.\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-making-your-own-dockerfile-to-customize-your-anvio-runtime\" class=\"anchor\" href=\"#making-your-own-dockerfile-to-customize-your-anvio-runtime\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMaking your own Dockerfile to customize your anvi\u0027o runtime\u003c/h2\u003e\n\u003cp\u003eSee an example: \u003ca href=\"anvio-dbconfig/Dockerfile\"\u003eDockerfile\u003c/a\u003e this runs through the database configurations for anvi\u0027o. (As of 03-25-21 this does not properly compile the 3d structure db\u0027s)\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-configuring-anvio-singularity-containers\" class=\"anchor\" href=\"#configuring-anvio-singularity-containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguring anvi\u0027o Singularity containers\u003c/h2\u003e\n\u003chr\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-docker-container-image-customization\" class=\"anchor\" href=\"#docker-container-image-customization\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker container image customization\u003c/h3\u003e\n\u003cp\u003eIn this case I used a \u003ca href=\"anvio-pangenomics/Dockerfile\"\u003eDockerfile\u003c/a\u003e, where I am building off the \u003ccode\u003eanvio-dbconfig\u003c/code\u003e \u003ca href=\"anvio-dbconfig/Dockerfile\"\u003eimage\u003c/a\u003e. The modifications include an installation of \u003ca href=\"https://github.com/kblin/ncbi-genome-download\"\u003encbi-genome-download\u003c/a\u003e using the anvio conda environment \u003ca href=\"https://github.com/rbartelme/anvio-singularity/blob/bacaaec5130fdb188647c4cdac72aaa275e277b8/anvio-pangenomics/Dockerfile#L4\"\u003epip\u003c/a\u003e and setting the \u003ca href=\"anvio-pangenomics/entrypoint.sh\"\u003eentrypoint\u003c/a\u003e to the conda environment of anvio for the docker runtime. Note \u003ca href=\"anvio-pangenomics/profile\"\u003eprofile\u003c/a\u003e is included to make sure the container sources the \u003ccode\u003e.bashrc\u003c/code\u003e for the conda path.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-building-singularity-images\" class=\"anchor\" href=\"#building-singularity-images\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding Singularity images\u003c/h3\u003e\n\u003cp\u003eOur local cluster singularity version:\u003c/p\u003e\n\u003cpre lang=\"[rbartelme@gpu06\"\u003e\u003ccode\u003esingularity-ce version 3.8.0\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eBuilding from the Docker image above:\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNOTE:\u003c/strong\u003e \u003cem\u003eThis required \u003ccode\u003esudo su\u003c/code\u003e on our local cluster, which I have access to, this has not been tested with \u003ccode\u003e--fakeroot\u003c/code\u003e yet.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esudo su\u003c/code\u003e\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eSingularity build statement, using Singularity \u003ca href=\"anvio-pangenomics/Singularity\"\u003erecipe\u003c/a\u003e:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity build anvio-pangenomics.sif Singularity\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGet ownership of Singularity \u003ccode\u003e*.sif\u003c/code\u003e file and set group permissions.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esudo chown rbartelme:iplant-everyone anvio-pangenomics.sif\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRead up on job scheduling with your HPC\u0027s IT team documentation\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-example-with-slurm-singularity-and-snakemake\" class=\"anchor\" href=\"#example-with-slurm-singularity-and-snakemake\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample with SLURM, Singularity, and Snakemake\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-snakemake-workflows-with-singularity\" class=\"anchor\" href=\"#snakemake-workflows-with-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSnakemake Workflows with Singularity\u003c/h3\u003e\n\u003cp\u003eAnvi\u0027o has awesome snakemake \u003ca href=\"\"\u003eworkflows\u003c/a\u003e built in! This is the \"end-to-end\" approach for all your HPC or cloud compute needs.\u003c/p\u003e\n\u003chr\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-comparative-genomics\" class=\"anchor\" href=\"#comparative-genomics\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eComparative Genomics\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003eExample json input for Comparative Genomics Workflow:\u003c/strong\u003e\u003c/p\u003e\n\u003chr\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1628704470.0
+ "updated_at": 1665633331.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.0.4"
],
- "full_name": "truatpasteurdotfr/singularity-docker-centos8-warewulf4-builder",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-docker-centos8-warewulf4-builder-\" class=\"anchor\" href=\"#singularity-docker-centos8-warewulf4-builder-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-docker-centos8-warewulf4-builder \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-centos8-warewulf4-builder/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-centos8-warewulf4-builder/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003ewarewulf4 builder container based on a CentOS 8 x86_64 docker image built from github actions\u003c/p\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why\" class=\"anchor\" href=\"#why\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eprovide a minimal builder for warewulf4\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-docker\" class=\"anchor\" href=\"#docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -ti ghcr.io/truatpasteurdotfr/singularity-docker-centos8-warewulf4-builder:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec oras://ghcr.io/truatpasteurdotfr/singularity-docker-centos8-warewulf4-builder:latest rpmbuild -ta warewulf-4.2.0.tar.gz \n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "Altava/tfd_time",
+ "latest_release": "0.4",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-temporalfastdownward\" class=\"anchor\" aria-hidden=\"true\" href=\"#temporalfastdownward\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTemporalFastDownward\u003c/h1\u003e\n\u003cp\u003eThe version of Temporal Fast Downward.\nThis version has been ported to Python3 (tested with Python3.8)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-information\" class=\"anchor\" aria-hidden=\"true\" href=\"#information\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInformation\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://gki.informatik.uni-freiburg.de/tools/tfd/\" rel=\"nofollow\"\u003ehttp://gki.informatik.uni-freiburg.de/tools/tfd/\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://www.fast-downward.org\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003e$ ./build\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\u003cp\u003ePatrick Eyerich, Robert Mattm\u00fcller and Gabriele R\u00f6ger.\nUsing the Context-enhanced Additive Heuristic for Temporal and Numeric Planning.\nIn Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS 2009), 2009.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1635198514.0
+ "updated_at": 1665578634.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "rstudio_server_app/Singularity"
+ "Singularity",
+ "IHEC/Singularity.ihec"
],
- "full_name": "CHPC-UofU/OOD-pe-apps",
+ "full_name": "pranit123-hub/gemBS",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ood-apps\" class=\"anchor\" href=\"#ood-apps\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOOD-apps\u003c/h1\u003e\n\u003cp\u003eRepository of CHPC\u0027s PE Open OnDemand apps\u003c/p\u003e\n\u003cp\u003eThis is a repository of interactive apps used at CHPC Protected Environment with Open OnDemand.\u003c/p\u003e\n\u003cp\u003eEach subdirectory has its own README.md which contains information about this particular app.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-news\" class=\"anchor\" aria-hidden=\"true\" href=\"#news\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNews\u003c/h1\u003e\n\u003cp\u003eFirst release of gemBS-rs, a complete rewrite of the gemBS pipeline (apart from the mapper) in Rust bringing increased\nstability while maintaining the high performance of gemBS: \u003ca href=\"https://github.com/heathsc/gemBS-rs.git\"\u003ehttps://github.com/heathsc/gemBS-rs.git\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-gembs\" class=\"anchor\" aria-hidden=\"true\" href=\"#gembs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egemBS\u003c/h1\u003e\n\u003cp\u003egemBS is a high performance bioinformatic pipeline designed for highthroughput analysis\nof DNA methylation data from whole genome bisulfites sequencing data\n(WGBS). It combines GEM3, a high performance read aligner and\nbs_call, a high performance variant and methyation caller, into a streamlined and efficient pipeline for\nbisulfite sueqnce analysis.\u003c/p\u003e\n\u003cp\u003eThe manuscript describing the pipeline is available \u003ca href=\"https://www.biorxiv.org/content/early/2017/10/11/201988\" rel=\"nofollow\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-licensing\" class=\"anchor\" aria-hidden=\"true\" href=\"#licensing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicensing\u003c/h2\u003e\n\u003cp\u003egemBS is licensed under GPL.\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-download\" class=\"anchor\" aria-hidden=\"true\" href=\"#download\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownload\u003c/h2\u003e\n\u003cp\u003eUse \u003ccode\u003egit clone --recursive\u003c/code\u003e to retrieve the complete source code including the code from external projects such as \u003ccode\u003ebs_call\u003c/code\u003e and \u003ccode\u003egem3-mapper\u003c/code\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone --recursive https://github.com/heathsc/gemBS.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eBefore starting the installation of gemBS, you will need to install\nor check the installation of several packages.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003ea) gcc with development libraries\nb) python3, pip3, matplotlib, multiprocess\nc) zlib, lzma, openssl, libcurl, libncurses, wget, pigz\u003c/p\u003e\n\u003cp\u003eIf you are working on a clean (fairly recent) Ubuntu installation, you\ncan install everything required with the followiwg commands:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo apt-get update\nsudo apt-get install -y python3 build-essential git python3-pip wget pigz\nsudo apt-get install -y zlib1g-dev libbz2-dev\nsudo apt-get install -y libncurses5-dev liblzma-dev libssl-dev libcurl4-openssl-dev\npip3 install matplotlib multiprocess\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003e\n\u003cp\u003eDownload the gemBS distribution if you haven\u0027t already done so:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003egit clone --recursive https://github.com/heathsc/gemBS.git\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eUse python install command:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eTo install to the standard system location (i.e., so that all users\ncan use gemBS):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e``python3 setup.py install``\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo install to the user\u0027s home directory:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e``python3 setup.py install --user``\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-check-your-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#check-your-installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCheck your installation\u003c/h2\u003e\n\u003cp\u003eFor checking your installation follow this\n\u003ca href=\"http://statgen.cnag.cat/gemBS/v3/UserGuide/_build/html/example.html\" rel=\"nofollow\"\u003eworked example\u003c/a\u003e.\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eDocumentation can be found at\n\u003ca href=\"http://statgen.cnag.cat/gemBS/v3/UserGuide/_build/html/index.html\" rel=\"nofollow\"\u003egemBS\u003c/a\u003e.\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-changelog\" class=\"anchor\" aria-hidden=\"true\" href=\"#changelog\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eChangelog:\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e3.5.5 Fix logging bug caused by trimming change in 3.5.3\n3.5.4 Fix bug in the output of strand specific cpg txt files (not\n encode Bed files) where the \u0027C\u0027 entry was not being printed\n3.5.3 Allow for read end specific trimming in bs_call\n3.5.3 Enable range checks and asserts in bs_call all target; add bs_call debug target\n3.5.2 Correct problems with gcc10. Move to htslib/samtools/bcftools version 1.11\n3.5.1 Check if C compiler requires --std=c99 flag for standards conformant behaviour\n3.5.1 Make sure bgzip is copied correctly during installation\n3.5.0 Make bs_call process contig pools from largest to smallest (this change alters the sqlite db format so\n if you have a previously started gemBS run you should (a) remove the .gemBS directory, (b) redo the\n \u0027gemBS prepare\u0027 step to recreate the db file and (3) run \u0027gemBS db-sync\u0027. \n3.5.0 Switch bs_call and snpxtr to use the new dbSNP index format\n3.5.0 Add ability of dbSNP to read the new JSON and VCF dbSNP format files\n that are now used for human and non-human species respectively\n3.5.0 Add multithreading to dbSNP_idx\n3.5.0 Change format of dbSNP index to allow (a) efficient loading\n of SNP data for individual contigs and (b) parallel index creation \n3.5.0 Rewrite mextr and snpxtr as standalone tools rather than\n bcftools plugins. Now multithreaded and (relatively) memoryefficient\n3.5.0 Replace bedToBigBed and wigToBigWig to reduce memory usage\n and improve speed\n3.4.5 Fix crash when using the -k (keep-mismatch) flag, and fix rare hangs at end of processing\n3.4.4 Sort input bcf files to bcftools concat stage to ensure reproducibility.\n3.4.4 Add extra sort keys when generating pools to ensure stability of pool membership in the event of multiple contigs\n having the same size\n3.4.3 Remove calculation of the goodness of filter (GOF) as this is expensive, non-standard and unreliable. Removing this\n removes the dependency on GSL.\n3.4.3 Add autodetection of output format to bs_call (unless explicitly specified on the command line)\n3.4.2 Add CRAM support (via make_cram option in configuration file)\n3.4.1 Add benchmark-mode that does not write date or program version numbers into SAM/BAM or VCF/BCF files\n Switch to samtools, bcftools and htslib v1.10\n3.4.0 Move to new bs_call version (2.1.0) which is more efficient\n in memory use and can read BAMs and write BCFs natively.\n The new bs_call requires a faidx indexed reference, so gemBS\n no creates this during indexing.\n3.4.0 Add switches to give more control to threads and memory\n usage in mapping and calling stages\n3.3.3 Remove legacy pathway for config files with no header line (fix issue \u0027error in gemBS index #65)\n3.3.2 Fix error where header line for wig files could be omitted\n3.3.2 Fix generation of non_cpg files\n3.3.1 Fix Attribute error bug due to not checking if conversion is a list\n3.3.0 Make new release for IHEC\n3.3.0 Switch conversion default in IHEC_standard configuration to 0.01,0.05 rather than auto, which can give odd results if conversion controls not present or not working correctly\n3.3.0 Fix bug where conversion parameters could be ignored\n3.2.13 Fix formatting bug in mextr with multiple samples (not triggered in normal gemBS use)\n3.2.12 Ensure that conversion statistics are correctly calculated for non-stranded or reverse conversion protocols\n3.2.11 Introduce reverse_conversion option for mapping where read 1 is G2A converted and read 2 is C2T converted\n3.2.10 Correct regex patch for single end reads\n3.2.9 Update Singularity and Dockerfile recipes to allow kemp utils to be built correctly\n3.2.9 Make setup.py and gemBS/commands.py read the version information from gemBS/version.py, so ensuring consistency\n3.2.9 Fix bug added in last version where options in config file were not being taken into account\n3.2.8 Fix mis specification errors in long options for mextr. \n3.2.8 Fix bug where mextr (methyl extract plugin for bcftools) would crash if cpg output option was not set.\n3.2.7 Apply patches for bugs in handling single end reads (suggested by I. Moghul)\n3.2.7 Changed regex for filenames to make it more general (suggested by I. Moghul)\n3.2.7 Fixed bug (reported by chhylp123) where zero arguments to some options were being ignored\n3.2.6 Cleaned up compilation and cleaning of gemBS tools\n3.2.6 Fixed python error if either the over conversion reference sequence was not defined\n3.2.6 Added check in bs_call that conversion parameters are valid (between 0 and 1)\n3.2.6 Perform more stringent sanity checking on conversion vaalues when autocomputed by gemBS\n3.2.6 Use --diasble-lzma configuration flag for samtools and bcftools as we don\u0027t need it and it removes an unneccesary dependency\n3.2.6 Add install options --disable-cuda (on by default) and --enable-cuda that affect GEM3 comppilation\n3.2.6 Bug fix with incorrect handling of duplicate reads\n3.2.5 Minor bug fix - correct error with non-paired end non-bisulfite reads\n3.2.4 Modify the bisulfite processing in gem-mapper to be more efficient (in particular for the non-stranded option)\n3.2.4 Modify gemBS to use the new conversion options for gem-mapper\n3.2.4 Switch gem-mapper to use option --underconversion-sequence and --overconversion-sequence rather than --underconversion_sequence to be consistent with other options\n3.2.3 Fixed bug if conversion parameters were not set\n3.2.2 Rework non-stranded mode so that both possible conversions are tried and the results merged\n3.2.2 Fix bug where non-stranded flag was not being passed to mapper in paired end mode\n3.2.1 Move warning message from bscall from stdout to stderr\n3.2.1 Switch Singularity build to use Ubuntu 16.04 rather than 18.04 to allow the image to work in CentOS 6 (Docker build changed as well to keep the two in sync)\n3.2.1 Fix undeclared variable bugs and missing --ignore-deps option in merge-bcfs\n3.2.1 Add default for dbSNP_index if dbSNP_files is set\n3.2.1 Add gsl-path install option\n3.2.0 Make new release\n3.1.0 Make installation process more modular. Allow for sub-installs\n3.1.0 Add support for reading config from ${index_dir}/gemBS.json if it exists\n3.1.0 Add --reference-bias option to mextr and gemBS extract\n3.1.0 Add support for non-bisulfite mapping of individual datasets\n3.1.0 Allow white space in variable values\n3.1.0 Allow fallback to gzip if pigz not present\n3.1.0 Add --dry-run, --json, --ignore-db and --ignore-dep to extract command\n3.1.0 Add --ignore-dep option to call and merge-bcfs commands\n3.1.0 Add SNP extraction function to extract command\n3.0 Make v3.0 release\n3.0 Merge with master branch.\n3.0 Bump samtools sort memory limit to 2G\n3.0 Add extra_references option for reference generation\n3.0 Allow input files to mapping to be shell commands\n3.0 Add links to documentation\n3.0 Upload new yeast example and add documentation\n3.0 Add --dir option to gemBS\n3.0 Add --ignore-db options for --dry-run / --json\n3.0 Add --json output option for dry runs\n3.0 Update help text to match new functions\n3.0 Introduce standard analysis configurations stored within distribution\n3.0 Switch gem3-mapper distribution to gembs branch on official gem3-mapper repo\n3.0 Removal of incomplete files and roll back of db in the event of pipeline failure\n3.0 Automatic removal of individual BAMs and BCFs after successful merging\n3.0 Prevent pipelines hanging in event of failure\n3.0 Generate ENCODE bed and bigbed files\n3.0 Switch to python 3\n3.0 Switch to mextr for BCF filtering\n3.0 Include fetch and build of samtools / bcftools during build process\n3.0 Add dry-run capability to map and call commands\n3.0 Introduce contig pools to automatically group small contigs\n3.0 Automatic generation of contig.size files from index build\n3.0 Allow use of in memory sqlite3 db as an option\n3.0 Allow multiple instances of gemBS (possible on different hosts) to work \n simultaneously on the same analysis\n3.0 Reduce and simply commands\n3.0 Add Dockerfile\n3.0 Add multi-threading and multi-processing options for most commands\n3.0 Use sqlite3 to track progress of analyses, file paths etc.\n3.0 Added more flexible configuration options (new csv format + new configuration file)\n3.0 Remove test dataset from distribution (distribute from web site)\n2.1.0 Ensure commands run during pipeline come from installation\n2.1.0 Added Singularity build recipe\n2.1.0 Add new command gemBS direct-mapping\n2.1.0 Fixed Makefile clean in tools\n2.0.2 Fixed bug related with the percentage of High Quality Variant in Variants summary report.\n2.0.2 Check temporary directory existence.\n2.0.2 Fixed QualityNonRefCpg sample name in png image.\n2.0.2 Fixed mapper issues related with aligning performace.\n2.0.2 Fixed arguments for Under/Over Conversion sequence name in gem3-mapper\n2.0.1 On bscall repository, fixed argument -k about discarded reads that do not form proper pairs.\n2.0 Check tmp folder before starting mapping process.\n2.0 Added Left and Right Trimming optional arguments to gemBS bscall.\n2.0 Added GC Coverage correlation value to BS Call Stats Summary.\n2.0 Fixed error when reporting complete path to not found bam files.\n2.0 Fixed iteration over sampleBams dictionary in MergeAll method.\n2.0 Updated: Avoid redo indexing when merging just one file.\n2.0 Changed conversion formula.\n2.0 Added parameter for dbSNP.\n2.0 Added threads to bscall.\n2.0 Removed CpGs reports. Already done from bscall report.\n2.0 Fixed bs_call makefile for the gcc to be used.\n2.0 New bscall version. Generates JSON report.\n2.0 Removed gemBS options snp-stats,cpg-report,cpg-stats.\n2.0 Added summary report from the bs_call json stats\n2.0 New BSCall Report. From bscall son file generates three types of reports:\n Mapping and Coverage Report\n Bs-Genotypes Calls Report\n Methylation Statistics report\n1.7 Added non stranded read conversion parameter\n1.7 Fixed SE crash when estimating overlapped bases.\n1.7 Fixed gem-index (gem3) to follow fastq and SAM specifications. \n Modified gem3-mapper repository external module.\n New external module https://github.com/heathsc/gem3-mapper.git\n1.7 Fixed threads parameter to samtools merge\n1.7 Fixed threads parameter to gem-mapper\n1.7 Removed Indels Field on Variants Report.\n1.7 Added Overlapping Bases at Mapping Report\n1.7 Modified Base Counts Overall, removed Base Counts general and Base Counts Overall\n1.7 New Dinucleotide CpGs Report\n New table dinucleotide stats\n New plots for Informative Reads and CpGs\n Methylation levels plots for different types of CpGs\n Summary Table\n1.7 New Readme file to inform about report test\n1.7 New basic statis table for Variants Report\n1.7 Removed parameter -r (reference length) parameter for mapping reports command (gemBS bsMap).\n1.6 New CpGs Density plot, include box plos, bar plot and fitting curve\n1.6 Change name at CpG report:\n \"Heterozygous\" for \"Alternative CX\"\n \"De Novo CpGs Methylation Status\" for \"Non Reference CpGs\"\n \"CpGs with SNP\" for \"SNPs (CX) at Reference CpGs\"\n1.6 CpGs Report Simplified to Q\u0026gt;20\n1.6 BigWig Default parameters for filtering CpG per a given quality and a total number of supported informative reads \n1.5 Initial Release \n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-developers\" class=\"anchor\" aria-hidden=\"true\" href=\"#developers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopers\u003c/h2\u003e\n\u003cp\u003egemBS:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eMarcos Fernandez-Callejo - \u003ca href=\"mailto:marcos.fernandez@cnag.crg.eu\"\u003emarcos.fernandez@cnag.crg.eu\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eSimon Heath - \u003ca href=\"mailto:simon.heath@gmail.com\"\u003esimon.heath@gmail.com\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003egem mapper:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSantiago Marco-Sola - \u003ca href=\"mailto:santiagomsola@gmail.com\"\u003esantiagomsola@gmail.com\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ebisulfite caller and filtering:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSimon Heath - \u003ca href=\"mailto:simon.heath@gmail.com\"\u003esimon.heath@gmail.com\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1631895259.0
+ "updated_at": 1664976329.0
},
{
"data_format": 2,
- "description": null,
+ "description": "This is a github MIRROR of the main ocellaris repo on bitbucket (https://bitbucket.org/ocellarisproject/ocellaris). NO pull request or issues should go to this repo, please! This repository is only here to support Singularity Hub which lacks bitbucket support. The code in this repository may be severely out of date! It is synced with bitbucket manually and may be months or years behind!",
"filenames": [
- "Singularity"
+ "containers/Singularity"
],
- "full_name": "vigo332/singularity-rstudio-r4",
+ "full_name": "TormodLandet/Ocellaris",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-rstudio-server\" class=\"anchor\" href=\"#singularity-rstudio-server\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity RStudio Server\u003c/h1\u003e\n\u003cp\u003eR 4.0.3\nRStudio 1.3.1903\u003c/p\u003e\n\u003cp\u003eBased on repo \u003ca href=\"https://github.com/nickjer/singularity-rstudio\"\u003ehttps://github.com/nickjer/singularity-rstudio\u003c/a\u003e\nSingularity image for \u003ca href=\"https://www.rstudio.com/products/rstudio/\" rel=\"nofollow\"\u003eRStudio Server\u003c/a\u003e. It was built on top of the base\nSingularity image \u003ca href=\"https://github.com/nickjer/singularity-r\"\u003enickjer/singularity-r\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThis is still a work in progress.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-build\" class=\"anchor\" href=\"#build\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild\u003c/h2\u003e\n\u003cp\u003eYou can build a local Singularity image named \u003ccode\u003esingularity-rstudio.simg\u003c/code\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build singularity-rstudio.simg rstudio.def\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-deploy\" class=\"anchor\" href=\"#deploy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeploy\u003c/h2\u003e\n\u003cp\u003eInstead of building it yourself you can download the pre-built image from\n\u003ca href=\"https://www.singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --arch amd64 library://vigo332/default/singularity-rstudio-r4:v0.01\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-run\" class=\"anchor\" href=\"#run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-rstudio-server\" class=\"anchor\" href=\"#rstudio-server\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRStudio Server\u003c/h3\u003e\n\u003cp\u003eThe \u003ccode\u003erserver\u003c/code\u003e command is launched using the default run command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run singularity-rstudio.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor as an explicit app:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --app rserver singularity-rstudio.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003esingularity run --app rserver singularity-rstudio.simg --help\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ecommand-line options:\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003everify:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --verify-installation arg (=0) verify the current installation\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eserver:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-working-dir arg (=/) program working directory\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-user arg (=rstudio-server) program user\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-daemonize arg (=0) run program as daemon\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-app-armor-enabled arg (=1) is app armor enabled for this session\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e --server-set-umask arg (=1) set the umask to 022 on startup\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003e...\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-simple-password-authentication\" class=\"anchor\" href=\"#simple-password-authentication\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSimple Password Authentication\u003c/h4\u003e\n\u003cp\u003eTo secure the RStudio Server you will need to:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eLaunch the container with the environment variable \u003ccode\u003eRSTUDIO_PASSWORD\u003c/code\u003e set to\na password of your choosing.\u003c/li\u003e\n\u003cli\u003eLaunch the \u003ccode\u003erserver\u003c/code\u003e command with the PAM helper script \u003ccode\u003erstudio_auth\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eAn example is given as:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eRSTUDIO_PASSWORD=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003epassword\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e singularity run singularity-rstudio.simg \\\n --auth-none 0 \\\n --auth-pam-helper-path=pam-helper \\\n --server-data-dir=/tmp\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNow when you attempt to access the RStudio Server you will be presented with a\nlog in form. You can log in with your current user name and password you set in\n\u003ccode\u003eRSTUDIO_PASSWORD\u003c/code\u003e.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-ldap-authentication----to-be-verified\" class=\"anchor\" href=\"#ldap-authentication----to-be-verified\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLDAP Authentication -- To be verified\u003c/h4\u003e\n\u003cp\u003eAnother option is using an LDAP (or Active Directory) server for\nauthentication. Configuration of the LDAP authentication script \u003ccode\u003eldap_auth\u003c/code\u003e is\nhandled through the following environment variables:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eLDAP_HOST\u003c/code\u003e - the host name of the LDAP server\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eLDAP_USER_DN\u003c/code\u003e - the formatted string (where \u003ccode\u003e%s\u003c/code\u003e is replaced with the\nusername supplied during log in) of the bind DN used for LDAP authentication\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eLDAP_CERT_FILE\u003c/code\u003e - the file containing the CA certificates used by\nthe LDAP server (default: use system CA certificates)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eAn example for an LDAP server with signed SSL certificate from a trusted CA:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_HOST=ldap.example.com\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_USER_DN=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ecn=%s,dc=example,dc=com\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\nsingularity run singularity-rstudio.simg \\\n --auth-none 0 \\\n --auth-pam-helper-path ldap_auth\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAn example for an LDAP server with a self-signed SSL certificate:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_HOST=ldap.example.com\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_USER_DN=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ecn=%s,dc=example,dc=com\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e LDAP_CERT_FILE=/ca-certs.pem\nsingularity run \\\n --bind /path/to/ca-certs.pem:/ca-certs.pem \\\n singularity-rstudio.simg \\\n --auth-none 0 \\\n --auth-pam-helper-path ldap_auth\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNote that we had to bind mount the CA certificates file from the host machine\ninto the container and specify the container\u0027s path in \u003ccode\u003eLDAP_CERT_FILE\u003c/code\u003e (not\nthe host\u0027s path).\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-r-and-rscript\" class=\"anchor\" href=\"#r-and-rscript\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR and Rscript\u003c/h3\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/nickjer/singularity-r\"\u003enickjer/singularity-r\u003c/a\u003e for more information on how to run \u003ccode\u003eR\u003c/code\u003e and\n\u003ccode\u003eRscript\u003c/code\u003e from within this Singularity image.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributing\" class=\"anchor\" href=\"#contributing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003cp\u003eBug reports and pull requests are welcome on GitHub at\n\u003ca href=\"https://github.com/nickjer/singularity-rstudio\"\u003ehttps://github.com/nickjer/singularity-rstudio\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe code is available as open source under the terms of the \u003ca href=\"http://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003eMIT License\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1631568351.0
+ "updated_at": 1553974960.0
},
{
"data_format": 2,
@@ -15618,190 +15065,179 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "cclerget/test-wh",
+ "full_name": "thehyve/singularity-jupyter",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-jupyter\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-jupyter\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-jupyter\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1547670364.0
+ "updated_at": 1674903596.0
},
{
"data_format": 2,
- "description": "D\u00e9mo conteneur PRECIS",
+ "description": " Build for docker and singularity containers for temporal lobe segmentation",
"filenames": [
+ "Singularity.3.1.0",
"Singularity"
],
- "full_name": "cclerget/demo-precis",
+ "full_name": "VUIIS/Temporal_Lobe_app",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-temporal_lobe_app\" class=\"anchor\" aria-hidden=\"true\" href=\"#temporal_lobe_app\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTemporal_Lobe_app\u003c/h1\u003e\n\u003cp\u003eThis includes everything required to build a docker and corresponding singularity container for the Temporal Lobe pipeline.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://hub.docker.com/r/vuiiscci/temporal_lobe/tags/\" rel=\"nofollow\"\u003eDocker Hub\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.singularity-hub.org/collections/828\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-build-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild Instructions:\u003c/h1\u003e\n\u003cp\u003eJust clone and run \u003ccode\u003ebuild.sh\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/vuiiscci/Temporal_Lobe_app.git\ncd Temporal_Lobe_app/\n./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Instructions:\u003c/h1\u003e\n\u003cp\u003eFor docker:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo docker run --rm \\\n-v $(pwd)/INPUTS/:/INPUTS/ \\\n-v $(pwd)/OUTPUTS:/OUTPUTS/ \\\n--user $(id -u):$(id -g) \\\nvuiiscci/temporal_lobe\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor singularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -e \\\n-B INPUTS/:/INPUTS \\\n-B OUTPUTS/:/OUTPUTS \\\nshub://vuiiscci/Temporal_Lobe_app\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1494259937.0
+ "updated_at": 1592512741.0
},
{
"data_format": 2,
- "description": "R docker container for scanem",
+ "description": "Singularity recipe for NMRPipe",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.212_64"
],
- "full_name": "jacobhepkema/scanem-r",
+ "full_name": "ResearchIT/NMRPipe",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://quay.io/repository/jacobhepkema/scanem-r\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/85a1c7b34a5e0ff0bab3c5a2d59f5bdb663afbcd0fecbe64eeaea4d3cb247771/68747470733a2f2f717561792e696f2f7265706f7369746f72792f6a61636f626865706b656d612f7363616e656d2d722f737461747573\" alt=\"Docker Repository on Quay\" title=\"Docker Repository on Quay\" data-canonical-src=\"https://quay.io/repository/jacobhepkema/scanem-r/status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-scanem-r\" class=\"anchor\" href=\"#scanem-r\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003escanem-r\u003c/h1\u003e\n\u003cp\u003eR docker/singularity container for scanem. Docker container on quay.io (see above), singularity container at \u003ccode\u003eshub://jacobhepkema/scanem-r:latest\u003c/code\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-recipe-for-nmrpipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-recipe-for-nmrpipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Recipe for NMRPipe\u003c/h1\u003e\n\u003cp\u003eThis repo contains the recipe to run \u003ca href=\"https://www.ibbr.umd.edu/nmrpipe/\" rel=\"nofollow\"\u003eNMRPipe\u003c/a\u003e\nwithin a \u003ca href=\"https://singularity.lbl.gov\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e container, which can be built using \u003ca href=\"https://singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eVersions:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e212_64 - NMRPipe linux212_64 built on centos7.4\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1630677641.0
+ "updated_at": 1523030864.0
},
{
"data_format": 2,
- "description": null,
+ "description": " Build for docker and singularity containers for FMRIQA",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.4.0.0"
],
- "full_name": "tsgoten/multi-agent-tc",
+ "full_name": "VUIIS/FMRIQA_app",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-transactive_control\" class=\"anchor\" href=\"#transactive_control\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etransactive_control\u003c/h1\u003e\n\u003cp\u003eCode meant to support and simulate the Social Game that will be launched in 2020. Elements of transactive control and behavioral engineering will be tested and designed here\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eClone the repo\u003c/li\u003e\n\u003cli\u003eInstall \u003ca href=\"https://dvc.org/doc/install\" rel=\"nofollow\"\u003edvc\u003c/a\u003e (with google drive support)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eOn linux this is \u003ccode\u003epip install \u0027dvc[gdrive]\u0027\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eInstall Docker, if you have not already.\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003epython3 -m dvc remote add -d gdrive gdrive://1qaTn6IYd3cpiyJegDwwEhZ3LwrujK3_x\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003epython3 -m dvc pull\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eRun \u003ccode\u003e./run.sh\u003c/code\u003e from the root of the repo. This will put you in a shell in the docker container with the \u003ccode\u003erl_algos/logs\u003c/code\u003e directory mounted\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003epython3 StableBaselines.py sac test_experiment\u003c/code\u003e in the docker container to start an experiment with the name \u003ccode\u003etest_experiment\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003etensorboard --logdir rl_algos/logs\u003c/code\u003e from outside the docker container to view the logs\u003c/li\u003e\n\u003c/ol\u003e\n\u003chr\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-12202020\" class=\"anchor\" href=\"#12202020\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e12/20/2020\u003c/h3\u003e\n\u003cp\u003eThis repository has been cleaned and updated for use. It contains: (1) The OpenAI gym environment \"OfficeLearn\", in the \"gym-socialgame\" folder, and (2) implementations of Reinforcement learning algorithms in \"rl_algos\" folder. In the \"simulations\" folder are various datasets for setting up and training models associated with the gym simulation.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-912020\" class=\"anchor\" href=\"#912020\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e9/1/2020\u003c/h3\u003e\n\u003cp\u003eThe most recent running of the code involves navigating to the rl_algos/ directory, then running the python command for the vanilla version:\u003c/p\u003e\n\u003cp\u003epython StableBaselines.py sac\u003c/p\u003e\n\u003cp\u003eAdding in the planning model can be done with the following flags:\u003c/p\u003e\n\u003cp\u003epython StableBaselines.py sac --planning_steps=10 --planning_model=Oracle --num_steps=10000\u003c/p\u003e\n\u003cp\u003ePlease see transactive_control/gym-socialgame/gym_socialgame/envs for files pertaining to the setup of the environment. The socialgame_env.py contains a lot of the information necessary for understanding how the agent steps through the environment. The reward.py file contains information on the variety of reward types available for testing. agents.py contains information on the deterministic people that we created for our simulation.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-gym-socialgame\" class=\"anchor\" href=\"#gym-socialgame\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egym-socialgame\u003c/h3\u003e\n\u003cp\u003eOpenAI Gym environment for a social game.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-fmriqa_app\" class=\"anchor\" aria-hidden=\"true\" href=\"#fmriqa_app\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFMRIQA_app\u003c/h1\u003e\n\u003cp\u003eThis includes everything required (except for the \"spm12r6225_with_vbm8r435_compiled\" directory and \"FMRIQA_v4_0_0\" compiled MATLAB executable, which are too large to commit) to build a docker and corresponding singularity container for the FMRIQA pipeline.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://hub.docker.com/r/vuiiscci/fmriqa/tags/\" rel=\"nofollow\"\u003eDocker Hub\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.singularity-hub.org/collections/920\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-build-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild Instructions:\u003c/h1\u003e\n\u003cp\u003eJust clone and run \u003ccode\u003ebuild.sh\u003c/code\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/vuiiscci/FMRIQA_app.git\ncd FMRIQA_app/\n./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNOTE that you must have \"spm12r6225_with_vbm8r435_compiled\" directory and \"FMRIQA_v4_0_0\" compiled MATLAB executable.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Instructions:\u003c/h1\u003e\n\u003cp\u003eFor docker:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo docker run --rm \\\n-v $(pwd)/INPUTS/:/INPUTS/ \\\n-v $(pwd)/OUTPUTS:/OUTPUTS/ \\\n--user $(id -u):$(id -g) \\\nvuiiscci/fmriqa\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor singularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -e \\\n-B INPUTS/:/INPUTS \\\n-B OUTPUTS/:/OUTPUTS \\\nshub://vuiiscci/FMRIQA_app\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1630639192.0
+ "updated_at": 1674914637.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity Recipe for High-Performance GEOS-Chem (GCHP)",
"filenames": [
"Singularity"
],
- "full_name": "dcgc-bfx/singularity-sc-rhapsody",
+ "full_name": "geoschem/Singularity_GCHP",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singlecell-sc-rhapsody\" class=\"anchor\" href=\"#singlecell-sc-rhapsody\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esinglecell-sc-rhapsody\u003c/h1\u003e\n\u003cp\u003eDCGC singularity recipe for containerized versions of the BD Rhapsody Targeted Analysis and Whole Transcriptome Analysis (WTA) pipelines (available at \u003ca href=\"https://bitbucket.org/CRSwDev/cwl/src/master/\" rel=\"nofollow\"\u003ehttps://bitbucket.org/CRSwDev/cwl/src/master/\u003c/a\u003e).\u003c/p\u003e\n",
+ "readme": "\u003ch2\u003e\u003ca id=\"user-content-this-repository-is-obsolete-and-has-been-archived\" class=\"anchor\" aria-hidden=\"true\" href=\"#this-repository-is-obsolete-and-has-been-archived\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTHIS REPOSITORY IS OBSOLETE AND HAS BEEN ARCHIVED\u003c/h2\u003e\n",
"stargazers_count": 0,
"subscribers_count": 4,
"topics": [],
- "updated_at": 1630594642.0
+ "updated_at": 1674873388.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity images for deep learning software",
"filenames": [
- "Singularity"
+ "Singularity.py3_fast2",
+ "Singularity.py3_tf1gnt",
+ "Singularity.py3_dmda",
+ "Singularity.py3_trch",
+ "Singularity.py2_tf17",
+ "Singularity.py2_tf110",
+ "Singularity.py3_tf2gnt",
+ "Singularity.py3_tf"
],
- "full_name": "genomic-medicine-sweden/RareDisease_RNA_workflow",
+ "full_name": "gnperdue/singularity_imgs",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-raredisease_rna_workflow\" class=\"anchor\" href=\"#raredisease_rna_workflow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRareDisease_RNA_workflow\u003c/h1\u003e\n\u003cp\u003enextflow main.nf --help\u003c/p\u003e\n\u003cp\u003erun a single sample:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow main.nf -profile singularity --r1 read1.fq.gz --r2 --read2.fq.gz --sample sampleID --output output_directory -c config.conf\n\noptionally, a vcf file may be provided:\n\nnextflow main.nf -profile singularity --samplesheet sample.csv --output output_directory --vcf input.vcf -c config.conf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003erun all samples in a samplesheet:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow main.nf -profile singularity --samplesheet sample.csv --output output_directory -c config.conf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ethe samplesheet is a comma-separated file with the following header:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esample,r1,r2,vcf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe sample, r1 and r2 are mandatory, the vcf column may be left empty\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-setup\" class=\"anchor\" href=\"#setup\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esetup\u003c/h1\u003e\n\u003cp\u003eModify the config file:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ereference_dir : specify the folder with all your references \n\nSTAR_ref_dir : the star reference index folder\n\nref :the reference fasta file (dict and fai file required)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe pipeline will automatically download and cache the latest singularity image.\u003c/p\u003e\n\u003cp\u003eAlternatively you can download the singularity collection:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://J35P312/RareDisease_RNA_workflow\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOr install all dependencies, as listed in dependencies\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edependencies\u003c/h1\u003e\n\u003cp\u003eWhen using singularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow\nsingularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eotherwise:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow\nsamtools\nSTAR\ngatk\nstringtie\npicard\nstar-fusion\nfusioncatcher\nArriba\t\nmultiQC\nfastQC\nBootstrapAnn (https://github.com/J35P312/BootstrapAnn)\nucsc-wigtobigwig\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003eSingularity containers (with inspiration from J. Simone, \u003ca href=\"https://github.com/TomaszGolan/mlmpr\"\u003eT. Golan\u003c/a\u003e, and \u003ca href=\"https://github.com/DeepLearnPhysics/larcv2-singularity\"\u003eK. Terao\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/998\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003ePull, e.g. \u003ccode\u003e$ singularity pull shub://gnperdue/singularity_imgs:py2_tf17\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-notes\" class=\"anchor\" aria-hidden=\"true\" href=\"#notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSingularity.py2_tf110\u003c/code\u003e - See \u003ca href=\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/docker/Dockerfile.devel-gpu\"\u003eTF\u003c/a\u003e for base package definition.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 9,
- "topics": [],
- "updated_at": 1630424912.0
- },
- {
- "data_format": 2,
- "description": "Container for R with libraries for LBNL Energy Technology Area project",
- "filenames": [
- "Singularity"
+ "subscribers_count": 2,
+ "topics": [
+ "singularity",
+ "singularity-hub",
+ "singularity-container"
],
- "full_name": "tin6150/r4eta",
- "latest_release": null,
- "stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1635819130.0
+ "updated_at": 1593117348.0
},
{
"data_format": 2,
- "description": "MR preprocessing for the Healthy Brain Ageing clinic at the Thompson Institute, USC.",
+ "description": "for singularity biuld",
"filenames": [
- "lesion-segmentation_src/Singularity",
- "qatools_src/Singularity",
- "deep-brain-net_src/Singularity"
+ "Singularity"
],
- "full_name": "jakepalmer/TI-HBA-MRprep",
+ "full_name": "d-w-moore/singularity-icommands-4.2.1",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ti-hba-mr-preprocessing\" class=\"anchor\" href=\"#ti-hba-mr-preprocessing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTI HBA MR Preprocessing\u003c/h1\u003e\n\u003cp\u003eThis is a basic preprocessing pipeline for MRI data from the Healthy Brain Ageing Clinic at the Thompson Institute, USC.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pipeline-overview\" class=\"anchor\" href=\"#pipeline-overview\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline overview\u003c/h2\u003e\n\u003cp\u003eThese are the steps of the pipeline. These steps are explained in more detail below, along with links to helpful resources/documentation and citations.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDicoms are converted to a BIDS compliant dataset with HeuDiConv.\u003c/li\u003e\n\u003cli\u003eAutomatic QC for the T1-weighted scan using MRIQC.\u003c/li\u003e\n\u003cli\u003eSubcortical segmentation and cortical parcellation with FastSurfer (includes QC).\u003c/li\u003e\n\u003cli\u003eBrain age prediction with DeepBrainNet.\u003c/li\u003e\n\u003cli\u003eWMH segmentation with FSL\u0027s BIANCA.\u003c/li\u003e\n\u003cli\u003eDWI preprocessing with QSIprep.\u003c/li\u003e\n\u003cli\u003ersfMRI preprocessing with fMRIprep.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eEach of these steps should be cited appropriately if used in publication (citations included below).\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-ideas-behind-implementation\" class=\"anchor\" href=\"#ideas-behind-implementation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIdeas behind implementation\u003c/h3\u003e\n\u003cp\u003eThe pipeline was developed with the following ideas in mind:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003esubmit_jobs.sh\u003c/code\u003e orchestrates the pipeline by submitting a job on the HPC for each participant. For regular use, this is the only file that should need editing, e.g. editing paths and PBS parameters.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003erun_pipeline.py\u003c/code\u003e includes the main processing pipeline and simply wraps the Singularity commands for each step.\u003c/li\u003e\n\u003cli\u003eEach step is implemented in its own container on the HPC. Containers can be built from Dockerfile/Singularity files in the \u003ccode\u003e*_src\u003c/code\u003e folders or from published containters (noted in each section below).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo setup it requires building multiple containers, but the idea was for this pipeline to remain \u0027modular\u0027 so that each processing step is independent and can be modified/removed without affecting the rest of the pipeline (with the exception of dicom to BIDS conversion being required for all subsequent steps). Similarly, the pipeline can be extended by adding a container, processing script/command and a function in the \u003ccode\u003erun_pipeline.py\u003c/code\u003e script.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-assumed-input-file-structure\" class=\"anchor\" href=\"#assumed-input-file-structure\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAssumed input file structure\u003c/h2\u003e\n\u003cp\u003eThe pipeline takes dicoms as its input with the assumed file structure before processing being:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u251c\u2500\u2500 bids\n\u251c\u2500\u2500 derivatives\n\u251c\u2500\u2500 dicom\n \u251c\u2500\u2500 HBA_0001_T1\n \u251c\u2500\u2500 RESEARCH_PROTOCOLS_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n \u251c\u2500\u2500 AAHEAD_SCOUT_64CH_HEAD_COIL_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n \u251c\u2500\u2500 MPRAGE_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n \u251c\u2500\u2500 EP2D_DIFF_QBALL96DIR_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n ...\n \u251c\u2500\u2500 HBA_0002_T1\n \u251c\u2500\u2500 RESEARCH_PROTOCOLS_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n \u251c\u2500\u2500 AAHEAD_SCOUT_64CH_HEAD_COIL_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n \u251c\u2500\u2500 MPRAGE_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n \u251c\u2500\u2500 EP2D_DIFF_QBALL96DIR_\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n ...\n ...\n\u251c\u2500\u2500 TI-HBA-MRprep\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eWhere...\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003edicom\u003c/code\u003e = where the dicoms will be copied for each participant to be processed\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ebids\u003c/code\u003e = the BIDS compliant data converted from \u003ccode\u003edicom\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ederivatives\u003c/code\u003e = the pipeline outputs\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eTI-HBA-MRprep\u003c/code\u003e = the code in this repository\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-intended-usage\" class=\"anchor\" href=\"#intended-usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntended usage\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eMake sure directory structure exists as shown \u003ca href=\"##Assumed-input-file-structure\"\u003eabove\u003c/a\u003e in the analysis directory on the HPC.\u003c/li\u003e\n\u003cli\u003eClone this repo and move to the HPC.\u003c/li\u003e\n\u003cli\u003eCopy dicoms to process into the \u003ccode\u003edicom\u003c/code\u003e directory.\u003c/li\u003e\n\u003cli\u003eUpdate/check the schedular parameters in \u003ccode\u003esubmit_jobs.sh\u003c/code\u003e. It might take some testing to get these right, afterwhich they most likely won\u0027t need to be changed often.\u003c/li\u003e\n\u003cli\u003eUpdate/check the file paths in \u003ccode\u003esubmit_jobs.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eWhen ready to run the pipeline, type the following in terminal:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e /path/on/HPC\n\u003cspan class=\"pl-c1\"\u003esource\u003c/span\u003e submit_jobs.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e...where \u003ccode\u003e/path/on/HPC\u003c/code\u003e is the appropriate path to the data and code on the HPC.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-detailed-processing-steps\" class=\"anchor\" href=\"#detailed-processing-steps\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDetailed processing steps\u003c/h2\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eNOTE:\u003c/strong\u003e FastSurfer, QSIprep and fMRIprep require a FreeSurfer license, which can be obtained for free from \u003ca href=\"https://surfer.nmr.mgh.harvard.edu/fswiki/License\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. The file needs to be passed to the \u003ccode\u003esubmit_jobs.sh\u003c/code\u003e script.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-dicom-to-bids\" class=\"anchor\" href=\"#dicom-to-bids\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDicom to BIDS\u003c/h3\u003e\n\u003cp\u003eBIDS is a standard for structuring neuroimaging datasets that is being increasingly implemented that allows a consistent interface and documentation of datasets. A number of open source pipelines expect input to be in BIDS format.\u003c/p\u003e\n\u003cp\u003eHeuDiConv has been developed to automate the conversion from dicom to BIDS. It requires some setup (i.e. putting together a \u003ccode\u003eheuristic.py\u003c/code\u003e file to provide the rules for conversion), however this will generally only need to be setup once and has been done (see \u003ccode\u003eheudiconv_src/heuristic.py\u003c/code\u003e). This would need updating if the MRI sequences change. Example commands to help with the setup are included in the comments in the docstring for the \u003ccode\u003erunDcm2BIDS\u003c/code\u003e function in the \u003ccode\u003erun_pipeline.py\u003c/code\u003e file.\u003c/p\u003e\n\u003cp\u003eFor more info see \u003ca href=\"https://bids.neuroimaging.io/\" rel=\"nofollow\"\u003eBIDS\u003c/a\u003e and \u003ca href=\"https://heudiconv.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003eHeuDiConv\u003c/a\u003e documentation, also this HeuDiConv \u003ca href=\"https://reproducibility.stanford.edu/bids-tutorial-series-part-2a/\" rel=\"nofollow\"\u003ewalkthrough\u003c/a\u003e and \u003ca href=\"https://github.com/bids-standard/bids-starter-kit/wiki/\"\u003ewiki\u003c/a\u003e. The HeuDiConv \u003ca href=\"https://heudiconv.readthedocs.io/en/latest/installation.html#docker\" rel=\"nofollow\"\u003econtainer\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-mriqc\" class=\"anchor\" href=\"#mriqc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMRIQC\u003c/h3\u003e\n\u003cp\u003eThis is an automated QC pipeline for T1-weighted, T2-weighted and fMRI sequences (if present in BIDS folder). It produces visual reports and a range of QC metrics that may be useful for further analysis.\u003c/p\u003e\n\u003cp\u003eSee \u003ca href=\"https://mriqc.readthedocs.io/en/stable/\" rel=\"nofollow\"\u003edocumentation\u003c/a\u003e, \u003ca href=\"https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184661\" rel=\"nofollow\"\u003ecitation\u003c/a\u003e and the \u003ca href=\"https://hub.docker.com/r/poldracklab/mriqc/\" rel=\"nofollow\"\u003econtainer\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-fastsurfer\" class=\"anchor\" href=\"#fastsurfer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFastSurfer\u003c/h3\u003e\n\u003cp\u003eFastSurfer is a deep learning implementation of FreeSurfer. It provides essentially the same output but is faster (as you may have guessed) and more accurate.\u003c/p\u003e\n\u003cp\u003eSee the \u003ca href=\"https://deep-mi.org/research/fastsurfer/\" rel=\"nofollow\"\u003edocumentation\u003c/a\u003e, \u003ca href=\"https://www.sciencedirect.com/science/article/pii/S1053811920304985\" rel=\"nofollow\"\u003ecitation\u003c/a\u003e and the \u003ca href=\"https://github.com/Deep-MI/FastSurfer\"\u003egithub\u003c/a\u003e which also includes \u003ca href=\"https://github.com/Deep-MI/FastSurfer/tree/master/Docker\"\u003eDockerfiles\u003c/a\u003e.\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-fastsurfer-qc\" class=\"anchor\" href=\"#fastsurfer-qc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFastSurfer QC\u003c/h4\u003e\n\u003cp\u003eThis is just a quick visual QC step for the output of FastSurfer and is run automatically. It produces a CSV file with some QC metrics (some of which overlap with MRIQC) and screenshots to check the segmentation and cortical parcellation.\u003c/p\u003e\n\u003cp\u003eThis is only designed for quick, preliminary visual QC and full visual QC should be completed before any statistical analysis for publication (see \u003ca href=\"https://www.sciencedirect.com/science/article/pii/S1053811921004511\" rel=\"nofollow\"\u003ehere\u003c/a\u003e for discussion of QC approaches).\u003c/p\u003e\n\u003cp\u003eSee the \u003ca href=\"https://github.com/Deep-MI/qatools-python\"\u003edocumentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-deepbrainnet\" class=\"anchor\" href=\"#deepbrainnet\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeepBrainNet\u003c/h3\u003e\n\u003cp\u003eThis is a deep learning model developed for the prediction of brain age. It produces a single predicted age based on the T1-weighted input, which can then be used to calculate a difference score with chronological age.\u003c/p\u003e\n\u003cp\u003eThe model has been implemented in \u003ca href=\"https://antsx.github.io/ANTsPyNet/docs/build/html/utilities.html\" rel=\"nofollow\"\u003eANTsPyNet\u003c/a\u003e, including the preprocessing steps, which is used in \u003ccode\u003edeep-brain-net_src/run_prediction.py\u003c/code\u003e. The Dockerfile/Singularity file is also included in the \u003ccode\u003edeep-brain-net_src\u003c/code\u003e folder.\u003c/p\u003e\n\u003cp\u003eSee the \u003ca href=\"https://academic.oup.com/brain/article/143/7/2312/5863667?login=true\" rel=\"nofollow\"\u003ecitation\u003c/a\u003e for more info about the model development and interpretation and original \u003ca href=\"https://github.com/vishnubashyam/DeepBrainNet\"\u003ecode\u003c/a\u003e from authors.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-wmh-segmentation-with-bianca\" class=\"anchor\" href=\"#wmh-segmentation-with-bianca\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWMH segmentation with BIANCA\u003c/h3\u003e\n\u003cp\u003eBIANCA requires some pre/post processing. The steps used are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePreprocess T1 and FLAIR with \u003ccode\u003efsl_anat\u003c/code\u003e (see \u003ca href=\"https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat\" rel=\"nofollow\"\u003edocs\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a white matter mask with \u003ccode\u003emake_bianca_mask\u003c/code\u003e (see BIANCA \u003ca href=\"https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA/Userguide#Data_preparation\" rel=\"nofollow\"\u003edocs\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eCreate \u003ccode\u003emasterfile.txt\u003c/code\u003e as input for BIANCA\u003c/li\u003e\n\u003cli\u003eThe BIANCA output is a probability image, so apply thresholding (default to 0.9 here)\u003c/li\u003e\n\u003cli\u003eExtract the total WMH number and volume\u0027\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eBIANCA also requires some manually labeled WMH masks as training data. A recent \u003ca href=\"https://www.sciencedirect.com/science/article/pii/S1053811921004663?via%3Dihub#bib0013\" rel=\"nofollow\"\u003epaper\u003c/a\u003e suggested the use of consistent training labels may be beneficial to avoid inter-rater variability between manual segmentations. Currently, this pipeline makes use of manual segmentations provided by those authors (included in container) for the training labels. This could be changed in future if a sample of HBA participants were manually segmented.\u003c/p\u003e\n\u003cp\u003eBIANCA \u003ca href=\"https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA/Userguide#Data_preparation\" rel=\"nofollow\"\u003edocumentation\u003c/a\u003e, \u003ca href=\"https://fsl.fmrib.ox.ac.uk/fslcourse/lectures/practicals/seg_struc/#bianca\" rel=\"nofollow\"\u003etutorial\u003c/a\u003e and \u003ca href=\"https://www.sciencedirect.com/science/article/pii/S1053811916303251?via%3Dihub\" rel=\"nofollow\"\u003ecitation\u003c/a\u003e, as well as the \u003ca href=\"https://www.sciencedirect.com/science/article/pii/S1053811921004663?via%3Dihub#bib0013\" rel=\"nofollow\"\u003ecitation\u003c/a\u003e and discussion for training labels that can be found \u003ca href=\"https://issues.dpuk.org/eugeneduff/wmh_harmonisation/-/tree/master/BIANCA_training_datasets\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-qsiprep\" class=\"anchor\" href=\"#qsiprep\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQSIprep\u003c/h3\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eIMPORTANT:\u003c/strong\u003e This step has not been tested extensively. The defaults have been used for almost all options, however these should be checked before using this data in any further analysis.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eQSIprep is a BIDS app that runs preprocessing and reconstruction of DWI data. Only preprocessing is completed here but QSIprep is also an excellent tool to use for further analysis. Visual QC reports are also produced which provide and easy way to check the quality of the DWI data.\u003c/p\u003e\n\u003cp\u003eQSIprep utilises a number of software packages that should be references (as well as the QSIprep citation). Example citation information with references in produced as part of processing and can be found in the \u003ccode\u003elogs\u003c/code\u003e folder of the output.\u003c/p\u003e\n\u003cp\u003eSome steps in QSIprep (particularly eddy current correction and disortion correction with TOPUP) are resource intensive. Currently the pipeline is set to allow QSIprep\u0027s underlying workflow manager (\u003ca href=\"https://nipype.readthedocs.io/en/latest/#\" rel=\"nofollow\"\u003eNipype\u003c/a\u003e) to manage the CPU and RAM usage by detecting how many CPUs are available and using 90% of available RAM (see MultiProc section \u003ca href=\"https://miykael.github.io/nipype_tutorial/notebooks/basic_plugins.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://qsiprep.readthedocs.io/en/latest/index.html\" rel=\"nofollow\"\u003eDocumentation\u003c/a\u003e, \u003ca href=\"https://www.nature.com/articles/s41592-021-01185-5\" rel=\"nofollow\"\u003ecitation\u003c/a\u003e, Docker \u003ca href=\"https://hub.docker.com/r/pennbbl/qsiprep/\" rel=\"nofollow\"\u003eimage\u003c/a\u003e and info for using with \u003ca href=\"https://qsiprep.readthedocs.io/en/latest/installation.html#singularity-container\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-fmriprep\" class=\"anchor\" href=\"#fmriprep\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efMRIprep\u003c/h3\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eIMPORTANT:\u003c/strong\u003e This step has not been tested extensively. The defaults have been used for almost all options, however these should be checked before using this data in any further analysis.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003efMRIprep is another BIDS app for preprocessing fMRI data. As for QSIprep, fMRIprep uses several software packages that should also be referenced. Visual QC reports are also produced.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://fmriprep.org/en/latest/index.html\" rel=\"nofollow\"\u003eDocumentation\u003c/a\u003e, \u003ca href=\"https://www.nature.com/articles/s41592-018-0235-4\" rel=\"nofollow\"\u003ecitation\u003c/a\u003e, Docker \u003ca href=\"https://hub.docker.com/r/nipreps/fmriprep\" rel=\"nofollow\"\u003eimage\u003c/a\u003e and info for using with \u003ca href=\"https://fmriprep.org/en/latest/installation.html#containerized-execution-docker-and-singularity\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1630381276.0
+ "updated_at": 1527027070.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.prc-0_8_0"
],
- "full_name": "hmgu-itg/single-point-analysis-pipeline",
- "latest_release": "0.0.1",
- "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-snakefile-order\" class=\"anchor\" href=\"#snakefile-order\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSnakefile order\u003c/h2\u003e\n\u003col start=\"0\"\u003e\n\u003cli\u003eread-config.smk\u003c/li\u003e\n\u003cli\u003evariant-qc.smk\u003c/li\u003e\n\u003cli\u003esingle-cohort.smk\u003c/li\u003e\n\u003cli\u003emeta-analysis.smk\u003c/li\u003e\n\u003cli\u003edetect-peaks.smk\u003c/li\u003e\n\u003cli\u003epeakplot.smk\u003c/li\u003e\n\u003cli\u003ecojo.smk\u003c/li\u003e\n\u003cli\u003equery.smk\u003c/li\u003e\n\u003cli\u003egwas.smk\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-questions\" class=\"anchor\" href=\"#questions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuestions\u003c/h2\u003e\n\u003cp\u003eQ. Why do the \u003ccode\u003efreq\u003c/code\u003e and \u003ccode\u003efreq_geno\u003c/code\u003e column values in the \u003ccode\u003e.jma.cojo\u003c/code\u003e file differ?\nA. \u003ccode\u003efreq_geno\u003c/code\u003e column is the frequency of the \u003ccode\u003erefA\u003c/code\u003e column allele in the input bfile (you can use \u003ccode\u003eplink --freq\u003c/code\u003e to check).\nThe \u003ccode\u003efreq\u003c/code\u003e column value is the exact value extracted from the input cojofile, where the cojofile was created from the corresponding metal file.\nSo the \u003ccode\u003efreq\u003c/code\u003e column value comes from the \u003ccode\u003eAlt_Freq\u003c/code\u003e column value in the metal file, and the \u003ccode\u003eAlt_Freq\u003c/code\u003e column value is the \"weighted average of frequency for Alt allele across all studies\".\nThe \u003ccode\u003efreq_geno\u003c/code\u003e and \u003ccode\u003efreq\u003c/code\u003e column values differ because \u003ccode\u003efreq_geno\u003c/code\u003e is just the allele frequency of the variant from the genotype file (plink bfile) that was combined from all cohorts,\nwhereas \u003ccode\u003efreq\u003c/code\u003e column is the weighted average of frequency across cohorts (calculated by metal).\u003c/p\u003e\n\u003cp\u003eQ. When I try to run a rule, I get an error saying \u003ccode\u003eText file busy\u003c/code\u003e. What do I do?\nA. Delete the script and restore it using \u003ccode\u003egit restore workflow/script/problematic_script.sh\u003c/code\u003e. Your rules should run normally after doing this\u003c/p\u003e\n",
+ "full_name": "d-w-moore/singularity-python-irodsclient",
+ "latest_release": null,
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1636694692.0
+ "updated_at": 1530133683.0
},
{
"data_format": 2,
- "description": "A collection of Singularity images",
+ "description": "Adapt the BEaST skull stripping method for 7T MRI as a BIDS app",
"filenames": [
- "recipes/diffTF/Singularity.diffTF_conda",
- "recipes/diffTF/Singularity.diffTF_R",
- "recipes/RNA-Seq/Singularity.RNA_Seq_R",
- "recipes/RNA-Seq/Singularity.RNA_seq_conda",
- "recipes/RNA-Seq/Singularity.RNA_seq_fastqc",
- "recipes/ATAC-Seq/Singularity.ATAC_seq_conda2",
- "recipes/ATAC-Seq/Singularity.ATAC_seq_conda",
- "recipes/ATAC-Seq/Singularity.ATAC_Seq_R",
- "recipes/VariantCalling/Singularity.Variant-Calling_R",
- "recipes/VariantCalling/Singularity.Variant-Calling_conda"
+ "Singularity.v0.0.1a"
],
- "full_name": "chrarnold/Singularity_images",
+ "full_name": "Martybird/7TBEaST",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity_images\" class=\"anchor\" href=\"#singularity_images\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity_images\u003c/h1\u003e\n\u003cp\u003eA collection of Singularity images\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-7tbeast\" class=\"anchor\" aria-hidden=\"true\" href=\"#7tbeast\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e7TBEaST\u003c/h1\u003e\n\u003cp\u003eAdapt the BEaST skull stripping method for 7T MRI as a BIDS app\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1637101837.0
+ "updated_at": 1530840788.0
},
{
"data_format": 2,
- "description": "Based on the original Sregistry: https://github.com/singularityhub/sregistry - Deploy the Singularity Sregistry as rootless containers with podman-compose. Also added data persistence for the PostgreSQL database and rootless setup for SSL and PAM authentication.",
+ "description": null,
"filenames": [
- "Singularity"
+ "ext/Singularity"
],
- "full_name": "hashkeks/sregistry-podman-compose",
+ "full_name": "OSC/bc_osc_rshiny",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-registry-server---podman-compose-edition\" class=\"anchor\" href=\"#singularity-registry-server---podman-compose-edition\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Registry Server - podman-compose edition\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-is-podman-compose\" class=\"anchor\" href=\"#what-is-podman-compose\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is podman-compose\u003c/h2\u003e\n\u003cp\u003ePodman-compose is the podman equivalent to docker-compose, using the podman container engine. It allows for the creation of rootless containers running in user namespace. For more information see \u003ca href=\"https://podman.io/\" rel=\"nofollow\"\u003ehttps://podman.io/\u003c/a\u003e and \u003ca href=\"https://github.com/containers/podman-compose\"\u003ehttps://github.com/containers/podman-compose\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-are-the-differences-to-the-original-singularity-registry-server\" class=\"anchor\" href=\"#what-are-the-differences-to-the-original-singularity-registry-server\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat are the differences to the original Singularity Registry Server\u003c/h2\u003e\n\u003cp\u003eThis version of the Singularity Registry Server is set-up to work in a non-root environment.\nI \u003cstrong\u003edid not\u003c/strong\u003e change the code of the applications.\nI \u003cstrong\u003edid\u003c/strong\u003e change the folder structure and the docker-compose.yml file and provide documentation to make this setup run with podman-compose.\nThis setup in it\u0027s current configuration is meant to be run with valid SSL certificates. You can change that by deactivating the corresponding settings in the docker-compose.yml and shub/settings/config.py files.\nIn the end you still have to make your configurations (like setting your services addresses, renaming your instance, enabling authentication, etc.) according to the original documentation which you can find at \u003ca href=\"https://singularityhub.github.io/sregistry/\" rel=\"nofollow\"\u003ehttps://singularityhub.github.io/sregistry/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe differences in detail:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eChanged the docker-compose.yml\n\u003cul\u003e\n\u003cli\u003eVolume paths are not taken from uwsgi directly, but are defined per service. Consquence: You don\u0027t need a nginx user on your host system anymore and don\u0027t have permissions problems after deactivating PAM again.\u003c/li\u003e\n\u003cli\u003eVolume mapping for PAM files changed.\u003c/li\u003e\n\u003cli\u003eVolume mapping for SSL certs changed.\u003c/li\u003e\n\u003cli\u003eVolume mapping for PostgreSQL database added, so it can save data persistently without initiating a backup procedure.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eA PAM folder with a \u0027shadow\u0027 file was added. You need to copy the information of configured users from your /etc/shadow into this file since rootless containers do not have access to the original /etc/shadow.\u003c/li\u003e\n\u003cli\u003eAn SSL directory with subdirectories was added to save and access cert files in the rootless environment.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-to-do-besides-doing-the-usual-configuration\" class=\"anchor\" href=\"#what-to-do-besides-doing-the-usual-configuration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat to do besides doing the usual configuration\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eYou \u003cstrong\u003eneed\u003c/strong\u003e to change the ownership of the sregistry/minio-images folder to the user that is used inside the minio container with the UID and GID 1.\nTo do so, execute the following command inside the sregistry folder:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epodman unshare chown -R 1:1 minio-images\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis will change the ownership to the UID that will be used in user namespace and represents the user with UID 1 inside the minio container.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eYou can put your SSL cert and key into the according folders in the sregistry/ssl folder\u003c/li\u003e\n\u003cli\u003eYou can put your user info from /etc/shadow into sregistry/PAM/shadow\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-who-worked-on-this\" class=\"anchor\" href=\"#who-worked-on-this\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWho worked on this\u003c/h3\u003e\n\u003ctable\u003e\n \u003ctr\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/hashkeks\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/34633191?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eCedric Casper\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/hashkeks\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/kkaftan\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/74317121?v=4\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eKevin Kaftan\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/kkaftan\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003c/tr\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-the-following-section-is-taken-from-the-original-sregistry-repo-itself-and-does-not-have-to-do-with-our-changes\" class=\"anchor\" href=\"#the-following-section-is-taken-from-the-original-sregistry-repo-itself-and-does-not-have-to-do-with-our-changes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThe following section is taken from the original Sregistry repo itself and does not have to do with our changes.\u003c/h2\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-registry-server\" class=\"anchor\" href=\"#singularity-registry-server\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Registry Server\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"http://joss.theoj.org/papers/050362b7e7691d2a5d0ebed8251bc01e\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/77382cd0ef59a3538ed515392195d8541e46ce977b42c3838e930e6ccf221bfb/68747470733a2f2f6a6f73732e7468656f6a2e6f72672f7061706572732f30353033363262376537363931643261356430656265643832353162633031652f7374617475732e737667\" alt=\"status\" data-canonical-src=\"https://joss.theoj.org/papers/050362b7e7691d2a5d0ebed8251bc01e/status.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/singularityhub/sregistry/actions?query=branch%3Amaster+workflow%3Asregistry-ci\"\u003e\u003cimg src=\"https://github.com/singularityhub/sregistry/workflows/sregistry-ci/badge.svg?branch=master\" alt=\"GitHub actions status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://doi.org/10.5281/zenodo.1012531\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/411f713db9ba01edfcb60386aaa1dff3e4ed4464707b95d889900a88d8f54936/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e313031323533312e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.1012531.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://fair-software.eu\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2f835bc9b4458adb32cf016ec029863ab35c3b89d29ecc3a14494909424d38b5/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f666169722d2d736f6674776172652e65752d2545322539372538462532302532302545322539372538462532302532302545322539372538422532302532302545322539372538462532302532302545322539372538422d6f72616e6765\" alt=\"fair-software.eu\" data-canonical-src=\"https://img.shields.io/badge/fair--software.eu-%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8B%20%20%E2%97%8F%20%20%E2%97%8B-orange\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003cp\u003e\u003ca href=\"#contributors-\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/194f21da62ea53d158311e06473f9ec192dea9c1f3f6423c9c3f12aff583b546/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f616c6c5f636f6e7472696275746f72732d32302d6f72616e67652e7376673f7374796c653d666c61742d737175617265\" alt=\"All Contributors\" data-canonical-src=\"https://img.shields.io/badge/all_contributors-20-orange.svg?style=flat-square\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://singularityhub.github.io/sregistry\" rel=\"nofollow\"\u003eDocumentation\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributors\" class=\"anchor\" href=\"#contributors\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributors\u003c/h2\u003e\n\n\n\n\u003ctable\u003e\n \u003ctr\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://vsoch.github.io\" rel=\"nofollow\"\u003e\u003cimg src=\"https://avatars0.githubusercontent.com/u/814322?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eVanessasaurus\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=vsoch\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=vsoch\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"tschoonj.github.io\"\u003e\u003cimg src=\"https://avatars0.githubusercontent.com/u/65736?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eTom Schoonjans\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=tschoonj\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=tschoonj\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"antoinecully.com\"\u003e\u003cimg src=\"https://avatars3.githubusercontent.com/u/6448924?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eAntoine Cully\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=Aneoshun\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=Aneoshun\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://dctrud.sdf.org\" rel=\"nofollow\"\u003e\u003cimg src=\"https://avatars1.githubusercontent.com/u/4522799?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eDavid Trudgian\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=dctrud\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/serlophug\"\u003e\u003cimg src=\"https://avatars3.githubusercontent.com/u/20574493?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eSergio L\u00f3pez Huguet\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=serlophug\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=serlophug\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/jbd\"\u003e\u003cimg src=\"https://avatars2.githubusercontent.com/u/169483?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003ejbd\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=jbd\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=jbd\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"http://alex.hirzel.us/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://avatars3.githubusercontent.com/u/324152?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eAlex Hirzel\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=alhirzel\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=alhirzel\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"http://tangiblecomputationalbiology.blogspot.com\" rel=\"nofollow\"\u003e\u003cimg src=\"https://avatars0.githubusercontent.com/u/207407?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eSteffen M\u00f6ller\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=smoe\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=smoe\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"www.onerussian.com\"\u003e\u003cimg src=\"https://avatars3.githubusercontent.com/u/39889?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eYaroslav Halchenko\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=yarikoptic\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=yarikoptic\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"http://sourceforge.net/u/victorsndvg/profile/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://avatars3.githubusercontent.com/u/6474985?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003evictorsndvg\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=victorsndvg\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=victorsndvg\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"arfon.org\"\u003e\u003cimg src=\"https://avatars1.githubusercontent.com/u/4483?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eArfon Smith\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=arfon\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=arfon\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://ransomwareroundup.com\" rel=\"nofollow\"\u003e\u003cimg src=\"https://avatars3.githubusercontent.com/u/9367754?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eBrie Carranza\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=bbbbbrie\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=bbbbbrie\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://orcid.org/0000-0002-6178-3585\" rel=\"nofollow\"\u003e\u003cimg src=\"https://avatars1.githubusercontent.com/u/145659?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eDan Fornika\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=dfornika\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=dfornika\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/RonaldEnsing\"\u003e\u003cimg src=\"https://avatars2.githubusercontent.com/u/8299064?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eRonald Ensing\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=RonaldEnsing\" title=\"Documentation\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"book\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4d6.png\"\u003e\ud83d\udcd6\u003c/g-emoji\u003e\u003c/a\u003e \u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=RonaldEnsing\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003c/tr\u003e\n \u003ctr\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/vladdoster\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/10052309?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003evladdoster\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=vladdoster\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/pini-gh\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/1241814?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003epini-gh\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=pini-gh\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/0nebody\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/26727168?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003e0nebody\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=0nebody\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/dtrudg\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/4522799?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003edtrudg\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=dtrudg\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/craigwindell\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/44250868?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003ecraigwindell\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=craigwindell\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003ctd align=\"center\"\u003e\n\u003ca href=\"https://github.com/hashkeks\"\u003e\u003cimg src=\"https://avatars.githubusercontent.com/u/34633191?v=4?s=100\" width=\"100px;\" alt=\"\" style=\"max-width:100%;\"\u003e\u003cbr\u003e\u003csub\u003e\u003cb\u003eCedric\u003c/b\u003e\u003c/sub\u003e\u003c/a\u003e\u003cbr\u003e\u003ca href=\"https://github.com/singularityhub/sregistry/commits?author=hashkeks\" title=\"Code\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"computer\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4bb.png\"\u003e\ud83d\udcbb\u003c/g-emoji\u003e\u003c/a\u003e\n\u003c/td\u003e\n \u003c/tr\u003e\n\u003c/table\u003e\n\n\n\n\u003ch2\u003e\n\u003ca id=\"user-content-what-is-singularity-registry\" class=\"anchor\" href=\"#what-is-singularity-registry\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is Singularity Registry\u003c/h2\u003e\n\u003cp\u003eSingularity Registry Server is a server to provide management and storage of\nSingularity images for an institution or user to deploy locally.\nIt does not manage building but serves endpoints to obtain and save containers.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-images-included\" class=\"anchor\" href=\"#images-included\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImages Included\u003c/h2\u003e\n\u003cp\u003eSingularity Registry consists of several Docker images, and they are integrated\nto work together using \u003ca href=\"docker-compose.yml\"\u003edocker-compose.yml\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe images are the following:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003evanessa/sregistry\u003c/strong\u003e: is the main uWSGI application, which serves a Django (python-based) application.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003enginx\u003c/strong\u003e: pronounced (engine-X) is the webserver. The starter application is configured for HTTP. However, you should follow our \u003ca href=\"https://singularityhub.github.io/sregistry/docs/install/server#ssl\" rel=\"nofollow\"\u003einstructions\u003c/a\u003e to set up HTTPS properly. Note that we build a custom NGINX image that takes advantage of the \u003ca href=\"https://www.nginx.com/resources/wiki/modules/upload/\" rel=\"nofollow\"\u003enginx-upload-module\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eworker\u003c/strong\u003e: is the same uWSGI image, but with a running command for queueing jobs and processing them in the background. These jobs run via \u003ca href=\"https://github.com/rq/django-rq\"\u003edjango-rq\u003c/a\u003e backed by a\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eredis\u003c/strong\u003e: database to organize the jobs themselves.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003escheduler\u003c/strong\u003e jobs can be scheduled using the scheduler.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor more information about Singularity Registry Server, please reference the\n\u003ca href=\"https://singularityhub.github.io/sregistry\" rel=\"nofollow\"\u003edocs\u003c/a\u003e. If you have any issues,\nplease \u003ca href=\"https://github.com/singularityhub/sregistry/issues\"\u003elet me know\u003c/a\u003e!\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThis code is licensed under the MPL 2.0 \u003ca href=\"LICENSE\"\u003eLICENSE\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-wip-batch-connect---osc-shiny-app-launcher\" class=\"anchor\" aria-hidden=\"true\" href=\"#wip-batch-connect---osc-shiny-app-launcher\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e[WIP] Batch Connect - OSC Shiny App Launcher\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5e71a5a07e8e6e15f922edb76b5fb68e7ee6087e336807c38095861b8c7f5fc2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f7368696e795f6c61756e636865722e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5e71a5a07e8e6e15f922edb76b5fb68e7ee6087e336807c38095861b8c7f5fc2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f7368696e795f6c61756e636865722e737667\" alt=\"GitHub Release\" data-canonical-src=\"https://img.shields.io/github/release/osc/shiny_launcher.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA Batch Connect app designed for OSC OnDemand that launches a Shiny App within\nan Owens batch job.\u003c/p\u003e\n\u003cp\u003eThe Shiny app is included a submodule and each deployment can modified which\nShiny app to deploy using git config to specify the URL for the submodule. This\nway the launcher code can be reused for multiple apps but the launcher and the\napp itself can be managed separately.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eThis Batch Connect app requires the following software be installed on the\n\u003cstrong\u003ecompute nodes\u003c/strong\u003e that the batch job is intended to run on (\u003cstrong\u003eNOT\u003c/strong\u003e the\nOnDemand node):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://shiny.rstudio.com/\" rel=\"nofollow\"\u003eShiny\u003c/a\u003e x.y.z+\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.tacc.utexas.edu/research-development/tacc-projects/lmod\" rel=\"nofollow\"\u003eLmod\u003c/a\u003e 6.0.1+ or any other \u003ccode\u003emodule purge\u003c/code\u003e and \u003ccode\u003emodule load \u0026lt;modules\u0026gt;\u003c/code\u003e based\nCLI used to load appropriate environments within the batch job\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install\" class=\"anchor\" aria-hidden=\"true\" href=\"#install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eTODO\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eAgain, you do not need to restart the app as it isn\u0027t a Passenger app.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eFork it ( \u003ca href=\"https://github.com/OSC/bc_osc_example_shiny/fork\"\u003ehttps://github.com/OSC/bc_osc_example_shiny/fork\u003c/a\u003e )\u003c/li\u003e\n\u003cli\u003eCreate your feature branch (\u003ccode\u003egit checkout -b my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCommit your changes (\u003ccode\u003egit commit -am \u0027Add some feature\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003ePush to the branch (\u003ccode\u003egit push origin my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a new Pull Request\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1637673514.0
+ "updated_at": 1628181440.0
},
{
"data_format": 2,
- "description": "repo hosting personal example scripts and notebooks for various pieces of software by OPIG",
+ "description": null,
"filenames": [
- "webdevel/ubuntu/.singularity.d/Singularity"
+ "Singularity.ubuntu"
],
- "full_name": "broncio123/software_hands-on",
+ "full_name": "UNM-CARC/heudiconv",
"latest_release": null,
- "readme": "\u003cp\u003esoftware_hands-on\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eNot much\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1638391053.0
+ "updated_at": 1536784012.0
},
{
"data_format": 2,
- "description": "This is a repo which holds the codebase for our class project on NLP.",
+ "description": null,
"filenames": [
- "singularity/Singularity.debian-unstable-amd64",
- "singularity/Singularity.debian-unstable-i386"
+ "Singularity"
],
- "full_name": "ravisha2396/NLPProject",
+ "full_name": "sbutcher/container-setc",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"/logo_assets/vowpal-wabbits-github-logo@3x.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"/logo_assets/vowpal-wabbits-github-logo@3x.png\" height=\"auto\" width=\"100%\" alt=\"Vowpal Wabbit\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://dev.azure.com/vowpalwabbit/Vowpal%20Wabbit/_build/latest?definitionId=23\u0026amp;branchName=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/58819a50d93dd6bfee30aecaa0f72d7e66623fd462c5ac37bdc427f3058ae723/68747470733a2f2f696d672e736869656c64732e696f2f617a7572652d6465766f70732f6275696c642f766f7770616c7761626269742f33393334313133632d396532622d346462632d383937322d3732616239623962343334322f32333f6c6162656c3d4c696e75782532306275696c64266c6f676f3d417a7572652532304465766f7073\" alt=\"Linux build status\" data-canonical-src=\"https://img.shields.io/azure-devops/build/vowpalwabbit/3934113c-9e2b-4dbc-8972-72ab9b9b4342/23?label=Linux%20build\u0026amp;logo=Azure%20Devops\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://dev.azure.com/vowpalwabbit/Vowpal%20Wabbit/_build/latest?definitionId=14\u0026amp;branchName=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d539f0bca2e4c6aca53fbbbf2a4efb7be920f95b698171172d1af967aa5025d7/68747470733a2f2f696d672e736869656c64732e696f2f617a7572652d6465766f70732f6275696c642f766f7770616c7761626269742f33393334313133632d396532622d346462632d383937322d3732616239623962343334322f31343f6c6162656c3d57696e646f77732532306275696c64266c6f676f3d417a7572652532304465766f7073\" alt=\"Windows build status\" data-canonical-src=\"https://img.shields.io/azure-devops/build/vowpalwabbit/3934113c-9e2b-4dbc-8972-72ab9b9b4342/14?label=Windows%20build\u0026amp;logo=Azure%20Devops\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://dev.azure.com/vowpalwabbit/Vowpal%20Wabbit/_build/latest?definitionId=22\u0026amp;branchName=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/214f203a660ee423d4694b193d4839c0bcd320402462f1030b0d25f33588b0a9/68747470733a2f2f696d672e736869656c64732e696f2f617a7572652d6465766f70732f6275696c642f766f7770616c7761626269742f33393334313133632d396532622d346462632d383937322d3732616239623962343334322f32323f6c6162656c3d4d61634f532532306275696c64266c6f676f3d417a7572652532304465766f7073\" alt=\"MacOS build status\" data-canonical-src=\"https://img.shields.io/azure-devops/build/vowpalwabbit/3934113c-9e2b-4dbc-8972-72ab9b9b4342/22?label=MacOS%20build\u0026amp;logo=Azure%20Devops\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://codecov.io/gh/VowpalWabbit/vowpal_wabbit\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/32898f10a7c61069a273521aea6b4becacfc4d776e96dd0e747f03e286b1b824/68747470733a2f2f636f6465636f762e696f2f67682f566f7770616c5761626269742f766f7770616c5f7761626269742f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"codecov\" data-canonical-src=\"https://codecov.io/gh/VowpalWabbit/vowpal_wabbit/branch/master/graph/badge.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://lgtm.com/projects/g/JohnLangford/vowpal_wabbit/alerts/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4e389698afd7de10a602e5e1a705d05c192a37638521b67a3ca2fac8d937b69e/68747470733a2f2f696d672e736869656c64732e696f2f6c67746d2f616c657274732f672f4a6f686e4c616e67666f72642f766f7770616c5f7761626269742e7376673f6c6f676f3d6c67746d266c6f676f57696474683d3138\" alt=\"Total Alerts\" data-canonical-src=\"https://img.shields.io/lgtm/alerts/g/JohnLangford/vowpal_wabbit.svg?logo=lgtm\u0026amp;logoWidth=18\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://gitter.im/VowpalWabbit\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/64efc8a80a3424a0595bf90fcae3ee2ef1878436f3c22137aef60e11f4ca9126/68747470733a2f2f6261646765732e6769747465722e696d2f566f7770616c5761626269742e737667\" alt=\"Gitter chat\" data-canonical-src=\"https://badges.gitter.im/VowpalWabbit.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis is the \u003cem\u003eVowpal Wabbit\u003c/em\u003e fast online learning code.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-vowpal-wabbit\" class=\"anchor\" href=\"#why-vowpal-wabbit\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy Vowpal Wabbit?\u003c/h2\u003e\n\u003cp\u003eVowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning. There is a specific focus on reinforcement learning with several contextual bandit algorithms implemented and the online nature lending to the problem well. Vowpal Wabbit is a destination for implementing and maturing state of the art algorithms with performance in mind.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eInput Format.\u003c/strong\u003e The input format for the learning algorithm is substantially more flexible than might be expected. Examples can have features consisting of free form text, which is interpreted in a bag-of-words way. There can even be multiple sets of free form text in different namespaces.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eSpeed.\u003c/strong\u003e The learning algorithm is fast -- similar to the few other online algorithm implementations out there. There are several optimization algorithms available with the baseline being sparse gradient descent (GD) on a loss function.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eScalability.\u003c/strong\u003e This is not the same as fast. Instead, the important characteristic here is that the memory footprint of the program is bounded independent of data. This means the training set is not loaded into main memory before learning starts. In addition, the size of the set of features is bounded independent of the amount of training data using the hashing trick.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eFeature Interaction.\u003c/strong\u003e Subsets of features can be internally paired so that the algorithm is linear in the cross-product of the subsets. This is useful for ranking problems. The alternative of explicitly expanding the features before feeding them into the learning algorithm can be both computation and space intensive, depending on how it\u0027s handled.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/VowpalWabbit/vowpal_wabbit/wiki\"\u003eVisit the wiki to learn more.\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-getting-started\" class=\"anchor\" href=\"#getting-started\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003cp\u003eFor the most up to date instructions for getting started on Windows, MacOS or Linux \u003ca href=\"https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Getting-started\"\u003eplease see the wiki\u003c/a\u003e. This includes:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Getting-started\"\u003eInstalling with a package manager\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Dependencies\"\u003eDependencies\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Building\"\u003eBuilding\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Tutorial\"\u003eTutorial\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-container-setc\" class=\"anchor\" aria-hidden=\"true\" href=\"#container-setc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainer-setc\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1636245564.0
+ "updated_at": 1538491698.0
},
{
"data_format": 2,
@@ -15809,13 +15245,13 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "anoyaro84/snakemake_ChIPseq",
+ "full_name": "ResearchIT/scanindel",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-chip-seq-analysis-pipeline-based-on-snakemake\" class=\"anchor\" href=\"#chip-seq-analysis-pipeline-based-on-snakemake\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eChIP-seq analysis pipeline based on snakemake\u003c/h1\u003e\n\u003cp\u003eThis is an snakemake-based Peak calling pipeline used in Zwart lab at the Netherlands Cancer Institute.\nThe pipeline obtains ChIP-seq data from diverse sources (remote/local path or GEO) and process them accordingly to produce peak lists in bed format and coverage profiles in tdf format.\u003c/p\u003e\n\u003cp\u003eRoughly, the pipeline takes the following steps to produce the outcome:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDownloading raw data (either bam/fastq files) from the specified locations (local, remote, or GEO) in DataList.csv\u003c/li\u003e\n\u003cli\u003eAlignment with bwa-mem (in case of fastq files)\u003c/li\u003e\n\u003cli\u003eMarking duplicate reads with picard\u003c/li\u003e\n\u003cli\u003eRemoving low-quality reads (retain reads with mapping quality \u0026gt; 20)\u003c/li\u003e\n\u003cli\u003ePeak calling with MACS1.4/MACS2/DFilter (support more than one peak callers)\u003c/li\u003e\n\u003cli\u003eTaking intersection between the peaks\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eNote that PeakPairs.csv is used to specify ChIP-seq vs input pairs, and config.yaml is used for specifiying optional parameters in softwares.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eThe pipeline is preliminary used in linux environment with conda/singularity available. Singularity is used only for DFilter (one of two peak callers used) within the pipeline. Currently, the pipeline is tested with conda version 4.5.4 and singularity version 2.5.1.\u003c/p\u003e\n\u003cp\u003eFor downloading repository \u0026amp; creating evnironment:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/anoyaro84/snakemake_ChIPseq\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e snakemake_ChIPseq\nconda env create --file env/snakemake.yaml\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e install phantompeak tools\u003c/span\u003e\ngit submodule init\ngit submodule update\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe most of softwares used in the pipeline is installed by conda or excuted in wrapper.\nOnly exception is the phantompeak, the software used for estimating the fragment length that can be used by MACS2.\nPhantompeak tools is included as a submodule, for which you can install with the last two commands.\u003c/p\u003e\n\u003cp\u003eWe recommend to run the pipeline from a different location than pipeline path, like below:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esnakemake -s PATH_TO_PIPELINE/Snakefile --use-conda --use-singularity --cores=24\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eWith --use-conda option, the pipeline will create environments to run rules based on .yaml files in env/.\nThe --use-singulairty option applies only to DFilter peak caller. The singularity container holds a virtual environment of Ubuntu with DFilter installed.\u003c/p\u003e\n\u003cp\u003eNote that the pipeline assumes that there is the following three files available at the location where the pipeline is executed:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003econfig.yaml\u003c/li\u003e\n\u003cli\u003eDataList.csv\u003c/li\u003e\n\u003cli\u003ePeakPairs.csv\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSee below for more details on how to prepare these input files.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-preparing-input-files\" class=\"anchor\" href=\"#preparing-input-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreparing Input files\u003c/h2\u003e\n\u003cp\u003eFor DatList.csv, it is expected to have the following structure (in csv format):\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eID\u003c/th\u003e\n\u003cth\u003eSource\u003c/th\u003e\n\u003cth\u003ePath\u003c/th\u003e\n\u003cth\u003eFormat\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eIdentifier of each sequencing data\u003c/td\u003e\n\u003ctd\u003eSource of the files, can either be remote (forge), local, or GEO\u003c/td\u003e\n\u003ctd\u003e(local/remote) path to the file. (ignored if Source is GEO)\u003c/td\u003e\n\u003ctd\u003eEither fastq or bam (ignored if Source is GEO)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eThe pipeline will take either fastq/bam files from GEO, remote/local locations based on the table above.\u003c/p\u003e\n\u003cp\u003eFor GEO, GSM ID is required for ID, which will be used as an quiry to GEO database. For remote/local files, ID should be a part of the file name. The pipeline greps bam/fastq files with ID on the specified path. The pipeline grabs bam/fastq files with ID on the specified path. If there is none or multiple files with the specified ID on the path, it will give an error.\u003c/p\u003e\n\u003cp\u003eFor PeakPairs.csv, signal and input pairs need to be specified in the following format (in csv):\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eSignal\u003c/th\u003e\n\u003cth\u003eInput\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eID of ChIP-seq data\u003c/td\u003e\n\u003ctd\u003eID of Input data\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eNote that IDs used in the PeakPairs.csv should be available in ID column of DataList.csv.\u003c/p\u003e\n\u003cp\u003eFor config.yaml, you can copy it from this repository and modify the parameters based on your need.\u003c/p\u003e\n",
+ "readme": "\u003ch3\u003e\u003ca id=\"user-content-scanindel-singularity-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#scanindel-singularity-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eScanIndel Singularity recipe\u003c/h3\u003e\n\u003cp\u003eScanIndel is a python program to detect indels (insertions and deletions) from NGS data by re-align and de novo assemble soft clipped reads.\u003c/p\u003e\n\u003cp\u003eOriginal repository \u003ca href=\"https://github.com/cauyrd/ScanIndel\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 7,
"topics": [],
- "updated_at": 1534943715.0
+ "updated_at": 1539032220.0
},
{
"data_format": 2,
@@ -15823,281 +15259,292 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-docker-centos7-openapi-basekit",
+ "full_name": "melnel000/Sarek_CBIO",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-docker-c7-openapi-basekit-\" class=\"anchor\" href=\"#docker-c7-openapi-basekit-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edocker-c7-openapi-basekit \u003ca href=\"https://github.com/truatpasteurdotfr/docker-c7-openapi-basekit/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/docker-c7-openapi-basekit/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"\" class=\"anchor\" aria-hidden=\"true\" href=\"#\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"http://sarek.scilifelab.se/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/Sarek_logo.png\" alt=\"Sarek\" title=\"Sarek\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/h1\u003e\n\u003ch4\u003e\u003ca id=\"user-content-an-open-source-analysis-pipeline-to-detect-germline-or-somatic-variants-from-whole-genome-or-targeted-sequencing\" class=\"anchor\" aria-hidden=\"true\" href=\"#an-open-source-analysis-pipeline-to-detect-germline-or-somatic-variants-from-whole-genome-or-targeted-sequencing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAn open-source analysis pipeline to detect germline or somatic variants from whole genome or targeted sequencing\u003c/h4\u003e\n\u003cp\u003e\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8165e759b147d5dfd77c2603211746a0ec20eae5aaea1c6a882604a6093c564c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33322e302d627269676874677265656e2e7376673f6c6f676f3d646174613a696d6167652f7376672b786d6c3b6261736536342c5044393462577767646d567963326c76626a30694d5334774969426c626d4e765a476c755a7a3069565652474c54676949484e305957356b59577876626d5539496d3576496a382b50484e325a794167494868746247357a4f6d526a50534a6f644852774f6938766348567962433576636d63765a474d765a57786c6257567564484d764d5334784c7949674943423462577875637a706a597a30696148523063446f764c324e795a57463061585a6c593239746257397563793576636d6376626e4d6a49694167494868746247357a4f6e4a6b5a6a30696148523063446f764c336433647935334d793576636d63764d546b354f5338774d6938794d6931795a47597463336c75644746344c57357a497949674943423462577875637a707a646d6339496d6830644841364c79393364336375647a4d7562334a6e4c7a49774d44417663335a6e49694167494868746247357a50534a6f644852774f693876643364334c6e637a4c6d39795a7938794d4441774c334e325a7949674943423462577875637a707a623252706347396b615430696148523063446f764c334e765a476c77623252704c6e4e7664584a6a5a575a76636d646c4c6d356c64433945564551766332396b615842765a476b744d43356b644751694943416765473173626e4d366157357263324e6863475539496d6830644841364c793933643363756157357263324e686347557562334a6e4c3235686257567a6347466a5a584d766157357263324e68634755694943416764326c6b64476739496a45794c6a63354f5449794f473174496941674947686c6157646f644430694d5449754f4441304f4441356257306949434167646d6c6c64304a76654430694d434177494451314c6a4d314d5455354e4341304e53347a4e7a457a4e6a6b694943416761575139496e4e325a7a63324e54496949434167646d567963326c76626a30694d5334784969416749476c7561334e6a5958426c4f6e5a6c636e4e7062323439496a41754f544567636a457a4e7a49314969416749484e765a476c77623252704f6d52765932356862575539496d356c6548526d624739334c575a68646d6c6a62323474643268706447557563335a6e496a34674944786b5a575a7a49434167494342705a4430695a47566d637a63324e5451694943382b494341386332396b615842765a476b36626d46745a5752326157563349434167494342705a443069596d467a5a53496749434167494842685a32566a62327876636a306949325a6d5a6d5a6d5a6949674943416749474a76636d526c636d4e76624739795053496a4e6a59324e6a59324969416749434167596d39795a4756796233426859326c30655430694d53347749694167494341676157357263324e68634755366347466e5a57397759574e7064486b39496a41754d4349674943416749476c7561334e6a5958426c4f6e42685a32567a6147466b62336339496a49694943416749434270626d747a593246775a54703662323974505349334c6a6b784f5455354e546b694943416749434270626d747a593246775a54706a654430694d6a41754d54457a4d6a4d3149694167494341676157357263324e686347553659336b39496a497a4c6a45324d7a6b774f4349674943416749476c7561334e6a5958426c4f6d5276593356745a5735304c5856756158527a50534a77654349674943416749476c7561334e6a5958426c4f6d4e31636e4a6c626e5174624746355a584939496d7868655756794d5349674943416749484e6f6233646e636d6c6b50534a6d5957787a5a5349674943416749475a706443317459584a6e61573474644739775053497749694167494341675a6d6c304c573168636d6470626931735a575a305053497749694167494341675a6d6c304c573168636d6470626931796157646f644430694d4349674943416749475a706443317459584a6e61573474596d3930644739745053497749694167494341676157357263324e686347553664326c755a4739334c5864705a48526f505349784f54497749694167494341676157357263324e686347553664326c755a4739334c57686c6157646f644430694d5441784e5349674943416749476c7561334e6a5958426c4f6e6470626d5276647931345053497749694167494341676157357263324e686347553664326c755a4739334c586b39496a41694943416749434270626d747a593246775a5470336157356b623363746257463461573170656d566b5053497849694176506941675047316c6447466b5958526849434167494342705a4430696257563059575268644745334e6a5533496a34674943416750484a6b5a6a70535245592b494341674943416750474e6a4f6c6476636d73674943416749434167494342795a47593659574a76645851394969492b4943416749434167494341385a474d365a6d397962574630506d6c745957646c4c334e325a797434625777384c32526a4f6d5a76636d31686444346749434167494341674944786b597a70306558426c494341674943416749434167494342795a475936636d567a6233567959325539496d6830644841364c79397764584a734c6d39795a79396b5979396b5932317064486c775a53395464476c7362456c745957646c496941765069416749434167494341675047526a4f6e52706447786c506a77765a474d3664476c306247552b49434167494341675043396a597a705862334a7250694167494341384c334a6b5a6a70535245592b494341384c32316c6447466b5958526850694167504763674943416749476c7561334e6a5958426c4f6d7868596d567350534a4d59586c6c6369417849694167494341676157357263324e68634755365a334a76645842746232526c50534a7359586c6c636949674943416749476c6b50534a7359586c6c636a45694943416749434230636d467563325a76636d3039496e52795957357a624746305a5367784d5451754d5441304d7a63734c5451314d6934314d7a4d324e696b6950694167494341386347463061434167494341674943427a64486c735a5430695a6d6c7362446f6a5a6d5a6d5a6d5a6d49694167494341674943426b50534a74494330784d5451754d5441304d7a63734e4455314c6a51324e545979494441734f4334344e6a457a4d7941774c6a49774d7a457a4c4441754d4459774e53426a49444d754f4463794f544d734d5334784d7a6b304d7941344c6a59314d6a55784c4451754d7a677a4d6941784d6934344d4441334f4377344c6a59344e7a55674d4334354d544d324d7977774c6a6b304f444178494445754f5463794e5459304c4449754d5441324f4451674d69347a4e544d314d6a51734d6934314e7a59784f434273494441754e6a6b784e4377774c6a67314d7a5578494330774c6a67324f5445304c4441754e7a63314d7a6b67597941744e4334784f546b354d4451734d7934334e4445354d7941744f4334354e7a45354d4451734e6934334e6a597a4e7941744d5451754d5441314e4463304c4467754f5451784e4445674c5441754d7a41354e7a55734d4334784d7a45794e4341744d4334324f5463794d6977774c6a49344d54497a494330784c6a41334e4449794c4441754e4449334e7a4d67624341774c446b754d7a41304e6a6b67597941794c6a59314f546b7a4c4330774c6a67334e7a6b79494455754d7a41324d7a6b734c5445754f546331494467754d4459774e5455734c544d754d7a55784e5459674e4334794e5459794d7977744d6934784d6a637a4d6941334c6a55304d7a49314e4377744e4334794e5463324e4341784d5334774d7a63784d5451734c5463754d5455324d6a55674d4334354d6a55344d5377744d4334334e6a67774f4341784c6a67794d5441354c4330784c6a55774e7a4179494445754f546b774d6a4d734c5445754e6a51794e5467674d4334794e7a6b7a4d5377744d4334794d6a4d344e4341774c6a51354d7a4d794c4330774c6a41314d5451674d69347a4d6a51794d6977784c6a67334f446b78494459754d6a49794e6a55734e6934314e6a41304d5341784d7934334f444d7a4e7977784d4334334e4451304d7941794d5334354d7a6b304e6977784d6934794d6a49324e534273494441734c5467754f5451784e43426a494330304c6a63354e544d334c4330784c6a45354e546b674c546b754e4449774d7a45734c544d754e6a51314d5445674c54457a4c6a49314e7a67794c4330334c6a41324e445132494330784c6a59344d7a55784c4330784c6a55774d444132494330304c6a49344e6a67784c4330304c6a4d314d444135494330304c6a4d354d6a55344c4330304c6a67774f445535494330774c6a41324f4459734c5441754d6a6b334d7941314c6a51334e4467734c5455754e7a41354e7a63674e7934794f5451354d7977744e7934784d6a4d774e53417a4c6a51344d6a637a4c4330794c6a63774e444930494459754e5467344d6a55734c5451754d5449774e4449674d5441754d6a63314d7a6b734c5451754e6a67314e5451674d4334774d6a63314c4330774c6a41774e4341774c6a41314d6a63734c5441754d444134494441754d4467774d5377744d4334774d544533494777674d4377744f4334334e53426a494330334c6a6b7a4f5449334c4449754d4449784d5451674c5445304c6a67334d4441784c4455754f4463334d7a67674c5449784c6a55734d5445754f54517a4d7a5967624341744d5334324d7a41344e6977784c6a51354d6a4534494330794c6a6b354e6a45734c544d754d4441334f444567597941744d5334324e4463314e6977744d5334324e5451334943307a4c6a63304d4449314c43307a4c6a59774d545533494330304c6a59314d6a4d304c4330304c6a4d794e6a4533494330314c6a41774f4455314e4377744d7934354e7a67354f5341744d5441754d5455794f5455304c4330324c6a51354f54497a494330784e4334314e7a49794e7a51734c5463754d5455324d6a556765694967494341674943416761575139496e4268644767334e6a4977496941674943416749434270626d747a593246775a54706a623235755a574e306233497459335679646d463064584a6c5053497749694167494341674943427a623252706347396b615470756232526c64486c775a584d39496d4e6a59334e6a59324e7a59324e7a63324e7a59324e7a59334e6a59324e6a59324e7a597949674c7a3467494477765a7a34384c334e325a7a343d\" alt=\"Nextflow version\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.32.0-brightgreen.svg?logo=\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://travis-ci.org/SciLifeLab/Sarek\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/63575514d0146dcd6226c111d1293fade62aa93f4946f2afcbb55718f3be5d86/68747470733a2f2f696d672e736869656c64732e696f2f7472617669732f5363694c6966654c61622f536172656b2e7376673f6c6f676f3d747261766973\" alt=\"Travis build status\" data-canonical-src=\"https://img.shields.io/travis/SciLifeLab/Sarek.svg?logo=travis\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://gitter.im/SciLifeLab/Sarek\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/419eea0b1c13bbf50717b250a81b0de7616141e86a5fc88eee2360f003f4c4e6/68747470733a2f2f696d672e736869656c64732e696f2f6769747465722f726f6f6d2f5363694c6966654c61622f536172656b2e7376673f6c6f676f3d676974746572266c6f676f436f6c6f723d776869746526636f6c6f72423d346662393961\" alt=\"Join the chat on https://gitter.im/SciLifeLab/Sarek\" data-canonical-src=\"https://img.shields.io/gitter/room/SciLifeLab/Sarek.svg?logo=gitter\u0026amp;logoColor=white\u0026amp;colorB=4fb99a\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e041bce107aca31eca6dd63a962556bf70d6cef2508c777604eedb99ca049c4b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f5363694c6966654c61622f536172656b2e737667\" alt=\"MIT License\" data-canonical-src=\"https://img.shields.io/github/license/SciLifeLab/Sarek.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/SciLifeLab/Sarek/releases/latest\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/720a0b93892db5c772d24eb7dc2fd6fefb2b556eff92ee7ae6a2963a40a8dd5a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f5363694c6966654c61622f536172656b2e7376673f6c6f676f3d676974687562266c6f676f436f6c6f723d7768697465\" alt=\"Sarek version\" data-canonical-src=\"https://img.shields.io/github/release/SciLifeLab/Sarek.svg?logo=github\u0026amp;logoColor=white\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://zenodo.org/badge/latestdoi/54024046\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2794ec0225017cde71e3ed51dd8393510fe23a950955ef03f7439d7c0f288f83/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f35343032343034362e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/54024046.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/cc46d7321290828c574f278466a642896ed85c2338c6062490066479b1e125e6/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e7376673f6c6f676f3d646174613a696d6167652f706e673b6261736536342c6956424f5277304b47676f414141414e53556845556741414144454141414179434159414141443143444f794141414142484e4353565149434167496641686b6941414141416c7753466c7a4141414e3177414144646342516969626541414141426c30525668305532396d64486468636d5541643364334c6d6c7561334e6a5958426c4c6d39795a35767550426f41414161325355524256476942785a70726a4656584663642f653261413655416f5947726b30615a594b765864775741796f44797377527168786d704e6a5146724e4f494854522b614a686f787257426f417a3461477a3830626457437357317171354947536c76445141316155477737424575523464464372565359307146595948352b5748743637347a7a4f48646d3773772f75546e376e4c50325075742f7a397072723758325351776831496e415371414a6d41794d426359446255413763415234486e674f61415a327070544f4471554f41344a617231366d54736a6e553954484c495954366a33715044574e6c50492f5632395833315433715639557836744a2f576c4249703134566c326d316c5a6238546e7177747a2b5848353469376f6c7439656f7265714d544f534f436f6d6f2f6b5674724962796f39556671653371574c565233617a757a672b2b4c5239767a636676712b2f4e524f3462414a457a366b6f4c767057614167516d415675416d3444744b61563259426c7742664249467575636e4f4f41446d414b7343616c4a50447269763678514233775065427839594c2b6850736b6f553468764568547676524350703749666363427034485a2b56346a7342655941537858613441566c584e34437775427265714666516e31536b4a74414c344e3741473241767542562f4c747363426834467269625377414e674d66427034472f7052534f677a63434d776442416d4179344274367252426a744d563669337144646c2b562b546a4c666e344e55747539395141356b4e7632473273512f2b48486e327a65676d77424a67457a41634f4175754234796d6c48566d6d4676674b384246674676425834484a67615572705766567477436a675644354f413934447a4d746a547833412f2f636f7343545074643668766c39395062506670443653323833713137504d536e5632626a656f6938797574776a5557765854686e7575464463574758797a3453722f6d7a7674564e666c3974315a376f6c38666c645278667434336e4c3133785751654d4f776c4634482f574157624d39453975667a2f635a437469664c3361647556536350686b545a63366462576e4f4b344139394454592f4b333867432f39472f56317548314e585a4c6b7231664f47676b445a7379656f54315a415a4635506730785650356f46486c6276564d2b71653951664736766f767146557641636478716e50465354786150664f30395766474b377850316e6f754c704b33574734797476736231494e445a464c7933546f437833717a504b4f7432616c4739516c3673597370474837713954765775304973365450736f4a763477666c6e66365a4c33354c50562b395831326f586d58342b324746576d4f453576316862326548692f4b464d2b7161736f484f4d354b563736676231446e445447524a776264784d656f58314f31473646797266736159477a65554352347767726e684a4a45737566692b6346304e384338695768774433413673426534473767447579574d2b6b464c71474534534f6252347149446f4c4f4374674b346a2f313477584f7879645a5152656979757173613951503145675465784b616b66423634444a67495835742b45504d3433696154476c4e4b4a4553447864734a532b734b2b704c354b524b73414c774f48674b4e456d6555557344716c644b68716d76594439535352665057475978695669703577316c683042704f5a445272713458374d365851646b53665541714f4a33485955554a2b765451534f6a5269445148384f4a6455423139443164623142564f714f416765416a56565272546a4f372b662b36335841395551685941784235674b69424e6b4966416d59704c616c6c49355855394f65594b536a2f5a466f513631546639624e7a6c347a51704370325361764841366c75304e64554d4446506c6b4866425a59525a6a4e484f42695944757744746847354d5a4e774b59523446456b3564324c756c5139616c5170477453726a5372662f575673397a674342562b4c5a58764c4f334f4a546877304d71784c4d354750716176567636767a68356c4145564e536e566d58556d705658794a4b4b45385235764d33344448674765425659436d6c3674397745456a4136674b694c3661556e752f737443617a2b6f44364458573955537a51694b5857475a48752b3671716655593236534a59573935707072472f4d4530396c775665553339684b52782b79624a386f346f4570686c7a7441676175336465706c3662622f3752727057486a63612b77597447356a65365367547138334f4b6f4c6d6e41576f796b58765630316d774c5a2b6656412b704478725a33676131666f674a6a46562f5835434139725a3247525750546d797a74506657616c5439446c683657303959594f2b6749494570526c576c4b4c62616d3874585a7874313248765649376e445039536e636e756a656c505a594b2b6f6e78386b6757737350676330616746644845795876446c58764b3848766b7a45543775497647497530454a736f48546d486d654150774d7a31422b714379705176466239704c6f4e6542423452775738563657555772726f33634d445268486257346b49436d6342757a4d5a6756385349667042344759696b666f557352467a4362472b50413630457446774778486d5479564b2b2f4f4278517973744e384d584a46534f74636e6955796b4166675145627655453373505934685563547877463745674c694a326942594244774e58443043786f7467507a456b70395a65756c71424f5648396c6549796e6a5a4a36752f705659382b695139316c654c493331576371734f744b38624936593044556a5672556b573444586d55704d507474506d3678656d6856333957586e6e305778464a4b75346d643052316c6c79634437795a732f664a3872566f7037485a67626b7070373642484d6b4c304f773054576d3945745276795031554e557a716e726a57637a4e4443434d3133716a6462436b756168356a414c7257706632304752365257666164524a64545376426773576f79777036367142486f6773396a3435714e74674971664d434c6c685136695944306b4b61633668736a446d3467717958546749714342714b4330415363706662545651756d6a72584d396a566b4a2f676645474871754f336a38445141414141424a52553545726b4a6767673d3d\" alt=\"Install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?logo=\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/maxulysse/sarek\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bc3bec2ef3bf857d42e0bff8df09f0e81595bbd7dbc2681d0feadd729acb4bc0/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6d6178756c797373652f736172656b2e7376673f6c6f676f3d646f636b6572\" alt=\"Docker Container available\" data-canonical-src=\"https://img.shields.io/docker/automated/maxulysse/sarek.svg?logo=docker\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/CAW_logo.png\"\u003e\u003cimg align=\"right\" title=\"CAW\" src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/CAW_logo.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003ePreviously known as the Cancer Analysis Workflow (CAW),\nSarek is a workflow designed to run analyses on WGS data from regular samples or tumour / normal pairs, including relapse samples if required.\u003c/p\u003e\n\u003cp\u003eIt\u0027s built using \u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a domain specific language for workflow building.\nSoftware dependencies are handled using \u003ca href=\"https://www.docker.com\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e or \u003ca href=\"https://www.sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e - container technologies that provide excellent reproducibility and ease of use.\nSingularity has been designed specifically for high-performance computing environments.\nThis means that although Sarek has been primarily designed for use with the Swedish \u003ca href=\"https://www.uppmax.uu.se\" rel=\"nofollow\"\u003eUPPMAX HPC systems\u003c/a\u003e, it should be able to run on any system that supports these two tools.\u003c/p\u003e\n\u003cp\u003eSarek was developed at the \u003ca href=\"https://ngisweden.scilifelab.se/\" rel=\"nofollow\"\u003eNational Genomics Infastructure\u003c/a\u003e and \u003ca href=\"https://www.nbis.se/\" rel=\"nofollow\"\u003eNational Bioinformatics Infastructure Sweden\u003c/a\u003e which are both platforms at \u003ca href=\"https://www.scilifelab.se/\" rel=\"nofollow\"\u003eSciLifeLab\u003c/a\u003e.\nIt is listed on the \u003ca href=\"https://bio.tools/Sarek\" rel=\"nofollow\"\u003eElixir - Tools and Data Services Registry\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-workflow-steps\" class=\"anchor\" aria-hidden=\"true\" href=\"#workflow-steps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWorkflow steps\u003c/h2\u003e\n\u003cp\u003eSarek is built with several workflow scripts.\nA wrapper script contained within the repository makes it easy to run the different workflow scripts as a single job.\nTo test your installation, follow the \u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/TESTS.md\"\u003etests documentation.\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eRaw FastQ files or aligned BAM files (with or without realignment \u0026amp; recalibration) can be used as inputs.\nYou can choose which variant callers to use, plus the pipeline is capable of accommodating additional variant calling software or CNV callers if required.\u003c/p\u003e\n\u003cp\u003eThe worflow steps and tools used are as follows:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cstrong\u003ePreprocessing\u003c/strong\u003e - \u003ccode\u003emain.nf\u003c/code\u003e \u003cem\u003e(based on \u003ca href=\"https://software.broadinstitute.org/gatk/best-practices/\" rel=\"nofollow\"\u003eGATK best practices\u003c/a\u003e)\u003c/em\u003e\n\u003cul\u003e\n\u003cli\u003eMap reads to Reference\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://bio-bwa.sourceforge.net/\" rel=\"nofollow\"\u003eBWA\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eMark Duplicates\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eGATK MarkDuplicates\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eBase (Quality Score) Recalibration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eGATK BaseRecalibrator\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eGATK ApplyBQSR\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eGermline variant calling\u003c/strong\u003e - \u003ccode\u003egermlineVC.nf\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eSNVs and small indels\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eGATK HaplotyeCaller\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Illumina/strelka\"\u003eStrelka2\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eStructural variants\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Illumina/manta\"\u003eManta\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eSomatic variant calling\u003c/strong\u003e - \u003ccode\u003esomaticVC.nf\u003c/code\u003e \u003cem\u003e(optional)\u003c/em\u003e\n\u003cul\u003e\n\u003cli\u003eSNVs and small indels\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/broadinstitute/gatk\"\u003eMuTect2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/ekg/freebayes\"\u003eFreebayes\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Illumina/strelka\"\u003eStrelka2\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eStructural variants\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Illumina/manta\"\u003eManta\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSample heterogeneity, ploidy and CNVs\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Crick-CancerGenomics/ascat\"\u003eASCAT\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eAnnotation\u003c/strong\u003e - \u003ccode\u003eannotate.nf\u003c/code\u003e \u003cem\u003e(optional)\u003c/em\u003e\n\u003cul\u003e\n\u003cli\u003eVariant annotation\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://snpeff.sourceforge.net/\" rel=\"nofollow\"\u003eSnpEff\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.ensembl.org/info/docs/tools/vep/index.html\" rel=\"nofollow\"\u003eVEP (Variant Effect Predictor)\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eReporting\u003c/strong\u003e - \u003ccode\u003erunMultiQC.nf\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eReporting\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"http://multiqc.info\" rel=\"nofollow\"\u003eMultiQC\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eThe Sarek pipeline comes with documentation in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INSTALL.md\"\u003eInstallation documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INSTALL_RACKHAM.md\"\u003eInstallation documentation specific for UPPMAX \u003ccode\u003erackham\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INSTALL_BIANCA.md\"\u003eInstallation documentation specific for UPPMAX \u003ccode\u003ebianca\u003c/code\u003e\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/TESTS.md\"\u003eTests documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/REFERENCES.md\"\u003eReference files documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/CONFIG.md\"\u003eConfiguration and profiles documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INTERVALS.md\"\u003eIntervals documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/USAGE.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/PARAMETERS.md\"\u003eCommand line parameters\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/USE_CASES.md\"\u003eExamples\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/INPUT.md\"\u003eInput files documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/PROCESS.md\"\u003eProcesses documentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/CONTAINERS.md\"\u003eDocumentation about containers\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/ASCAT.md\"\u003eMore information about ASCAT\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/docs/OUTPUT.md\"\u003eOutput documentation structure\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributions--support\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributions--support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributions \u0026amp; Support\u003c/h2\u003e\n\u003cp\u003eIf you would like to contribute to this pipeline, please see the \u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/.github/CONTRIBUTING.md\"\u003econtributing guidelines\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor further information or help, don\u0027t hesitate to get in touch on \u003ca href=\"https://gitter.im/SciLifeLab/Sarek\" rel=\"nofollow\"\u003eGitter\u003c/a\u003e or contact us: \u003ca href=\"mailto:maxime.garcia@scilifelab.se\"\u003emaxime.garcia@scilifelab.se\u003c/a\u003e, \u003ca href=\"mailto:szilveszter.juhos@scilifelab.se\"\u003eszilveszter.juhos@scilifelab.se\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-changelog\" class=\"anchor\" aria-hidden=\"true\" href=\"#changelog\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCHANGELOG\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/SciLifeLab/Sarek/blob/master/CHANGELOG.md\"\u003eCHANGELOG\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003eMain authors:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/MaxUlysse\"\u003eMaxime Garcia\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/szilvajuhos\"\u003eSzilveszter Juhos\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eHelpful contributors:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/alneberg\"\u003eJohannes Alneberg\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Sebastian-D\"\u003eSebastian DiLorenzo\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/J35P312\"\u003eJesper Eisfeldt\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/ewels\"\u003ePhil Ewels\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/gulfshores\"\u003eMax K\u00e4ller\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/malinlarsson\"\u003eMalin Larsson\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/marcelm\"\u003eMarcel Martin\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/bjornnystedt\"\u003eBj\u00f6rn Nystedt\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/pallolason\"\u003ePall Olason\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/arontommi\"\u003eAron Skaftason\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003cp\u003e\u003ca href=\"https://www.scilifelab.se/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/SciLifeLab_logo.png\" alt=\"SciLifeLab\" title=\"SciLifeLab\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://ngisweden.scilifelab.se/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/NGI_logo.png\" alt=\"NGI\" title=\"NGI\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nbis.se/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/SciLifeLab/Sarek/master/docs/images/NBIS_logo.png\" alt=\"NBIS\" title=\"NBIS\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1635355882.0
+ "updated_at": 1541579046.0
},
{
"data_format": 2,
- "description": "Repository containing code for the paper \"Shared neural codes for visual and semantic information about familiar others in a common representational space\"",
+ "description": "Snakemake workflow for analysis and assembly of viral genomes from IonTorrent AmpliSeq data.",
"filenames": [
- "singularity/Singularity-neurodocker"
+ "Singularity"
],
- "full_name": "mvdoc/identity-decoding",
- "latest_release": "1.0.0",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-shared-neural-codes-for-visual-and-semantic-information-about-familiar-faces-in-a-common-representational-space\" class=\"anchor\" href=\"#shared-neural-codes-for-visual-and-semantic-information-about-familiar-faces-in-a-common-representational-space\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eShared neural codes for visual and semantic information about familiar faces in a common representational space\u003c/h1\u003e\n\u003cp\u003eThis repository contains the code for the analyses reported in \u003cem\u003eShared neural codes for visual and semantic information about familiar faces in a common representational space\u003c/em\u003e by Matteo Visconti di Oleggio Castello, James V. Haxby, \u0026amp; M. Ida Gobbini published in the \u003cem\u003eProceedings of the National Academy of Sciences\u003c/em\u003e.\u003c/p\u003e\n\u003cp\u003eThe reference for the associated publication is\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eVisconti di Oleggio Castello, M., Haxby, J. V., \u0026amp; Gobbini, M. I. Shared neural codes for visual and semantic information about familiar faces in a common representational space \u003cem\u003eProceedings of the National Academy of Sciences\u003c/em\u003e (2021). \u003ca href=\"https://doi.org/10.1073/pnas.2110474118\" rel=\"nofollow\"\u003ehttps://doi.org/10.1073/pnas.2110474118\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eThis repository can be cited as\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eVisconti di Oleggio Castello, M., Haxby, J. V., \u0026amp; Gobbini, M. I. (2021). mvdoc/identity-decoding. \u003cem\u003eZenodo\u003c/em\u003e. \u003ca href=\"https://doi.org/10.5281/zenodo.5645003\" rel=\"nofollow\"\u003ehttps://doi.org/10.5281/zenodo.5645003\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003e\u003ca href=\"https://zenodo.org/badge/latestdoi/344613702\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/31de84d904523cf98d5215b7c3dac0af54476f3416c24e0ee28469dc04ef9647/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3334343631333730322e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/344613702.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-disclaimer--how-to-get-help\" class=\"anchor\" href=\"#disclaimer--how-to-get-help\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDisclaimer \u0026amp; how to get help\u003c/h2\u003e\n\u003cp\u003eThese scripts are shared in a format that is suitable for archival and review. All analyses were run inside a singularity container (shared in the current repository) on a local cluster and on \u003ca href=\"https://rc.dartmouth.edu/index.php/discovery-overview/\" rel=\"nofollow\"\u003eDiscovery, Dartmouth\u0027s HPC cluster\u003c/a\u003e. The paths listed in these scripts need to be modified in order to run the scripts on a different system.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eIf you have any questions related to the code, please open an issue in this repository or contact us via email (see corresponding author in the publication).\u003c/strong\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-data\" class=\"anchor\" href=\"#data\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData\u003c/h2\u003e\n\u003cp\u003eThe raw data is available on OpenNeuro as the dataset \u003ccode\u003eds003834\u003c/code\u003e: \u003ca href=\"https://openneuro.org/datasets/ds003834\" rel=\"nofollow\"\u003ehttps://openneuro.org/datasets/ds003834\u003c/a\u003e.\nIf you use the data, please cite the corresponding publication:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eVisconti di Oleggio Castello, M., Haxby, J. V., \u0026amp; Gobbini, M. I. Shared neural codes for visual and semantic information about familiar faces in a common representational space. \u003cem\u003eProceedings of the National Academy of Sciences\u003c/em\u003e (2021). \u003ca href=\"https://doi.org/10.5281/zenodo.5645003\" rel=\"nofollow\"\u003ehttps://doi.org/10.5281/zenodo.5645003\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-repository-structure\" class=\"anchor\" href=\"#repository-structure\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRepository structure\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"singularity\"\u003e\u003ccode\u003esingularity\u003c/code\u003e\u003c/a\u003e contains code to generate the singularity image that was used to run all analyses\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"src\"\u003e\u003ccode\u003esrc\u003c/code\u003e\u003c/a\u003e contains a python package (\u003ccode\u003efamfaceangles\u003c/code\u003e) containing various general functions used in the analysis scripts\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts\"\u003e\u003ccode\u003escripts\u003c/code\u003e\u003c/a\u003e contains the scripts used for the analyses reported in the manuscript\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIn the following sections we describe each file in detail.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity\u003c/h3\u003e\n\u003cp\u003eThis folder contains the following files\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSingularity-neurodocker\u003c/code\u003e: a singularity definition file for the image used in all analyses\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecreate-image.sh\u003c/code\u003e: a bash script to generate the singularity image. Note that the syntax used in this script is for singularity versions 2.X. New versions of singularity will need a different syntax, and they have not been tested with this definition file.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-src\" class=\"anchor\" href=\"#src\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esrc\u003c/h3\u003e\n\u003cp\u003eThis folder contains the python package \u003ccode\u003efamfaceangles\u003c/code\u003e with helper functions used in the analysis scripts. It can be installed as any other python package (e.g., \u003ccode\u003epip install -e src\u003c/code\u003e)\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-scripts\" class=\"anchor\" href=\"#scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003escripts\u003c/h3\u003e\n\u003cp\u003eThis folder contains the following scripts\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-preprocessing\" class=\"anchor\" href=\"#preprocessing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePreprocessing\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/00preproc/run-fmriprep103-singularity.sh\"\u003e\u003ccode\u003e00preproc/run-fmriprep103-singularity.sh\u003c/code\u003e\u003c/a\u003e calls fmriprep to preprocess the data.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/00preproc/prepare-fsaverage6-suma.sh\"\u003e\u003ccode\u003e00preproc/prepare-fsaverage6-suma.sh\u003c/code\u003e\u003c/a\u003e prepares the \u003cem\u003efsaverage6\u003c/em\u003e surfaces to be used with SUMA.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/00preproc/make-maskmedial-fsaverage6.sh\"\u003e\u003ccode\u003e00preproc/make-maskmedial-fsaverage6.sh\u003c/code\u003e\u003c/a\u003e creates a mask in NIML format to remove medial nodes in \u003cem\u003efsaverage6\u003c/em\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-hyperalignment\" class=\"anchor\" href=\"#hyperalignment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHyperalignment\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/01hyperalignment/run_preproc_hpal.py\"\u003e\u003ccode\u003e01hyperalignment/run_preproc_hpal.py\u003c/code\u003e\u003c/a\u003e preprocesses the data from \u003cem\u003eThe Grand Budapest Hotel\u003c/em\u003e to be used for hyperalignment.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/01hyperalignment/run_preproc_hpal_singularity.sh\"\u003e\u003ccode\u003e01hyperalignment/run_preproc_hpal_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/01hyperalignment/run_hpal.py\"\u003e\u003ccode\u003e01hyperalignment/run_hpal.py\u003c/code\u003e\u003c/a\u003e runs the hyperalignment algorithm.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/01hyperalignment/run_hpal_singularity.sh\"\u003e\u003ccode\u003e01hyperalignment/run_hpal_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/01hyperalignment/apply_hpal.py\"\u003e\u003ccode\u003e01hyperalignment/apply_hpal.py\u003c/code\u003e\u003c/a\u003e applies the hyperalignment transformations to the input data.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/01hyperalignment/apply_hpal_singularity.sh\"\u003e\u003ccode\u003e01hyperalignment/apply_hpal_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-glm\" class=\"anchor\" href=\"#glm\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGLM\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/02glm/run_glm_model.py\"\u003e\u003ccode\u003e02glm/run_glm_model.py\u003c/code\u003e\u003c/a\u003e runs a GLM model for the face perception experiment using the specified model.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/02glm/run_glm_blockrun_singularity.sh\"\u003e\u003ccode\u003e02glm/run_glm_blockrun_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity on anatomically-aligned data and a BLOCK model estimated within each run.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/02glm/run_glm_blockrun_hpal_singularity.sh\"\u003e\u003ccode\u003e02glm/run_glm_blockrun_hpal_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity on hyperaligned data and a BLOCK model estimated within each run.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/02glm/run_glm_localizer_bwsj.py\"\u003e\u003ccode\u003e02glm/run_glm_localizer_bwsj.py\u003c/code\u003e\u003c/a\u003e runs the GLM model for the hyperaligned localizer data.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/02glm/run_glm_localizer_bwsj_singularity.sh\"\u003e\u003ccode\u003e02glm/run_glm_localizer_bwsj_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/02glm/workflows.py\"\u003e\u003ccode\u003e02glm/workflows.py\u003c/code\u003e\u003c/a\u003e contains additional functions and Nipype workflows required to run the GLM models.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-mvpa\" class=\"anchor\" href=\"#mvpa\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMVPA\u003c/h4\u003e\n\u003cp\u003eBetween-subject searchlight decoding\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_bwsbj.py\"\u003e\u003ccode\u003e03mvpa/run_sl_bwsbj.py\u003c/code\u003e\u003c/a\u003e runs between-subject whole-brain searchlight decoding.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_bwsbj_singularity.sh\"\u003e\u003ccode\u003e03mvpa/run_sl_bwsbj_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity on hyperaligned data.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_bwsbj_fsaverage6_singularity.sh\"\u003e\u003ccode\u003e03mvpa/run_sl_bwsbj_fsaverage6_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity on anatomically-aligned data.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eBetween-subject ROI decoding\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_bwsj_roi_v2.py\"\u003e\u003ccode\u003e03mvpa/run_bwsj_roi_v2.py\u003c/code\u003e\u003c/a\u003e runs between-subject decoding analyses within manually defined ROIs.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_bwsj_roi_v2_singularity.sh\"\u003e\u003ccode\u003e03mvpa/run_bwsj_roi_v2_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_roi.py\"\u003e\u003ccode\u003e03mvpa/run_sl_roi.py\u003c/code\u003e\u003c/a\u003e contains some additional functions needed for ROI decoding.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eWithin-subject searchlight decoding\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl.py\"\u003e\u003ccode\u003e03mvpa/run_sl.py\u003c/code\u003e\u003c/a\u003e runs within-subject whole-brain searchlight decoding.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_blockrun_singularity.sh\"\u003e\u003ccode\u003e03mvpa/run_sl_blockrun_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_blockrun_permutation_singularity.sh\"\u003e\u003ccode\u003e03mvpa/run_sl_blockrun_permutation_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity to generate permuted maps.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eCross-validated RSA\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_cvrsa.py\"\u003e\u003ccode\u003e03mvpa/run_sl_cvrsa.py\u003c/code\u003e\u003c/a\u003e runs within-subject searchlight cross-validated RSA.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_sl_cvrsa_blockrun_singularity.sh\"\u003e\u003ccode\u003e03mvpa/run_sl_cvrsa_blockrun_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_rsa_target.py\"\u003e\u003ccode\u003e03mvpa/run_rsa_target.py\u003c/code\u003e\u003c/a\u003e runs model-based RSA by comparing the cross-validated brain RDMs with model RDMs.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/03mvpa/run_rsa_target_singularity.sh\"\u003e\u003ccode\u003e03mvpa/run_rsa_target_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-statistics\" class=\"anchor\" href=\"#statistics\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStatistics\u003c/h4\u003e\n\u003cp\u003ePermutation testing for between-subject MVPC\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/run_permtest_bootstrap.py\"\u003e\u003ccode\u003e04stat/run_permtest_bootstrap.py\u003c/code\u003e\u003c/a\u003e runs permutation testing with bootstrapping.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/run_permtest_bwsbj_bootstrap_singularity.sh\"\u003e\u003ccode\u003e04stat/run_permtest_bwsbj_bootstrap_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/make_fam-diff_bwsj_identity.sh\"\u003e\u003ccode\u003e04stat/make_fam-diff_bwsj_identity.sh\u003c/code\u003e\u003c/a\u003e creates difference maps (familiar - visual) from precomputed accuracy maps.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/run_permtest_famdiff_bwsbj_bootstrap_singularity.sh\"\u003e\u003ccode\u003e04stat/run_permtest_famdiff_bwsbj_bootstrap_singularity.sh\u003c/code\u003e\u003c/a\u003e runs permutation testing on the familiar - visual difference maps.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/make-maskfdrval-diff-identity-bsmvpc.sh\"\u003e\u003ccode\u003e04stat/make-maskfdrval-diff-identity-bsmvpc.sh\u003c/code\u003e\u003c/a\u003e makes a mask that highlights significant nodes for the familiar - visual difference map.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThreshold-Free Cluster Enhancement for within-subject MVPC and RSA\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/run_tfce_fsaverage6_cosmo.m\"\u003e\u003ccode\u003e04stat/run_tfce_fsaverage6_cosmo.m\u003c/code\u003e\u003c/a\u003e runs the CoSMoMVPA TFCE code for within-subject MVPC.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/run_tfce_fsaverage6_cosmo_blockrun_hpalsubjs_singularity.sh\"\u003e\u003ccode\u003e04stat/run_tfce_fsaverage6_cosmo_blockrun_hpalsubjs_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/make_thresholded_avg_blockrun_fsaverage6-hpal.sh\"\u003e\u003ccode\u003e04stat/make_thresholded_avg_blockrun_fsaverage6-hpal.sh\u003c/code\u003e\u003c/a\u003e creates thresholded maps based on the TFCE values.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/make_thresholded_avg_blockrun_fsaverage6-hpal_all.sh\"\u003e\u003ccode\u003e04stat/make_thresholded_avg_blockrun_fsaverage6-hpal_all.sh\u003c/code\u003e\u003c/a\u003e calls the previous script for all comparisons of interest.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/run_tfce_cvrsa_fsaverage6_cosmo.m\"\u003e\u003ccode\u003e04stat/run_tfce_cvrsa_fsaverage6_cosmo.m\u003c/code\u003e\u003c/a\u003e runs the CoSMoMVPA TFCE code for within-subject cross-validated RSA.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/run_tfce_cvrsa_fsaverage6_cosmo_singularity.sh\"\u003e\u003ccode\u003e04stat/run_tfce_cvrsa_fsaverage6_cosmo_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example call with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/make_thresholded_avg_cvrsa_fsaverage6.sh\"\u003e\u003ccode\u003e04stat/make_thresholded_avg_cvrsa_fsaverage6.sh\u003c/code\u003e\u003c/a\u003e creates thresholded maps based on the TFCE values.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/make_thresholded_avg_cvrsa_fsaverage6_singularity.sh\"\u003e\u003ccode\u003e04stat/make_thresholded_avg_cvrsa_fsaverage6_singularity.sh\u003c/code\u003e\u003c/a\u003e shows an example with singularity.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/04stat/make_thresholded_avg_cvrsa_fsaverage6_all.sh\"\u003e\u003ccode\u003e04stat/make_thresholded_avg_cvrsa_fsaverage6_all.sh\u003c/code\u003e\u003c/a\u003e calls the previous script for all comparisons of interest.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-visualization\" class=\"anchor\" href=\"#visualization\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVisualization\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"scripts/05viz/drive-suma-blockrun-fsaverage6-group-hpal.sh\"\u003e\u003ccode\u003e05viz/drive-suma-blockrun-fsaverage6-group-hpal.sh\u003c/code\u003e\u003c/a\u003e shows an example call to \u003ccode\u003eDriveSuma\u003c/code\u003e to generate surface plots.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-acknowledgements\" class=\"anchor\" href=\"#acknowledgements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgements\u003c/h2\u003e\n\u003cp\u003eThis work was supported by the NSF grant #1835200 to M. Ida Gobbini. We would like to thank Swaroop Guntupalli, Yaroslav Halchenko, Carlo Cipolli, and the members of the Gobbini and Haxby lab for helpful discussions during the development of this project.\u003c/p\u003e\n",
+ "full_name": "peterk87/viral-ampliseq-assembly",
+ "latest_release": "v1.0.0",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-snakemake-workflow-viral-ampliseq-assembly\" class=\"anchor\" aria-hidden=\"true\" href=\"#snakemake-workflow-viral-ampliseq-assembly\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSnakemake workflow: viral-ampliseq-assembly\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://snakemake.bitbucket.io\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/de7b3ae9d2ddd7970750ed14a267d738217987e5635a19380de6f3b2ec3216e6/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f736e616b656d616b652d254532253839254135352e352e342d627269676874677265656e2e737667\" alt=\"Snakemake\" data-canonical-src=\"https://img.shields.io/badge/snakemake-%E2%89%A55.5.4-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://travis-ci.com/peterk87/viral-ampliseq-assembly\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9ca62ba99cb6a38032432759aa450c99bf81b9671bab9e21e2492c47bf7cf065/68747470733a2f2f7472617669732d63692e6f72672f70657465726b38372f766972616c2d616d706c697365712d617373656d626c792e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/peterk87/viral-ampliseq-assembly.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/3359\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://snakemake.readthedocs.io/en/stable/\" rel=\"nofollow\"\u003eSnakemake\u003c/a\u003e workflow for analysis and assembly of viral genomes such as Classical Swine Fever Virus (\u003ca href=\"https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=11096\" rel=\"nofollow\"\u003eCSFV\u003c/a\u003e) from IonTorrent AmpliSeq data.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-hidden=\"true\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOverview\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003ePreprocessing\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDuplicate reads were removed using \u003ca href=\"https://broadinstitute.github.io/picard/\" rel=\"nofollow\"\u003ePicard\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eReads were trimmed with \u003ca href=\"http://www.usadellab.org/cms/?page=trimmomatic\" rel=\"nofollow\"\u003eTrimmomatic\u003c/a\u003e prior to \u003ca href=\"http://cab.spbu.ru/software/spades/\" rel=\"nofollow\"\u003eSPAdes\u003c/a\u003e assembly\u003c/li\u003e\n\u003cli\u003eBAM file stats computed using \u003ca href=\"https://samtools.github.io/\" rel=\"nofollow\"\u003eSamtools\u003c/a\u003e (coverage depth, extent, extent per genome, # of reads mapped)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eReference Genome Selection\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDownloading of all Classical swine fever virus (\u003ca href=\"https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=11096\" rel=\"nofollow\"\u003eCSFV\u003c/a\u003e) (or FMDV, Ebola, Zika) virus genomes from \u003ca href=\"https://www.ncbi.nlm.nih.gov/books/NBK25501/\" rel=\"nofollow\"\u003eNCBI Entrez API\u003c/a\u003e using \u003ca href=\"https://biopython.org/\" rel=\"nofollow\"\u003eBioPython\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://mash.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003eMash\u003c/a\u003e screen of deduplicated reads against all reference genomes with sketch size of 10000 and sketch k-mer size of 16, sorting by Mash screen identity to find top reference genome for read mapping and variant calling\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRead Mapping \u0026amp; Variant Calling\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eRead mapping with \u003ca href=\"https://github.com/lh3/bwa\"\u003eBWA MEM\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eRemoval of duplicate reads with \u003ca href=\"https://samtools.github.io/\" rel=\"nofollow\"\u003eSamtools\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eVariant calling with \u003ca href=\"https://github.com/ekg/freebayes\"\u003eFreeBayes\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://snpeff.sourceforge.net/SnpEff.html\" rel=\"nofollow\"\u003eSnpEff\u003c/a\u003e was used to predict and report variant effects using reference genome annotation\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDe Novo Assembly\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"http://cab.spbu.ru/software/spades/\" rel=\"nofollow\"\u003eSPAdes\u003c/a\u003e de novo assembly of trimmed deduplicated reads.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://quast.sourceforge.net/quast.html\" rel=\"nofollow\"\u003eQUAST\u003c/a\u003e quality assessment of assemblies\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eQuality Control\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://multiqc.info/\" rel=\"nofollow\"\u003eMultiQC\u003c/a\u003e interactive report of \u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003eFastQC\u003c/a\u003e, \u003ca href=\"https://samtools.github.io/\" rel=\"nofollow\"\u003eSamtools\u003c/a\u003e, \u003ca href=\"http://quast.sourceforge.net/quast.html\" rel=\"nofollow\"\u003eQUAST\u003c/a\u003e, \u003ca href=\"http://snpeff.sourceforge.net/SnpEff.html\" rel=\"nofollow\"\u003eSnpEff\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ePhylogenetic Tree\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePhylogenetic tree constructed with \u003ca href=\"http://www.iqtree.org/\" rel=\"nofollow\"\u003eIQ-TREE\u003c/a\u003e (or \u003ca href=\"http://bioinformatics.hungry.com/clearcut/\" rel=\"nofollow\"\u003eClearcut\u003c/a\u003e if a quick and dirty tree is okay)\u003c/li\u003e\n\u003cli\u003eInteractive HTML phylogenetic tree visualization with \u003ca href=\"http://phylocanvas.org/\" rel=\"nofollow\"\u003ePhyloCanvas\u003c/a\u003e using \u003ca href=\"https://github.com/peterk87/shiptv\"\u003eshiptv\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-authors\" class=\"anchor\" aria-hidden=\"true\" href=\"#authors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003ePeter Kruczkiewicz (@peterk87)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-0-install-pre-requisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-0-install-pre-requisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 0: Install pre-requisites\u003c/h3\u003e\n\u003cp\u003eRunning this workflow with \u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e is recommended, but you can use \u003ca href=\"https://conda.io/en/latest/\" rel=\"nofollow\"\u003eConda\u003c/a\u003e if you prefer. The Singularity image will come with all the dependencies bundled together in a single file.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-install-singularity-recommended\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-singularity-recommended\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall \u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e (recommended)\u003c/h4\u003e\n\u003cp\u003eFollow the instructions for installing Singularity \u003ca href=\"https://sylabs.io/guides/3.3/user-guide/quick_start.html#quick-start\" rel=\"nofollow\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-setup-and-activate-the-conda-environment-if-not-using-singularity-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-and-activate-the-conda-environment-if-not-using-singularity-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup and activate the \u003ca href=\"https://conda.io/en/latest/\" rel=\"nofollow\"\u003eConda\u003c/a\u003e environment if not using \u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e (optional)\u003c/h4\u003e\n\u003cp\u003eInstall \u003ca href=\"https://conda.io/en/latest/\" rel=\"nofollow\"\u003eConda\u003c/a\u003e if you haven\u0027t already following \u003ca href=\"https://conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003ethese instructions\u003c/a\u003e and setup the \u003ca href=\"https://bioconda.github.io/user/install.html#set-up-channels\" rel=\"nofollow\"\u003eBioConda channel\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eDownload or \u003ccode\u003egit clone\u003c/code\u003e this repo\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/peterk87/viral-ampliseq-assembly.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e viral-ampliseq-assembly\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e create a conda environment named \"viral-ampliseq-assembly-1.0.0\"\u003c/span\u003e\nconda env create -f environment.yml\nconda activate viral-ampliseq-assembly-1.0.0\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e install snakemake into this env\u003c/span\u003e\nconda install -y snakemake\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e run Snakemake on the test directory\u003c/span\u003e\nsnakemake --directory test/\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-1-install-workflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-1-install-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 1: Install workflow\u003c/h3\u003e\n\u003cp\u003eIf you simply want to use this workflow, download and extract the \u003ca href=\"https://github.com/peterk87/viral-ampliseq-assembly/releases\"\u003elatest release\u003c/a\u003e.\nIf you intend to modify and further develop this workflow, fork this repository. Please consider providing any generally applicable modifications via a pull request.\u003c/p\u003e\n\u003cp\u003eIn any case, if you use this workflow in a paper, don\u0027t forget to give credits to the authors by citing the URL of this repository and, if available, its DOI (see above).\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-2-configure-workflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-2-configure-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 2: Configure workflow\u003c/h3\u003e\n\u003cp\u003eCreate an analysis directory, copy and modify the example \u003ccode\u003econfig.yaml\u003c/code\u003e and \u003ccode\u003esamples.tsv\u003c/code\u003e files to suit your needs.\u003c/p\u003e\n\u003cp\u003ee.g.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emkdir ~/my-ampliseq-analysis\ncp viral-ampliseq-assembly/config.yaml ~/my-ampliseq-analysis/\ncp viral-ampliseq-assembly/samples.tsv ~/my-ampliseq-analysis/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eEdit your \u003ccode\u003econfig.yaml\u003c/code\u003e as needed.\u003c/p\u003e\n\u003cp\u003eAdd sample entries to your \u003ccode\u003esamples.tsv\u003c/code\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esample bam_file\nSample1 bams/Sample1.bam\nSample2 bams/Sample2.bam\nSample3 bams/Sample3.bam\n... \u0026lt;more sample entries\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere \u003ccode\u003ebam_file\u003c/code\u003e can be the relative or absolute path to a sample\u0027s BAM file.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-iq-tree-maximum-likelihood-or-clearcut-rnj-tree\" class=\"anchor\" aria-hidden=\"true\" href=\"#iq-tree-maximum-likelihood-or-clearcut-rnj-tree\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\n\u003ca href=\"http://www.iqtree.org/\" rel=\"nofollow\"\u003eIQ-TREE\u003c/a\u003e maximum-likelihood or \u003ca href=\"http://bioinformatics.hungry.com/clearcut/\" rel=\"nofollow\"\u003eClearcut\u003c/a\u003e RNJ tree\u003c/h4\u003e\n\u003cp\u003eIn your \u003ccode\u003econfig.yaml\u003c/code\u003e the \u003ccode\u003efast_tree\u003c/code\u003e parameter controls which method (ML or RNJ) is used for phylogenetic tree construction.\u003c/p\u003e\n\u003cp\u003eIf you want a quick and dirty tree, set\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003efast_tree\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003etrue\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ein your \u003ccode\u003econfig.yaml\u003c/code\u003e to generate a Relaxed Neighbor Joining (RNJ) tree.\u003c/p\u003e\n\u003cp\u003eOtherwise, if you want a high accuracy phylogenetic tree and are willing to wait for it, then set\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003efast_tree\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003efalse\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eto use \u003ca href=\"http://www.iqtree.org/\" rel=\"nofollow\"\u003eIQ-TREE\u003c/a\u003e to generate a maximum-likelihood phylogenetic tree with 1000 ultrafast bootstraps (UFBoot) (see \u003ca href=\"http://dx.doi.org/10.1093/molbev/mst024\" rel=\"nofollow\"\u003eMinh et al., 2016\u003c/a\u003e for more info on UFBoot).\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-3-execute-workflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-3-execute-workflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 3: Execute workflow\u003c/h3\u003e\n\u003cp\u003e\u003cem\u003eIf you do not have \u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e installed then remove the \u003ccode\u003e--use-singularity\u003c/code\u003e flag\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eTest your configuration by performing a dry-run via\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake --use-singularity -n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExecute the workflow locally via\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake --use-singularity --cores $N\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eusing \u003ccode\u003e$N\u003c/code\u003e cores.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-cluster-execution\" class=\"anchor\" aria-hidden=\"true\" href=\"#cluster-execution\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCluster execution\u003c/h4\u003e\n\u003cp\u003e\u003cem\u003eNote: You may need to install the \u003ccode\u003edrmaa\u003c/code\u003e Python library (\u003ccode\u003epip install drmaa\u003c/code\u003e)\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eYou can execute the workflow on a SLURM/DRMAA cluster environment with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake --directory test --use-singularity --drmaa \" -c 4 -p YourClusterQueueName --mem=4096 \" -j 8 -w 60\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will run the workflow on the test data in the \u003ccode\u003etest/\u003c/code\u003e directory with 4 CPUs and 4G memory per job and 8 jobs at once (\u003ccode\u003e-j 8\u003c/code\u003e) while waiting 60 seconds for output files to appear on the shared filesystem (\u003ccode\u003e-w 60\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eThe cluster partition or queue to schedule jobs to is specified with \u003ccode\u003e-p YourClusterQueueName\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eThe above will run each rule or job with 4 CPUs and 4GB memory each, which may be way more than needed or not enough so you could create a YAML (or JSON) file to specify default and specific resource requirements for some steps:\u003c/p\u003e\n\u003cp\u003eExample \u003ccode\u003ecluster-config.yaml\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003e__default__\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ecpu\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003epartition\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003eYourClusterQueueName\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ememory\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e1024\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003esamtools_index_bam_initial\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ecpu\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e32\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ememory\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e16384\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003espades_assembly\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ecpu\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e32\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ememory\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e16384\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003ebwa_mem\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ecpu\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e32\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ememory\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e4096\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003emafft_msa\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ecpu\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e32\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ememory\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e4096\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003eiqtree\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ecpu\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e8\u003c/span\u003e\n \u003cspan class=\"pl-ent\"\u003ememory\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e4096\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003esnpeff\u003c/span\u003e:\n \u003cspan class=\"pl-ent\"\u003ememory\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003e4096\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eWith the \u003ccode\u003ecluster-config.yaml\u003c/code\u003e, run the workflow in a cluster environment via\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake --directory test --use-singularity --cluster-config cluster-config.yaml --drmaa \" -c {cluster.cpu} -p {cluster.partition} --mem={cluster.memory} \" -j 8 -w 60\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWith the above command and \u003ccode\u003ecluster-config.yaml\u003c/code\u003e, by default, a rule or step in the workflow will only use 1 CPU and request 1G of memory, while the rules like \u003ccode\u003eiqtree\u003c/code\u003e or \u003ccode\u003espades_assembly\u003c/code\u003e will request more CPUs and memory from the SLURM/DRMAA scheduler.\u003c/p\u003e\n\u003cp\u003eSee the \u003ca href=\"https://snakemake.readthedocs.io\" rel=\"nofollow\"\u003eSnakemake documentation\u003c/a\u003e for further details.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-testing\" class=\"anchor\" aria-hidden=\"true\" href=\"#testing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting\u003c/h2\u003e\n\u003cp\u003eTests cases are in the subfolder \u003ccode\u003etest\u003c/code\u003e. They should be executed via continuous integration with Travis CI.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-output\" class=\"anchor\" aria-hidden=\"true\" href=\"#output\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput\u003c/h2\u003e\n\u003cp\u003eIf you were to copy the files in \u003ccode\u003etest\u003c/code\u003e (\u003ccode\u003esamples.tsv\u003c/code\u003e, \u003ccode\u003ebam/\u003c/code\u003e and \u003ccode\u003econfig.yaml\u003c/code\u003e) to a new directory \u003ccode\u003emy-analysis-directory\u003c/code\u003e and run the workflow on that directory, i.e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esnakemake --directory my-analysis-directory/ \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e other args\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe contents of \u003ccode\u003emy-analysis-directory\u003c/code\u003e should look like:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emy-analysis-directory\n\u251c\u2500\u2500 phylogeny \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Phylogenetic Tree Output\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 genome-metadata.tsv\n\u2502 \u2514\u2500\u2500 tree.html\n\u251c\u2500\u2500 config.yaml \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e INPUT: Workflow Execution Config File \u003c/span\u003e\n\u251c\u2500\u2500 qc \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Quality Control Output\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 multiqc.html \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e MultiQC report file\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 fastqc \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e FastQC Output\u003c/span\u003e\n\u2502 \u2502 \u251c\u2500\u2500 Sample1.html\n\u2502 \u2502 \u2514\u2500\u2500 Sample1_fastqc.zip\n\u2502 \u251c\u2500\u2500 multiqc_data\n\u2502 \u2502 \u251c\u2500\u2500 [Text files]\n\u2502 \u2514\u2500\u2500 quast \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e QUAST Output\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 report.tex\n\u2502 \u251c\u2500\u2500 icarus_viewers\n\u2502 \u2502 \u2514\u2500\u2500 contig_size_viewer.html\n\u2502 \u251c\u2500\u2500 report.html\n\u2502 \u251c\u2500\u2500 basic_stats\n\u2502 \u2502 \u251c\u2500\u2500 [QUAST PDFs]\n\u2502 \u251c\u2500\u2500 icarus.html\n\u2502 \u251c\u2500\u2500 transposed_report.tex\n\u2502 \u251c\u2500\u2500 quast.log\n\u2502 \u251c\u2500\u2500 report.pdf\n\u2502 \u251c\u2500\u2500 report.txt\n\u2502 \u251c\u2500\u2500 .snakemake_timestamp\n\u2502 \u251c\u2500\u2500 report.tsv\n\u2502 \u251c\u2500\u2500 transposed_report.tsv\n\u2502 \u2514\u2500\u2500 transposed_report.txt\n\u251c\u2500\u2500 variant_calling \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Variant Calling Output\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 Sample1-filtered.vcf \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Filtered variants for Sample1 in VCF format\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 Sample1.vcf \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Unfiltered variants for Sample1 in VCF format\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 snpeff \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e SnpEff Output\u003c/span\u003e\n\u2502 \u2502 \u251c\u2500\u2500 Sample1\n\u2502 \u2502 \u2502 \u251c\u2500\u2500 [SnpEff specific files]\n\u2502 \u2502 \u251c\u2500\u2500 Sample1.vcf\n\u2502 \u2502 \u251c\u2500\u2500 Sample1.csv\n\u2502 \u2502 \u251c\u2500\u2500 Sample1.html \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e SnpEff report for Sample1\u003c/span\u003e\n\u2502 \u2502 \u2514\u2500\u2500 Sample1.genes.txt\n\u2502 \u2514\u2500\u2500 Sample1-vcf.tsv \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e SnpEff annotated variants in a tab-delimited table\u003c/span\u003e\n\u251c\u2500\u2500 mapping \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Read Mapping Output\u003c/span\u003e\n\u2502 \u2514\u2500\u2500 Sample1 \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Read mapping output and summary files for Sample1\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 Sample1-extent.tsv\n\u2502 \u251c\u2500\u2500 Sample1-genome_extent.tsv\n\u2502 \u251c\u2500\u2500 Sample1-idxstats.tsv\n\u2502 \u251c\u2500\u2500 Sample1.bam\n\u2502 \u251c\u2500\u2500 Sample1-depth.tsv\n\u2502 \u251c\u2500\u2500 Sample1-idxstats-sorted.tsv\n\u2502 \u251c\u2500\u2500 Sample1-idxstats-top_mapped.txt\n\u2502 \u2514\u2500\u2500 Sample1.bam.bai\n\u251c\u2500\u2500 bam \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Input directory with Sample1 BAM file specified in config.yaml\u003c/span\u003e\n\u2502 \u2514\u2500\u2500 a.bam\n\u251c\u2500\u2500 consensus \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Consensus Sequence Output\u003c/span\u003e\n\u2502 \u2514\u2500\u2500 Sample1.fasta \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Consensus sequence for Sample1 from reference mapping and variant calling\u003c/span\u003e\n\u251c\u2500\u2500 logs \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Log files for various tools\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etool name\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u2502 \u2502 \u2514\u2500\u2500 Sample1.log\n\u251c\u2500\u2500 samples.tsv \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e INPUT: tab-delimited table with 2 fields: \"sample\" and \"bam_file\"\u003c/span\u003e\n\u251c\u2500\u2500 references \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Reference Genomes Downloaded From NCBI\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 Sample1 \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Top Reference Genome\u003c/span\u003e\n\u2502 \u2502 \u251c\u2500\u2500 reference.gff\n\u2502 \u2502 \u251c\u2500\u2500 reference-no_ambig.fasta.bwt\n\u2502 \u2502 \u251c\u2500\u2500 reference-no_ambig.fasta.pac\n\u2502 \u2502 \u251c\u2500\u2500 reference.genbank\n\u2502 \u2502 \u251c\u2500\u2500 reference-no_ambig.fasta.amb\n\u2502 \u2502 \u251c\u2500\u2500 reference-no_ambig.fasta.ann\n\u2502 \u2502 \u251c\u2500\u2500 reference-no_ambig.fasta\n\u2502 \u2502 \u251c\u2500\u2500 reference-no_ambig.fasta.sa\n\u2502 \u2502 \u251c\u2500\u2500 reference.fasta\n\u2502 \u2502 \u2514\u2500\u2500 reference-no_ambig.fasta.fai\n\u2502 \u251c\u2500\u2500 csf.msh \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Mash sketch database from \"csf.fasta\"\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 csf.genbank \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e CSFV genomes downloaded from NCBI in GenBank format\u003c/span\u003e\n\u2502 \u2514\u2500\u2500 csf.fasta \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e CSFV genomes downloaded from NCBI in FASTA format\u003c/span\u003e\n\u251c\u2500\u2500 assembly \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Assembly Output\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 spades \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e SPAdes assembly outputs for each input sample\u003c/span\u003e\n\u2502 \u2502 \u2514\u2500\u2500 Sample1 \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e SPAdes assembly output for Sample1\u003c/span\u003e\n\u2502 \u2502 \u251c\u2500\u2500 before_rr.fasta\n\u2502 \u2502 \u251c\u2500\u2500 params.txt\n\u2502 \u2502 \u251c\u2500\u2500 contigs.paths\n\u2502 \u2502 \u251c\u2500\u2500 input_dataset.yaml\n\u2502 \u2502 \u251c\u2500\u2500 \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eSPAdes specific output directories\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u2502 \u2502 \u251c\u2500\u2500 scaffolds.paths\n\u2502 \u2502 \u251c\u2500\u2500 contigs.fasta\n\u2502 \u2502 \u251c\u2500\u2500 spades.log\n\u2502 \u2502 \u251c\u2500\u2500 assembly_graph.fastg\n\u2502 \u2502 \u251c\u2500\u2500 dataset.info\n\u2502 \u2502 \u251c\u2500\u2500 scaffolds.fasta\n\u2502 \u2502 \u2514\u2500\u2500 assembly_graph_with_scaffolds.gfa\n\u2502 \u2514\u2500\u2500 spades-Sample1.fasta\n\u251c\u2500\u2500 benchmarks \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Benchmark runtime info for tools in workflow\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003ebenchmark tab-delimited files \u003cspan class=\"pl-k\"\u003efor\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003evarious tools\u003c/span\u003e \u003cspan class=\"pl-k\"\u003ein\u003c/span\u003e workflow\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u251c\u2500\u2500 msa \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Multiple sequence alignment (MSA) output and IQ-TREE/Clearcut phylogenetic tree\u003c/span\u003e\n\u2502 \u251c\u2500\u2500 alignment.fasta\n\u2502 \u251c\u2500\u2500 samples-pre-aln.fasta\n\u2502 \u2514\u2500\u2500 alignment.fasta.treefile\n\u2514\u2500\u2500 preprocess \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Preprocessing Output of Input BAM Files \u003c/span\u003e\n \u251c\u2500\u2500 samtools \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Initial BAM file stats output\u003c/span\u003e\n \u2502 \u251c\u2500\u2500 depth\n \u2502 \u2502 \u251c\u2500\u2500 Sample1-extent.tsv\n \u2502 \u2502 \u251c\u2500\u2500 Sample1-genome_extent.tsv\n \u2502 \u2502 \u2514\u2500\u2500 Sample1.tsv\n \u2502 \u251c\u2500\u2500 flagstat\n \u2502 \u2502 \u2514\u2500\u2500 Sample1.flagstat\n \u2502 \u251c\u2500\u2500 index\n \u2502 \u2502 \u2514\u2500\u2500 Sample1.done\n \u2502 \u2514\u2500\u2500 idxstats\n \u2502 \u251c\u2500\u2500 Sample1-top_mapped.txt\n \u2502 \u251c\u2500\u2500 Sample1.tsv\n \u2502 \u2514\u2500\u2500 Sample1-sorted.tsv\n \u251c\u2500\u2500 fastqs \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Deduplicated reads in FASTQ format\u003c/span\u003e\n \u2502 \u2514\u2500\u2500 Sample1.fastq\n \u251c\u2500\u2500 mash \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Mash Screen results\u003c/span\u003e\n \u2502 \u251c\u2500\u2500 Sample1-screen_references-sorted.tsv\n \u2502 \u2514\u2500\u2500 Sample1-screen_references.tsv\n \u251c\u2500\u2500 trimmed_fastqs \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Trimmomatic trimmed reads\u003c/span\u003e\n \u2502 \u2514\u2500\u2500 Sample1.fastq\n \u2514\u2500\u2500 dedup \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Deduplicated BAM files\u003c/span\u003e\n \u251c\u2500\u2500 Sample1.bam\n \u251c\u2500\u2500 Sample1.metrics.txt\n \u2514\u2500\u2500 Sample1.bam.bai\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1636025062.0
+ "updated_at": 1566573045.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for Portcullis (https://github.com/maplesond/portcullis)",
"filenames": [
- "Singularity"
+ "Singularity.1.1.0",
+ "Singularity",
+ "Singularity.1.1.1",
+ "Singularity.1.1.2"
],
- "full_name": "truatpasteurdotfr/singularity-c7-openapi-basekit",
+ "full_name": "powerPlant/portcullis-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-c7-openapi-basekit\" class=\"anchor\" href=\"#singularity-c7-openapi-basekit\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-c7-openapi-basekit\u003c/h1\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2267\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for Portcullis, a program for PORTable CULLing of Invalid Splice junctions from pre-aligned RNA-seq data\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1635331812.0
+ "updated_at": 1549336366.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for Bismark (https://github.com/FelixKrueger/Bismark)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.0.19.1",
+ "Singularity.0.23.0",
+ "Singularity.0.23.1",
+ "Singularity.0.20.0"
],
- "full_name": "truatpasteurdotfr/singularity-docker-stream8-chrome",
+ "full_name": "powerPlant/bismark-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-docker-stream8-chrome\" class=\"anchor\" href=\"#singularity-docker-stream8-chrome\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-docker-stream8-chrome\u003c/h1\u003e\n\u003cp\u003eGoogle Chrome container based on a CentOS Stream 8 x86_64 docker image built from github actions\u003c/p\u003e\n\u003cp\u003e(toy) singularity image produced by github actions available at \u003ccode\u003eghcr.io/truatpasteurdotfr/singularity-docker-stream8-chrome:latest\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why\" class=\"anchor\" href=\"#why\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eworkaround solution when a Chrome release is not running on CentOS-7 because the required glibc is not satisfied\n(yes, I know... CentOS-7 is not on the list of approved OS).\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running-without-installation-\" class=\"anchor\" href=\"#running-without-installation-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning without installation: \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-stream8-chrome/actions/workflows/singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-stream8-chrome/actions/workflows/singularity-publish.yml/badge.svg\" alt=\"Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /run oras://ghcr.io/truatpasteurdotfr/singularity-docker-stream8-chrome:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building\" class=\"anchor\" href=\"#building\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding:\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build singularity-docker-stream8-chrome.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2263\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the Bismark bisulfite mapping and methylation calling program\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1638391965.0
+ "updated_at": 1635284848.0
},
{
"data_format": 2,
- "description": "MAXCUT Simulation Code",
+ "description": "singularity scripts for cellprofiler",
"filenames": [
- "SingularityFile.def"
+ "Singularity.3.1.8",
+ "Singularity.2.2.0",
+ "Singularity.3.0.0"
],
- "full_name": "fenellamcandrew/aqc-maxcut",
+ "full_name": "arcsUVA/cellprofiler",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-adiabatic-quantum-computing-for-maxcut\" class=\"anchor\" href=\"#adiabatic-quantum-computing-for-maxcut\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAdiabatic Quantum Computing for MAXCUT\u003c/h1\u003e\n\u003cp\u003eMAXCUT Simulation Code\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003essh -i \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/.ssh/experimentr.pem ubuntu@\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eMY_IP_ADDRESS\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1632103728.0
+ "updated_at": 1556734065.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.1.3.1-py36",
+ "Singularity.1.0.0-py36"
],
- "full_name": "oogasawa/singularity-img-gridengine-client",
+ "full_name": "arcsUVA/pytorch",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-img-ubuntu16-gridengine-client\" class=\"anchor\" href=\"#singularity-img-ubuntu16-gridengine-client\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-img-ubuntu16-gridengine-client\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-pytorch\" class=\"anchor\" aria-hidden=\"true\" href=\"#pytorch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epytorch\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1631971328.0
+ "updated_at": 1573410610.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for vg (https://github.com/vgteam/vg)",
"filenames": [
- "Singularity"
+ "Singularity.1.8.0",
+ "Singularity",
+ "Singularity.1.12.0",
+ "Singularity.1.12.1",
+ "Singularity.1.9.0",
+ "Singularity.1.11.0",
+ "Singularity.1.13.0",
+ "Singularity.1.10.0"
],
- "full_name": "oogasawa/singularity-img-gridengine-master",
+ "full_name": "powerPlant/vg-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-img-gridengine-master\" class=\"anchor\" href=\"#singularity-img-gridengine-master\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-img-gridengine-master\u003c/h1\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2311\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe files for the vg tools for working with genome variation graphs\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1631970804.0
+ "updated_at": 1549578706.0
},
{
"data_format": 2,
- "description": "FLASH (Fast Length Adjustment of SHort reads) is a very fast and accurate software tool to merge paired-end reads from next-generation sequencing experiments. ",
+ "description": null,
"filenames": [
- "1.2.11/Singularity"
+ "Singularity.kepler"
],
- "full_name": "pscedu/singularity-flash",
+ "full_name": "ternaustralia/coesra-singularity-kepler",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-flash/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-flash/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-flash/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-flash/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/86a31ece843f2a6eac62c15a795deb81ca5d718c06548f2c2a47b1da60ac0398/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d666c617368\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/86a31ece843f2a6eac62c15a795deb81ca5d718c06548f2c2a47b1da60ac0398/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d666c617368\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-flash\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/8438148a71d5669e7f72c44baa07c726adaf97954d4d37637024d1ad4ffe1838/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d666c617368\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8438148a71d5669e7f72c44baa07c726adaf97954d4d37637024d1ad4ffe1838/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d666c617368\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-flash\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c561b50b92370071ff56fae3c65507316dd34d582f558974abcac0f51a9fe052/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d666c617368\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c561b50b92370071ff56fae3c65507316dd34d582f558974abcac0f51a9fe052/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d666c617368\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-flash\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/b15c615f56761a00ff252428c0c999278f063be89c1895fc26e7d55f2a9417fc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d666c617368\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b15c615f56761a00ff252428c0c999278f063be89c1895fc26e7d55f2a9417fc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d666c617368\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-flash\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-flash\" class=\"anchor\" href=\"#singularity-flash\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-flash\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"http://ccb.jhu.edu/software/FLASH/\" rel=\"nofollow\"\u003eFLASH\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eflash\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/flash/1.2.11\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/flash\u003c/code\u003e as \u003ccode\u003e1.2.11.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-coesra-singularity-kepler\" class=\"anchor\" aria-hidden=\"true\" href=\"#coesra-singularity-kepler\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-kepler\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [
- "singularity",
- "bioinformatics"
+ "coesra"
],
- "updated_at": 1631930117.0
+ "updated_at": 1610425796.0
},
{
"data_format": 2,
- "description": "BLAST-Like Alignment Tool.",
+ "description": "Rnnotator is an automated software pipeline that generates transcript models by de novo assembly of RNA-Seq data without the need for a reference genome.",
"filenames": [
- "36/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-blat",
+ "full_name": "sghignone/Rnnotator",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-blat/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-blat/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-blat/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-blat/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/fde072f38ccaf86b9b38a5136b7663dd158f14a4e1cf1278108e06da76103d06/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626c6174\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fde072f38ccaf86b9b38a5136b7663dd158f14a4e1cf1278108e06da76103d06/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626c6174\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-blat\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/af4ec22e9ffbf62e6d73e3a37e86694f53da06d4e9bb1f1340e3229c13ef3bb7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626c6174\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/af4ec22e9ffbf62e6d73e3a37e86694f53da06d4e9bb1f1340e3229c13ef3bb7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626c6174\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-blat\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c1a11abb9c1ade82245064c947accad2be8fb585c711780038651614310a9e2f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626c6174\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c1a11abb9c1ade82245064c947accad2be8fb585c711780038651614310a9e2f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626c6174\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-blat\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/fcaf031a92e8a29f5eef49aae1244a4d6365b34bcc206de848f3405b25751c32/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626c6174\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fcaf031a92e8a29f5eef49aae1244a4d6365b34bcc206de848f3405b25751c32/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626c6174\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-blat\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-blat\" class=\"anchor\" href=\"#singularity-blat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-blat\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/djhshih/blat\"\u003eBLAT\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eblat\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/BLAT/36\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/BLAT\u003c/code\u003e as \u003ccode\u003e36.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-rnnotator\" class=\"anchor\" aria-hidden=\"true\" href=\"#rnnotator\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRnnotator\u003c/h1\u003e\n\u003cp\u003eRnnotator is an automated software pipeline that generates transcript models by de novo assembly of RNA-Seq data without the need for a reference genome.\u003c/p\u003e\n\u003cp\u003eRnnotator must be run on a 64-bit Linux architecture. Before running Rnnotator the\nfollowing prerequisites must be installed:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBlat v. 34 (\u003ca href=\"http://genome.ucsc.edu/FAQ/FAQblat.html#blat3\" rel=\"nofollow\"\u003ehttp://genome.ucsc.edu/FAQ/FAQblat.html#blat3\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003cli\u003eVelvet 1.0.15 (\u003ca href=\"http://www.ebi.ac.uk/~zerbino/velvet/\" rel=\"nofollow\"\u003ehttp://www.ebi.ac.uk/~zerbino/velvet/\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003cli\u003eAMOS (\u003ca href=\"http://sourceforge.net/apps/mediawiki/amos/index.php\" rel=\"nofollow\"\u003ehttp://sourceforge.net/apps/mediawiki/amos/index.php\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003cli\u003eVmatch 2.0 (\u003ca href=\"http://www.vmatch.de/\" rel=\"nofollow\"\u003ehttp://www.vmatch.de/\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003cli\u003ebwa 0.5.8c (\u003ca href=\"http://bio-bwa.sourceforge.net/\" rel=\"nofollow\"\u003ehttp://bio-bwa.sourceforge.net/\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003cli\u003eMUMmer (\u003ca href=\"http://sourceforge.net/projects/mummer/\" rel=\"nofollow\"\u003ehttp://sourceforge.net/projects/mummer/\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003cli\u003eBioPerl (\u003ca href=\"http://www.bioperl.org\" rel=\"nofollow\"\u003ehttp://www.bioperl.org\u003c/a\u003e) -- base system\u003c/li\u003e\n\u003cli\u003ePerl modules: Parallel::ForkManager, Tree (\u003ca href=\"http://search.cpan.org/\" rel=\"nofollow\"\u003ehttp://search.cpan.org/\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOptional prerequisites are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOases 0.1.18 (\u003ca href=\"http://www.ebi.ac.uk/~zerbino/oases/\" rel=\"nofollow\"\u003ehttp://www.ebi.ac.uk/~zerbino/oases/\u003c/a\u003e) -- DONE\u003c/li\u003e\n\u003cli\u003eBambus 2.33 (\u003ca href=\"http://www.cbcb.umd.edu/software/bambus/\" rel=\"nofollow\"\u003ehttp://www.cbcb.umd.edu/software/bambus/\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eSopra 1.0 (\u003ca href=\"mailto:dayarian@physics.rutgers.edu\"\u003edayarian@physics.rutgers.edu\u003c/a\u003e) x1 \u2013 x4 scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003esg\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [
+ "pipeline",
"singularity",
- "bioinformatics"
+ "singularity-recipe",
+ "rnaseq",
+ "docker",
+ "dockerfile"
],
- "updated_at": 1631929745.0
+ "updated_at": 1612716290.0
},
{
"data_format": 2,
- "description": "BEDOPS is an open-source command-line toolkit that performs highly efficient and scalable Boolean and other set operations, statistical calculations, archiving, conversion and other management of genomic data of arbitrary scale.",
+ "description": null,
"filenames": [
- "2.4.40/Singularity",
- "2.4.39/Singularity"
+ "singularity/Singularity_1.0.0"
],
- "full_name": "pscedu/singularity-bedops",
+ "full_name": "daviesdrew/variantcalling",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-bedops/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bedops/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-bedops/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bedops/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/046e5d2f53345f56b267b5b3fb70cf631199ba19ea8a20c754afd1fd5cae6098/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6265646f7073\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/046e5d2f53345f56b267b5b3fb70cf631199ba19ea8a20c754afd1fd5cae6098/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6265646f7073\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bedops\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/1fd7fd2c301c82aa5c557690a7df3c9c3565a7badad9f11502e8fe21f7bcfbf5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6265646f7073\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1fd7fd2c301c82aa5c557690a7df3c9c3565a7badad9f11502e8fe21f7bcfbf5/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6265646f7073\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bedops\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/2b60ce6402987813ce63df1d7f2cdedee3f8108e37c69d00089eb9e576b81249/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6265646f7073\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2b60ce6402987813ce63df1d7f2cdedee3f8108e37c69d00089eb9e576b81249/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6265646f7073\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bedops\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/9e0c74991471aaa28ae5b127672f0979c5a9e3e79e590771d4df28ad0b47fad3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6265646f7073\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9e0c74991471aaa28ae5b127672f0979c5a9e3e79e590771d4df28ad0b47fad3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6265646f7073\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bedops\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-bedops\" class=\"anchor\" href=\"#singularity-bedops\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bedops\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/fcce2433d40cda32c9340a2c9e3b2d6c1ebd0bbb8e1361a72ae3ecd2514681ad/68747470733a2f2f6265646f70732e72656164746865646f63732e696f2f656e2f6c61746573742f5f7374617469632f6c6f676f5f776974685f6c6162656c5f76332e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fcce2433d40cda32c9340a2c9e3b2d6c1ebd0bbb8e1361a72ae3ecd2514681ad/68747470733a2f2f6265646f70732e72656164746865646f63732e696f2f656e2f6c61746573742f5f7374617469632f6c6f676f5f776974685f6c6162656c5f76332e706e67\" width=\"75%\" data-canonical-src=\"https://bedops.readthedocs.io/en/latest/_static/logo_with_label_v3.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for BEDOPS.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebedops\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/BEDOPS/2.4.40\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/BEDOPS\u003c/code\u003e as \u003ccode\u003e2.4.40.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"\" class=\"anchor\" aria-hidden=\"true\" href=\"#\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/images/nf-core-illuminavariantcalling_logo.png\"\u003e\u003cimg src=\"docs/images/nf-core-illuminavariantcalling_logo.png\" alt=\"nf-core/illuminavariantcalling\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eIllumina paired end reads variant calling pipeline\u003c/strong\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/nf-core/illuminavariantcalling/actions\"\u003e\u003cimg src=\"https://github.com/nf-core/illuminavariantcalling/workflows/nf-core%20CI/badge.svg\" alt=\"GitHub Actions CI Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/nf-core/illuminavariantcalling/actions\"\u003e\u003cimg src=\"https://github.com/nf-core/illuminavariantcalling/workflows/nf-core%20linting/badge.svg\" alt=\"GitHub Actions Linting Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1a7b876aea11f8490a824ae9376e2b0108e8b19b424effa1b67d0a7afcfe096e/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d25453225383925413531392e31302e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A519.10.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/illuminavariantcalling\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/609e7a6579baf2276f34ef713d9cc0b55f7fd62e2c5c7618d40423779d41fd44/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f696c6c756d696e6176617269616e7463616c6c696e672e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/illuminavariantcalling.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-hidden=\"true\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h2\u003e\n\u003cp\u003ei. Install \u003ca href=\"https://nf-co.re/usage/installation\" rel=\"nofollow\"\u003e\u003ccode\u003enextflow\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eii. Install either \u003ca href=\"https://docs.docker.com/engine/installation/\" rel=\"nofollow\"\u003e\u003ccode\u003eDocker\u003c/code\u003e\u003c/a\u003e or \u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/\" rel=\"nofollow\"\u003e\u003ccode\u003eSingularity\u003c/code\u003e\u003c/a\u003e for full pipeline reproducibility (please only use \u003ca href=\"https://conda.io/miniconda.html\" rel=\"nofollow\"\u003e\u003ccode\u003eConda\u003c/code\u003e\u003c/a\u003e as a last resort; see \u003ca href=\"https://nf-co.re/usage/configuration#basic-configuration-profiles\" rel=\"nofollow\"\u003edocs\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003eiii. Download the pipeline and test it on a minimal dataset with a single command\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run nf-core/illuminavariantcalling -profile test,\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edocker/singularity/conda/institute\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cblockquote\u003e\n\u003cp\u003ePlease check \u003ca href=\"https://github.com/nf-core/configs#documentation\"\u003enf-core/configs\u003c/a\u003e to see if a custom config file to run nf-core pipelines already exists for your Institute. If so, you can simply use \u003ccode\u003e-profile \u0026lt;institute\u0026gt;\u003c/code\u003e in your command. This will enable either \u003ccode\u003edocker\u003c/code\u003e or \u003ccode\u003esingularity\u003c/code\u003e and set the appropriate execution settings for your local compute environment.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eiv. Start running your own analysis!\u003c/p\u003e\n\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run nf-core/illuminavariantcalling -profile \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edocker/singularity/conda/institute\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e --reads \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e*_R{1,2}.fastq.gz\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --genome GRCh37\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eSee \u003ca href=\"docs/usage.md\"\u003eusage docs\u003c/a\u003e for all of the available options when running the pipeline.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eThe nf-core/illuminavariantcalling pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"https://nf-co.re/usage/installation\" rel=\"nofollow\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://nf-co.re/usage/local_installation\" rel=\"nofollow\"\u003eLocal installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://nf-co.re/usage/adding_own_config\" rel=\"nofollow\"\u003eAdding your own system config\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://nf-co.re/usage/reference_genomes\" rel=\"nofollow\"\u003eReference genomes\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://nf-co.re/usage/troubleshooting\" rel=\"nofollow\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003enf-core/illuminavariantcalling was originally written by Drew Davies.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributions-and-support\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributions-and-support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributions and Support\u003c/h2\u003e\n\u003cp\u003eIf you would like to contribute to this pipeline, please see the \u003ca href=\".github/CONTRIBUTING.md\"\u003econtributing guidelines\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor further information or help, don\u0027t hesitate to get in touch on \u003ca href=\"https://nfcore.slack.com/channels/illuminavariantcalling\" rel=\"nofollow\"\u003eSlack\u003c/a\u003e (you can join with \u003ca href=\"https://nf-co.re/join/slack\" rel=\"nofollow\"\u003ethis invite\u003c/a\u003e).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\n\n\u003cp\u003eYou can cite the \u003ccode\u003enf-core\u003c/code\u003e publication as follows:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eThe nf-core framework for community-curated bioinformatics pipelines.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003ePhilip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso \u0026amp; Sven Nahnsen.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNat Biotechnol.\u003c/em\u003e 2020 Feb 13. doi: \u003ca href=\"https://dx.doi.org/10.1038/s41587-020-0439-x\" rel=\"nofollow\"\u003e10.1038/s41587-020-0439-x\u003c/a\u003e.\u003cbr\u003e\nReadCube: \u003ca href=\"https://rdcu.be/b1GjZ\" rel=\"nofollow\"\u003eFull Access Link\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1631926426.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1593036214.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for trinityrnaseq (https://github.com/trinityrnaseq/trinityrnaseq)",
"filenames": [
- "SingularityFile"
+ "Singularity.2.14.0",
+ "Singularity",
+ "Singularity.2.13.2",
+ "Singularity.2.9.0",
+ "Singularity.2.8.6",
+ "Singularity.2.9.1",
+ "Singularity.2.10.0"
],
- "full_name": "AMarinhoSN/tutorial-cCC",
+ "full_name": "powerPlant/trinityrnaseq-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-tutorial-ccc\" class=\"anchor\" href=\"#tutorial-ccc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etutorial-cCC\u003c/h1\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for the Trinity RNA-Seq de novo transcriptome assembly\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1643312784.0
+ "updated_at": 1645140013.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for sortmerna (https://github.com/biocore/sortmerna)",
"filenames": [
- "Singularity/Singularity.v1.0",
- "Singularity/Singularity.v1.1"
+ "Singularity",
+ "Singularity.4.3.2",
+ "Singularity.4.3.6",
+ "Singularity.3.0.3",
+ "Singularity.4.2.0",
+ "Singularity.4.3.4"
],
- "full_name": "Monia234/IARC-fastqc",
+ "full_name": "powerPlant/sortmerna-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fastqc-nf\" class=\"anchor\" href=\"#fastqc-nf\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efastqc-nf\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quality-control-of-raw-sequencing-reads\" class=\"anchor\" href=\"#quality-control-of-raw-sequencing-reads\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuality control of raw sequencing reads\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://circleci.com/gh/IARCbioinfo/fastqc-nf\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d355ed64b381b5e3e497a32c3b032d9becd558aebd39a0da28073fbe613dfd81/68747470733a2f2f636972636c6563692e636f6d2f67682f4941524362696f696e666f2f6661737471632d6e662e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/IARCbioinfo/fastqc-nf.svg?style=svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/iarcbioinfo/fastqc-nf/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c5d5383ee3d6248c7d31b5fcaa21fc7d689b53ecb330dbfe628cd1fae38c853/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d72656164792d626c75652e737667\" alt=\"Docker Hub\" data-canonical-src=\"https://img.shields.io/badge/docker-ready-blue.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/4559\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/IARCbioinfo/fastqc-nf/blob/master/fastqc-nf.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/IARCbioinfo/fastqc-nf/raw/master/fastqc-nf.png\" alt=\"fastqc-nf\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-description\" class=\"anchor\" href=\"#description\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h2\u003e\n\u003cp\u003ePerform quality control of Fasta files.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eThis pipeline is based on \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003enextflow\u003c/a\u003e. As we have several nextflow pipelines, we have centralized the common information in the \u003ca href=\"https://github.com/IARCbioinfo/IARC-nf\"\u003eIARC-nf\u003c/a\u003e repository. Please read it carefully as it contains essential information for the installation, basic usage and configuration of nextflow and our pipelines.\u003c/li\u003e\n\u003cli\u003eFastQC: see official installation \u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. You can avoid installing all the external software by only installing Docker (not available yet). See the \u003ca href=\"https://github.com/IARCbioinfo/IARC-nf\"\u003eIARC-nf\u003c/a\u003e repository for more information.)\u003c/li\u003e\n\u003cli\u003eMultiqc: see official installation \u003ca href=\"http://multiqc.info\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. You can avoid installing all the external software by only installing Docker (not available yet). See the \u003ca href=\"https://github.com/IARCbioinfo/IARC-nf\"\u003eIARC-nf\u003c/a\u003e repository for more information.)\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-bam-input-files\" class=\"anchor\" href=\"#bam-input-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBAM input files\u003c/h3\u003e\n\u003cp\u003eIn order to process BAM files, we convert fastq files to bam files with:\u003c/p\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003e\u003ca href=\"http://samtools.sourceforge.net/\" rel=\"nofollow\"\u003e\u003cem\u003esamtools\u003c/em\u003e\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-input\" class=\"anchor\" href=\"#input\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003e\u003cstrong\u003eName\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003eDescription\u003c/strong\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--input_folder\u003c/td\u003e\n\u003ctd\u003eFolder containing FASTQ files\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--output_folder\u003c/td\u003e\n\u003ctd\u003ePath to output folder\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-parameters\" class=\"anchor\" href=\"#parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParameters\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-optional\" class=\"anchor\" href=\"#optional\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOptional\u003c/h3\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003e\u003cstrong\u003eName\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003eExample value\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003eDescription\u003c/strong\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--ext\u003c/td\u003e\n\u003ctd\u003efastq.gz\u003c/td\u003e\n\u003ctd\u003eExtension of files\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--multiqc_config\u003c/td\u003e\n\u003ctd\u003enone\u003c/td\u003e\n\u003ctd\u003econfig yaml file for multiqc\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--cpu\u003c/td\u003e\n\u003ctd\u003e2\u003c/td\u003e\n\u003ctd\u003eNumber of cpu used by fastqc\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--mem\u003c/td\u003e\n\u003ctd\u003e10\u003c/td\u003e\n\u003ctd\u003eSize of memory used for mapping (in GB)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-flags\" class=\"anchor\" href=\"#flags\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFlags\u003c/h3\u003e\n\u003cp\u003eFlags are special parameters without value.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003e\u003cstrong\u003eName\u003c/strong\u003e\u003c/th\u003e\n\u003cth\u003e\u003cstrong\u003eDescription\u003c/strong\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--help\u003c/td\u003e\n\u003ctd\u003eDisplay help\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003enextflow run IARCbioinfo/fastqc-nf -r v1.1 -profile singularity --input_folder input --output_folder results\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTo run the pipeline with docker or conda instead of singularity, just replace \"-profile singularity\" with \"-profile docker\" or \"-profile conda\", respectively. To run with your own local installation of softwares, just remove \"-profile singularity\"\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-output\" class=\"anchor\" href=\"#output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eType\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003emultiqc_fastqc_report.html\u003c/td\u003e\n\u003ctd\u003emultiQC report for fastQC\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003emultiqc_fastqc_report_data\u003c/td\u003e\n\u003ctd\u003edata used for the multiQC report HTMLs\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributions\" class=\"anchor\" href=\"#contributions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributions\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eEmail\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eNicolas Alcala*\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"mailto:AlcalaN@fellows.iarc.fr\"\u003eAlcalaN@fellows.iarc.fr\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eDeveloper to contact for support\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTiffany Delhomme\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eDeveloper\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for the SortMeRNA local sequence alignment tool for filtering, mapping and clustering.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1644245739.0
+ "updated_at": 1659497761.0
},
{
"data_format": 2,
- "description": null,
+ "description": "HPC-AI 2020 | Training Project NEMO - Nucleus for European Modelling of the Ocean",
"filenames": [
- "Singularity/Singularity.v1.0"
+ "Slurm Script/Singularity.nemo.apps",
+ "Slurm Script/Singularity.CENTOS-7.7-NEMO-MOFED"
],
- "full_name": "Monia234/IARC-imputation",
+ "full_name": "soycoder/nemo",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-genotyping-imputation---pipeline-v10\" class=\"anchor\" href=\"#genotyping-imputation---pipeline-v10\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGenotyping imputation : Pipeline V1.0\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-a-nextflow-pipeline-to-realise-a-datasets-genotyping-imputation\" class=\"anchor\" href=\"#a-nextflow-pipeline-to-realise-a-datasets-genotyping-imputation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eA nextflow pipeline to realise a dataset\u0027s genotyping imputation\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://circleci.com/gh/IARCbioinfo/Imputation-nf\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e3a0e94b24410397271294a485f985c85941b292ba2c7cbf3fefb26bf1e0c76b/68747470733a2f2f636972636c6563692e636f6d2f67682f4941524362696f696e666f2f74656d706c6174652d6e662e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/IARCbioinfo/template-nf.svg?style=svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/iarcbioinfo/imputation-nf/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c5d5383ee3d6248c7d31b5fcaa21fc7d689b53ecb330dbfe628cd1fae38c853/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f646f636b65722d72656164792d626c75652e737667\" alt=\"Docker Hub\" data-canonical-src=\"https://img.shields.io/badge/docker-ready-blue.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/4533\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://zenodo.org/badge/latestdoi/94193130\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5decad826d7116b1c950b6b48c06052496f141e803525b088ce3cdcaaa4d7b88/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f39343139333133302e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/94193130.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"template-nf.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"template-nf.png\" alt=\"Workflow representation\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-description\" class=\"anchor\" href=\"#description\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h2\u003e\n\u003cp\u003eThe pipeline used to perform the imputation of several targets datasets processed with standard input.\u003c/p\u003e\n\u003cp\u003eHere is a summary of the method :\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ePreprocessing of data : by using the nextflow script Preparation.nf with create a directory \"file/\" with all the dependencies.\u003c/li\u003e\n\u003cli\u003eFirst step : Origin estimation of sample from the target dataset by using admixture tools and the hapmap dataset as reference.\u003c/li\u003e\n\u003cli\u003eSecond step : Series of SNPs filters and quality checking from the target dataset before the imputation step.\u003c/li\u003e\n\u003cli\u003eThird step : VCF production\u003c/li\u003e\n\u003cli\u003eLast step : Phasing and imputation\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSee the Usage section to test the full pipeline with your target dataset.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eThe pipeline works under Linux distributions.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eThis pipeline is based on \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003enextflow\u003c/a\u003e. As we have several nextflow pipelines, we have centralized the common information in the \u003ca href=\"https://github.com/IARCbioinfo/IARC-nf\"\u003eIARC-nf\u003c/a\u003e repository. Please read it carefully as it contains essential information for the installation, basic usage and configuration of nextflow and our pipelines.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eExternal software:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eLiftOver : conda install ucsc-liftover\u003c/li\u003e\n\u003cli\u003ePlink (PLINK v1.90b6.12 64-bit (28 Oct 2019)) : conda install plink\u003c/li\u003e\n\u003cli\u003eAdmixture (ADMIXTURE Version 1.3.0) : conda install admixture\u003c/li\u003e\n\u003cli\u003ePerl : conda install perl\u003c/li\u003e\n\u003cli\u003eTerm::ReadKey module : conda install perl-termreadkey\u003c/li\u003e\n\u003cli\u003eBcfTools : conda install bcftools\u003c/li\u003e\n\u003cli\u003eeagle 2.4.1 : \u003ca href=\"https://data.broadinstitute.org/alkesgroup/Eagle/#x1-50002.2\" rel=\"nofollow\"\u003eSee instructions\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eminimac4 : conda install cmake ; pip install cget ; git clone \u003ca href=\"https://github.com/statgen/Minimac4.git\"\u003ehttps://github.com/statgen/Minimac4.git\u003c/a\u003e ; cd Minimac4 ; bash install.sh\u003c/li\u003e\n\u003cli\u003eSamtools : conda install samtools\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eFile to download :\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"zzz.bwh.harvard.edu/plink/dist/hapmap_r23a.zip\"\u003eHapmap Dataset\u003c/a\u003e : as reference\u0027s dataset for admixture\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://www.hagsc.org/hgdp/data/hgdp.zip\" rel=\"nofollow\"\u003eHGDP Dataset\u003c/a\u003e : for the dataset\u0027s test, you have to use the toMap.py \u0026amp; toPed.py in the \u0027converstion\u0027 directory to convert files in the .map/.ped plink format. Next you have to convert this last output in the .bed/.bam/.fam plink format by using plink line command and run the imputation\u0027s pipeline.\u003c/li\u003e\n\u003cli\u003ePerl tool : \u003ca href=\"https://www.well.ox.ac.uk/~wrayner/tools/\" rel=\"nofollow\"\u003eHRC-1000G-check-bim-NoReadKey.pl\u003c/a\u003e \u0026amp; \u003ca href=\"https://www.well.ox.ac.uk/~wrayner/tools/1000GP_Phase3_combined.legend.gz\" rel=\"nofollow\"\u003e1000GP_Phase3_combined.legend\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eLiftOver tool : \u003ca href=\"http://hgdownload.cse.ucsc.edu/goldenpath/hg19/liftOver/hg19ToHg38.over.chain.gz\" rel=\"nofollow\"\u003ehg19ToHg38.over.chain\u003c/a\u003e \u0026amp; \u003ca href=\"http://hgdownload.cse.ucsc.edu/goldenpath/hg18/liftOver/hg18ToHg38.over.chain.gz\" rel=\"nofollow\"\u003ehg18ToHg38.over.chain\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003ePeparation dataset tool : \u003ca href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2432498/bin/pone.0002551.s003.xls\" rel=\"nofollow\"\u003epone.0002551.s003.xls\u003c/a\u003e (Convert it in .csv format)\u003c/li\u003e\n\u003cli\u003eAdmixture tool : relationships_w_pops_121708.txt\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/zhanxw/checkVCF/raw/master/checkVCF.py\"\u003eCheckVCF\u003c/a\u003e, \u003ca href=\"http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz\" rel=\"nofollow\"\u003eFasta file in V37\u003c/a\u003e \u0026amp; \u003ca href=\"http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/\" rel=\"nofollow\"\u003eFasta file in V38\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/\" rel=\"nofollow\"\u003e1000G Reference in Hg38\u003c/a\u003e with the \u003ca href=\"https://data.broadinstitute.org/alkesgroup/Eagle/#x1-320005.3.2\" rel=\"nofollow\"\u003edoc\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eCreate \u003ca href=\"https://imputationserver.readthedocs.io/en/latest/create-reference-panels/#create-legend-files\" rel=\"nofollow\"\u003elegend\u003c/a\u003e, \u003ca href=\"https://data.broadinstitute.org/alkesgroup/Eagle/#x1-320005.3.2\" rel=\"nofollow\"\u003ebcf\u003c/a\u003e \u0026amp; \u003ca href=\"https://imputationserver.readthedocs.io/en/latest/create-reference-panels/#create-m3vcf-files\" rel=\"nofollow\"\u003em3vcf\u003c/a\u003e files for the reference\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eOther to know :\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eSee the Usage part to create the environment to run the pipeline. All the necessary dependencies are download with the using of the script Preparation.nf. To run it, you\u0027ll need to install the next software : in2csv(1.0.5), liftOver, plink, Minimac3(2.0.1) \u0026amp; bcftools\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou can avoid installing all the external software of the main scritp by only installing Docker. See the \u003ca href=\"https://github.com/IARCbioinfo/IARC-nf\"\u003eIARC-nf\u003c/a\u003e repository for more information.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-input\" class=\"anchor\" href=\"#input\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eType\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003ePlink datasets\u003c/td\u003e\n\u003ctd\u003eCorresponds to the target dataset to be analysed. Composed by the following files : bed, bim \u0026amp; fam\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eInput environment\u003c/td\u003e\n\u003ctd\u003ePath to your input directory\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-parameters\" class=\"anchor\" href=\"#parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParameters\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-mandatory\" class=\"anchor\" href=\"#mandatory\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMandatory\u003c/h4\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eExample value\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--target\u003c/td\u003e\n\u003ctd\u003emy_target\u003c/td\u003e\n\u003ctd\u003ePattern of the target dataset which do the link with the file .bed/.bim./fam for plink\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--input\u003c/td\u003e\n\u003ctd\u003euser/main_data/\u003c/td\u003e\n\u003ctd\u003eThe path of the main directory where we can find 2 directory : my_target/ + files/\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--output\u003c/td\u003e\n\u003ctd\u003euser/my_result/\u003c/td\u003e\n\u003ctd\u003eThe path of the main directory where you want to place your results\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-optional\" class=\"anchor\" href=\"#optional\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOptional\u003c/h4\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eDefault value\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--script\u003c/td\u003e\n\u003ctd\u003emy/directory/script/bin\u003c/td\u003e\n\u003ctd\u003eThe path of the bin script directory, to be able to run the annexe programme grom the pipeline\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--geno1\u003c/td\u003e\n\u003ctd\u003e0.03\u003c/td\u003e\n\u003ctd\u003eFirst genotyping call rate plink threshold, apply in the full target dataset\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--geno2\u003c/td\u003e\n\u003ctd\u003e0.03\u003c/td\u003e\n\u003ctd\u003eSecond genotyping call rate plink threshold, apply in the target dataset divide by population\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--maf\u003c/td\u003e\n\u003ctd\u003e0.01\u003c/td\u003e\n\u003ctd\u003eMinor allele frequencies plink threshold, apply in the full target dataset\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--pihat\u003c/td\u003e\n\u003ctd\u003e0.185\u003c/td\u003e\n\u003ctd\u003eMinimum pi_hat value use for the relatedness test, 0.185 is halfway between the expected IBD for third- and second-degree relatives\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--hwe\u003c/td\u003e\n\u003ctd\u003e1e-8\u003c/td\u003e\n\u003ctd\u003eHardy-Weinberg Equilibrium plink p-value threshold\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--legend\u003c/td\u003e\n\u003ctd\u003eALL.chr_GRCh38.genotypes.20170504.legend\u003c/td\u003e\n\u003ctd\u003eFile to use as .legend\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--fasta\u003c/td\u003e\n\u003ctd\u003eGRCh38_full_analysis_set_plus_decoy_hla.fa\u003c/td\u003e\n\u003ctd\u003eFile to use as fasta reference\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--chain\u003c/td\u003e\n\u003ctd\u003ehg18ToHg38.over.chain\u003c/td\u003e\n\u003ctd\u003eFile to use as liftover conversion\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--VCFref\u003c/td\u003e\n\u003ctd\u003emy/directory/ref/vcf/\u003c/td\u003e\n\u003ctd\u003eDirectory to use as VCF reference\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--BCFref\u003c/td\u003e\n\u003ctd\u003emy/directory/ref/bcf/\u003c/td\u003e\n\u003ctd\u003eDirectory to use as BCF reference\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--M3VCFref\u003c/td\u003e\n\u003ctd\u003emy/directory/ref/m3vcf/\u003c/td\u003e\n\u003ctd\u003eDirectory to use as M3VCF reference\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--conversion\u003c/td\u003e\n\u003ctd\u003ehg38/hg18/hg19\u003c/td\u003e\n\u003ctd\u003eOption to convert data from hg18 to HG38 version of the genome. Standard value is hg38\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--cloud\u003c/td\u003e\n\u003ctd\u003ehg38/hg18/hg19\u003c/td\u003e\n\u003ctd\u003eOption to convert data from hg18 to HG38 version of the genome. Standard value is hg38\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--token_Michighan\u003c/td\u003e\n\u003ctd\u003epath/to/my_token.txt\u003c/td\u003e\n\u003ctd\u003eOption to convert data from hg18 to HG38 version of the genome. Standard value is hg38\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--token_TOPMed\u003c/td\u003e\n\u003ctd\u003epath/to/my_token.txt\u003c/td\u003e\n\u003ctd\u003eOption to convert data from hg18 to HG38 version of the genome. Standard value is hg38\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--QC_cloud\u003c/td\u003e\n\u003ctd\u003emy/directory/donwload_imputation_server\u003c/td\u003e\n\u003ctd\u003eOption to convert data from hg18 to HG38 version of the genome. Standard value is hg38\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-flags\" class=\"anchor\" href=\"#flags\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFlags\u003c/h4\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFlags are special parameters without value.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--help\u003c/td\u003e\n\u003ctd\u003eDisplay help\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003ePrepare the environment to run the imputation pipeline.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003emkdir data\ncd data\nnextflow run IARCbioinfo/Imputation-nf/bin/Preparation.nf --out /data/\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003ePaste the bim/bed/fam plink target files in a directory, and the directory in your \"data/\" directory. You have to call the plink files and your directory with the same pattern, as the following exemple : data/target/target{.bed,.bim,.fam}. So now you have 2 directories in your \"data/\" repertory :\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003e_ data/my_target/ : with the plink target files (my_target.bed, my_target.bim, my_target.fam).\u003c/p\u003e\n\u003cp\u003e_ data/files/ : with all the dependencies.\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eRun the imputation pipeline.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run IARCbioinfo/Imputation.nf --target my_target --input /data/ --output /results/ -r v1.0 -profile singularity \n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eIf you want to run the imputation in one of the server (Michigan and/or TOPMed Imputation), you need you write your token acces in a file and to give it in argument. For example :\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run IARCbioinfo/Imputation.nf --target my_target --input /data/ --output /results/ --cloud on --token_Michighan /folder/my_token_Michighan.txt --token_TOPMed /folder/my_token_TOPMed.txt -r v1.0 -profile singularity \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOnce your imputation data is downloaded, you can run the end of the QC analysis :\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run IARCbioinfo/Imputation.nf --target my_target --input /data/ --output /results/ --QC_cloud /downloaded_imputation_server_file/ -r v1.0 -profile singularity \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-output\" class=\"anchor\" href=\"#output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eType\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eoutput1\u003c/td\u003e\n\u003ctd\u003e......\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eoutput2\u003c/td\u003e\n\u003ctd\u003e......\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-detailed-description-optional-section\" class=\"anchor\" href=\"#detailed-description-optional-section\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDetailed description (optional section)\u003c/h2\u003e\n\u003cp\u003e...\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-directed-acyclic-graph\" class=\"anchor\" href=\"#directed-acyclic-graph\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDirected Acyclic Graph\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"http://htmlpreview.github.io/?https://github.com/IARCbioinfo/Imputation-nf/blob/master/dag.html\" rel=\"nofollow\"\u003e\u003cimg src=\"dag.png\" alt=\"DAG\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributions\" class=\"anchor\" href=\"#contributions\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributions\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eEmail\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eGabriel Aur\u00e9lie\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"mailto:gabriela@students.iarc.fr\"\u003egabriela@students.iarc.fr\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eDeveloper to contact for support\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLipinski Boris\u003c/td\u003e\n\u003ctd\u003e\n\u003ca href=\"mailto:LipinskiB@students.iarc.fr\"\u003eLipinskiB@students.iarc.fr\u003c/a\u003e / \u003ca href=\"mailto:boris.lipinski@etu.univ-lyon1.fr\"\u003eboris.lipinski@etu.univ-lyon1.fr\u003c/a\u003e\n\u003c/td\u003e\n\u003ctd\u003eDeveloper to contact for support\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-references-optional\" class=\"anchor\" href=\"#references-optional\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences (optional)\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-faq-optional\" class=\"anchor\" href=\"#faq-optional\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFAQ (optional)\u003c/h2\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-test-pipeline\" class=\"anchor\" href=\"#test-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etest-pipeline\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content--nemo---ocean\" class=\"anchor\" aria-hidden=\"true\" href=\"#-nemo---ocean\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003cg-emoji class=\"g-emoji\" alias=\"ocean\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f30a.png\"\u003e\ud83c\udf0a\u003c/g-emoji\u003e NEMO - ocean\u003c/h1\u003e\n\u003cp\u003eHPC-AI 2020 | Training Project - NEMO: Nucleus for European Modelling of the Ocean\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content--docker-images---centos\" class=\"anchor\" aria-hidden=\"true\" href=\"#-docker-images---centos\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003cg-emoji class=\"g-emoji\" alias=\"floppy_disk\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f4be.png\"\u003e\ud83d\udcbe\u003c/g-emoji\u003e Docker Images - CentOS\u003c/h2\u003e\n\u003cp\u003eThank you for an image (\u003ca href=\"https://hub.docker.com/r/wangyoucao577/centos7-gcc7.4\" rel=\"nofollow\"\u003ewangyoucao577/centos7-gcc7.4\u003c/a\u003e)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content--tag\" class=\"anchor\" aria-hidden=\"true\" href=\"#-tag\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003cg-emoji class=\"g-emoji\" alias=\"bookmark\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f516.png\"\u003e\ud83d\udd16\u003c/g-emoji\u003e Tag\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://hub.docker.com/layers/soycoder/centos7/nemo-ocean/images/sha256-c7bdaa3614e1fc1bbef31bdb05ac997e64b11abff716d00315807b1b79ad13c3\" rel=\"nofollow\"\u003e:nemo-ocean\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content--environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003cg-emoji class=\"g-emoji\" alias=\"sunrise_over_mountains\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f304.png\"\u003e\ud83c\udf04\u003c/g-emoji\u003e Environment\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eHPC-X to build an out-of-box MPI environment\u003c/li\u003e\n\u003cli\u003eBoost library\u003c/li\u003e\n\u003cli\u003eHDF5 Parallellibrary\u003c/li\u003e\n\u003cli\u003eNETCDF Parallel library with HDF5\u003c/li\u003e\n\u003cli\u003eNETCDF-FortranParallel library with NETCDF Parallel\u003c/li\u003e\n\u003cli\u003eXIOS\u003c/li\u003e\n\u003cli\u003eGYREwith GNUgfortran + HPC-X OpenMPI\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-text-html-basic\"\u003e\u003cpre\u003e/usr/mpi/gcc/openmpi-3.1.1rc1/bin/mpirun \\\n-mca pml ucx -x UCX_NET_DEVICES=mlx5_0:1 \\\n-mca mpi_show_mca_params 1 -mca pml_ucx_verbose 9 \\\n/usr/mpi/gcc/openmpi-3.1.1rc1/tests/osu-micro-benchmarks-5.3.2/osu_get_bw\n\n\n/usr/mpi/gcc/openmpi-3.1.1rc1/bin/mpirun -n 2 \\\n-mca pml ucx -x UCX_NET_DEVICES=mlx5_0:1 \\\n/usr/mpi/gcc/openmpi-3.1.1rc1/tests/osu-micro-benchmarks-5.3.2/osu_get_bw\n\n/usr/bin/time -p mpirun -n 2 \\\n-mca pml ucx -x UCX_TLS=rc UCX_NET_DEVICES=mlx5_0:1 ./nemo\n\n/usr/bin/time -p mpirun -n 2 \\\n-mca -x UCX_TLS=rc -x UCX_NET_DEVICES=mlx5_0:1 ./nemo\n\n/usr/bin/time -p mpirun -n 2 \\\n-mca -x UCX_TLS=rc -x UCX_NET_DEVICES=ib0 \\\n/home/hpc/nemo/apps/hpcx-v2.6.0-gcc-MLNX_OFED_LINUX-4.7-1.0.0.1-redhat7.7-x86_64/ompi/tests/osu-micro-benchmarks-5.3.2/osu_get_bw\n\nibstat\n\n\nNow step into the container and install MOFED:\n\n$ sudo singularity exec -w u16.04-sandbox/ bash\n(singularity)# cd MOFED/MLNX_OFED_LINUX-4.3-1.0.1.0-ubuntu16.04-x86_64\n(singularity)# ./mlnxofedinstall\n\n\n! -- (nemo) singularity exec -w nemo.sif bash\n\n\n## Run container\nTo use Singularity in Mellanox/HPCX need to load env module: `module load tools/singularity`\n.\n\nRun `osu_latency` test:\n```sh\n$ mpirun -np 2 --map-by node -mca btl self singularity exec hpcx-u16.04.simg /hpcx/ompi-a7df\nd94/tests/osu-micro-benchmarks-5.3.2/osu_latency\n# OSU MPI Latency Test v5.3.2\n# Size Latency (us)\n0 1.55\n1 1.55\n2 1.55\n4 1.55\n8 1.54\n16 1.55\n32 1.55\n64 1.65\n128 2.19\n256 2.23\n512 2.35\n1024 2.64\n2048 2.89\n4096 3.51\n8192 5.00\n16384 6.44\n32768 8.91\n65536 14.12\n131072 25.05\n262144 27.31\n524288 49.03\n1048576 92.53\n2097152 178.95\n4194304 351.24\n\n\n\n$hpcx_mpi_dir/tests/osu-micro-benchmarks-5.3.2/osu_get_bw\n\ncd /home/hpc/nemo/apps/hpcx-v2.6.0-gcc-MLNX_OFED_LINUX-4.7-1.0.0.1-redhat7.7-x86_64\n\nmpirun \\\n-mca pml ucx -x UCX_NET_DEVICES=mlx5_0:1 \\\n-mca mpi_show_mca_params 1 -mca pml_ucx_verbose 9 \\\n./ompi/tests/osu-micro-benchmarks-5.3.2/osu_get_bw\n\n\nmpirun \\\n-mca mpi_show_mca_params 1 -mca pml_ucx_verbose 9 \\\n./ompi/tests/osu-micro-benchmarks-5.3.2/osu_get_bw\n\n\n\n/usr/bin/time -p mpirun -np 4 \\\n--map-by core -report-bindings \\\n-mca io ompio -x UCX_NET_DEVICES=mlx5_0:1 ./nemo\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1644245707.0
+ "updated_at": 1603363757.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity for HPC",
"filenames": [
- "3.1.6/Singularity",
- "2.0.19/Singularity"
+ "Singularity.centos7-python3.7-transformers3.0.2-ImageCrawl",
+ "Singularity.centos7-python3.8-transformers4.11.0-ImageCrawl",
+ "Singularity.centos7-python3.7-transformers2.11.0-ImageCrawl"
],
- "full_name": "yh549848/singularity-q",
+ "full_name": "sina-ehsani/hpc-singularity",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-hpc-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#hpc-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ehpc-singularity\u003c/h1\u003e\n\u003cp\u003eSingularity for HPC\u003c/p\u003e\n\u003cp\u003eMake sure the sigularity is built on \u003ca href=\"https://sylabs.io\" rel=\"nofollow\"\u003ehttps://sylabs.io\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eif ready use:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity pull shub://sinaehsani6/hpc-singularity:centos7-python3.7-transformers3.0.2-imagecrawl\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTransformer 2.11.0:\n\u003ccode\u003esingularity pull shub://sinaehsani6/hpc-singularity:centos7-python3.7-transformers2.11.0-imagecrawl\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eMake sure the imagecrawl is updated (latest commit)\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1643962791.0
+ "updated_at": 1641850034.0
},
{
"data_format": 2,
- "description": "singularity recipes for bioinformatic analysis",
+ "description": "parallel gzipper in pure python",
"filenames": [
- "Singularity.vcf_processing.v1.0",
- "Singularity.dysgu.v1.3.0",
- "Singularity.sv_call.v1.0",
- "Singularity.bcftools.v1.10.2",
- "Singularity.qcbam.v1.0",
- "Singularity.align_dedup.v1.0",
- "Singularity.expansion_hunter.v5.0.0",
- "Singularity.Rstudio",
- "Singularity.pygenometracks",
- "Singularity.GADO-v1.0.4",
- "Singularity.HapCUT2",
- "Singularity.sv_processing.v1.0",
- "Singularity.expansion_hunter.v3.2.2",
- "Singularity.hail",
- "Singularity.V2_anno.var2reg",
- "Singularity.Exomiser-v12.1.0",
- "Singularity.variantstore",
- "Singularity.GREEN-VARAN_v1",
- "Singularity.shiny.server"
+ "Singularity.alpine"
],
- "full_name": "edg1983/Singularity_images",
+ "full_name": "d-w-moore/zipit",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-recipes\" class=\"anchor\" href=\"#singularity-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity recipes\u003c/h1\u003e\n\u003cp\u003eThese are singularity recipes for images used in our bionformatic analysis.\nSome images are bundled with supplementary resources for analysis.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-supporting-files\" class=\"anchor\" href=\"#supporting-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esupporting files\u003c/h2\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-resources-folder\" class=\"anchor\" href=\"#resources-folder\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eresources folder\u003c/h4\u003e\n\u003cp\u003eSome supporting files are needed for the analysis.\nSee description file in the resources folder for the list of expected files and folders\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-custom-scripts\" class=\"anchor\" href=\"#custom-scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecustom scripts\u003c/h2\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-tools-folder\" class=\"anchor\" href=\"#tools-folder\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etools folder\u003c/h4\u003e\n\u003cp\u003eSome supporting scripts are included in the tools folder and are copied into the corresponding images\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-zipit\" class=\"anchor\" aria-hidden=\"true\" href=\"#zipit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ezipit\u003c/h1\u003e\n\u003cp\u003eThis repo contains two scripts useful for gzipping and checking large files\nas quickly as possible leveraging the parallelism of your machine.\u003c/p\u003e\n\u003cp\u003eThey require only that python be installed, and they depend only on modules\nincluded in the Python Standard Library -- particularly, of course, gzip.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-zipitpy\" class=\"anchor\" aria-hidden=\"true\" href=\"#zipitpy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ezipit.py\u003c/h2\u003e\n\u003cp\u003eExample uses:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e $ ./zipit.py -v large.tar # =\u0026gt; Creates large.tar.gz at default level of parallelism.\n # (-v verbosely informs of the piece-wise gzip tasks)\n\n $ ./zipit.py -qm large.tar # =\u0026gt; creates large.tar.gz using all available CPU\u0027s\n\n $ some_command | ./zipit.py - \u0026gt; out.gz # =\u0026gt; gzips from the stdin stream, onto stdout\n\n $ docker export cimg | ./zipit.py \\ # =\u0026gt; export and compress the filesystem of\n -d cimg.dig - \u0026gt;cimg.tgz # a docker container\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-testzippy\" class=\"anchor\" aria-hidden=\"true\" href=\"#testzippy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etestzip.py\u003c/h2\u003e\n\u003cp\u003eExample use (for context, see the final \u003ccode\u003ezipit.py\u003c/code\u003e example above):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e $ ./testzip.py cimg.tgz cimg.dig # =\u0026gt; tests the gzipped file\u0027s integrity using a digest file\n # (returns 0 if the integrity is good)\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1636544746.0
+ "updated_at": 1602285708.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for REPET (https://urgi.versailles.inra.fr/Tools/REPET)",
"filenames": [
+ "Singularity.3.0",
"Singularity"
],
- "full_name": "lawlessrd/SCZ-WM-pipeline",
+ "full_name": "powerPlant/repet-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-scz-white-matter-pipeline\" class=\"anchor\" href=\"#scz-white-matter-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSCZ White Matter Pipeline\u003c/h1\u003e\n\u003cp\u003eThis spider will preprocess fMRI data as well as corresponding T1 data, extract mean time-courses of each predefined ROI and compute the correlation matrices between white matter ROIs and gray matter ROIs. Please see Gao\u2019s publications [1, 2] for more details. The spider will also compute FALFF, ALFF and ReHo maps.\u003c/p\u003e\n\u003cp\u003eThis XNAT spider is currently designed for three databases (ADNI_23, BLSA and OASIS-3) which are proposed to be analyzed in white matter reanalysis project (PI: Dr. Gore and Dr. Landman).\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-inputs\" class=\"anchor\" href=\"#inputs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs:\u003c/h2\u003e\n\u003cp\u003efMRI (.nii.gz)\u003c/p\u003e\n\u003cp\u003eT1 (.nii.gz)\u003c/p\u003e\n\u003cp\u003eConfiguration file (.mat)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-output\" class=\"anchor\" href=\"#output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput:\u003c/h2\u003e\n\u003cp\u003ePreprocessed fMRI in MNI space:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../scz_OUTPUTS/result1_corrmatrix/FunImgARCFWD/1/Detrend_4DVolume.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTissue probability maps (gray matter and white matter) in MNI space:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../scz_OUTPUTS/result1_corrmatrix/T1ImgNewSegment/1/wc1T1.nii.gz\n\n../scz_OUTPUTS/result1_corrmatrix/T1ImgNewSegment/1/wc2T1.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFunctional connectivity matrices between white matter ROIs and gray matter ROIs:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../scz_OUTPUTS/result1_corrmatrix/matr_1.mat\n\n../scz_OUTPUTS/result1_corrmatrix/matr_1.png\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eMean time-courses of the white and gray matter ROIs:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../ scz_OUTPUTS/result1_corrmatrix/tc_1.mat\t\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhole-brain ALFF maps:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../ scz_OUTPUTS/result2_wm_alff/ALFF_FunImgARCFWD/ALFFMap_1.nii.gz\n\n../ scz_OUTPUTS/result2_wm_alff/ALFF_FunImgARCFWD/mALFFMap_1.nii.gz\n\n../ scz_OUTPUTS/result2_wm_alff/ALFF_FunImgARCFWD/zALFFMap_1.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhole-brain FALFF maps:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../ scz_OUTPUTS/result3_wm_falff/fALFF_FunImgARCFWD/fALFFMap_1.nii.gz\n\n../ scz_OUTPUTS/result3_wm_falff/fALFF_FunImgARCFWD/mfALFFMap_1.nii.gz\n\n../ scz_OUTPUTS/result3_wm_falff/fALFF_FunImgARCFWD/zfALFFMap_1.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhole brain ReHo maps:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../ scz_OUTPUTS/result4_wm_reho/ReHo_FunImgARCFWD/ReHoMap_1.nii.gz\n\n../ scz_OUTPUTS/result4_wm_reho/ReHo_FunImgARCFWD/mReHoMap_1.nii.gz\n\n../ scz_OUTPUTS/result4_wm_reho/ReHo_FunImgARCFWD/zReHoMap_1.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhole brain maps of degree of centrality:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e../ scz_OUTPUTS/result5_wm_degree_centrality/DegreeCentrality_FunImgARCFWD/DegreeCentrality_PositiveBinarizedSumBrainMap_1.nii.gz\n\n../ scz_OUTPUTS/result5_wm_degree_centrality/DegreeCentrality_FunImgARCFWD/DegreeCentrality_PositiveWeightedSumBrainMap_1.nii.gz\n\n../ scz_OUTPUTS/result5_wm_degree_centrality/DegreeCentrality_FunImgARCFWD/mDegreeCentrality_PositiveBinarizedSumBrainMap_1.nii.gz\n\n../ scz_OUTPUTS/result5_wm_degree_centrality/DegreeCentrality_FunImgARCFWD/mDegreeCentrality_PositiveWeightedSumBrainMap_1.nii.gz\n\n../ scz_OUTPUTS/result5_wm_degree_centrality/DegreeCentrality_FunImgARCFWD/zDegreeCentrality_PositiveBinarizedSumBrainMap_1.nii.gz\n\n../ scz_OUTPUTS/result5_wm_degree_centrality/DegreeCentrality_FunImgARCFWD/zDegreeCentrality_PositiveWeightedSumBrainMap_1.nii.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-references\" class=\"anchor\" href=\"#references\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences\u003c/h1\u003e\n\u003cp\u003e[1] Gao Y, Sengupta A, Li M, et al. (2020) Functional connectivity of white matter as a biomarker of cognitive decline in Alzheimer\u2019s disease. PLoS ONE 15(10): e0240513. \u003ca href=\"https://doi.org/10.1371/journal.pone.0240513\" rel=\"nofollow\"\u003ehttps://doi.org/10.1371/journal.pone.0240513\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e[2] Gao Y, Li M, Huang AS. Lower functional connectivity of white matter during rest and working memory tasks is associated with cognitive impairments in schizophrenia. Schizophr Res. 2021 Jul;233:101-110. doi: 10.1016/j.schres.2021.06.013. Epub 2021 Jun 29. PMID: 34215467; PMCID: PMC8442250.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for REPET\n(\u003ca href=\"https://urgi.versailles.inra.fr/Tools/REPET\" rel=\"nofollow\"\u003ehttps://urgi.versailles.inra.fr/Tools/REPET\u003c/a\u003e), used to detect, annotate and\nanalyse repeats in genomic sequences, specifically designed for transposable\nelements (TEs).\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1642706993.0
+ "updated_at": 1602104190.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for bedops (https://github.com/bedops/bedops)",
"filenames": [
- "Singularity_CPU",
- "Singularity_GPU"
+ "Singularity",
+ "Singularity.2.4.39"
],
- "full_name": "ddbj/singularity_alphafold",
+ "full_name": "powerPlant/bedops-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity_alphafold\" class=\"anchor\" href=\"#singularity_alphafold\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_alphafold\u003c/h1\u003e\n\u003cp\u003eUbuntu 18.04\u306balphafold 2.1\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305fsingularity image\u3092\u4f5c\u6210\u3059\u308b\u305f\u3081\u306eSingularity definition file\u3067\u3059\u3002GPU\u3092\u4f7f\u7528\u3059\u308b\u5834\u5408\u306fSingularity_GPU\u3001GPU\u3092\u4f7f\u7528\u3057\u306a\u3044\u5834\u5408\u306fSingularity_CPU\u3092\u4f7f\u7528\u3057\u3066image\u3092\u30d3\u30eb\u30c9\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-image\u306e\u30d3\u30eb\u30c9\" class=\"anchor\" href=\"#image%E3%81%AE%E3%83%93%E3%83%AB%E3%83%89\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eimage\u306e\u30d3\u30eb\u30c9\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity build alphafold-2.1-xPU.sif Singularity_xPU\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for the BEDOPS open-source command-line toolkit that performs highly efficient and scalable Boolean and other set operations, statistical calculations, archiving, conversion and other management of genomic data of arbitrary scale.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 6,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1642384956.0
+ "updated_at": 1596773368.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "ext/Singularity"
+ "Singularity"
],
- "full_name": "clemsonciti/ood_rshiny",
+ "full_name": "lehtiolab/nf-deqms",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-batch-connect---example-jupyter-notebook-server-palmetto\" class=\"anchor\" href=\"#batch-connect---example-jupyter-notebook-server-palmetto\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBatch Connect - Example Jupyter Notebook Server Palmetto\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/3a55d969e5c049c5a679159fb5e33007b3341d832eb29fbf0419a7ea1df72b22/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6578616d706c655f6a7570797465722e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3a55d969e5c049c5a679159fb5e33007b3341d832eb29fbf0419a7ea1df72b22/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6578616d706c655f6a7570797465722e737667\" alt=\"GitHub Release\" data-canonical-src=\"https://img.shields.io/github/release/osc/bc_example_jupyter.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/d7ea6810dec03748ecd3a16bc0028d6d3ba3f7f01daa23e53e07ed1740b54420/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6f73632f62635f6578616d706c655f6a7570797465722e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d7ea6810dec03748ecd3a16bc0028d6d3ba3f7f01daa23e53e07ed1740b54420/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6f73632f62635f6578616d706c655f6a7570797465722e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/github/license/osc/bc_example_jupyter.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA Batch Connect app that launches a Jupyter Notebook server within a\nbatch job.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-prerequisites\" class=\"anchor\" href=\"#prerequisites\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eThis Batch Connect app requires the following software be installed on the\n\u003cstrong\u003ecompute nodes\u003c/strong\u003e that the batch job is intended to run on (\u003cstrong\u003eNOT\u003c/strong\u003e the\nOnDemand node):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"http://jupyter.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003eJupyter Notebook\u003c/a\u003e 4.2.3+ (earlier\nversions are untested but may work for you)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.openssl.org/\" rel=\"nofollow\"\u003eOpenSSL\u003c/a\u003e 1.0.1+ (used to hash the Jupyter Notebook\nserver password)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eOptional\u003c/strong\u003e software:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.tacc.utexas.edu/research-development/tacc-projects/lmod\" rel=\"nofollow\"\u003eLmod\u003c/a\u003e\n6.0.1+ or any other \u003ccode\u003emodule purge\u003c/code\u003e and \u003ccode\u003emodule load \u0026lt;modules\u0026gt;\u003c/code\u003e based CLI\nused to load appropriate environments within the batch job before launching\nthe Jupyter Notebook server.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-install\" class=\"anchor\" href=\"#install\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h2\u003e\n\u003cp\u003eThese are command line only installation directions.\u003c/p\u003e\n\u003cp\u003eWe start by downloading a zipped package of this code. This allows us to start\nwith a fresh directory that has no git history as we will be building off of\nthis.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Download the zip from the GitHub page\u003c/span\u003e\nwget https://github.com/OSC/bc_example_jupyter/archive/master.tar.gz\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Create a catchy directory\u003c/span\u003e\nmkdir my_jupyter_app\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Unzip the downloaded file into this directory\u003c/span\u003e\ntar xzvf master.tar.gz -C my_jupyter_app --strip-components=1\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Change the working directory to this new directory\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e my_jupyter_app\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFrom here you will make any modifications to the code that you would like and\nversion your changes in your own repository:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Version our app by making a new Git repository\u003c/span\u003e\ngit init\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Make all your code changes while testing them in the OnDemand Dashboard\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e ...\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Add the files to the Git repository\u003c/span\u003e\ngit add --all\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Commit the staged files to the Git repository\u003c/span\u003e\ngit commit -m \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003emy first commit\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributing\" class=\"anchor\" href=\"#contributing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eFork it ( \u003ca href=\"https://github.com/OSC/bc_example_jupyter/fork\"\u003ehttps://github.com/OSC/bc_example_jupyter/fork\u003c/a\u003e )\u003c/li\u003e\n\u003cli\u003eCreate your feature branch (\u003ccode\u003egit checkout -b my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCommit your changes (\u003ccode\u003egit commit -am \u0027Add some feature\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003ePush to the branch (\u003ccode\u003egit push origin my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a new Pull Request\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-lehtiolabnf-deqms\" class=\"anchor\" aria-hidden=\"true\" href=\"#lehtiolabnf-deqms\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003elehtiolab/nf-deqms\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eA small pipeline to re-run DEqMS on existing results\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0fcfc6847f4944e0c46cb62bb190c0110bafa56ce455c12dd23051df8d710a4a/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d25453225383925413532302e30312e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A520.01.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/lehtiolab/nf-deqms\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4068dc15ebffdfaa7d220510750dd7bcde75393d91d3fe2d05dc15190c515246/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6c656874696f6c61622f6e662d6465716d732e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/lehtiolab/nf-deqms.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThis workflow reruns DEqMS analysis on existing results, e.g. from the \u003ca href=\"https://github.com/lehtiolab/ddamsproteomics\"\u003elehtiolab/ddamsproteomics\u003c/a\u003e pipeline. It exists so one can use orthogonal sample groups (CTRL vs TREAT, old vs young) and rerun, or perhaps correct a mistake in the sample annotation, without having to re-search an entire set of spectra against a protein sequence database.\u003c/p\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003einstall \u003ca href=\"https://nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003einstall \u003ca href=\"https://docs.docker.com/engine/installation/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e, \u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e, or \u003ca href=\"https://conda.io/miniconda.html\" rel=\"nofollow\"\u003eConda\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003erun pipeline:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run lehtiolab/nf-deqms --proteins proteins.txt --peptides peptides.txt --genes genes.txt --ensg ensg.txt --sampletable samples.txt -profile standard,docker\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou can leave out any accession that you do not have or are not interested in (e.g. \u003ccode\u003e--ensg\u003c/code\u003e in a Swissprot analysis).\u003c/p\u003e\n\u003cp\u003eThe lehtiolab/nf-deqms pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://nf-co.re/usage/troubleshooting\" rel=\"nofollow\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThere is more extensive documentation on the options inside the main.nf file.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003elehtiolab/nf-deqms was originally written by Jorrit Boekel and tries to follow the \u003ca href=\"https://nf-co.re\" rel=\"nofollow\"\u003enf-core\u003c/a\u003e best practices and templates.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1642298553.0
+ "updated_at": 1605692054.0
},
{
"data_format": 2,
@@ -16105,94 +15552,100 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "biobox-info/fragpipe",
+ "full_name": "shreyaskamathkm/singularity_meshroom",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-fragpipe\" class=\"anchor\" href=\"#fragpipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFragpipe\u003c/h1\u003e\n\u003cp\u003eFragpipe latest version: 1.0.0\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_meshroom\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity_meshroom\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_meshroom\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1642084970.0
+ "updated_at": 1602807348.0
},
{
"data_format": 2,
- "description": "Apache Druid singularity container for holberton school student records and such",
+ "description": "Singularity recipe files for edta (https://github.com/oushujun/EDTA)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.1.8.3",
+ "Singularity.1.9.0"
],
- "full_name": "romxero/Singularity_Apache_Druid",
+ "full_name": "powerPlant/edta-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-apache-druid-in-a-singularity-container-this-is-used-for-testing-and-for-creating-a-database-for-interactive-use-by-holberton-tulsa\" class=\"anchor\" href=\"#apache-druid-in-a-singularity-container-this-is-used-for-testing-and-for-creating-a-database-for-interactive-use-by-holberton-tulsa\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eApache Druid in a singularity container. This is used for testing and for creating a database for interactive use by Holberton Tulsa.\u003c/h1\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for the Extensive de novo TE Annotator tool\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1642026259.0
+ "updated_at": 1603071842.0
},
{
"data_format": 2,
- "description": "Playground for Julia environments to test on Milgram ",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.FMS-gcc10-openmpi-netcdf4.6.3-ubuntu",
+ "Singularity",
+ "Singularity.FMS-gcc10-openmpi-netcdf4.6.3-ubuntu-compile"
],
- "full_name": "CNCLgithub/JuliaHPCApp",
+ "full_name": "thomas-robinson/fms_containers",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-fms_containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#fms_containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efms_containers\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1641927437.0
+ "updated_at": 1604411747.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Bayesian Atmospheric Radiative Transfer (BART) packaged in a Singularity container https://github.com/davecwright3/bart-singularity",
"filenames": [
- "2.26.10/Singularity"
+ "Singularity"
],
- "full_name": "yh549848/singularity-picard",
+ "full_name": "davecwright3/bart-singularity",
"latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4946\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-bart-singularity-guide\" class=\"anchor\" aria-hidden=\"true\" href=\"#bart-singularity-guide\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBART Singularity Guide\u003c/h1\u003e\n\u003cp\u003eThe Singularity image has BART installed at \u003ccode\u003e/bart_dir\u003c/code\u003e. The \u003ccode\u003e$topdir\u003c/code\u003e environment variable is set to this directory inside the image. This means that the instructions for the demo listed here \u003ca href=\"https://github.com/exosports/BART/tree/master/examples/demo\"\u003ehttps://github.com/exosports/BART/tree/master/examples/demo\u003c/a\u003e still work, but we need to mount a directory for outputs into the container for two reasons:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eThe demo expects your output directory to be parallel to the BART directory\u003c/li\u003e\n\u003cli\u003eThe container file system is read-only (this is only a problem because of (1); being read-only is actually preferred because it helps ensure reproducible results)\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eIf the output directory wasn\u0027t required to be parallel to BART, you could run the container anywhere in \u003ccode\u003e$HOME\u003c/code\u003e because Singularity mounts \u003ccode\u003e$HOME\u003c/code\u003e of the current user into the container by default\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe image has a directory parallel to BART that is meant for output at \u003ccode\u003e/bart_dir/run\u003c/code\u003e. Make a directory on your host system where you want to store results. For the sake of this guide, let\u0027s say it\u0027s under your current directory at \u003ccode\u003edemo/run\u003c/code\u003e and you have pulled the singularity image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name bart.sif shub://davecwright3/bart-singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto your current directory as well. Then start a shell in the singularity container with the bind mount specified\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell -B demo/run:/bart_dir/run bart.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe BART conda environment will be automatically activated. Now just \u003ccode\u003ecd $topdir/run\u003c/code\u003e and follow the instructions here \u003ca href=\"https://github.com/exosports/BART/tree/master/examples/demo\"\u003ehttps://github.com/exosports/BART/tree/master/examples/demo\u003c/a\u003e if you would like to do a demo run. You can \u003ccode\u003eexit\u003c/code\u003e the container whenever you are done, and your results will remain in your \u003ccode\u003edemo/run\u003c/code\u003e directory.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h1\u003e\n\u003cp\u003eBayesian Atmospheric Radiative Transfer (BART), a code to infer\nproperties of planetary atmospheres based on observed spectroscopic\ninformation.\u003c/p\u003e\n\u003cp\u003eThis project was completed with the support of the NASA Planetary\nAtmospheres Program, grant NNX12AI69G, held by Principal Investigator\nJoseph Harrington. Principal developers included graduate students\nPatricio E. Cubillos and Jasmina Blecic, programmer Madison Stemm, and\nundergraduates M. Oliver Bowman and Andrew S. D. Foster. The included\n\u0027transit\u0027 radiative transfer code is based on an earlier program of\nthe same name written by Patricio Rojo (Univ. de Chile, Santiago) when\nhe was a graduate student at Cornell University under Joseph\nHarrington. Statistical advice came from Thomas J. Loredo and Nate\nB. Lust.\u003c/p\u003e\n\u003cp\u003eCopyright (C) 2015-2016 University of Central Florida.\nAll rights reserved.\u003c/p\u003e\n\u003cp\u003eThis is a test version only, and may not be redistributed to any third\nparty. Please refer such requests to us. This program is distributed\nin the hope that it will be useful, but WITHOUT ANY WARRANTY; without\neven the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR\nPURPOSE.\u003c/p\u003e\n\u003cp\u003eOur intent is to release this software under an open-source,\nreproducible-research license, once the code is mature and the first\nresearch paper describing the code has been accepted for publication\nin a peer-reviewed journal. We are committed to development in the\nopen, and have posted this code on github.com so that others can test\nit and give us feedback. However, until its first publication and\nfirst stable release, we do not permit others to redistribute the code\nin either original or modified form, nor to publish work based in\nwhole or in part on the output of this code. By downloading, running,\nor modifying this code, you agree to these conditions. We do\nencourage sharing any modifications with us and discussing them\nopenly.\u003c/p\u003e\n\u003cp\u003eWe welcome your feedback, but do not guarantee support. Please send\nfeedback or inquiries to:\nPatricio Cubillos \u003ca href=\"mailto:patricio.cubillos@oeaw.ac.at\"\u003epatricio.cubillos@oeaw.ac.at\u003c/a\u003e\nJasmina Blecic \u003ca href=\"mailto:jasmina@physics.ucf.edu\"\u003ejasmina@physics.ucf.edu\u003c/a\u003e\nJoseph Harrington \u003ca href=\"mailto:jh@physics.ucf.edu\"\u003ejh@physics.ucf.edu\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eor alternatively,\nJoseph Harrington, Patricio Cubillos, and Jasmina Blecic\nUCF PSB 441\n4111 Libra Drive\nOrlando, FL 32816-2385\nUSA\u003c/p\u003e\n\u003cp\u003eThank you for testing BART!\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1641914982.0
+ "updated_at": 1604965509.0
},
{
"data_format": 2,
- "description": null,
+ "description": "This is the Artifact Description repository for the CGO21 paper: YaskSite \u2013 Stencil Optimization Techniques Applied to Explicit ODE Methods on Modern Architectures",
"filenames": [
- "recipes/Singularity.def"
+ "Singularity"
],
- "full_name": "stigrj/ghcr_sandbox",
- "latest_release": "v2.0.0",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-testing-out-ghcr-workflows\" class=\"anchor\" href=\"#testing-out-ghcr-workflows\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting out GHCR workflows\u003c/h1\u003e\n",
+ "full_name": "seasite-project/CGO21_YaskSite_AD",
+ "latest_release": "CGO21v0.3",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content--cgo21_yasksite_ad-\" class=\"anchor\" aria-hidden=\"true\" href=\"#-cgo21_yasksite_ad-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003cins\u003e CGO21_YaskSite_AD \u003c/ins\u003e\u003c/h1\u003e\n\u003ch1\u003e\u003ca id=\"user-content-setup-phase\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-phase\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup phase\u003c/h1\u003e\n\u003cp\u003eSteps 1 to 3 guide you through setting up.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-step-11\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-11\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 1.1\u003c/h2\u003e\n\u003cp\u003eClone this repository and go to the cloned directory.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/seasite-project/CGO21_YaskSite_AD.git\ncd CGO21_YaskSite_AD\ngit checkout CGO21v0.3\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-step-12\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-12\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 1.2\u003c/h2\u003e\n\u003cp\u003eFor the next steps we need singularity v 3.6.4 or higher.\nIf singularity is not installed, you can install singularity with the following script if you have root access.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./install_singularity.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-step-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 2\u003c/h2\u003e\n\u003cp\u003eDownload the singularity container.\u003c/p\u003e\n\u003cp\u003eThe pre-build container is available under the following link \u003ca href=\"https://doi.org/10.5281/zenodo.4415558\" rel=\"nofollow\"\u003ehttps://doi.org/10.5281/zenodo.4415558\u003c/a\u003e\nand can be installed using:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewget https://zenodo.org/record/4415558/files/YS_CGO.sif?download=1 -O YS_CGO.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-step-3\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 3\u003c/h2\u003e\n\u003cp\u003eOnce singularity image is downloaded on the benchmarking system the first step is to run the app called build.\nThis installs YaskSite. It should be done at runtime since the YaskSite does machine specific configuration\nat build time. Run the following to do this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run --app build YS_CGO.sif \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-phase\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-phase\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun phase\u003c/h1\u003e\n\u003cp\u003eStep 4 illustrates how to run the app to reproduce results.\nIt is recommended the settings in the paper are followed to get comparable results.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-step-4\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-4\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 4\u003c/h2\u003e\n\u003cp\u003eRun the apps corresponding to YaskSite and Offsite. There are also pre-configured apps that helps to\nreproduce data in figures of the paper. To see the list of available apps use:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run-help YS_CGO.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe method to run each apps are described in corresponding app\u0027s help. For example help on how to run Fig4 app\n(reproduces results in Fig4 of the paper) can be obtained using:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run-help --app Fig4 YS_CGO.sif\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1641893233.0
+ "updated_at": 1609764345.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity description files",
"filenames": [
- "Singularity"
+ "fusorsv/Singularity",
+ "mousegwas/Singularity"
],
- "full_name": "Mauricemonashuniversity/Epileptic-seizure-prediction",
+ "full_name": "asafpr/singularity",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1640038462.0
+ "updated_at": 1616613441.0
},
{
"data_format": 2,
- "description": "singularity recipe for https://github.com/chienchi/amplicon_coverage_plot",
+ "description": "singularity container to run Ian Jonsen\u0027s foieGras package",
"filenames": [
"Singularity"
],
- "full_name": "dcgc-bfx/singularity-amplicon_coverage_plot",
+ "full_name": "jganong/ubuntu-bionic-R-4.0.3-foieGras",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-amplicon_coverage_plot\" class=\"anchor\" href=\"#singularity-amplicon_coverage_plot\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-amplicon_coverage_plot\u003c/h1\u003e\n\u003cp\u003esingularity recipe for \u003ca href=\"https://github.com/chienchi/amplicon_coverage_plot\"\u003ehttps://github.com/chienchi/amplicon_coverage_plot\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eImages are stored here: \u003ca href=\"https://cloud.sylabs.io/library/fabianrost84/dcgc-bfx/amplicon_coverage_plot\" rel=\"nofollow\"\u003ehttps://cloud.sylabs.io/library/fabianrost84/dcgc-bfx/amplicon_coverage_plot\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1638796921.0
+ "updated_at": 1607375064.0
},
{
"data_format": 2,
@@ -16200,13 +15653,12 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-debian10-visualstudio",
+ "full_name": "jganong/ubuntu-focal-foiegras",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-vstudio-on-debian10-toy-system-for-singularity-for-ci\" class=\"anchor\" href=\"#building-a-vstudio-on-debian10-toy-system-for-singularity-for-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a vstudio on debian10 toy system for singularity for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003etoy system for github actions\u003c/li\u003e\n\u003cli\u003ebuild singularity container from dockerhub registry and push to oras://ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-debian10-visualstudio/actions/workflows/singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-debian10-visualstudio/actions/workflows/singularity-publish.yml/badge.svg\" alt=\"Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /run oras://ghcr.io/truatpasteurdotfr/singularity-debian10-visualstudio:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1638370657.0
+ "updated_at": 1607375887.0
},
{
"data_format": 2,
@@ -16214,44 +15666,41 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-debian9-visualstudio",
+ "full_name": "marcjwilliams1/rstudio_julia",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-vstudio-on-debian9-toy-system-for-singularity-for-ci\" class=\"anchor\" href=\"#building-a-vstudio-on-debian9-toy-system-for-singularity-for-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a vstudio on debian9 toy system for singularity for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003etoy system for github actions\u003c/li\u003e\n\u003cli\u003ebuild singularity container from dockerhub registry and push to oras://ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-debian9-visualstudio/actions/workflows/singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-debian9-visualstudio/actions/workflows/singularity-publish.yml/badge.svg\" alt=\"Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /run oras://ghcr.io/truatpasteurdotfr/singularity-debian9-visualstudio:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/5054\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image for R studio server with Rv4.0 + julia v1.5.3\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1638365824.0
+ "updated_at": 1611507934.0
},
{
"data_format": 2,
- "description": "Demultiplexing and QC pipeline for Illumina and 10X Single Cell sequencing data",
+ "description": null,
"filenames": [
- "Singularity"
+ "scripts/Singularity"
],
- "full_name": "csawye01/nf-core-demultiplex-crick",
+ "full_name": "SCXsunchenxi/Auto-Pytorch",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nf-coredemultiplex\" class=\"anchor\" href=\"#nf-coredemultiplex\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enf-core/demultiplex\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eDemultiplexing pipeline for Illumina data\u003c/strong\u003e\n\u003cstrong\u003eIN PROGRESS\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nf-core/demultiplex\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ae3bf24b0d68bb5e81863eb358c7f3cd3a383647e932a785a123565bf2d13391/68747470733a2f2f7472617669732d63692e6f72672f6e662d636f72652f64656d756c7469706c65782e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nf-core/demultiplex.svg?branch=master\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/67e0b26cefcc362513a5e2e7613f4638251b0ab5f029eba762be3d49a716c325/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33322e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.32.0-brightgreen.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/demultiplex\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c838bd17591342d038d2a3b9de19e08588f2ae0043530f3eb082113f2651bac7/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f64656d756c7469706c65782e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/demultiplex.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003enf-core/demultiplex\u003c/strong\u003e is a bioinformatics demultiplexing pipeline used for multiple types of data input from sequencing runs.\nThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-sample-sheet-format\" class=\"anchor\" href=\"#sample-sheet-format\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSample Sheet Format\u003c/h3\u003e\n\u003cp\u003eThe sample sheet must fall into the same format as seen below to adhere to the Illumina standards with the additional column of DataAnalysisType and ReferenceGenome to ensure 10X sample will be processed correctly. Order of columns does not matter but the case of column names does.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eLane\u003c/th\u003e\n\u003cth\u003eSample_ID\u003c/th\u003e\n\u003cth\u003eUser_Sample_Name\u003c/th\u003e\n\u003cth\u003eindex\u003c/th\u003e\n\u003cth\u003eindex2\u003c/th\u003e\n\u003cth\u003eSample_Project\u003c/th\u003e\n\u003cth\u003eReferenceGenome\u003c/th\u003e\n\u003cth\u003eDataAnalysisType\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e1\u003c/td\u003e\n\u003ctd\u003eABC11A2\u003c/td\u003e\n\u003ctd\u003eU_ABC0_BS_GL_DNA\u003c/td\u003e\n\u003ctd\u003eCGATGT\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003ePM10000\u003c/td\u003e\n\u003ctd\u003eHomo sapiens\u003c/td\u003e\n\u003ctd\u003eWhole Exome\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e2\u003c/td\u003e\n\u003ctd\u003eSAG100A10\u003c/td\u003e\n\u003ctd\u003eSAG100A10\u003c/td\u003e\n\u003ctd\u003eSI-GA-C1\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003eSC18100\u003c/td\u003e\n\u003ctd\u003eMus musculus\u003c/td\u003e\n\u003ctd\u003e10X-3prime\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e3\u003c/td\u003e\n\u003ctd\u003eCAP200A11\u003c/td\u003e\n\u003ctd\u003eUN1800_AE_6\u003c/td\u003e\n\u003ctd\u003eiCLIP\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003ePM18200\u003c/td\u003e\n\u003ctd\u003eHomo sapiens\u003c/td\u003e\n\u003ctd\u003eOther\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-pipeline-summary\" class=\"anchor\" href=\"#pipeline-summary\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline summary\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003eReformatting the input sample sheet\n\u003cul\u003e\n\u003cli\u003eScript looks for \u003ccode\u003eiCLIP\u003c/code\u003e in the index column of the sample sheet and collapses the iCLIP samples into one per lane.\u003c/li\u003e\n\u003cli\u003eSplits 10X single cell samples into 10X, 10X-ATAC and 10X-DNA .csv files by searching in the sample sheet column DataAnalysisType for \u003ccode\u003e10X-3prime\u003c/code\u003e, \u003ccode\u003e10X-ATAC\u003c/code\u003e and \u003ccode\u003e10X-CNV\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eOutputs the results of needing to run specific processes in the pipeline (can be only 10X single cell samples, mix of 10X single cell with non single cell samples or all non single cell samples)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eChecking the sample sheet for downstream error causing samples such as:\n\u003cul\u003e\n\u003cli\u003ea mix of short and long indexes on the same lane\u003c/li\u003e\n\u003cli\u003ea mix of single and dual indexes on the same lane\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eProcesses that only run if there are issues within the sample sheet found by the sample sheet check process (CONDITIONAL):\n\u003col\u003e\n\u003cli\u003eCreates a new sample sheet with any samples that would cause an error removed and create a a txt file of a list of the removed problem samples\u003c/li\u003e\n\u003cli\u003eRun \u003ca href=\"http://emea.support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html\" rel=\"nofollow\"\u003e\u003ccode\u003ebcl2fastq\u003c/code\u003e\u003c/a\u003e on the newly created sample sheet and output the Stats.json file\u003c/li\u003e\n\u003cli\u003eParsing the Stats.json file for the indexes that were in the problem samples list.\u003c/li\u003e\n\u003cli\u003eRecheck newly made sample sheet for any errors or problem samples that did not match any indexes in the Stats.json file. If there is still an issue the pipeline will exit at this stage.\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003eSingle cell 10X sample processes (CONDITIONAL):\nWill run either CellRanger, CellRangerATAC, CellRangerDNA depending on the samplesheet data type\nNOTE: Must create CONFIG to point to CellRanger genome References\n\u003col\u003e\n\u003cli\u003eCell Ranger mkfastq runs only when 10X samples exist. This will run the process with \u003ca href=\"https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger\" rel=\"nofollow\"\u003e\u003ccode\u003eCellRanger\u003c/code\u003e\u003c/a\u003e, \u003ca href=\"https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/what-is-cell-ranger-atac\" rel=\"nofollow\"\u003e\u003ccode\u003eCellRanger ATAC\u003c/code\u003e\u003c/a\u003e, and \u003ca href=\"https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/what-is-cell-ranger-dna\" rel=\"nofollow\"\u003e\u003ccode\u003eCell Ranger DNA\u003c/code\u003e\u003c/a\u003e depending on which sample sheet has been created.\u003c/li\u003e\n\u003cli\u003eCell Ranger Count runs only when 10X samples exist. This will run the process with \u003ca href=\"https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/count\" rel=\"nofollow\"\u003e\u003ccode\u003eCell Ranger Count\u003c/code\u003e\u003c/a\u003e, \u003ca href=\"https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/count\" rel=\"nofollow\"\u003e\u003ccode\u003eCell Ranger ATAC Count\u003c/code\u003e\u003c/a\u003e, and \u003ca href=\"https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/using/cnv\" rel=\"nofollow\"\u003e\u003ccode\u003eCell Ranger DNA CNV\u003c/code\u003e\u003c/a\u003edepending on the output from Cell Ranger mkfastq. 10X reference genomes can be downloaded from the 10X site, a new config would have to be created to point to the location of these. Must add config to point Cell Ranger to genome references if used outside the Crick profile.\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://emea.support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html\" rel=\"nofollow\"\u003e\u003ccode\u003ebcl2fastq\u003c/code\u003e\u003c/a\u003e (CONDITIONAL):\n\u003col\u003e\n\u003cli\u003eRuns on either the original sample sheet that had no error prone samples or on the newly created sample sheet created from the extra steps.\u003c/li\u003e\n\u003cli\u003eThis is only run when there are samples left on the sample sheet after removing the single cell samples.\u003c/li\u003e\n\u003cli\u003eThe arguments passed in bcl2fastq are changeable parameters that can be set on the command line when initiating the pipeline. Takes into account if Index reads will be made into FastQ\u0027s as well\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003e\u003ccode\u003eFastQC\u003c/code\u003e\u003c/a\u003e runs on the pooled fastq files from all the conditional processes.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/\" rel=\"nofollow\"\u003e\u003ccode\u003eFastQ Screen\u003c/code\u003e\u003c/a\u003e runs on the pooled results from all the conditional processes.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://multiqc.info/docs/\" rel=\"nofollow\"\u003e\u003ccode\u003eMultiQC\u003c/code\u003e\u003c/a\u003e runs on each projects FastQC results produced.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://multiqc.info/docs/\" rel=\"nofollow\"\u003e\u003ccode\u003eMultiQC_all\u003c/code\u003e\u003c/a\u003e runs on all FastQC results produced.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eThe nf-core/demultiplex pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/local.md\"\u003eLocal installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eAdding your own system\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/reference_genomes.md\"\u003eReference genomes\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-credits\" class=\"anchor\" href=\"#credits\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h3\u003e\n\u003cp\u003eCredits\nThe nf-core/demultiplex pipeline was written by Chelsea Sawyer of the The Bioinformatics \u0026amp; Biostatistics Group for use at The Francis Crick Institute, London.\nMany thanks to others who have helped out along the way too, including (but not limited to): \u003ca href=\"https://github.com/ChristopherBarrington\"\u003e\u003ccode\u003e@ChristopherBarrington\u003c/code\u003e\u003c/a\u003e, \u003ca href=\"https://github.com/drpatelh\"\u003e\u003ccode\u003e@drpatelh\u003c/code\u003e\u003c/a\u003e, \u003ca href=\"https://github.com/danielecook\"\u003e\u003ccode\u003e@danielecook\u003c/code\u003e\u003c/a\u003e, \u003ca href=\"https://github.com/escudem\"\u003e\u003ccode\u003e@escudem\u003c/code\u003e\u003c/a\u003e, \u003ca href=\"https://github.com/crickbabs\"\u003e\u003ccode\u003e@crickbabs\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-auto-pytorch\" class=\"anchor\" aria-hidden=\"true\" href=\"#auto-pytorch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuto-PyTorch\u003c/h1\u003e\n\u003cp\u003eCopyright (C) 2019 \u003ca href=\"http://www.automl.org/\" rel=\"nofollow\"\u003eAutoML Group Freiburg\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis a very early pre-alpha version of our upcoming Auto-PyTorch.\nSo far, Auto-PyTorch supports featurized data (classification, regression) and image data (classification).\u003c/p\u003e\n\u003cp\u003eThe newest features in Auto-PyTorch for tabular data are described in the paper \u003ca href=\"https://arxiv.org/abs/2006.13799\" rel=\"nofollow\"\u003e\"Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL\"\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eClone repository\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e install/path\n$ git clone https://github.com/automl/Auto-PyTorch.git\n$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e Auto-PyTorch\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf you want to contribute to this repository switch to our current develop branch\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git checkout develop\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eInstall pytorch:\n\u003ca href=\"https://pytorch.org/\" rel=\"nofollow\"\u003ehttps://pytorch.org/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eInstall Auto-PyTorch:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ cat requirements.txt \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e xargs -n 1 -L 1 pip install\n$ python setup.py install\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-examples\" class=\"anchor\" aria-hidden=\"true\" href=\"#examples\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExamples\u003c/h2\u003e\n\u003cp\u003eCode for the \u003ca href=\"https://arxiv.org/abs/2006.13799\" rel=\"nofollow\"\u003epaper\u003c/a\u003e is available under \u003ccode\u003eexamples/ensemble\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eFor a detailed tutorial, please refer to the jupyter notebook in \u003ca href=\"https://github.com/automl/Auto-PyTorch/tree/master/examples/basics\"\u003ehttps://github.com/automl/Auto-PyTorch/tree/master/examples/basics\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eIn a nutshell:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e# data and metric imports\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003esklearn\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003emodel_selection\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003esklearn\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003edatasets\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003esklearn\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003emetrics\u003c/span\u003e\n\u003cspan class=\"pl-v\"\u003eX\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003esklearn\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003edatasets\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eload_digits\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ereturn_X_y\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e)\n\u003cspan class=\"pl-v\"\u003eX_train\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003eX_test\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey_train\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey_test\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \\\n \u003cspan class=\"pl-s1\"\u003esklearn\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003emodel_selection\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003etrain_test_split\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eX\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003erandom_state\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e)\n\n\u003cspan class=\"pl-c\"\u003e# running Auto-PyTorch\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\"tiny_cs\"\u003c/span\u003e, \u003cspan class=\"pl-c\"\u003e# config preset\u003c/span\u003e\n \u003cspan class=\"pl-s1\"\u003elog_level\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u0027info\u0027\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003emax_runtime\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e300\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003emin_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e30\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003emax_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e90\u003c/span\u003e)\n\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003efit\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eX_train\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey_train\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003evalidation_split\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e0.3\u003c/span\u003e)\n\u003cspan class=\"pl-s1\"\u003ey_pred\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003epredict\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eX_test\u003c/span\u003e)\n\n\u003cspan class=\"pl-en\"\u003eprint\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\"Accuracy score\"\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003esklearn\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003emetrics\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eaccuracy_score\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ey_test\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey_pred\u003c/span\u003e))\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eMore examples with datasets:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e examples/\n\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-configuration\" class=\"anchor\" aria-hidden=\"true\" href=\"#configuration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguration\u003c/h2\u003e\n\u003cp\u003eHow to configure Auto-PyTorch for your needs:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e# Print all possible configuration options.\u003c/span\u003e\n\u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e().\u003cspan class=\"pl-en\"\u003eprint_help\u003c/span\u003e()\n\n\u003cspan class=\"pl-c\"\u003e# You can use the constructor to configure Auto-PyTorch.\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003elog_level\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u0027info\u0027\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_runtime\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e300\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emin_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e30\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e90\u003c/span\u003e)\n\n\u003cspan class=\"pl-c\"\u003e# You can overwrite this configuration in each fit call.\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003efit\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eX_train\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey_train\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003elog_level\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u0027debug\u0027\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_runtime\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e900\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emin_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e50\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e150\u003c/span\u003e)\n\n\u003cspan class=\"pl-c\"\u003e# You can use presets to configure the config space.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# Available presets: full_cs, medium_cs (default), tiny_cs.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# These are defined in autoPyTorch/core/presets.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# tiny_cs is recommended if you want fast results with few resources.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# full_cs is recommended if you have many resources and a very high search budget.\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\"full_cs\"\u003c/span\u003e)\n\n\u003cspan class=\"pl-c\"\u003e# Enable or disable components using the Auto-PyTorch config:\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003enetworks\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e[\u003cspan class=\"pl-s\"\u003e\"resnet\"\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\"shapedresnet\"\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\"mlpnet\"\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\"shapedmlpnet\"\u003c/span\u003e])\n\n\u003cspan class=\"pl-c\"\u003e# You can take a look at the search space.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# Each hyperparameter belongs to a node in Auto-PyTorch\u0027s ML Pipeline.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# The names of the hyperparameters are prefixed with the name of the node: NodeName:hyperparameter_name.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# If a hyperparameter belongs to a component: NodeName:component_name:hyperparameter_name.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e# Call with the same arguments as fit.\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eget_hyperparameter_search_space\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eX_train\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ey_train\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003evalidation_split\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e0.3\u003c/span\u003e)\n\n\u003cspan class=\"pl-c\"\u003e# You can configure the search space of every hyperparameter of every component:\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eHyperparameterSearchSpaceUpdates\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003esearch_space_updates\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eHyperparameterSearchSpaceUpdates\u003c/span\u003e()\n\n\u003cspan class=\"pl-s1\"\u003esearch_space_updates\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eappend\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003enode_name\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"NetworkSelector\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003ehyperparameter\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"shapedresnet:activation\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003evalue_range\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e[\u003cspan class=\"pl-s\"\u003e\"relu\"\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\"sigmoid\"\u003c/span\u003e])\n\u003cspan class=\"pl-s1\"\u003esearch_space_updates\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003eappend\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003enode_name\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"NetworkSelector\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003ehyperparameter\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"shapedresnet:blocks_per_group\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003evalue_range\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e[\u003cspan class=\"pl-c1\"\u003e2\u003c/span\u003e,\u003cspan class=\"pl-c1\"\u003e5\u003c/span\u003e],\n \u003cspan class=\"pl-s1\"\u003elog\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eFalse\u003c/span\u003e)\n\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ehyperparameter_search_space_updates\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003esearch_space_updates\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eEnable ensemble building (for featurized data):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetEnsemble\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eautoPyTorchEnsemble\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetEnsemble\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\"tiny_cs\"\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_runtime\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e300\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emin_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e30\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e90\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eDisable pynisher if you experience issues when using cuda:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s1\"\u003eautoPyTorch\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAutoNetClassification\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\"tiny_cs\"\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003elog_level\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u0027info\u0027\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_runtime\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e300\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emin_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e30\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003emax_budget\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e90\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003ecuda\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003euse_pynisher\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eFalse\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThis program is free software: you can redistribute it and/or modify\nit under the terms of the Apache license 2.0 (please see the LICENSE file).\u003c/p\u003e\n\u003cp\u003eThis program is distributed in the hope that it will be useful,\nbut WITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\u003c/p\u003e\n\u003cp\u003eYou should have received a copy of the Apache license 2.0\nalong with this program (see LICENSE file).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-reference\" class=\"anchor\" aria-hidden=\"true\" href=\"#reference\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReference\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-text-bibtex\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003e@incollection\u003c/span\u003e{\u003cspan class=\"pl-en\"\u003emendoza-automlbook18a\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003eauthor\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eHector Mendoza and Aaron Klein and Matthias Feurer and Jost Tobias Springenberg and Matthias Urban and Michael Burkart and Max Dippel and Marius Lindauer and Frank Hutter\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003etitle\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eTowards Automatically-Tuned Deep Neural Networks\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003eyear\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003e2018\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003emonth\u003c/span\u003e = dec,\n \u003cspan class=\"pl-s\"\u003eeditor\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eHutter, Frank and Kotthoff, Lars and Vanschoren, Joaquin\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003ebooktitle\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eAutoML: Methods, Sytems, Challenges\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003epublisher\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eSpringer\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003echapter\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003e7\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003epages\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003e141--156\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003enote\u003c/span\u003e = \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e{\u003c/span\u003eTo appear.\u003cspan class=\"pl-pds\"\u003e}\u003c/span\u003e\u003c/span\u003e,\n}\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e: Previously, the name of the project was AutoNet. Since this was too generic, we changed the name to AutoPyTorch. AutoNet 2.0 in the reference mention above is indeed AutoPyTorch.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contact\" class=\"anchor\" aria-hidden=\"true\" href=\"#contact\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h2\u003e\n\u003cp\u003eAuto-PyTorch is developed by the \u003ca href=\"http://www.automl.org/\" rel=\"nofollow\"\u003eAutoML Group of the University of Freiburg\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1638199013.0
+ "updated_at": 1609655576.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe(s) for LSDalton.",
"filenames": [
- "containers/Singularity.0.4.1",
- "containers/Singularity.0.4.0",
- "containers/Singularity.0.3.5",
- "containers/Singularity.0.3.3",
- "containers/Singularity.0.3.6"
+ "Singularity.latest-gcc-9.3.0"
],
- "full_name": "Samanwaya1301/tidal-heating-bilby",
+ "full_name": "bast/lsdalton",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-recipes-for-lsdalton\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-recipes-for-lsdalton\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\n\u003ca href=\"https://sylabs.io/guides/latest/user-guide/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e recipe(s) for \u003ca href=\"https://gitlab.com/dalton/lsdalton/\" rel=\"nofollow\"\u003eLSDalton\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/5142\" rel=\"nofollow\"\u003ehttps://singularity-hub.org/collections/5142\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity pull --name lsdalton shub://bast/lsdalton:latest-gcc-9.3.0\n$ ./lsdalton myexample.dal mymolecule.mol\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1638182089.0
+ "updated_at": 1612249375.0
},
{
"data_format": 2,
@@ -16259,39 +15708,102 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "talha-naveed97/orion",
+ "full_name": "timo-singularity/rivet",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-recipes\" class=\"anchor\" aria-hidden=\"true\" href=\"#recipes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003erecipes\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1646176107.0
+ "updated_at": 1622810530.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Testing Singularity container and Singularity-hub",
"filenames": [
"Singularity"
],
- "full_name": "yhisaki/exp_pfrl",
+ "full_name": "kma/singularity-lab",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-use-case\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-use-case\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity use case\u003c/h1\u003e\n\u003cp\u003eCreate a reproducible container image to run a simple python program (\u003ccode\u003edata_alaysys.py\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eThis code takes a csv file and plots results in two separated pdf files.\u003c/p\u003e\n\u003cp\u003eThe csv can be found \u003ca href=\"http://info.iut-bm.univ-fcomte.fr/staff/mazouzi/docs/ganglia-metrics.csv\" rel=\"nofollow\"\u003e[here]\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-create-a-container-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#create-a-container-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreate a container locally\u003c/h2\u003e\n\u003cp\u003eRun \u003ccode\u003ebuild-local\u003c/code\u003e to create and bootstrap a container (This action needs root access).\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo singularity create -s 1000 mycontainer.img\n$ sudo singularity bootstrap mycontainer.img Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-python-code-inside-the-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-python-code-inside-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun python code inside the container\u003c/h2\u003e\n\u003cp\u003eRun \u003ccode\u003erun-local.sh\u003c/code\u003e to execute python code inside the container.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ wget http://info.iut-bm.univ-fcomte.fr/staff/mazouzi/docs/ganglia-metrics.csv\n\n$ ./mycontainer.img data_analysis\n\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pull-image-container-from-singularity-hub\" class=\"anchor\" aria-hidden=\"true\" href=\"#pull-image-container-from-singularity-hub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePull image container from singularity-hub\u003c/h2\u003e\n\u003cp\u003eIf you don\u0027t root access, singularity-hub can create images by providing a specification file. See the \u003ca href=\"https://singularity-hub.org/faq\" rel=\"nofollow\"\u003e[documentation]\u003c/a\u003e for more details .\u003c/p\u003e\n\u003cp\u003eThe image corresponding to the \u003ccode\u003eSingularity\u003c/code\u003e file can be pulled from \u003ca href=\"https://singularity-hub.org/containers/842/\" rel=\"nofollow\"\u003ehttps://singularity-hub.org/containers/842/\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003ePull image:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull shub://842\nOr\n$ singularity pull shub://kma/singularity-lab:master\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eRun python code using:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e kma-singularity-lab-master.img python data_analysis.py\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eOr\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ ./kma-singularity-lab-master.img data_analysis.py\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1645156767.0
+ "updated_at": 1493818555.0
},
{
"data_format": 2,
- "description": "Code related to the installation and use of the openface on PSU\u0027s ACI systems ",
+ "description": "Files to build Singularity images for running the Monte-Carlo event generator Sherpa",
"filenames": [
- "Singularity"
+ "Singularity.fitting_centos6",
+ "Singularity.sherpa-rel-2-2-7_68ab0c9c5_Caesar",
+ "Singularity.sherpa-2.2.6",
+ "Singularity.rivet_centos6",
+ "Singularity.sherpa-tmp-cherrypick-ewvirt-into-master_HEAD_centos6",
+ "Singularity.sherpa-rel-2-2-9_HEAD_centos6",
+ "Singularity.sherpa-master_2dc43a3d_Asterix",
+ "Singularity.plotting",
+ "Singularity.mceg",
+ "Singularity.sherpa-rel-2-2-7_12338b5d_Bossix",
+ "Singularity.sherpa-master_HEAD_centos6",
+ "Singularity.plotting_centos6",
+ "Singularity.sherpa-openmpi.devtoolset",
+ "Singularity.sherpa-2.2.6_centos6",
+ "Singularity.rivet",
+ "Singularity.sherpa-rel-2-2-7_HEAD_centos6",
+ "Singularity.mceg_centos6"
],
- "full_name": "behav/openface",
+ "full_name": "ebothmann/sherpa-singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-openface_ics\" class=\"anchor\" href=\"#openface_ics\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eopenface_ics\u003c/h1\u003e\n\u003cp\u003eCode and workflow for building \u003ca href=\"https://github.com/TadasBaltrusaitis/OpenFace\"\u003eOpenFace\u003c/a\u003e\nin Docker Hub and modifying it with Singularity Hub for use with PSU\nACI HPC clusters.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quick-start\" class=\"anchor\" href=\"#quick-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h2\u003e\n\u003cp\u003eFrom ACI, executing the following code should create an \u003ccode\u003eOpenFace\u003c/code\u003e image.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://d-bohn/openface_ics:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-image-builds\" class=\"anchor\" href=\"#image-builds\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImage Builds\u003c/h2\u003e\n\u003cp\u003eThe OpenFace docker image was built from scratch on docker hub following the\n\u003ca href=\"https://github.com/TadasBaltrusaitis/OpenFace/wiki/Unix-Installation\"\u003edocumentation\u003c/a\u003e provided by it\u0027s maintainers.\u003c/p\u003e\n\u003cp\u003eThe OpenFace singularity image was built using the docker image base and\nconverting it to a singularity image via singularity hub.\u003c/p\u003e\n\u003cp\u003eSetup for linking Github with Docker Hub and Singularity Hub can be found here:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://docs.docker.com/docker-hub/\" rel=\"nofollow\"\u003edocker Hub\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/singularityhub/singularityhub.github.io/wiki\"\u003eSingularity Hub\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe \u003ccode\u003eSingularity\u003c/code\u003e file specifies creating a Singularity-compatible image\nfrom the docker image, as well as adding access to folders within ACI, specifically:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# ACI mappings so you can access your files.\nmkdir -p /storage/home\nmkdir -p /storage/work\nmkdir -p /gpfs/group\nmkdir -p /gpfs/scratch\nmkdir -p /var/spool/torque\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-notes\" class=\"anchor\" href=\"#notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eThe OpenFace docker image is large (\u0026gt; 6GB). It is built on Ubuntu 18.04.\nNot sure if it can be reduced in size as the executables rely on several\nlarge libraries.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSeveral important updates for \u003ccode\u003efaciallandmarkdetector\u003c/code\u003e are hosted on\nthe maintainer\u0027s cloud account. Might be prudent to download them\nseparately and/or include them in the repository.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eSome functionality for real-time video viewing is not available\nwhen run in a container (at least not as of now).\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1556740713.0
+ "updated_at": 1603222289.0
+ },
+ {
+ "data_format": 2,
+ "description": "Run a jupyter notebook server within singularity container.",
+ "filenames": [
+ "Singularity"
+ ],
+ "full_name": "kma/singularity-jupyter",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-jupyter\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-jupyter\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-jupyter\u003c/h1\u003e\n\u003cp\u003eThis example shows how to run a jupyter notebook server within singularity container.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-create-and-bootstrap-the-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#create-and-bootstrap-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreate and bootstrap the container\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo singularity create -s 1200 jupyter.img\n$ sudo singularity bootstrap jupyter.img Singularity \u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-use-singularity-hub-to-pull-this-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#use-singularity-hub-to-pull-this-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUse singularity-hub to pull this container\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003e$ singularity pull shub://906\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eOR\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003e$ singularity pull shub://kma/singularity-jupyter:master\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-the-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun the container\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity run jupyter.img\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis will starts jupyter server on port 8888. The current directory will be used as the notebook direcory.\nYou can connect to the server and select the notebook file \u003ca href=\"python_heat2d.ipynb\"\u003epython_heat2d.ipynb\u003c/a\u003e.\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1493997701.0
+ },
+ {
+ "data_format": 2,
+ "description": "local settings",
+ "filenames": [
+ "examples/shub/Singularity",
+ "examples/scientific/Singularity",
+ "examples/arch/Singularity",
+ "examples/ubuntu/Singularity",
+ "examples/centos/Singularity",
+ "examples/docker/Singularity",
+ "examples/scratch/Singularity.busybox",
+ "examples/scratch/Singularity.alpine",
+ "examples/debian/Singularity",
+ "examples/self/Singularity",
+ "examples/busybox/Singularity",
+ "examples/apps/Singularity",
+ "examples/apps/Singularity.cowsay",
+ "examples/instances/Singularity",
+ "examples/asciinema/Singularity",
+ "examples/raspbian/Singularity",
+ "examples/library/Singularity",
+ "examples/multistage/Singularity",
+ "examples/opensuse/Singularity"
+ ],
+ "full_name": "frankwillmore/alcf-singularity",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/sylabs/singularity\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a1646c42a348a1331feb3842e34171e866c139adbae2608ba5fbd2c022c9c20f/68747470733a2f2f7472617669732d63692e6f72672f73796c6162732f73696e67756c61726974792e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/sylabs/singularity.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://circleci.com/gh/sylabs/singularity/tree/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ff56e7dd170e08e53c09fda12031315bb91f5b4220f2d3cfaf46044700f32fa1/68747470733a2f2f636972636c6563692e636f6d2f67682f73796c6162732f73696e67756c61726974792f747265652f6d61737465722e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/sylabs/singularity/tree/master.svg?style=svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://goreportcard.com/report/github.com/sylabs/singularity\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/179d3d939b6a64c4f021860776fdc6243bc26409e966f1aa6bd7d35ca9593fea/68747470733a2f2f676f7265706f7274636172642e636f6d2f62616467652f6769746875622e636f6d2f73796c6162732f73696e67756c6172697479\" alt=\"Go Report Card\" data-canonical-src=\"https://goreportcard.com/badge/github.com/sylabs/singularity\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"CONTRIBUTING.md\"\u003eGuidelines for Contributing\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\".github/PULL_REQUEST_TEMPLATE.md\"\u003ePull Request Template\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"LICENSE.md\"\u003eProject License\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://www.sylabs.io/docs/\" rel=\"nofollow\"\u003eDocumentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177459\" rel=\"nofollow\"\u003eCitation\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSingularity is an open source container platform designed to be simple, fast, and secure. Singularity is optimized for \u003ca href=\"https://www.sylabs.io/2018/09/singularity-is-enterprise-performance-computing/\" rel=\"nofollow\"\u003eEPC\u003c/a\u003e and HPC workloads, allowing untrusted users to run untrusted containers in a trusted way.\u003c/p\u003e\n\u003cp\u003eCheck out \u003ca href=\"https://www.sylabs.io/singularity/whos-using-singularity/\" rel=\"nofollow\"\u003ewho is using Singularity\u003c/a\u003e and some \u003ca href=\"https://www.sylabs.io/category/how-tos/\" rel=\"nofollow\"\u003euse cases of Singularity\u003c/a\u003e on our website.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-getting-started-with-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#getting-started-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started with Singularity\u003c/h2\u003e\n\u003cp\u003eTo install Singularity from source, see the \u003ca href=\"INSTALL.md\"\u003einstallation instructions\u003c/a\u003e. For other installation options, see \u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/installation.html\" rel=\"nofollow\"\u003eour website\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor system administrators, see the \u003ca href=\"https://www.sylabs.io/guides/3.0/admin-guide/\" rel=\"nofollow\"\u003eadministrator documentation\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor users, see the \u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/\" rel=\"nofollow\"\u003euser documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing-to-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing-to-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing to Singularity\u003c/h2\u003e\n\u003cp\u003eCommunity contributions are always greatly appreciated. To start developing Singularity, check out the \u003ca href=\"CONTRIBUTING.md\"\u003eguidelines for contributing\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eWe also welcome contributions to our \u003ca href=\"https://github.com/sylabs/singularity-userdocs\"\u003euser docs\u003c/a\u003e and \u003ca href=\"https://github.com/sylabs/singularity-admindocs\"\u003eadmin docs\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-support\" class=\"anchor\" aria-hidden=\"true\" href=\"#support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSupport\u003c/h2\u003e\n\u003cp\u003eTo get help with Singularity, check out the \u003ca href=\"https://www.sylabs.io/singularity/community/\" rel=\"nofollow\"\u003eCommunity Portal\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor additional support, \u003ca href=\"https://www.sylabs.io/contact/\" rel=\"nofollow\"\u003econtact us\u003c/a\u003e to receive more information.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-cite-as\" class=\"anchor\" aria-hidden=\"true\" href=\"#cite-as\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCite as:\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eKurtzer GM, Sochat V, Bauer MW (2017) Singularity: Scientific containers for mobility of compute. PLoS ONE 12(5): e0177459. https://doi.org/10.1371/journal.pone.0177459\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWe also have a Zenodo citation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eKurtzer, Gregory M.. (2016). Singularity 2.1.2 - Linux application and environment\ncontainers for science. 10.5281/zenodo.60736\n\nhttps://doi.org/10.5281/zenodo.60736\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003eUnless otherwise noted, this project is licensed under a 3-clause BSD license found in the \u003ca href=\"LICENSE.md\"\u003elicense file\u003c/a\u003e.\u003c/em\u003e\u003c/p\u003e\n",
+ "stargazers_count": 0,
+ "subscribers_count": 0,
+ "topics": [],
+ "updated_at": 1558040154.0
},
{
"data_format": 2,
@@ -16299,285 +15811,336 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "NagaComBio/singularity_gcnvplotting",
- "latest_release": "v0.2.0",
- "readme": "\u003ch2\u003e\n\u003ca id=\"user-content-for-gcnvplotting_v010sif\" class=\"anchor\" href=\"#for-gcnvplotting_v010sif\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor gcnvplotting_v0.1.0.sif\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/NagaComBio/singularity_gcnvplotting.git\ncd singularity_gcnvplotting\nsudo singularity build gcnvplotting_v0.1.0.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "yuechenwangwyc/topaz",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-topaz\" class=\"anchor\" aria-hidden=\"true\" href=\"#topaz\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTopaz\u003c/h1\u003e\n\u003cp\u003eA pipeline for particle detection in cryo-electron microscopy images using convolutional neural networks trained from positive and unlabeled examples. Topaz also includes methods for micrograph and tomogram denoising using deep denoising models.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eCheck out our \u003ca href=\"https://github.com/tbepler/topaz/discussions\"\u003eDiscussion\u003c/a\u003e section for general help, suggestions, and tips on using Topaz.\u003c/strong\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-new-in-v025\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-in-v025\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew in v0.2.5\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eAdded Relion integration scripts\u003c/li\u003e\n\u003cli\u003eTopaz extract can now write particle coordinates to one file per input micrograph\u003c/li\u003e\n\u003cli\u003eAdded Gaussian filter option for after 3D denoising\u003c/li\u003e\n\u003cli\u003eAdded info on Topaz Workshops\u003c/li\u003e\n\u003cli\u003eTopaz GUI update\u003c/li\u003e\n\u003cli\u003eVarious bug fixes\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-new-in-v024\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-in-v024\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew in v0.2.4\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eAdded 3D denoising with \u003cstrong\u003etopaz denoise3d\u003c/strong\u003e and two pretrained 3D denoising models\u003c/li\u003e\n\u003cli\u003eAdded argument for setting number of threads to multithreaded commands\u003c/li\u003e\n\u003cli\u003eTopaz GUI update\u003c/li\u003e\n\u003cli\u003eVarious bug fixes\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-new-in-v023\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-in-v023\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew in v0.2.3\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eImprovements to the pretrained denoising models\u003c/li\u003e\n\u003cli\u003eTopaz now includes pretrained particle picking models\u003c/li\u003e\n\u003cli\u003eUpdated tutorials\u003c/li\u003e\n\u003cli\u003eUpdated GUI to include denoising commands\u003c/li\u003e\n\u003cli\u003eDenoising paper preprint is available \u003ca href=\"https://doi.org/10.1101/838920\" rel=\"nofollow\"\u003ehere\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-new-in-v022\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-in-v022\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew in v0.2.2\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eThe Topaz publication is out \u003ca href=\"https://doi.org/10.1038/s41592-019-0575-8\" rel=\"nofollow\"\u003ehere\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eBug fixes and GUI update\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-new-in-v020\" class=\"anchor\" aria-hidden=\"true\" href=\"#new-in-v020\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNew in v0.2.0\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eTopaz now supports the newest versions of pytorch (\u0026gt;= 1.0.0). If you have pytorch installed for an older version of topaz, it will need to be upgraded. See installation instructions for details.\u003c/li\u003e\n\u003cli\u003eAdded \u003cstrong\u003etopaz denoise\u003c/strong\u003e, a command for denoising micrographs using neural networks.\u003c/li\u003e\n\u003cli\u003eUsability improvements to the GUI.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eAn Nvidia GPU with CUDA support for GPU acceleration.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eBasic Unix/Linux knowledge.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003e(Recommended) Click here to install \u003cem\u003eusing Anaconda\u003c/em\u003e\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003cp\u003eIf you do not have the Anaconda python distribution, \u003ca href=\"https://www.anaconda.com/download\" rel=\"nofollow\"\u003eplease install it following the instructions on their website\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eWe strongly recommend installing Topaz into a separate conda environment. To create a conda environment for Topaz:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda create -n topaz python=3.6 # or 2.7 if you prefer python 2\nsource activate topaz # this changes to the topaz conda environment, \u0027conda activate topaz\u0027 can be used with anaconda \u0026gt;= 4.4 if properly configured\n# source deactivate # returns to the base conda environment\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eMore information on conda environments can be found \u003ca href=\"https://conda.io/docs/user-guide/tasks/manage-environments.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install-topaz\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-topaz\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall Topaz\u003c/h2\u003e\n\u003cp\u003eTo install the precompiled Topaz package and its dependencies, including pytorch:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install topaz -c tbepler -c pytorch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis installs pytorch from the official channel. To install pytorch for specific cuda versions, you will need to add the \u0027cudatoolkit=X.X\u0027 package. E.g. to install pytorch for CUDA 9.0:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install cudatoolkit=9.0 -c pytorch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor combined into a single command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install topaz cudatoolkit=9.0 -c tbepler -c pytorch\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee \u003ca href=\"https://pytorch.org/get-started/locally/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e for additional pytorch installation instructions.\u003c/p\u003e\n\u003cp\u003eThat\u0027s it! Topaz is now installed in your anaconda environment.\u003c/p\u003e\n\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003eClick here to install \u003cem\u003eusing Pip\u003c/em\u003e\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003cp\u003eWe strongly recommend installing Topaz into a \u003cem\u003evirtual environment\u003c/em\u003e. See \u003ca href=\"https://virtualenv.pypa.io/en/latest/installation/\" rel=\"nofollow\"\u003einstallation instructions\u003c/a\u003e and \u003ca href=\"https://virtualenv.pypa.io/en/latest/userguide/\" rel=\"nofollow\"\u003euser guide\u003c/a\u003e for virtualenv.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install-topaz-1\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-topaz-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall Topaz\u003c/h2\u003e\n\u003cp\u003eTo install Topaz for Python 3.X\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip3 install topaz-em\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003efor Python 2.7\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip install topaz-em\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee \u003ca href=\"https://pytorch.org/get-started/locally/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e for additional pytorch installation instructions, including how to install pytorch for specific CUDA versions.\u003c/p\u003e\n\u003cp\u003eThat\u0027s it! Topaz is now installed through pip.\u003c/p\u003e\n\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003eClick here to install \u003cem\u003eusing Docker\u003c/em\u003e\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003eDo you have Docker installed? If not, \u003cem\u003eclick here\u003c/em\u003e\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-linuxmacos--command-line\" class=\"anchor\" aria-hidden=\"true\" href=\"#linuxmacos--command-line\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLinux/MacOS \u00a0\u00a0 \u003cem\u003e(command line)\u003c/em\u003e\n\u003c/h2\u003e\n\u003cp\u003eDownload and install Docker 1.21 or greater for \u003ca href=\"https://docs.docker.com/engine/installation/\" rel=\"nofollow\"\u003eLinux\u003c/a\u003e or \u003ca href=\"https://store.docker.com/editions/community/docker-ce-desktop-mac\" rel=\"nofollow\"\u003eMacOS\u003c/a\u003e.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eConsider using a Docker \u0027convenience script\u0027 to install (search on your OS\u0027s Docker installation webpage).\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eLaunch docker according to your Docker engine\u0027s instructions, typically \u003ccode\u003edocker start\u003c/code\u003e.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eNote:\u003c/strong\u003e You must have sudo or root access to \u003cem\u003einstall\u003c/em\u003e Docker. If you do not wish to \u003cem\u003erun\u003c/em\u003e Docker as sudo/root, you need to configure user groups as described here: \u003ca href=\"https://docs.docker.com/install/linux/linux-postinstall/\" rel=\"nofollow\"\u003ehttps://docs.docker.com/install/linux/linux-postinstall/\u003c/a\u003e\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch2\u003e\u003ca id=\"user-content-windows--gui--command-line\" class=\"anchor\" aria-hidden=\"true\" href=\"#windows--gui--command-line\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWindows \u00a0\u00a0 \u003cem\u003e(GUI \u0026amp; command line)\u003c/em\u003e\n\u003c/h2\u003e\n\u003cp\u003eDownload and install \u003ca href=\"https://docs.docker.com/toolbox/toolbox_install_windows/\" rel=\"nofollow\"\u003eDocker Toolbox for Windows\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eLaunch Kitematic.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eIf on first startup Kitematic displays a red error suggesting that you run using VirtualBox, do so.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eNote:\u003c/strong\u003e \u003ca href=\"https://docs.docker.com/toolbox/toolbox_install_mac/\" rel=\"nofollow\"\u003eDocker Toolbox for MacOS\u003c/a\u003e has not yet been tested.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch2\u003e\u003ca id=\"user-content-what-is-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#what-is-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is Docker?\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://www.youtube.com/watch?v=YFl2mCHdv24\" rel=\"nofollow\"\u003eThis tutorial explains why Docker is useful.\u003c/a\u003e\u003c/p\u003e\n\n\u003cbr\u003e\n\u003cp\u003eA Dockerfile is provided to build images with CUDA support. Build from the github repo:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build -t topaz https://github.com/tbepler/topaz.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor download the source code and build from the source directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/tbepler/topaz\ncd topaz\ndocker build -t topaz .\n\u003c/code\u003e\u003c/pre\u003e\n\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003eClick here to install \u003cem\u003eusing Singularity\u003c/em\u003e\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003cp\u003eA prebuilt Singularity image for Topaz is available \u003ca href=\"https://singularity-hub.org/collections/2413\" rel=\"nofollow\"\u003ehere\u003c/a\u003e and can be installed with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://nysbc/topaz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen, you can run topaz from within the singularity image with (paths must be changed appropriately):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv -B /mounted_path:/mounted_path /path/to/singularity/container/topaz_latest.sif /usr/local/conda/bin/topaz\n\u003c/code\u003e\u003c/pre\u003e\n\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003eClick here to install \u003cem\u003efrom source\u003c/em\u003e\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eRecommended: install Topaz into a virtual Python environment\u003c/em\u003e\u003cbr\u003e\nSee \u003ca href=\"https://conda.io/docs/user-guide/tasks/manage-environments.html\" rel=\"nofollow\"\u003ehttps://conda.io/docs/user-guide/tasks/manage-environments.html\u003c/a\u003e or \u003ca href=\"https://virtualenv.pypa.io/en/stable/\" rel=\"nofollow\"\u003ehttps://virtualenv.pypa.io/en/stable/\u003c/a\u003e for setting one up.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-install-the-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-the-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall the dependencies\u003c/h4\u003e\n\u003cp\u003eTested with python 3.6 and 2.7\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003epytorch (\u0026gt;= 1.0.0)\u003c/li\u003e\n\u003cli\u003etorchvision\u003c/li\u003e\n\u003cli\u003epillow (\u0026gt;= 6.2.0)\u003c/li\u003e\n\u003cli\u003enumpy (\u0026gt;= 1.11)\u003c/li\u003e\n\u003cli\u003epandas (\u0026gt;= 0.20.3)\u003c/li\u003e\n\u003cli\u003escipy (\u0026gt;= 0.19.1)\u003c/li\u003e\n\u003cli\u003escikit-learn (\u0026gt;= 0.19.0)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eEasy installation of dependencies with conda\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install numpy pandas scikit-learn\nconda install -c pytorch pytorch torchvision\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor more info on installing pytorch for your CUDA version see \u003ca href=\"https://pytorch.org/get-started/locally/\" rel=\"nofollow\"\u003ehttps://pytorch.org/get-started/locally/\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-download-the-source-code\" class=\"anchor\" aria-hidden=\"true\" href=\"#download-the-source-code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownload the source code\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/tbepler/topaz\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-install-topaz-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-topaz-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall Topaz\u003c/h4\u003e\n\u003cp\u003eMove to the source code directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd topaz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBy default, this will be the most recent version of the topaz source code. To install a specific older version, checkout that commit. For example, for v0.1.0 of Topaz:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit checkout v0.1.0\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote that older Topaz versions may have different dependencies. Refer to the README for the specific Topaz version.\u003c/p\u003e\n\u003cp\u003eInstall Topaz into your Python path including the topaz command line interface\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip install .\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo install for development use\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip install -e .\n\u003c/code\u003e\u003c/pre\u003e\n\n\u003cp\u003eTopaz is also available through \u003ca href=\"https://sbgrid.org/software/titles/topaz\" rel=\"nofollow\"\u003eSBGrid\u003c/a\u003e.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-tutorial\" class=\"anchor\" aria-hidden=\"true\" href=\"#tutorial\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTutorial\u003c/h1\u003e\n\u003cp\u003eThe tutorials are presented in Jupyter notebooks. Please install Jupyter following the instructions \u003ca href=\"http://jupyter.org/install\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"tutorial/01_quick_start_guide.ipynb\"\u003eQuick start guide\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"tutorial/02_walkthrough.ipynb\"\u003eComplete walkthrough\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"tutorial/03_cross_validation.ipynb\"\u003eCross validation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"tutorial/04_denoising.ipynb\"\u003eMicrograph denoising\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThe tutorial data can be downloaded \u003ca href=\"http://bergerlab-downloads.csail.mit.edu/topaz/topaz-tutorial-data.tar.gz\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eTo run the tutorial steps on your own system, you will need to install \u003ca href=\"http://jupyter.org/install\" rel=\"nofollow\"\u003eJupyter\u003c/a\u003e and \u003ca href=\"https://matplotlib.org/\" rel=\"nofollow\"\u003ematplotlib\u003c/a\u003e which is used for visualization.\u003c/p\u003e\n\u003cp\u003eWith Anaconda this can be done with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda install jupyter matplotlib\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you installed Topaz using anaconda, make sure these are installed into your Topaz evironment.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-user-guide\" class=\"anchor\" aria-hidden=\"true\" href=\"#user-guide\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUser guide\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003eClick here for a description of the Topaz pipeline and its commands\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003cp\u003eThe command line interface is structured as a single entry command (topaz) with different steps defined as subcommands. A general usage guide is provided below with brief instructions for the most important subcommands in the particle picking pipeline.\u003c/p\u003e\n\u003cp\u003eTo see a list of all subcommands with a brief description of each, run \u003ccode\u003etopaz --help\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-image-preprocessing\" class=\"anchor\" aria-hidden=\"true\" href=\"#image-preprocessing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImage preprocessing\u003c/h3\u003e\n\u003ch4\u003e\u003ca id=\"user-content-downsampling-topaz-downsample\" class=\"anchor\" aria-hidden=\"true\" href=\"#downsampling-topaz-downsample\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownsampling (topaz downsample)\u003c/h4\u003e\n\u003cp\u003eIt is recommened to downsample and normalize images prior to model training and prediction.\u003c/p\u003e\n\u003cp\u003eThe downsample script uses the discrete Fourier transform to reduce the spacial resolution of images. It can be used as\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003etopaz downsample --scale={downsampling factor} --output={output image path} {input image path} \n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eusage: topaz downsample [-h] [-s SCALE] [-o OUTPUT] [-v] file\n\npositional arguments:\n file\n\noptional arguments:\n -h, --help show this help message and exit\n -s SCALE, --scale SCALE\n downsampling factor (default: 4)\n -o OUTPUT, --output OUTPUT\n output file\n -v, --verbose print info\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-normalization-topaz-normalize\" class=\"anchor\" aria-hidden=\"true\" href=\"#normalization-topaz-normalize\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNormalization (topaz normalize)\u003c/h4\u003e\n\u003cp\u003eThe normalize script can then be used to normalize the images. This script fits a two component Gaussian mixture model with an additional scaling multiplier per image to capture carbon pixels and account for differences in exposure. The pixel values are then adjusted by dividing each image by its scaling factor and then subtracting the mean and dividing by the standard deviation of the dominant Gaussian mixture component. It can be used as\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003etopaz normalize --destdir={directory to put normalized images} [list of image files]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eusage: topaz normalize [-h] [-s SAMPLE] [--niters NITERS] [--seed SEED]\n [-o DESTDIR] [-v]\n files [files ...]\n\npositional arguments:\n files\n\noptional arguments:\n -h, --help show this help message and exit\n -s SAMPLE, --sample SAMPLE\n pixel sampling factor for model fit (default: 100)\n --niters NITERS number of iterations to run for model fit (default:\n 200)\n --seed SEED random seed for model initialization (default: 1)\n -o DESTDIR, --destdir DESTDIR\n output directory\n -v, --verbose verbose output\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-single-step-preprocessing-topaz-preprocess\" class=\"anchor\" aria-hidden=\"true\" href=\"#single-step-preprocessing-topaz-preprocess\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingle-step preprocessing (topaz preprocess)\u003c/h4\u003e\n\u003cp\u003eBoth downsampling and normalization can be performed in one step with the preprocess script.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003etopaz preprocess --scale={downsampling factor} --destdir={directory to put processed images} [list of image files]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eusage: topaz preprocess [-h] [-s SCALE] [-t NUM_WORKERS]\n [--pixel-sampling PIXEL_SAMPLING] [--niters NITERS]\n [--seed SEED] -o DESTDIR [-v]\n files [files ...]\n\npositional arguments:\n files\n\noptional arguments:\n -h, --help show this help message and exit\n -s SCALE, --scale SCALE\n rescaling factor for image downsampling (default: 4)\n -t NUM_WORKERS, --num-workers NUM_WORKERS\n number of processes to use for parallel image\n downsampling (default: 0)\n --pixel-sampling PIXEL_SAMPLING\n pixel sampling factor for model fit (default: 100)\n --niters NITERS number of iterations to run for model fit (default:\n 200)\n --seed SEED random seed for model initialization (default: 1)\n -o DESTDIR, --destdir DESTDIR\n output directory\n -v, --verbose verbose output\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-model-training\" class=\"anchor\" aria-hidden=\"true\" href=\"#model-training\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModel training\u003c/h3\u003e\n\u003ch4\u003e\u003ca id=\"user-content-file-formats\" class=\"anchor\" aria-hidden=\"true\" href=\"#file-formats\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFile formats\u003c/h4\u003e\n\u003cp\u003eThe training script requires a file listing the image file paths and another listing the particle coordinates. Coordinates index images from the top left. These files should be tab delimited with headers as follows:\u003c/p\u003e\n\u003cp\u003eimage file list\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eimage_name\tpath\n...\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eparticle coordinates\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eimage_name\tx_coord\ty_coord\n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-train-region-classifiers-with-labeled-particles-topaz-train\" class=\"anchor\" aria-hidden=\"true\" href=\"#train-region-classifiers-with-labeled-particles-topaz-train\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTrain region classifiers with labeled particles (topaz train)\u003c/h4\u003e\n\u003cp\u003eModels are trained using the \u003ccode\u003etopaz train\u003c/code\u003e command. For a complete list of training arguments, see\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003etopaz train --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-segmentation-and-particle-extraction\" class=\"anchor\" aria-hidden=\"true\" href=\"#segmentation-and-particle-extraction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSegmentation and particle extraction\u003c/h3\u003e\n\u003ch4\u003e\u003ca id=\"user-content-segmention-topaz-segment-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#segmention-topaz-segment-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSegmention (topaz segment, optional)\u003c/h4\u003e\n\u003cp\u003eImages can be segmented using the \u003ccode\u003etopaz segment\u003c/code\u003e command with a trained model.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eusage: topaz segment [-h] [-m MODEL] [-o DESTDIR] [-d DEVICE] [-v]\n paths [paths ...]\n\npositional arguments:\n paths paths to image files for processing\n\noptional arguments:\n -h, --help show this help message and exit\n -m MODEL, --model MODEL\n path to trained classifier\n -o DESTDIR, --destdir DESTDIR\n output directory\n -d DEVICE, --device DEVICE\n which device to use, \u0026lt;0 corresponds to CPU (default:\n GPU if available)\n -v, --verbose verbose mode\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch4\u003e\u003ca id=\"user-content-particle-extraction-topaz-extract\" class=\"anchor\" aria-hidden=\"true\" href=\"#particle-extraction-topaz-extract\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParticle extraction (topaz extract)\u003c/h4\u003e\n\u003cp\u003ePredicted particle coordinates can be extracted directly from saved segmented images (see above) or images can be segmented and particles extracted in one step given a trained model using the \u003ccode\u003etopaz extract\u003c/code\u003e command.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eusage: topaz extract [-h] [-m MODEL] [-r RADIUS] [-t THRESHOLD]\n [--assignment-radius ASSIGNMENT_RADIUS]\n [--min-radius MIN_RADIUS] [--max-radius MAX_RADIUS]\n [--step-radius STEP_RADIUS] [--num-workers NUM_WORKERS]\n [--targets TARGETS] [--only-validate] [-d DEVICE]\n [-o OUTPUT]\n paths [paths ...]\n\npositional arguments:\n paths paths to image files for processing\n\noptional arguments:\n -h, --help show this help message and exit\n -m MODEL, --model MODEL\n path to trained subimage classifier, if no model is\n supplied input images must already be segmented\n -r RADIUS, --radius RADIUS\n radius of the regions to extract\n -t THRESHOLD, --threshold THRESHOLD\n score quantile giving threshold at which to terminate\n region extraction (default: 0.5)\n --assignment-radius ASSIGNMENT_RADIUS\n maximum distance between prediction and labeled target\n allowed for considering them a match (default: same as\n extraction radius)\n --min-radius MIN_RADIUS\n minimum radius for region extraction when tuning\n radius parameter (default: 5)\n --max-radius MAX_RADIUS\n maximum radius for region extraction when tuning\n radius parameters (default: 100)\n --step-radius STEP_RADIUS\n grid size when searching for optimal radius parameter\n (default: 5)\n --num-workers NUM_WORKERS\n number of processes to use for extracting in parallel,\n 0 uses main process (default: 0)\n --targets TARGETS path to file specifying particle coordinates. used to\n find extraction radius that maximizes the AUPRC\n --only-validate flag indicating to only calculate validation metrics.\n does not report full prediction list\n -d DEVICE, --device DEVICE\n which device to use, \u0026lt;0 corresponds to CPU\n -o OUTPUT, --output OUTPUT\n file path to write\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis script uses the non maxima suppression algorithm to greedily select particle coordinates and remove nearby coordinates from the candidates list. Two additional parameters are involved in this process.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eradius: coordinates within this parameter of selected coordinates are removed from the candidates list\u003c/li\u003e\n\u003cli\u003ethreshold: specifies the score quantile below which extraction stops\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe radius parameter can be tuned automatically given a set of known particle coordinates by finding the radius which maximizes the average precision score. In this case, predicted coordinates must be assigned to target coordinates which requires an additional distance threshold (--assignment-radius).\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-choosing-a-final-particle-list-threshold-topaz-precision_recall_curve\" class=\"anchor\" aria-hidden=\"true\" href=\"#choosing-a-final-particle-list-threshold-topaz-precision_recall_curve\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eChoosing a final particle list threshold (topaz precision_recall_curve)\u003c/h4\u003e\n\u003cp\u003eParticles extracted using Topaz still have scores associated with them and a final particle list should be determined by choosing particles above some score threshold. The \u003ccode\u003etopaz precision_recall_curve\u003c/code\u003e command can facilitate this by reporting the precision-recall curve for a list of predicted particle coordinates and a list of known target coordinates. A threshold can then be chosen to optimize the F1 score or for specific recall/precision levels on a heldout set of micrographs.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eusage: topaz precision_recall_curve [-h] [--predicted PREDICTED]\n [--targets TARGETS] -r ASSIGNMENT_RADIUS\n\noptional arguments:\n -h, --help show this help message and exit\n --predicted PREDICTED\n path to file containing predicted particle coordinates\n with scores\n --targets TARGETS path to file specifying target particle coordinates\n -r ASSIGNMENT_RADIUS, --assignment-radius ASSIGNMENT_RADIUS\n maximum distance between prediction and labeled target\n allowed for considering them a match\n\u003c/code\u003e\u003c/pre\u003e\n\n\u003cp\u003e\u003cstrong\u003e\u003c/strong\u003e\u003c/p\u003e\u003cdetails\u003e\u003csummary\u003e\u003cstrong\u003eClick here for a description of the model architectures, training methods, and training radius\u003c/strong\u003e\u003c/summary\u003e\u003cp\u003e\u003c/p\u003e\u003c/details\u003e\u003cp\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-model-architectures\" class=\"anchor\" aria-hidden=\"true\" href=\"#model-architectures\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eModel architectures\u003c/h4\u003e\n\u003cp\u003eCurrently, there are several model architectures available for use as the region classifier\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eresnet8 [receptive field = 71]\u003c/li\u003e\n\u003cli\u003econv127 [receptive field = 127]\u003c/li\u003e\n\u003cli\u003econv63 [receptive field = 63]\u003c/li\u003e\n\u003cli\u003econv31 [receptive field = 31]\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eResNet8 gives a good balance of performance and receptive field size. Conv63 and Conv31 can be better choices when less complex models are needed.\u003c/p\u003e\n\u003cp\u003eThe number of units in the base layer can be set with the --units flag. ResNet8 always doubles the number of units when the image is strided during processing. Conv31, Conv63, and Conv127 do not by default, but the --unit-scaling flag can be used to set a multiplicative factor on the number of units when striding occurs.\u003c/p\u003e\n\u003cp\u003eThe pooling scheme can be changed for the conv* models. The default is not to perform any pooling, but max pooling and average pooling can be used by specifying \"--pooling=max\" or \"--pooling=avg\".\u003c/p\u003e\n\u003cp\u003eFor a detailed layout of the architectures, use the --describe flag.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-training-methods\" class=\"anchor\" aria-hidden=\"true\" href=\"#training-methods\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTraining methods\u003c/h4\u003e\n\u003cp\u003eThe PN method option treats every coordinate not labeled as positive (y=1) as negative (y=0) and then optimizes the standard classification objective:\n$$ \\piE_{y=1}[L(g(x),1)] + (1-\\pi)E_{y=0}[L(g(x),0)] $$\nwhere $\\pi$ is a parameter weighting the positives and negatives, $L$ is the misclassifiaction cost function, and $g(x)$ is the model output.\u003c/p\u003e\n\u003cp\u003eThe GE-binomial method option instead treats coordinates not labeled as positive (y=1) as unlabeled (y=?) and then optimizes an objective including a generalized expectation criteria designed to work well with minibatch SGD.\u003c/p\u003e\n\u003cp\u003eThe GE-KL method option instead treats coordinates not labeled as positive (y=1) as unlabeled (y=?) and then optimizes the objective:\n$$ E_{y=1}[L(g(x),1)] + \\lambdaKL(\\pi, E_{y=?}[g(x)]) $$\nwhere $\\lambda$ is a slack parameter (--slack flag) that specifies how strongly to weight the KL divergence of the expecation of the classifier over the unlabeled data from $\\pi$.\u003c/p\u003e\n\u003cp\u003eThe PU method uses the objective function proposed by Kiryo et al. (2017)\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-radius\" class=\"anchor\" aria-hidden=\"true\" href=\"#radius\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRadius\u003c/h4\u003e\n\u003cp\u003eThis sets how many pixels around each particle coordinate are treated as positive, acting as a form of data augmentation. These coordinates follow a distribution that results from which pixel was selected as the particle center when the data was labeled. The radius should be chosen to be large enough that it covers a reasonable region of pixels likely to have been selected but not so large that pixels outside of the particles are labeled as positives.\u003c/p\u003e\n\n\u003cp\u003eA user guide is also built into the \u003ca href=\"https://emgweb.nysbc.org/topaz.html\" rel=\"nofollow\"\u003eTopaz GUI\u003c/a\u003e.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-integration\" class=\"anchor\" aria-hidden=\"true\" href=\"#integration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntegration\u003c/h1\u003e\n\u003cp\u003eTopaz also integrates with RELION, CryoSPARC, Scipion, and Appion. You can find information and tutorials here:\u003c/p\u003e\n\u003cp\u003eRELION: \u003ca href=\"https://github.com/tbepler/topaz/tree/master/relion_run_topaz\"\u003ehttps://github.com/tbepler/topaz/tree/master/relion_run_topaz\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eCryoSPARC: \u003ca href=\"https://guide.cryosparc.com/processing-data/all-job-types-in-cryosparc/deep-picking/deep-picking\" rel=\"nofollow\"\u003ehttps://guide.cryosparc.com/processing-data/all-job-types-in-cryosparc/deep-picking/deep-picking\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eScipion: \u003ca href=\"https://github.com/scipion-em/scipion-em-topaz\"\u003ehttps://github.com/scipion-em/scipion-em-topaz\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-references\" class=\"anchor\" aria-hidden=\"true\" href=\"#references\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences\u003c/h1\u003e\n\u003ch3\u003e\u003ca id=\"user-content-topaz-1\" class=\"anchor\" aria-hidden=\"true\" href=\"#topaz-1\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTopaz\u003c/h3\u003e\n\u003cp\u003eBepler, T., Morin, A., Rapp, M., Brasch, J., Shapiro, L., Noble, A.J., Berger, B. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat Methods 16, 1153\u20131160 (2019). \u003ca href=\"https://doi.org/10.1038/s41592-019-0575-8\" rel=\"nofollow\"\u003ehttps://doi.org/10.1038/s41592-019-0575-8\u003c/a\u003e\u003c/p\u003e\n\u003cdetails\u003e\u003csummary\u003eBibtex\u003c/summary\u003e\u003cp\u003e\n\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@Article{Bepler2019,\nauthor={Bepler, Tristan\nand Morin, Andrew\nand Rapp, Micah\nand Brasch, Julia\nand Shapiro, Lawrence\nand Noble, Alex J.\nand Berger, Bonnie},\ntitle={Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs},\njournal={Nature Methods},\nyear={2019},\nissn={1548-7105},\ndoi={10.1038/s41592-019-0575-8},\nurl={https://doi.org/10.1038/s41592-019-0575-8}\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/details\u003e\n\u003ch3\u003e\u003ca id=\"user-content-topaz-denoise\" class=\"anchor\" aria-hidden=\"true\" href=\"#topaz-denoise\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTopaz-Denoise\u003c/h3\u003e\n\u003cp\u003eBepler, T., Kelley, K., Noble, A.J., Berger, B. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat Commun 11, 5208 (2020). \u003ca href=\"https://doi.org/10.1038/s41467-020-18952-1\" rel=\"nofollow\"\u003ehttps://doi.org/10.1038/s41467-020-18952-1\u003c/a\u003e\u003c/p\u003e\n\u003cdetails\u003e\u003csummary\u003eBibtex\u003c/summary\u003e\u003cp\u003e\n\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@Article{Bepler2020_topazdenoise,\nauthor={Bepler, Tristan\nand Kelley, Kotaro\nand Noble, Alex J.\nand Berger, Bonnie},\ntitle={Topaz-Denoise: general deep denoising models for cryoEM and cryoET},\njournal={Nature Communications},\nyear={2020},\nissn={2041-1723},\ndoi={10.1038/s41467-020-18952-1},\nurl={https://doi.org/10.1038/s41467-020-18952-1}\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/details\u003e\n\u003ch1\u003e\u003ca id=\"user-content-authors\" class=\"anchor\" aria-hidden=\"true\" href=\"#authors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors\u003c/h1\u003e\n\u003cdetails\u003e\u003csummary\u003eTristan Bepler\u003c/summary\u003e\u003cp\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/tbepler.png\"\u003e\u003cimg src=\"images/tbepler.png\" width=\"120\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\u003c/details\u003e\n\u003cdetails\u003e\u003csummary\u003eAlex J. Noble\u003c/summary\u003e\u003cp\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/anoble.png\"\u003e\u003cimg src=\"images/anoble.png\" width=\"120\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\u003c/details\u003e\n\u003ch1\u003e\u003ca id=\"user-content-topaz-workshop\" class=\"anchor\" aria-hidden=\"true\" href=\"#topaz-workshop\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTopaz Workshop\u003c/h1\u003e\n\u003cp\u003eTo request a Topaz Workshop for academic or non-academic purposes, send a request to:\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u0026lt;alexjnoble [at] gmail [dot] com\u0026gt;\u003c/em\u003e \u0026amp; \u003cem\u003e\u0026lt;tbepler [at] gmail [dot] com\u0026gt;\u003c/em\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h1\u003e\n\u003cp\u003eTopaz is open source software released under the \u003ca href=\"https://github.com/tbepler/topaz/blob/master/LICENSE\"\u003eGNU General Public License, Version 3\u003c/a\u003e.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-bugs--suggestions\" class=\"anchor\" aria-hidden=\"true\" href=\"#bugs--suggestions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBugs \u0026amp; Suggestions\u003c/h1\u003e\n\u003cp\u003ePlease report bugs and make specific feature requests and suggestions for improvements as a \u003ca href=\"https://github.com/tbepler/topaz/issues\"\u003eGithub issue\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eFor general help, questions, suggestions, tips, and installation/setup assistance, please take a look at our new \u003ca href=\"https://github.com/tbepler/topaz/discussions\"\u003eDiscussion\u003c/a\u003e section.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1640253212.0
+ "updated_at": 1611916919.0
},
{
"data_format": 2,
- "description": "Custom implementation of neurodocker (https://github.com/ReproNim/neurodocker)",
+ "description": "image_preprocess",
"filenames": [
"Singularity"
],
- "full_name": "achennings/neurodocker",
+ "full_name": "lsx1980/image_preprocess",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-neurodocker\" class=\"anchor\" href=\"#neurodocker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eneurodocker\u003c/h1\u003e\n\u003cp\u003eCustom implementation of neurodocker (\u003ca href=\"https://github.com/ReproNim/neurodocker\"\u003ehttps://github.com/ReproNim/neurodocker\u003c/a\u003e)\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\"\"\"\nVersion: 1.5\u003c/p\u003e\n\u003cp\u003eSummary: image pre-processingfor 3D model reconstruction\u003c/p\u003e\n\u003cp\u003eAuthor: suxing liu\u003c/p\u003e\n\u003cp\u003eAuthor-email: \u003ca href=\"mailto:suxingliu@gmail.com\"\u003esuxingliu@gmail.com\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eUSAGE:\u003c/p\u003e\n\u003cp\u003epython pipeline.py -p /path_to_image_folder/ -ft jpg\u003c/p\u003e\n\u003cp\u003eparameter list:\u003c/p\u003e\n\u003cp\u003eargument:\n(\"-p\", \"--path\", required = True, help = \"path to image file\")\n(\"-ft\", \"--filetype\", required = True, help = \"Image filetype\")\u003c/p\u003e\n\u003cp\u003esingularity build --writable image_preprocess.img Singularity\nsingularity exec image_preprocess.img python /opt/code/pipeline.py -p /path_to_image_folder/ -ft jpg\n\"\"\"\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1645031040.0
+ "updated_at": 1561479834.0
},
{
"data_format": 2,
- "description": "The jp command is a command line interface to JMESPath, an expression language for manipulating JSON.",
+ "description": null,
"filenames": [
- "0.2.1/Singularity"
+ "Singularity.nanocomp",
+ "Singularity.parallel",
+ "Singularity.pomoxis",
+ "Singularity.OligoMiner",
+ "Singularity.bedops",
+ "Singularity.AP_master",
+ "Singularity.salmon",
+ "Singularity.freebayes",
+ "Singularity.seqkit",
+ "Singularity.yacrd",
+ "Singularity.PEPPER",
+ "Singularity.HELEN",
+ "Singularity.medaka",
+ "Singularity.R",
+ "Singularity.busco",
+ "Singularity.slamdunk",
+ "Singularity.marvel",
+ "Singularity.medakaGPU",
+ "Singularity.mashmap",
+ "Singularity.TailfindR",
+ "Singularity.mosdepth",
+ "Singularity.cutadapt",
+ "Singularity.pycoQC",
+ "Singularity.bowtie",
+ "Singularity.hiC-pro",
+ "Singularity.ngmlr.txt",
+ "Singularity.deep-variant",
+ "Singularity.bedtools",
+ "Singularity.Repeatmasker",
+ "Singularity.filtlong",
+ "Singularity.samtools",
+ "Singularity.sratoolkit",
+ "Singularity.homer-tools",
+ "Singularity.purge_dups",
+ "Singularity.STAR",
+ "Singularity.mummer",
+ "Singularity.guppy",
+ "Singularity.nanopolish",
+ "Singularity.kentUtils",
+ "Singularity.quast",
+ "Singularity.albacore"
],
- "full_name": "pscedu/singularity-jp",
- "latest_release": "v0.2.1",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-jp/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-jp/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-jp/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-jp/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/05b134868e56bf8c8fa7dc13f4470cf13cad0b7161546e09c789aafe22deec6e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6a70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/05b134868e56bf8c8fa7dc13f4470cf13cad0b7161546e09c789aafe22deec6e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6a70\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-jp\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/92fedab816aca4c765ddc450267fdad82b3f6c32c306fde8ca397c0a1aedec59/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6a70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/92fedab816aca4c765ddc450267fdad82b3f6c32c306fde8ca397c0a1aedec59/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6a70\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-jp\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/434a811330df95d0d19571e1ec67b47ba8e8e026d81c1f24c5f0eb3fae746f35/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6a70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/434a811330df95d0d19571e1ec67b47ba8e8e026d81c1f24c5f0eb3fae746f35/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6a70\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-jp\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/9e077544905c5c3ee2d0d7b1f83444e58ecffcb7d201f604c5eb3e114c1e18b3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6a70\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9e077544905c5c3ee2d0d7b1f83444e58ecffcb7d201f604c5eb3e114c1e18b3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6a70\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-jp\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-jp\" class=\"anchor\" href=\"#singularity-jp\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-jp\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://jmespath.org/\" rel=\"nofollow\"\u003ejp\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ejp\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/jp/0.2.1\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/jp\u003c/code\u003e as \u003ccode\u003e0.2.1.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "dominik-handler/AP_singu",
+ "latest_release": null,
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1644903522.0
+ "topics": [],
+ "updated_at": 1612162065.0
},
{
"data_format": 2,
- "description": "jq is a lightweight and flexible command-line JSON processor.",
+ "description": "Jupyter Miniconda Python 3 and Singularity Container",
"filenames": [
- "1.6/Singularity"
+ "Singularity.jupyter3",
+ "Singularity.rstudio",
+ "Singularity.rbase",
+ "Singularity.ecmwf.odb",
+ "Singularity.jupyter23",
+ "Singularity.jupyter2rttov",
+ "Singularity.centos8",
+ "Singularity.stuff",
+ "Singularity.jupyter3ec",
+ "Singularity.centos",
+ "Singularity.centos.apps",
+ "Singularity.jedi",
+ "Singularity.gitlab",
+ "Singularity.jupyter3rttov",
+ "Singularity.lehre",
+ "Singularity.intelpy",
+ "Singularity.jupyter2"
],
- "full_name": "pscedu/singularity-jq",
- "latest_release": "v1.6",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-jq/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-jq/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-jq/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-jq/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7ba2d90cdf83d5e2c1ff43f36457bd7662a4c884cfaba4962f33517ebbcc87c1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6a71\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7ba2d90cdf83d5e2c1ff43f36457bd7662a4c884cfaba4962f33517ebbcc87c1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6a71\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-jq\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f57604a88aedfdf5b00774448eb1e1458a22026714624a4ed775fe8f7948d252/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6a71\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f57604a88aedfdf5b00774448eb1e1458a22026714624a4ed775fe8f7948d252/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6a71\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-jq\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/8f97344032bc1f53bcc9a24cb971084b86a8b67ee2c9e9cae802a9dd84cf569c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6a71\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8f97344032bc1f53bcc9a24cb971084b86a8b67ee2c9e9cae802a9dd84cf569c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6a71\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-jq\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0e1fe273a8da2bb31a820d69ebb9fce673aaed18c07e2b45b4ad319d38a46954/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6a71\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0e1fe273a8da2bb31a820d69ebb9fce673aaed18c07e2b45b4ad319d38a46954/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6a71\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-jq\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-jq\" class=\"anchor\" href=\"#singularity-jq\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-jq\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/2a6480b8877ea9a4e8d36292d5b1a2a918d31be6029767a0dc047dbe8c48d977/68747470733a2f2f737465646f6c616e2e6769746875622e696f2f6a712f6a712e706e67\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2a6480b8877ea9a4e8d36292d5b1a2a918d31be6029767a0dc047dbe8c48d977/68747470733a2f2f737465646f6c616e2e6769746875622e696f2f6a712f6a712e706e67\" width=\"50%\" data-canonical-src=\"https://stedolan.github.io/jq/jq.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://stedolan.github.io/jq/\" rel=\"nofollow\"\u003ejq\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ejq\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/jq/1.6\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/jq\u003c/code\u003e as \u003ccode\u003e1.6.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "MBlaschek/singularity-jupyter",
+ "latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3843\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-jupyter-and-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#jupyter-and-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eJupyter and Singularity\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eUpdated: 25.11.2019, new singularity version 3.5\u003c/strong\u003e\n\u003cstrong\u003eContainers are on singularity-hub now: \u003ca href=\"https://singularity-hub.org/collections/3843\" rel=\"nofollow\"\u003eMyCollections\u003c/a\u003e\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eJupyter Miniconda Python 3 and Singularity Container\u003c/p\u003e\n\u003cp\u003eThis is an update from \u003ca href=\"https://github.com/singularityhub/jupyter\"\u003e\u003c/a\u003e the offical jupyter singularity container that requires root permissions to run:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[NEW] Only need root permissions to create the container\u003c/li\u003e\n\u003cli\u003e[NEW] Miniconda (smaller in size)\u003c/li\u003e\n\u003cli\u003e[NEW] runscript gives informaiton\u003c/li\u003e\n\u003cli\u003e[NEW] Using CentOS 6.10 not Ubuntu anymore\u003c/li\u003e\n\u003cli\u003e[NEW] GLIBC 2.12 compatibility to CentOS 6.10 (Final)\u003c/li\u003e\n\u003cli\u003e[NEW] Build NCAR WRF containers with singularity \u003ca href=\"https://github.com/NCAR/container-wrf\"\u003eNCAR WRF containers\u003c/a\u003e\nIf you haven\u0027t installed singularity, do that with \u003ca href=\"http://singularity.lbl.gov/install-linux\" rel=\"nofollow\"\u003ethese instructions\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eDownlaod Receipie files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity.centos (Base only Centos)\u003c/li\u003e\n\u003cli\u003eSingularity.jupyter23 (Miniconda, Jupyter Python2 \u0026amp; Python 3)\u003c/li\u003e\n\u003cli\u003eSingularity.jupyter3 (Miniconda, Jupyter Python 3)\u003c/li\u003e\n\u003cli\u003eSingularity.jupyter3x (Miniconda, Jupyter Python 3, \u003ca href=\"https://confluence.ecmwf.int/display/ECC\" rel=\"nofollow\"\u003eEccodes\u003c/a\u003e, cfgrib from ECMWF)\u003c/li\u003e\n\u003cli\u003eSingualrity.jupyter3ec (Miniconda, Jupyter Python 3, Eccodes library manual build, \u003cstrong\u003edeprecated\u003c/strong\u003e)\u003c/li\u003e\n\u003cli\u003eSingualrity.jupyter3rttov (Miniconda, Jupyter Python 3, \u003ca href=\"https://www.nwpsaf.eu/site/software/rttov/\" rel=\"nofollow\"\u003eRTTOV\u003c/a\u003e from EUMETSAT (not included due to license))\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eClone the Repository and manually build containers:\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003e git clone https://github.com/MBlaschek/singularity-jupyter jupyter\n cd jupyter \n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eRetrieve Containers from singularity hub:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003e singularity pull shub://MBlaschek/singularity-jupyter:[TAG]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTags are the names above (centos, jupyter23, jupyter3, ...):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e singularity pull shub://MBlaschek/singularity-jupyter:centos\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-create\" class=\"anchor\" aria-hidden=\"true\" href=\"#create\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCREATE\u003c/h2\u003e\n\u003cp\u003eFirst create the CentOS container that is used by all the others.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e sudo singularity build centos610.sif Singularity.centos\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLet\u0027s now create the notebook container:\nIf you build locally, then just edit the Recipie to use the local image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Local centos 6.10 image\nBootstrap: localimage\nFrom: centos610.sif\n# Bootstrap: shub\n# From: MBlaschek/singularity-jupyter:centos\n# most recent and debian image\n# BootStrap: docker\n# From: continuumio/miniconda3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eJupyter Python 3 Notebook Container: \u003ccode\u003eSingularity.jupyter3\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eJupyter Python 2 \u0026amp; 3 Notebook Container: \u003ccode\u003eSingularity.jupyter23\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eJupyter Python 2 \u0026amp; 3 Notebook + Eccodes Library: \u003ccode\u003eSingularity.jupyter3x\u003c/code\u003e (depends on the image from \u003ccode\u003ejupyter3.sif \u003c/code\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou can choose now if you prefer a writeable container (for development, installation of additional packages, ...) or a deployment container (read_only, default) \u003ca href=\"http://singularity.lbl.gov/docs-build-container\" rel=\"nofollow\"\u003eread more\u003c/a\u003e:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e sudo singularity build --writeable jupyter3.sif Singularity.jupyter3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor for deployment:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e sudo singularity build jupyter3.sif Singularity.jupyter3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe Notebook server Recipies include a line at the end that is quite important for jupyter to run properly:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e export JUPYTER_RUNTIME_DIR=$PWD/.runtime\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis line tells jupyter to use a specific directory for its runtime. Otherwise it would try to use the default \u003ccode\u003eXDG_RUNTIME_DIR\u003c/code\u003e, which is by default set to \u003ccode\u003e/run/user/...\u003c/code\u003e and not accessable via the container.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRUN\u003c/h2\u003e\n\u003cp\u003eThen to run the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run jupyter3.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003egives Information on the container and it\u0027s apps (notebook)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity Container\n Container Centos 6.10 (docker)\n Glibc: 2.12-1.212.el6.x86_64\n Installed: wget, git, curl, bzip2 ca-certificates\n\n SCIF (Apps): notebook\n Container.Glibc : 2.12-1.212.el6.x86_64\n Container.OS : CentOS 6.10\n Definition.Author : M. Blaschek\n Definition.Author.Email : michael.blaschek@univie.ac.at\n Definition.File.Date : 5.11.2019\n Definition.File.Version : 1.0\n org.label-schema.build-date : Thursday_28_November_2019_8:49:15_UTC\n org.label-schema.schema-version : 1.0\n org.label-schema.usage : /.singularity.d/runscript.help\n org.label-schema.usage.singularity.deffile.bootstrap : shub\n org.label-schema.usage.singularity.deffile.from : MBlaschek/singularity-jupyter:centos\n org.label-schema.usage.singularity.runscript.help : /.singularity.d/runscript.help\n org.label-schema.usage.singularity.version : 3.4.2\n Bye Bye\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003elaunch the notebook:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity run jupyter3.sif notebook\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003elaunch the console:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity run jupyter3.sif ipython\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor as a singularity instances (background server):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity instance start jupyter3.sif Jupy3\nsingularity run instance://Jupy3 notebook\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor as an instance with remote access (default is just localhost):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run instance://Jupy3 notebook --ip=$(hostname) \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAnyway you should see output like this:\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"jupyter.png\"\u003e\u003cimg src=\"jupyter.png\" alt=\"jupyter.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe current directory is where your server starts. In your browser you should be able to navigate to the link from the console:\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"jupyterweb.png\"\u003e\u003cimg src=\"jupyterweb.png\" alt=\"jupyterweb.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThere is a \u003ccode\u003e.jupyter3.log\u003c/code\u003e file that shows this output.\u003c/p\u003e\n\u003cp\u003eThe password is \u003cstrong\u003esuper-secret\u003c/strong\u003e. You can change that easily within the Singularity file.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-ipykernel-and-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#ipykernel-and-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIPYKernel and Containers\u003c/h2\u003e\n\u003cp\u003eIn order to use your container with an existing notebook server you need to register your container kernel with that server.\nOther people have done this:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/clemsonciti/singularity-in-jupyter-notebook\"\u003eTensorflow\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://gist.github.com/mattpitkin/35ac19214048e96c391e948d7ec34ca5\"\u003eKernel\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eTo register your container, in the \u003ccode\u003e${HOME}/.local/share/jupyter/kernels\u003c/code\u003e create a new directory, e.g. myimage, and add a \u003ccode\u003ekernel.json\u003c/code\u003e file containing:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e{\n \"language\": \"python\",\n \"argv\": [\"/usr/bin/singularity\",\n \"exec\",\n \"/dir/to/your/image/jupyter3.sif\",\n \"/opt/conda/bin/python\",\n \"-m\",\n \"ipykernel\",\n \"-f\",\n \"{connection_file}\"\n ],\n \"display_name\": \"Python 3 (Singularity)\"\n}\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eChange the path to your image and singularity executable. Then start a jupyter notebook with\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e jupyter notebook \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand there should be a usable Python 3 (Singularity) kernel option! Check your Jupyter paths, like this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e jupyter --paths\n \n config:\n /home/user/.jupyter\n /opt/anaconda2/etc/jupyter\n /usr/local/etc/jupyter\n /etc/jupyter\n data:\n /home/user/.local/share/jupyter\n /opt/anaconda2/share/jupyter\n /usr/local/share/jupyter\n /usr/share/jupyter\n runtime:\n /run/user/1000/jupyter\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eand make sure the runtime directory is accessable from inside the container. In this example it isn\u0027t. There I need to change this to something like this, before I run the server again:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e export JUPYTER_RUNTIME_DIR=$HOME/.local/share/jupyter/runtime\n jupyter notebook \u0026amp;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThat should solve the issue and make your contained jupyter environment accessable via your notebook server. :)\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-runtime-dir\" class=\"anchor\" aria-hidden=\"true\" href=\"#runtime-dir\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRUNTIME DIR\u003c/h4\u003e\n\u003cp\u003eI came across a few problems, which related to the \u003ccode\u003eRUNTIME_DIR\u003c/code\u003e and is quite import to run your server without root permissions.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e XDG_RUNTIME_DIR=/run/user/1000 # Default in Ubuntu/Linux (inside the container)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThat is not a good path. Therefore we change it to a defined path inside the container (already in the singularity file).\nThe following shows a way around, not necessary if you use the above recipe.\u003c/p\u003e\n\u003cp\u003eThis directory \u003ccode\u003e/run/user/..\u003c/code\u003e is not accessable by default from inside the container.\nTo register your container, in the \u003ccode\u003e${HOME}/.local/share/jupyter/kernels\u003c/code\u003e create a new directory, e.g. myimage, and add a \u003ccode\u003ekernel.json\u003c/code\u003e file containing:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e{\n \"language\": \"python\",\n \"argv\": [\"/usr/bin/singularity\",\n \"exec\",\n \"-B\",\n \"/run/user:/run/user\",\n \"/dir/to/your/image/jupyter.img\",\n \"/opt/conda/bin/python\",\n \"-m\",\n \"ipykernel\",\n \"-f\",\n \"{connection_file}\"\n ],\n \"display_name\": \"Python 3 (Singularity)\"\n}\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere adding the \u003ccode\u003e-B /run/user:/run/user\u003c/code\u003e option is important, which allows the container to have access.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-r-studio-server\" class=\"anchor\" aria-hidden=\"true\" href=\"#r-studio-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR-Studio Server\u003c/h1\u003e\n\u003cp\u003eThis is a lightly modified version of what \u003ca href=\"https://github.com/nickjer/singularity-rstudio\"\u003enickjer\u003c/a\u003e has done. The Modifications allow to run the R-Studio server as an instance.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity instance start rserver.sif RStudio\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUsually the R-Studio server runs on port 9090.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-syntax-highlighting\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-syntax-highlighting\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Syntax Highlighting\u003c/h1\u003e\n\u003cp\u003eThere is a nice repo \u003ca href=\"https://github.com/singularityhub/singularity.lang\"\u003esingularity.lang\u003c/a\u003e, where this can be added for Gedit, Nano and Vim. For Atom there is a highlighting as well. Works well.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1644901477.0
+ "topics": [],
+ "updated_at": 1662971530.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "docker/Singularity.snowflake"
+ "Singularity"
],
- "full_name": "nuKs/bids-preproc",
+ "full_name": "robomorelli/singularity_test",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_test\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity_test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_test\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1644864844.0
+ "updated_at": 1610876939.0
},
{
"data_format": 2,
- "description": "RAxML - Randomized Axelerated Maximum Likelihood.",
+ "description": null,
"filenames": [
- "8.2.9/Singularity"
+ "Singularity"
],
- "full_name": "pscedu/singularity-raxml",
- "latest_release": "v8.2.9",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-raxml/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-raxml/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-raxml/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-raxml/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/277233f105b68116448cd7db2faac6b9dedc5603317bc3be2789550b8554d1e2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7261786d6c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/277233f105b68116448cd7db2faac6b9dedc5603317bc3be2789550b8554d1e2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7261786d6c\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-raxml\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/60d3d420d133df2ca3e6346fa5baca67b3a2100e92322bef33b335d23d867cb8/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7261786d6c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/60d3d420d133df2ca3e6346fa5baca67b3a2100e92322bef33b335d23d867cb8/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7261786d6c\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-raxml\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/304eaca0dbef42b860c7c8d5b95de8e8e1672a13e0e5568946afa88d4f631d52/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7261786d6c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/304eaca0dbef42b860c7c8d5b95de8e8e1672a13e0e5568946afa88d4f631d52/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7261786d6c\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-raxml\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ee982fcac05c22d0d030c924d411c219e655450543d9c54220f0f105c072ede2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7261786d6c\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ee982fcac05c22d0d030c924d411c219e655450543d9c54220f0f105c072ede2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7261786d6c\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-raxml\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-raxml\" class=\"anchor\" href=\"#singularity-raxml\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-raxml\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://cme.h-its.org/exelixis/web/software/raxml\" rel=\"nofollow\"\u003eraxml\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eraxml\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/raxml/8.2.9\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/raxml\u003c/code\u003e as \u003ccode\u003e8.2.9.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "dylanturpin/shub_test",
+ "latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1644856111.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1574885235.0
},
{
"data_format": 2,
- "description": "My collection of singularity containers recipes",
+ "description": null,
"filenames": [
- "busco/Singularity.busco",
- "Biocontainer/Singularity.Biocontainers",
- "DIRT/Singularity.DIRT",
- "genome-annotation/Singularity.genome-annotation"
+ "dockerfiles/Singularity-dota.simg",
+ "dockerfiles/Singularity-dotaservice.simg"
],
- "full_name": "raj76/singularity",
+ "full_name": "bglick13/dotaservice",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity\" class=\"anchor\" href=\"#singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity\u003c/h1\u003e\n\u003cp\u003eMy collection of singularity containers recipes\n\u003ca href=\"https://singularity-hub.org/collections/611\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-dotaservice\" class=\"anchor\" aria-hidden=\"true\" href=\"#dotaservice\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDotaService\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"dotaservice-icon.png\"\u003e\u003cimg src=\"dotaservice-icon.png\" alt=\"dotaservice icon\" width=\"128\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003chr\u003e\n\u003cp\u003eNOTE: The project that uses the dotaservice in a k8s environment is the \u003ca href=\"https://github.com/TimZaman/dotaclient\"\u003eDotaClient\u003c/a\u003e repo.\u003c/p\u003e\n\u003cp\u003eDotaService is a service to play Dota 2 through gRPC. There are first class python bindings\nand examples, so you can play dota as you would use the OpenAI gym API.\u003c/p\u003e\n\u003cp\u003eIt\u0027s fully functional and super lightweight. Starting Dota \u003ccode\u003eobs = env.reset()\u003c/code\u003e takes 5 seconds,\nand each \u003ccode\u003eobs = env.step(action)\u003c/code\u003e in the environment takes between 10 and 30 ms.\u003c/p\u003e\n\u003cp\u003eYou can even set the config of \u003ccode\u003erender=True\u003c/code\u003e and you can watch the game play live. Each game will\nhave a uuid and folder associated where there\u0027s a Dota demo (replay) and console logs.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"demo.gif\"\u003e\u003cimg src=\"demo.gif\" alt=\"demo\" width=\"600\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-dotaservice-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-dotaservice-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun DotaService Locally\u003c/h2\u003e\n\u003cp\u003eRun the DotaService so you can connect your client to it later. Only one client per server\nis supported, and only one DotaService per VM (eg local or one per docker container).\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 -m dotaservice\n\u0026gt;\u0026gt;\u0026gt; Serving on 127.0.0.1:13337\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-dotaservice-distributed\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-dotaservice-distributed\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun DotaService Distributed\u003c/h2\u003e\n\u003cp\u003eSee \u003ca href=\"docker/README.md\"\u003edocker/README.md\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eTo run two dockerservice instances, one on port \u003ccode\u003e13337\u003c/code\u003e and one on \u003ccode\u003e13338\u003c/code\u003e, f.e. run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run -dp 13337:13337 ds\ndocker run -dp 13338:13337 ds\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou can run as many as you want, until you run out of ports or ip addresses. If you are wearing\nyour fancy pants, use Kubernetes to deploy gazillions.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-client-code\" class=\"anchor\" aria-hidden=\"true\" href=\"#client-code\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eClient Code\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003egrpclib\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003eclient\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eChannel\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eprotobuf\u003c/span\u003e.\u003cspan class=\"pl-v\"\u003eDotaService_grpc\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eDotaServiceStub\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eprotobuf\u003c/span\u003e.\u003cspan class=\"pl-v\"\u003eDotaService_pb2\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAction\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eprotobuf\u003c/span\u003e.\u003cspan class=\"pl-v\"\u003eDotaService_pb2\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eConfig\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e# Connect to the DotaService.\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eenv\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eDotaServiceStub\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eChannel\u003c/span\u003e(\u003cspan class=\"pl-s\"\u003e\u0027127.0.0.1\u0027\u003c/span\u003e, \u003cspan class=\"pl-c1\"\u003e13337\u003c/span\u003e))\n\n\u003cspan class=\"pl-c\"\u003e# Get the initial observation.\u003c/span\u003e\n\u003cspan class=\"pl-s1\"\u003eobservation\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eawait\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eenv\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003ereset\u003c/span\u003e(\u003cspan class=\"pl-v\"\u003eConfig\u003c/span\u003e())\n\u003cspan class=\"pl-k\"\u003efor\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003ei\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ein\u003c/span\u003e \u003cspan class=\"pl-en\"\u003erange\u003c/span\u003e(\u003cspan class=\"pl-c1\"\u003e8\u003c/span\u003e):\n \u003cspan class=\"pl-c\"\u003e# Sample an action from the action protobuf\u003c/span\u003e\n \u003cspan class=\"pl-s1\"\u003eaction\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-v\"\u003eAction\u003c/span\u003e.\u003cspan class=\"pl-v\"\u003eMoveToLocation\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ex\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e.., \u003cspan class=\"pl-s1\"\u003ey\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e.., \u003cspan class=\"pl-s1\"\u003ez\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e..)\n \u003cspan class=\"pl-c\"\u003e# Take an action, returning the resulting observation.\u003c/span\u003e\n \u003cspan class=\"pl-s1\"\u003eobservation\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eawait\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003eenv\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003estep\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003eaction\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis is very useful to provide an environment for reinforcement learning, and service aspect of it makes it\nespecially useful for distributed training. I am planning to provide a client python\nmodule for this (\u003ccode\u003ePyDota\u003c/code\u003e) that mimics typical OpenAI gym APIs. Maybe I won\u0027t even make PyDota\nand the gRPC client is enough.\u003c/p\u003e\n\u003cdiv\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"dotaservice.png\"\u003e\u003cimg src=\"dotaservice.png\" alt=\"dotaservice connections\" width=\"680\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-hidden=\"true\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003ePython 3.7\u003c/li\u003e\n\u003cli\u003eUnix: MacOS, Ubuntu. A dockerfile is also provided see: \u003ca href=\"docker/README.md\"\u003edocker/README.md\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h3\u003e\n\u003cp\u003eInstalling from pypi:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip3 install dotaservice\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFor development; installing from source:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip3 install -e \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e(Optional) Compile the protos for Python (run from repository root):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 -m grpc_tools.protoc -I. --python_out=. --python_grpc_out=. --grpc_python_out=. dotaservice/protos/\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e.proto\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\u003ca id=\"user-content-notes\" class=\"anchor\" aria-hidden=\"true\" href=\"#notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h1\u003e\n\u003cp\u003eMy dev notes: \u003ca href=\"NOTES.md\"\u003eNOTES.md\u003c/a\u003e.\u003c/p\u003e\n\u003chr\u003e\n\u003ch1\u003e\u003ca id=\"user-content-acknowledgements\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgements\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eOpenAI Dota crew\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"http://karpathy.github.io/2016/05/31/rl/\" rel=\"nofollow\"\u003eKarpathy\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003eJan Ivanecky\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Nostrademous\"\u003eNostrademous\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1518905174.0
+ "updated_at": 1585923678.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.ubuntu_base"
+ "0.0.0.9000/Singularity.0.0.0.9000"
],
- "full_name": "miquelmassot/singularity-deploy",
- "latest_release": "0.0.2",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-deploy\" class=\"anchor\" href=\"#singularity-deploy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-deploy\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/miquelmassot/singularity-deploy/actions/workflows/builder.yml\"\u003e\u003cimg src=\"https://github.com/miquelmassot/singularity-deploy/actions/workflows/builder.yml/badge.svg\" alt=\"singularity-deploy\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eBased on: \u003ca href=\"https://github.com/singularityhub/singularity-deploy\"\u003ehttps://github.com/singularityhub/singularity-deploy\u003c/a\u003e\u003c/p\u003e\n",
+ "full_name": "yh549848/singularity-raptranker",
+ "latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1644837961.0
+ "updated_at": 1602825895.0
},
{
"data_format": 2,
- "description": "RNA-seq raw reads processing pipeline through alignment",
+ "description": null,
"filenames": [
- "Singularity.hg19v1.centos"
+ "container/Singularity"
],
- "full_name": "ertheisen/cloudsrest_centos",
+ "full_name": "Genomic-Medicine-Linkoping/nextflow_rnaseqfus",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-appalachianhg19v1-container-for-early-ngs-pipeline-applications\" class=\"anchor\" href=\"#appalachianhg19v1-container-for-early-ngs-pipeline-applications\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eappalachian.hg19v1 container for early NGS pipeline applications\u003c/h1\u003e\n\u003cp\u003eHow to run pipeline:\u003c/p\u003e\n\u003cp\u003esingularity run --app [appname] --bind [directory_info] container_name.simg\u003c/p\u003e\n\u003cp\u003ePath to genome in container needs to be:\n\u0027/genomes/test/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/spike/dm6/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/spike/sacCer3/Sequence/Bowtie2Index/genome\u0027\n-or-\n\u0027/genomes/STAR/[STAR index files]\u0027\n-or-\n\u0027/genomes/anno/[gtf or gff annotation file]\u0027\u003c/p\u003e\n\u003cp\u003eFor Baker Cluster Users:\ndirectory to mount for fly spike-in is: /gpfs0/home/gdlessnicklab/share/trails/genomes/Drosophila_melanogaster/UCSC\ndirectory to mount for yeast spike-in is: /gpfs0/home/gdlessnicklab/share/trails/genomes/Saccharomyces_cerevisiae/UCSC\ndirectory to mount for hg19 is: /reference/homo_sapiens/hg19/ucsc_assembly/illumina_download/\u003c/p\u003e\n\u003cp\u003eTo run interactive terminal in container\u003c/p\u003e\n\u003cp\u003esingularity shell --bind [directory_info] appalachian_hg19.simg\u003c/p\u003e\n\u003cp\u003e##Be sure to bind your data, your genome, and any script files you may want to run\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 0,
"topics": [],
- "updated_at": 1560527292.0
+ "updated_at": 1622550367.0
},
{
"data_format": 2,
- "description": "CBL-D (quinault) singularity and docker image for CI",
+ "description": "Singularity container for Samviewer",
"filenames": [
"Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-docker-quinault-ci",
+ "full_name": "CHPC-UofU/Singularity-ubuntu-samviewer",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-cbl-d-quinault-singularity-and-docker-image-for-ci\" class=\"anchor\" href=\"#building-a-cbl-d-quinault-singularity-and-docker-image-for-ci\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a CBL-D (quinault) singularity and docker image for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eCBL-D (Common Base Linux - Delridge)\u003c/li\u003e\n\u003cli\u003eDebian 10 based (quinault)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-references\" class=\"anchor\" href=\"#references\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Azure/CloudShell\"\u003ehttps://github.com/Azure/CloudShell\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/Azure/CloudShell/blob/master/linux/base.Dockerfile\"\u003ehttps://github.com/Azure/CloudShell/blob/master/linux/base.Dockerfile\u003c/a\u003e for \u003ccode\u003eFROM sbidprod.azurecr.io/quinault\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://boxofcables.dev/building-cbl-d-microsofts-other-linux-distro/\" rel=\"nofollow\"\u003ehttps://boxofcables.dev/building-cbl-d-microsofts-other-linux-distro/\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003eLICENSE copied verbatim from \u003ca href=\"https://raw.githubusercontent.com/Azure/CloudShell/master/LICENSE\" rel=\"nofollow\"\u003ehttps://raw.githubusercontent.com/Azure/CloudShell/master/LICENSE\u003c/a\u003e as of 2022/02/13\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:main\u003c/code\u003e tagged docker image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocker \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-quinault-ci/actions/workflows/docker-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-quinault-ci/actions/workflows/docker-publish.yml/badge.svg\" alt=\"Docker build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-quinault-ci:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-quinault-ci/actions/workflows/singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-quinault-ci/actions/workflows/singularity-publish.yml/badge.svg\" alt=\"Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run oras://ghcr.io/truatpasteurdotfr/singularity-docker-quinault-ci:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1644758743.0
+ "updated_at": 1498859914.0
},
{
"data_format": 2,
- "description": "Code repository for a project focused on diagnostic prediction from whole blood slides ",
+ "description": "Age Group Prediction in TV news (Open Source)",
"filenames": [
- "pipeline_tf2/Singularity.def"
+ "Singularity.trial",
+ "Singularity.newsage"
],
- "full_name": "josegcpa/wbs-prediction",
+ "full_name": "Xiaoyu-Lu/GSoC_2020",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-a-complete-computational-assessment-of-the-cytomorphological-determinants-of-myelodyplastic-syndromes\" class=\"anchor\" href=\"#a-complete-computational-assessment-of-the-cytomorphological-determinants-of-myelodyplastic-syndromes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eA complete computational assessment of the cytomorphological determinants of myelodyplastic syndromes\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-motivation\" class=\"anchor\" href=\"#motivation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMotivation\u003c/h2\u003e\n\u003cp\u003eThis is the repository for \u003ca href=\"\"\u003ePLACEHOLDER\u003c/a\u003e. In this work, we use the whole blood slides of \u0026gt;300 individuals with myelodyplastic syndromes and anaemias and use them to develop a method that is capable of predicting a disease and retrieving examples of cells which are relevant for each classification.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-code-map\" class=\"anchor\" href=\"#code-map\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCode map\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-requirements\" class=\"anchor\" href=\"#requirements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements\u003c/h3\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-software\" class=\"anchor\" href=\"#software\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSoftware\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003epython\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003esnakemake\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eR\u003c/code\u003e (analysis and plotting)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-required-python-packages\" class=\"anchor\" href=\"#required-python-packages\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequired python packages\u003c/h4\u003e\n\u003cp\u003e\u003ccode\u003eopencv-python\u003c/code\u003e, \u003ccode\u003etensorflow==1.12\u003c/code\u003e, \u003ccode\u003escikit-image\u003c/code\u003e, \u003ccode\u003eh5py\u003c/code\u003e, \u003ccode\u003ealbumentations\u003c/code\u003e, \u003ccode\u003epsutil\u003c/code\u003e, \u003ccode\u003epytorch\u003c/code\u003e, \u003ccode\u003etifffile\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-project-enumeration\" class=\"anchor\" href=\"#project-enumeration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eProject enumeration\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ccode\u003epipeline\u003c/code\u003e - contains the pipeline for WBC and RBC detection and characterisation from WBS\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esimulations\u003c/code\u003e - contains simulations validating MILe-ViCe\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emile-vice\u003c/code\u003e - contains the code to train and run MILe-ViCe on the output from \u003ccode\u003epipeline\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003erbc-segmentation\u003c/code\u003e - contains the code to train a predictor that filters poorly predictions for detected RBC\u003c/li\u003e\n\u003cli\u003e(STILL TESTING) \u003ccode\u003evae-characterisation\u003c/code\u003e - characterisation of blood cells using a beta-variational autoencoder\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003cp\u003eGSoC 2020: Age Group Prediction in TV news\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [
- "morphometrics",
- "image-analysis",
- "bioimage-analysis",
- "deep-learning",
- "machine-learning"
- ],
- "updated_at": 1641212653.0
+ "topics": [],
+ "updated_at": 1606450294.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "singularity/student/Singularity",
- "singularity/base/Singularity"
+ "Singularity"
],
- "full_name": "UIUC-cs484/uiuccs484parallelprog",
+ "full_name": "CN-Healthborn/el7tf1.12gpu",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-containers\" class=\"anchor\" href=\"#containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainers\u003c/h1\u003e\n\u003cp\u003eContainer declarations and other tools for building the containers for CS 484.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-vmfarm-setup-via-ansible\" class=\"anchor\" href=\"#vmfarm-setup-via-ansible\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVMFarm setup via ansible\u003c/h2\u003e\n\u003cp\u003eThese Ansible scripts assume CentOS_7.\u003c/p\u003e\n\u003cp\u003eInstall Ansible on your fresh VM.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo yum install ansible\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eDepending on your setup, you may have a single VM, or you may have an administrative VM and several student VMs.\u003c/p\u003e\n\u003cp\u003eIn either case, you will need to create a file named \u003ccode\u003e/etc/ansible/hosts\u003c/code\u003e (or in older versions of Ansible, \u003ccode\u003e/etc/ansible/hosts/ansiblehosts\u003c/code\u003e) on the admin machine (or single machine).\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://docs.ansible.com/ansible/2.9/\" rel=\"nofollow\"\u003ehttps://docs.ansible.com/ansible/2.9/\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-single-vm\" class=\"anchor\" href=\"#single-vm\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingle VM\u003c/h3\u003e\n\u003cp\u003eThe host file should look like this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e[admin]\nlocalhost ansible_connection=local\n[all]\nlocalhost ansible_connection=local\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-multiple-vms-admin--individual-student-vms\" class=\"anchor\" href=\"#multiple-vms-admin--individual-student-vms\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMultiple VMs (admin + individual student VMs)\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003e[admin]\nlocalhost ansible_connection=local\n[students]\nstudenthost1.anydomain.edu\nstudenthost2.anydomain.edu\nstudenthost3.anydomain.edu\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you have difficulty connecting to the student machines, please see \u003ca href=\"https://docs.ansible.com/ansible/latest/user_guide/connection_details.html\" rel=\"nofollow\"\u003ehttps://docs.ansible.com/ansible/latest/user_guide/connection_details.html\u003c/a\u003e . You may need to setup an SSH key.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-running-ansible-scripts\" class=\"anchor\" href=\"#running-ansible-scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Ansible scripts\u003c/h3\u003e\n\u003cp\u003eSSH to the admin machine, clone this repo and run the following commands. (These take a long time, you should probably use a \u003ccode\u003escreen\u003c/code\u003e session for them.)\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eStart a bash terminal as root:\u003c/em\u003e \u003ccode\u003esudo bash\u003c/code\u003e .\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\nansible-playbook ./ansible/vmfarm/0_basepkgs.yml\nansible-playbook ./ansible/vmfarm/0a_disable_aslr.yml\nansible-playbook ./ansible/vmfarm/0b_mpi.yml\nansible-playbook ./ansible/vmfarm/cmake_installer.yml\nansible-playbook ./ansible/vmfarm/gtest.yml\nansible-playbook ./ansible/vmfarm/gbench.yml\nansible-playbook ./ansible/vmfarm/charm.yml\nansible-playbook ./ansible/vmfarm/hpctoolkitall.yml\n\nrm -rf /tmp/gtest /tmp/gbench /tmp/charm\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e /tmp/hpctoolkit\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n\nyum clean all \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e rm -rf /var/cache/yum\n\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-docker-container-building\" class=\"anchor\" href=\"#docker-container-building\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker container building\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003eYou probably don\u0027t have to do this. Be absolutely certain beforehand.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eTo begin with, you shouldn\u0027t need to do this unless you have altered the Ansible scripts that build something in the container.\u003c/p\u003e\n\u003cp\u003eIf future generations of TAs decide to use a newer version of Charm or to radically change the environment for the MPs, it may be necessary to build new docker containers. Otherwise, please find working Docker containers at \u003ca href=\"https://hub.docker.com/u/uiuccs484parallelprog\" rel=\"nofollow\"\u003ehttps://hub.docker.com/u/uiuccs484parallelprog\u003c/a\u003e assignments should be done using the \u003ccode\u003euiuccs484parallelprog/cs484_student\u003c/code\u003e container.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-building-docker-containers\" class=\"anchor\" href=\"#building-docker-containers\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding docker containers\u003c/h3\u003e\n\u003cp\u003eYou can build the docker containers by cloning this repo, then running\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ebash ./docker/build.sh\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003e\u003cem\u003eSTOP\u003c/em\u003e\nIf you have altered the Ansible or Docker scripts, you should increment the version number for the docker image. The version number is in the script \u003ccode\u003e./docker/build.sh\u003c/code\u003e .\u003c/p\u003e\n\u003cp\u003eIf you are logged in to docker hub and a member of the group \u003ccode\u003euiuccs484parallelprog\u003c/code\u003e, you can push these images to make them available to the world.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-container-building\" class=\"anchor\" href=\"#singularity-container-building\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity container building\u003c/h2\u003e\n\u003cp\u003e\u003cem\u003eHopefully you don\u0027t have to do this. If you update the docker container, then you may need to.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eTODO: Write this.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-nova-el7-tensorflow-gpu\" class=\"anchor\" aria-hidden=\"true\" href=\"#nova-el7-tensorflow-gpu\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enova-el7-tensorflow-gpu\u003c/h1\u003e\n\u003cp\u003eConfigurations for docker and singularity for making OSG-compatible CENTOS7 container with GPU-accelerated tensorflow and keras installed.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1539027275.0
+ "updated_at": 1603475388.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Test using singularityhub",
"filenames": [
- "Singularity.salad",
"Singularity",
- "Singularity.pokemon"
+ "Singularity.centostest",
+ "Singularity.basic"
],
- "full_name": "mwittep/EAGER",
- "latest_release": "v1.92.56",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-deploy\" class=\"anchor\" href=\"#singularity-deploy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Deploy\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"img/shpc.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"img/shpc.png\" alt=\"img/shpc.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWouldn\u0027t it be nice to build Singularity images without a registry proper,\nand just keep them alongside the GitHub codebase? This is now possible!\nThis small repository provides an example to get you started. It will\nbuild one or more images (whatever Singularity.* files that are present at\nthe root) and then release them as assets to your GitHub repository so\nthat they can be programatically obtained. It is associated with\n\u003ca href=\"https://github.com/singularityhub/singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e to allow\nyou to then define LMOD modules for these same containers.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eCan I upload the largest of chonkers?\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eYes and no. Note that assets are limited to 2 GB in size, which is still fairly good. You can use\nit as a template for your own recipes as is, or modify it for your custom\nuse case. Instructions are below!\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e Currently recipe extensions are associated with tags, and the GitHub release is\nassociated with a digest. We likely will change this in the next few weeks so that GitHub\nreleases are tags, and the \"digests\" are flie names. Stay tuned for updates!\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-getting-started\" class=\"anchor\" href=\"#getting-started\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1-template-or-fork\" class=\"anchor\" href=\"#1-template-or-fork\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Template or Fork\u003c/h3\u003e\n\u003cp\u003eIf you haven\u0027t already, template or fork this repository. You can then clone\nyour fork:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git clone git@github.com:\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eusername\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/singularity-deploy\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou likely want to name the repository by the container. For example, if I would\nhave created a container on Docker Hub or similar with the name \u003ccode\u003evsoch/salad\u003c/code\u003e,\nhere I\u0027d call the repository \u003ccode\u003esalad\u003c/code\u003e. You obviously are limited to your username\nor an organizational namespace.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1-write-your-singularity-recipes\" class=\"anchor\" href=\"#1-write-your-singularity-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Write your Singularity Recipe(s)\u003c/h3\u003e\n\u003cp\u003eFirst, you should write your container recipe(s) in the present working directory.\nFor good practice, when you are updating recipes you should checkout a new branch\nand open a pull request, as the repository comes with a workflow to trigger on a PR\nto \u003ca href=\".github/workflows/test.yml\"\u003etest your container build\u003c/a\u003e. Note that in the main workflow\nthat deploys the releases, the current branch is set to be \u003ccode\u003emain-branch\u003c/code\u003e. You should\nupdate this to be your main \"production\" branch that you want to deploy releases on merge.\nYou are also free to choose a different trigger and release strategy. You can add any additional\ntests that that you might need. By default, any Singularity.* file will be automatically detected.\nIf there is no extension (the name Singularity), the name used will be \"latest.\"\nYou can use these tags across multiple releases of your containers. For example,\nthese files would generate packages with sifs named as follows:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.pokemon\"\u003eSingularity.pokemon\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.salad\"\u003eSingularity.salad\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor each name, you can see the direct download URL contains the repository (singularityhub/singularity-deploy),\nYou should not use any \u003ccode\u003e:\u003c/code\u003e characters in either your container tag (the GitHub extension) or\nthe GitHub tags (the release tags) as this might interfere with parsing.\nThe GitHub release tag (0.0.1 in the example above) is discussed next.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-2-update-the-version-file\" class=\"anchor\" href=\"#2-update-the-version-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Update the VERSION file\u003c/h3\u003e\n\u003cp\u003eAny time that you prepare new container recipes, you should update the \u003ca href=\"VERSION\"\u003eVERSION\u003c/a\u003e\nfile. The way that this repository works is to generate a release based on the\nstring in \u003ccode\u003eVERSION\u003c/code\u003e. A version is just a tag, so it could be something like\n\u003ccode\u003e0.0.1\u003c/code\u003e or \u003ccode\u003e0.0.1-slim\u003c/code\u003e. Keep in mind that GitHub releases cannot have duplicated\nnames, so you should not repeat the same tag. Do not use \u003ccode\u003e:\u003c/code\u003e in your tag names.\nIf you do need to re-release a tag (not recommended if a user might be using it and then it\u0027s changed) you can manually delete\nthe release and the tag in the GitHub interface. This is a nice structure because it\nmeans you can have containers with different names under the same tag. In the example\nabove, we have each of \"pokemon,\" \"latest,\" and \"salad\" released under tag 0.0.1.\nThis is how it looks on GitHub:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"img/releases.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"img/releases.png\" alt=\"img/releases.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-3-how-to-develop\" class=\"anchor\" href=\"#3-how-to-develop\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. How to Develop\u003c/h3\u003e\n\u003cp\u003eAs we mentioned previously, the container builds will be tested on a pull request,\nand the release will trigger on merge into your main branch (main). See the \u003ca href=\".github/workflows/builder.yml\"\u003e.github/workflows/builder.yml\u003c/a\u003e)\nto edit this. The idea is that you can:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDevelop your container via a development branch\u003c/li\u003e\n\u003cli\u003eOpen a pull request to test the container (the \u003ca href=\".github/workflows/test.yml\"\u003e.github/workflows/test.yml\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eOn merge, your container will be released!\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-4-how-to-pull\" class=\"anchor\" href=\"#4-how-to-pull\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. How to pull\u003c/h3\u003e\n\u003cp\u003eTechnically, Singularity can pull just knowing the URL. For example:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eHowever, the \u003ca href=\"singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e tool (will be) designed to be able to parse and handle\nthese container uris automatically. For the containers here, you could do:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:latest\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:salad\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:pokemon\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor write the container URI into a registry entry:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egh: singularityhub/singularity-deploy\nlatest:\n latest: \"0.0.1\"\ntags:\n \"latest\": \"0.0.1\"\n \"salad\": \"0.0.1\"\n \"pokemon\": \"0.0.1\"\nmaintainer: \"@vsoch\"\nurl: https://github.com/singularityhub/singularity-deploy\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(This part is still under development!)\u003c/p\u003e\n",
+ "full_name": "nbarlowATI/shub-test",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-shub-test\" class=\"anchor\" aria-hidden=\"true\" href=\"#shub-test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eshub-test\u003c/h1\u003e\n\u003cp\u003eTest using singularityhub\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1644482849.0
+ "updated_at": 1617891470.0
},
{
"data_format": 2,
- "description": "Files to create singularity container for CHPC deeplearning module",
+ "description": null,
"filenames": [
- "Singularity.deeplearning"
+ "Singularity"
],
- "full_name": "CHPC-UofU/deeplearning-module",
+ "full_name": "juanca09/tgv",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-deeplearning-module\" class=\"anchor\" href=\"#deeplearning-module\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edeeplearning-module\u003c/h1\u003e\n\u003cp\u003eThis repo contains files to construct the container for the CHPC deeplearning\nmodule.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-tgv\" class=\"anchor\" aria-hidden=\"true\" href=\"#tgv\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etgv\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1644445691.0
+ "updated_at": 1612281173.0
},
{
"data_format": 2,
- "description": "Nextflow pipeline for single cell analysis",
+ "description": "Attempt at Docker/GATK Port to Singularity for MSU HPCC",
"filenames": [
"Singularity"
],
- "full_name": "soulj/SkeletalVis-SingleCell",
+ "full_name": "msuefishlab/gatk_singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-skeletalvis-singlecell\" class=\"anchor\" href=\"#skeletalvis-singlecell\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSkeletalVis-SingleCell\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eSkeletalVis-SingleCell\u003c/strong\u003e is a bioinformatics pipeline for reproducible analyses of 10x Genomics single-cell RNA-sequencing data.\u003c/p\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a portable workflow tool to run tasks across multiple compute infrastructures. This pipeline uses a singularity container containing all the software needed to run the analysis, making installation simple and the results reproducible.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-pipeline-summary\" class=\"anchor\" href=\"#pipeline-summary\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline summary\u003c/h2\u003e\n\u003cp\u003eThe \u003cstrong\u003eSkeletalVis-SingleCell\u003c/strong\u003e pipeline takes a sample table and a parameter file defining the experiment as input. If not provided fastq files are automatically downloaded using the provided sample identifiers.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-features\" class=\"anchor\" href=\"#features\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFeatures:\u003c/h3\u003e\n\u003cp\u003e(\u003cstrong\u003ea\u003c/strong\u003e) Download of fastq files either directly from ENA, via conversion of sra or bam files from SRA\u003cbr\u003e\n(\u003cstrong\u003eb\u003c/strong\u003e)\tQuantification using \u003ca href=\"https://www.kallistobus.tools/\" rel=\"nofollow\"\u003e\u003ccode\u003ekallisto-bustools\u003c/code\u003e\u003c/a\u003e to produce cell x gene matrices\u003cbr\u003e\n(\u003cstrong\u003ec\u003c/strong\u003e) Flexible filtering of \u003ca href=\"https://bioconductor.org/packages/release/bioc/html/DropletUtils.html\" rel=\"nofollow\"\u003e\u003ccode\u003eempty droplets\u003c/code\u003e\u003c/a\u003e, quality control and thresholding\u003cbr\u003e\n(\u003cstrong\u003ed\u003c/strong\u003e) Normalisation and cell cycle effect removal\u003cbr\u003e\n(\u003cstrong\u003ee\u003c/strong\u003e) Automatic cell type annotation with \u003ca href=\"https://bioconductor.org/packages/release/bioc/html/SingleR.html\" rel=\"nofollow\"\u003e\u003ccode\u003eSingleR\u003c/code\u003e\u003c/a\u003e\u003cbr\u003e\n(\u003cstrong\u003ef\u003c/strong\u003e) Clustering and visualisation with \u003ca href=\"https://satijalab.org/seurat/\" rel=\"nofollow\"\u003e\u003ccode\u003eSeurat\u003c/code\u003e\u003c/a\u003e\u003cbr\u003e\n(\u003cstrong\u003eg\u003c/strong\u003e) Marker gene identification and pathway analysis\u003cbr\u003e\n(\u003cstrong\u003eh\u003c/strong\u003e) Cell crosstalk analysis of ligand-receptor predictions using \u003ca href=\"https://github.com/saezlab/liana\"\u003e\u003ccode\u003eliana\u003c/code\u003e\u003c/a\u003e\u003cbr\u003e\n(\u003cstrong\u003ei\u003c/strong\u003e) Sample integration and differential expression analysis between conditions with \u003ca href=\"https://github.com/MarioniLab/miloR\"\u003e\u003ccode\u003emiloR\u003c/code\u003e\u003c/a\u003e\u003cbr\u003e\u003c/p\u003e\n\u003cp\u003eAnalyses are run in parallel and in result of error you can resume with the \u003ccode\u003e-resume\u003c/code\u003e parameter to re-run the pipeline starting from the previous fault.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quick-start\" class=\"anchor\" href=\"#quick-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-analyse-an-example-dataset\" class=\"anchor\" href=\"#analyse-an-example-dataset\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAnalyse an example dataset\u003c/h3\u003e\n\u003cp\u003eTry the pipeline on an example dataset (all inputs will be automatically downloaded): -\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eInstall \u003ca href=\"https://www.nextflow.io/docs/latest/getstarted.html#installation\" rel=\"nofollow\"\u003e\u003ccode\u003eNextflow\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInstall \u003ca href=\"https://www.sylabs.io/guides/3.0/user-guide/\" rel=\"nofollow\"\u003e\u003ccode\u003eSingularity\u003c/code\u003e\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://www.nextflow.io/docs/latest/config.html\" rel=\"nofollow\"\u003e\u003ccode\u003eConfigure\u003c/code\u003e\u003c/a\u003e the resource profile for your HPC or local computer. A template for slurm schedulers is provided as an example in \u003ccode\u003enextflow.config\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDownload the pipeline and test on the example dataset with a single command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e nextflow run soulj/SkeletalVis-SingleCell -profile slurm -params-file GSE152805.yaml -with-singularity library://jsoul/default/singlecell:latest\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-analyse-your-own-data\" class=\"anchor\" href=\"#analyse-your-own-data\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAnalyse your own data\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003eDefine the sampleTable\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eCreate a tab seperated table with unique Sample names, SRR accession numbers (if download is needed) and any additional metadata e.g\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eSample\u003c/th\u003e\n\u003cth\u003eFile\u003c/th\u003e\n\u003cth\u003eCondition\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eControl_1\u003c/td\u003e\n\u003ctd\u003eSRRXXX\u003c/td\u003e\n\u003ctd\u003eControl\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eControl_2\u003c/td\u003e\n\u003ctd\u003eSRRXXX\u003c/td\u003e\n\u003ctd\u003eControl\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTreated_1\u003c/td\u003e\n\u003ctd\u003eSRRXXX\u003c/td\u003e\n\u003ctd\u003eTreated\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTreated_2\u003c/td\u003e\n\u003ctd\u003eSRRXXX\u003c/td\u003e\n\u003ctd\u003eTreated\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eDefine the configuration\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eMost parameters are set to sensible defaults within the main nextflow script, with only 5 parameters required to be altered with typical use:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eParameter\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003cth\u003eOptions\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eaccession\u003c/td\u003e\n\u003ctd\u003eThe GEO accession of the data - used to name output data and download fastq files\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003edownloadSite\u003c/td\u003e\n\u003ctd\u003eThe site to download the raw data from if needed\u003c/td\u003e\n\u003ctd\u003eSRA, ENA, SRA_BAM\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003especies\u003c/td\u003e\n\u003ctd\u003eThe species the reads originate from - used to create the kallisto bus index\u003c/td\u003e\n\u003ctd\u003ehuman, mouse\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003echemistry\u003c/td\u003e\n\u003ctd\u003eThe chemistry used for the 10x Genomics experiment\u003c/td\u003e\n\u003ctd\u003e10xv1, 10xv2, 10xv3\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ereplciates\u003c/td\u003e\n\u003ctd\u003eDoes the experiment contain replicated treatments to perform differential expression analysis?\u003c/td\u003e\n\u003ctd\u003etrue, false\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eParameters should be defined within a yaml file. See \u003ccode\u003eparams/GSE152805.yaml\u003c/code\u003e for an example.\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\n\u003cp\u003eRun the pipeline with your own parameters\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003e nextflow run soulj/SkeletalVis-SingleCell -profile slurm -params-file ownData.yaml -with-singularity library://jsoul/default/skeletalvis-singlecell\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-testing-modules\" class=\"anchor\" href=\"#testing-modules\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting modules\u003c/h3\u003e\n\u003cp\u003eModules can be tested using the \u003ca href=\"https://pypi.org/project/pytest-workflow/\" rel=\"nofollow\"\u003e\u003ccode\u003epytest-workflow\u003c/code\u003e\u003c/a\u003e framework. Module test directories within the \u003ccode\u003etests\u003c/code\u003e folder contain a nextflow script and a configuration yaml file defining the test for each module.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eInstall pytest-workflow\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003econda install pytest-workflow\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun the tests - e.g to test the GSEA module\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003epytest --symlink --kwdof --tag gsea\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1644406348.0
+ "updated_at": 1521034490.0
},
{
"data_format": 2,
- "description": "Files of FWI Paper",
+ "description": null,
"filenames": [
- "devito/docker/Singularity.nvidia.def"
+ "setup/Singularity"
],
- "full_name": "felipeaugustogudes/paper-fwi",
- "latest_release": "v1.0",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-effectiveness-and-computational-efficiency-of-absorbing-boundary-conditions-for-full-waveform-inversion\" class=\"anchor\" href=\"#effectiveness-and-computational-efficiency-of-absorbing-boundary-conditions-for-full-waveform-inversion\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEffectiveness and computational efficiency of absorbing boundary conditions for full-waveform inversion\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-authors-daiae-iglesia-dolci-felipe-a-g-silva-pedro-s-peixoto-and-ernani-v-volpe\" class=\"anchor\" href=\"#authors-daiae-iglesia-dolci-felipe-a-g-silva-pedro-s-peixoto-and-ernani-v-volpe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors: Daiae Iglesia Dolci, Felipe A. G. Silva, Pedro S. Peixoto and Ernani V. Volpe\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-department-of-mechanical-engineering-of-polytechnic-school-university-of-s\u00e3o-paulo\" class=\"anchor\" href=\"#department-of-mechanical-engineering-of-polytechnic-school-university-of-s%C3%A3o-paulo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDepartment of Mechanical Engineering of Polytechnic School, University of S\u00e3o Paulo\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-department-of-applied-mathematics-institute-of-mathematics-and-statistics-university-of-s\u00e3o-paulo\" class=\"anchor\" href=\"#department-of-applied-mathematics-institute-of-mathematics-and-statistics-university-of-s%C3%A3o-paulo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDepartment of Applied Mathematics, Institute of Mathematics and Statistics, University of S\u00e3o Paulo\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contacts-dolciuspbr-felipeaugustoguedesuspbr-pedrospimeuspbr-ernvolpeuspbr\" class=\"anchor\" href=\"#contacts-dolciuspbr-felipeaugustoguedesuspbr-pedrospimeuspbr-ernvolpeuspbr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContacts: \u003ca href=\"mailto:dolci@usp.br\"\u003edolci@usp.br\u003c/a\u003e, \u003ca href=\"mailto:felipe.augusto.guedes@usp.br\"\u003efelipe.augusto.guedes@usp.br\u003c/a\u003e, \u003ca href=\"mailto:pedrosp@ime.usp.br\"\u003epedrosp@ime.usp.br\u003c/a\u003e, \u003ca href=\"mailto:ernvolpe@usp.br\"\u003eernvolpe@usp.br\u003c/a\u003e\n\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eImportant Informations:\u003c/strong\u003e These codes are part of the Project Software Technologies for Modeling and Inversion (STMI) at RCGI in the University of Sao Paulo.\u003c/p\u003e\n",
+ "full_name": "smithhenryd/GSoC_2020_UnderrepresentedMessagesAndDemocrats-",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-gsoc_2020_underrepresentedmessagesanddemocrats\" class=\"anchor\" aria-hidden=\"true\" href=\"#gsoc_2020_underrepresentedmessagesanddemocrats\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGSoC_2020_UnderrepresentedMessagesAndDemocrats:\u003c/h1\u003e\n\u003cp\u003eThe 2020 Google Summer of Code project \"Understanding Messages to Underrepresented Racial, Ethnic, Gender, and Sexual Groups on Social Media by Democratic Politicians and their Electoral Implications\" is contributed by Henry Smith with \u003ca href=\"http://www.redhenlab.org/\" rel=\"nofollow\"\u003eRed Hen Lab\u003c/a\u003e. Work on the project is completed under the mentorship of \u003ca href=\"http://home.jsjoo.com/\" rel=\"nofollow\"\u003eDr. Jungeock Joo\u003c/a\u003e and \u003ca href=\"https://bywords.github.io/\" rel=\"nofollow\"\u003eDr. Kunwoo Park\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-gsoc-2020-blog\" class=\"anchor\" aria-hidden=\"true\" href=\"#gsoc-2020-blog\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGSOC 2020 Blog:\u003c/h2\u003e\n\u003cp\u003eDetailed weekly updates during summer 2020 can be found at the project\u0027s \u003ca href=\"https://smithhenryd.github.io/UnderrepresentedMessagesAndDemocrats.github.io/\" rel=\"nofollow\"\u003eblog page\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-project-directory\" class=\"anchor\" aria-hidden=\"true\" href=\"#project-directory\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eProject Directory:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/smithhenryd/GSoC_2020_UnderrepresentedMessagesAndDemocrats-/tree/master/background\"\u003ebackground\u003c/a\u003e details preliminary information relevant to the research project and topic. This folder currently contains the original proposal as well as a brief summary of related political science research.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/smithhenryd/GSoC_2020_UnderrepresentedMessagesAndDemocrats-/tree/master/electoral_outcomes_data\"\u003eelectoral_outcomes_data\u003c/a\u003e includes data collected from \u003ca href=\"https://ballotpedia.org/Election_results,_2018\" rel=\"nofollow\"\u003eBallotpedia\u003c/a\u003e summarizing 2018 U.S. midterm election outcomes. The current data details primary and general election outcomes in racially and ethnically diverse congressional districts, measured by the proportion of individuals that identify as people of color (POC).\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/smithhenryd/GSoC_2020_UnderrepresentedMessagesAndDemocrats-/tree/master/imgs_data\"\u003eimgs_data\u003c/a\u003e contains information pertaining to the 2018 Facebook images dataset collected by Dr. Jungseock Joo and his colleagues. The dataset consists of images shared on Facebook from January 1 - November 5, 2018 by U.S. politicians who competed for the U.S. House, Senate, and state governorships during the 2018 general election.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-background-and-motivation\" class=\"anchor\" aria-hidden=\"true\" href=\"#background-and-motivation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBackground and Motivation:\u003c/h2\u003e\n\u003cp\u003eThe importance of underrepresented voters is not new to the Democratic party: a 2017 poll of registered voters by the Pew Research Institute of U.S. Politics and Policy estimated that only fifty-nine percent of self-identified Democrats/lean Democrats label themselves as white, compared to the eighty-nine percent of Republicans/lean Republicans. This figure is down from an estimated sixty-seven percent in 2007 and seventy-five percent in 1997. The same report approximates that Black voters constitute nineteen percent of this Democratic base, Hispanic voters twelve percent, and Asian together with other underrepresented racial/ethnic groups constitute ten percent [6].\u003c/p\u003e\n\u003cp\u003eMoreover, recent elections suggest the emergence of the LGBT community, which we classify as underrepresented gender and sexual individuals, as one of the most solid Democratic voting blocs. Exit polling by NBC following the 2018 midterm elections indicated that while LGBT voters constituted only six percent of the electorate, upwards of eighty-two percent of these voters supported the Democratic candidate [1].\u003c/p\u003e\n\u003cp\u003eDespite the distinct importance of these groups to the Democratic party, it is not clear that the party knows how to effectively mobilize underrepresented voters. This harrowing reality came to the forefront of the news cycle following a decade-low Black voter turnout during the 2016 election [4]. In response to this fall in turnout, to which many have attributed Democratic presidential candidate Hillary Clinton\u2019s loss, the Democratic National Committee (DNC) pledged $2.5 million for the funding of programs to increase turnout among underrepresented groups during the 2018 midterm elections [3].\u003c/p\u003e\n\u003cp\u003eOf particular interest to our research is how politicians themselves aim to mobilize these communities through social media. Past research has underscored the importance of social media as spaces for underrepresented racial, gender, and sexual groups. In conflict with the narrative that a lack of access to technology divides disadvantaged racial groups, a recent study has shown that online platforms in fact embolden social networks between these groups [2]. Likewise, it is estimated that eighty percent of LGBT adults engage on at least one social media website, which is much greater than the fifty-eight percent of the general public [5].\u003c/p\u003e\n\u003cp\u003eKeeping this in mind, we seek to answer the following questions:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eHow do Democratic politicians present themselves to underrepresented racial, gender, and sexual groups on social media platforms through visual content?\u003c/li\u003e\n\u003cli\u003eWhich traits displayed in these images are perceived most positively/negatively by underrepresented voters?\u003c/li\u003e\n\u003cli\u003eHow do visual messages predict primary election outcomes in diverse electoral districts?\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eSources:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[1] Fitzsimons, T. (2018, November 08). Record LGBT support for Democrats in midterms, NBC News Exit Poll shows. NBC News. Retrieved from \u003ca href=\"https://www.nbcnews.com/feature/nbc-out/record-lgbt-support-democrats-midterms-nbc-news-exit-poll-shows-n934211\" rel=\"nofollow\"\u003ehttps://www.nbcnews.com/feature/nbc-out/record-lgbt-support-democrats-midterms-nbc-news-exit-poll-shows-n934211\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003e[2] Amy L. Gonzales. 2015. Disadvantaged Minorities\u2019 Use of the Internet to Expand Their Social Networks. Communication Research 44, 4 (2017), 467-486.\u003c/li\u003e\n\u003cli\u003e[3] Herndon, A. W. (2018, June 21). Democrats Plan New Effort to Target Minority Voters. The New York Times. Retrieved from \u003ca href=\"https://www.nytimes.com/2018/06/21/us/politics/democrats-minority-voters-midterms.html?smtyp=cur\u0026amp;smid=tw-nytimes\" rel=\"nofollow\"\u003ehttps://www.nytimes.com/2018/06/21/us/politics/democrats-minority-voters-midterms.html?smtyp=cur\u0026amp;smid=tw-nytimes\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003e[4] Krogstad, J. M. and Lopez, M. H. (2017, May 12). Black voter turnout fell in 2016, even as a record number of Americans cast ballots. Pew Research Center, Washington, D.C. Retrieved from \u003ca href=\"https://www.pewresearch.org/fact-tank/2017/05/12/black-voter-turnout-fell-in-2016-even-as-a-record-number-of-americans-cast-ballots/\" rel=\"nofollow\"\u003ehttps://www.pewresearch.org/fact-tank/2017/05/12/black-voter-turnout-fell-in-2016-even-as-a-record-number-of-americans-cast-ballots/\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003e[5] \u201cA Survey of LGBT Americans.\u201d Pew Research Center, Washington, D.C. (2013, June 13) \u003ca href=\"https://www.pewsocialtrends.org/2013/06/13/a-survey-of-lgbt-americans/\" rel=\"nofollow\"\u003ehttps://www.pewsocialtrends.org/2013/06/13/a-survey-of-lgbt-americans/\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003e[6] \u201cWide Gender Gap, Growing Educational Divide in Voters\u2019 Party Identification.\u201d Pew Research Center, Washington, D.C. (2018, March 20) \u003ca href=\"https://www.people-press.org/2018/03/20/wide-gender-gap-growing-educational-divide-in-voters-party-identification/\" rel=\"nofollow\"\u003ehttps://www.people-press.org/2018/03/20/wide-gender-gap-growing-educational-divide-in-voters-party-identification/\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
- "topics": [],
- "updated_at": 1644293938.0
+ "topics": [
+ "data-cleaning",
+ "statistics",
+ "political-science",
+ "political-parties",
+ "python",
+ "election-analysis",
+ "election-data"
+ ],
+ "updated_at": 1640627843.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity containers for tools using the MAGICIAN pipeline",
"filenames": [
- "Singularity.0.9.18"
+ "drep/Singularity.drep",
+ "camisim_ks_fork/Singularity.cami_python2",
+ "bbmap_36.49_metabat2_latest/Singularity.bbmap_from_metabat"
],
- "full_name": "Famingzhao/pySCENIC",
+ "full_name": "KatSteinke/magician-singularity-containers",
"latest_release": null,
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/5332\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1643982275.0
+ "updated_at": 1617363865.0
},
{
"data_format": 2,
- "description": "centos8 container to run brave ",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity.Bowtie2",
+ "Singularity",
+ "Singularity.FastQC",
+ "Singularity.bedtools",
+ "Singularity.samtools",
+ "Singularity.methylkit"
],
- "full_name": "truatpasteurdotfr/singularity-docker-centos8-brave",
+ "full_name": "thakk/biobase",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-docker-centos8-brave-using-stream8-now-that-centos8-is-eoled\" class=\"anchor\" href=\"#singularity-docker-centos8-brave-using-stream8-now-that-centos8-is-eoled\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-docker-centos8-brave (using stream8 now that centos8 is EOL\u0027ed)\u003c/h1\u003e\n\u003cp\u003ecentos8 container to run brave built from github actions\u003c/p\u003e\n\u003cp\u003eRunning without installation:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /run oras://ghcr.io/truatpasteurdotfr/singularity-docker-centos8-brave:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBuilding:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build singularity-docker-centos8-brave.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDownload and rename:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull --name singularity-docker-centos8-brave.sif oras://ghcr.io/truatpasteurdotfr/singularity-docker-centos8-brave:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRunning with a separate $HOME (here ~/singularity.d/home/singularity-docker-centos8-brave)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emkdir -p ~/singularity.d/home/singularity-docker-centos8-brave\nsingularity run -B /run -H ~/singularity.d/home/singularity-docker-centos8-brave singularity-docker-centos8-brave.sif\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-containers-for-bioinformatics-tools\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-containers-for-bioinformatics-tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity containers for bioinformatics tools\u003c/h1\u003e\n\u003cp\u003eBioinformatics related singularity container recipies.\u003c/p\u003e\n\u003cp\u003eBase is CentOS 8.\u003c/p\u003e\n\u003cp\u003eCurrently two containers are implemented:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ebasic tools:\n\u003cul\u003e\n\u003cli\u003eSamtools\u003c/li\u003e\n\u003cli\u003eBEDTools\u003c/li\u003e\n\u003cli\u003eFastQC\u003c/li\u003e\n\u003cli\u003eBowtie2\u003c/li\u003e\n\u003cli\u003eMultiQC\u003c/li\u003e\n\u003cli\u003eCutadapt\u003c/li\u003e\n\u003cli\u003eSTAR\u003c/li\u003e\n\u003cli\u003eHisat2\u003c/li\u003e\n\u003cli\u003ePicard\u003c/li\u003e\n\u003cli\u003eTrimmomatic\u003c/li\u003e\n\u003cli\u003eSamblaster\u003c/li\u003e\n\u003cli\u003eVarScan\u003c/li\u003e\n\u003cli\u003eVcfanno\u003c/li\u003e\n\u003cli\u003ePlink\u003c/li\u003e\n\u003cli\u003eMACS2\u003c/li\u003e\n\u003cli\u003eHomer\u003c/li\u003e\n\u003cli\u003eNextFlow\u003c/li\u003e\n\u003cli\u003enf-core\u003c/li\u003e\n\u003cli\u003eMAGeCK\u003c/li\u003e\n\u003cli\u003eTrimGalore\u003c/li\u003e\n\u003cli\u003eBismark\u003c/li\u003e\n\u003cli\u003eUCSC tools\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003emethylKit (built from basic):\n\u003cul\u003e\n\u003cli\u003eR + Bioconductor\u003c/li\u003e\n\u003cli\u003emethylkit\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003esamtools (built from Alpine Linux 3.10.3)\n\u003cul\u003e\n\u003cli\u003eNote, automated Singularity Hub build does not seem to work correctly as this recipe uses multistage build to minimize container size\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-availability\" class=\"anchor\" aria-hidden=\"true\" href=\"#availability\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAvailability\u003c/h2\u003e\n\u003cp\u003eBasic tools container is available at Singularity hub: shub://thakk/biobase\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1635199842.0
+ "updated_at": 1589801761.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Recipes for Singularity images used by Singularity Hub.",
"filenames": [
- "Studenten/XiaoyuSun/Polygonization-by-Frame-Field-Learning/singularity/Singularity",
- "Studenten/Polygonization-by-Frame-Field-Learning-master-3bandRGB/singularity/Singularity"
+ "Singularity.Root6.Ubuntu-18.04",
+ "Singularity.Root6.Geant4.OptSim.Ubuntu-18.04",
+ "Singularity.Root6.Geant4.Ubuntu-18.04"
],
- "full_name": "vissed-kad/github_demo",
- "latest_release": "v1.0",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-objectherkenning-met-deeplearning-technieken\" class=\"anchor\" href=\"#objectherkenning-met-deeplearning-technieken\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eObjectherkenning met Deeplearning technieken\u003c/h1\u003e\n\u003cp\u003eDeze repository bevat folders en bestanden van de projecten van het Objectherkenningsteam.\u003c/p\u003e\u003cp\u003eZie de info in de onderliggende folder(s) voor meer informatie.\u003c/p\u003e\n\u003cp\u003etest 1234\ntest 5678\u003c/p\u003e\n",
+ "full_name": "PPKoller/SHub",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-shub\" class=\"anchor\" aria-hidden=\"true\" href=\"#shub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSHub\u003c/h1\u003e\n\u003cp\u003eRecipes for Singularity images to be built on Singularity Hub.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4666\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-argoncube-optical-simulation--\" class=\"anchor\" aria-hidden=\"true\" href=\"#argoncube-optical-simulation--\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eArgonCube Optical Simulation \u003ca href=\"https://github.com/PPKoller/ArCubeOptSim\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ac28190b3bdb446d46b2760854ecec42927bd2ae802d0729c6b0e72449b56082/68747470733a2f2f6769746875622e6769746875626173736574732e636f6d2f696d616765732f6d6f64756c65732f6c6f676f735f706167652f4769744875622d4d61726b2e706e67\" width=\"30\" data-canonical-src=\"https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://argoncube.org/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://github.com/PPKoller/SHub/raw/master/.ArCube_Logo.png\" width=\"100\" align=\"right\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-pull-the-container-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-pull-the-container-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Pull the container image:\u003c/h3\u003e\n\u003cp\u003eThe optical simulation software container can be pulled directly via the Singularity command:\u003cbr\u003e\n(size ~ 1.4G)\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull shub://PPKoller/SHub:root6.geant4.optsim.ubuntu-18.04\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-2-image-default-checks\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-image-default-checks\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Image default checks:\u003c/h3\u003e\n\u003cp\u003ePerforming the Singularity default checks should return \u003ccode\u003ePASS: (retval=0)\u003c/code\u003e.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emv PPKoller-SHub-master-root6.geant4.optsim.ubuntu-18.04.simg OptSim.simg\nsingularity check --tag default OptSim.simg\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-3-export-io-binding-paths\" class=\"anchor\" aria-hidden=\"true\" href=\"#3-export-io-binding-paths\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. Export I/O binding paths:\u003c/h3\u003e\n\u003cp\u003eUsing the environment variable \u003ccode\u003e$SINGULARITY_BINDPATH\u003c/code\u003e there won\u0027t be any need to bind I/O paths manually later.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emkdir input output\n\u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e SINGULARITY_BINDPATH=\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003einput/:/input,output/:/output\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-4-run-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#4-run-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. Run instructions:\u003c/h3\u003e\n\u003cp\u003eRunning the container without any arguments will return a list of the available apps including a short description on what it does and what parameters you might need to provide.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run OptSim.simg\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-5-run-apps\" class=\"anchor\" aria-hidden=\"true\" href=\"#5-run-apps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e5. Run apps:\u003c/h3\u003e\n\u003cp\u003eThere are five apps available within the container: four simulaion related apps that run the optical simulation with different levels of user defined input and one app that allows you to build the photon look-up-table using the output created by running the simulation.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eThe selected voxels will be processed sequentially. Separate container calls are needed for parallel processing.\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003esim\u003c/strong\u003e\u003cbr\u003e\nRun the simulation on voxels no. 0 to 9 using the default statistics, voxel geometry and optical properties.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --app sim OptSim.simg 0 10\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eStatistics\u003c/em\u003e: 1\u0027000 events per voxel / 10\u0027000 photons per event\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eVoxel geometry\u003c/em\u003e: 32 x 128 x 32 voxels / 9.460 x 9.858 x 9.692 mm\u003csup\u003e3\u003c/sup\u003e (drift x vertical x beam)\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eOpt. properties\u003c/em\u003e: \u003ca href=\"https://github.com/PPKoller/ArCubeOptSim/tree/LUT/resources/datafiles\"\u003ePPKoller/ArCubeOptSim/tree/LUT/resources/datafiles\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003esim_usr_geo\u003c/strong\u003e\u003cbr\u003e\nRun the simulation on voxels no. 0 to 9 with user defined statistics and voxel geometry. Herefore, the file \u003ccode\u003eOptSim_LUT_voxel_table.txt\u003c/code\u003e has to be placed in the folder \u003ccode\u003einput/\u003c/code\u003e before executing the simulation.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --app sim_usr_geo OptSim.simg 0 10\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe file \u003ccode\u003eOptSim_LUT_voxel_table.txt\u003c/code\u003e can be created by the Jupyter Notebook provided \u003ca href=\"create_OptSim_LUT_voxel_table.ipynb\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003esim_usr_opt\u003c/strong\u003e\u003cbr\u003e\nRun the simulation on voxels no. 0 to 9 with user defined optical properties. Herefore, a folder \u003ccode\u003edatafiles/\u003c/code\u003e containing all optical properties files has to be placed in the folder \u003ccode\u003einput/\u003c/code\u003e before executing the simulation.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --app sim_usr_opt OptSim.simg 0 10\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe folder \u003ccode\u003edatafiles/\u003c/code\u003e containing the default optical properties files can be found \u003ca href=\"https://github.com/PPKoller/ArCubeOptSim/tree/LUT/resources/datafiles\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003esim_usr\u003c/strong\u003e\u003cbr\u003e\nRun the simulation on voxels no. 0 to 9 with user defined statistics, voxel geometry and optical properties. (see instructions above)\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --app sim_usr OptSim.simg 0 10\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003elut / lut_usr\u003c/strong\u003e\u003cbr\u003e\nBuild the photon look-up-table using the output created by running the simulation. Herefore, voxel number \u00270\u0027 needs to have been processed and the respective root file \u003ccode\u003eOptSim_00000000.root\u003c/code\u003e has to be present in \u003ccode\u003eoutput/root_files/\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --app lut OptSim.simg\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eAnd in case the simulation was run with user defined statistics and voxel geometry:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --app lut_usr OptSim.simg\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-6-output\" class=\"anchor\" aria-hidden=\"true\" href=\"#6-output\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e6. Output\u003c/h3\u003e\n\u003cp\u003eAfter running the optical simulation, log and error files will appear in \u003ccode\u003eoutput/log_files/\u003c/code\u003e and root files will appear in \u003ccode\u003eoutput/root_files/\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eAfter running the LUT builder, the photon look-up-table will apper in \u003ccode\u003eoutput/\u003c/code\u003e as \u003ccode\u003eOptSim_LUT_ArgonCube2x2.root\u003c/code\u003e.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e[optional]\u003c/h3\u003e\n\u003ch4\u003e\u003ca id=\"user-content-user-defined-tpb-thickness\" class=\"anchor\" aria-hidden=\"true\" href=\"#user-defined-tpb-thickness\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUser defined TPB thickness\u003c/h4\u003e\n\u003cp\u003ePlace the file \u003ccode\u003epreinit.mac\u003c/code\u003e with custom TPB thickness in the folder \u003ccode\u003einput/\u003c/code\u003e before executing the simulation. The default \u003ccode\u003epreinit.mac\u003c/code\u003e can be found \u003ca href=\"https://github.com/PPKoller/ArCubeOptSim/tree/LUT/resources/macros/preinit.mac\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-build-and-shell-into-writable-sandbox-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-and-shell-into-writable-sandbox-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild and shell into writable sandbox image:\u003c/h4\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build --sandbox OptSim OptSim.simg\nsudo singularity shell --writable OptSim\u003c/pre\u003e\u003c/div\u003e\n\u003ch4\u003e\u003ca id=\"user-content-build-compressed-read-only-squashfs-image-from-sandbox-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-compressed-read-only-squashfs-image-from-sandbox-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild compressed read-only squashfs image from sandbox image:\u003c/h4\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build OptSim_edited.simg OptSim\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1643653877.0
+ "updated_at": 1612530237.0
},
{
"data_format": 2,
@@ -16585,203 +16148,224 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "stela2502/singularityImages",
+ "full_name": "tomuram/singularity_recipes",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularityimages\" class=\"anchor\" href=\"#singularityimages\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularityImages\u003c/h1\u003e\n\u003cp\u003eThis git repo is a skelleton of my work I have done on singularity images.\nThese images are used on aurora-ls2 to run analyses on the blades instead of the frontend.\u003c/p\u003e\n\u003cp\u003eAll of that documention is in our Bioinformatics Slack Howto channel.\u003c/p\u003e\n\u003cp\u003eThe software I install I mainly install from within the singularity image. Hence the usage of shell.sh.\u003c/p\u003e\n\u003cp\u003eInstaling Python modules is tricky as pip3 always installs in a private path and not the global unless told otherwise.\nHence only I with my username on the computer I build the images could use the modules.\u003c/p\u003e\n\u003cp\u003eA solution could be to use some conda approach, but as this here will be a singularity image we could also try to install globaly:\u003c/p\u003e\n\u003cp\u003ePython solution:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epip3 install --prefix=/usr/local \u0026lt;package name\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1643377152.0
+ "updated_at": 1625019915.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for spades (git@github:powerPlant/spades-srf.git)",
"filenames": [
- "Singularity"
+ "Singularity.cami2-submission",
+ "Singularity.v3.10.0",
+ "Singularity.v3.8.1",
+ "Singularity.v0.5-recomb",
+ "Singularity.v3.12.0",
+ "Singularity.v3.9.0",
+ "Singularity.spaligner-paper",
+ "Singularity.v3.11.1",
+ "Singularity.v3.13.0",
+ "Singularity.v3.8.0",
+ "Singularity.v3.10.1",
+ "Singularity.v3.14.0",
+ "Singularity.template",
+ "Singularity.cloudspades-paper",
+ "Singularity.v3.13.1",
+ "Singularity.v3.8.2",
+ "Singularity.v3.11.0",
+ "Singularity.metaplasmid-paper",
+ "templates/Singularity.template"
],
- "full_name": "canceromics/LncPipe",
+ "full_name": "powerPlant/spades-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-lncpipe\" class=\"anchor\" href=\"#lncpipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"https://github.com/likelet/LncPipe\"\u003eLncPipe\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/likelet/LncPipe/blob/master/LICENSE\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/baf841111dc28f78162a4622b162743688582f72fdd1489701abaed0dbedeb6c/68747470733a2f2f696d672e736869656c64732e696f2f6175722f6c6963656e73652f79616f7572742e737667\" alt=\"AUR\" data-canonical-src=\"https://img.shields.io/aur/license/yaourt.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"http://nextflow.io\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4592602bf49949ce2bf5d14fd5d8f82ff4d9da11fcc13f9afaadaa60e0f915e0/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e32342e302d627269676874677265656e2e737667\" alt=\"nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.24.0-brightgreen.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-overall\" class=\"anchor\" href=\"#overall\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOverall\u003c/h2\u003e\n\u003cp\u003eRecently, long noncoding RNA molecules (lncRNA) captured widespread attentions for their critical\nroles in diverse biological process and important implications in variety of human diseases and\ncancers. Identification and profiling of lncRNAs is a fundamental step to advance our knowledge\non their function and regulatory mechanisms. However, RNA sequencing based lncRNA discovery is\ncurrently limited due to complicated operations and implementation of the tools involved. Therefore, we present a one-stop multi-tool integrated pipeline called \u003ca href=\"https://github.com/likelet/LncPipe\"\u003eLncPipe\u003c/a\u003e focused on characterizing lncRNAs from raw transcriptome sequencing data.\nThe pipeline was developed based on a popular workflow framework \u003ca href=\"https://github.com/nextflow-io/nextflow\"\u003eNextflow\u003c/a\u003e, composed of four core procedures including reads alignment, assembly, identification and quantification. It contains various unique features such as well-designed lncRNAs annotation strategy, optimized calculating efficiency, diversified classification and interactive analysis report. \u003ca href=\"https://github.com/likelet/LncPipe\"\u003eLncPipe\u003c/a\u003e allows users additional control in interuppting the pipeline, resetting parameters from command line, modifying main script directly and resume analysis from previous checkpoint.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-table-of-contents\" class=\"anchor\" href=\"#table-of-contents\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTable of Contents\u003c/h2\u003e\n\n\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#schematic-diagram\"\u003eSchematic diagram\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#installation-and-quick-start\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#run-docker\"\u003eRun Docker\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/likelet/LncPipeTestData\"\u003eRun with example data\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#interactive-reports\"\u003eInteractive reports\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#parameters\"\u003eParameters\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#faq\"\u003eFAQ\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#acknowledgements\"\u003eAcknowledgements\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#contact\"\u003eContact\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#license\"\u003eLicense\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-schematic-diagram\" class=\"anchor\" href=\"#schematic-diagram\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSchematic diagram\u003c/h2\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/nextflow-io/nextflow\"\u003eNextflow\u003c/a\u003e\u003cbr\u003e\nLncPipe is implemented with Nextflow pipeline management system. To run LncPipe. \u003ca href=\"https://github.com/nextflow-io/nextflow\"\u003eNextflow\u003c/a\u003e should be pre-installed at POSIX compatible system (Linux, Solaris, OS X, etc), It requires BASH and Java 7 or higher to be installed. We do not recommend running the pipes in the Windows since most of bioinformatic tools are not supported.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quick-start\" class=\"anchor\" href=\"#quick-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick start\u003c/h2\u003e\n\u003cp\u003eHere, we show step by step installation of \u003ca href=\"https://github.com/nextflow-io/nextflow\"\u003eNextflow\u003c/a\u003e in a linux system as an example (adopted from \u003ca href=\"https://www.nextflow.io/docs/latest/getstarted.html\" rel=\"nofollow\"\u003eNextFlow\u003c/a\u003e).\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eDownload the NextFlow executable package by pasting the following command into your terminal window:\u003c/p\u003e\n\u003cp\u003ewget -qO- get.nextflow.io | bash\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cblockquote\u003e\n\u003cp\u003eIt will create the \u003ca href=\"https://github.com/nextflow-io/nextflow\"\u003eNextflow\u003c/a\u003e main executable file in the current directory.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eOptionally, move the nextflow file to a directory accessible by your \u003ccode\u003e$PATH\u003c/code\u003e variable (only required to avoid typing the full path to this file each time you need to run it). Of course, you can download the lastest binary version of NextFlow by yourself from \u003ca href=\"https://github.com/nextflow-io/nextflow/releases\"\u003ehere\u003c/a\u003e and add the path to your system environment.All those pipelines were written in \u003ca href=\"https://github.com/nextflow-io/nextflow\"\u003eNextflow\u003c/a\u003e commands. For more details, please see \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eDownload the LncPipe github repository by:\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/likelet/LncPipe.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eConfigure the design.file with experimental conditions and replicate info\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eConfigure your data and reference files in \u003cem\u003enextflow.config\u003c/em\u003e or \u003cem\u003edocker.config\u003c/em\u003e or \u003cem\u003esingularity.config\u003c/em\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003e\n\u003cp\u003eRun LncPipe nextflow pipeline:\u003c/p\u003e\n\u003cp\u003enextflow -c nextflow.config run LncRNAanalysisPipe.nf\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eor docker command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e nextflow -c docker.config run LncRNAanalysisPipe.nf\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor singularity command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e # create image \n singularity build lncPipe.image docker://bioinformatist/lncpipe\n # run command \n nextflow -c singularity.config run LncRNAanalysisPipe.nf\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e__7.Run with test data __ .\u003c/p\u003e\n\u003cp\u003ePlZ go to \u003ca href=\"https://github.com/likelet/LncPipeTestData\"\u003ehttps://github.com/likelet/LncPipeTestData\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-prepare-input-files\" class=\"anchor\" href=\"#prepare-input-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrepare input files\u003c/h3\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-references-index-and-annotation-filesmandatory\" class=\"anchor\" href=\"#references-index-and-annotation-filesmandatory\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences, index and annotation files(Mandatory).\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cg-emoji class=\"g-emoji\" alias=\"blush\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f60a.png\"\u003e\ud83d\ude0a\u003c/g-emoji\u003ePlease keep the consistency of your genome sequence,index library and annotation files (Important!): genome version, chromosome format, gtf coordinated e.g. The dependent third-party softwares may stop for any discrepencies in file-formatting.\u003c/strong\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGenome reference (genome fasta file with suffix \u003ccode\u003e.fa\u003c/code\u003e etc. )\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGenome Index for alignment (hisat2 or tophat or STAR)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGENCODE gene annotation file in GTF format\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eLNCipedia gene annotation file in GTF format.(set null if not available for your species)\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRaw sequence file with *.fastq.gz / *.fq.gz suffixed\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-species\" class=\"anchor\" href=\"#species\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSpecies\u003c/h4\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt;Currently, LncPipe has been tested for detection of lncRNAs in \u0027humans\u0027 only.\nHowever, LncPipe can be manually configured to run the anlysis for other species as well and requires additional files \"known_protein_coding.gtf\" and \"known_lncRNA.gtf\" for coding probability calculations. More information on usage for non-human species can be found here. \n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eReference files for humans\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003ehisat index built from Genome:\n\u003ca href=\"http://cancerbio.info/pub/hg38_hisat_index.tar.gz\" rel=\"nofollow\"\u003ehttp://cancerbio.info/pub/hg38_hisat_index.tar.gz\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGenome reference:\n\u003ca href=\"ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_27/GRCh38.p10.genome.fa.gz\" rel=\"nofollow\"\u003eftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_27/GRCh38.p10.genome.fa.gz\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGENCODE gene annotation:\n\u003ca href=\"ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_27/gencode.v27.annotation.gtf.gz\" rel=\"nofollow\"\u003eftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_27/gencode.v27.annotation.gtf.gz\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eLNCipedia gene annotation:\n\u003ca href=\"https://lncipedia.org/downloads/lncipedia_5_0_hc_hg38.gtf\" rel=\"nofollow\"\u003ehttps://lncipedia.org/downloads/lncipedia_5_0_hc_hg38.gtf\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRaw sequence file with *.fastq.gz / *.fq.gz suffixed\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eReference files for mouse\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003ehisat index built from Genome\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGenome reference:\u003cbr\u003e\n\u003ca href=\"ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M16/GRCm38.p5.genome.fa.gz\" rel=\"nofollow\"\u003eftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M16/GRCm38.p5.genome.fa.gz\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eGENCODE gene annotation:\n\u003ca href=\"ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M16/gencode.vM16.annotation.gtf.gz\" rel=\"nofollow\"\u003eftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M16/gencode.vM16.annotation.gtf.gz\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eLNCipedia gene annotation: null\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRaw sequence file with *.fastq.gz / *.fq.gz suffixed\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-run-docker\" class=\"anchor\" href=\"#run-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Docker\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003ePrepare input files as mentioned earlier.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eModify the \u003ccode\u003edocker.config\u003c/code\u003e in \u003ccode\u003emandatory\u003c/code\u003e section.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eInstall docker and download the latest LncPipe build using:\n\u003ccode\u003edocker pull bioinformatist/lncpipe\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun LncPipe using the following command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e nextflow -c docker.config run LncRNAanalysisPipe.nf\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cblockquote\u003e\n\u003cp\u003eThe docker image for LncPipe is available on the docker-hub (\u003ca href=\"https://hub.docker.com/r/bioinformatist/lncpipe/tags/\" rel=\"nofollow\"\u003ehttps://hub.docker.com/r/bioinformatist/lncpipe/tags/\u003c/a\u003e).\nAlternatively, nextflow can automatically pull image from docker.io. \u003ccode\u003eDockerfile\u003c/code\u003e recorded that what we have done with the image. For user from local China looking to pull the docker image can use this \u003ca href=\"https://github.com/likelet/Blogs_tips/blob/master/README.md#setting-docker-download-mirror-site\"\u003emirror site instead\u003c/a\u003e.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eTO Install softwares locally on your machine, please see install instructions \u003ca href=\"https://github.com/likelet/LncPipe/blob/master/InstallSoftwareLocally.md\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-interactive-reports\" class=\"anchor\" href=\"#interactive-reports\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInteractive reports\u003c/h2\u003e\n\u003cp\u003eThe results of LncPipe are summarized and visualized via interactive plots by our novel R package \u003ca href=\"https://github.com/bioinformatist/LncPipeReporter\"\u003eLncPipeReporter\u003c/a\u003e. Users can also try LncPipeReporter as stand-alone for visualizing known and novel lncRNAs.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-configuration\" class=\"anchor\" href=\"#configuration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguration\u003c/h2\u003e\n\u003cp\u003eAs a nextflow-based analysis pipeline, LncPipe allow users edit configure file \u003ccode\u003enextflow.config\u003c/code\u003e to set the index files and default file path parameters instead of typing them into the command line.\u003c/p\u003e\n\u003cp\u003eTo configure, please go to \u003ccode\u003eparams\u003c/code\u003e line, and set the following information of various file locations and system environment settings\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-groovy\"\u003e\u003cpre\u003e params {\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e/*\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e User setting options (mandatory)\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e \u003cspan class=\"pl-c\"\u003e*/\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e input file and genome reference\u003c/span\u003e\n fastq_ext \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e*_{1,2}.fq.gz\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n fasta_ref \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e/data/database/hg38/genome.fa\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n design \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003edesign.file\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n hisat2_index \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e/data/database/hg38/hisatIndex/grch38_snp_tran/genome_snp_tran\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n cpatpath\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e/opt/CPAT-1.2.3\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003ehuman gtf only\u003c/span\u003e\n gencode_annotation_gtf \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/data/database/hg38/Annotation/gencode.v24.annotation.gtf\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n lncipedia_gtf \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e/data/database/hg38/Annotation/lncipedia_4_0_hg38.gtf\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e set \"null\" if you are going to perform analysis on other species\u003c/span\u003e\n\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e additional options for non-human species, else leaving them unchanged\u003c/span\u003e\n species\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003ehuman\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e mouse , zebrafish, fly\u003c/span\u003e\n known_coding_gtf\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n known_lncRNA_gtf\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003efor test\u003c/span\u003e\n cpatpath \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e/home/zhaoqi/software/CPAT/CPAT-1.2.2/\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n\n\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e/*\u003c/span\u003e\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e User setting options (optional)\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e \u003cspan class=\"pl-c\"\u003e*/\u003c/span\u003e\u003c/span\u003e\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e tools setting\u003c/span\u003e\n star_idex \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003eset if star used\u003c/span\u003e\n bowtie2_index \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003eset if tophat used\u003c/span\u003e\n aligner \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003ehisat\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e or \"star\",\"tophat\"\u003c/span\u003e\n sam_processor\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003esambamba\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003eor \"samtools(deprecated)\"\u003c/span\u003e\n qctools \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003efastp\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e or \"afterqc\",\"fastp\",\"fastqc\"\u003c/span\u003e\n detools \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eedger\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003eor \"deseq2\",\"noiseq\" not supported yet\u003c/span\u003e\n quant \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003ekallisto\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003e or \u0027htseq\u0027\u003c/span\u003e\n\n \u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e//\u003c/span\u003eother setting\u003c/span\u003e\n singleEnd \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003efalse\u003c/span\u003e\n unstrand \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003efalse\u003c/span\u003e\n skip_combine \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003efalse\u003c/span\u003e\n lncRep_Output \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ereporter.html\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n lncRep_theme \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003enpg\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n lncRep_cdf_percent \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e10\u003c/span\u003e\n lncRep_max_lnc_len \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e10000\u003c/span\u003e\n lncRep_min_expressed_sample \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e50\u003c/span\u003e\n mem\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e60\u003c/span\u003e\n cpu\u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e30\u003c/span\u003e\n }\n\n manifest {\n homePage \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehttps//github.com/likelet/LncPipe\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n description \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eLncPipe:a Nextflow-based Long non-coding RNA analysis PIPELINE\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n mainScript \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eLncRNAanalysisPipe.nf\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\n }\n\n\n timeline {\n \u003cspan class=\"pl-c1\"\u003eenabled\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003etrue\u003c/span\u003e\n \u003cspan class=\"pl-c1\"\u003efile\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003etimeline.html\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n }\n\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-parameters\" class=\"anchor\" href=\"#parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParameters\u003c/h2\u003e\n\u003cblockquote\u003e\n\u003cp\u003eThose parameters would cover the setting from \u003ccode\u003enextflow.config\u003c/code\u003e file\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003eMandatory(plz configure those options in \u003cem\u003enextflow.config\u003c/em\u003e or \u003cem\u003edocker.config\u003c/em\u003e file)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth align=\"right\"\u003eExample/Default value\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--input_folder\u003c/td\u003e\n\u003ctd align=\"right\"\u003e\u003ccode\u003e.\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003einput folder\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--species\u003c/td\u003e\n\u003ctd align=\"right\"\u003e\u003ccode\u003ehuman\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eYour species, mouse, fly and zebra fish are also supported\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--fastq_ext\u003c/td\u003e\n\u003ctd align=\"right\"\u003e\u003ccode\u003e*_{1,2}.fastq.gz\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003einput raw paired reads\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--out_folder\u003c/td\u003e\n\u003ctd align=\"right\"\u003e\u003ccode\u003e.\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eoutput folder\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--design\u003c/td\u003e\n\u003ctd align=\"right\"\u003e\u003ccode\u003eFALSE\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003ea txt file that stored experimental design information, plz see details from \u003ccode\u003e--design\u003c/code\u003e section below\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003eReferences\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eRequired\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--star_index/--bowtie2_index/--hisat2_index\u003c/td\u003e\n\u003ctd\u003e-\u003c/td\u003e\n\u003ctd\u003ePath to STAR?bowtie2/hisat2(mutually exclusive) index(required if not set in config file)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--fasta\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003e-\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003ePath to Fasta reference(required if not set in config file)\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--gencode_annotation_gtf\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003e-\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eAn annotation file from GENCODE database for annotating lncRNAs(required if not set in config file). e.g. gencode.v26.annotation.gtf\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--lncipedia_gtf\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003e-\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eAn annotation file from LNCipedia database for annotating lncRNAs(required if not set in config file) e.g. \u003ca href=\"http://www.lncipedia.org/downloads/lncipedia_4_0_hc_hg38.gtf\" rel=\"nofollow\"\u003elncipedia_4_0_hc_hg38.gtf\u003c/a\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003esoftware path (should not setting when using docker )\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eRequired\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--cpatpath\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003e-\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eHome folder of cpat installed location\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cblockquote\u003e\n\u003cp\u003esince cpat may call model data from its home path, users should specified where the model file is located in. Especially users install cpat by themselves without our install code.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003eOptional\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eDefault value\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--singleEnd\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003eFALSE\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003especify that the reads are single ended\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--merged_gtf\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003eFALSE\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eSkip mapping and assembly step by directly providing assembled merged gtf files\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--unstrand\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003eFALSE\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003especify that library is unstrand specific\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--aligner\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003estar\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eAligner for reads mapping (optional), STAR is default and supported only at present,\u003cem\u003estar\u003c/em\u003e/\u003cem\u003etophat\u003c/em\u003e/\u003cem\u003ehisat2\u003c/em\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--qctools\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003efastp\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eTools for assess raw reads quality or filtered by \u003cem\u003efastp\u003c/em\u003e, \u003cem\u003efastqc\u003c/em\u003e, \u003cem\u003eafterqc\u003c/em\u003e or \u003cem\u003enone\u003c/em\u003e(skip qc step)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003eLncPipeReporter options\u003c/li\u003e\n\u003c/ul\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eName\u003c/th\u003e\n\u003cth\u003eDefault value\u003c/th\u003e\n\u003cth\u003eDescription\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e--lncRep_Output\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003ereporter.html\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eSpecify report file name.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--lncRep_theme\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003enpg\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003ePlot theme setting in interactive plot. Values from \u003ca href=\"https://github.com/road2stat/ggsci\"\u003eggsci\u003c/a\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e--lncRep_min_expressed_sample\u003c/td\u003e\n\u003ctd\u003e\u003ccode\u003e50\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eMinimum expressed gene allowed in each sample, 50 default. Samples not passed were filtered from analysis\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e\u003ccode\u003e--fastq_ext\u003c/code\u003e\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eRaw fastq files are required for de-novo analysis.This parameters should be set according to your paired or singled reads file names.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eFor example:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e Sample1_1.fq.gz\n Sample1_2.fq.gz\n Sample2_1.fq.gz\n Sample2_2.fq.gz\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen you can input pattern \u003ccode\u003e*_{1,2}.fq.gz\u003c/code\u003e to make the all paired-end file recognized by \u003ca href=\"https://github.com/likelet/LncPipe\"\u003eLncPipe\u003c/a\u003e .\u003c/p\u003e\n\u003cp\u003eFor singled reads file, file pattern should be fed with \u003ccode\u003e--singleEnd\u003c/code\u003e parameter specified\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003e--star_idex?--bowtie2_index/--hisat2_index\u003c/code\u003e\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eThis parameter is \u003cem\u003erequired\u003c/em\u003e when not configured in nextflow.config file. It specify the star/tophat/hisat2(mutually exclusive) index folder built before running \u003ca href=\"https://github.com/likelet/LncPipe\"\u003eLncPipe\u003c/a\u003e .\nIf you don\u0027t know what it is?You can use \u003ccode\u003e--fasta\u003c/code\u003e to specify the reference sequence data. The index file would be built by \u003ca href=\"https://github.com/likelet/LncPipe\"\u003eLncPipe\u003c/a\u003e automatically.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003e\u003ccode\u003e--design\u003c/code\u003e\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eExperimental design file matrix for differential expression analysis. Default: \u003ccode\u003enull\u003c/code\u003e\nFormat:\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cpre\u003e\u003ccode\u003eWT:Sample1,Sample2,Sample3\nKO:Sample1,Sample2,Sample3\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhile \u003ccode\u003eKO/WT\u003c/code\u003e represents the two experimental condition, and sample1, sample2, sample3 are replicates which should be comma-delimited in the same line .\u003c/p\u003e\n\u003cp\u003eFor sample names, it should be the sample as the prefix of fastq files which was trimmed by \u003ccode\u003e--fastq_ext\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eFor example:\u003c/p\u003e\n\u003cp\u003eif fastq file names are \u003ccode\u003eSample1_1.fq.gz, Sample1_2.fq.gz\u003c/code\u003e that comes from one sample and your \u003ccode\u003e--fastq_ext\u003c/code\u003e is set as \u003ccode\u003e*_{1,2}.fq.gz\u003c/code\u003e, the sample name\nshould be Sample1.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-output\" class=\"anchor\" href=\"#output\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003eResult\u003c/code\u003e folder under current path(default) or output_folder set by user. A typical structure of \u003ccode\u003eResult\u003c/code\u003e is follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e Result/\n \u251c\u2500\u2500 QC\n \u2502 \u251c\u2500\u2500 N1141_1.clean_fastqc.html\n \u2502 \u251c\u2500\u2500 N1141_2.clean_fastqc.html\n \u2502 \u251c\u2500\u2500 N1177_1.clean_fastqc.html\n \u2502 \u2514\u2500\u2500 N1177_2.clean_fastqc.html\n \u251c\u2500\u2500 Identified_lncRNA\n \u2502 \u251c\u2500\u2500 all_lncRNA_for_classifier.gtf\n \u2502 \u251c\u2500\u2500 final_all.fa\n \u2502 \u251c\u2500\u2500 final_all.gtf\n \u2502 \u251c\u2500\u2500 lncRNA.fa\n \u2502 \u251c\u2500\u2500 protein_coding.fa\n \u2502 \u2514\u2500\u2500 protein_coding.final.gtf\n \u251c\u2500\u2500 LncReporter\n \u2502 \u251c\u2500\u2500 Differential_Expression_analysis.csv\n \u2502 \u2514\u2500\u2500 Report.html\n \u251c\u2500\u2500 Quantification\n \u2502 \u251c\u2500\u2500 kallisto.count.txt\n \u2502 \u2514\u2500\u2500 kallisto.tpm.txt\n \u2514\u2500\u2500 Star_alignment\n \u251c\u2500\u2500 STAR_N1141\n \u2502 \u251c\u2500\u2500 N1141Aligned.sortedByCoord.out.bam\n \u2502 \u251c\u2500\u2500 N1141Log.final.out\n \u2502 \u251c\u2500\u2500 N1141Log.out\n \u2502 \u251c\u2500\u2500 N1141Log.progress.out\n \u2502 \u2514\u2500\u2500 N1141SJ.out.tab\n \u2514\u2500\u2500 STAR_N1177\n \u251c\u2500\u2500 N1177Aligned.sortedByCoord.out.bam\n \u251c\u2500\u2500 N1177Log.final.out\n \u251c\u2500\u2500 N1177Log.out\n \u251c\u2500\u2500 N1177Log.progress.out\n \u2514\u2500\u2500 N1177SJ.out.tab\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eQC\u003c/code\u003e stored the Quality control output generated by FastQC or AfterQC software.\u003cbr\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eIdentified_lncRNA\u003c/code\u003e contains all assembled lncRNA and their sequences. \u003cem\u003eall_lncRNA_for_classifier.gtf\u003c/em\u003e includes both novel and known lncRNA features in \u003ca href=\"http://www.ensembl.org/info/website/upload/gff.html\" rel=\"nofollow\"\u003eGTF format\u003c/a\u003e;\n\u003cem\u003elncRNA.fa\u003c/em\u003e is all lncRNA sequences in fasta format. \u003cem\u003eprotein_coding.final.gtf\u003c/em\u003e and \u003cem\u003eprotein_coding.fa\u003c/em\u003e are protein coding information extracted from gencode annotation. \u003cem\u003efinal_all.gtf\u003c/em\u003e and \u003cem\u003efinal_all.fa\u003c/em\u003e are combined files for further analysis.\u003cbr\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eAlignment\u003c/code\u003e are hisat/tophat/STAR aligner standard output\u003cbr\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eQuantification\u003c/code\u003e are estimated abundance using kallisto. \u003cem\u003ekallisto.count.txt\u003c/em\u003e stored reads count matrix and \u003cem\u003ekallisto.tpm.txt\u003c/em\u003e are tpm(Transcripts Per Kilobase Million) matrix.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eLncReporter\u003c/code\u003e stored the interactive report file and differential expression matrix generated by LncPipeReporter which wrapped EdgeR.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-tips\" class=\"anchor\" href=\"#tips\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTips\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cg-emoji class=\"g-emoji\" alias=\"blush\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f60a.png\"\u003e\ud83d\ude0a\u003c/g-emoji\u003ePlz keep the consistency of your genome sequence, index library and annotation files: genome version, chromosome format, gtf coordinated e.g. The third-party software may stop for any of the above reasons.\u003c/li\u003e\n\u003cli\u003e\n\u003cg-emoji class=\"g-emoji\" alias=\"confused\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f615.png\"\u003e\ud83d\ude15\u003c/g-emoji\u003eSetting your analysis parameters always in config file, differ project should corresponding to differ configurations for reproductive analysis. To rerun a project, you can just specify -c \u003ccode\u003eyour.config\u003c/code\u003e in your command, which can also help you to record analysis parameters.\u003c/li\u003e\n\u003cli\u003e\n\u003cg-emoji class=\"g-emoji\" alias=\"open_mouth\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f62e.png\"\u003e\ud83d\ude2e\u003c/g-emoji\u003eRun analysis on docker container, no much to say.\u003c/li\u003e\n\u003cli\u003e\n\u003cg-emoji class=\"g-emoji\" alias=\"grimacing\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f62c.png\"\u003e\ud83d\ude2c\u003c/g-emoji\u003eAlways use the latest version to be away from the known bugs.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-acknowledgement\" class=\"anchor\" href=\"#acknowledgement\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgement\u003c/h2\u003e\n\u003cp\u003eThanks to the author of \u003ca href=\"https://github.com/OpenGene/AfterQC\"\u003eAfterQC\u003c/a\u003e, Shifu Chen, for his help on providing a gzip output support to meet the require of LncPipe. Thanks to the internal test by Hongwan Zhang and Yan Wang from SYSUCC Cancer bioinformatics platform.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-faq\" class=\"anchor\" href=\"#faq\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFAQ\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cem\u003e1. PLEK throws an error \"/data/software/PLEK.1.2/PLEK.py:line12: $\u0027\\r\u0027: can not find command\", how to fix?\u003c/em\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cblockquote\u003e\n\u003cp\u003eA: using the follow command as suggested in the installation section.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cpre\u003e\u003ccode\u003e perl -CD -pi -e\u0027tr/\\x{feff}//d \u0026amp;\u0026amp; s/[\\r\\n]+/\\n/\u0027 *.py \n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cem\u003e2. IOError: [Errno 2] No such file or directory: \u0027/opt/CPAT-1.2.3/dat/Human_Hexamer.tsv\u0027?\u003c/em\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cblockquote\u003e\n\u003cp\u003eA: The cpat command required the \u003ccode\u003eHuman_Hexamer.tsv\u003c/code\u003e to predict lncRNA coding potential, plz check your \u003ccode\u003ecpatpath\u003c/code\u003e parameters.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cem\u003e3. When using htseq to quantify transicript, it throws \"Error occured when reading beginning of SAM/BAM file. \u0027csamtools.AlignedRead\u0027 object has no attribute \u0027reference_start\u0027 \"\u003c/em\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cblockquote\u003e\n\u003cp\u003eA: It\u0027s a version conflict caused by htseq and hisat generated bamfile, a possible solution for this is to install the old version of htseq\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contact\" class=\"anchor\" href=\"#contact\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h2\u003e\n\u003cp\u003eFor implementation:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/likelet\"\u003eQi Zhao\u003c/a\u003e \u003ca href=\"mailto:zhaoqi@sysucc.org.cn\"\u003ezhaoqi@sysucc.org.cn\u003c/a\u003e, Sun Yat-sen University Cancer Center;\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://icannotendure.space\" rel=\"nofollow\"\u003eYu Sun\u003c/a\u003e \u003ca href=\"mailto:sun_yu@mail.nankai.edu.cn\"\u003esun_yu@mail.nankai.edu.cn\u003c/a\u003e, Nan kai University;\u003cbr\u003e\nFor project design and new feature request:\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/likelet\"\u003eQi Zhao\u003c/a\u003e \u003ca href=\"mailto:zhaoqi@sysucc.org.cn\"\u003ezhaoqi@sysucc.org.cn\u003c/a\u003e, Sun Yat-sen University Cancer Center;\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"\"\u003eZhixiang Zuo\u003c/a\u003e \u003ca href=\"mailto:zuozhx@sysucc.org.cn\"\u003ezuozhx@sysucc.org.cn\u003c/a\u003e, Sun Yat-sen University Cancer Center;\u003c/li\u003e\n\u003c/ul\u003e\n\u003cblockquote\u003e\n\u003cp\u003eWe strongly recommend users open new issues if they have questions or find bugs.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"LICENSE\"\u003eGPL v3 license\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-citation\" class=\"anchor\" href=\"#citation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\u003cp\u003eQi Zhao, Yu Sun, Dawei Wang, Hongwan Zhang, Kai Yu, Jian Zheng, Zhixiang Zuo. LncPipe: A Nextflow-based pipeline for identification and analysis of long non-coding RNAs from RNA-Seq data. Journal of Genetics and Genomics. 2018. (\u003cem\u003eIn press\u003c/em\u003e)\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for spades\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1643344466.0
+ "updated_at": 1580700253.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for sqlite-tools (http://www.sqlite.org/)",
+ "description": "Analysis scripts and code for Paramormyrops RNA-seq project",
"filenames": [
- "Singularity.3.36.0",
- "Singularity"
+ "trinity_singularity/Singularity"
],
- "full_name": "powerPlant/sqlite-tools-srf",
+ "full_name": "msuefishlab/paramormyrops_rnaseq",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for sqlite-tools to provide sqldiff\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-paramormyrops_rnaseq\" class=\"anchor\" aria-hidden=\"true\" href=\"#paramormyrops_rnaseq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eparamormyrops_rnaseq\u003c/h1\u003e\n\u003cp\u003eAnalysis scripts and code for our research article: Losilla, M., Luecke, D.M. \u0026amp; Gallant, J.R. The transcriptional correlates of divergent electric organ discharges in Paramormyrops electric fish. BMC Evol Biol 20, 6 (2020). \u003ca href=\"https://doi.org/10.1186/s12862-019-1572-3\" rel=\"nofollow\"\u003ehttps://doi.org/10.1186/s12862-019-1572-3\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis repository contains files with the code we used in our analysis.\u003c/p\u003e\n\u003cp\u003eThe table below serves as a guide to understand the flow of the code. It details the order in which the code was executed, along with a description and comments of each step. Notes are shown in \u003cstrong\u003ebold\u003c/strong\u003e text.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eNote:\u003c/em\u003e that a Singularity file is provided in the folder trinity_singularity to run on high performance computing systems. This would allow any user capable of running Singularity images to recreate the exact computing environment used for these analyses, though it is not required.\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003escript/command file\u003c/th\u003e\n\u003cth\u003edescription\u003c/th\u003e\n\u003cth\u003ecomments\u003c/th\u003e\n\u003cth\u003eadditional_outputs (These are provided in the folder named additional_files)\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_01_FastQCraw.sh\u003c/td\u003e\n\u003ctd\u003eassess quality of raw reads\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_02_trim_rename_unzip.sh\u003c/td\u003e\n\u003ctd\u003etrim, rename and unzip reads\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_03_FastQCtrimmed.sh\u003c/td\u003e\n\u003ctd\u003eassess quality of trimmed reads\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cstrong\u003eThe NCBI transcripts file we used as reference for the align and count steps was from: NCBI Paramormyrops kingsleyae Annotation Release 100, based on genome assembly PKINGS_0.1. We downloaded the transcripts file from here: ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/872/115/GCF_002872115.1_PKINGS_0.1 We used the file called: rna.fna.gz, and removed the sole rRNA transcript present: XR_002837744.1\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ecmd_generate_gene_to_trans_file.txt\u003c/td\u003e\n\u003ctd\u003egenerate a gene-to-transcript list from the NCBI transcripts file\u003c/td\u003e\n\u003ctd\u003ethis list is required by the align and count steps\u003c/td\u003e\n\u003ctd\u003egene-trans-map.txt\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_04a_RSEMindex.sh\u003c/td\u003e\n\u003ctd\u003eIndex the NCBI transcripts file\u003c/td\u003e\n\u003ctd\u003ecalls the singularity container\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_04a_bash.sh\u003c/td\u003e\n\u003ctd\u003eIndex the NCBI transcripts file\u003c/td\u003e\n\u003ctd\u003eexecutes commands within the singularity container\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_04b_RSEMperIndiv.sh\u003c/td\u003e\n\u003ctd\u003eAligns reads to NCBI transcripts file and counts reads per gene\u003c/td\u003e\n\u003ctd\u003ecalls the singularity container\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_04b_bash.sh\u003c/td\u003e\n\u003ctd\u003eAligns reads to NCBI transcripts file and counts reads per gene\u003c/td\u003e\n\u003ctd\u003eexecutes commands within the singularity container\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_04c_matrices.sh\u003c/td\u003e\n\u003ctd\u003eBuild gene expression matrices\u003c/td\u003e\n\u003ctd\u003ecalls the singularity container\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_04c_bash.sh\u003c/td\u003e\n\u003ctd\u003eBuild gene expression matrices\u003c/td\u003e\n\u003ctd\u003eexecutes commands within the singularity container\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003cstrong\u003eAt this point the gene expression matrices (RSEM.gene.counts.matrix and RSEM.gene.TMM.counts.matrix ) use gene names and symbols from the NCBI transcriptome. However, EntrezGeneIDs are preferred for downstream analyses. Therefore, I converted their gene names and symbols to Pkings EntrezGeneIDs with the next R code. The converted files were assigned to the original file names. The original files were first renamed to: \u0026lt;orginal name\u0026gt;_ORIG_gene_symbols\u003c/strong\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003etranslate_gene_IDs.Rmd\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e\n\u003cli\u003e Replace gene names and symbols with EntrezGeneIDs in the gene expression matrices\u003c/li\u003e \u003cli\u003e generate a file with the columns Pking EntrezGeneID, gene name, gene symbol and type of gene for each of the predicted 27610 P. kingsleyae genes. This file is named Dic.PkingEntrezGeneID-to-name_symbol_type.txt \u003c/li\u003e\n\u003c/ol\u003e\u003c/td\u003e\n\u003ctd\u003eThis code runs on the renamed files\u003c/td\u003e\n\u003ctd\u003eDic.PkingEntrezGeneID-to-name_symbol_type.txt\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_05a_DE_analyses.sh\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e \u003cli\u003e Data exploration - Correlation matrix, PCA \u003c/li\u003e \u003cli\u003e DGE and MA plots - all 10 possible pairwise OTU comparisons \u003c/li\u003e\n\u003c/ol\u003e\u003c/td\u003e\n\u003ctd\u003ecalls the singularity container\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_05a_bash_DE_genes.sh\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e \u003cli\u003e Data exploration - Correlation matrix, PCA \u003c/li\u003e \u003cli\u003e DGE and MA plots - all 10 possible pairwise OTU comparisons \u003c/li\u003e\n\u003c/ol\u003e\u003c/td\u003e\n\u003ctd\u003e\n\u003cli\u003e executes commands within the singularity container \u003c/li\u003e\n\u003cli\u003e We modified 2) to use the function estimateDisp() instead of the functions estimateCommonDisp() and estimateTagwiseDisp() \u003c/li\u003e\n\u003c/td\u003e\n\u003ctd\u003euses the samples.txt file\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eClustering_of_DEG_mean.Rmd\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e \u003cli\u003e For each phenotype pair, extract the genes that meet the expression filters (Set B groups) \u003c/li\u003e \u003cli\u003e plot expression patterns of the genes in each group from 1) \u003c/li\u003e\n\u003c/ol\u003e\u003c/td\u003e\n\u003ctd\u003egenerates black \u0026amp; white and colored plots for Set B genes (These plots served informational purposes)\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003egenerate_suppl_files_DEG_comparisons_and_groups.Rmd\u003c/td\u003e\n\u003ctd\u003egenerate the supplemental files with the details of the \u003col\u003e \u003cli\u003e 10 DGE comparisons and \u003c/li\u003e \u003cli\u003e Set B groups \u003c/li\u003e\n\u003c/ol\u003e\n\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003esh_06_blastp.sh\u003c/td\u003e\n\u003ctd\u003eblast P. kingsleyae proteins to D. rerio proteins\u003c/td\u003e\n\u003ctd\u003eoutput is split into 7 files, we merged all to one file afterwards\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAnnotation_wrangling.Rmd\u003c/td\u003e\n\u003ctd\u003eFor each ontology, generate two \u0027dictionaries\u0027: \u003col\u003e \u003cli\u003e Pking Entrez Gene IDs to D. rerio GO IDs \u003c/li\u003e \u003cli\u003e D. rerio GO IDs to GO terms \u003c/li\u003e \u003c/ol\u003e\n\u003c/td\u003e\n\u003ctd\u003eFiles from 2) were not used in later scripts, they served as references\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e \u003cli\u003e Dic.PkingEntrezGeneID-to-GO.{ontology}.txt \u003c/li\u003e \u003cli\u003e Dic.{ontology}.GOid_to_term.txt \u003c/li\u003e\n\u003c/ol\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eenrichment_on_Pkings _all_10_DGE_comparisons.Rmd\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e \u003cli\u003e GO enrichment on all 10 DGE comparisons \u003c/li\u003e \u003cli\u003e Horizontal bar plot significant GO terms\u003c/li\u003e\n\u003c/ol\u003e\u003c/td\u003e\n\u003ctd\u003e\n\u003cli\u003e Xcel file from 1) is part of the supplementary files \u003c/li\u003e\n\u003cli\u003e This code also produces a file with information on each upregulated gene annotated to enriched GO terms, including how many GO terms the gene was annotated to for a given upregulated list and ontology (frequency). The file served informational purposes \u003c/li\u003e\n\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eenrichment_on_Pkings_clusters.Rmd\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e \u003cli\u003e GO enrichment on Set B groups \u003c/li\u003e \u003cli\u003e Horizontal bar plot significant GO terms \u003c/li\u003e \u003c/ol\u003e\u003c/td\u003e\n\u003ctd\u003e\n\u003cli\u003e Xcel file from 1) is part of the supplementary files \u003c/li\u003e \u003cli\u003e the horizontal bar plot from 2) served informational purposes) \u003c/li\u003e \u003cli\u003e This code also produces a file with information on each upregulated gene annotated to enriched GO terms, including how many GO terms the gene was annotated to for a given upregulated list and ontology (frequency). The file served informational purposes \u003c/li\u003e\n\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eset_C.Rmd\u003c/td\u003e\n\u003ctd\u003e\u003col\u003e \u003cli\u003e Intersect upregulated genes from Sets A\u0027 and B (these intersected genes are Set C) \u003c/li\u003e \u003cli\u003e GO enrichment on Set C genes \u003c/li\u003e \u003cli\u003e plot expression patterns of Set C genes \u003c/li\u003e \u003cli\u003e Horizontal bar plot significant GO terms \u003c/li\u003e \u003c/ol\u003e\u003c/td\u003e\n\u003ctd\u003eThe outputs are: \u003col\u003e \u003cli\u003e one file per list of upregulated genes \u003c/li\u003e \u003cli\u003e one file per list of enriched GO terms \u003c/li\u003e \u003cli\u003e Xcel file with upregulated genes (consolidation of output 1) \u003c/li\u003e \u003cli\u003e Xcel file with enriched GO terms (consolidation of output 2) \u003c/li\u003e \u003cli\u003e Xcel file with information on each upregulated gene annotated to enriched GO terms, including how many GO terms the gene was annotated to for a given upregulated list and ontology (frequency). The file served informational purposes \u003c/li\u003e \u003cli\u003e Color plots for Set C genes expression patterns \u003c/li\u003e \u003cli\u003e Horizontal bar plot with enriched GO terms \u003c/li\u003e \u003c/ol\u003e \u003cli\u003e Outputs 3) and 4) are part of the supplemental files \u003c/li\u003e \u003cli\u003e Outputs 6) and 7) make up Figs. 4-6 \u003c/li\u003e\n\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1643154969.0
+ "updated_at": 1602949531.0
},
{
"data_format": 2,
- "description": "Version 3 of OnDemand apps",
+ "description": "Proteomics pipeline",
"filenames": [
- "rstudio_server_app/Singularity",
- "shiny_app/ext/Singularity"
+ "Singularity/singularity-master/singularity-master/examples/shub/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/scientific/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/arch/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/ubuntu/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/centos/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/docker/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/scratch/Singularity.busybox",
+ "Singularity/singularity-master/singularity-master/examples/scratch/Singularity.alpine",
+ "Singularity/singularity-master/singularity-master/examples/self/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/busybox/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/apps/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/apps/Singularity.cowsay",
+ "Singularity/singularity-master/singularity-master/examples/instances/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/asciinema/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/sle/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/raspbian/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/library/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/multistage/Singularity",
+ "Singularity/singularity-master/singularity-master/examples/opensuse/Singularity",
+ "Singularity/singularity-master/singularity-master/e2e/testdata/Singularity"
],
- "full_name": "CHPC-UofU/OOD-apps-v3",
+ "full_name": "HayleyPrice/Pipeline",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ood-apps\" class=\"anchor\" href=\"#ood-apps\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOOD-apps\u003c/h1\u003e\n\u003cp\u003eRepository of CHPC\u0027s Open OnDemand apps\u003c/p\u003e\n\u003cp\u003eVersion 3.0\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003etemplated filling of job parameters\u003c/li\u003e\n\u003cli\u003edynamic filling of application versions (module files)\u003c/li\u003e\n\u003cli\u003ethe templates are in directory app-templates\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis is a repository of interactive apps used at CHPC with Open OnDemand.\u003c/p\u003e\n\u003cp\u003eEach subdirectory has its own README.md which contains information about this particular app.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1643047602.0
+ "updated_at": 1645798954.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "context/ocserv-container/Singularity.def",
+ "context/openconnect-container/Singularity.def"
],
- "full_name": "zellerlab/vortex_light",
+ "full_name": "cooperative-computing-lab/userlevel-vpn-tun-tap",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-vortex_light\" class=\"anchor\" href=\"#vortex_light\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003evortex_light\u003c/h1\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-installing-locally-and-running-from-local-installation\" class=\"anchor\" href=\"#installing-locally-and-running-from-local-installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling locally and running from local installation\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003eClone the repo from GitHub.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/zellerlab/vortex_light.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eCreate a conda environment with NextFlow, e.g. by using the provided \u003ccode\u003eenvironment.yml\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003ecd vortex_light\nconda env create -f environment.yml\nconda activate vortex_light\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\n\u003cp\u003eMake a copy of the \u003ccode\u003econfig/run.config\u003c/code\u003e file and adjust it to your environment.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun the pipeline\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run /path/to/vortex_light/main.nf --input_dir /path/to/input_files --output_dir /path/to/output_dir -c /path/to/run.config\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cem\u003eNote: Nextflow itself requires at least \u003ccode\u003e5GB\u003c/code\u003e of memory.\u003c/em\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-running-from-github\" class=\"anchor\" href=\"#running-from-github\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning from GitHub\u003c/h3\u003e\n\u003cp\u003eThis requires a local nextflow installation. If you don\u0027t have one, see Steps 1/2 above.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eMake a local copy of the \u003ca href=\"https://raw.githubusercontent.com/zellerlab/vortex_light/main/config/run.config\" rel=\"nofollow\"\u003erun configuration file\u003c/a\u003e and adjust to your environment.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun the pipeline\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003enextflow run zellerlab/vortex_light --input_dir /path/to/input_files --output_dir /path/to/output_dir -c /path/to/run.config\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cem\u003eNote: Nextflow itself requires at least \u003ccode\u003e5GB\u003c/code\u003e of memory.\u003c/em\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-input-parameters\" class=\"anchor\" href=\"#input-parameters\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInput parameters\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--input_dir\u003c/code\u003e should be a folder with bam files or with gzipped fastq files. For fastq files, individual samples should be separated into individual folders.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--output_dir\u003c/code\u003e is \u003ccode\u003evlight_out\u003c/code\u003e in the local directory by default.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--skip_\u0026lt;analysis\u0026gt;\u003c/code\u003e, \u003ccode\u003e--run_\u0026lt;analysis\u0026gt;\u003c/code\u003e skips, resp. explicitly requires execution of the specified analysis (\u003ccode\u003epathseq\u003c/code\u003e, \u003ccode\u003ebase_counts\u003c/code\u003e (read counts post pre-processing), \u003ccode\u003ekraken2\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--publishMode\u003c/code\u003e allows to switch between various modes of how results files are placed in the \u003ccode\u003eoutput_dir\u003c/code\u003e (cf. NextFlow documentation)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-notes\" class=\"anchor\" href=\"#notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ekraken2\u003c/code\u003e can only run when the parameter \u003ccode\u003ekraken_database\u003c/code\u003e is set.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003epathseq\u003c/code\u003e can only run when the parameter \u003ccode\u003epathseq_database\u003c/code\u003e is set.\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eOutputs\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThe output folder contains:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ea subdirectory per sample (named \u003ccode\u003e\u0026lt;sample\u0026gt;\u003c/code\u003e) with\n\u003cul\u003e\n\u003cli\u003ethe kraken2 report \u003ccode\u003e\u0026lt;sample\u0026gt;.kraken2_report.txt\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003ethe library size \u003ccode\u003e\u0026lt;sample\u0026gt;.libsize.txt\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003epathseq output\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003e\u0026lt;sample\u0026gt;.pathseq.bam\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003e\u0026lt;sample\u0026gt;.pathseq.bam.sgi\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003e\u0026lt;sample\u0026gt;.pathseq.score_metrics\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003e\u0026lt;sample\u0026gt;.pathseq.scores\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eNote that by default, all files in the output folder are symlinks into the work dir! Before you delete the work dir, ensure you have dereferenced copies. Alternatively, change the --publishMode parameter to \u003ccode\u003ecopy\u003c/code\u003e or \u003ccode\u003elink\u003c/code\u003e (if the target file system supports hard links).\u003c/strong\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-userlevel-vpn-tun-tap\" class=\"anchor\" aria-hidden=\"true\" href=\"#userlevel-vpn-tun-tap\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003euserlevel-vpn-tun-tap\u003c/h1\u003e\n\u003cp\u003eSetup of a virtual network interface inside a singularity container using\nnetwork namespaces. All the network traffic of the container is routed to the\nvirtual interface and then a vpn server (ocserv). The interface gets its ip\nfrom the vpn server.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pre-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#pre-setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePre-setup\u003c/h2\u003e\n\u003cp\u003eThe following is needed to allow a user to manipulate namespaces at the compute nodes:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Add the following line to /etc/sysctl.d/99-sysctl.conf\u003c/span\u003e\nuser.max_user_namespaces=10000\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eand then run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esysctl -p\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe machine running the VPN host needs the following changes:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Add the following line to /etc/sysctl.d/99-sysctl.conf\u003c/span\u003e\nuser.max_user_namespaces=10000\nnet.ipv4.ip_forward=1\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eand similarly run \u003ccode\u003esysctl -p\u003c/code\u003e afterwards. These are the only steps that require\nroot at the execution sites.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the containers\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-building-the-singularity-image-for-the-vpn-clients\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-singularity-image-for-the-vpn-clients\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the singularity image for the VPN clients:\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e context/openconnect-container\n$ sudo singularity build vpncms-client.sif Singularity.def\n$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e ../..\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe build process installs openconnect and its dependencies using the\ncmssw/cms:rhel7 image as a base. It will also compile from source \u003ccode\u003evpnns\u003c/code\u003e,\n\u003ccode\u003eocproxy\u0027 and \u003c/code\u003etsocks`, the alternative programs to use openconnect without\nroot privileges.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-building-the-singularity-image-for-the-vpn-server\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-singularity-image-for-the-vpn-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the singularity image for the VPN server:\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e context/ocserv-container\n$ sudo singularity build vpncms-server.sif Singularity.def\n$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e ../..\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-the-vpn-server\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-the-vpn-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the VPN server\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-without-root-privileges\" class=\"anchor\" aria-hidden=\"true\" href=\"#without-root-privileges\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWithout root privileges:\u003c/h3\u003e\n\u003cp\u003eTo ensure that all processes are termianted when the singularity container\nterminates, we execute the image inside an instance:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ ./launch-vpn-server --image context/ocserv-container/vpncms-server.img --instance vpn_server --add-user myvpnuser:myvpnpasswd --port 8443\nAdded user: myvpnuser\nSERVER PIN:\npin-sha256:XXXXXXX...\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eWe make note of the server pin printed, as we will need it when connecting the clients.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-with-root-privileges\" class=\"anchor\" aria-hidden=\"true\" href=\"#with-root-privileges\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWith root privileges:\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo ./launch-vpn-server --image context/ocserv-container/vpncms-server.img --instance vpn_server --add-user myvpnuser:myvpnpasswd --port 8443 --privileged\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-launch-some-vpn-clients\" class=\"anchor\" aria-hidden=\"true\" href=\"#launch-some-vpn-clients\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLaunch some vpn clients;\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ ./launch-vpn-client --image context/openconnect-container/vpncms-client.sif \\\n --server MACHINE_WHERE_OCSERV_RUNS:8443 \\\n --servercert pin-sha256:XXXXXXX... \\\n --user myvpnuser \\\n --passwd myvpnpasswd \\\n --vpn-mode ns \\\n -- /bin/bash\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe \u003ccode\u003elaunch-vpn-client\u003c/code\u003e script simply starts/stops an instance of the singularity\ncontainer so that no openconnect services are left behind The real virtual interface\nsetup magic happens in /etc/cms-vpn/vpn-start.sh.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-adding-cvmfs-support\" class=\"anchor\" aria-hidden=\"true\" href=\"#adding-cvmfs-support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAdding cvmfs support\u003c/h2\u003e\n\u003cp\u003ecvmfs can be provided using cvmfsexec via fusermount and singularity. We do\nthis by creating a self-contained cvmfsexec distribution and using it as the\nsingularity executable:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git clone https://github.com/cvmfs/cvmfsexec.git\n$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e cvmfsexec\n$ ./makedist -s -m rhel7-x86_64 osg\n$ ./makedist -s -o /tmp/singularity-cmvfsexec\n$ \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e ..\n$ \u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e SINGCVMFS_REPOSITORIES=cms.cern.ch,atlas.cern.ch,oasis.opensciencegrid.org\n$ ./launch-vpn-client --image context/openconnect-container/vpncms-client.sif \\\n --server MACHINE_WHERE_OCSERV_RUNS:8443 \\\n --servercert pin-sha256:XXXXXXX... \\\n --user myvpnuser \\\n --passwd myvpnpasswd \\\n --vpn-mode ns \\\n --singularity /tmp/singularity-cmvfsexec \\\n -- ls /cvmfs/cms.cern.ch\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1642692226.0
+ "updated_at": 1614364980.0
},
{
"data_format": 2,
- "description": "Pycharm in Singularity",
+ "description": "Docker Environment for running 21cmFAST",
"filenames": [
"Singularity"
],
- "full_name": "serheang/pycharm_singularity",
- "latest_release": "pycharm",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-build-status-badge-\" class=\"anchor\" href=\"#build-status-badge-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild status badge: \u003ca href=\"https://github.com/serheang/pycharm_singularity/workflows/build-singularity-container/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/serheang/pycharm_singularity/workflows/build-singularity-container/badge.svg\" alt=\"badge.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-pycharm_singularity\" class=\"anchor\" href=\"#pycharm_singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003epycharm_singularity\u003c/h1\u003e\n\u003cp\u003ePycharm in Singularity container.\u003c/p\u003e\n",
+ "full_name": "nkern/21cmfast_env",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-21cmfast_env\" class=\"anchor\" aria-hidden=\"true\" href=\"#21cmfast_env\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e21cmfast_env\u003c/h1\u003e\n\u003cp\u003eDocker environment for running 21cmFAST on ubuntu\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1642676609.0
+ "updated_at": 1503421722.0
},
{
"data_format": 2,
- "description": "A curriculum framework",
+ "description": "GSOC 2020 @ Red Hen \u0026 Vitrivr",
"filenames": [
- "pddlgym_planners/FD/misc/releases/19.06/Singularity.19.06",
- "pddlgym_planners/FD/misc/releases/latest/Singularity",
- "pddlgym_planners/FD/misc/releases/19.12/Singularity.19.12",
- "pddlgym_planners/FD/misc/releases/20.06/Singularity.20.06"
+ "openpose_singularity/Singularity.openpose_v1.60",
+ "openpose_singularity/Singularity.frankier_gsoc2020",
+ "attic/vitrivr_singularity/Singularity.adampro",
+ "attic/vitrivr_singularity/Singularity.cineast"
],
- "full_name": "nitsan57/CDM_torch",
+ "full_name": "frankier/gsoc2020",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-cdm_torch\" class=\"anchor\" href=\"#cdm_torch\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCDM_torch\u003c/h1\u003e\n\u003cp\u003eA curriculum framework\ncheck out cdm.ipynb\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://github.com/frankier/gsoc2020/wiki\"\u003eProgress is on the wiki.\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis repository is for small odds/ends and to point to other places where the\nactual coding has taken place including forks of other projects.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contents\" class=\"anchor\" aria-hidden=\"true\" href=\"#contents\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContents\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eattic\u003c/code\u003e contains old and abandoned work:\n\u003cul\u003e\n\u003cli\u003eHand pose annotation\u003c/li\u003e\n\u003cli\u003eSingularity def files for Cineast (Docker is used now)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eopenpose_singularity\u003c/code\u003e contains Singularity container for OpenPose\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003esingslurm\u003c/code\u003e (Snakemake SLURM profile) Run SLURM outside container by\ncommunicating over the filesystem\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eskelshop\u003c/code\u003e contains a \u003cem\u003esubmodule\u003c/em\u003e for the skelshop utility, which contains\nall the Python code/Snakemake pipelines, for skeleton dumping, tracking,\nsegmentation, and embedding pipelines\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eforks\u003c/code\u003e contains \u003cem\u003esubmodules\u003c/em\u003e with forks of existing repos:\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003evitrivr-ng\u003c/code\u003e, \u003ccode\u003ecineast\u003c/code\u003e \u0026amp; \u003ccode\u003ecottontail\u003c/code\u003e are forks of Vitrivr projects\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ejavacpp-presets-add-openpose\u003c/code\u003e: OpenPose JavaCPP binding\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eopencv_wrapper\u003c/code\u003e: Add a couple of extra methods\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eopenpose\u003c/code\u003e: Improve Python API and enable broken tracking\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003evitrivr_pilot\u003c/code\u003e contains scripts to deploy pilot Vitrivr instance\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003erefreeze_hand_tracking\u003c/code\u003e contains code to refreeze a pretrained hand\ndetection model\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1642618241.0
+ "updated_at": 1603876660.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for truvari (https://github.com/spiralgenetics/truvari)",
"filenames": [
- "Singularity.def"
+ "Singularity",
+ "Singularity.2.1.0"
],
- "full_name": "mysteryresearcher/dasha",
+ "full_name": "powerPlant/truvari-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dasha-distributed-nonconvex-optimization-with-communication-compression-optimal-oracle-complexity-and-without-client-synchronization\" class=\"anchor\" href=\"#dasha-distributed-nonconvex-optimization-with-communication-compression-optimal-oracle-complexity-and-without-client-synchronization\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDASHA: Distributed Nonconvex Optimization with Communication Compression, Optimal Oracle Complexity and Without Client Synchronization\u003c/h1\u003e\n\u003cp\u003eThis repository provides the code to reproduce the experiments of the submission for The Thirty-ninth International Conference on Machine Learning (ICML 2022)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quick-start\" class=\"anchor\" href=\"#quick-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1-install-singularity-optional\" class=\"anchor\" href=\"#1-install-singularity-optional\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Install \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/introduction.html\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e (optional)\u003c/h3\u003e\n\u003cp\u003eIf you don\u0027t want to install Singularity, make sure that you have all dependecies from Singularity.def (python3, numpy, pytorch, etc.)\u003c/p\u003e\n\u003cp\u003ea. Pull an image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull library://k3nfalt/default/python_ml:sha256.efcd1fc038228cb7eb0f6f1942dfbaa439cd95d6463015b83ceb2dbaad9e1e98\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eb. Open a shell console of the image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv ~/python_ml_sha256.efcd1fc038228cb7eb0f6f1942dfbaa439cd95d6463015b83ceb2dbaad9e1e98.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-2-prepare-scripts-for-experiments\" class=\"anchor\" href=\"#2-prepare-scripts-for-experiments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Prepare scripts for experiments\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003ePYTHONPATH=./code python3 ./code/distributed_optimization_library/experiments/zero_marina/config_libsvm_zero_marina.py \n--dumps_path SOME_PATH --dataset_path PATH_TO_FOLDER_WITH_DATASET --dataset mushrooms \n--experiments_name EXPERIMENT_NAME --num_nodes_list 5 \n--step_size_range -10 4 --number_of_seeds 1 --number_of_iterations 21000 \n--algorithm_names zero_marina marina --function nonconvex \n--compressors rand_k --number_of_coordinates 10 --quality_check_rate 10\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-3-execute-scripts\" class=\"anchor\" href=\"#3-execute-scripts\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. Execute scripts\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esh SOME_PATH/EXPERIMENT_NAME/singularity_*.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-4-plot-results\" class=\"anchor\" href=\"#4-plot-results\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. Plot results\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003ePYTHONPATH=./code python3 ./code/distributed_optimization_library/experiments/plots/zero_marina/plot_marina_mushrooms_gradient.py \n--dumps_paths SOME_PATH/EXPERIMENT_NAME\n--output_path SOME_PATH_FOR_PLOTS\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOne can find all other scripts \u003ca href=\"https://github.com/mysteryresearcher/dasha/blob/ac7d0dce798898fb6255e7c0ab181def8ac88f48/code/distributed_optimization_library/experiments/plots/zero_marina/script.txt#L1\"\u003ehere\u003c/a\u003e that generate experiments from the paper.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for truvari, a Structural variant toolkit for benchmarking, annotating and more for VCFs.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1642513577.0
+ "updated_at": 1613598092.0
},
{
"data_format": 2,
- "description": null,
+ "description": "proof of concept for running singularity in a singularity container",
"filenames": [
"Singularity"
],
- "full_name": "ddbj/singularity_guacamole_mysql",
+ "full_name": "lkirk/singularity-in-singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity_guacamole_mysql\" class=\"anchor\" href=\"#singularity_guacamole_mysql\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_guacamole_mysql\u003c/h1\u003e\n\u003cp\u003eRemote Desktop \u3084 VNC \u306e\u63a5\u7d9a\u3092 HTTP \u306b\u5909\u63db\u3057\u3066 HTML5 \u30a6\u30a7\u30d6\u30d6\u30e9\u30a6\u30b6\u3067\u8868\u793a\u3059\u308b Apache Guacamole \u3092 singularity instance \u3067\u5b9f\u884c\u3059\u308b\u305f\u3081\u306e\u30ec\u30b7\u30d4\u30d5\u30a1\u30a4\u30eb\u30fb\u521d\u671f\u5316\u30b9\u30af\u30ea\u30d7\u30c8\u3067\u3059\u3002\u30e6\u30fc\u30b6\u30fc\u8a8d\u8a3c\u306bMySQL\u3092\u4f7f\u7528\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003eguacamole 1.3\u3067\u3059\u3067\u306b\u30a4\u30f3\u30b9\u30bf\u30f3\u30b9\u3092\u5b9f\u884c\u3057\u3066\u3044\u308b\u5834\u5408\u306f\u3001\u30a4\u30f3\u30b9\u30bf\u30f3\u30b9\u3092\u4e00\u5ea6\u7d42\u4e86\u3057\u3066\u300csingularity image\u306e\u30d3\u30eb\u30c9\u300d\u3092\u5b9f\u884c\u5f8c\u3001\u300c\u30c7\u30fc\u30bf\u306e\u79fb\u884c\u300d\u307e\u3067\u9032\u3093\u3067\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-image-\u306e\u30d3\u30eb\u30c9\" class=\"anchor\" href=\"#singularity-image-%E3%81%AE%E3%83%93%E3%83%AB%E3%83%89\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity image \u306e\u30d3\u30eb\u30c9\u003c/h2\u003e\n\u003cp\u003e\u4ee5\u4e0b\u306e\u30b3\u30de\u30f3\u30c9\u3067 singularity image \u3092\u30d3\u30eb\u30c9\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity build guacamole.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eMySQL, Tomcat\u306b\u3064\u3044\u3066\u306f\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u5148\u306b\u7f6e\u304b\u308c\u3066\u3044\u308b\u30d0\u30fc\u30b8\u30e7\u30f3\u304c\u9650\u5b9a\u3055\u308c\u3066\u3044\u308b\u305f\u3081\u3001\u30d5\u30a1\u30a4\u30eb\u3092\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3067\u304d\u305a\u306b\u30d3\u30eb\u30c9\u306b\u5931\u6557\u3059\u308b\u5834\u5408\u304c\u3042\u308a\u307e\u3059\u3002\u305d\u306e\u5834\u5408\u306f\u30d5\u30a1\u30a4\u30eb\u306e\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u5148\u3092\u898b\u3066\u3001Singularity\u30d5\u30a1\u30a4\u30eb\u4e2d\u306e\u4ee5\u4e0b\u306e\u30d0\u30fc\u30b8\u30e7\u30f3\u306e\u8a18\u8ff0\u3092\u9069\u5b9c\u5909\u66f4\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eMYSQL_VERSION=\"5.6.51\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cpre\u003e\u003ccode\u003eTOMCAT_VERSION=\"9.0.56\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-\u521d\u671f\u8a2d\u5b9a\" class=\"anchor\" href=\"#%E5%88%9D%E6%9C%9F%E8%A8%AD%E5%AE%9A\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u521d\u671f\u8a2d\u5b9a\u003c/h2\u003e\n\u003cp\u003e\u4ee5\u4e0b\u306e\u30b3\u30de\u30f3\u30c9\u3067 singularity isntance \u8d77\u52d5\u306e\u305f\u3081\u306e\u521d\u671f\u8a2d\u5b9a\u3092\u884c\u3044\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003e\u5b9f\u884c\u524d\u306b init.sh \u5185\u306e MYSQL_ROOT_PASSWD, MYSQL_GUACAMOLE_USER_PASSWD, MYSQL_PORT, GUACAMOLE_PORT, TOMCAT_SHUTDOWN_PORT, TOMCAT_PORT \u306e\u5024\u3092\u9069\u5b9c\u4fee\u6b63\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cp\u003e\"Enter current password for root (enter for none):\" \u3068\u8868\u793a\u3055\u308c\u305f\u3068\u3053\u308d\u3067\u51e6\u7406\u304c\u30a4\u30f3\u30bf\u30e9\u30af\u30c6\u30a3\u30d6\u306b\u306a\u308a\u307e\u3059\u3002\u3053\u3053\u3067\u306f\u30ea\u30bf\u30fc\u30f3\u30ad\u30fc\u3092\u62bc\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cp\u003e\u6b21\u306b\u3001\"Set root password? [Y/n]\" \u3068\u8868\u793a\u3055\u308c\u305f\u3068\u3053\u308d\u3067Y\u3092\u5165\u529b\u3057\u3001MySQL\u306eroot\u30e6\u30fc\u30b6\u30fc\u306e\u30d1\u30b9\u30ef\u30fc\u30c9\u3092\u8a2d\u5b9a\u3057\u307e\u3059\u3002\u3053\u3053\u3067\u3001init.sh\u306eMYSQL_ROOT_PASSWD\u306b\u8a2d\u5b9a\u3057\u305f\u5024\u3092\u5165\u529b\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u4ee5\u964d\u306f\u3059\u3079\u3066Y\u3092\u5165\u529b\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cp\u003e\u51e6\u7406\u304c\u5b8c\u4e86\u3059\u308b\u3068\u3001data\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u3068start_container.sh\u30d5\u30a1\u30a4\u30eb\u304c\u751f\u6210\u3055\u308c\u3066\u3044\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash init.sh\nexec init_mysql.sh\nperl: warning: Setting locale failed.\nperl: warning: Please check that your locale settings:\n\tLANGUAGE = \"ja_JP\",\n\tLC_ALL = (unset),\n\tLANG = \"ja_JP.UTF-8\"\n are supported and installed on your system.\nperl: warning: Falling back to the standard locale (\"C\").\nWARNING: Could not write to config file ./my.cnf: Read-only file system\n\nInstalling MySQL system tables...2021-03-17 18:46:46 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please use --explicit_defaults_for_timestamp server option (see documentation for more details).\n2021-03-17 18:46:46 0 [Note] Ignoring --secure-file-priv value as server is running with --bootstrap.\n2021-03-17 18:46:46 0 [Note] ./bin/mysqld (mysqld 5.6.51) starting as process 18851 ...\n2021-03-17 18:46:46 18851 [Note] InnoDB: Using atomics to ref count buffer pool pages\n2021-03-17 18:46:46 18851 [Note] InnoDB: The InnoDB memory heap is disabled\n2021-03-17 18:46:46 18851 [Note] InnoDB: Mutexes and rw_locks use GCC atomic builtins\n2021-03-17 18:46:46 18851 [Note] InnoDB: Memory barrier is not used\n2021-03-17 18:46:46 18851 [Note] InnoDB: Compressed tables use zlib 1.2.11\n2021-03-17 18:46:46 18851 [Note] InnoDB: Using CPU crc32 instructions\n2021-03-17 18:46:46 18851 [Note] InnoDB: Initializing buffer pool, size = 128.0M\n2021-03-17 18:46:46 18851 [Note] InnoDB: Completed initialization of buffer pool\n2021-03-17 18:46:46 18851 [Note] InnoDB: The first specified data file ./ibdata1 did not exist: a new database to be created!\n2021-03-17 18:46:46 18851 [Note] InnoDB: Setting file ./ibdata1 size to 12 MB\n2021-03-17 18:46:46 18851 [Note] InnoDB: Database physically writes the file full: wait...\n2021-03-17 18:46:46 18851 [Note] InnoDB: Setting log file ./ib_logfile101 size to 48 MB\n2021-03-17 18:46:46 18851 [Note] InnoDB: Setting log file ./ib_logfile1 size to 48 MB\n2021-03-17 18:46:47 18851 [Note] InnoDB: Renaming log file ./ib_logfile101 to ./ib_logfile0\n2021-03-17 18:46:47 18851 [Warning] InnoDB: New log files created, LSN=45781\n2021-03-17 18:46:47 18851 [Note] InnoDB: Doublewrite buffer not found: creating new\n2021-03-17 18:46:47 18851 [Note] InnoDB: Doublewrite buffer created\n2021-03-17 18:46:47 18851 [Note] InnoDB: 128 rollback segment(s) are active.\n2021-03-17 18:46:47 18851 [Warning] InnoDB: Creating foreign key constraint system tables.\n2021-03-17 18:46:47 18851 [Note] InnoDB: Foreign key constraint system tables created\n2021-03-17 18:46:47 18851 [Note] InnoDB: Creating tablespace and datafile system tables.\n2021-03-17 18:46:47 18851 [Note] InnoDB: Tablespace and datafile system tables created.\n2021-03-17 18:46:47 18851 [Note] InnoDB: Waiting for purge to start\n2021-03-17 18:46:47 18851 [Note] InnoDB: 5.6.51 started; log sequence number 0\n2021-03-17 18:46:47 18851 [Note] RSA private key file not found: /usr/local/mysql/data//private_key.pem. Some authentication plugins will not work.\n2021-03-17 18:46:47 18851 [Note] RSA public key file not found: /usr/local/mysql/data//public_key.pem. Some authentication plugins will not work.\n2021-03-17 18:46:53 18851 [Note] Binlog end\n2021-03-17 18:46:53 18851 [Note] InnoDB: FTS optimize thread exiting.\n2021-03-17 18:46:53 18851 [Note] InnoDB: Starting shutdown...\n2021-03-17 18:46:54 18851 [Note] InnoDB: Shutdown completed; log sequence number 1625977\nOK\n\nFilling help tables...2021-03-17 18:46:54 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please use --explicit_defaults_for_timestamp server option (see documentation for more details).\n2021-03-17 18:46:54 0 [Note] Ignoring --secure-file-priv value as server is running with --bootstrap.\n2021-03-17 18:46:54 0 [Note] ./bin/mysqld (mysqld 5.6.51) starting as process 18875 ...\n2021-03-17 18:46:54 18875 [Note] InnoDB: Using atomics to ref count buffer pool pages\n2021-03-17 18:46:54 18875 [Note] InnoDB: The InnoDB memory heap is disabled\n2021-03-17 18:46:54 18875 [Note] InnoDB: Mutexes and rw_locks use GCC atomic builtins\n2021-03-17 18:46:54 18875 [Note] InnoDB: Memory barrier is not used\n2021-03-17 18:46:54 18875 [Note] InnoDB: Compressed tables use zlib 1.2.11\n2021-03-17 18:46:54 18875 [Note] InnoDB: Using CPU crc32 instructions\n2021-03-17 18:46:54 18875 [Note] InnoDB: Initializing buffer pool, size = 128.0M\n2021-03-17 18:46:54 18875 [Note] InnoDB: Completed initialization of buffer pool\n2021-03-17 18:46:54 18875 [Note] InnoDB: Highest supported file format is Barracuda.\n2021-03-17 18:46:54 18875 [Note] InnoDB: 128 rollback segment(s) are active.\n2021-03-17 18:46:54 18875 [Note] InnoDB: Waiting for purge to start\n2021-03-17 18:46:55 18875 [Note] InnoDB: 5.6.51 started; log sequence number 1625977\n2021-03-17 18:46:55 18875 [Note] RSA private key file not found: /usr/local/mysql/data//private_key.pem. Some authentication plugins will not work.\n2021-03-17 18:46:55 18875 [Note] RSA public key file not found: /usr/local/mysql/data//public_key.pem. Some authentication plugins will not work.\n2021-03-17 18:46:55 18875 [Note] Binlog end\n2021-03-17 18:46:55 18875 [Note] InnoDB: FTS optimize thread exiting.\n2021-03-17 18:46:55 18875 [Note] InnoDB: Starting shutdown...\n2021-03-17 18:46:56 18875 [Note] InnoDB: Shutdown completed; log sequence number 1625987\nOK\n\nTo start mysqld at boot time you have to copy\nsupport-files/mysql.server to the right place for your system\n\nPLEASE REMEMBER TO SET A PASSWORD FOR THE MySQL root USER !\nTo do so, start the server, then issue the following commands:\n\n ./bin/mysqladmin -u root password \u0027new-password\u0027\n ./bin/mysqladmin -u root -h dbod04 password \u0027new-password\u0027\n\nAlternatively you can run:\n\n ./bin/mysql_secure_installation\n\nwhich will also give you the option of removing the test\ndatabases and anonymous user created by default. This is\nstrongly recommended for production servers.\n\nSee the manual for more instructions.\n\nYou can start the MySQL daemon with:\n\n cd . ; ./bin/mysqld_safe \u0026amp;\n\nYou can test the MySQL daemon with mysql-test-run.pl\n\n cd mysql-test ; perl mysql-test-run.pl\n\nPlease report any problems at http://bugs.mysql.com/\n\nThe latest information about MySQL is available on the web at\n\n http://www.mysql.com\n\nSupport MySQL by buying support/licenses at http://shop.mysql.com\n\nWARNING: Could not copy config file template ./support-files/my-default.cnf to\n./my.cnf, may not have access rights to do so.\nYou may want to copy the file manually, or create your own,\nit will then be used by default by the server when you start it.\n\nexec mysql_secure_installation\nINFO: instance started successfully\nperl: warning: Setting locale failed.\nperl: warning: Please check that your locale settings:\n\tLANGUAGE = \"ja_JP\",\n\tLC_ALL = (unset),\n\tLANG = \"ja_JP.UTF-8\"\n are supported and installed on your system.\nperl: warning: Falling back to the standard locale (\"C\").\n\n\n\nNOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MySQL\n SERVERS IN PRODUCTION USE! PLEASE READ EACH STEP CAREFULLY!\n\nIn order to log into MySQL to secure it, we\u0027ll need the current\npassword for the root user. If you\u0027ve just installed MySQL, and\nyou haven\u0027t set the root password yet, the password will be blank,\nso you should just press enter here.\n\nEnter current password for root (enter for none): \nOK, successfully used password, moving on...\n\nSetting the root password ensures that nobody can log into the MySQL\nroot user without the proper authorisation.\n\nSet root password? [Y/n] Y\nNew password: \nRe-enter new password: \nPassword updated successfully!\nReloading privilege tables..\n ... Success!\n\n\nBy default, a MySQL installation has an anonymous user, allowing anyone\nto log into MySQL without having to have a user account created for\nthem. This is intended only for testing, and to make the installation\ngo a bit smoother. You should remove them before moving into a\nproduction environment.\n\nRemove anonymous users? [Y/n] Y\n ... Success!\n\nNormally, root should only be allowed to connect from \u0027localhost\u0027. This\nensures that someone cannot guess at the root password from the network.\n\nDisallow root login remotely? [Y/n] Y\n ... Success!\n\nBy default, MySQL comes with a database named \u0027test\u0027 that anyone can\naccess. This is also intended only for testing, and should be removed\nbefore moving into a production environment.\n\nRemove test database and access to it? [Y/n] Y\n - Dropping test database...\n ... Success!\n - Removing privileges on test database...\n ... Success!\n\nReloading the privilege tables will ensure that all changes made so far\nwill take effect immediately.\n\nReload privilege tables now? [Y/n] Y\n ... Success!\n\n\n\n\nAll done! If you\u0027ve completed all of the above steps, your MySQL\ninstallation should now be secure.\n\nThanks for using MySQL!\n\n\nCleaning up...\nsetup guacamole database\nWarning: Using a password on the command line interface can be insecure.\nWarning: Using a password on the command line interface can be insecure.\nWarning: Using a password on the command line interface can be insecure.\nWarning: Using a password on the command line interface can be insecure.\nWarning: Using a password on the command line interface can be insecure.\nINFO: Stopping guacamole instance of /home/okuda/singularity/ubuntu-18.04-guacamole-1.3.0-mysql/guacamole.sif (PID=18915)\ncreate server.xml\ncreate guacamole_home\nINFO: instance started successfully\nINFO: Stopping guacamole instance of /home/okuda/singularity/ubuntu-18.04-guacamole-1.3.0-mysql/guacamole.sif (PID=19214)\ncreate guacamole.properties\ncreate start_container.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-instance-\u306e\u8d77\u52d5\" class=\"anchor\" href=\"#singularity-instance-%E3%81%AE%E8%B5%B7%E5%8B%95\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity instance \u306e\u8d77\u52d5\u003c/h2\u003e\n\u003cp\u003e\u4ee5\u4e0b\u306e\u30b3\u30de\u30f3\u30c9\u3067 singularity instance \u3092\u8d77\u52d5\u3057\u307e\u3059\u3002instance \u306e\u8d77\u52d5\u5f8c\u3001instance \u5185\u3067mysqld, guacd, tomcat\u3000\u304c\u8d77\u52d5\u3055\u308c\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash start_container.sh\nINFO: instance started successfully\nguacd[22]: INFO:\tGuacamole proxy daemon (guacd) version 1.3.0 started\nUsing CATALINA_BASE: /opt/tomcat\nUsing CATALINA_HOME: /opt/tomcat\nUsing CATALINA_TMPDIR: /opt/tomcat/temp\nUsing JRE_HOME: /usr\nUsing CLASSPATH: /opt/tomcat/bin/bootstrap.jar:/opt/tomcat/bin/tomcat-juli.jar\nUsing CATALINA_OPTS: \nTomcat started.\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-\u30c7\u30fc\u30bf\u306e\u79fb\u884c\" class=\"anchor\" href=\"#%E3%83%87%E3%83%BC%E3%82%BF%E3%81%AE%E7%A7%BB%E8%A1%8C\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u30c7\u30fc\u30bf\u306e\u79fb\u884c\u003c/h2\u003e\n\u003cp\u003eguacamole 1.3\u3067\u4f5c\u6210\u6e08\u307f\u306estart_container.sh\u3092\u4f7f\u3063\u3066\u65b0\u3057\u3044\u30a4\u30e1\u30fc\u30b8\u3067\u30a4\u30f3\u30b9\u30bf\u30f3\u30b9\u3092\u8d77\u52d5\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash start_container.sh\nINFO: instance started successfully\nguacd[25]: INFO:\tGuacamole proxy daemon (guacd) version 1.4.0 started\nUsing CATALINA_BASE: /opt/tomcat\nUsing CATALINA_HOME: /opt/tomcat\nUsing CATALINA_TMPDIR: /opt/tomcat/temp\nUsing JRE_HOME: /usr/lib/jvm/java-11-openjdk-amd64\nUsing CLASSPATH: /opt/tomcat/bin/bootstrap.jar:/opt/tomcat/bin/tomcat-juli.jar\nUsing CATALINA_OPTS: \nTomcat started.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u30a4\u30f3\u30b9\u30bf\u30f3\u30b9\u5185\u306b\u5165\u308a\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity shell instance://guacamole\nSingularity\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eguacamole-auth-jdbc-mysql-1.3.0.jar\u306e\u30b7\u30f3\u30dc\u30ea\u30c3\u30af\u30ea\u30f3\u30af\u3092guacamole-auth-jdbc-mysql-1.4.0.jar\u306e\u30b7\u30f3\u30dc\u30ea\u30c3\u30af\u30ea\u30f3\u30af\u306b\u5909\u66f4\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity\u0026gt; ls -l /etc/guacamole/extensions/\ntotal 4\nlrwxrwxrwx 1 okuda okuda 82 Mar 17 2021 guacamole-auth-jdbc-mysql-1.3.0.jar -\u0026gt; /usr/local/src/guacamole-auth-jdbc-1.3.0/mysql/guacamole-auth-jdbc-mysql-1.3.0.jar\nSingularity\u0026gt; ln -s /usr/local/src/guacamole-auth-jdbc-1.4.0/mysql/guacamole-auth-jdbc-mysql-1.4.0.jar /etc/guacamole/extensions/\nSingularity\u0026gt; ls -l /etc/guacamole/extensions/\ntotal 8\nlrwxrwxrwx 1 okuda okuda 82 Mar 17 2021 guacamole-auth-jdbc-mysql-1.3.0.jar -\u0026gt; /usr/local/src/guacamole-auth-jdbc-1.3.0/mysql/guacamole-auth-jdbc-mysql-1.3.0.jar\nlrwxrwxrwx 1 okuda okuda 82 Jan 17 12:06 guacamole-auth-jdbc-mysql-1.4.0.jar -\u0026gt; /usr/local/src/guacamole-auth-jdbc-1.4.0/mysql/guacamole-auth-jdbc-mysql-1.4.0.jar\nSingularity\u0026gt; rm /etc/guacamole/extensions/guacamole-auth-jdbc-mysql-1.3.0.jar \nSingularity\u0026gt; ls -l /etc/guacamole/extensions/\ntotal 4\nlrwxrwxrwx 1 okuda okuda 82 Jan 17 12:06 guacamole-auth-jdbc-mysql-1.4.0.jar -\u0026gt; /usr/local/src/guacamole-auth-jdbc-1.4.0/mysql/guacamole-auth-jdbc-mysql-1.4.0.jar\nSingularity\u0026gt; exit\nexit\n$\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u30a4\u30f3\u30b9\u30bf\u30f3\u30b9\u3092\u518d\u8d77\u52d5\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity instance stop guacamole\nINFO: Stopping guacamole instance of /home/okuda/singularity/ubuntu-18.04-guacamole-1.4.0-mysql/guacamole.sif (PID=29810)\n$ bash start_container.sh \nINFO: instance started successfully\nguacd[26]: INFO:\tGuacamole proxy daemon (guacd) version 1.4.0 started\nUsing CATALINA_BASE: /opt/tomcat\nUsing CATALINA_HOME: /opt/tomcat\nUsing CATALINA_TMPDIR: /opt/tomcat/temp\nUsing JRE_HOME: /usr/lib/jvm/java-11-openjdk-amd64\nUsing CLASSPATH: /opt/tomcat/bin/bootstrap.jar:/opt/tomcat/bin/tomcat-juli.jar\nUsing CATALINA_OPTS: \nTomcat started.\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-guacamole-\u3078\u306e\u30a2\u30af\u30bb\u30b9\" class=\"anchor\" href=\"#guacamole-%E3%81%B8%E3%81%AE%E3%82%A2%E3%82%AF%E3%82%BB%E3%82%B9\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eguacamole \u3078\u306e\u30a2\u30af\u30bb\u30b9\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"http://localhost\" rel=\"nofollow\"\u003ehttp://localhost\u003c/a\u003e:\u0026lt;TOMCAT_PORT\u306e\u5024\u0026gt;/guacamole \u3092\u30a6\u30a7\u30d6\u30d6\u30e9\u30a6\u30b6\u3067\u958b\u3044\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cp\u003e\u8d77\u52d5\u76f4\u5f8c\u306e\u30e6\u30fc\u30b6\u30fc\u540d\u3001\u30d1\u30b9\u30ef\u30fc\u30c9\u306f\u3044\u305a\u308c\u3082 guacadmin \u306b\u8a2d\u5b9a\u3055\u308c\u3066\u3044\u307e\u3059\u3002\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-in-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-in-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity in singularity\u003c/h1\u003e\n\u003cp\u003eThis is a proof-of-concept to show that it is indeed possible to run nested singularity processes.\nMy purpose for doing this is to create containers that can run applications that are in other other containers, allowing me to decompose the containers into small, purpose-built units.\u003c/p\u003e\n\u003cp\u003eTo test this for yourself, you can do the following:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003esudo singularity build container.sif Singularity\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003esingularity shell container.sif\u003c/span\u003e\n\n# \u003cspan class=\"pl-s1\"\u003ethen, go ahead and try running\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003esingularity shell container.sif\u003c/span\u003e\n# \u003cspan class=\"pl-s1\"\u003eas many \u003cspan class=\"pl-c1\"\u003etimes\u003c/span\u003e as you want\u003cspan class=\"pl-k\"\u003e!\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eHere is an example session where I nest 3 containers:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003euser@host$ singularity shell container.sif\nSingularity\u0026gt; singularity shell container.sif\nINFO: Converting SIF file to temporary sandbox...\nSingularity\u0026gt; singularity shell container.sif\nINFO: Converting SIF file to temporary sandbox...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAnd the resulting process tree (reported by htop):\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity runtime parent\n\u251c\u2500 /bin/bash --norc\n\u2502 \u2514\u2500 Singularity runtime parent\n\u2502 \u251c\u2500 /bin/bash --norc\n\u2502 \u2502 \u2514\u2500 Singularity runtime parent\n\u2502 \u2502 \u251c\u2500 /bin/bash --norc\n\u2502 \u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u2502 \u2514\u2500 Singularity runtime parent\n\u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u251c\u2500 Singularity runtime parent\n\u2502 \u2514\u2500 Singularity runtime parent\n\u251c\u2500 Singularity runtime parent\n\u251c\u2500 Singularity runtime parent\n\u251c\u2500 Singularity runtime parent\n\u251c\u2500 Singularity runtime parent\n\u251c\u2500 Singularity runtime parent\n\u251c\u2500 Singularity runtime parent\n\u2514\u2500 Singularity runtime parent\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you do not want to coerce conversion to a temporary sandbox on every call (it can be time intensive for large images), you can simply create the sandbox upfront:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003euser@host$ singularity build --sandbox test container.sif\nWARNING: \u0027nodev\u0027 mount option set on /tmp, it could be a source of failure during build process\nINFO: Starting build...\nINFO: Verifying bootstrap image container.sif\nINFO: Creating sandbox directory...\nINFO: Build complete: test\nuser@host$ singularity shell container.sif\nSingularity\u0026gt; singularity shell test\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1642040783.0
+ "updated_at": 1626825365.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for nanopolish (https://github.com/jts/nanopolish)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.3.8.3-1.el7"
],
- "full_name": "porchard/RNAseq-NextFlow",
+ "full_name": "powerPlant/nanopolish-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nextflow-pipeline-for-paired-end-rna-seq-data\" class=\"anchor\" href=\"#nextflow-pipeline-for-paired-end-rna-seq-data\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNextFlow pipeline for paired-end RNA-seq data\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-dependencies\" class=\"anchor\" href=\"#dependencies\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eIf you have Singularity installed, you can use the config provided here (\u0027Singularity\u0027) to build a container with all the dependencies.\u003c/p\u003e\n\u003cp\u003eOtherwise, you\u0027ll need to have the following installed:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eSTAR\u003c/li\u003e\n\u003cli\u003efastqc\u003c/li\u003e\n\u003cli\u003esamtools\u003c/li\u003e\n\u003cli\u003eQoRTs\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eI\u0027ve used this pipeline with NextFlow v. 19.04.1\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-configuration\" class=\"anchor\" href=\"#configuration\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConfiguration\u003c/h2\u003e\n\u003cp\u003ePaths to various generic files (STAR indices and chromosome size files) must be included in the nextflow.config file -- check that file and change paths accordingly.\u003c/p\u003e\n\u003cp\u003eYou\u0027ll also need to set the params.results variable -- either in the nextflow.config file itself, or on the command line when you run the pipeline (\u0027--results /path/to/results\u0027).\u003c/p\u003e\n\u003cp\u003eLastly, you\u0027ll need to include information about each RNA-seq library, including the genome to which it should be mapped, and the paths to the fastq files for each readgroup. Organize this information in a JSON file, as in library-config.json.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-running\" class=\"anchor\" href=\"#running\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning\u003c/h2\u003e\n\u003cp\u003eOnce you have all of the above information, you can run the pipeline as follows (in this case, indicating the path to the results on the command line):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run -with-singularity /path/to/Singularity.simg -params-file library-config.json --results /path/to/results /path/to/main.nf\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for nanopolish \u003ca href=\"https://github.com/jts/nanopolish\"\u003ehttps://github.com/jts/nanopolish\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1642007112.0
+ "updated_at": 1639350932.0
},
{
"data_format": 2,
- "description": "Tensorflow running in an Arch Linux Singularity container. Working towards JupyterHub SingularityHub Interop",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.5.28.2",
+ "Singularity.5.28.0",
+ "Singularity.5.28.1"
],
- "full_name": "chiroptical/tensorflow-jupyterhub",
+ "full_name": "kiwiroy/singularity-perl",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-container-with-tensorflow-and-jupyter-notebook\" class=\"anchor\" href=\"#singularity-container-with-tensorflow-and-jupyter-notebook\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Container with Tensorflow and Jupyter Notebook\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eIntent is to run Tensorflow on GPU compute nodes through JupyterHub\n\u003cul\u003e\n\u003cli\u003eIf you would like this built for another driver, submit an issue\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eBorrowed \u003ccode\u003elinks.sh\u003c/code\u003e from \u003ca href=\"https://github.com/drorlab/tf-singularity\"\u003ehttps://github.com/drorlab/tf-singularity\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eI extracted CuDNN here because the download link expires\u003c/li\u003e\n\u003cli\u003eBuilding the Singularity container:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo singularity create -s 3072 tensorflow-jupyterhub.img\n$ sudo singularity bootstrap tensorflow-jupyterhub.img Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eRunning local jupyter server:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run tensorflow-jupyterhub.img\n[I 21:58:36.327 NotebookApp] Serving notebooks from local directory: \u0026lt;some directory\u0026gt;\n[I 21:58:36.327 NotebookApp] 0 active kernels \n[I 21:58:36.327 NotebookApp] The Jupyter Notebook is running at: http://localhost:8888/?token=\u0026lt;some token\u0026gt;\n[I 21:58:36.327 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).\n[C 21:58:36.329 NotebookApp] \n \n Copy/paste this URL into your browser when you connect for the first time,\n to login with a token:\n http://localhost:8888/?token=\u0026lt;some token\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eIf you want to just run a script:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec tensorflow-jupyterhub.img python hello-world.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/mcburton\"\u003emcburton\u003c/a\u003e and I are working on JupyterHub\nplugins to handle Singularity Hub images cleanly.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-do\" class=\"anchor\" href=\"#to-do\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo Do\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003ePossibly indicate any bloat in the image and clear it out, if possible\n\u003cul\u003e\n\u003cli\u003eTensorflow DockerHub Compressed Image with GPU is 2 GB, mine is 3 GB\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eWorking on JupyterHub plugin to deploy images from SingularityHub\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2846\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-perl\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-perl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-perl\u003c/h1\u003e\n\u003cp\u003eUbuntu images with perl installed using perlbrew.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1497564620.0
+ "updated_at": 1556534425.0
},
{
"data_format": 2,
- "description": "A symbolic generalized MaxSAT solver",
- "filenames": [
- "dmc/Singularity",
- "lg/Singularity"
- ],
- "full_name": "zzwonder/DPMS",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dpms-dynamic-programming-for-generalized-maxsat\" class=\"anchor\" href=\"#dpms-dynamic-programming-for-generalized-maxsat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDPMS (Dynamic Programming for Generalized MaxSAT)\u003c/h1\u003e\n\u003cp\u003eDPMS handles generalized MaxSAT problems in an extended DIMACS format (described below)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe DPMC framework runs in two phases:\n\u003cul\u003e\n\u003cli\u003ePlanning phase: \u003ca href=\"./lg\"\u003eLG\u003c/a\u003e constructs a (graded) project-join tree of a generalized MaxSAT formula\u003c/li\u003e\n\u003cli\u003eExecution phase: \u003ca href=\"./dmc\"\u003eDMC\u003c/a\u003e computes the answer to a generalized MaxSAT formula using the (graded) project-join tree\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installation-linux\" class=\"anchor\" href=\"#installation-linux\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation (Linux)\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eautomake 1.16\u003c/li\u003e\n\u003cli\u003ecmake 3.16\u003c/li\u003e\n\u003cli\u003eg++ 9.3\u003c/li\u003e\n\u003cli\u003egmp 6.2\u003c/li\u003e\n\u003cli\u003emake 4.2\u003c/li\u003e\n\u003cli\u003ealready included as git submodules:\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/ivmai/cudd\"\u003ecudd 3.0\u003c/a\u003e (a slightly modified version for DPMS is inlcuded)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/jarro2783/cxxopts\"\u003ecxxopts 2.2\u003c/a\u003e (included)\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/trolando/sylvan\"\u003esylvan 1.5\u003c/a\u003e(included)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-install-submodules\" class=\"anchor\" href=\"#install-submodules\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall submodules:\u003c/h3\u003e\n\u003cp\u003eIn addmc/libraries/, run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./install.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-compile-lg-tree-builder\" class=\"anchor\" href=\"#compile-lg-tree-builder\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompile LG (Tree Builder)\u003c/h3\u003e\n\u003cp\u003eSee \u003ca href=\"./lg/README.md\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-compile-dmc-executor\" class=\"anchor\" href=\"#compile-dmc-executor\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCompile DMC (Executor)\u003c/h3\u003e\n\u003cp\u003eSee \u003ca href=\"./dmc/README.md\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage-example-command-line\" class=\"anchor\" href=\"#usage-example-command-line\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage Example (Command Line)\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003ecnfFile=\"examples/pbtest.wbo\" \u0026amp;\u0026amp; bash -c \"lg/build/lg \u0027lg/solvers/flow-cutter-pace17/flow_cutter_pace17 -p 100\u0027\" \u0026lt; $cnfFile | dmc/dmc --cf=$cnfFile --mx=1 --mb=999\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eMake sure to use \"--mx=1\" to enable maxSAT.\u003c/p\u003e\n\u003cp\u003eChange \"999\" in \"--mb=999\" to a better upper bound of optimal cost (e.g., the result of o-line of a MaxSAT solver). For a WBO or partial MaxSAT instance, --mb is set to be the trivial bound which can be read from the instance, unless the user gives a better bound.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-problem-format-of-generalized-maxsat\" class=\"anchor\" href=\"#problem-format-of-generalized-maxsat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eProblem format of Generalized MaxSAT\u003c/h2\u003e\n\u003cp\u003eSome examples of each type of problem can be found in examples/\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-generalized-maxsat-and-weighted-maxsat\" class=\"anchor\" href=\"#generalized-maxsat-and-weighted-maxsat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e(generalized) MaxSAT and weighted MaxSAT\u003c/h3\u003e\n\u003cp\u003eThe Max-CNF-SAT problems (.cnf) should use the DIMACS format: \u003ca href=\"https://www.ieee.org/conferences/publishing/templates.html\" rel=\"nofollow\"\u003ehttps://www.ieee.org/conferences/publishing/templates.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFor XOR constraints, use \u0027x\u0027 at the beginning of a line\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ex1 xor x2 xor \\neg x3 =\u0026gt; x 1 2 -3 0.\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor weighted MaxSAT (.cnf), use \"p wcnf nvars nclauses total-Soft-Weight\" instead of \"p cnf nvars nclauses\" in header. For each clause line, put the weight at the beginning of a line, then the first literal.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-pseudo-boolean-optimization-wbo\" class=\"anchor\" href=\"#pseudo-boolean-optimization-wbo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePseudo-Boolean optimization (WBO)\u003c/h3\u003e\n\u003cp\u003eFor PB constraints (.wbo), here is an example\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e+1 x1 +1 x2 \u0026gt;= 1 ;\n[90] -1 x1 -1 x2 \u0026gt;= -1 ;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe first constraint is a hard constraint. The second constraint is soft with weight 90.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-min-maxsat\" class=\"anchor\" href=\"#min-maxsat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMin-MaxSAT\u003c/h3\u003e\n\u003cp\u003eA Min-MaxSAT problem file is same with a MaxSAT file except that there is a \u0027vm\u0027 line indicating the min variables. Variables that do not appear in the vm line are all max variables.\u003c/p\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1641000935.0
- },
- {
- "data_format": 2,
- "description": null,
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "aminhaghparast/deep-variant",
+ "full_name": "juanca09/dino",
"latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://raw.githubusercontent.com/nf-core/deepvariant/master/docs/images/deepvariant_logo.png\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://raw.githubusercontent.com/nf-core/deepvariant/master/docs/images/deepvariant_logo.png\" alt=\"deepvariant\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-nf-coredeepvariant\" class=\"anchor\" href=\"#nf-coredeepvariant\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enf-core/deepvariant\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eDeep Variant as a Nextflow pipeline\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nf-core/deepvariant\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/554b3a00bbca0efb91acd93d9efc7929d4f25be25b8c7e5a58a31906f742ac65/68747470733a2f2f7472617669732d63692e6f72672f6e662d636f72652f6465657076617269616e742e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nf-core/deepvariant.svg?branch=master\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/b6478e9f9fab44bd81e58f3ac9c53bd07b4447d3ce541c677c184903c7466e52/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d25453225383925413531382e31302e312d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A518.10.1-brightgreen.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://gitter.im/nf-core/Lobby\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/75a58bd7ba3966d16ebf50e1d2d55a4d21c67fa281370f9b823c2f4e53532b03/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6769747465722d2532306a6f696e253230636861742532302545322538362539322d3466623939612e737667\" alt=\"Gitter\" data-canonical-src=\"https://img.shields.io/badge/gitter-%20join%20chat%20%E2%86%92-4fb99a.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/deepvariant\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2b79519758c23c61efc7c090d99e6c194456d4d72c071d9fb892501ca0be4f1c/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f6465657076617269616e742e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/deepvariant.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA Nextflow pipeline for running the \u003ca href=\"https://github.com/google/deepvariant\"\u003eGoogle DeepVariant variant caller\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-is-deepvariant-and-why-in-nextflow\" class=\"anchor\" href=\"#what-is-deepvariant-and-why-in-nextflow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is DeepVariant and why in Nextflow?\u003c/h2\u003e\n\u003cp\u003eThe Google Brain Team in December 2017 released a \u003ca href=\"https://www.ebi.ac.uk/training/online/course/human-genetic-variation-i-introduction/variant-identification-and-analysis/what-variant\" rel=\"nofollow\"\u003eVariant Caller\u003c/a\u003e based on DeepLearning: DeepVariant.\u003c/p\u003e\n\u003cp\u003eIn practice, DeepVariant first builds images based on the BAM file, then it uses a DeepLearning image recognition approach to obtain the variants and eventually it converts the output of the prediction in the standard VCF format.\u003c/p\u003e\n\u003cp\u003eDeepVariant as a Nextflow pipeline provides several advantages to the users. It handles automatically, through \u003cstrong\u003epreprocessing steps\u003c/strong\u003e, the creation of some extra needed indexed and compressed files which are a necessary input for DeepVariant, and which should normally manually be produced by the users.\nVariant Calling can be performed at the same time on \u003cstrong\u003emultiple BAM files\u003c/strong\u003e and thanks to the internal parallelization of Nextflow no resources are wasted.\nNextflow\u0027s support of Docker allows to produce the results in a computational reproducible and clean way by running every step inside of a \u003cstrong\u003eDocker container\u003c/strong\u003e.\u003c/p\u003e\n\u003cp\u003eFor more detailed information about Google\u0027s DeepVariant please refer to \u003ca href=\"https://github.com/google/deepvariant\"\u003egoogle/deepvariant\u003c/a\u003e or this \u003ca href=\"https://research.googleblog.com/2017/12/deepvariant-highly-accurate-genomes.html\" rel=\"nofollow\"\u003eblog post\u003c/a\u003e. \u003cbr\u003e\nFor more information about DeepVariant in Nextflow please refer to this \u003ca href=\"https://blog.lifebit.ai/post/deepvariant/?utm_campaign=documentation\u0026amp;utm_source=github\u0026amp;utm_medium=web\" rel=\"nofollow\"\u003eblog post\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-quick-start\" class=\"anchor\" href=\"#quick-start\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eWarning DeepVariant can be very computationally intensive to run.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eTo \u003cstrong\u003etest\u003c/strong\u003e the pipeline you can run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run nf-core/deepvariant -profile test,docker\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eA typical run on \u003cstrong\u003ewhole genome data\u003c/strong\u003e looks like this:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run nf-core/deepvariant --genome hg19 --bam yourBamFile --bed yourBedFile -profile standard,docker\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIn this case variants are called on the bam files contained in the testdata directory. The hg19 version of the reference genome is used.\nOne vcf files is produced and can be found in the folder \"results\"\u003c/p\u003e\n\u003cp\u003eA typical run on \u003cstrong\u003ewhole exome data\u003c/strong\u003e looks like this:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003enextflow run nf-core/deepvariant --exome --genome hg19 --bam_folder myBamFolder --bed myBedFile -profile standard,docker\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-documentation\" class=\"anchor\" href=\"#documentation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h2\u003e\n\u003cp\u003eThe nf-core/deepvariant documentation is split into the following files:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eAdding your own system\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/reference_genomes.md\"\u003eReference genomes\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/about.md\"\u003eMore about DeepVariant\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-more-about-the-pipeline\" class=\"anchor\" href=\"#more-about-the-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMore about the pipeline\u003c/h2\u003e\n\u003cp\u003eAs shown in the following picture, the worklow both contains \u003cstrong\u003epreprocessing steps\u003c/strong\u003e ( light blue ones ) and proper \u003cstrong\u003evariant calling steps\u003c/strong\u003e ( darker blue ones ).\u003c/p\u003e\n\u003cp\u003eSome input files ar optional and if not given, they will be automatically created for the user during the preprocessing steps. If these are given, the preprocessing steps are skipped. For more information about preprocessing, please refer to the \"INPUT PARAMETERS\" section.\u003c/p\u003e\n\u003cp\u003eThe worklow \u003cstrong\u003eaccepts one reference genome and multiple BAM files as input\u003c/strong\u003e. The variant calling for the several input BAM files will be processed completely indipendently and will produce indipendent VCF result files. The advantage of this approach is that the variant calling of the different BAM files can be parallelized internally by Nextflow and take advantage of all the cores of the machine in order to get the results at the fastest.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca href=\"https://github.com/nf-core/deepvariant/blob/master/pics/pic_workflow.jpg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/nf-core/deepvariant/raw/master/pics/pic_workflow.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-credits\" class=\"anchor\" href=\"#credits\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003eThis pipeline was originally developed at \u003ca href=\"https://lifebit.ai/?utm_campaign=documentation\u0026amp;utm_source=github\u0026amp;utm_medium=web\" rel=\"nofollow\"\u003eLifebit\u003c/a\u003e, by @luisas, to ease and reduce cost for variant calling analyses\u003c/p\u003e\n\u003cp\u003eMany thanks to nf-core and those who have helped out along the way too, including (but not limited to): @ewels, @MaxUlysse, @apeltzer, @sven1103 \u0026amp; @pditommaso\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-dino--a-nice-dinosaurio-\" class=\"anchor\" aria-hidden=\"true\" href=\"#dino--a-nice-dinosaurio-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edino ( A nice dinosaurio )\u003c/h1\u003e\n\u003cp\u003eYou need a GitHub account\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eLog into Github\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eAdd a git repository ( ex:hello )\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eLog into Singularity Hub ( \u003ca href=\"https://singularity-hub.org\" rel=\"nofollow\"\u003ehttps://singularity-hub.org\u003c/a\u003e ) as the github user\u003c/p\u003e\n\u003cp\u003eIn the Hub add a new collection ( with the repository )\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eClone the git project\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone\n\ngit clone git@github.com:\u0026lt;USER\u0026gt;/hello.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003ein the directory \"hello\" add a Singularity definition file as \"Singularity\"\u003c/p\u003e\n\u003cp\u003eEx:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap:docker\nFrom:ubuntu:16.04\n\n%labels\nMAINTAINER juanca09\nSPECIES Dinosaur\n\n %environment\nRAWR_BASE=/code\nexport RAWR_BASE\n\n %runscript\necho \"This gets run when you run the image!\" \nexec /bin/bash /code/dino.sh \"$@\"\n\n\n%post \necho \"This section happens once after bootstrap to build the image.\" \nmkdir -p /code \necho \"echo \\\"RoooAAAARRRRR !!!!\\\"\" \u0026gt;\u0026gt; /code/dino.sh\nchmod u+x /code/dino.sh \n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eCommit and push the project\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1651618731.0
+ "updated_at": 1613312484.0
},
{
"data_format": 2,
- "description": "Planning problem generation using Graph Neural Networks and Reinforcement Learning.",
+ "description": "Standalone Singularity file for CAMISIM fork",
"filenames": [
- "src/fast-downward/misc/releases/19.06/Singularity.19.06",
- "src/fast-downward/misc/releases/20.06/Singularity.20.06",
- "src/fast-downward/misc/releases/21.12/Singularity.21.12",
- "src/fast-downward/misc/releases/19.12/Singularity.19.12"
+ "Singularity.cami_python2"
],
- "full_name": "ari-dasci/S-PlanningProblemGeneration",
+ "full_name": "KatSteinke/singularity-camisim-standalone",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1648654350.0
+ "updated_at": 1618570284.0
},
{
"data_format": 2,
@@ -16789,509 +16373,511 @@ var data =
"filenames": [
"Singularity.def"
],
- "full_name": "piyu2181/singularity",
+ "full_name": "robomorelli/horovod_torch_nccl",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-horovod_torch_nccl\" class=\"anchor\" aria-hidden=\"true\" href=\"#horovod_torch_nccl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ehorovod_torch_nccl\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1565737347.0
+ "updated_at": 1616241702.0
},
{
"data_format": 2,
- "description": null,
+ "description": "singularity recipes",
"filenames": [
- "singularity/Singularity"
+ "Singularity.tf2p4_addons",
+ "Singularity.tf2p1",
+ "Singularity.tf2p4_costum",
+ "Singularity.tf2_cuda",
+ "Singularity.skimage",
+ "Singularity.tf2_addons",
+ "Singularity.tf2",
+ "Singularity.tf2_cuda_pip",
+ "Singularity.comet",
+ "Singularity.pandas",
+ "Singularity.torch",
+ "Singularity.tf2p1_addons",
+ "Singularity..torch1p8"
],
- "full_name": "Egrt/https---huggingface.co-spaces-Egrt-Luuu",
+ "full_name": "xiyaojin/singularity",
"latest_release": null,
- "readme": "\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-title-luuuemoji-colorfrom-redcolorto-purplesdk-gradiosdk_version-2812app_file-apppypinned-falselicense-apache-20\" class=\"anchor\" href=\"#title-luuuemoji-colorfrom-redcolorto-purplesdk-gradiosdk_version-2812app_file-apppypinned-falselicense-apache-20\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etitle: Luuu\nemoji: \u003cg-emoji class=\"g-emoji\" alias=\"earth_africa\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f30d.png\"\u003e\ud83c\udf0d\u003c/g-emoji\u003e\ncolorFrom: red\ncolorTo: purple\nsdk: gradio\nsdk_version: 2.8.12\napp_file: app.py\npinned: false\nlicense: apache-2.0\u003c/h2\u003e\n\u003cp\u003eCheck out the configuration reference at \u003ca href=\"https://huggingface.co/docs/hub/spaces#reference\" rel=\"nofollow\"\u003ehttps://huggingface.co/docs/hub/spaces#reference\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity\u003c/h1\u003e\n\u003cp\u003esingularity recipes\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1647768660.0
+ "updated_at": 1622692314.0
},
{
"data_format": 2,
- "description": null,
+ "description": "If you are going to build off of basic Empirical, this is the project for you",
"filenames": [
- "Singularity"
+ "third-party/force-cover/Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-docker-miniconda-quicksom",
+ "full_name": "EGBWright/ArbitriumSimulation",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-a-miniconda-based-quicksom-httpsgithubcombougui505quicksom-container-with-pymolpytorch\" class=\"anchor\" href=\"#a-miniconda-based-quicksom-httpsgithubcombougui505quicksom-container-with-pymolpytorch\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ea miniconda based quicksom (\u003ca href=\"https://github.com/bougui505/quicksom\"\u003ehttps://github.com/bougui505/quicksom\u003c/a\u003e) container with pymol/pytorch\u003c/h1\u003e\n\u003cp\u003edocker: \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-miniconda-quicksom/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-miniconda-quicksom/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-miniconda-quicksom:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003esingularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv oras://ghcr.io/truatpasteurdotfr/singularity-docker-miniconda-quicksom:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-test-the-examples\" class=\"anchor\" href=\"#test-the-examples\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etest the examples\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone https://github.com/bougui505/quicksom.git\n$ cd quicksom\n$ singularity --nv -B `pwd` oras://ghcr.io/truatpasteurdotfr/singularity-docker-miniconda-quicksom:latest\nSingularity\u0026gt; dcd2npy --pdb data/2lj5.pdb --dcd data/2lj5.dcd --select \u0027name CA\u0027\nSingularity\u0026gt; time quicksom_fit -i data/2lj5.npy -o data/som_2lj5.p --n_iter 100 --batch_size 50 --periodic --alpha 0.5\nSingularity\u0026gt; quicksom_gui -i data/som_2lj5.p\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-evolutionary-algorithm\" class=\"anchor\" aria-hidden=\"true\" href=\"#evolutionary-algorithm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEvolutionary Algorithm\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/anyaevostinar/evo-algo/releases\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ff63e2cc80517f7b8e8246b33025f569d757ede0ae65c7ea57418d79e5a3709d/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e6769746875622e696f25324665766f2d616c676f25324676657273696f6e2d62616467652e6a736f6e\" alt=\"version\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.github.io%2Fevo-algo%2Fversion-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://travis-ci.com/anyaevostinar/evo-algo\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2bde10efc09d993aad000b3101be56d5410d0ced348c4c7bbedbc7ffce79d630/68747470733a2f2f696d672e736869656c64732e696f2f7472617669732f616e796165766f7374696e61722f65766f2d616c676f2e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/travis/anyaevostinar/evo-algo.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://evo-algo.readthedocs.io/en/latest/?badge=latest\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2af827df5df15ff6f5c6a9fff5021e631a0049aa2274f98e983135bb66f0ed81/68747470733a2f2f72656164746865646f63732e6f72672f70726f6a656374732f65766f2d616c676f2f62616467652f3f76657273696f6e3d6c6174657374\" alt=\"Documentation Status\" data-canonical-src=\"https://readthedocs.org/projects/evo-algo/badge/?version=latest\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://evo-algo.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0e035446b6d1c7a911bd4b203bd581f2116c7873352a90d4797dc08119abbd0e/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e6769746875622e696f25324665766f2d616c676f253246646f63756d656e746174696f6e2d636f7665726167652d62616467652e6a736f6e\" alt=\"documentation coverage\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.github.io%2Fevo-algo%2Fdocumentation-coverage-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://codecov.io/gh/anyaevostinar/evo-algo\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/869814fe0b90d0baadc37140ac31d6d9c0e4e00c2854a51f1030c40678bc13a4/68747470733a2f2f636f6465636f762e696f2f67682f616e796165766f7374696e61722f65766f2d616c676f2f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"code coverage status\" data-canonical-src=\"https://codecov.io/gh/anyaevostinar/evo-algo/branch/master/graph/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/anyaevostinar/evo-algo/search?q=todo+OR+fixme\u0026amp;type=\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4455f1d1625d643fe17506cb6ad50a9a6612ce62ab4667dc60b75616241c7534/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e636f6d25324665766f2d616c676f253246646f746f2d62616467652e6a736f6e\" alt=\"dotos\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.com%2Fevo-algo%2Fdoto-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/anyaevostinar/evo-algo\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/db51ac0d7785eb561dcfc0cbccfc0cfed9872513120f8f732b1301504c4eb32e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f616e796165766f7374696e61722f65766f2d616c676f2e7376673f7374796c653d666c61742d737175617265266c6f676f3d676974687562266c6162656c3d5374617273266c6f676f436f6c6f723d7768697465\" alt=\"GitHub stars\" data-canonical-src=\"https://img.shields.io/github/stars/anyaevostinar/evo-algo.svg?style=flat-square\u0026amp;logo=github\u0026amp;label=Stars\u0026amp;logoColor=white\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAn evolutionary algorithm\u003c/p\u003e\n\u003cp\u003eCheck out the live in-browser web app at \u003ca href=\"https://anyaevostinar.github.io/evo-algo\" rel=\"nofollow\"\u003ehttps://anyaevostinar.github.io/evo-algo\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFree software: MIT license\u003c/li\u003e\n\u003cli\u003eDocumentation: \u003ca href=\"https://evo-algo.readthedocs.io\" rel=\"nofollow\"\u003ehttps://evo-algo.readthedocs.io\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-hidden=\"true\" href=\"#features\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFeatures\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eTODO\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/assets/cookie.gif\"\u003e\u003cimg src=\"docs/assets/cookie.gif\" alt=\"cookie monster example\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003eThis package was created with \u003ca href=\"https://github.com/audreyr/cookiecutter\"\u003eCookiecutter\u003c/a\u003e and the \u003ca href=\"https://github.com/devosoft/cookiecutter-empirical-project\"\u003edevosoft/cookiecutter-empirical-project\u003c/a\u003e project template.\u003c/p\u003e\n\u003cp\u003eThis package uses \u003ca href=\"https://github.com/devosoft/Empirical#readme\"\u003eEmpirical\u003c/a\u003e, a library of tools for scientific software development, with emphasis on also being able to build web interfaces using Emscripten.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eTo install \u003ca href=\"https://github.com/devosoft/Empirical\"\u003eEmpirical\u003c/a\u003e, pull down a clone of the Empirical repository. See \u003ca href=\"https://empirical.readthedocs.io/en/latest/QuickStartGuides\" rel=\"nofollow\"\u003eQuick Start Guides\u003c/a\u003e for directions on cloning and using the library.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1647383705.0
+ "updated_at": 1615402009.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe for Pathway-Tools and mpwt.",
"filenames": [
- "Singularity.recipe"
+ "Singularity"
],
- "full_name": "robbieperrott/Hons",
+ "full_name": "ArnaudBelcour/mpwt-singularity",
"latest_release": null,
- "readme": "\u003cp\u003eThis repository contains\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eA Jenkinsfile, which contains parameters to be fed to a Jenkins pipeline job.\u003c/li\u003e\n\u003cli\u003eA Singularity recipe file, which specifies how to build the Singularity container on the target server.\u003c/li\u003e\n\u003cli\u003eRobbie\u0027s final research paper.\u003c/li\u003e\n\u003cli\u003eA poster summarizing the contents of our paper.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eOur final mark was 72 percent.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1647336586.0
+ "subscribers_count": 1,
+ "topics": [
+ "pathway-tools"
+ ],
+ "updated_at": 1643893785.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "container/Singularity.vep-96.0"
+ "Singularity"
],
- "full_name": "vsarsani/Genetic-Characterization-Nextflow",
+ "full_name": "monaghaa/mytranslator",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-genetic-characterization-of-a-phenotype-nextflow-pipeline\" class=\"anchor\" href=\"#genetic-characterization-of-a-phenotype-nextflow-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGenetic Characterization of a Phenotype Nextflow-pipeline\u003c/h1\u003e\n\u003cp\u003eThis pipeline performs the following functions to do a comprehensive genetic characterization of a phenotype marker (ex: height )\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eQC of GWAS Summary Statistics files, allele matching.\u003c/li\u003e\n\u003cli\u003eTrans-ancestry meta-analysis using various approaches. ( Fixed and random effects).\u003c/li\u003e\n\u003cli\u003eIdentification of Lead Variants and gene annotation from the meta-analysis results.\u003c/li\u003e\n\u003cli\u003eConditional analysis using GCTA COJO.\u003c/li\u003e\n\u003cli\u003eDistributional and Manhanttan plots of meta-analysis and conditional analysis.\u003c/li\u003e\n\u003cli\u003eWindow-based fine-mapping around lead variants to identify causal variants.\u003c/li\u003e\n\u003cli\u003eWindow-based fine-mapping around lead variants to identify eQTL colocalization.\u003c/li\u003e\n\u003cli\u003eeQTL based summary mendelian randomization.\u003c/li\u003e\n\u003cli\u003ePRS score construction from causal variants.\u003c/li\u003e\n\u003cli\u003eEnrichment analysis.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThe pipeline has a total of ten processes. The tools used for all the ten processes are containerized in the \u003ca href=\"https://github.com/vsarsani/Genetic-Characterization-Nextflow/blob/master/container/Dockerfile\"\u003edocker image \u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-installation\" class=\"anchor\" href=\"#installation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/vsarsani/Genetic-Characterization-Nextflow.git\ncd Nextflow-pipeline\ngit checkout dev_nf\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-nextflow\" class=\"anchor\" href=\"#nextflow\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNextflow\u003c/h1\u003e\n\u003cp\u003e\u003ccode\u003emake install\u003c/code\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-docker-image-installion\" class=\"anchor\" href=\"#docker-image-installion\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker image installion\u003c/h1\u003e\n\u003cp\u003eTo install the docker image for all the process tools using Docker, run the Makefile command in the container directory.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd container\nmake docker-build\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-how-to-run-the-pipeline\" class=\"anchor\" href=\"#how-to-run-the-pipeline\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run the pipeline\u003c/h1\u003e\n\u003cp\u003eIn order to run the pipeline, you need GWAS Summary files obtained from a study or multiple studies. Please use the following command.\n\u003ccode\u003e./nextflow run main.nf -resume --gwas-files ukb_bmi.txt\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eOtherwise, you can also run the whole pipeline by using the following one liner,\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003e./nextflow run main.nf\u003c/code\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1647271167.0
+ "updated_at": 1638480957.0
},
{
"data_format": 2,
- "description": "MLPerf Inference containers recipes",
+ "description": "Docker image to get DeepLabCutCore running on cloud GPUs.",
"filenames": [
- "v0.5/Singularity.v0.5",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_pre-release_src_cg_omp-py36-gcc75-ubuntu18",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_rt_c_tbb-py36-gcc75-ubuntu18",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_pre-release_src_c_omp-py36-gcc75-ubuntu18-avx2",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2020.3.1_src_c_omp-py36-gcc75-ubuntu18",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_pre-release_src_c_omp-py36-gcc75-ubuntu18",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_src_c_omp-py36-gcc75-ubuntu18-avx2",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_src_c_omp-py36-gcc75-ubuntu18",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_src_c_omp-py38-gcc75-ubuntu20",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_src_c_omp-py36-gcc75-ubuntu18-sse42",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_rt_cg_tbb-py36-gcc75-ubuntu18",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_src_cg_tbb-py36-gcc75-ubuntu18",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_src_cg_omp-py36-gcc75-ubuntu18",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_pre-release_src_cg_tbb-py36-gcc75-ubuntu18",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_pre-release_src_c_omp-py36-gcc75-ubuntu18-sse42",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_pre-release_src_c_tbb-py36-gcc75-ubuntu18",
- "v0.5/cpp/OpenVINO/singularity/Singularity.v0.5-OpenVINO-2019_R3.1_src_c_tbb-py36-gcc75-ubuntu18",
- "v0.7/Singularity.v0.7",
- "v0.7/python/MXNet/singularity/Singularity.v0.7-MXNet-1.7.0-py38-gcc93-ubuntu20",
- "v0.7/python/MXNet/singularity/Singularity.v0.7-MXNet-1.8.0-py38-gcc93-ubuntu20",
- "v0.7/python/MXNet/singularity/Singularity.v0.7-MXNet-1.7.0_6ae469a-py38-gcc93-ubuntu20",
- "v0.7/cpp/TensorFlow/singularity/Singularity.v0.7-TensorFlow-v2.3.0-py38-gcc93-ubuntu20",
- "v0.7/cpp/TensorFlow/singularity/Singularity.v0.7-TensorFlow-v2.3.0-py38-gcc93-ubuntu20_cl",
- "v0.7/cpp/TensorFlow/singularity/Singularity.v0.7-TensorFlow-v2.3.0-py38-gcc10-ubuntu20",
- "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2019_R3.1_rt_cg_tbb-py36-gcc75-ubuntu18",
- "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2021.1pre_src_c_tbb-py36-gcc75-ubuntu18",
- "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2019_R3.1_src_c_omp-py36-gcc75-ubuntu18",
- "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2021.1pre_src_c_omp-py36-gcc75-ubuntu18",
- "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2019_R3.1_src_c_tbb-py36-gcc75-ubuntu18",
- "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2019_R3.1_rt_c_tbb-py36-gcc75-ubuntu18",
- "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2019_R3.1_src_cg_omp-py36-gcc75-ubuntu18",
- "v0.7/cpp/OpenVINO/singularity/Singularity.v0.7-OpenVINO-2019_R3.1_src_cg_tbb-py36-gcc75-ubuntu18",
- "v1.1/Singularity.v1.1",
- "v1.1/cpp/OpenVINO/singularity/Singularity.v1.1-OpenVINO-2021.4_src_c_tbb-py38-gcc93-ubuntu20",
- "v1.1/cpp/OpenVINO/singularity/Singularity.v1.1-OpenVINO-2021.4_src_c_omp-py38-gcc93-ubuntu20",
- "v1.1/cpp/OpenVINO/singularity/Singularity.v1.1-OpenVINO-2021.1pre_src_c_omp-py36-gcc75-ubuntu18",
- "v1.0/Singularity.v1.0"
+ "Singularity"
],
- "full_name": "provarepro/mlperf_inference",
- "latest_release": "0.1.9",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-mlperf-inference\" class=\"anchor\" href=\"#mlperf-inference\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMLPerf Inference\u003c/h1\u003e\n\u003cp\u003eMLPerf Inference containers recipes\u003c/p\u003e\n",
+ "full_name": "bchaselab/DeepLabCut-HPC",
+ "latest_release": null,
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/bchaselab/DeepLabCut-Slurm/workflows/Docker/badge.svg\"\u003e\u003cimg src=\"https://github.com/bchaselab/DeepLabCut-Slurm/workflows/Docker/badge.svg\" alt=\"Docker\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/bchaselab/DeepLabCut-Slurm/workflows/Docker%20Image%20CI/badge.svg\"\u003e\u003cimg src=\"https://github.com/bchaselab/DeepLabCut-Slurm/workflows/Docker%20Image%20CI/badge.svg\" alt=\"Docker Image CI\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/76a9b0a79aec38ba07bbf90a456c47bbdbca1fd005e919d62ec4fbc0cb2719d4/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f70756c6c732f6663617475732f646565706c6162637574\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/76a9b0a79aec38ba07bbf90a456c47bbdbca1fd005e919d62ec4fbc0cb2719d4/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f70756c6c732f6663617475732f646565706c6162637574\" alt=\"Docker Pulls\" data-canonical-src=\"https://img.shields.io/docker/pulls/fcatus/deeplabcut\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/62efa830e023afaea0c6e665046187228790fcc4c07825b174254f2d1694a96d/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f696d6167652d73697a652f6663617475732f646565706c6162637574\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/62efa830e023afaea0c6e665046187228790fcc4c07825b174254f2d1694a96d/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f696d6167652d73697a652f6663617475732f646565706c6162637574\" alt=\"Docker Image Size (latest by date)\" data-canonical-src=\"https://img.shields.io/docker/image-size/fcatus/deeplabcut\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-from-dockerhub\" class=\"anchor\" aria-hidden=\"true\" href=\"#from-dockerhub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFrom \u003ca href=\"https://hub.docker.com/repository/docker/fcatus/deeplabcut\" rel=\"nofollow\"\u003eDockerhub\u003c/a\u003e\n\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ docker pull fcatus/deeplabcut:latest\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-use-with-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-use-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo Use With Singularity\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull docker://fcatus/deeplabcut:latest\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor build it from a singularity file\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ vim singularity\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-yaml\"\u003e\u003cpre\u003e\u003cspan class=\"pl-ent\"\u003eBootstrap\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003edocker\u003c/span\u003e\n\u003cspan class=\"pl-ent\"\u003eFrom\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003efcatus/deeplabcut:latest\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity build --remote deeplabcut.sif singularity\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-from-a-singularity-definition-file\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-from-a-singularity-definition-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild From a Singularity \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/definition_files.html\" rel=\"nofollow\"\u003eDefinition File\u003c/a\u003e\n\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Download the definition file\u003c/span\u003e\n$ wget https://git.io/JJvBb\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Customize the definition file (optional)\u003c/span\u003e\n$ vim dlc.def\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Build remotely from the definition file\u003c/span\u003e\n$ singularity build --remote deeplabcut.sif dlc.def\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFor more information about using \u003ccode\u003esingularity build\u003c/code\u003e, see \u003ca href=\"https://sylabs.io/guides/3.1/user-guide/cli/singularity_build.html\" rel=\"nofollow\"\u003eSingularity Build\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [],
- "updated_at": 1641476524.0
+ "topics": [
+ "docker",
+ "deeplabcut",
+ "clone",
+ "slurm",
+ "hpc",
+ "singularity"
+ ],
+ "updated_at": 1617137580.0
},
{
"data_format": 2,
- "description": "Repository for automatic software installation with a Singularity container containing EasyBuild. ",
+ "description": "Singularity recipe files for winnowmap (https://github.com/marbl/Winnowmap)",
"filenames": [
- "scripts/Singularity.eb-4.5.0-Lmod-ubuntu20-LTR",
- "scripts/Singularity.eb-4.5.0-Lmod-rocky8",
- "scripts/Singularity.eb-4.4.2-Lmod-ubuntu20-LTR",
- "scripts-23-01-2022/Singularity.eb-4.5.0-Lmod-ubuntu20-LTR",
- "scripts-23-01-2022/Singularity.eb-4.5.0-Lmod-rocky8",
- "scripts-23-01-2022/Singularity.eb-4.4.2-Lmod-ubuntu20-LTR",
- "scripts-combined/easybuild/Singularity.eb-4.5.0-Lmod-ubuntu20-LTR",
- "scripts-combined/easybuild/Singularity.eb-4.5.0-Lmod-rocky8",
- "scripts-combined/easybuild/Singularity.eb-4.4.2-Lmod-ubuntu20-LTR"
+ "Singularity.2.0.0"
],
- "full_name": "sassy-crick/software-installation",
+ "full_name": "powerPlant/winnowmap-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-automatic-software-installation-script\" class=\"anchor\" href=\"#automatic-software-installation-script\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAutomatic software installation script\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-introduction\" class=\"anchor\" href=\"#introduction\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction:\u003c/h2\u003e\n\u003cp\u003eThe aim of the script is to install the software inside a container, and thus the so installed software is independent from the OS as much as possible, and also takes care of different architectures. The idea comes from the EESSI project and how the software is installed in there. So kudos to them!!\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to\" class=\"anchor\" href=\"#how-to\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow-to:\u003c/h2\u003e\n\u003cp\u003eBefore the script can run, there are a few files which need to be adjusted.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003einstall.sh\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003esoftwarelist.txt\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003esoftwarelist.yaml\u003c/code\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe \u003ccode\u003einstall.sh\u003c/code\u003e does basically the whole magic. There are a few lines at the top which need to be changed to reflect where the software needs to go. The most important are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSOFTWARE_INSTDIR\u003c/code\u003e which is where the software tree and all the helper stuff lives\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eBINDDIR\u003c/code\u003e is the directory which needs to be bound inside the container as per default Singularity does only mount \u003ccode\u003e/tmp\u003c/code\u003e and \u003ccode\u003e/home\u003c/code\u003e it seems.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eYou also might want to look at:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eCONTAINER_VERSION\u003c/code\u003e which is the name of the sif-file, i.e. the container\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eEB_VERSION\u003c/code\u003e which is the version of EasyBuild to be used for building software. If that does not exist, it should be automatically installed\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eSW_LIST\u003c/code\u003e contains a simple list of the EasyConfig files to be installed. All in one line with a blank between them.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eSW_YAML\u003c/code\u003econtains the software to be installed as an EasyStack file in \u003ccode\u003eyaml\u003c/code\u003e format.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eBoth the \u003ccode\u003eSW_LIST\u003c/code\u003e and the \u003ccode\u003eSW_YAML\u003c/code\u003e are independent from each other. So as long as the file got a content, it will be used.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003esoftware.sh\u003c/code\u003e will be created on the fly in the right directory, using the various template files, and does contain the list of software which needs to be installed which will be pulled in by the \u003ccode\u003esoftwarelist.txt\u003c/code\u003e file. The EasyStack file, so it exists, will be places in the correct directory.\nIf you need to change any of the paths where the software will be installed, you will need to look into \u003ccode\u003esoftware.tmpl\u003c/code\u003e, the Singularity Definition file \u003ccode\u003eSingularity.eb-4.4.2-Lmod-ubuntu20-LTR\u003c/code\u003e and both the \u003ccode\u003einstall.sh\u003c/code\u003e and \u003ccode\u003einteractive-install.sh\u003c/code\u003e files.\nNote: You can mount any folder outside the container but you will need to make sure that the \u003ccode\u003eMODULEPATH\u003c/code\u003e variable are identical inside and outside the container. Thus, if you are using like in our example \u003ccode\u003e/apps/easybuild\u003c/code\u003e as the root install directory, the \u003ccode\u003eMODULEPATH\u003c/code\u003e then needs to be set to for example \u003ccode\u003e/apps/easybuild/modules/all\u003c/code\u003e inside and outside the container!\u003c/p\u003e\n\u003cp\u003eThere is currently one bad hack in the \u003ccode\u003einstall.sh\u003c/code\u003e script, which is the architecture where the container is running on is determined by a fixed-path script! That will be tidied up at one point, so please be aware of this!\nThe idea about using \u003ccode\u003earchspec.py\u003c/code\u003e is that outside the container you got different paths where to install the software, but one common path for all the source files. If you are only having one type of architecture, you can set that manually at the top of the file.\u003c/p\u003e\n\u003cp\u003eThe first time the script runs, it will create the directory structure but then stops as the Singularity container is not in place. For the full automated installation, we would download the container from somewhere. However, as this only needs to be done once, it is left for now like this.\u003c/p\u003e\n\u003cp\u003eOnce the container in the right folder we are upgrading EasyBuild to the latest version. This way, a module file is created automatically. Once that is done, the software will be installed if required.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-requirements\" class=\"anchor\" href=\"#requirements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements:\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003eSingularity\u003c/code\u003e \u0026gt;= 2.7.x and \u003ccode\u003efusermount\u003c/code\u003e \u0026gt;= 2.9.7\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-do\" class=\"anchor\" href=\"#to-do\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo Do:\u003c/h2\u003e\n\u003cp\u003eIt needs to be tested on Lustre but that does currently not work as \u003ccode\u003efusermount\u003c/code\u003e on at the current cluster is too old.\u003c/p\u003e\n\u003cp\u003eAlso, as mentioned above, the \u003ccode\u003earchpsec.py\u003c/code\u003e needs to be installed in a better way.\u003c/p\u003e\n\u003cp\u003eFinally, it somehow would be nice to include \u003ccode\u003e--cuda-compute-capabilities=8.0\u003c/code\u003e for the A100 GPU builds automatically to make it a bit more fool-proved.\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for Winnowmap, a long-read mapping algorithm optimized for mapping ONT and PacBio reads to repetitive reference sequences.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/marbl/Winnowmap\"\u003ehttps://github.com/marbl/Winnowmap\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 5,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1639737533.0
+ "updated_at": 1615953867.0
},
{
"data_format": 2,
- "description": null,
+ "description": "A Singularity File for Running Trinity on the HPCC",
"filenames": [
"Singularity"
],
- "full_name": "raveancic/scRNAaltas_TNBC_mm",
+ "full_name": "msuefishlab/trinity_singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-scrnaaltas_tnbc_mm\" class=\"anchor\" href=\"#scrnaaltas_tnbc_mm\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003escRNAaltas_TNBC_mm\u003c/h1\u003e\n\u003cp\u003eA pipeline for the scRNAseq data analysis of TNBC mouse model\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/raveancic/scRNAaltas_TNBC_mm/tree/master/cl_crt_FASTQ2countmat\"\u003eStep\u003c/a\u003e - Create the count matrix/bam file from FASTQ files. (sankemake pipeline - singularity container - PBS cluster). This step is the one published in \u003ca href=\"https://www.nature.com/articles/s41420-022-00893-x\" rel=\"nofollow\"\u003eCarpen et al., 2022, Cell Death Discovery\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
- "topics": [
- "scrna-seq-analysis",
- "snakemake",
- "snakemake-pipeline",
- "cellranger",
- "singularity",
- "scrna",
- "pbs"
- ],
- "updated_at": 1646907794.0
- },
- {
- "data_format": 2,
- "description": "Some util functions for machine learning experiments",
- "filenames": [
- "Singularity"
- ],
- "full_name": "martinmamql/mini-tool-box",
- "latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-mini-tool-box\" class=\"anchor\" href=\"#mini-tool-box\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emini-tool-box\u003c/h1\u003e\n\u003cp\u003eSome util functions for machine learning experiments\u003c/p\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 1,
"topics": [],
- "updated_at": 1642610373.0
+ "updated_at": 1528136809.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "envs/illumina/Singularity"
],
- "full_name": "talha-naveed97/orion_test",
+ "full_name": "here0009/SARS-Cov2_Snakemake_Pipeline",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-sarscov2_snakemake_pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#sarscov2_snakemake_pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSarsCov2_Snakemake_Pipeline\u003c/h1\u003e\n\u003cp\u003eThis is a snakemake pipeline used for analyse SarsCov2 sequence data generated by illumina machine.\nThis pipelien was based on \u003ca href=\"https://github.com/artic-network/fieldbioinformatics\"\u003eARTIC network\u0027s fieldbioinformatics tools\u003c/a\u003e, \u003ca href=\"https://github.com/dridk/Sars-CoV-2-NGS-pipeline\"\u003eSars-CoV-2-NGS-pipeline\u003c/a\u003e and \u003ca href=\"https://github.com/connor-lab/ncov2019-artic-nf\"\u003encov2019-artic-nf\u003c/a\u003e with some updates:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003ccode\u003efastqc\u003c/code\u003e and was used to generate the qc report of input data.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003equast\u003c/code\u003e was used to generate the sequence assembly report.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/cov-lineages/pangolin\"\u003epangolin\u003c/a\u003e was used for the typing of SarsCov-2\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eCorGat\u003c/code\u003e was used to annotate the sequence, and generate alle frequency reports\nYou need to clone \u003ca href=\"https://github.com/matteo14c/CorGAT\"\u003eCorGat\u003c/a\u003e and specify the directory in the config files.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003emultiqc\u003c/code\u003e was used to generate the final report.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThe workflow shows like below:\u003c/p\u003e\n\u003cp\u003eA test_data file was provided to test the pipeline.\nYou may test the pipeline by dry-run\n\u003ccode\u003esnakemake -s sars2.smk -n\u003c/code\u003e\nthen run the pipeline:\n\u003ccode\u003esnakemake -s sars2.smk -j 4 --use-conda\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eWARNING - THIS REPO IS UNDER ACTIVE DEVELOPMENT AND ITS BEHAVIOUR MAY CHANGE AT \u003cstrong\u003eANY\u003c/strong\u003e TIME.\u003c/p\u003e\n\u003cp\u003ePLEASE ENSURE THAT YOU READ BOTH THE README AND THE CONFIG FILE AND UNDERSTAND THE EFFECT OF THE OPTIONS ON YOUR DATA!\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1646090180.0
+ "updated_at": 1622116428.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "RNAja/envs/Singularity.RNAja.def"
+ "Singularity",
+ "model_preprocess/Singularity"
],
- "full_name": "Aucomte/RNAja",
- "latest_release": "0.1.0",
+ "full_name": "lsx1980/3D_model_reconstruction",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-3d-root-model-reconstruction\" class=\"anchor\" aria-hidden=\"true\" href=\"#3d-root-model-reconstruction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3D root model reconstruction\u003c/h1\u003e\n\u003cp\u003eThe software package was integrated as a module at PlantIT website at : \u003ca href=\"https://portnoy.cyverse.org/\" rel=\"nofollow\"\u003ehttps://portnoy.cyverse.org/\u003c/a\u003e.\n(Collaborate with Cyverse \u003ca href=\"https://www.cyverse.org/\" rel=\"nofollow\"\u003ehttps://www.cyverse.org/\u003c/a\u003e ) . Users are welcomed to registered as an user to try this package via PlantIT website.\u003c/p\u003e\n\u003cp\u003eThe software package was also available at Dockerhub (\u003ca href=\"https://hub.docker.com/r/computationalplantscience/3d-model-reconstruction\" rel=\"nofollow\"\u003ehttps://hub.docker.com/r/computationalplantscience/3d-model-reconstruction\u003c/a\u003e) for advanced users to run locally via singularity at Linux environment:\u003c/p\u003e\n\u003cp\u003eThis software can be run by docker container, users do not need to install many libraries and compile complex source files.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-setup-docker-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-docker-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup Docker container\u003c/h1\u003e\n\u003cp\u003eOS requirements\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eTo install Docker container (https://docs.docker.com/engine/install/ubuntu/): \n\nTo install Docker Engine, you need the 64-bit version of one of these Ubuntu versions:\n\nUbuntu Groovy 20.10\nUbuntu Focal 20.04 (LTS)\nUbuntu Bionic 18.04 (LTS)\nUbuntu Xenial 16.04 (LTS)\n\nDocker Engine is supported on x86_64 (or amd64), armhf, and arm64 architectures.\n\nUninstall old versions\n$ sudo apt-get remove docker docker-engine docker.io containerd runc\n\nSet up the repository\n\nUpdate the apt package index and install packages to allow apt to use a repository over HTTPS:\n\n$ sudo apt-get update\n\n$ sudo apt-get install \\\n apt-transport-https \\\n ca-certificates \\\n curl \\\n gnupg-agent \\\n software-properties-common\n\nAdd Docker\u2019s official GPG key:\n\n$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -\n\nVerify that you now have the key with the fingerprint 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88, by searching for the last 8 characters of the fingerprint.\n\n$ sudo apt-key fingerprint 0EBFCD88\n\npub rsa4096 2017-02-22 [SCEA]\n 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88\nuid [ unknown] Docker Release (CE deb) \u0026lt;docker@docker.com\u0026gt;\nsub rsa4096 2017-02-22 [S]\n\n$ sudo add-apt-repository \\\n \"deb [arch=amd64] https://download.docker.com/linux/ubuntu \\\n $(lsb_release -cs) \\\n stable\"\n\nUpdate the apt package index, and install the latest version of Docker Engine and containerd, or go to the next step to install a specific version:\n\n$ sudo apt-get update\n$ sudo apt-get install docker-ce docker-ce-cli containerd.io\n\nVerify that Docker Engine is installed correctly by running the hello-world image.\n\n$ sudo docker run hello-world\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-run-this-container-by-building-it-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-this-container-by-building-it-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun this container by building it locally:\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003e# Clone source code to your local path\n$ git clone https://github.com/Computational-Plant-Science/3D_model_reconstruction_demo.git\n\n# Enter into the source code folder named as \"cd 3D_model_reconstruction_demo\"\n$ cd 3D_model_reconstruction_demo/\n\n# Build docker container locally named as \"3d_model_reconstruction\" using \"Dockerfile\" in the same folder, note: docker repository name must be lowercase.\n$ docker build -t 3d_model_reconstruction -f Dockerfile .\n\n# Run the docker container by linking docker container data path to user\u0027s image data folder local path\n# Note: please replace $path_to_image_folder as your local image data folder path, \n# Suggest to check your image folder path using \"pwd\" command\n# Example: $ docker run -v /home/suxing/example/root_images:/images -it 3d_model_reconstruction\n\n$ docker run -v /$path_to_image_folder:/images -it 3d_model_reconstruction\n\n# After launch the docker container, run \"pipeline.sh\" or \"pipeline.sh\" insider the container\n$ root@0529cde0b988:/opt/code# ./pipeline.sh\nor $ root@0529cde0b988:/opt/code# python3 pipeline.py\n\n# Get 3d model result named as \"dense.0.ply\"\n# After the container was executed successfully with image data files, user should be able to see output in your command window like this:\n\u0027\u0027\u0027\nLoading option-0000.ply, 48656 vertices ...\nSave to /images/dense.nvm ... done\nSave /images/dense.0.ply ...done\n----------------------------------------------------------------\n\u0027\u0027\u0027\nThe 3D model file was in ply format(https://en.wikipedia.org/wiki/PLY_(file_format)), it is located inside your image folder, its name is \"dense.0.ply\".\npath = \"/$path_to_image_folder/dense.0.ply\"\n\nTo visualize the 3d model file, suggest to install Meshlab(https://www.meshlab.net/) or cloudcompare(https://www.danielgm.net/cc/)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-author\" class=\"anchor\" aria-hidden=\"true\" href=\"#author\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthor\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003esuxing liu(suxingliu@gmail.com)\nWesley Paul Bonelli(wbonelli@uga.edu)\n\nReference:\nVisualSFM\n[Anders Damsgaard](mailto:adamsgaard@ucsd.edu) with contributions by Caleb Adams and Connor P Doherty.\nChangchang Wu ( wucc1130@gmail.com )\n+ Structure from Motion\n[1] Changchang Wu, \"Towards Linear-time Incremental Structure From Motion\", 3DV 2013\n[2] Changchang Wu, \"VisualSFM: A Visual Structure from Motion System\", http://ccwu.me/vsfm/, 2011\n+ Bundle Adjustment\n[3] Changchang Wu, Sameer Agarwal, Brian Curless, and Steven M. Seitz, \"Multicore Bundle Adjustment\", CVPR 2011 \n+ Feature Detection\n[4] Changchang Wu, \"SiftGPU: A GPU implementation of Scale Invaraint Feature Transform (SIFT)\", http://cs.unc.edu/~ccwu/siftgpu, 2007\n\nCOLMAP\nhttps://colmap.github.io\nAuthor: Johannes L. Schoenberger (jsch-at-demuc-dot-de)\n@inproceedings{schoenberger2016sfm,\n author={Sch\\\"{o}nberger, Johannes Lutz and Frahm, Jan-Michael},\n title={Structure-from-Motion Revisited},\n booktitle={Conference on Computer Vision and Pattern Recognition (CVPR)},\n year={2016},\n}\n\n@inproceedings{schoenberger2016mvs,\n author={Sch\\\"{o}nberger, Johannes Lutz and Zheng, Enliang and Pollefeys, Marc and Frahm, Jan-Michael},\n title={Pixelwise View Selection for Unstructured Multi-View Stereo},\n booktitle={European Conference on Computer Vision (ECCV)},\n year={2016},\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDocker container was maintained by Wesley Paul Bonelli. it was deployed to Plant IT website by Wesley Paul Bonelli (\u003ca href=\"mailto:wbonelli@uga.edu\"\u003ewbonelli@uga.edu\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003eSingularity container overlay issues were solved by [Saravanaraj Ayyampalayam] (\u003ca href=\"https://github.com/raj76\"\u003ehttps://github.com/raj76\u003c/a\u003e) (\u003ca href=\"mailto:raj76@uga.edu\"\u003emailto:raj76@uga.edu\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003eSpecial thanks to Chris Cotter building the container recipe for testing and debugging.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-todo\" class=\"anchor\" aria-hidden=\"true\" href=\"#todo\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTodo\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eGPU cuda version container\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eGNU Public License\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1646051177.0
+ "updated_at": 1614652430.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.v8",
- "Singularity.v4",
- "Singularity.v2",
- "Singularity.v6",
- "Singularity.v3",
- "Singularity.va",
- "Singularity.v5",
- "Singularity.v1",
- "Singularity.v9",
- "Singularity.v7"
+ "external/oskar/singularity/Singularity.base-dep",
+ "external/oskar/singularity/Singularity.python3"
],
- "full_name": "sternacht/tf_singu",
+ "full_name": "kernsuite-debian/everybeam",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-everybeam-library\" class=\"anchor\" aria-hidden=\"true\" href=\"#everybeam-library\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEveryBeam library\u003c/h1\u003e\n\u003cp\u003eThis package can be used to compute the beam response for a variety of\nradio telescopes, i.e.:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eLOFAR\u003c/li\u003e\n\u003cli\u003eOSKAR\u003c/li\u003e\n\u003cli\u003eMWA\u003c/li\u003e\n\u003cli\u003eVLA\u003c/li\u003e\n\u003cli\u003eATCA\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis package also provides an abstract interface to a selection of beam responses for apperture arrays (LOFAR/OSKAR), and beamformed versions thereof. Currently implemented are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eHamaker LOFAR model\u003c/li\u003e\n\u003cli\u003eOSKAR spherical wave model\u003c/li\u003e\n\u003cli\u003eOSKAR-dipole: work in progress\u003c/li\u003e\n\u003cli\u003eLOBEs: work in progress. A coefficient file is currently only available for a limited number of LOFAR stations. Selecting the LOBEs model defaults back to Hamaker, in case no coefficient file is available.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eEveryBeam replaces the stand alone version of the LOFAR station response library (LOFARBeam).\u003c/p\u003e\n\u003cp\u003eEveryBeam is licensed under the terms of the GNU GPL3 license.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-documentation-and-installation-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation-and-installation-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation and Installation Instructions\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://www.astron.nl/citt/EveryBeam/\" rel=\"nofollow\"\u003eDocumentation\u003c/a\u003e along with \u003ca href=\"https://www.astron.nl/citt/EveryBeam/build-instructions.html\" rel=\"nofollow\"\u003einstallation instructions\u003c/a\u003e can be found at the provided links.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage-with-dp3\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage-with-dp3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage with DP3\u003c/h2\u003e\n\u003cp\u003eTo use Everybeam within \u003ca href=\"https://git.astron.nl/RD/DP3\" rel=\"nofollow\"\u003eDP3\u003c/a\u003e - the streaming visibility framework - DP3 needs to be compiled against EveryBeam. To do so, make sure DP3 can find EveryBeam by adding the EveryBeam install dir to the \u003ccode\u003eCMAKE_PREFIX_PATH\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eA test measurement set is included in DP3 (\u003ccode\u003etNDP3-generic.in_MS.tgz\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eTo simulate visibilities with a certain element model, use \u003ccode\u003eDP3 DP3.parset\u003c/code\u003e with \u003ccode\u003eDP3.parset\u003c/code\u003e a parset file with the following contents:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emsin=tNDP3-generic.MS\nmsout=.\nsteps=[predict]\npredict.usebeammodel=True\npredict.elementmodel=oskardipole\npredict.sourcedb=tNDP3-generic.MS/sky # sourcedb file\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage-with-wsclean\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage-with-wsclean\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage with WSClean\u003c/h2\u003e\n\u003cp\u003eTo use EveryBeam with \u003ca href=\"https://gitlab.com/aroffringa/wsclean\" rel=\"nofollow\"\u003eWSClean\u003c/a\u003e (for A-term or primary beam corrections), WSClean needs to be compiled against EveryBeam. In order to do so, make sure WSClean can find EveryBeam by adding the EveryBeam install dir to the \u003ccode\u003eCMAKE_PREFIX_PATH\u003c/code\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1560171965.0
+ "updated_at": 1663586637.0
},
{
"data_format": 2,
- "description": "VNC Server in a Singularity container",
+ "description": null,
"filenames": [
- "Singularity",
- "Singularity.2.1.2"
+ "Singularity.td_base_ml"
],
- "full_name": "nickjer/singularity-vncserver",
+ "full_name": "TurbulentDynamics/tdEnvSetup",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-vnc-server\" class=\"anchor\" href=\"#singularity-vnc-server\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity VNC Server\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/603\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"Singularity Hub\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image for \u003ca href=\"https://turbovnc.org/\" rel=\"nofollow\"\u003eTurboVNC\u003c/a\u003e with the inclusion of \u003ca href=\"https://github.com/novnc/websockify/\"\u003ewebsockify\u003c/a\u003e for\nconnecting to the VNC server from within your browser using \u003ca href=\"https://kanaka.github.io/noVNC/\" rel=\"nofollow\"\u003enoVNC\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThis is still a work in progress.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-build\" class=\"anchor\" href=\"#build\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild\u003c/h2\u003e\n\u003cp\u003eYou can build a local Singularity image named \u003ccode\u003esingularity-vncserver.simg\u003c/code\u003e\nwith:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build singularity-vncserver.simg Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-deploy\" class=\"anchor\" href=\"#deploy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDeploy\u003c/h2\u003e\n\u003cp\u003eInstead of building it yourself you can download the pre-built image from\n\u003ca href=\"https://www.singularity-hub.org\" rel=\"nofollow\"\u003eSingularity Hub\u003c/a\u003e with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity pull --name singularity-vncserver.simg shub://nickjer/singularity-vncserver\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-run\" class=\"anchor\" href=\"#run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-vncserver\" class=\"anchor\" href=\"#vncserver\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003evncserver\u003c/h3\u003e\n\u003cp\u003eThe \u003ccode\u003evncserver\u003c/code\u003e command is launched using the default run command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run singularity-vncserver.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor as an explicit app:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --app vncserver singularity-vncserver.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003esingularity run --app vncserver singularity-vncserver.simg\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eYou will require a password to access your desktops.\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003ePassword:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eVerify:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eWould you like to enter a view-only password (y/n)? n\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eDesktop \u0027TurboVNC: dev:1 (nickjer)\u0027 started on display dev:1\u003c/span\u003e\n\n\u003cspan class=\"pl-c1\"\u003eCreating default startup script /home/nickjer/.vnc/xstartup.turbovnc\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eStarting applications specified in /home/nickjer/.vnc/xstartup.turbovnc\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eLog file is /home/nickjer/.vnc/dev:1.log\u003c/span\u003e\n\n$ \u003cspan class=\"pl-s1\"\u003esingularity run --app vncserver singularity-vncserver.simg -kill :1\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eKilling Xvnc process ID 9738\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-vncpasswd\" class=\"anchor\" href=\"#vncpasswd\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003evncpasswd\u003c/h3\u003e\n\u003cp\u003eThe \u003ccode\u003evncpasswd\u003c/code\u003e command is launched as an explicit app:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --app vncpasswd singularity-vncserver.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eExample:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003e\u003cspan class=\"pl-c1\"\u003eecho\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003emypassword\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e singularity run --app vncpasswd singularity-vncserver.simg -f \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e vnc_passwd\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eWarning: password truncated to the length of 8.\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-websockify\" class=\"anchor\" href=\"#websockify\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ewebsockify\u003c/h3\u003e\n\u003cp\u003eIn some cases you may not want to download and install a VNC client on your\nlocal machine. In those cases you can actually use the \u003ca href=\"https://kanaka.github.io/noVNC/\" rel=\"nofollow\"\u003enoVNC\u003c/a\u003e client which\nruns completely in your browser.\u003c/p\u003e\n\u003cp\u003eIn order to connect to the VNC server with \u003ca href=\"https://kanaka.github.io/noVNC/\" rel=\"nofollow\"\u003enoVNC\u003c/a\u003e you will need to enable\n\u003ca href=\"https://github.com/novnc/websockify/\"\u003ewebsockify\u003c/a\u003e which will translate the incoming websocket traffic from \u003ca href=\"https://kanaka.github.io/noVNC/\" rel=\"nofollow\"\u003enoVNC\u003c/a\u003e\nto normal TCP traffic proxied to the listening VNC server.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003ewebsockify\u003c/code\u003e command is launched as an explicit app:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity run --app websockify singularity-vncserver.simg\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAssuming you started a \u003ccode\u003evncserver\u003c/code\u003e above listening on port \u003ccode\u003e5901\u003c/code\u003e (display port\n\u003ccode\u003e:1\u003c/code\u003e), you will launch \u003ccode\u003ewebsockify\u003c/code\u003e on the same machine with:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-text-shell-session\"\u003e\u003cpre\u003e$ \u003cspan class=\"pl-s1\"\u003esingularity run --app websockify singularity-vncserver.simg 8000 localhost:5901\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003eWebSocket server settings:\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e - Listen on :8000\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e - No SSL/TLS support (no cert file)\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003e - proxying from :8000 to localhost:5901\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen from your browser using the \u003ca href=\"https://kanaka.github.io/noVNC/\" rel=\"nofollow\"\u003enoVNC\u003c/a\u003e client, connect to the machine running\nthe VNC server and port \u003ccode\u003e8000\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eIt is recommended you either setup SSL for a secure connection or host it\nfrom behind a reverse proxy with SSL already enabled.\u003c/strong\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contributing\" class=\"anchor\" href=\"#contributing\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003cp\u003eBug reports and pull requests are welcome on GitHub at\n\u003ca href=\"https://github.com/nickjer/singularity-vncserver\"\u003ehttps://github.com/nickjer/singularity-vncserver\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-license\" class=\"anchor\" href=\"#license\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eThe code is available as open source under the terms of the \u003ca href=\"http://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003eMIT License\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-turbulent-dynamics\" class=\"anchor\" aria-hidden=\"true\" href=\"#turbulent-dynamics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTurbulent Dynamics\u003c/h1\u003e\n\u003cp\u003eTurbulent Dynamics developes Maching Learning, MPI and iOS applications for both High Performance Computing (Supercomputing), edge devices (Xavier, Raspberry PI, MyriadX) and MacOS. Minimising system admin workload is not trivial so this guide was created to try setup a common dominator for all projects.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"#Environment-setup\"\u003eEnvironment setup\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Simple-Cluster-Diagnostics\"\u003eSimple Cluster Diagnostics\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#Coding-Guidelines-and-Visualisations\"\u003eCoding Guidelines and Visualisations\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch1\u003e\u003ca id=\"user-content-environment-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#environment-setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEnvironment setup\u003c/h1\u003e\n\u003cp\u003eTurbulent Dynamics developes Maching Learning, MPI and iOS applications for both High Performance Computing (Supercomputing) edge devices (Xavier, Raspberry PI, MyriadX) and MacOS. Minimising system admin workload is not trivial, as different devices require a different stack, especially edge devices, and sometimes sudo is not available (on HPC systems). This drives out environment and app choices.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eAvoid sudo installs by using Brew for basic tools.\u003c/li\u003e\n\u003cli\u003eAvoid sudo and allow multiple versions of apps using Spack (also compiles all dependencies giving performance advantages).\u003c/li\u003e\n\u003cli\u003eUse containers where possible (Edge devices struggle or are unable).\u003c/li\u003e\n\u003cli\u003eUse Python Venv, for ML Tensorflow and tools.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eDevice\u003c/th\u003e\n\u003cth\u003eUse Case\u003c/th\u003e\n\u003cth\u003eNotes\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPC System\u003c/td\u003e\n\u003ctd\u003eTraining ML and Large Scale MPI apps 100s nodes\u003c/td\u003e\n\u003ctd\u003eSudo not available\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWorkstations (with AMD GPU)\u003c/td\u003e\n\u003ctd\u003eTraining ML\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eWorkstations (with Nvidia GPU)\u003c/td\u003e\n\u003ctd\u003eTraining ML, rebuilding Xavier/Nano and MPI app testing\u003c/td\u003e\n\u003ctd\u003eNvidia SDK limits to Ubuntu 18.04\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMacOS (AMD GPU)\u003c/td\u003e\n\u003ctd\u003eVisualisations in Metal and iOS apps\u003c/td\u003e\n\u003ctd\u003eDevelop in Swift\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eNVIDIA Xavier/Nano\u003c/td\u003e\n\u003ctd\u003eML Inferencing\u003c/td\u003e\n\u003ctd\u003eLimited to Cuda 10.0, Tensorflow 1.14\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMyriadX (Intel Compute Stick)\u003c/td\u003e\n\u003ctd\u003eML Inferencing\u003c/td\u003e\n\u003ctd\u003eOpenVINO limits to Ubuntu 16\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eRaspberry Pi\u003c/td\u003e\n\u003ctd\u003eML Inferencing\u003c/td\u003e\n\u003ctd\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_0_basics_and_brew.md\"\u003eInstall basics and brew on both MacOS and Linux\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_1_with_spack.md\"\u003eInstall spack and some applications\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_2_python_modules.md\"\u003eInstall python modules\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_3_OpenVINO_on_Ubuntu_16_04.md\"\u003eInstall OpenVINO on Ubuntu 16.04\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_3_nvidia_for_Ubuntu_18_04.md\"\u003eInstall Nvidia CUDA and tools on Ubuntu 18.04\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_4_nvidia_docker2_base_ml_container.md\"\u003eInstall docker, nvidia-docker2 and run TD_Base_Nvidia_ML container\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_5_singularity.md.md\"\u003eInstall singularity and run TD_Base_Nvidia_ML container\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/install_6_optional_apps.md\"\u003eOptional Apps\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/spack_swift_package.py\"\u003e(WIP) Use Spack to install Swift\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"env_setup/swift_for_ubuntu.md\"\u003e(WIP) Install Swift on Ubuntu\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-simple-cluster-diagnostics\" class=\"anchor\" aria-hidden=\"true\" href=\"#simple-cluster-diagnostics\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSimple Cluster Diagnostics\u003c/h1\u003e\n\u003cp\u003eSimple utility to check if OpenMP, MPI and cuda are working as expected.\n\u003ca href=\"diagnostics_hello_world_mpi_openmp_gpu/README.md\"\u003eDiagnostics OpenMP, MPI, GPU\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-coding-guidelines-and-visualisations\" class=\"anchor\" aria-hidden=\"true\" href=\"#coding-guidelines-and-visualisations\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCoding Guidelines and Visualisations\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"dev_info/index.md\"\u003eCoding guidelines\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://turbulentdynamics.github.io/tdEnvSetup/graphics/arrows.html\" rel=\"nofollow\"\u003eVector Identifiers\u003c/a\u003e The vectors are numbered differently than usual LBM implementations\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://turbulentdynamics.github.io/tdEnvSetup/graphics/cube.html\" rel=\"nofollow\"\u003eItem Identifiers\u003c/a\u003e The cells in the outer shell of the lattice grid has been given an identification\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://turbulentdynamics.github.io/tdEnvSetup/graphics/1000.html\" rel=\"nofollow\"\u003eVisualisation 1000 cubes\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 3,
"topics": [],
- "updated_at": 1581617600.0
+ "updated_at": 1635665969.0
},
{
"data_format": 2,
- "description": "Recipe files used to compile SLURM (https://github.com/SchedMD/slurm) in powerPlant",
+ "description": "Learning temporal planning models",
"filenames": [
- "21.08.8-2/centos7/singularity/Singularity.21.08.8-2-make",
- "21.08.8-2/centos7/singularity/Singularity.21.08.8-2-rpm"
+ "planners/team1/src/Singularity"
],
- "full_name": "powerPlant/slurm-build",
+ "full_name": "sjimenezgithub/tmodeling",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-tmodeling\" class=\"anchor\" aria-hidden=\"true\" href=\"#tmodeling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etmodeling\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 0,
"topics": [],
- "updated_at": 1652918976.0
+ "updated_at": 1574164945.0
},
{
"data_format": 2,
- "description": "singularity container",
+ "description": "Centos 8 base image for Roar",
"filenames": [
- "Singularity.salad",
"Singularity",
- "Singularity.pokemon"
+ "Singularity.gpu"
],
- "full_name": "dcasciotti/alexrequest",
+ "full_name": "willgpaik/centos8_roar",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-deploy\" class=\"anchor\" href=\"#singularity-deploy\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Deploy\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"img/shpc.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"img/shpc.png\" alt=\"img/shpc.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWouldn\u0027t it be nice to build Singularity images without a registry proper,\nand just keep them alongside the GitHub codebase? This is now possible!\nThis small repository provides an example to get you started. It will\nbuild one or more images (whatever Singularity.* files that are present at\nthe root) and then release them as assets to your GitHub repository so\nthat they can be programatically obtained. It is associated with\n\u003ca href=\"https://github.com/singularityhub/singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e to allow\nyou to then define LMOD modules for these same containers.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eCan I upload the largest of chonkers?\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eYes and no. Note that assets are limited to 2 GB in size, which is still fairly good. You can use\nit as a template for your own recipes as is, or modify it for your custom\nuse case. Instructions are below!\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNote\u003c/strong\u003e Currently recipe extensions are associated with tags, and the GitHub release is\nassociated with a digest. We likely will change this in the next few weeks so that GitHub\nreleases are tags, and the \"digests\" are flie names. Stay tuned for updates!\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-getting-started\" class=\"anchor\" href=\"#getting-started\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1-template-or-fork\" class=\"anchor\" href=\"#1-template-or-fork\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Template or Fork\u003c/h3\u003e\n\u003cp\u003eIf you haven\u0027t already, template or fork this repository. You can then clone\nyour fork:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ git clone git@github.com:\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eusername\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/singularity-deploy\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou likely want to name the repository by the container. For example, if I would\nhave created a container on Docker Hub or similar with the name \u003ccode\u003evsoch/salad\u003c/code\u003e,\nhere I\u0027d call the repository \u003ccode\u003esalad\u003c/code\u003e. You obviously are limited to your username\nor an organizational namespace.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-1-write-your-singularity-recipes\" class=\"anchor\" href=\"#1-write-your-singularity-recipes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Write your Singularity Recipe(s)\u003c/h3\u003e\n\u003cp\u003eFirst, you should write your container recipe(s) in the present working directory.\nFor good practice, when you are updating recipes you should checkout a new branch\nand open a pull request, as the repository comes with a workflow to trigger on a PR\nto \u003ca href=\".github/workflows/test.yml\"\u003etest your container build\u003c/a\u003e. Note that in the main workflow\nthat deploys the releases, the current branch is set to be \u003ccode\u003emain-branch\u003c/code\u003e. You should\nupdate this to be your main \"production\" branch that you want to deploy releases on merge.\nYou are also free to choose a different trigger and release strategy. You can add any additional\ntests that that you might need. By default, any Singularity.* file will be automatically detected.\nIf there is no extension (the name Singularity), the name used will be \"latest.\"\nYou can use these tags across multiple releases of your containers. For example,\nthese files would generate packages with sifs named as follows:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.pokemon\"\u003eSingularity.pokemon\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.pokemon.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Singularity.salad\"\u003eSingularity.salad\u003c/a\u003e maps to \u003ca href=\"https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\"\u003ehttps://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.salad.sif\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor each name, you can see the direct download URL contains the repository (singularityhub/singularity-deploy),\nYou should not use any \u003ccode\u003e:\u003c/code\u003e characters in either your container tag (the GitHub extension) or\nthe GitHub tags (the release tags) as this might interfere with parsing.\nThe GitHub release tag (0.0.1 in the example above) is discussed next.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-2-update-the-version-file\" class=\"anchor\" href=\"#2-update-the-version-file\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Update the VERSION file\u003c/h3\u003e\n\u003cp\u003eAny time that you prepare new container recipes, you should update the \u003ca href=\"VERSION\"\u003eVERSION\u003c/a\u003e\nfile. The way that this repository works is to generate a release based on the\nstring in \u003ccode\u003eVERSION\u003c/code\u003e. A version is just a tag, so it could be something like\n\u003ccode\u003e0.0.1\u003c/code\u003e or \u003ccode\u003e0.0.1-slim\u003c/code\u003e. Keep in mind that GitHub releases cannot have duplicated\nnames, so you should not repeat the same tag. Do not use \u003ccode\u003e:\u003c/code\u003e in your tag names.\nIf you do need to re-release a tag (not recommended if a user might be using it and then it\u0027s changed) you can manually delete\nthe release and the tag in the GitHub interface. This is a nice structure because it\nmeans you can have containers with different names under the same tag. In the example\nabove, we have each of \"pokemon,\" \"latest,\" and \"salad\" released under tag 0.0.1.\nThis is how it looks on GitHub:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"img/releases.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"img/releases.png\" alt=\"img/releases.png\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-3-how-to-develop\" class=\"anchor\" href=\"#3-how-to-develop\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. How to Develop\u003c/h3\u003e\n\u003cp\u003eAs we mentioned previously, the container builds will be tested on a pull request,\nand the release will trigger on merge into your main branch (main). See the \u003ca href=\".github/workflows/builder.yml\"\u003e.github/workflows/builder.yml\u003c/a\u003e)\nto edit this. The idea is that you can:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDevelop your container via a development branch\u003c/li\u003e\n\u003cli\u003eOpen a pull request to test the container (the \u003ca href=\".github/workflows/test.yml\"\u003e.github/workflows/test.yml\u003c/a\u003e)\u003c/li\u003e\n\u003cli\u003eOn merge, your container will be released!\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-4-how-to-pull\" class=\"anchor\" href=\"#4-how-to-pull\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. How to pull\u003c/h3\u003e\n\u003cp\u003eTechnically, Singularity can pull just knowing the URL. For example:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull https://github.com/singularityhub/singularity-deploy/releases/download/0.0.1/singularityhub-singularity-deploy.latest.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eHowever, the \u003ca href=\"singularity-hpc\"\u003esingularity-hpc\u003c/a\u003e tool (will be) designed to be able to parse and handle\nthese container uris automatically. For the containers here, you could do:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:latest\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:salad\n$ shpc pull gh://singularityhub/singularity-deploy/0.0.1:pokemon\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eor write the container URI into a registry entry:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egh: singularityhub/singularity-deploy\nlatest:\n latest: \"0.0.1\"\ntags:\n \"latest\": \"0.0.1\"\n \"salad\": \"0.0.1\"\n \"pokemon\": \"0.0.1\"\nmaintainer: \"@vsoch\"\nurl: https://github.com/singularityhub/singularity-deploy\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e(This part is still under development!)\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-centos8_roar\" class=\"anchor\" aria-hidden=\"true\" href=\"#centos8_roar\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecentos8_roar\u003c/h1\u003e\n\u003cp\u003e\u003cdel\u003eCentos\u003c/del\u003e Rocky Linux 8 base image for Roar\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-note\" class=\"anchor\" aria-hidden=\"true\" href=\"#note\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNOTE\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eThis recipe may include unnecessary packages for certain software installation\u003c/li\u003e\n\u003cli\u003eMore packages will be added in the future\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-updates\" class=\"anchor\" aria-hidden=\"true\" href=\"#updates\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUpdates\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e2020/11/13\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eInitial recipe added\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e2021/03/22\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDefault Python3 is updated to Python 3.8\u003c/li\u003e\n\u003cli\u003eLapack, BLAS, OpenBLAS, ATLAS, and NetCDF are added\u003c/li\u003e\n\u003cli\u003eCMake 3.19.7, Boost 1.75.0, and R 4.0.4 are added\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e2022/10/31\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eImage changed from Centos 8 to Rocky Linux 8\u003c/li\u003e\n\u003cli\u003eDefault Python3 is updated to Python 3.9\u003c/li\u003e\n\u003cli\u003eCMake and R are removed due to later version can be installed from package repo\u003c/li\u003e\n\u003cli\u003eBoost is updated to 1.80.0\u003c/li\u003e\n\u003cli\u003e(Changes are applied to non-GPU version only)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1652978087.0
- },
- {
- "data_format": 2,
- "description": "Bio-Formats image file format to raw format converter.",
- "filenames": [
- "0.3.0/Singularity"
- ],
- "full_name": "pscedu/singularity-bioformats2raw",
- "latest_release": "v3.0.0",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-bioformats2raw/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bioformats2raw/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-bioformats2raw/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-bioformats2raw/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/393a92fbeeb7f1545c3869f957dc859760052e0eff8eeb8f95b409800de2d2b2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/393a92fbeeb7f1545c3869f957dc859760052e0eff8eeb8f95b409800de2d2b2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-bioformats2raw\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/444f4d60540e76ad5618bb8884c8f9d5a6a1f61fcf2a94363f379f6c6b074c5c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/444f4d60540e76ad5618bb8884c8f9d5a6a1f61fcf2a94363f379f6c6b074c5c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-bioformats2raw\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/91fa772cacd77c7d5f540224712927de4888ac6dc960cd56dc1d23edeac9a1b9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/91fa772cacd77c7d5f540224712927de4888ac6dc960cd56dc1d23edeac9a1b9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-bioformats2raw\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f6dea7ba6ee602447c05fc1a8d8498d7d44f22ad6f72fb6ad78b424301cd6d14/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f6dea7ba6ee602447c05fc1a8d8498d7d44f22ad6f72fb6ad78b424301cd6d14/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d62696f666f726d61747332726177\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-bioformats2raw\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-bioformats2raw\" class=\"anchor\" href=\"#singularity-bioformats2raw\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-bioformats2raw\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/d6ac5fb6156e1b197fd547d7632a7b90cb6aac15112aff196834a376c3065baf/68747470733a2f2f7777772e676c656e636f65736f6674776172652e636f6d2f696d672f6c6f676f2e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d6ac5fb6156e1b197fd547d7632a7b90cb6aac15112aff196834a376c3065baf/68747470733a2f2f7777772e676c656e636f65736f6674776172652e636f6d2f696d672f6c6f676f2e737667\" width=\"25%\" data-canonical-src=\"https://www.glencoesoftware.com/img/logo.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/glencoesoftware/bioformats2raw\"\u003ebioformats2raw\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ebioformats2raw\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/bioformats2raw/3.0.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/bioformats2raw\u003c/code\u003e as \u003ccode\u003e3.0.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "utilities",
- "image-processing"
- ],
- "updated_at": 1649185211.0
+ "updated_at": 1667245535.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.torch_mmf",
+ "Singularity.torch"
],
- "full_name": "khourhin/uber_container",
+ "full_name": "ChunCun/container",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1653684576.0
- },
- {
- "data_format": 2,
- "description": "BLAST finds regions of similarity between biological sequences.",
- "filenames": [
- "2.13.0/Singularity",
- "2.11.0/Singularity",
- "2.9.0/Singularity"
- ],
- "full_name": "pscedu/singularity-blast",
- "latest_release": "v2.13.0",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-blast/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-blast/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/34775a544d028af1a76f53887556e0b47d8a40289aa78e79056c5e13dcbc48e4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626c617374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/34775a544d028af1a76f53887556e0b47d8a40289aa78e79056c5e13dcbc48e4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d626c617374\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-blast\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/e33eb8d62dc7df0e7a911833138fefaed18e36044c13f7a3aa53c104c1ffc719/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626c617374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e33eb8d62dc7df0e7a911833138fefaed18e36044c13f7a3aa53c104c1ffc719/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d626c617374\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-blast\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c141231c49671d4a45e13d6d79f61b30ec62be1462b950fac124cfb21cc2d206/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626c617374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c141231c49671d4a45e13d6d79f61b30ec62be1462b950fac124cfb21cc2d206/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d626c617374\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-blast\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0ec9871992e72eb86a829ac86878026892749bddbb4623030eb745093184def6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626c617374\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0ec9871992e72eb86a829ac86878026892749bddbb4623030eb745093184def6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d626c617374\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-blast\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-blast\" class=\"anchor\" href=\"#singularity-blast\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-blast\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web\u0026amp;PAGE_TYPE=BlastDocs\u0026amp;DOC_TYPE=Download\" rel=\"nofollow\"\u003eBLAST\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the other scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/blast/2.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/blast\u003c/code\u003e as \u003ccode\u003e2.11.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 4,
- "topics": [
- "bioinformatics",
- "singularity"
- ],
- "updated_at": 1636731786.0
+ "updated_at": 1605677713.0
},
{
"data_format": 2,
- "description": "A command-line benchmarking tool.",
+ "description": null,
"filenames": [
- "1.13.0/Singularity",
- "1.11.0/Singularity"
+ "hpc_files/singularity_hpc_files/Singularity.bld"
],
- "full_name": "pscedu/singularity-hyperfine",
- "latest_release": "v1.11.0",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/icaoberg/singularity-hyperfine/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aa6ccae89f711313efdead7c3be0b796360740e33514a985a0f4968fa01cb0f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3251ba672b3bf023faefb928be7900afe28d7d2ebe6ae3a775c7e820687c6571/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5c452c9170d570d496414a1d624b5d3731e36ca355843b447512b991c91ee546/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a734b24e30b49dc758633fa5394475d80c0cfe02dc89ed582ec651d630a3f19c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f6963616f626572672f73696e67756c61726974792d687970657266696e65\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/icaoberg/singularity-hyperfine\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-hyperfine\" class=\"anchor\" href=\"#singularity-hyperfine\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-hyperfine\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/88a0cb35f42e02e28b0433d4b5e0029e52e723d8feb8df753e1ed06a5161db56/68747470733a2f2f692e696d6775722e636f6d2f7a31394f5978452e676966\" alt=\"Example\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sharkdp/hyperfine\"\u003ehyperfine\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ehyperfine\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/hyperfine/1.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/hyperfine\u003c/code\u003e as \u003ccode\u003e1.11.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "ammunk/distributed-training-pytorch",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-demo-scripts\" class=\"anchor\" aria-hidden=\"true\" href=\"#demo-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDemo scripts\u003c/h1\u003e\n\u003cp\u003eThis repository contains demo scripts for running distributed training of deep\nneural networks using PyTorch. These scripts are written according to the\ninformation found at (\u003ca href=\"https://github.com/ammunk/hpc\"\u003ehttps://github.com/ammunk/hpc\u003c/a\u003e)\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1649205323.0
- },
- {
- "data_format": 2,
- "description": "Raw format to OME-TIFF converter.",
- "filenames": [
- "3.0.0/Singularity"
- ],
- "full_name": "pscedu/singularity-raw2ometiff",
- "latest_release": "v3.0.0",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-raw2ometiff/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-raw2ometiff/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-raw2ometiff/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-raw2ometiff/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/8d0d22e8f29e65a71263e2fb6bce4826c7ce3f09aed55e6dbde2928785d212f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8d0d22e8f29e65a71263e2fb6bce4826c7ce3f09aed55e6dbde2928785d212f2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-raw2ometiff\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/7822cb72c205ba7e407c8e3c73f1753c3051e55c850a256628b591b7640cb064/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7822cb72c205ba7e407c8e3c73f1753c3051e55c850a256628b591b7640cb064/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-raw2ometiff\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/ee493a8b01574ccdadc2be17adf48265c4d4d5b8d4dd7528eebab32317323e41/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ee493a8b01574ccdadc2be17adf48265c4d4d5b8d4dd7528eebab32317323e41/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-raw2ometiff\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/48898dd432d34088bdf217be2af09312648ecdf47ab776fb4de050c5338365bd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/48898dd432d34088bdf217be2af09312648ecdf47ab776fb4de050c5338365bd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d726177326f6d6574696666\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-raw2ometiff\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-raw2ometiff\" class=\"anchor\" href=\"#singularity-raw2ometiff\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-raw2ometiff\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/d6ac5fb6156e1b197fd547d7632a7b90cb6aac15112aff196834a376c3065baf/68747470733a2f2f7777772e676c656e636f65736f6674776172652e636f6d2f696d672f6c6f676f2e737667\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d6ac5fb6156e1b197fd547d7632a7b90cb6aac15112aff196834a376c3065baf/68747470733a2f2f7777772e676c656e636f65736f6674776172652e636f6d2f696d672f6c6f676f2e737667\" width=\"25%\" data-canonical-src=\"https://www.glencoesoftware.com/img/logo.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/glencoesoftware/raw2ometiff\"\u003eraw2ometiff\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eraw2ometiff\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/raw2ometiff/3.0.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/raw2ometiff\u003c/code\u003e as \u003ccode\u003e3.0.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "singularity",
- "utilities",
- "image-processing"
- ],
- "updated_at": 1633063422.0
+ "topics": [],
+ "updated_at": 1646720319.0
},
{
"data_format": 2,
- "description": "Deplete Fastq files from human or other content",
+ "description": "This repo is intended for the tutorial in the Planning Meeting held on the 24th of October, 2018",
"filenames": [
- "singularity/Singularity"
+ "demoPlanner/Singularity",
+ "runPlanningTool/planners/OPTIC-Base/Singularity",
+ "runPlanningTool/planners/team40/Singularity"
],
- "full_name": "sequana/depletion",
+ "full_name": "ionut94/KCL-PlanningTutorial",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-kcl-planningtutorial\" class=\"anchor\" aria-hidden=\"true\" href=\"#kcl-planningtutorial\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eKCL-PlanningTutorial\u003c/h1\u003e\n\u003cp\u003eThis repo is intended for the tutorial in the Planning Meeting held on the 24th of October, 2018\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-dev-repo-for-runplanningtool-is-here\" class=\"anchor\" aria-hidden=\"true\" href=\"#dev-repo-for-runplanningtool-is-here\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDev repo for runPlanningTool is \u003ca href=\"https://github.com/momartinm/runPlanningTool.git\"\u003ehere\u003c/a\u003e\n\u003c/h2\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1648819859.0
+ "updated_at": 1540504981.0
},
{
"data_format": 2,
- "description": "This is the repository for the workshop taught at ISPW 2022 in Sydney",
+ "description": "ngs pipelines _ nextflow/singularity workflows",
"filenames": [
- "files/daskdev/Singularity.dask"
+ "scATAC_cellranger/container_singularity/Singularity"
],
- "full_name": "ardimirzaei/ispw2022-abm-workshop",
+ "full_name": "perllb/ngs_pipelines",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ispw-2022-abm-workshop\" class=\"anchor\" href=\"#ispw-2022-abm-workshop\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eISPW 2022 ABm Workshop\u003c/h1\u003e\n\u003cp\u003eForked from SIH\n--Update this readme.\u003c/p\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [
- "abm",
- "complex-systems",
- "pharmacy",
- "workshop"
- ],
- "updated_at": 1654581868.0
- },
- {
- "data_format": 2,
- "description": "Work with Python installed at a custom location",
- "filenames": [
- "Singularity"
- ],
- "full_name": "richelbilderbeek/ormr",
- "latest_release": "v0.6.2.1",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-ormr\" class=\"anchor\" href=\"#ormr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eormr\u003c/h1\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eBranch\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://github.com/richelbilderbeek/ormr/actions\"\u003e\u003cimg src=\"man/figures/GitHubActions.png\" alt=\"GitHub Actions logo\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://www.codecov.io\" rel=\"nofollow\"\u003e\u003cimg src=\"man/figures/Codecov.png\" alt=\"Codecov logo\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://github.com/richelbilderbeek/ormr/actions\"\u003e\u003cimg src=\"man/figures/GitHubActions.png\" alt=\"GitHub Actions logo\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emaster\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://github.com/richelbilderbeek/ormr/workflows/R-CMD-check/badge.svg?branch=master\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/ormr/workflows/R-CMD-check/badge.svg?branch=master\" alt=\"R-CMD-check\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://codecov.io/github/richelbilderbeek/ormr/branch/master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/80f61013497de9c4ba38bd7d37d57f2baf9ad486b3e667b76823a2fa7acb1783/68747470733a2f2f636f6465636f762e696f2f6769746875622f72696368656c62696c6465726265656b2f6f726d722f636f7665726167652e7376673f6272616e63683d6d6173746572\" alt=\"codecov.io\" data-canonical-src=\"https://codecov.io/github/richelbilderbeek/ormr/coverage.svg?branch=master\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://github.com/richelbilderbeek/ormr/workflows/build_singularity/badge.svg?branch=master\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/ormr/workflows/build_singularity/badge.svg?branch=master\" alt=\"build_singularity\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003edevelop\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://github.com/richelbilderbeek/ormr/workflows/R-CMD-check/badge.svg?branch=develop\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/ormr/workflows/R-CMD-check/badge.svg?branch=develop\" alt=\"R-CMD-check\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://codecov.io/github/richelbilderbeek/ormr/branch/develop\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4e40a61ddb8d3cee1a4e177f20956ab6b1887a9d5a422c8e9f9024859f4c23af/68747470733a2f2f636f6465636f762e696f2f6769746875622f72696368656c62696c6465726265656b2f6f726d722f636f7665726167652e7376673f6272616e63683d646576656c6f70\" alt=\"codecov.io\" data-canonical-src=\"https://codecov.io/github/richelbilderbeek/ormr/coverage.svg?branch=develop\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://github.com/richelbilderbeek/ormr/workflows/build_singularity/badge.svg?branch=develop\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/ormr/workflows/build_singularity/badge.svg?branch=develop\" alt=\"build_singularity\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e\u003ca href=\"man/figures/ormr_logo_50.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"man/figures/ormr_logo_50.png\" alt=\"ormr logo\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWork with Python installed at a custom location.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-goal\" class=\"anchor\" href=\"#goal\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGoal\u003c/h1\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e allows a user to install Python packages,\ncreate a Conda environment and run Python scripts\nwith only one point of contact.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e heavily depends on \u003ccode\u003ereticulate\u003c/code\u003e, the latter being\nmore powerful and flexible. \u003ccode\u003eormr\u003c/code\u003e, however, focuses\non making it trivially simple to install Python\npackages and run Python scripts.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-install-ormr\" class=\"anchor\" href=\"#install-ormr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall \u003ccode\u003eormr\u003c/code\u003e\n\u003c/h1\u003e\n\u003cp\u003eAs \u003ccode\u003eormr\u003c/code\u003e is developed on the \u003ccode\u003emaster\u003c/code\u003e branch, only a release\nis tested to work:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eremotes::install_github(\"richelbilderbeek/ormr\", ref = \"v0.6.1\")\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee FAQ why one needs to install a release.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-examples\" class=\"anchor\" href=\"#examples\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExamples\u003c/h1\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e uses one point of contact, \u003ccode\u003eormr_folder_name\u003c/code\u003e.\nFor convenience, there is also a default \u003ccode\u003eormr_folder_name\u003c/code\u003e.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eInstall a Python package\u003c/li\u003e\n\u003cli\u003eRun a Python script\u003c/li\u003e\n\u003cli\u003eRun a Python script with command-line arguments\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eAlso, \u003ccode\u003eormr\u003c/code\u003e uses \u003cstrong\u003eeager loading\u003c/strong\u003e, which means that\nit will setup everything it needs for you. For example,\nif you want to run a Python script from a new \u003ccode\u003eormr_folder_name\u003c/code\u003e,\nit will create a Conda environment there for you as well.\u003c/p\u003e\n\u003cp\u003eNote that \u003ccode\u003ecreate_default_conda_env\u003c/code\u003e conveniently returns the\n\u003ccode\u003eormr_folder_name\u003c/code\u003e used to work with this environment.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-1-install-a-python-package\" class=\"anchor\" href=\"#1-install-a-python-package\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Install a Python package\u003c/h2\u003e\n\u003cp\u003eUsing the default \u003ccode\u003eormr\u003c/code\u003e environment:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003einstall_python_package(\n \u003cspan class=\"pl-v\"\u003epackage_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003escipy\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n)\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUsing a custom \u003ccode\u003eormr_folder_name\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003e\u003cspan class=\"pl-smi\"\u003eormr_folder_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e tempfile()\n\ninstall_python_package(\n \u003cspan class=\"pl-v\"\u003eormr_folder_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003eormr_folder_name\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003epackage_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003escipy\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n)\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-2-run-a-python-script\" class=\"anchor\" href=\"#2-run-a-python-script\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Run a Python script\u003c/h2\u003e\n\u003cp\u003eUsing the default \u003ccode\u003eormr\u003c/code\u003e environment:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003e\u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e system.file(\n \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eextdata\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003ehello_world.py\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003epackage\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eormr\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n)\nrun_python_script(\n \u003cspan class=\"pl-v\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e\n)\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUsing a custom \u003ccode\u003eormr_folder_name\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003e\u003cspan class=\"pl-smi\"\u003eormr_folder_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e tempfile()\n\u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e system.file(\n \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eextdata\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003ehello_world.py\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003epackage\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eormr\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n)\nrun_python_script(\n \u003cspan class=\"pl-v\"\u003eormr_folder_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003eormr_folder_name\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e\n)\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-3-run-a-python-script-with-command-line-arguments\" class=\"anchor\" href=\"#3-run-a-python-script-with-command-line-arguments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. Run a Python script with command-line arguments\u003c/h2\u003e\n\u003cp\u003eUsing the default \u003ccode\u003eormr\u003c/code\u003e environment:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003e\u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e system.file(\n \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eextdata\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eshow_args.py\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003epackage\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eormr\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n)\nrun_python_script_with_args(\n \u003cspan class=\"pl-v\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003eargs\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e c(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eHello\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eworld\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e)\n)\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUsing a custom \u003ccode\u003eormr_folder_name\u003c/code\u003e:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-r\"\u003e\u003cpre\u003e\u003cspan class=\"pl-smi\"\u003eormr_folder_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e tempfile()\n\u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;-\u003c/span\u003e system.file(\n \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eextdata\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eshow_args.py\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-v\"\u003epackage\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eormr\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e\n)\nrun_python_script_with_args(\n \u003cspan class=\"pl-v\"\u003eormr_folder_name\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003eormr_folder_name\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003epython_script_path\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-smi\"\u003epython_script_path\u003c/span\u003e,\n \u003cspan class=\"pl-v\"\u003eargs\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e=\u003c/span\u003e c(\u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eHello\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003eworld\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e)\n)\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-faq\" class=\"anchor\" href=\"#faq\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFAQ\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-is-the-goal-of-ormr\" class=\"anchor\" href=\"#what-is-the-goal-of-ormr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is the goal of \u003ccode\u003eormr\u003c/code\u003e?\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e allows a user to install Python packages,\ncreate a Conda environment and run Python scripts\nwith only one point of contact.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-in-what-context-is-ormr-useful\" class=\"anchor\" href=\"#in-what-context-is-ormr-useful\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIn what context is \u003ccode\u003eormr\u003c/code\u003e useful?\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e was written to write simpler\n\u003ca href=\"https://singularity.hpcng.org/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e (a type of containerization\nsoftware, similar to Docker) scripts.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003ereticulate\u003c/code\u003e is great when using its default folders on a local computer.\nHowever, for a Singularity container, it is recommended to install\nlibraries in a systems folder. In that setting, \u003ccode\u003ereticulate\u003c/code\u003e is\nharder to work with.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e allows to install install Python packages,\ncreate a Conda environment and run Python scripts\nin any folder easily, for example,\nin a system folder (\u003ccode\u003e/opt/ormr\u003c/code\u003e) of a Singularity container.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-not-just-use-reticulate\" class=\"anchor\" href=\"#why-not-just-use-reticulate\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy not just use \u003ccode\u003ereticulate\u003c/code\u003e?\u003c/h2\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e heavily depends on \u003ccode\u003ereticulate\u003c/code\u003e, the latter being\nmore powerful and flexible.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eormr\u003c/code\u003e, however, focuses\non making it trivially simple to install Python\npackages and run Python scripts,\ndue to eager loading.\nAdditionally, \u003ccode\u003eormr\u003c/code\u003e has a more extensive documentation,\nand 100% code coverage.\u003c/p\u003e\n\u003cp\u003eBeyond the domain of \u003ccode\u003eormr\u003c/code\u003e, use \u003ccode\u003ereticulate\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-do-you-mean-with-eager-loading\" class=\"anchor\" href=\"#what-do-you-mean-with-eager-loading\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat do you mean with eager loading?\u003c/h2\u003e\n\u003cp\u003eEager loading is the opposite of lazy loading.\u003c/p\u003e\n\u003cp\u003eHere, it is defined as \u0027if you want \u003ccode\u003eormr\u003c/code\u003e to do B, which depends on\nthe setup of A\u0027, \u003ccode\u003eormr\u003c/code\u003e will setup A, then do B. For example, to install\na package to a certain \u003ccode\u003eormr_folder_name\u003c/code\u003e (\u0027to do B\u0027), \u003ccode\u003eormr\u003c/code\u003e\nwill create a Conda environment for that (\u0027the setup of A\u0027).\u003c/p\u003e\n\u003cp\u003eThis means that no setup code is necessary.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-does-one-need-to-install-a-release-instead-of-just-master\" class=\"anchor\" href=\"#why-does-one-need-to-install-a-release-instead-of-just-master\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy does one need to install a release, instead of just \u003ccode\u003emaster\u003c/code\u003e?\u003c/h2\u003e\n\u003cp\u003eThe development of \u003ccode\u003eormr\u003c/code\u003e takes place on the \u003ccode\u003emaster\u003c/code\u003e branch.\nHence, \u003ccode\u003emaster\u003c/code\u003e will break regularily.\nA specific release is tested to build correctly.\u003c/p\u003e\n\u003cp\u003eThe reason for this non-traditional workflow, is that the\nSingularity script always installs the \u003ccode\u003emaster\u003c/code\u003e branch,\nas it cannot detect the \u003ccode\u003egit\u003c/code\u003e branch is being built by.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-there-is-a-feature-i-miss\" class=\"anchor\" href=\"#there-is-a-feature-i-miss\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThere is a feature I miss\u003c/h2\u003e\n\u003cp\u003eSee \u003ca href=\"CONTRIBUTING.md\"\u003eCONTRIBUTING\u003c/a\u003e, at \u003ccode\u003eSubmitting use cases\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-i-want-to-collaborate\" class=\"anchor\" href=\"#i-want-to-collaborate\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eI want to collaborate\u003c/h2\u003e\n\u003cp\u003eSee \u003ca href=\"CONTRIBUTING.md\"\u003eCONTRIBUTING\u003c/a\u003e, at \u003ccode\u003eSubmitting code\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-i-think-i-have-found-a-bug\" class=\"anchor\" href=\"#i-think-i-have-found-a-bug\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eI think I have found a bug\u003c/h2\u003e\n\u003cp\u003eSee \u003ca href=\"CONTRIBUTING.md\"\u003eCONTRIBUTING\u003c/a\u003e, at \u003ccode\u003eSubmitting bugs\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-theres-something-else-i-want-to-say\" class=\"anchor\" href=\"#theres-something-else-i-want-to-say\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThere\u0027s something else I want to say\u003c/h2\u003e\n\u003cp\u003eSure, just add an Issue. Or send an email.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-do-i-contribute\" class=\"anchor\" href=\"#how-do-i-contribute\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow do I contribute?\u003c/h2\u003e\n\u003cp\u003eSee \u003ca href=\"CONTRIBUTING.md\"\u003eCONTRIBUTING.md\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-is-the-package-called-ormr\" class=\"anchor\" href=\"#why-is-the-package-called-ormr\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy is the package called \u003ccode\u003eormr\u003c/code\u003e?\u003c/h2\u003e\n\u003cp\u003eThis name is a pun on \u003ccode\u003ereticulate\u003c/code\u003e. \u003ccode\u003ereticulate\u003c/code\u003e is named after a\ntype of snake. \u003ccode\u003eormr\u003c/code\u003e is written in Sweden. In Swedish, \u003ccode\u003eorm\u003c/code\u003e, is a snake.\nFollowing the common tradtion of adding an \u003ccode\u003er\u003c/code\u003e to the end of an R package\nname (e.g \u003ccode\u003edplyr\u003c/code\u003e, \u003ccode\u003etidyr\u003c/code\u003e, etc) resulted in \u003ccode\u003eormr\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-about-the-logo\" class=\"anchor\" href=\"#what-about-the-logo\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat about the logo?\u003c/h2\u003e\n\u003cp\u003eThe original snake image was found when searching for a\npublic domain image of a snake, using the following DuckDuckGo image seach:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ehttps://duckduckgo.com/?q=orm+.png\u0026amp;t=ffab\u0026amp;iar=images\u0026amp;iaf=license%3APublic%2Ctype%3Aclipart\u0026amp;iax=images\u0026amp;ia=images\u0026amp;iai=https%3A%2F%2Fcdn.pixabay.com%2Fphoto%2F2016%2F03%2F31%2F15%2F10%2Fcartoon-1293047_1280.png\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAfter that, the image was modified using KolourPaint and the R logo was added.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-singularity-container\" class=\"anchor\" href=\"#singularity-container\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity container\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://cloud.sylabs.io/library/search;query=ormr\" rel=\"nofollow\"\u003eFind the latest \u0027ormr\u0027 Singularity container\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-links\" class=\"anchor\" href=\"#links\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLinks\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/richelbilderbeek/reticulate_on_singularity\"\u003ehttps://github.com/richelbilderbeek/reticulate_on_singularity\u003c/a\u003e:\ndemo how to run \u003ccode\u003ereticulate\u003c/code\u003e within a Singularity container, without \u003ccode\u003eormr\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1639766183.0
+ "updated_at": 1668091545.0
},
{
"data_format": 2,
- "description": "R package for nsphs_ml_qt",
+ "description": null,
"filenames": [
- "Singularity",
- "scripts_bianca/Singularity"
+ "deepcell-tf/Singularity.0.1",
+ "DS5559/Singularity-0.1",
+ "tensorflow/Singularity.2.0.0-py36",
+ "tensorflow/Singularity.1.12.0-py36",
+ "tensorflow/Singularity.1.6.0-py36",
+ "tensorflow/Singularity.1.13.1-py36",
+ "tensorflow/Singularity.1.12.0-py27",
+ "tensorflow/Singularity.1.12.3-py36",
+ "tensorflow/Singularity.2.1.0-py37-rs8wa",
+ "tensorflow/Singularity.1.6.0-py27",
+ "tensorflow/Singularity.2.1.0-py37",
+ "tensorflow/Singularity.1.14.0-py36",
+ "patric/Singularity.1.026",
+ "rhessys/Singularity.1",
+ "rhessys/Singularity.3.3",
+ "rhessys/Singularity.3",
+ "rhessys/Singularity.2",
+ "kaggle/Singularity-0.0",
+ "kaggle/Singularity-0.1",
+ "pytorch/Singularity.1.3.1-py36",
+ "pytorch/Singularity.1.0.0-py36",
+ "pytorch/Singularity.1.4.0-py37",
+ "cryoCARE/Singularity.0.1.0",
+ "danpos/Singularity.2.2.2",
+ "cp-analyst/Singularity.2.2.1",
+ "maxquant/Singularity.1.6.7.0",
+ "caffe2/Singularity.0.8.0",
+ "supernova/Singularity.2.0.0",
+ "anaconda/Singularity.2019.10-cuda10.0-cudnn7.6-py3.6",
+ "anaconda/Singularity.2019.10-cuda10.0-cudnn7.6-py3.7",
+ "anaconda/Singularity.2019.10-cuda9.0-cudnn7.6-py2.7",
+ "anaconda/Singularity.2019.10-cuda9.0-cudnn7.6-py3.6",
+ "anaconda/Singularity.cuda10.0-cudnn7.4-py3.6",
+ "anaconda/Singularity.cuda9.0-cudnn7.4-py3.6",
+ "lolcow/Singularity.1.0.0",
+ "theano/Singularity.1.0.4-py36",
+ "hydrator/Singularity.0.0.2",
+ "hydrator/Singularity.0.0.10",
+ "cellprofiler/Singularity.2.2.0",
+ "cellprofiler/Singularity.3.0.0",
+ "cellprofiler/Singularity.3.1.8",
+ "cellprofiler/Singularity.3.1.9",
+ "p4vasp/Singularity.0.3.30",
+ "anvio/Singularity.6.2-alpine",
+ "anvio/Singularity.6.2",
+ "inkscape/Singularity.0.92.3",
+ "sumo/Singularity.1.3.1",
+ "omero-client/Singularity.5.6.1",
+ "omero-client/Singularity.5.4.10",
+ "rstudio_server/Singularity.1.1.463",
+ "rstudio_server/Singularity.1.0.143",
+ "vg/Singularity.1.22.0",
+ "vg/Singularity.1.23.0",
+ "R/Singularity.3.6.0",
+ "R/Singularity-3.6.0",
+ "electron/Singularity"
],
- "full_name": "richelbilderbeek/nsphs_ml_qt",
- "latest_release": "v0.3",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-nsphs_ml_qt\" class=\"anchor\" href=\"#nsphs_ml_qt\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ensphs_ml_qt\u003c/h1\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eBranch\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://github.com/richelbilderbeek/nsphs_ml_qt/actions\"\u003e\u003cimg src=\"man/figures/GitHubActions.png\" alt=\"GitHub Actions logo\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://www.codecov.io\" rel=\"nofollow\"\u003e\u003cimg src=\"man/figures/Codecov.png\" alt=\"Codecov logo\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emaster\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=master\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=master\" alt=\"R-CMD-check\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt?branch=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/be413dbe544678e8710f09ecb2ee97d7a26b0a853e40a539069148252157700f/68747470733a2f2f636f6465636f762e696f2f67682f72696368656c62696c6465726265656b2f6e737068735f6d6c5f71742f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"Codecov test coverage\" data-canonical-src=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt/branch/master/graph/badge.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003edevelop\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=develop\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/richelbilderbeek/nsphs_ml_qt/workflows/R-CMD-check/badge.svg?branch=develop\" alt=\"R-CMD-check\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt?branch=develop\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d51e07e8b43e2d93b35336c3c0437fdb29a65ac9e5d54406d980daf81cd2567f/68747470733a2f2f636f6465636f762e696f2f67682f72696368656c62696c6465726265656b2f6e737068735f6d6c5f71742f6272616e63682f646576656c6f702f67726170682f62616467652e737667\" alt=\"Codecov test coverage\" data-canonical-src=\"https://codecov.io/gh/richelbilderbeek/nsphs_ml_qt/branch/develop/graph/badge.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eAll code for \u003cg-emoji class=\"g-emoji\" alias=\"lock\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f512.png\"\u003e\ud83d\udd12\u003c/g-emoji\u003e \u003ca href=\"https://github.com/AJResearchGroup/article_nsphs_ml_qt\"\u003earticle_nsphs_ml_qt\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"scripts_bianca/README.md\"\u003eWorkflow on Bianca\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"scripts_rackham/README.md\"\u003eWorkflow on Rackham\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ca href=\"scripts_local/README.md\"\u003eWorkflow on local computer\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eResults: \u003ca href=\"https://github.com/richelbilderbeek/nsphs_ml_qt_results\"\u003esee the \u0027nsphs_ml_qt_results\u0027 repository\u003c/a\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca href=\"man/figures/example_architecture.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"man/figures/example_architecture.png\" alt=\"\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"man/figures/example_dimred.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"man/figures/example_dimred.png\" alt=\"\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"man/figures/legend_HO_tiny.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"man/figures/legend_HO_tiny.png\" alt=\"\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
+ "full_name": "uvarc/singularity-scripts",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-scripts\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-scripts\u003c/h1\u003e\n\u003cp\u003eCollection of Singularity container recipe files.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1655910726.0
+ "updated_at": 1614097316.0
},
{
"data_format": 2,
- "description": "Ancestry ",
+ "description": "A container for PyMultinest",
"filenames": [
"Singularity"
],
- "full_name": "jahaltom/RIA",
+ "full_name": "sysmso/singularity-multinest",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-rna-seq-inferred-ancestry-ria\" class=\"anchor\" href=\"#rna-seq-inferred-ancestry-ria\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRNA-Seq Inferred Ancestry (RIA)\u003c/h1\u003e\n\u003cp\u003eRIA is a method for infering super-population (Africa, Europe, South Asia, East Asia, and America) identity from Human RNA-seq data.\nRIA leverages data from 1000 genomes project and utilizes a machine learning approach that involves principal component analysis and support vector machine.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/jahaltom/RNA-Seq-Ancestry-Inference/blob/main/FlowChart.png?raw=true\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/jahaltom/RNA-Seq-Ancestry-Inference/raw/main/FlowChart.png?raw=true\" alt=\"alt text\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-prerequisites\" class=\"anchor\" href=\"#prerequisites\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eUsing Conda 4.10.3, create the conda enviroment and activate:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml\nconda activate Ancestry\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor you can use the Singularity image:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull ria.sif library://aseetharam/ancestry/ria:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eyou can access the tools inside the container by prefixing:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003emodule load singularity\nsingularity exec --bind $PWD ria.sif snakemake \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-data-preparation\" class=\"anchor\" href=\"#data-preparation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData Preparation\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003e1000 Genomes Project:\u003c/strong\u003e\nThe snakemake script \"Prepare_1KGP\" downloads chr(1-22) level VCF files from 1000 Genomes Project phase 3 on GRCh38 (\u003ca href=\"https://www.internationalgenome.org/data-portal/data-collection/grch38\" rel=\"nofollow\"\u003ehttps://www.internationalgenome.org/data-portal/data-collection/grch38\u003c/a\u003e, \u003ca href=\"https://doi.org/10.12688/wellcomeopenres.15126.2\" rel=\"nofollow\"\u003ehttps://doi.org/10.12688/wellcomeopenres.15126.2\u003c/a\u003e) while filtering out indels. It also indexes and creates a BED for each filtered VCF file.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -j 22 -s Prepare_1KGP --cluster \"sbatch -t 01:00:00 -c 4 -N 1\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eGRCh38 Reference Genome\u003c/strong\u003e\nThe bash script \"Prepare_Reference_Genome\" will download the Human genome GRCh38 fasta(GCA_000001405.15_GRCh38_no_alt_plus_hs38d1_analysis_set.fna.gz) and the corresponding gtf, and will create a seqence dictionary and index file for the fasta. It also creates a STAR index.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esbatch Prepare_Reference_Genome\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-raw-data-retrieval-from-sra-qc-and-star-2-pass\" class=\"anchor\" href=\"#raw-data-retrieval-from-sra-qc-and-star-2-pass\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRaw data retrieval from SRA, QC, and STAR 2-Pass\u003c/h2\u003e\n\u003cp\u003eThe snakemake script \"STAR_SRA\" takes in a list of run accession IDs \"RAids.txt\" and fetches the raw fastq files from SRA and then uses Trimgalore for QC. The reads are then ran through STAR 2-Pass mode for enhanced novel SJ detection. The SJ.out.tab file for the 2nd pass is made by combining all SJ.out.tab files from the first pass and removing SJ\u0027s that are supported by 2 or less unique mappers.\u003c/p\u003e\n\u003cp\u003eFor just 1 study, create a list of the corresponding run accession IDs \"RAids.txt\" and run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -j 50 -k -s STAR_SRA --cluster \"sbatch -t 8:00:00 -c 30 -N 1\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor multiple studies, create 2 files:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSRP: List of unique study accession IDs.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003eERP126405\nERP127339\nSRP293106\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003elist: 2 column file of study accession IDs and corresponding run accession IDs.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003eERP124749 ERR4777044\nERP124749 ERR4777043\nERP126405 ERR5104751\nERP126405 ERR5104750\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen run STAR_SRA on all studies using this script. This will make it so each study gets its own combined SJ.out.tab file for the 2nd pass.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecat SRP | while read i; do \n\tcat list | grep \"$i\" | awk \u0027{print $2}\u0027 \u0026gt; RAids.txt\n\tsnakemake -j 300 -k -s STAR_SRA --cluster \"sbatch -t 8:00:00 -c 30 -N 1 -p RM-shared\"\n\trm output/all.SJ.out.tab\ndone\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-infer-ancestry\" class=\"anchor\" href=\"#infer-ancestry\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInfer Ancestry\u003c/h2\u003e\n\u003cp\u003ePerforms GATK best practices workflow for RNAseq short variant discovery (SNPs + Indels). Intersects varaint data from GATK with 1000 Genomes Project ancestry informative SNPs to gather common loci. Performs PCA on variant data via PLINK and SVM model is implemented for ancestry inference.\u003c/p\u003e\n\u003cp\u003eSplit RAids.txt so snakemake doesnt stall.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esplit -l 100 RAids.txt\n\nls *xa* | cat \u0026gt; splits\n\ncat splits | while read i; do\n\tcat $i \u0026gt; RAids.txt\n\tsnakemake -j 300 -k -s InferAncestry.py --cluster \"sbatch -t 02:00:00 -c 7 -p RM-shared\"\ndone\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-multinest\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-multinest\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-multinest\u003c/h1\u003e\n\u003cp\u003eA container for PyMultinest\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1645029635.0
+ "updated_at": 1602594100.0
},
{
"data_format": 2,
- "description": null,
+ "description": "If you are going to build off of basic Empirical, this is the project for you",
"filenames": [
- "Singularity"
+ "third-party/force-cover/Singularity"
],
- "full_name": "truatpasteurdotfr/singularity-cryolo-cuda10",
+ "full_name": "piperwelch/Basic-Empirical-Starter-carlcs361s01w21-6",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-building-a-singularity-container-for-cryolo-using-cuda-version-10\" class=\"anchor\" href=\"#building-a-singularity-container-for-cryolo-using-cuda-version-10\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a singularity container for crYOLO using CUDA version 10\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-why-\" class=\"anchor\" href=\"#why-\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003etoy system for github actions\u003c/li\u003e\n\u003cli\u003ebuild singularity container from dockerhub registry and push to oras://ghcr.io with proper tags\u003c/li\u003e\n\u003cli\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-caveat\" class=\"anchor\" href=\"#caveat\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-usage\" class=\"anchor\" href=\"#usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity\n\u003ca href=\"https://github.com/truatpasteurdotfr/singularity-cryolo-cuda10/actions/workflows/singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-cryolo-cuda10/actions/workflows/singularity-publish.yml/badge.svg\" alt=\"Singularity build\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run -B /run --nv oras://ghcr.io/truatpasteurdotfr/singularity-cryolo-cuda10:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLICENSE:\nThe same as crYOLO (free for academic use, see \u003ca href=\"https://cryolo.readthedocs.io/en/stable/other/license.html\" rel=\"nofollow\"\u003ehttps://cryolo.readthedocs.io/en/stable/other/license.html\u003c/a\u003e)\ncopy retrieved from \u003ca href=\"https://raw.githubusercontent.com/MPI-Dortmund/cryolo/9ea47f694fc68bcdaedf550a128558b8e77855bc/source/other/license.rst\" rel=\"nofollow\"\u003ehttps://raw.githubusercontent.com/MPI-Dortmund/cryolo/9ea47f694fc68bcdaedf550a128558b8e77855bc/source/other/license.rst\u003c/a\u003e\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-evolutionary-algorithm\" class=\"anchor\" aria-hidden=\"true\" href=\"#evolutionary-algorithm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEvolutionary Algorithm\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/anyaevostinar/evo-algo/releases\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ff63e2cc80517f7b8e8246b33025f569d757ede0ae65c7ea57418d79e5a3709d/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e6769746875622e696f25324665766f2d616c676f25324676657273696f6e2d62616467652e6a736f6e\" alt=\"version\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.github.io%2Fevo-algo%2Fversion-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://travis-ci.com/anyaevostinar/evo-algo\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2bde10efc09d993aad000b3101be56d5410d0ced348c4c7bbedbc7ffce79d630/68747470733a2f2f696d672e736869656c64732e696f2f7472617669732f616e796165766f7374696e61722f65766f2d616c676f2e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/travis/anyaevostinar/evo-algo.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://evo-algo.readthedocs.io/en/latest/?badge=latest\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2af827df5df15ff6f5c6a9fff5021e631a0049aa2274f98e983135bb66f0ed81/68747470733a2f2f72656164746865646f63732e6f72672f70726f6a656374732f65766f2d616c676f2f62616467652f3f76657273696f6e3d6c6174657374\" alt=\"Documentation Status\" data-canonical-src=\"https://readthedocs.org/projects/evo-algo/badge/?version=latest\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://evo-algo.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0e035446b6d1c7a911bd4b203bd581f2116c7873352a90d4797dc08119abbd0e/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e6769746875622e696f25324665766f2d616c676f253246646f63756d656e746174696f6e2d636f7665726167652d62616467652e6a736f6e\" alt=\"documentation coverage\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.github.io%2Fevo-algo%2Fdocumentation-coverage-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://codecov.io/gh/anyaevostinar/evo-algo\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/869814fe0b90d0baadc37140ac31d6d9c0e4e00c2854a51f1030c40678bc13a4/68747470733a2f2f636f6465636f762e696f2f67682f616e796165766f7374696e61722f65766f2d616c676f2f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"code coverage status\" data-canonical-src=\"https://codecov.io/gh/anyaevostinar/evo-algo/branch/master/graph/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/anyaevostinar/evo-algo/search?q=todo+OR+fixme\u0026amp;type=\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4455f1d1625d643fe17506cb6ad50a9a6612ce62ab4667dc60b75616241c7534/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e636f6d25324665766f2d616c676f253246646f746f2d62616467652e6a736f6e\" alt=\"dotos\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.com%2Fevo-algo%2Fdoto-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/anyaevostinar/evo-algo\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/db51ac0d7785eb561dcfc0cbccfc0cfed9872513120f8f732b1301504c4eb32e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f616e796165766f7374696e61722f65766f2d616c676f2e7376673f7374796c653d666c61742d737175617265266c6f676f3d676974687562266c6162656c3d5374617273266c6f676f436f6c6f723d7768697465\" alt=\"GitHub stars\" data-canonical-src=\"https://img.shields.io/github/stars/anyaevostinar/evo-algo.svg?style=flat-square\u0026amp;logo=github\u0026amp;label=Stars\u0026amp;logoColor=white\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAn evolutionary algorithm\u003c/p\u003e\n\u003cp\u003eCheck out the live in-browser web app at \u003ca href=\"https://anyaevostinar.github.io/evo-algo\" rel=\"nofollow\"\u003ehttps://anyaevostinar.github.io/evo-algo\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFree software: MIT license\u003c/li\u003e\n\u003cli\u003eDocumentation: \u003ca href=\"https://evo-algo.readthedocs.io\" rel=\"nofollow\"\u003ehttps://evo-algo.readthedocs.io\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-hidden=\"true\" href=\"#features\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFeatures\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eTODO\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/assets/cookie.gif\"\u003e\u003cimg src=\"docs/assets/cookie.gif\" alt=\"cookie monster example\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003eThis package was created with \u003ca href=\"https://github.com/audreyr/cookiecutter\"\u003eCookiecutter\u003c/a\u003e and the \u003ca href=\"https://github.com/devosoft/cookiecutter-empirical-project\"\u003edevosoft/cookiecutter-empirical-project\u003c/a\u003e project template.\u003c/p\u003e\n\u003cp\u003eThis package uses \u003ca href=\"https://github.com/devosoft/Empirical#readme\"\u003eEmpirical\u003c/a\u003e, a library of tools for scientific software development, with emphasis on also being able to build web interfaces using Emscripten.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eTo install \u003ca href=\"https://github.com/devosoft/Empirical\"\u003eEmpirical\u003c/a\u003e, pull down a clone of the Empirical repository. See \u003ca href=\"https://empirical.readthedocs.io/en/latest/QuickStartGuides\" rel=\"nofollow\"\u003eQuick Start Guides\u003c/a\u003e for directions on cloning and using the library.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1650023541.0
+ "updated_at": 1615683851.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "2/images/Singularity.def",
- "4/images/Singularity.def",
- "3/images/Singularity.def",
- "1/images/Singularity.def"
+ "Singularity"
],
- "full_name": "alcidesmig/hpc-ufscar-cluster",
+ "full_name": "shailapar/build_container_on_shub",
"latest_release": null,
+ "readme": "\u003cp\u003eExamples for building containers on Singularity Hub\u003c/p\u003e\n\u003cp\u003e./tutorial_steps.txt : example steps, command-by-command\u003c/p\u003e\n\u003cp\u003e./Singularity : is a recipe file for building your container\u003c/p\u003e\n\u003cp\u003e./text_translate.py is a sample python script we can run with the container\u003c/p\u003e\n\u003cp\u003e./make_git_repo.sh is a script that uploads your Singularity repository to github\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1643401257.0
+ "updated_at": 1558647668.0
},
{
"data_format": 2,
- "description": "ShellCheck, a static analysis tool for shell scripts",
+ "description": "Container Library of Apptainer definition files.",
"filenames": [
- "0.5.0/Singularity",
- "0.8.0/Singularity"
- ],
- "full_name": "pscedu/singularity-shellcheck",
- "latest_release": null,
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-shellcheck/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-shellcheck/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-shellcheck/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-shellcheck/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/405923c0ac019718e1ce7ee2305e5e1e59721f91e675a8b0905b5c8b1e2abfbc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/405923c0ac019718e1ce7ee2305e5e1e59721f91e675a8b0905b5c8b1e2abfbc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-shellcheck\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/bd63ff1e920842a88281143fb261678d5a3c13a0b9aa2b77daa4f01c294053b4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/bd63ff1e920842a88281143fb261678d5a3c13a0b9aa2b77daa4f01c294053b4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-shellcheck\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/3501f937ae3c9e631fa7626a21c08282d81835d5df168737e339adbc9b8e6d41/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3501f937ae3c9e631fa7626a21c08282d81835d5df168737e339adbc9b8e6d41/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-shellcheck\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/f24e35c82c0a0127f9824f4cb911bf49ccdadbd7871a842b8ad8292cfbae64c6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f24e35c82c0a0127f9824f4cb911bf49ccdadbd7871a842b8ad8292cfbae64c6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7368656c6c636865636b\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-shellcheck\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-shellcheck\" class=\"anchor\" href=\"#singularity-shellcheck\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-shellcheck\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/koalaman/shellcheck.net\"\u003eshellcheck\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003eshellcheck\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/shellcheck/0.8.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/shellcheck\u003c/code\u003e as \u003ccode\u003e0.8.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "singularity",
- "utilities"
- ],
- "updated_at": 1649646255.0
- },
- {
- "data_format": 2,
- "description": "The Bootcamp of the Ghent Quantum Chemistry Group, aimed at achieving the initial competences needed in order to be able to contribute to our electronic structure method development group.",
- "filenames": [
- "Singularity"
- ],
- "full_name": "GQCG-edu/bootcamp",
- "latest_release": null,
- "readme": "\u003cp align=\"center\"\u003e\n\u003ca href=\"media/bootcamp.png\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"media/bootcamp.png\" width=\"400\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp\u003eIn this boot camp you will learn the minimal set of computer skills that are required to survive \u003ca href=\"https://gqcg.github.io/\" rel=\"nofollow\"\u003ein our computational chemistry group\u003c/a\u003e. We will first focus on acquiring high-level skills using freely available resources that run in your browser. After you have obtained these skills, we will break free from the confines of those resources and transition to running software on your local system and in the cloud. Finally, you will apply the skills you have learned by implementing Restricted Hartree-Fock using PySCF.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-schedule\" class=\"anchor\" href=\"#schedule\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSchedule\u003c/h1\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eTraining\u003c/th\u003e\n\u003cth\u003eTechnologies\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ca href=\"training/browser.md\"\u003eCoding in the browser\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eGithub, LaTeX/Overleaf, SciPy-Stack/Colab\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ca href=\"training/local.md\"\u003eCoding locally\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eGit, VSCode, Docker, Jupyter, VSCode: LaTeX workshop\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ca href=\"training/cloud.md\"\u003eCoding in the cloud\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003eHPC/modules, Singularity/Apptainer\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ca href=\"project/README.md\"\u003eCapstone project\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u00a0PySCF, RHF\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 3,
- "topics": [
- "training",
- "gqcg"
- ],
- "updated_at": 1656513940.0
- },
- {
- "data_format": 2,
- "description": "Research on the effects of mixing and matching dataset towards audio separation",
- "filenames": [
- "museparation/waveunet/Singularity"
+ "Singularity.digits",
+ "Singularity.tensorflow",
+ "Singularity.theano",
+ "ciml/Singularity.tape-0.4",
+ "ciml/Singularity.sparkr-2.3.1",
+ "ciml/Singularity.r-3.6.1",
+ "ciml/Singularity.esm-0.3.1",
+ "ciml/Singularity.pyspark-3.1.2",
+ "tensorflow/Singularity.tensorflow-2.8.2-ubuntu-20.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
+ "tensorflow/Singularity.tensorflow-2.5.0-ubuntu-18.04-cuda-11.2-openmpi-4.0.5",
+ "tensorflow/Singularity.tensorflow-2.7.3-ubuntu-20.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "tensorflow/Singularity.tensorflow-2.5.3-ubuntu-18.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "tensorflow/Singularity.tensorflow-2.5.1-ubuntu-18.04-cuda-11.2-mlnx-ofed-4.7-3.2.9.0-openmpi-4.0.5",
+ "tensorflow/Singularity.tensorflow-2.3.0-ubuntu-18.04-cuda-10.1.168-openmpi-3.1.4",
+ "hpl/Singularity.hpl-2.3-ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3-openblas-0.3.18",
+ "hpl/Singularity.hpl-2.3-ubuntu-18.04-openmpi-4.0.5-openblas-0.3.14",
+ "hpl/Singularity.hpl-2.3-ubuntu-18.04-openmpi-3.1.6-openblas-0.3.10",
+ "hpl/Singularity.hpl-2.3-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6-openblas-0.3.18",
+ "hpl/Singularity.hpl-2.3-ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6-openblas-0.3.18",
+ "hpl/Singularity.hpl-2.3-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3-openblas-0.3.18",
+ "hpl/Singularity.hpl-2.3-ubuntu-18.04-openmpi-3.1.4-openblas-0.3.10",
+ "visit/Singularity.visit-3.1.4-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "beast/Singularity.beast-1.10.4-ubuntu-18.04-cuda-10.2",
+ "beast/Singularity.beast-2.6.1-ubuntu-18.04-cuda-10.2",
+ "pytorch/Singularity.pytorch-1.8.2-ubuntu-18.04-cuda-10.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "pytorch/Singularity.pytorch-1.10.2-ubuntu-20.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
+ "ubuntu/Singularity.ubuntu-18.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "ubuntu/Singularity.ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
+ "ubuntu/Singularity.ubuntu-20.04-cuda-11.2",
+ "ubuntu/Singularity.ubuntu-18.04-cuda-10.2-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
+ "ubuntu/Singularity.ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0",
+ "ubuntu/Singularity.ubuntu-20.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
+ "ubuntu/Singularity.ubuntu-18.04-cuda-10.2",
+ "ubuntu/Singularity.ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "ubuntu/Singularity.ubuntu-20.04",
+ "ubuntu/Singularity.ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "ubuntu/Singularity.ubuntu-18.04-cuda-10.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "ubuntu/Singularity.ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0",
+ "ubuntu/Singularity.ubuntu-20.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0",
+ "ubuntu/Singularity.ubuntu-18.04",
+ "ubuntu/Singularity.ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
+ "ubuntu/Singularity.ubuntu-18.04-cuda-11.2",
+ "ubuntu/Singularity.ubuntu-20.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "ubuntu/Singularity.ubuntu-18.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0",
+ "ubuntu/Singularity.ubuntu-18.04-cuda-10.2-mlnx-ofed-4.9-4.1.7.0",
+ "ubuntu/Singularity.ubuntu-18.04-cuda-11.2-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
+ "torch/Singularity.torch-extras",
+ "torch/Singularity.torch",
+ "ior/Singularity.ior-3.3.0rc1-ubuntu-18.04-openmpi-3.1.4",
+ "ior/Singularity.ior-3.3.0rc1-ubuntu-18.04-openmpi-3.1.6",
+ "ior/Singularity.ior-3.3.0-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "ior/Singularity.ior-3.3.0-ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
+ "ior/Singularity.ior-3.3.0-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
+ "ior/Singularity.ior-3.3.0-ubuntu-18.04-openmpi-4.0.5",
+ "ior/Singularity.ior-3.3.0-ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "centos/Singularity.centos-7.9.2009-mvapich-2.3.2",
+ "centos/Singularity.centos-7.9.2009-openmpi-3.1.4",
+ "centos/Singularity.centos-7.9.2009",
+ "centos/Singularity.centos-7.7.1908-openmpi-4.0.5",
+ "centos/Singularity.centos-7.7.1908-cuda-11.0",
+ "centos/Singularity.centos-7.9.2009-cuda-10.1.168",
+ "centos/Singularity.centos-7.7.1908-openmpi-3.1.6",
+ "centos/Singularity.centos-7.7.1908",
+ "centos/Singularity.centos-7.7.1908-cuda-11.0-openmpi-3.1.6",
+ "centos/Singularity.centos-7.7.1908-cuda-11.0-openmpi-4.0.5",
+ "rstudio/Singularity.rstudio",
+ "miniconda/Singularity.miniconda3-py38-4.11.0-ubuntu-20.04",
+ "miniconda/Singularity.miniconda2-py27-4.8.3-ubuntu-18.04",
+ "miniconda/Singularity.miniconda3-py39-4.9.2-ubuntu-18.04",
+ "miniconda/Singularity.miniconda3-py39-4.11.0-ubuntu-20.04",
+ "miniconda/Singularity.miniconda3-py38-4.9.2-ubuntu-18.04",
+ "miniconda/Singularity.miniconda3-py37-4.9.2-ubuntu-18.04",
+ "miniconda/Singularity.miniconda3-py37-4.11.0-ubuntu-20.04",
+ "anaconda/Singularity.anaconda3-py39-2021.11-ubuntu-20.04",
+ "anaconda/Singularity.anaconda2-py27-2019.10-ubuntu-18.04",
+ "fenics/Singularity.fenics-2019.1.0-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "mxnet/Singularity.mxnet-1.7.0-ubuntu-18.04-cuda-10.1.168-openmpi-3.1.4",
+ "gromacs/Singularity.gromacs-2020.7-ubuntu-18.04-cuda-10.2",
+ "singularity/Singularity.singularity-3.7.4-ubuntu-18.04",
+ "keras/Singularity.keras-py3",
+ "keras/Singularity.keras-py2",
+ "stream/Singularity.stream-5.10-ubuntu-18.04",
+ "paraview/Singularity.paraview-5.9.0-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6-osmesa-20.1.5",
+ "rnaseq/Singularity.rnaseq",
+ "deepbench/Singularity.deepbench-da81ba7-ubuntu-18.04-cuda-11.2-mlnx-ofed-4.7-3.2.9.0-openmpi-3.1.6",
+ "deepbench/Singularity.deepbench-da81ba7-ubuntu-18.04-cuda-10.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "xcrysden/Singularity.xcrysden-1.6.2-ubuntu-18.04",
+ "spark/Singularity.spark-3.2.1-hadoop-3.2-ubuntu-20.04",
+ "spark/Singularity.spark-2.3.1-hadoop-2.7-ubuntu-18.04",
+ "spark/Singularity.spark-3.1.2-hadoop-3.2-ubuntu-18.04",
+ "omb/Singularity.omb-5.6.3-centos-7.9.2009-mvapich-2.3.2",
+ "omb/Singularity.omb-5.8-ubuntu-18.04-cuda-11.2-mlnx-ofed-4.7-3.2.9.0-openmpi-4.0.5",
+ "omb/Singularity.omb-5.9-ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "omb/Singularity.omb-5.9-ubuntu-18.04-cuda-10.2-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "omb/Singularity.omb-5.7-ubuntu-18.04-openmpi-4.0.5",
+ "omb/Singularity.omb-5.8-ubuntu-18.04-cuda-10.2-mlnx-ofed-4.6-1.0.1.1-openmpi-3.1.4",
+ "omb/Singularity.omb-5.9-ubuntu-20.04-cuda-11.4-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "omb/Singularity.omb-5.7-ubuntu-18.04-mlnx-ofed-4.7-3.2.9.0-openmpi-3.1.6",
+ "omb/Singularity.omb-5.7-centos-7.7.1908-openmpi-3.1.6",
+ "omb/Singularity.omb-5.9-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
+ "omb/Singularity.omb-5.6.3-ubuntu-18.04-openmpi-3.1.4",
+ "omb/Singularity.omb-5.6.3-ubuntu-18.04-mvapich-2.3.2",
+ "omb/Singularity.omb-5.9-ubuntu-20.04-cuda-11.4-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
+ "omb/Singularity.omb-5.9-ubuntu-18.04-cuda-10.2-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
+ "omb/Singularity.omb-5.7-centos-7.7.1908-cuda-11.0-openmpi-3.1.6",
+ "omb/Singularity.omb-5.9-ubuntu-18.04-mlnx-ofed-4.9-4.1.7.0-openmpi-3.1.6",
+ "omb/Singularity.omb-5.6.3-ubuntu-18.04-cuda-10.1.168-openmpi-3.1.4",
+ "omb/Singularity.omb-5.7-ubuntu-18.04-cuda-11.2-openmpi-4.0.5",
+ "omb/Singularity.omb-5.6.3-ubuntu-18.04-openmpi-3.1.6",
+ "omb/Singularity.omb-5.7-ubuntu-18.04-mlnx-ofed-4.7-3.2.9.0-openmpi-4.0.5",
+ "omb/Singularity.omb-5.7-centos-7.7.1908-openmpi-4.0.5",
+ "omb/Singularity.omb-5.7-ubuntu-18.04-mlnx-ofed-4.7-3.2.9.0-mvapich-2.3.6",
+ "omb/Singularity.omb-5.9-ubuntu-20.04-mlnx-ofed-4.9-4.1.7.0-openmpi-4.1.3",
+ "omb/Singularity.omb-5.8-ubuntu-18.04-mlnx-ofed-4.6-1.0.1.1-openmpi-3.1.4",
+ "omb/Singularity.omb-5.6.3-centos-7.9.2009-openmpi-3.1.4"
],
- "full_name": "B-lanc/Museparation",
+ "full_name": "acchapm1/containerlibrary",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-museparation\" class=\"anchor\" href=\"#museparation\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMuseparation\u003c/h1\u003e\n\u003cp\u003eResearch on the effects of mixing and matching dataset towards audio separation\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1649044884.0
+ "updated_at": 1680805708.0
},
{
"data_format": 2,
@@ -17299,89 +16885,91 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "carshadi/tiff2octree-singularity",
+ "full_name": "Saford91/centos7-singularity",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1651625714.0
+ "updated_at": 1500478470.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity container recipes for bioinformatic workflows",
"filenames": [
- "Singularity.full",
- "Singularity"
+ "Singularity",
+ "cellranger-atac/Singularity",
+ "cellranger-rna/Singularity_cellranger-rna_4.0.0"
],
- "full_name": "leo-cazenille/multiAE-ME",
+ "full_name": "perllb/singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-multiae-me\" class=\"anchor\" href=\"#multiae-me\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emultiAE-ME\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity container recipes for bioinformatics workflows\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e-- Build container with\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003esudo -E singularity build \u0026lt;.sif image file\u0026gt; \u0026lt; container recipe \u0026gt;\u003c/p\u003e\n\u003c/blockquote\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1650020409.0
+ "updated_at": 1604059761.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.def"
+ "Singularity.horovod_cpu",
+ "Singularity.openmpi_cuda",
+ "Singularity.cpu_tf2.2_torch1.5_hvd0.19",
+ "Singularity.cpu_tf1.14_torch1.1_hvd0.16",
+ "Singularity.horovod_cpu_centos",
+ "Singularity.julia_deps",
+ "Singularity.gpu",
+ "Singularity.test2",
+ "Singularity.test",
+ "Singularity.horovod_gpu"
],
- "full_name": "Garuda-1/Thesis-2022",
+ "full_name": "EliseJ/kay_singularity_images",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-images-for-mldl-stack-on-kay\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-images-for-mldl-stack-on-kay\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity images for ML/DL stack on Kay\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1652887962.0
+ "updated_at": 1612268805.0
},
{
"data_format": 2,
- "description": "compute",
+ "description": "Recipe for funannotate pipeline Singularity recipy for UA HPC",
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "Aku02/cc",
+ "full_name": "dshyshlov/funannotate_singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-cc\" class=\"anchor\" href=\"#cc\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecc\u003c/h1\u003e\n\u003cp\u003ecompute\u003c/p\u003e\n\u003cp\u003esingularity run --nv conda.sif\u003c/p\u003e\n\u003cp\u003esingularity run --nv --bind /scratch:/home/akash02 scratch/conda.sif\u003c/p\u003e\n\u003cp\u003e$ sudo singularity build --nv --nvccli --sandbox test conda.sif\u003c/p\u003e\n\u003cp\u003esingularity shell --nv --nvccli conda.sif\u003c/p\u003e\n\u003cp\u003esrun --mem=16G --cpus-per-task=2 --time=3:0:0 --gres=gpu:t4:1 --pty bash\u003c/p\u003e\n\u003cp\u003esingularity run --nv --nvccli --bind cc:/user_mnt cc/test/\u003c/p\u003e\n\u003cp\u003esudo singularity run --nv --nvccli --writable --bind cc:/root cc/product/\u003c/p\u003e\n\u003cp\u003esudo singularity run --nv banmo.sif\nsudo singularity run --nv --nvccli --writable --bind cc:/root cc/test/\u003c/p\u003e\n\u003cp\u003esudo singularity build --nv --nvccli --rocm product/ Singularity.def\u003c/p\u003e\n\u003cp\u003esudo singularity build --nv --nvccli banmo.sif --tmpdir=$SINGULARITY_TMPDIR docker-daemon://banmo:latest\u003c/p\u003e\n\u003cp\u003esudo singularity build --nv --sandbox --nvccli --rocm test/ Singularity.def\u003c/p\u003e\n\u003cp\u003eERROR conda.core.link:_execute(699): An error occurred while installing package \u0027conda-forge::cudatoolkit-dev-11.3.1-py39h3811e60_0\u0027.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1651513695.0
+ "updated_at": 1602202847.0
},
{
"data_format": 2,
- "description": "example Singularity files",
+ "description": null,
"filenames": [
- "cowsay/Singularity"
+ "Singularity"
],
- "full_name": "cyverse-education/intro2singularity",
+ "full_name": "mmore500/tag-olympics",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-intro2singularity\" class=\"anchor\" href=\"#intro2singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eintro2singularity\u003c/h1\u003e\n\u003cp\u003eexample Singularity files\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1652622862.0
+ "updated_at": 1635955138.0
},
{
"data_format": 2,
- "description": null,
+ "description": "CS 361 Evolutionary Computation and Artificial Life project. ",
"filenames": [
- "Singularity.specter",
- "Singularity",
- "Singularity.jupyter",
- "conda-cudf/Singularity.conda-cudf",
- "elastic_search/Singularity",
- "semantic_scholar/Singularity",
- "mental-ability-proj/Singularity.mental-ability",
- "vocab_comp/Singularity.vocab_comp"
+ "third-party/force-cover/Singularity"
],
- "full_name": "ghoshmainak/singularity-recipe",
+ "full_name": "koellingh/empirical-p53-simulator",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-singularity-recipe\" class=\"anchor\" href=\"#singularity-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-recipe\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/5061\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch4\u003e\n\u003ca id=\"user-content-this-singularity-container-contains\" class=\"anchor\" href=\"#this-singularity-container-contains\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eThis singularity container contains:\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003eConda environment\u003c/li\u003e\n\u003cli\u003eNumpy\u003c/li\u003e\n\u003cli\u003eNotebook=6.0.3\u003c/li\u003e\n\u003cli\u003ePandas\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-conda-cudf-recipe\" class=\"anchor\" href=\"#conda-cudf-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econda-cudf recipe\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/containers/15169\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis is an extention of singularity-recipe. This container contains:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eConda environment\u003c/li\u003e\n\u003cli\u003eNotebook=6.0.3\u003c/li\u003e\n\u003cli\u003eNumpy\u003c/li\u003e\n\u003cli\u003ecudf=0.13\u003c/li\u003e\n\u003cli\u003ecudatoolkit=10.1\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-mental-ability-project-recipe\" class=\"anchor\" href=\"#mental-ability-project-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emental-ability-project recipe\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/containers/15485\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis container is meant for my own project on mental ability. It contains:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003epython development environment\u003c/li\u003e\n\u003cli\u003epip3\u003c/li\u003e\n\u003cli\u003enumpy\u003c/li\u003e\n\u003cli\u003escipy\u003c/li\u003e\n\u003cli\u003escikit-learn\u003c/li\u003e\n\u003cli\u003epandas\u003c/li\u003e\n\u003cli\u003ejupyter\u003c/li\u003e\n\u003cli\u003ejupyterlab\u003c/li\u003e\n\u003cli\u003epandas\u003c/li\u003e\n\u003cli\u003estatmodels\u003c/li\u003e\n\u003cli\u003enltk\u003c/li\u003e\n\u003cli\u003espacy\u003c/li\u003e\n\u003cli\u003efasttext\u003c/li\u003e\n\u003cli\u003econtractions\u003c/li\u003e\n\u003cli\u003ewget\u003c/li\u003e\n\u003cli\u003ecurl\u003c/li\u003e\n\u003cli\u003enano and vim\u003c/li\u003e\n\u003cli\u003etransformers\u003c/li\u003e\n\u003cli\u003ePyTorch\u003c/li\u003e\n\u003cli\u003egit\u003c/li\u003e\n\u003cli\u003edask\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-elastic-search-recipe\" class=\"anchor\" href=\"#elastic-search-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eelastic search recipe\u003c/h1\u003e\n\u003cp\u003eIt contains:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003epython development environment\u003c/li\u003e\n\u003cli\u003epip3\u003c/li\u003e\n\u003cli\u003enumpy\u003c/li\u003e\n\u003cli\u003ecurl\u003c/li\u003e\n\u003cli\u003ewget\u003c/li\u003e\n\u003cli\u003epandas\u003c/li\u003e\n\u003cli\u003egit\u003c/li\u003e\n\u003cli\u003ejsonmerge\u003c/li\u003e\n\u003cli\u003ejsonlines\u003c/li\u003e\n\u003cli\u003eparquet\u003c/li\u003e\n\u003cli\u003eelasticsearch\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-evolutionary-algorithm\" class=\"anchor\" aria-hidden=\"true\" href=\"#evolutionary-algorithm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEvolutionary Algorithm\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/anyaevostinar/evo-algo/releases\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ff63e2cc80517f7b8e8246b33025f569d757ede0ae65c7ea57418d79e5a3709d/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e6769746875622e696f25324665766f2d616c676f25324676657273696f6e2d62616467652e6a736f6e\" alt=\"version\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.github.io%2Fevo-algo%2Fversion-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://travis-ci.com/anyaevostinar/evo-algo\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2bde10efc09d993aad000b3101be56d5410d0ced348c4c7bbedbc7ffce79d630/68747470733a2f2f696d672e736869656c64732e696f2f7472617669732f616e796165766f7374696e61722f65766f2d616c676f2e737667\" alt=\"\" data-canonical-src=\"https://img.shields.io/travis/anyaevostinar/evo-algo.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://evo-algo.readthedocs.io/en/latest/?badge=latest\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2af827df5df15ff6f5c6a9fff5021e631a0049aa2274f98e983135bb66f0ed81/68747470733a2f2f72656164746865646f63732e6f72672f70726f6a656374732f65766f2d616c676f2f62616467652f3f76657273696f6e3d6c6174657374\" alt=\"Documentation Status\" data-canonical-src=\"https://readthedocs.org/projects/evo-algo/badge/?version=latest\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://evo-algo.readthedocs.io/en/latest/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0e035446b6d1c7a911bd4b203bd581f2116c7873352a90d4797dc08119abbd0e/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e6769746875622e696f25324665766f2d616c676f253246646f63756d656e746174696f6e2d636f7665726167652d62616467652e6a736f6e\" alt=\"documentation coverage\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.github.io%2Fevo-algo%2Fdocumentation-coverage-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://codecov.io/gh/anyaevostinar/evo-algo\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/869814fe0b90d0baadc37140ac31d6d9c0e4e00c2854a51f1030c40678bc13a4/68747470733a2f2f636f6465636f762e696f2f67682f616e796165766f7374696e61722f65766f2d616c676f2f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"code coverage status\" data-canonical-src=\"https://codecov.io/gh/anyaevostinar/evo-algo/branch/master/graph/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/anyaevostinar/evo-algo/search?q=todo+OR+fixme\u0026amp;type=\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/4455f1d1625d643fe17506cb6ad50a9a6612ce62ab4667dc60b75616241c7534/68747470733a2f2f696d672e736869656c64732e696f2f656e64706f696e743f75726c3d6874747073253341253246253246616e796165766f7374696e61722e636f6d25324665766f2d616c676f253246646f746f2d62616467652e6a736f6e\" alt=\"dotos\" data-canonical-src=\"https://img.shields.io/endpoint?url=https%3A%2F%2Fanyaevostinar.com%2Fevo-algo%2Fdoto-badge.json\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/anyaevostinar/evo-algo\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/db51ac0d7785eb561dcfc0cbccfc0cfed9872513120f8f732b1301504c4eb32e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f616e796165766f7374696e61722f65766f2d616c676f2e7376673f7374796c653d666c61742d737175617265266c6f676f3d676974687562266c6162656c3d5374617273266c6f676f436f6c6f723d7768697465\" alt=\"GitHub stars\" data-canonical-src=\"https://img.shields.io/github/stars/anyaevostinar/evo-algo.svg?style=flat-square\u0026amp;logo=github\u0026amp;label=Stars\u0026amp;logoColor=white\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAn evolutionary algorithm\u003c/p\u003e\n\u003cp\u003eCheck out the live in-browser web app at \u003ca href=\"https://anyaevostinar.github.io/evo-algo\" rel=\"nofollow\"\u003ehttps://anyaevostinar.github.io/evo-algo\u003c/a\u003e.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eFree software: MIT license\u003c/li\u003e\n\u003cli\u003eDocumentation: \u003ca href=\"https://evo-algo.readthedocs.io\" rel=\"nofollow\"\u003ehttps://evo-algo.readthedocs.io\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-features\" class=\"anchor\" aria-hidden=\"true\" href=\"#features\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFeatures\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eTODO\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"docs/assets/cookie.gif\"\u003e\u003cimg src=\"docs/assets/cookie.gif\" alt=\"cookie monster example\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-credits\" class=\"anchor\" aria-hidden=\"true\" href=\"#credits\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCredits\u003c/h2\u003e\n\u003cp\u003eThis package was created with \u003ca href=\"https://github.com/audreyr/cookiecutter\"\u003eCookiecutter\u003c/a\u003e and the \u003ca href=\"https://github.com/devosoft/cookiecutter-empirical-project\"\u003edevosoft/cookiecutter-empirical-project\u003c/a\u003e project template.\u003c/p\u003e\n\u003cp\u003eThis package uses \u003ca href=\"https://github.com/devosoft/Empirical#readme\"\u003eEmpirical\u003c/a\u003e, a library of tools for scientific software development, with emphasis on also being able to build web interfaces using Emscripten.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDependencies\u003c/h2\u003e\n\u003cp\u003eTo install \u003ca href=\"https://github.com/devosoft/Empirical\"\u003eEmpirical\u003c/a\u003e, pull down a clone of the Empirical repository. See \u003ca href=\"https://empirical.readthedocs.io/en/latest/QuickStartGuides\" rel=\"nofollow\"\u003eQuick Start Guides\u003c/a\u003e for directions on cloning and using the library.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1639749845.0
+ "updated_at": 1615848203.0
},
{
"data_format": 2,
@@ -17389,97 +16977,128 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "Hydroinformatics/singularity-swat681wr-main",
+ "full_name": "shots47s/MAGetBrain_Sinularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-soil--water-assessment-tool\" class=\"anchor\" href=\"#soil--water-assessment-tool\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSoil \u0026amp; Water Assessment Tool\u003c/h1\u003e\n\u003cp\u003eThis container includes the Soil and Water Assessment Tool (\u003ca href=\"https://swat.tamu.edu/software/\" rel=\"nofollow\"\u003ehttps://swat.tamu.edu/software/\u003c/a\u003e)\nrevision 681,\nbuilt for use on amd64 Linux systems. The binary is installed at /usr/local/swat681/swat.\nAt run-time, any input files MUST be bind-mounted to /usr/local/swat681 - for example:\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-magetbrain_sinularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#magetbrain_sinularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMAGetBrain_Sinularity\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1652372813.0
+ "updated_at": 1534432676.0
},
{
"data_format": 2,
- "description": "Uniform and Weighted Sampling using Dynamic Programming",
+ "description": null,
"filenames": [
- "dmc/Singularity",
- "lg/Singularity"
+ "Singularity.conda_torch",
+ "Singularity.torch3",
+ "Singularity.tf2new",
+ "Singularity.ubuntu_tf",
+ "Singularity.tf_einops",
+ "Singularity.ubuntu_pre",
+ "Singularity.centos_tf",
+ "Singularity.centos_torch2",
+ "Singularity.conda",
+ "Singularity.ExplainAI",
+ "Singularity.geometric",
+ "Singularity.tf23",
+ "Singularity.Spektral",
+ "Singularity.tf2",
+ "Singularity.ubuntu_torch",
+ "Singularity.torch2",
+ "Singularity.centos_torch",
+ "Singularity.tf2b1",
+ "Singularity.torch"
],
- "full_name": "allrtaken/DPSampler",
+ "full_name": "alex-chunhui-yang/container",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dpmc-dynamic-programming-for-model-counting\" class=\"anchor\" href=\"#dpmc-dynamic-programming-for-model-counting\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDPMC (Dynamic Programming for Model Counting)\u003c/h1\u003e\n\u003cp\u003eDPMC computes weighted model counts of formulas in conjunctive normal form (CNF)\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe DPMC framework runs in two phases:\n\u003cul\u003e\n\u003cli\u003ePlanning phase: \u003ca href=\"./lg\"\u003eLG\u003c/a\u003e or \u003ca href=\"./htb\"\u003eHTB\u003c/a\u003e constructs a join tree of a CNF formula\u003c/li\u003e\n\u003cli\u003eExecution phase: \u003ca href=\"./dmc\"\u003eDMC\u003c/a\u003e computes the model count of the formula using the join tree\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eDevelopers:\n\u003cul\u003e\n\u003cli\u003eJeffrey Dudek\u003c/li\u003e\n\u003cli\u003eVu Phan\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\n\u003ch2\u003e\n\u003ca id=\"user-content-releases\" class=\"anchor\" href=\"#releases\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"https://github.com/vardigroup/DPMC/releases\"\u003eReleases\u003c/a\u003e\n\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e2021/05/25: \u003ca href=\"https://github.com/vardigroup/DPMC/releases/tag/mc-2021\"\u003emc-2021\u003c/a\u003e \u003ca href=\"https://zenodo.org/badge/latestdoi/280443175\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a66989e99eb192ab9857e39b3f1e218d0f4b7bcd8b478436fdace72cf61b408c/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f3238303434333137352e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/280443175.svg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"./mcc\"\u003eModel Counting Competition MC-2021\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e2021/05/23: \u003ca href=\"https://github.com/vardigroup/DPMC/releases/tag/v2.0.0\"\u003ev2.0.0\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eSAT-2021 paper: \u003cstrong\u003eProCount: Weighted Projected Model Counting with Graded Project-Join Trees\u003c/strong\u003e\n\u003cul\u003e\n\u003cli\u003eAuthors: Jeffrey M. Dudek, Vu H. N. Phan, Moshe Y. Vardi\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e2020/07/20: \u003ca href=\"https://github.com/vardigroup/DPMC/releases/tag/v1.0.0\"\u003ev1.0.0\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eCP-2020 paper: \u003cstrong\u003e\u003ca href=\"https://arxiv.org/abs/2008.08748\" rel=\"nofollow\"\u003eDPMC: Weighted Model Counting by Dynamic Programming on Project-Join Trees\u003c/a\u003e\u003c/strong\u003e\n\u003cul\u003e\n\u003cli\u003eAuthors: Jeffrey M. Dudek, Vu H. N. Phan, Moshe Y. Vardi\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\n\u003ch2\u003e\n\u003ca id=\"user-content-example-files\" class=\"anchor\" href=\"#example-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"./examples\"\u003eExample files\u003c/a\u003e\n\u003c/h2\u003e\n\n\u003ch2\u003e\n\u003ca id=\"user-content-acknowledgment\" class=\"anchor\" href=\"#acknowledgment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u003ca href=\"./ACKNOWLEDGMENT.md\"\u003eAcknowledgment\u003c/a\u003e\n\u003c/h2\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1652210102.0
+ "updated_at": 1617573462.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "scripts/Singularity"
+ "Singularity"
],
- "full_name": "waglecn/mabs",
+ "full_name": "jganong/singularity-test",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-mabs\" class=\"anchor\" href=\"#mabs\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emabs\u003c/h1\u003e\n\u003cp\u003eauthor:\u003ca href=\"mailto:nwaglechner@gmail.com\"\u003enwaglechner@gmail.com\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-basic-setup\" class=\"anchor\" href=\"#basic-setup\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBasic Setup\u003c/h1\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/waglecn/mabs.git\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eConda and snakemake\u003c/p\u003e\n\u003cp\u003eMiniconda available from:\n\u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003ehttps://docs.conda.io/en/latest/miniconda.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003ePython 3.8.3 Miniconda\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ewget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh \nbash Miniconda3-latest-Linux-X86_64.sh\nconda env create --name mabs --file environment.yaml\nconda activate mabs\u003c/pre\u003e\u003c/div\u003e\n\u003cpre\u003e\u003ccode\u003e- note the version of python installed in the the mabs environment is not necessarily the same as the default miniconda python version\n- asking for ete3 in the default environment will required python 3.6 (200921)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-required-files\" class=\"anchor\" href=\"#required-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequired files:\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eGATK3 jar file\n\u003cul\u003e\n\u003cli\u003eavailable from \u003ca href=\"https://console.cloud.google.com/storage/browser/gatk-software/package-archive/gatk\" rel=\"nofollow\"\u003ehttps://console.cloud.google.com/storage/browser/gatk-software/package-archive/gatk\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eused \u0027\u0027\u0027GenomeAnalysisTK-3.8-1-0-gf15c1c3ef.tar.bz2\u0027\u0027\u0027\u003c/li\u003e\n\u003cli\u003esee config.yaml\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eadapters for trimming - see config.yaml\n\u003cul\u003e\n\u003cli\u003elook for adapter files bundled with trimmomatic, ie.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003elocate TruSeq3-PE.fa\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eKraken database\n\u003ca href=\"ftp://ftp.ccb.jhu.edu/pub/data/kraken2_dbs/\" rel=\"nofollow\"\u003eftp://ftp.ccb.jhu.edu/pub/data/kraken2_dbs/\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ewget ftp://ftp.ccb.jhu.edu/pub/data/kraken2_dbs/minikraken_8GB_202003.tgz\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-how-to-run\" class=\"anchor\" href=\"#how-to-run\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to run\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake --configfile config.yaml --cores 8 --use-conda --conda-prefix /path/to/.snakemake/conda\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eUse config.default.yaml as a template for other config files.\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-notes\" class=\"anchor\" href=\"#notes\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes\u003c/h1\u003e\n\u003cp\u003e200915\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003estrange bug causing infinite loop in snakemake downloading refseq genomes. I think this is because of the dynamic() output/input in rules. Checking this out, seeing if the bug happens if I run entire pipeline from scratch.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e200917\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003enoticed a bug in running shovill, increased expected memory usage. Shovill version 0.9.0 running from an older miniconda. Removed miniconda, started from scratch, and pinned Shovill 1.1.0 in shovill.yaml\u003c/li\u003e\n\u003cli\u003eafter fixing, rerunning seems to work with example data, then works after deleting the mashtree and refseq_download directories.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e210302\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eon vs masking before gubbins vs after see \u003ca href=\"https://github.com/sanger-pathogens/gubbins/issues/275\"\u003ehttps://github.com/sanger-pathogens/gubbins/issues/275\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-200902\" class=\"anchor\" href=\"#todo-200902\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 200902\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e[ ]download internal project data - deferred\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[X] configurable data-dir - 200914\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003edownload external project data\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[X] refseq genomes - done 200904\u003c/li\u003e\n\u003cli\u003e[ ] genomes from Bryant et al, SRA\n\u003cul\u003e\n\u003cli\u003eneed to know what these are\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[X] download reference assemblies - 200908\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003efirst used all contig assemblies, changed to \u0027complete\u0027 keyword\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003ereading in samples somehow, obviously this depends on how/where they are downloaded (see previous TODO item) and the data that is already downloaded\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eneed a dummy rule that requires these as input in order to define wildcards\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[X] basic Snakefile - 200905\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[X] build workflow part 1\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[X] index reference assemblies - deferred 200914\n\u003cul\u003e\n\u003cli\u003emoved to resources/alignment_references\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] pre-trim QC - done 200908\u003c/li\u003e\n\u003cli\u003e[X] trim - done 200909\n\u003cul\u003e\n\u003cli\u003especify adapter files, add variable to config\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] post-trim QC done 200909\u003c/li\u003e\n\u003cli\u003e[X] kraken check - done 200910\n\u003cul\u003e\n\u003cli\u003e[X] download kraken db automatically - deferred, added to Required files\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] genome assembly on raw reads - 200914\n\u003cul\u003e\n\u003cli\u003e[X] Erm(41) identification on assembly - 200912\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] kraken2 on assembly - 200912\u003c/li\u003e\n\u003cli\u003e[X] mashtree assembly - 200913\u003c/li\u003e\n\u003cli\u003e[X] map everything to ATCC 19977 for basic coverage - 200914\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e[ ] build workflow part 2 on available assemblies\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[X] tree-guided MRCA - 200915\u003c/li\u003e\n\u003cli\u003e[X] MRCA-guided MLST - 200913\u003c/li\u003e\n\u003cli\u003e[X] MRCA-guided reference mapping - 200921\u003c/li\u003e\n\u003cli\u003e[ ] Optional: Mark duplicates with picard\u003c/li\u003e\n\u003cli\u003e[X] read filtering - see Martin et al 2018 and Lee et al 2020\n\u003cul\u003e\n\u003cli\u003e[X] filter soft clips - 200922\u003c/li\u003e\n\u003cli\u003e[X] optional GATK realignment, but see for why it was removed in 2015 for gatk4 \u003ca href=\"https://github.com/broadinstitute/gatk-docs/blob/master/blog-2012-to-2019/2016-06-21-Changing_workflows_around_calling_SNPs_and_indels.md?id=7847\"\u003ehttps://github.com/broadinstitute/gatk-docs/blob/master/blog-2012-to-2019/2016-06-21-Changing_workflows_around_calling_SNPs_and_indels.md?id=7847\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003e[X] added 200923, optional 200924\u003c/li\u003e\n\u003cli\u003eintially added gatk4, got errors and followed the rabbit-hole\u003c/li\u003e\n\u003cli\u003eto follow Martin et al, added conda env with gatk3.8, since the resulting bam can be used with any downstream variant caller\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] annotate regions of interest\n\u003cul\u003e\n\u003cli\u003eremove PP/PPE regions (BED file)\n\u003cul\u003e\n\u003cli\u003e[X] identify PP/PPE - 200927\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] zero coverage of reference\u003c/li\u003e\n\u003cli\u003e[ ] remove phage, tnp, IS\u003c/li\u003e\n\u003cli\u003e[X] merge ROI BED files\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] MRCA-guided variant calling with bcftools - 200922\n\u003cul\u003e\n\u003cli\u003e[X] bcftools mpileup - 200923\u003c/li\u003e\n\u003cli\u003e[X] called variants - 200923\u003c/li\u003e\n\u003cli\u003e[X] variant filtering\n\u003cul\u003e\n\u003cli\u003e[X] basic Martin et al - 200925\u003c/li\u003e\n\u003cli\u003e[ ] density filter - see \u003ca href=\"https://github.com/c2-d2/within-host-diversity/blob/master/fastq_to_vcf_pipeline.py#L122\"\u003ehttps://github.com/c2-d2/within-host-diversity/blob/master/fastq_to_vcf_pipeline.py#L122\u003c/a\u003e line\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] variant annotation with SNPEff\u003c/li\u003e\n\u003cli\u003e[X] SNP-tree construction\n\u003cul\u003e\n\u003cli\u003e[X] SNP extraction - custom? merge vcf as per Robyn 201006\u003c/li\u003e\n\u003cli\u003e[X] - merge SNPs - 201013\u003c/li\u003e\n\u003cli\u003e[X] concatenate cSNPSs (exclude hSNPs) 201016\n\u003cul\u003e\n\u003cli\u003esnp-sites ? snippy?\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] - vcfmerge 201014\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-200911\" class=\"anchor\" href=\"#todo-200911\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 200911\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e[X] add trimming parameters to config file - 200921\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-200914\" class=\"anchor\" href=\"#todo-200914\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 200914\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003esub-species type assemblies are hard-coded in scripts/tree_MRCA.py, it would be useful for these to be configurable but adds layers of complexity to snakefile\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-200920\" class=\"anchor\" href=\"#todo-200920\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 200920\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eAdded GATK info to REQUIREMENTS, and config.yaml\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-200926\" class=\"anchor\" href=\"#todo-200926\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 200926\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] Tune variant filtering\u003c/li\u003e\n\u003cli\u003e[X] TODO big question here - use stats from part 1 to make \u003cem\u003enew\u003c/em\u003e sample_sheet with QC pass samples? No\n\u003cul\u003e\n\u003cli\u003e[X] make list to prune from SNP alignment - not needed 201012\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e[X] need separate list of in-complete genomes, as MRCA-guided MLST didn\u0027t work as expected, tree has wrong structure (samples from pt 29 should be mmas) - Fixed 201006, need to convert gbff files before mashtree can read\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-201010\" class=\"anchor\" href=\"#todo-201010\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 201010\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e[X] start density filter\u003c/li\u003e\n\u003cli\u003e[X] merge completed results without recalculating shovill assemblies for old samples - 201010\u003c/li\u003e\n\u003cli\u003e[X] merge 0-coverage bed files and PE_PPE bed files 201013\u003c/li\u003e\n\u003cli\u003e[X] filter merged bed from vcf\n\u003cul\u003e\n\u003cli\u003e[X] compress vcf with bcftools\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-201013\" class=\"anchor\" href=\"#todo-201013\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 201013\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e[X] complete density filter - 20-11-23\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-todo-201015\" class=\"anchor\" href=\"#todo-201015\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTODO 201015\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e[X] incorporate \u003ca href=\"https://github.com/phac-nml/mab_mabscessus\"\u003ehttps://github.com/phac-nml/mab_mabscessus\u003c/a\u003e 211021\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-210323\" class=\"anchor\" href=\"#210323\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e210323\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003emerging script\u003c/li\u003e\n\u003cli\u003ecopy results_folder1 and results_folder2 into results_merge folder\u003c/li\u003e\n\u003cli\u003eremove the gubbins folder\u003c/li\u003e\n\u003cli\u003eremove the SNP_phylo folder\u003c/li\u003e\n\u003cli\u003eremove the files in MRCA_ref_folder, but keep the individual reference sub-folders\u003c/li\u003e\n\u003cli\u003eremove the mashtree folder\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003erun snakemake with the following targets, in this order:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003emashtree/assembly_mashtree.complete.tree\u003c/li\u003e\n\u003cli\u003estage1\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003etouch ./MRCA_ref_mapping/\u003cem\u003e/tempRGSC.merged.\u003c/em\u003e.sorted.bam.bai\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.intervals\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA.bam\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA.mpileup\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA_filter.vcf.gz\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA_filter.failed.vcf.gz\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA_filter.AD_failed.vcf.gz\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA_filter.hvar.vcf.gz\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA.0cov.bed\ntouch ./MRCA_ref_mapping/\u003cem\u003e/\u003c/em\u003e.RG_SC_RA_filter.hvar_DF.bed\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003estage2\u003c/li\u003e\n\u003cli\u003estage3 to generate the merged output (gubbins, SNP phylo, merged beds, etc)\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1651613417.0
+ "updated_at": 1606934860.0
},
{
"data_format": 2,
- "description": "Dynamic-programming existential-random stochastic SAT solver",
+ "description": "Singularity recipe files for slim (https://github.com/MesserLab/SLiM)",
"filenames": [
- "lg/Singularity"
+ "Singularity",
+ "Singularity.3.4+1c85d00",
+ "Singularity.3.5"
],
- "full_name": "vuphan314/DPER",
- "latest_release": "v0",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dper-dynamic-programming-existential-random-stochastic-sat-solver\" class=\"anchor\" href=\"#dper-dynamic-programming-existential-random-stochastic-sat-solver\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDPER (dynamic-programming existential-random stochastic SAT solver)\u003c/h1\u003e\n\u003cp\u003eDPER runs in two phases:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe planning phase constructs a graded project-join tree for a CNF formula.\u003c/li\u003e\n\u003cli\u003eThe execution phase computes the maximum and a maximizer from the constructed tree.\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-cloning-this-repository\" class=\"anchor\" href=\"#cloning-this-repository\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCloning this repository\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/vuphan314/DPER\u003c/pre\u003e\u003c/div\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-files\" class=\"anchor\" href=\"#files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFiles\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDir \u003ca href=\"lg\"\u003e\u003ccode\u003elg\u003c/code\u003e\u003c/a\u003e: DPER\u0027s planner\u003c/li\u003e\n\u003cli\u003eDir \u003ca href=\"dmc\"\u003e\u003ccode\u003edmc\u003c/code\u003e\u003c/a\u003e: DPER\u0027s executor\u003c/li\u003e\n\u003cli\u003eDir \u003ca href=\"eval\"\u003e\u003ccode\u003eeval\u003c/code\u003e\u003c/a\u003e: empirical evaluation\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-acknowledgment\" class=\"anchor\" href=\"#acknowledgment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgment\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/vardigroup/ADDMC\"\u003eADDMC\u003c/a\u003e: Dudek, Phan, Vardi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/meelgroup/approxmc\"\u003eBIRD\u003c/a\u003e: Soos, Meel\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://cs.rochester.edu/u/kautz/Cachet\" rel=\"nofollow\"\u003eCachet\u003c/a\u003e: Sang, Beame, Kautz\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/ivmai/cudd\"\u003eCUDD package\u003c/a\u003e: Somenzi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://davidkebo.com/cudd#cudd6\" rel=\"nofollow\"\u003eCUDD visualization\u003c/a\u003e: Kebo\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/jarro2783/cxxopts\"\u003ecxxopts\u003c/a\u003e: Beck\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/vardigroup/DPMC\"\u003eDPMC\u003c/a\u003e: Dudek, Phan, Vardi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/kit-algo/flow-cutter-pace17\"\u003eFlowCutter\u003c/a\u003e: Strasser\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/mabseher/htd\"\u003ehtd\u003c/a\u003e: Abseher, Musliu, Woltran\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://reasoning.cs.ucla.edu/minic2d\" rel=\"nofollow\"\u003eminiC2D\u003c/a\u003e: Oztok, Darwiche\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://mccompetition.org\" rel=\"nofollow\"\u003eModel-counting competition\u003c/a\u003e: Hecher, Fichte\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/Kasekopf/SlurmQueen\"\u003eSlurmQueen\u003c/a\u003e: Dudek\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://trolando.github.io/sylvan\" rel=\"nofollow\"\u003eSylvan\u003c/a\u003e: van Dijk\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/TCS-Meiji/PACE2017-TrackA\"\u003eTamaki\u003c/a\u003e: Tamaki\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/vardigroup/TensorOrder\"\u003eTensorOrder\u003c/a\u003e: Dudek, Duenas-Osorio, Vardi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/meelgroup/WAPS\"\u003eWAPS\u003c/a\u003e: Gupta, Sharma, Roy, Meel\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "powerPlant/slim-srf",
+ "latest_release": null,
+ "readme": "\u003cp\u003eSingularity recipe files for Selection on Linked Mutations: A forward population genetic simulation for studying linkage effects, such as hitchhiking, background selection, and Hill-Robertson interference\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1652162476.0
+ "updated_at": 1607459916.0
},
{
"data_format": 2,
- "description": "Dynamic-programming optimizer to solve exact literal-weighted SAT (Boolean MPE)",
+ "description": "Singularity container script for 10x Genomics SuperNova software",
"filenames": [
- "lg/Singularity"
+ "Singularity.2.0.0"
],
- "full_name": "vuphan314/DPO",
- "latest_release": "v0",
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-dpo-dynamic-programming-optimizer\" class=\"anchor\" href=\"#dpo-dynamic-programming-optimizer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDPO (dynamic-programming optimizer)\u003c/h1\u003e\n\u003cp\u003eDPO runs in two phases:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe planning phase constructs a project-join tree for an XOR-CNF formula.\u003c/li\u003e\n\u003cli\u003eThe execution phase computes the maximum and a maximizer from the constructed join tree.\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-cloning-this-repository\" class=\"anchor\" href=\"#cloning-this-repository\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCloning this repository\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/vuphan314/DPO\u003c/pre\u003e\u003c/div\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-files\" class=\"anchor\" href=\"#files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFiles\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDir \u003ca href=\"./lg/\"\u003e\u003ccode\u003elg/\u003c/code\u003e\u003c/a\u003e: DPO\u0027s planner\u003c/li\u003e\n\u003cli\u003eDir \u003ca href=\"./dmc/\"\u003e\u003ccode\u003edmc/\u003c/code\u003e\u003c/a\u003e: DPO\u0027s executor\u003c/li\u003e\n\u003cli\u003eDir \u003ca href=\"./eval/\"\u003e\u003ccode\u003eeval/\u003c/code\u003e\u003c/a\u003e: empirical evaluation\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-acknowledgment\" class=\"anchor\" href=\"#acknowledgment\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgment\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/vardigroup/ADDMC\"\u003eADDMC\u003c/a\u003e: Dudek, Phan, Vardi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/meelgroup/approxmc\"\u003eBIRD\u003c/a\u003e: Soos, Meel\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://cs.rochester.edu/u/kautz/Cachet\" rel=\"nofollow\"\u003eCachet\u003c/a\u003e: Sang, Beame, Kautz\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/msoos/cryptominisat\"\u003eCryptoMiniSat\u003c/a\u003e: Soos\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/ivmai/cudd\"\u003eCUDD package\u003c/a\u003e: Somenzi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://davidkebo.com/cudd#cudd6\" rel=\"nofollow\"\u003eCUDD visualization\u003c/a\u003e: Kebo\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/jarro2783/cxxopts\"\u003ecxxopts\u003c/a\u003e: Beck\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/vardigroup/DPMC\"\u003eDPMC\u003c/a\u003e: Dudek, Phan, Vardi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/kit-algo/flow-cutter-pace17\"\u003eFlowCutter\u003c/a\u003e: Strasser\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/mabseher/htd\"\u003ehtd\u003c/a\u003e: Abseher, Musliu, Woltran\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"http://reasoning.cs.ucla.edu/minic2d\" rel=\"nofollow\"\u003eminiC2D\u003c/a\u003e: Oztok, Darwiche\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://mccompetition.org\" rel=\"nofollow\"\u003eModel Counting Competition\u003c/a\u003e: Hecher, Fichte\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/Kasekopf/SlurmQueen\"\u003eSlurmQueen\u003c/a\u003e: Dudek\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://trolando.github.io/sylvan\" rel=\"nofollow\"\u003eSylvan\u003c/a\u003e: van Dijk\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/TCS-Meiji/PACE2017-TrackA\"\u003eTamaki\u003c/a\u003e: Tamaki\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/vardigroup/TensorOrder\"\u003eTensorOrder\u003c/a\u003e: Dudek, Duenas-Osorio, Vardi\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://github.com/meelgroup/WAPS\"\u003eWAPS\u003c/a\u003e: Gupta, Sharma, Roy, Meel\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "full_name": "arcsUVA/supernova",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-supernova\" class=\"anchor\" aria-hidden=\"true\" href=\"#supernova\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esupernova\u003c/h1\u003e\n\u003cp\u003eSingularity container script for 10x Genomics SuperNova software\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1652124481.0
+ "updated_at": 1551891095.0
},
{
"data_format": 2,
- "description": "Flappie singularity image =\u003e https://github.com/nanoporetech/flappie",
+ "description": null,
"filenames": [
- "Singularity"
+ "os_recipes/Singularity.SuSE",
+ "os_recipes/Singularity.deboot.ubuntu",
+ "os_recipes/Singularity.centos7",
+ "os_recipes/Singularity.4.2.5",
+ "os_recipes/Singularity.archive.debian",
+ "os_recipes/Singularity.centos6",
+ "os_recipes/Singularity.base-4.2.5",
+ "os_recipes/Singularity.usmirror.debian",
+ "docs/Singularity.3_0.debian9",
+ "store_pw/Singularity.pw_embed",
+ "store_pw/Singularity.4.2.5",
+ "store_pw/Singularity.python-4.2.5",
+ "store_pw/Singularity.base-4.2.5",
+ "store_pw/Singularity.pw_encrypt"
],
- "full_name": "romxero/flappie_singularity",
+ "full_name": "d-w-moore/new_d2c",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-installing-and-running-slurm-on-ubuntu-16-or-18\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-and-running-slurm-on-ubuntu-16-or-18\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling and Running SLURM on ubuntu 16 or 18\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install-slurm\" class=\"anchor\" aria-hidden=\"true\" href=\"#install-slurm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall SLURM\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esudo apt install slurm-wlm\ngit clone http://github.com/d-w-moore/new_d2c\ncd new_d2c\nperl process_slurm_template.pl | sudo dd of=/etc/slurm-llnl/slurm.conf\nsudo systemctl restart slurmctld slurmd\nsudo systemctl enable slurmctld slurmd\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto test:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003esudo apt install bc\u003c/li\u003e\n\u003cli\u003elocate command file slurm_install_test.sh containing:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e #!/bin/bash\n bc -l \u0026lt;\u0026lt;\u0026lt;\"scale=4000;a(1)*4\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003erun the above mentioned test script using : \u003ccode\u003esbatch \u0026lt;script\u0026gt;\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003etype: \u003ccode\u003esqueue\u003c/code\u003e and note the job present (most likely running)\u003c/li\u003e\n\u003cli\u003ewhen it disappears from queue (\u003ccode\u003ewatch -n1 squeue\u003c/code\u003e), look for \u003ccode\u003eslurm-\u0026lt;JOBNUM\u0026gt;.out\u003c/code\u003e\ncontaining the job\u0027s output\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-datacompute-automated-setup---install-irods-hook-scripts-for-slurm-prolog--epilog\" class=\"anchor\" aria-hidden=\"true\" href=\"#datacompute-automated-setup---install-irods-hook-scripts-for-slurm-prolog--epilog\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData/Compute automated setup - install iRODS hook scripts for slurm prolog / epilog\u003c/h2\u003e\n\u003cp\u003eThe following command will setup prolog and epilog scripts to be run (pre- and post-,\nrespectively) for each job executed by SLURM:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo ./slurm_hook_setup.sh\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1555445240.0
+ "updated_at": 1561308424.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity-base-ubuntu20.04-intel2021.1.1"
+ "Kaysera/Singularity.def"
],
- "full_name": "NOAA-GFDL/HPC-ME",
+ "full_name": "Kaysera/test-reproducibility",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-hpc-me-hpc-portable-containers-for-model-environments\" class=\"anchor\" href=\"#hpc-me-hpc-portable-containers-for-model-environments\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHPC-ME: HPC Portable Containers for Model Environments\u003c/h1\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-contents\" class=\"anchor\" href=\"#contents\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContents\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#what-is-hpc-me\"\u003eWhat is HPC-ME\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#list-of-current-compilers\"\u003eList of current compilers/MPI/OS\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#list-of-current-libraries\"\u003eList of current libraries\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#how-to-build\"\u003eHow to build\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#how-to-use\"\u003eHow to use\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#gfdl-example\"\u003eGFDL example\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#planned-improvements\"\u003ePlanned improvements\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-what-is-hpc-me\" class=\"anchor\" href=\"#what-is-hpc-me\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is HPC-ME\u003c/h2\u003e\n\u003cp\u003eHPC Portable Container - Model Environments is a set of Dockerfiles, Singularity Definition files, and containers to provide portable model environments for scientific applications that require the same set of libraries. The ultimate goal is to have a community-based list of libraries that are needed for compiling, executing, and post-processing earth science models. We all use many of the same underlying libraries, and by working together we can agree upon a community-based approach to making container usage as standardized as possible.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-list-of-current-compilersmpios\" class=\"anchor\" href=\"#list-of-current-compilersmpios\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eList of current compilers/MPI/OS\u003c/h2\u003e\n\u003cp\u003eFor each container, there is a full version that contains the programming environment and a smaller runtime environment that can be used to run compiled executables. (The runtime container definition files will be added soon.)\n#- \u003ca href=\"Dockerfile_gnu_ubuntu20.04\"\u003egcc 8/mpich/ubuntu 20.04\u003c/a\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"Dockerfile_gnu_rhel8\"\u003egcc 8/mpich/RHEL8\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"Dockerfile_intel_ubuntu18.04\"\u003eintel oneAPI 2022.1/mpich(impi)/ubuntu 18.04\u003c/a\u003e\n#- \u003ca href=\"Dockerfile_intel_centos8\"\u003eintel oneAPI 2021.4/mpich(impi)/centos 8\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-list-of-current-libraries\" class=\"anchor\" href=\"#list-of-current-libraries\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eList of current libraries\u003c/h2\u003e\n\u003cp\u003eThis is the current list of most of the libraries used in the HPC-ME containers (We are trying to keep this up-to-date).\nThe complete lit should be found in the respective YAML file.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#automake\" rel=\"nofollow\"\u003eautomake@1.16.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#bacio\" rel=\"nofollow\"\u003ebacio@2.4.1\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#berkeley-db\" rel=\"nofollow\"\u003eberkeley-db@18.1.40\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#bison\" rel=\"nofollow\"\u003ebison@3.7.6\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#bzip2\" rel=\"nofollow\"\u003ebzip2@1.0.8\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#cmake\" rel=\"nofollow\"\u003ecmake@3.21.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#crtm\" rel=\"nofollow\"\u003ecrtm@2.3.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#curl\" rel=\"nofollow\"\u003ecurl@7.78.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#diffutils\" rel=\"nofollow\"\u003ediffutils@3.7\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#esmf\" rel=\"nofollow\"\u003eesmf@8.1.1\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#expat\" rel=\"nofollow\"\u003eexpat@2.4.1\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#g2\" rel=\"nofollow\"\u003eg2@3.4.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#g2tmpl\" rel=\"nofollow\"\u003eg2tmpl@1.10.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#gdbm\" rel=\"nofollow\"\u003egdbm@1.19\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#gsl\" rel=\"nofollow\"\u003egsl@2.7\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#hdf5\" rel=\"nofollow\"\u003ehdf5@1.10.7\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#intel-mpi\" rel=\"nofollow\"\u003eintel-mpi@2019.10.317\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#ip\" rel=\"nofollow\"\u003eip@3.3.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#ip2\" rel=\"nofollow\"\u003eip2@1.1.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#jasper\" rel=\"nofollow\"\u003ejasper@2.0.32\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libbsd\" rel=\"nofollow\"\u003elibbsd@0.11.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libiconv\" rel=\"nofollow\"\u003elibiconv@1.16\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libjpeg-turbo\" rel=\"nofollow\"\u003elibjpeg-turbo@2.1.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libmd\" rel=\"nofollow\"\u003elibmd@1.0.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libpng\" rel=\"nofollow\"\u003elibpng@1.6.37\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libsigsegv\" rel=\"nofollow\"\u003elibsigsegv@2.13\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libxml2\" rel=\"nofollow\"\u003elibxml2@2.9.12\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#libyaml\" rel=\"nofollow\"\u003elibyaml@0.2.5\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#m4\" rel=\"nofollow\"\u003em4@1.4.19\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#nasm\" rel=\"nofollow\"\u003enasm@2.15.05\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#ncurses\" rel=\"nofollow\"\u003encurses@6.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#nemsio\" rel=\"nofollow\"\u003enemsio@2.5.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#netcdf-c\" rel=\"nofollow\"\u003enetcdf-c@4.8.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#netcdf-fortran\" rel=\"nofollow\"\u003enetcdf-fortran@4.5.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#numactl\" rel=\"nofollow\"\u003enumactl@2.0.14\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#openssl\" rel=\"nofollow\"\u003eopenssl@1.1.1l\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#parallel-netcdf\" rel=\"nofollow\"\u003eparallel-netcdf@1.12.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#perl\" rel=\"nofollow\"\u003eperl@5.34.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#pkgconf\" rel=\"nofollow\"\u003epkgconf@1.8.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#readline\" rel=\"nofollow\"\u003ereadline@8.1\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#sfcio\" rel=\"nofollow\"\u003esfcio@1.4.1\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#sigio\" rel=\"nofollow\"\u003esigio@2.3.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#sp\" rel=\"nofollow\"\u003esp@2.3.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#udunits\" rel=\"nofollow\"\u003eudunits@2.2.28\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#w3emc\" rel=\"nofollow\"\u003ew3emc@2.9.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#w3nco\" rel=\"nofollow\"\u003ew3nco@2.4.1\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#wrf-io\" rel=\"nofollow\"\u003ewrf-io@1.2.0\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#xerces-c\" rel=\"nofollow\"\u003exerces-c@3.2.3\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#xz\" rel=\"nofollow\"\u003exz@5.2.5\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#zlib\" rel=\"nofollow\"\u003ezlib@1.2.11\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#lmod\" rel=\"nofollow\"\u003elmod@8.5.6\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#nccmp\" rel=\"nofollow\"\u003enccmp@1.8.6.5\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#nco\" rel=\"nofollow\"\u003enco@4.7.9\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#cray-netcdf\" rel=\"nofollow\"\u003ecray-netcdf@4.6.3.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#cray-hdf5\" rel=\"nofollow\"\u003ecray-hdf5@1.10.5.2\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://spack.readthedocs.io/en/latest/package_list.html#uberftp\" rel=\"nofollow\"\u003euberftp\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to-build\" class=\"anchor\" href=\"#how-to-build\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to build\u003c/h2\u003e\n\u003cp\u003e\u003cstrong\u003eWe plan to make this step optional soon.\u003c/strong\u003e In order to build the Docker images, you will need access to a computer with root-like access, and either docker or singularity installed. If you do not have root-like access to a suitable machine, you can still run images that were already created (e.g. on Docker hub), and we plan on hosting runnable Docker images along with the Dockerfiles in this repository soon. If you have root-like access and docker, start by choosing one of the currently supported model environments from the list above. Then build the Docker container from the Dockerfile using docker build; for example, to build the gcc8/mpich/ubuntu18 container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build --file Dockerfile_gnu_ubuntu20.04 . --tag hpc-me.ubuntu.gnu\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe build process takes approximately 2-3 hours, as the packages are downloaded and compiled using Spack. After a successful build, you will see that the image was built and tagged successfully:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSuccessfully built 90a878af77b4\nSuccessfully tagged hpc-me.rhel8.gnu:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen, you may run the container using docker or singularity on the same host. To run the image on a different machine, pushing the image to Docker Hub is recommended. Note that you will need a DockerHub account to do this (replace USER with your Docker user ID in the examples below). For example:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker tag hpc-me.rhel8.gnu USER/hpc-me.rhel8.gnu\ndocker login\ndocker push USER/hpc-me.rhel8.gnu:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-how-to-use\" class=\"anchor\" href=\"#how-to-use\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to use\u003c/h2\u003e\n\u003cp\u003eWe plan to make improvements on this process. Also, while we plan on making Docker images available on the GitHub container registry, currently you must build the images yourself. Please start with the \u003ca href=\"#how-to-build\"\u003eBuild instructions\u003c/a\u003e to generate a Docker image with your desired OS/compiler HPC-ME environment. Then you may run the container using docker or singularity; singularity is more likely than docker to be available on HPC environments.\u003c/p\u003e\n\u003cp\u003eThe usage documentation consists of some general notes on serial/parallel usage, files inside and outside the container, downloading the containers, and then specific usage scenarios:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"#serial-applications-using-docker\"\u003eSerial applications using docker\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#serial-applications-using-singularity\"\u003eSerial applications using singularity\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"#parallel-applications-using-singularity\"\u003eParallel applications using singularity\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-serial-and-parallel-usage\" class=\"anchor\" href=\"#serial-and-parallel-usage\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSerial and parallel usage\u003c/h3\u003e\n\u003cp\u003eHPC-ME containers are intended for both serial and parallel applications. Serial applications include compiling model executables, generating input grids, and post-processing model output. Earth system, climate, and weather models require parallelism to run efficiently, and use one of the Message Passage Interface (MPI) implementations OpenMPI, Intel MPI, or mpich. GCC-based HPC-ME containers use the mpich-based MPI library, which is widely available on most HPC sites, and the Intel-based containers contain both mpich and Intel MPI.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-notes-on-filesystems-and-writing-files\" class=\"anchor\" href=\"#notes-on-filesystems-and-writing-files\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNotes on filesystems and writing files\u003c/h3\u003e\n\u003cp\u003eWe recommend not saving or modifying files within the environment container, and instead create and modify files on your regular filesystem. To do this, you will need to connect your filesystem to your container using bind mounts.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-downloading-containers-and-managing-images-on-the-filesystem\" class=\"anchor\" href=\"#downloading-containers-and-managing-images-on-the-filesystem\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownloading containers and managing images on the filesystem\u003c/h3\u003e\n\u003cp\u003eOnce you have pushed your images to DockerHub, you will need to download them before using. In the examples below, replace USER with your Docker Hub ID. If using docker,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull USER/hpc-me.rhel8.gnu:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf using singularity,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull docker://USER/hpc-me.rhel8.gnu:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf using singularity, the image file (SIF format) is saved to the current working directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; ls *.sif\n-rwxr-xr-x 532M Dec 10 16:09 hpc-me.rhel8.gnu_latest.sif*\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf using docker, the downloaded image is handled by the central docker service.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-serial-applications-using-docker\" class=\"anchor\" href=\"#serial-applications-using-docker\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSerial applications using docker\u003c/h3\u003e\n\u003cp\u003eYou may activate an interactive shell within the desired HPC-ME container using docker. After running the container, the compilers and tools available within the container will be accessible in your PATH; e.g.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; docker run -it hpc-me.rhel8.gnu:latest\n\n[root@0d2cf64e1175 /]# which nf-config\n/opt/view/bin/nf-config\n\n[root@0d2cf64e1175 /]# nf-config --version\nnetCDF-Fortran 4.5.3\n\n[root@0d2cf64e1175 /]# nf-config --cflags\n-I/opt/software/linux-rhel8-x86_64/gcc-8.4.1/netcdf-fortran-4.5.3-g5qfkdlp36unt2s4j4wyrc6heh2sa64n/include\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-serial-applications-using-singularity\" class=\"anchor\" href=\"#serial-applications-using-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSerial applications using singularity\u003c/h3\u003e\n\u003cp\u003eSingularity can run Docker images and is more likely to be available on HPC environments. As with docker run, the HPC-ME tools and compilers are available in the shell, somewhat similar to loading a set of Environment Modules prepared by site administrators.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt;singularity run hpc-me.rhel8.gnu_latest.sif\n\nSingularity\u0026gt; which nf-config\n/opt/view/bin/nf-config\n\nSingularity\u0026gt; nf-config --version\nnetCDF-Fortran 4.5.3\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-parallel-applications-using-singularity\" class=\"anchor\" href=\"#parallel-applications-using-singularity\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParallel applications using singularity\u003c/h3\u003e\n\u003cp\u003eHPC-ME containers can provide the runtime environment for MPI applications. For instance, one could compile an MPI application using the instructions above using one of the HPC-ME development containers; and then run the application using the corresponding runtime HPC-ME container.\u003c/p\u003e\n\u003cp\u003ePlease note that we are continuing to improve the usability of HPC-ME containers as well as provide more usage examples.\u003c/p\u003e\n\u003cp\u003eUsually, GFDL climate models are run on gaea by submitting a runscript to the Slurm scheduler. The runscript loads needed runtime Environment Modules, prepares input directories and files, and executes the MPI executable using srun. The HPC-ME containers provide the necessary runtime environment, obviating the need for loading Environment Modules. Currently, our approach for using the HPC-ME containers is as follows:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eCreate a new container, starting with the desired HPC-ME runtime container\u003c/li\u003e\n\u003cli\u003eAdd the MPI-compiled executable to the container filesystem\u003c/li\u003e\n\u003cli\u003eSet the MPI-compiled executable to as the container\u0027s command (so that when the container is run the MPI executable within the container runs)\u003c/li\u003e\n\u003cli\u003eRun the singularity container SIF file using srun within the runscript, replacing the traditional MPI executable.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cul\u003e\n\u003cli\u003eReplace \"srun executable.x\" with \"srun singularity run container.SIF\"\u003c/li\u003e\n\u003cli\u003eAdd --mpi=pmi2 to the srun call, which connects the system MPI to the container MPI to the singularity run call\u003c/li\u003e\n\u003cli\u003eBind the working directory so that the container has access to the input files and can write output files (singularity run -B=/path/to/workdir)\u003c/li\u003e\n\u003c/ul\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eSubmit the modified runscript to the scheduler\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eWe plan to provide more examples and usage scenarios, such as using the HPC-ME containers as-is (i.e. not creating a new container as described above)\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-gfdl-example\" class=\"anchor\" href=\"#gfdl-example\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGFDL example\u003c/h2\u003e\n\u003cp\u003eAn example of using an HPC-ME container with the GFDL FRE workflow can be found \u003ca href=\"GFDL_EXAMPLE.md\"\u003ehere\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-planned-improvements\" class=\"anchor\" href=\"#planned-improvements\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePlanned improvements\u003c/h2\u003e\n\u003cp\u003eHPC-ME is a work in progress under active development, so please check back or follow the repository for more updates.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-build-cache\" class=\"anchor\" href=\"#build-cache\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild cache\u003c/h3\u003e\n\u003cp\u003eWe are working to create a build cache for the libraries listed so that building the containers is quick and easy.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-github-container-registry\" class=\"anchor\" href=\"#github-container-registry\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGithub container registry\u003c/h3\u003e\n\u003cp\u003eWe are working to add CI capability to this repository, so that the containers will be automatically built and stored in the github container registry. This will make building unnecessary for most cases, though users may build the containers themselves if they wish (e.g. for custom modifications).\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-more-usage-examples-and-documentation-especially-for-mpi-applications\" class=\"anchor\" href=\"#more-usage-examples-and-documentation-especially-for-mpi-applications\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMore usage examples and documentation, especially for MPI applications\u003c/h3\u003e\n\u003cp\u003eWe are still learning how to best use the HPC-ME containers with MPI appliations, so please check back.\u003c/p\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-disclaimer\" class=\"anchor\" href=\"#disclaimer\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDisclaimer\u003c/h3\u003e\n\u003cp\u003eThe United States Department of Commerce (DOC) GitHub project code is provided\non an \u0027as is\u0027 basis and the user assumes responsibility for its use. DOC has\nrelinquished control of the information and no longer has responsibility to\nprotect the integrity, confidentiality, or availability of the information. Any\nclaims against the Department of Commerce stemming from the use of its GitHub\nproject will be governed by all applicable Federal law. Any reference to\nspecific commercial products, processes, or services by service mark,\ntrademark, manufacturer, or otherwise, does not constitute or imply their\nendorsement, recommendation or favoring by the Department of Commerce. The\nDepartment of Commerce seal and logo, or the seal and logo of a DOC bureau,\nshall not be used in any manner to imply endorsement of any commercial product\nor activity by DOC or the United States Government.\u003c/p\u003e\n\u003cp\u003eThis project code is made available through GitHub but is managed by NOAA-GFDL\nat \u003ca href=\"https://gitlab.gfdl.noaa.gov\" rel=\"nofollow\"\u003ehttps://gitlab.gfdl.noaa.gov\u003c/a\u003e.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-test-for-future-simd-reproducibility\" class=\"anchor\" aria-hidden=\"true\" href=\"#test-for-future-simd-reproducibility\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest for future SIMD reproducibility\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 6,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1650907447.0
+ "updated_at": 1655130007.0
},
{
"data_format": 2,
@@ -17487,46 +17106,45 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "truatpasteurdotfr/miniforge3-bioconda-perl-bioperl",
+ "full_name": "kiwiroy/singularity-perlbrew",
"latest_release": null,
- "readme": "\u003ch1\u003e\n\u003ca id=\"user-content-a-miniforge3-based-container-with-bioconda-bioperl\" class=\"anchor\" href=\"#a-miniforge3-based-container-with-bioconda-bioperl\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ea miniforge3 based container with bioconda-bioperl\u003c/h1\u003e\n\u003cp\u003eUsing \u003ca href=\"https://github.com/conda-forge/miniforge/\"\u003ehttps://github.com/conda-forge/miniforge/\u003c/a\u003e instead of miniconda3 from Anaconda.com\u003c/p\u003e\n\u003cp\u003edocker:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/miniforge3-bioconda-perl-bioperl:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003esingularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv oras://ghcr.io/truatpasteurdotfr/miniforge3-bioconda-perl-bioperl:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/2845\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-perlbrew\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-perlbrew\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-perlbrew\u003c/h1\u003e\n\u003cp\u003eA simple ubuntu base with perlbrew installed. Useful as a base image for brewing\nspecific versions of perl.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1651682376.0
+ "updated_at": 1556532781.0
},
{
"data_format": 2,
- "description": "BRAKER is a pipeline for fully automated prediction of protein coding gene structures with GeneMark-ES/ET and AUGUSTUS in novel eukaryotic genomes.",
+ "description": "Centos 7 base image for ACI",
"filenames": [
- "2.1.5/Singularity",
- "2.1.6/Singularity"
+ "Singularity",
+ "Singularity.cuda9.1",
+ "Singularity.gpu",
+ "Singularity.test"
],
- "full_name": "pscedu/singularity-braker2",
- "latest_release": "v2.1.6",
- "readme": "\u003cp\u003e\u003ca href=\"https://github.com/pscedu/singularity-braker2/actions/workflows/main.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-braker2/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://github.com/pscedu/singularity-braker2/actions/workflows/pretty.yml/badge.svg\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-braker2/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/19dcb2c13dec2c34ca260c8ca2b2a8209ecde7a198e864340ede4eba62cb3d33/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6272616b657232\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/19dcb2c13dec2c34ca260c8ca2b2a8209ecde7a198e864340ede4eba62cb3d33/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6272616b657232\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-braker2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/0bd8da7fc9970e7e157de2eec966b6db39f4c9445336118b4feae68787406ca0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6272616b657232\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/0bd8da7fc9970e7e157de2eec966b6db39f4c9445336118b4feae68787406ca0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6272616b657232\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-braker2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/1538a0ecc9226a4026e275016281ee2daead4806b53f7afec5b265acf1ff03ee/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6272616b657232\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1538a0ecc9226a4026e275016281ee2daead4806b53f7afec5b265acf1ff03ee/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6272616b657232\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-braker2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://camo.githubusercontent.com/c222f5a51b626a831c4b4d20b0afdb3b1157ec9ca835a8441f90b570f5fa7f0c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6272616b657232\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c222f5a51b626a831c4b4d20b0afdb3b1157ec9ca835a8441f90b570f5fa7f0c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6272616b657232\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-braker2\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\n\u003ca id=\"user-content-singularity-braker2\" class=\"anchor\" href=\"#singularity-braker2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-braker2\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://camo.githubusercontent.com/a84569b5f282590e3c4947c993c063920444aca07bdf99e5914d7abcc82d939a/68747470733a2f2f7777772e62696f727869762e6f72672f636f6e74656e742f62696f727869762f6561726c792f323032302f30382f31312f323032302e30382e31302e3234353133342f46312e6c617267652e6a7067\" target=\"_blank\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a84569b5f282590e3c4947c993c063920444aca07bdf99e5914d7abcc82d939a/68747470733a2f2f7777772e62696f727869762e6f72672f636f6e74656e742f62696f727869762f6561726c792f323032302f30382f31312f323032302e30382e31302e3234353133342f46312e6c617267652e6a7067\" width=\"50%\" data-canonical-src=\"https://www.biorxiv.org/content/biorxiv/early/2020/08/11/2020.08.10.245134/F1.large.jpg\" style=\"max-width:100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/Gaius-Augustus/BRAKER\"\u003eBRAKER2\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" href=\"#installing-the-container-on-bridges-2\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/braker2/2.1.5\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/BRAKER2\u003c/code\u003e as \u003ccode\u003e2.1.5.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" href=\"#building-the-image-using-the-recipe\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" href=\"#to-build-the-image-locally\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\n\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" href=\"#to-build-the-image-remotely\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\n\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" href=\"#to-run-tests\" aria-hidden=\"true\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2022 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
+ "full_name": "willgpaik/centos7_aci",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-centos7_aci\" class=\"anchor\" aria-hidden=\"true\" href=\"#centos7_aci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecentos7_aci\u003c/h1\u003e\n\u003cp\u003eCentos 7 base image for ACI Singualarity recipe\u003cbr\u003e\nThis recipe may include unnecessary packages for certain software installation.\u003cbr\u003e\nSize of CPU-only container: ~1 GB\u003cbr\u003e\nSize of GPU container: ~2.6 GB\u003c/p\u003e\n\u003cp\u003eMore packages will be added in the future\u003c/p\u003e\n\u003cp\u003e2019/2/17\n\u003cstrong\u003eCentos 7\u003c/strong\u003e with \u003cstrong\u003eGCC 8\u003c/strong\u003e\u003cbr\u003e\nTo enable GCC 8,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; source /opt/rh/devtoolset-8/enable\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e2019/3/1\u003cbr\u003e\nOpenMPI is added to \u003ccode\u003e$PATH\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003e2019/3/11\u003cbr\u003e\nOpenMPI is updated to version 2.1.6\u003c/p\u003e\n\u003cp\u003e2019/4/12\u003cbr\u003e\nBoost 1.70.0 in added\u003c/p\u003e\n\u003cp\u003e2019/7/19\u003cbr\u003e\n\u003cdel\u003ePython 2 and 3 are updated to version 2.7.16 and version 3.7.4\u003c/del\u003e\u003cbr\u003e\nOpenMPI is updated to version 4.0.1\u003c/p\u003e\n\u003cp\u003e2019/7/21\u003cbr\u003e\n\u003cdel\u003eFew Python packages are added\u003c/del\u003e\u003c/p\u003e\n\u003cp\u003e2019/7/22\u003cbr\u003e\n\u003cdel\u003eFew corrections are made including Python\u003c/del\u003e\u003c/p\u003e\n\u003cp\u003e2019/7/23\u003cbr\u003e\nPythons are replaced with packages\u003cbr\u003e\nTo enable Python 2.7.16,\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u0026gt; source /opt/rh/python27/enable\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSystem version of python is 3.6.8\u003c/p\u003e\n\u003cp\u003e2019/7/30\u003cbr\u003e\ndevtoolset-7 GCC is added (some software can\u0027t be built with GCC 8)\u003c/p\u003e\n\u003cp\u003e2019/11/9\u003cbr\u003e\nCMake 3.15.5 is added\u003c/p\u003e\n\u003cp\u003e2019/11/22\u003cbr\u003e\nOpenMPI is downgraded to 1.10.1 to match version on ACI\u003c/p\u003e\n\u003cp\u003e2020/2/12\u003cbr\u003e\nBoost is upgraded to 1.72.0 and CMake is upgraded to 3.16.4\u003c/p\u003e\n\u003cp\u003e2020/3/2\u003cbr\u003e\nGPU version is added\u003c/p\u003e\n\u003cp\u003e2020/9/21\u003cbr\u003e\nMinor updates are made (regarding libxkb)\u003c/p\u003e\n\u003cp\u003e2020/9/28\u003cbr\u003e\nRecipe for CUDA 9.1 is added (for FSL with CUDA)\u003c/p\u003e\n\u003cp\u003e2020/10/11\u003cbr\u003e\nBoost is upgraded to 1.74.0 and CMake is upgraded to 3.18.4\u003cbr\u003e\nR 4.0.3 is added (Curl 7.72.0 and XZ 5.2.5 are added for R)\u003cbr\u003e\nVirtualGL is downgraded to 2.5.2 to match system version\u003c/p\u003e\n\u003cp\u003e2020/10/18\u003cbr\u003e\nUDUNITS 2.2.26 is added\u003c/p\u003e\n\u003cp\u003e2020/10/20\u003cbr\u003e\nTix-devel, Tx-devel, TkInter-devel, LAPACK-devel, and BLAS-devel are added\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "singularity",
- "bioinformatics"
- ],
- "updated_at": 1649280757.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1603227322.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for sex-detector-plusplus (https://gitlab.in2p3.fr/sex-det-family/sex-detector-plusplus)",
"filenames": [
- "Singularity.binutils-2.36.1-GCCcore-11.1.0-centos7.def",
- "Singularity.zlib-1.2-centos7.def"
+ "Singularity",
+ "Singularity.00f7d723"
],
- "full_name": "jkwmoore/centos7-eb-singularity-image",
+ "full_name": "powerPlant/sex-detector-plusplus-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-centos7-eb-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#centos7-eb-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecentos7-eb-singularity-image\u003c/h1\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for SEX-DETector, a tool for the statistical inferrence of sex-linked genes from RNA / DNA reads from a cross (parents and set of childrens)\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1653324040.0
+ "updated_at": 1600917082.0
},
{
"data_format": 2,
@@ -17534,157 +17152,171 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "michalpolic/yolact",
+ "full_name": "lixuekai2001/brain-inversion",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-you-only-look-at-coefficients\" class=\"anchor\" aria-hidden=\"true\" href=\"#you-only-look-at-coefficients\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\n\u003cstrong\u003eY\u003c/strong\u003eou \u003cstrong\u003eO\u003c/strong\u003enly \u003cstrong\u003eL\u003c/strong\u003eook \u003cstrong\u003eA\u003c/strong\u003et \u003cstrong\u003eC\u003c/strong\u003eoefficien\u003cstrong\u003eT\u003c/strong\u003es\u003c/h1\u003e\n\u003cpre\u003e\u003ccode\u003e \u2588\u2588\u2557 \u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2588\u2588\u2588\u2588\u2557\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2557\n \u255a\u2588\u2588\u2557 \u2588\u2588\u2554\u255d\u2588\u2588\u2554\u2550\u2550\u2550\u2588\u2588\u2557\u2588\u2588\u2551 \u2588\u2588\u2554\u2550\u2550\u2588\u2588\u2557\u2588\u2588\u2554\u2550\u2550\u2550\u2550\u255d\u255a\u2550\u2550\u2588\u2588\u2554\u2550\u2550\u255d\n \u255a\u2588\u2588\u2588\u2588\u2554\u255d \u2588\u2588\u2551 \u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2551 \n \u255a\u2588\u2588\u2554\u255d \u2588\u2588\u2551 \u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2554\u2550\u2550\u2588\u2588\u2551\u2588\u2588\u2551 \u2588\u2588\u2551 \n \u2588\u2588\u2551 \u255a\u2588\u2588\u2588\u2588\u2588\u2588\u2554\u255d\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2557\u2588\u2588\u2551 \u2588\u2588\u2551\u255a\u2588\u2588\u2588\u2588\u2588\u2588\u2557 \u2588\u2588\u2551 \n \u255a\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u2550\u255d\u255a\u2550\u255d \u255a\u2550\u255d \u255a\u2550\u2550\u2550\u2550\u2550\u255d \u255a\u2550\u255d \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA simple, fully convolutional model for real-time instance segmentation. This is the code for our papers:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://arxiv.org/abs/1904.02689\" rel=\"nofollow\"\u003eYOLACT: Real-time Instance Segmentation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://arxiv.org/abs/1912.06218\" rel=\"nofollow\"\u003eYOLACT++: Better Real-time Instance Segmentation\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\u003ca id=\"user-content-yolact-v12-released-changelog\" class=\"anchor\" aria-hidden=\"true\" href=\"#yolact-v12-released-changelog\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eYOLACT++ (v1.2) released! (\u003ca href=\"CHANGELOG.md\"\u003eChangelog\u003c/a\u003e)\u003c/h4\u003e\n\u003cp\u003eYOLACT++\u0027s resnet50 model runs at 33.5 fps on a Titan Xp and achieves 34.1 mAP on COCO\u0027s \u003ccode\u003etest-dev\u003c/code\u003e (check out our journal paper \u003ca href=\"https://arxiv.org/abs/1912.06218\" rel=\"nofollow\"\u003ehere\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003eIn order to use YOLACT++, make sure you compile the DCNv2 code. (See \u003ca href=\"https://github.com/dbolya/yolact#installation\"\u003eInstallation\u003c/a\u003e)\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-for-a-real-time-demo-check-out-our-iccv-video\" class=\"anchor\" aria-hidden=\"true\" href=\"#for-a-real-time-demo-check-out-our-iccv-video\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFor a real-time demo, check out our ICCV video:\u003c/h4\u003e\n\u003cp\u003e\u003ca href=\"https://www.youtube.com/watch?v=0pMfmo8qfpQ\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c9e061dab1a6754a417d6eb14803f1104cce54aa9231aa0d779e2523694ed23e/68747470733a2f2f696d672e796f75747562652e636f6d2f76692f30704d666d6f38716670512f302e6a7067\" alt=\"IMAGE ALT TEXT HERE\" data-canonical-src=\"https://img.youtube.com/vi/0pMfmo8qfpQ/0.jpg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSome examples from our YOLACT base model (33.5 fps on a Titan Xp and 29.8 mAP on COCO\u0027s \u003ccode\u003etest-dev\u003c/code\u003e):\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/yolact_example_0.png\"\u003e\u003cimg src=\"data/yolact_example_0.png\" alt=\"Example 0\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/yolact_example_1.png\"\u003e\u003cimg src=\"data/yolact_example_1.png\" alt=\"Example 1\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"data/yolact_example_2.png\"\u003e\u003cimg src=\"data/yolact_example_2.png\" alt=\"Example 2\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eClone this repository and enter it:\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/dbolya/yolact.git\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e yolact\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eSet up the environment using one of the following methods:\n\u003cul\u003e\n\u003cli\u003eUsing \u003ca href=\"https://www.anaconda.com/distribution/\" rel=\"nofollow\"\u003eAnaconda\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eRun \u003ccode\u003econda env create -f environment.yml\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eManually with pip\n\u003cul\u003e\n\u003cli\u003eSet up a Python3 environment (e.g., using virtenv).\u003c/li\u003e\n\u003cli\u003eInstall \u003ca href=\"http://pytorch.org/\" rel=\"nofollow\"\u003ePytorch\u003c/a\u003e 1.0.1 (or higher) and TorchVision.\u003c/li\u003e\n\u003cli\u003eInstall some other packages:\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Cython needs to be installed before pycocotools\u003c/span\u003e\npip install cython\npip install opencv-python pillow pycocotools matplotlib \u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you\u0027d like to train YOLACT, download the COCO dataset and the 2014/2017 annotations. Note that this script will take a while and dump 21gb of files into \u003ccode\u003e./data/coco\u003c/code\u003e.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esh data/scripts/COCO.sh\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you\u0027d like to evaluate YOLACT on \u003ccode\u003etest-dev\u003c/code\u003e, download \u003ccode\u003etest-dev\u003c/code\u003e with this script.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esh data/scripts/COCO_test.sh\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003cli\u003eIf you want to use YOLACT++, compile deformable convolutional layers (from \u003ca href=\"https://github.com/CharlesShang/DCNv2/tree/pytorch_1.0\"\u003eDCNv2\u003c/a\u003e).\nMake sure you have the latest CUDA toolkit installed from \u003ca href=\"https://developer.nvidia.com/cuda-toolkit\" rel=\"nofollow\"\u003eNVidia\u0027s Website\u003c/a\u003e.\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e external/DCNv2\npython setup.py build develop\u003c/pre\u003e\u003c/div\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-evaluation\" class=\"anchor\" aria-hidden=\"true\" href=\"#evaluation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEvaluation\u003c/h1\u003e\n\u003cp\u003eHere are our YOLACT models (released on April 5th, 2019) along with their FPS on a Titan Xp and mAP on \u003ccode\u003etest-dev\u003c/code\u003e:\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eImage Size\u003c/th\u003e\n\u003cth align=\"center\"\u003eBackbone\u003c/th\u003e\n\u003cth align=\"center\"\u003eFPS\u003c/th\u003e\n\u003cth align=\"center\"\u003emAP\u003c/th\u003e\n\u003cth\u003eWeights\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet50-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e42.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e28.2\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1yp7ZbbDwvMiFJEq4ptVKTYTI2VeRDXl0/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_resnet50_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EUVpxoSXaqNIlssoLKOEoCcB1m0RpzGq_Khp5n1VX3zcUw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eDarknet53-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e40.0\u003c/td\u003e\n\u003ctd align=\"center\"\u003e28.7\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1dukLrTzZQEuhzitGkHaGjphlmRJOjVnP/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_darknet53_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/ERrao26c8llJn25dIyZPhwMBxUp2GdZTKIMUQA3t0djHLw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e33.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e29.8\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1UYy3dMapbH1BnmtZU4WH1zbYgOzzHHf_/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_base_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EYRWxBEoKU9DiblrWx2M89MBGFkVVB_drlRd_v5sdT3Hgg\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e700\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e23.6\u003c/td\u003e\n\u003ctd align=\"center\"\u003e31.2\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1lE4Lz5p25teiXV-6HdTiOJSnS7u7GBzg/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_im700_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/Eagg5RSc5hFEhp7sPtvLNyoBjhlf2feog7t8OQzHKKphjw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eYOLACT++ models (released on December 16th, 2019):\u003c/p\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth align=\"center\"\u003eImage Size\u003c/th\u003e\n\u003cth align=\"center\"\u003eBackbone\u003c/th\u003e\n\u003cth align=\"center\"\u003eFPS\u003c/th\u003e\n\u003cth align=\"center\"\u003emAP\u003c/th\u003e\n\u003cth\u003eWeights\u003c/th\u003e\n\u003cth\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet50-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e33.5\u003c/td\u003e\n\u003ctd align=\"center\"\u003e34.1\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/1ZPu1YR2UzGHQD0o1rEqy-j5bmEm3lbyP/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_plus_resnet50_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EcJAtMiEFlhAnVsDf00yWRIBUC4m8iE9NEEiV05XwtEoGw\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd align=\"center\"\u003e550\u003c/td\u003e\n\u003ctd align=\"center\"\u003eResnet101-FPN\u003c/td\u003e\n\u003ctd align=\"center\"\u003e27.3\u003c/td\u003e\n\u003ctd align=\"center\"\u003e34.6\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://drive.google.com/file/d/15id0Qq5eqRbkD-N3ZjDZXdCvRyIaHpFB/view?usp=sharing\" rel=\"nofollow\"\u003eyolact_plus_base_54_800000.pth\u003c/a\u003e\u003c/td\u003e\n\u003ctd\u003e\u003ca href=\"https://ucdavis365-my.sharepoint.com/:u:/g/personal/yongjaelee_ucdavis_edu/EVQ62sF0SrJPrl_68onyHF8BpG7c05A8PavV4a849sZgEA\" rel=\"nofollow\"\u003eMirror\u003c/a\u003e\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003eTo evalute the model, put the corresponding weights file in the \u003ccode\u003e./weights\u003c/code\u003e directory and run one of the following commands. The name of each config is everything before the numbers in the file name (e.g., \u003ccode\u003eyolact_base\u003c/code\u003e for \u003ccode\u003eyolact_base_54_800000.pth\u003c/code\u003e).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-quantitative-results-on-coco\" class=\"anchor\" aria-hidden=\"true\" href=\"#quantitative-results-on-coco\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuantitative Results on COCO\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Quantitatively evaluate a trained model on the entire validation set. Make sure you have COCO downloaded as above.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e This should get 29.92 validation mask mAP last time I checked.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Output a COCOEval json to submit to the website or to use the run_coco_eval.py script.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e This command will create \u0027./results/bbox_detections.json\u0027 and \u0027./results/mask_detections.json\u0027 for detection and instance segmentation respectively.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --output_coco_json\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e You can run COCOEval on the files created in the previous command. The performance should match my implementation in eval.py.\u003c/span\u003e\npython run_coco_eval.py\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e To output a coco json file for test-dev, make sure you have test-dev downloaded from above and go\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --output_coco_json --dataset=coco2017_testdev_dataset\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-qualitative-results-on-coco\" class=\"anchor\" aria-hidden=\"true\" href=\"#qualitative-results-on-coco\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQualitative Results on COCO\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display qualitative results on COCO. From here on I\u0027ll use a confidence threshold of 0.15.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --display\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-benchmarking-on-coco\" class=\"anchor\" aria-hidden=\"true\" href=\"#benchmarking-on-coco\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBenchmarking on COCO\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Run just the raw model on the first 1k images of the validation set\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --benchmark --max_images=1000\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eImages\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display qualitative results on the specified image.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=my_image.png\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process an image and save it to another file.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=input_image.png:output_image.png\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process a whole folder of images.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --images=path/to/input/folder:path/to/output/folder\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-video\" class=\"anchor\" aria-hidden=\"true\" href=\"#video\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVideo\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display a video in real-time. \"--video_multiframe\" will process that many frames at once for improved performance.\u003c/span\u003e\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e If you want, use \"--display_fps\" to draw the FPS directly on the frame.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=my_video.mp4\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Display a webcam feed in real-time. If you have multiple webcams pass the index of the webcam you want instead of 0.\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=0\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Process a video and save it to another file. This uses the same pipeline as the ones above now, so it\u0027s fast!\u003c/span\u003e\npython eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=input_video.mp4:output_video.mp4\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAs you can tell, \u003ccode\u003eeval.py\u003c/code\u003e can do a ton of stuff. Run the \u003ccode\u003e--help\u003c/code\u003e command to see everything it can do.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython eval.py --help\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\u003ca id=\"user-content-training\" class=\"anchor\" aria-hidden=\"true\" href=\"#training\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTraining\u003c/h1\u003e\n\u003cp\u003eBy default, we train on COCO. Make sure to download the entire dataset using the commands above.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eTo train, grab an imagenet-pretrained model and put it in \u003ccode\u003e./weights\u003c/code\u003e.\n\u003cul\u003e\n\u003cli\u003eFor Resnet101, download \u003ccode\u003eresnet101_reducedfc.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/1tvqFPd4bJtakOlmn-uIA492g2qurRChj/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor Resnet50, download \u003ccode\u003eresnet50-19c8e357.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/1Jy3yCdbatgXa5YYIdTCRrSV0S9V5g1rn/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eFor Darknet53, download \u003ccode\u003edarknet53.pth\u003c/code\u003e from \u003ca href=\"https://drive.google.com/file/d/17Y431j4sagFpSReuPNoFcj9h7azDTZFf/view?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eRun one of the training commands below.\n\u003cul\u003e\n\u003cli\u003eNote that you can press ctrl+c while training and it will save an \u003ccode\u003e*_interrupt.pth\u003c/code\u003e file at the current iteration.\u003c/li\u003e\n\u003cli\u003eAll weights are saved in the \u003ccode\u003e./weights\u003c/code\u003e directory by default with the file name \u003ccode\u003e\u0026lt;config\u0026gt;_\u0026lt;epoch\u0026gt;_\u0026lt;iter\u0026gt;.pth\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Trains using the base config with a batch size of 8 (the default).\u003c/span\u003e\npython train.py --config=yolact_base_config\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Trains yolact_base_config with a batch_size of 5. For the 550px models, 1 batch takes up around 1.5 gigs of VRAM, so specify accordingly.\u003c/span\u003e\npython train.py --config=yolact_base_config --batch_size=5\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Resume training yolact_base with a specific weight file and start from the iteration specified in the weight file\u0027s name.\u003c/span\u003e\npython train.py --config=yolact_base_config --resume=weights/yolact_base_10_32100.pth --start_iter=-1\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Use the help option to see a description of all available command line arguments\u003c/span\u003e\npython train.py --help\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-multi-gpu-support\" class=\"anchor\" aria-hidden=\"true\" href=\"#multi-gpu-support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMulti-GPU Support\u003c/h2\u003e\n\u003cp\u003eYOLACT now supports multiple GPUs seamlessly during training:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eBefore running any of the scripts, run: \u003ccode\u003eexport CUDA_VISIBLE_DEVICES=[gpus]\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eWhere you should replace [gpus] with a comma separated list of the index of each GPU you want to use (e.g., 0,1,2,3).\u003c/li\u003e\n\u003cli\u003eYou should still do this if only using 1 GPU.\u003c/li\u003e\n\u003cli\u003eYou can check the indices of your GPUs with \u003ccode\u003envidia-smi\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eThen, simply set the batch size to \u003ccode\u003e8*num_gpus\u003c/code\u003e with the training commands above. The training script will automatically scale the hyperparameters to the right values.\n\u003cul\u003e\n\u003cli\u003eIf you have memory to spare you can increase the batch size further, but keep it a multiple of the number of GPUs you\u0027re using.\u003c/li\u003e\n\u003cli\u003eIf you want to allocate the images per GPU specific for different GPUs, you can use \u003ccode\u003e--batch_alloc=[alloc]\u003c/code\u003e where [alloc] is a comma seprated list containing the number of images on each GPU. This must sum to \u003ccode\u003ebatch_size\u003c/code\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-logging\" class=\"anchor\" aria-hidden=\"true\" href=\"#logging\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLogging\u003c/h2\u003e\n\u003cp\u003eYOLACT now logs training and validation information by default. You can disable this with \u003ccode\u003e--no_log\u003c/code\u003e. A guide on how to visualize these logs is coming soon, but now you can look at \u003ccode\u003eLogVizualizer\u003c/code\u003e in \u003ccode\u003eutils/logger.py\u003c/code\u003e for help.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pascal-sbd\" class=\"anchor\" aria-hidden=\"true\" href=\"#pascal-sbd\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePascal SBD\u003c/h2\u003e\n\u003cp\u003eWe also include a config for training on Pascal SBD annotations (for rapid experimentation or comparing with other methods). To train on Pascal SBD, proceed with the following steps:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDownload the dataset from \u003ca href=\"http://home.bharathh.info/pubs/codes/SBD/download.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. It\u0027s the first link in the top \"Overview\" section (and the file is called \u003ccode\u003ebenchmark.tgz\u003c/code\u003e).\u003c/li\u003e\n\u003cli\u003eExtract the dataset somewhere. In the dataset there should be a folder called \u003ccode\u003edataset/img\u003c/code\u003e. Create the directory \u003ccode\u003e./data/sbd\u003c/code\u003e (where \u003ccode\u003e.\u003c/code\u003e is YOLACT\u0027s root) and copy \u003ccode\u003edataset/img\u003c/code\u003e to \u003ccode\u003e./data/sbd/img\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eDownload the COCO-style annotations from \u003ca href=\"https://drive.google.com/open?id=1ExrRSPVctHW8Nxrn0SofU1lVhK5Wn0_S\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eExtract the annotations into \u003ccode\u003e./data/sbd/\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eNow you can train using \u003ccode\u003e--config=yolact_resnet50_pascal_config\u003c/code\u003e. Check that config to see how to extend it to other models.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eI will automate this all with a script soon, don\u0027t worry. Also, if you want the script I used to convert the annotations, I put it in \u003ccode\u003e./scripts/convert_sbd.py\u003c/code\u003e, but you\u0027ll have to check how it works to be able to use it because I don\u0027t actually remember at this point.\u003c/p\u003e\n\u003cp\u003eIf you want to verify our results, you can download our \u003ccode\u003eyolact_resnet50_pascal_config\u003c/code\u003e weights from \u003ca href=\"https://drive.google.com/open?id=1yLVwtkRtNxyl0kxeMCtPXJsXFFyc_FHe\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. This model should get 72.3 mask AP_50 and 56.2 mask AP_70. Note that the \"all\" AP isn\u0027t the same as the \"vol\" AP reported in others papers for pascal (they use an averages of the thresholds from \u003ccode\u003e0.1 - 0.9\u003c/code\u003e in increments of \u003ccode\u003e0.1\u003c/code\u003e instead of what COCO uses).\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-custom-datasets\" class=\"anchor\" aria-hidden=\"true\" href=\"#custom-datasets\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCustom Datasets\u003c/h2\u003e\n\u003cp\u003eYou can also train on your own dataset by following these steps:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCreate a COCO-style Object Detection JSON annotation file for your dataset. The specification for this can be found \u003ca href=\"http://cocodataset.org/#format-data\" rel=\"nofollow\"\u003ehere\u003c/a\u003e. Note that we don\u0027t use some fields, so the following may be omitted:\n\u003cul\u003e\n\u003cli\u003e\u003ccode\u003einfo\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003eliscense\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003eUnder \u003ccode\u003eimage\u003c/code\u003e: \u003ccode\u003elicense, flickr_url, coco_url, date_captured\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003ecategories\u003c/code\u003e (we use our own format for categories, see below)\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eCreate a definition for your dataset under \u003ccode\u003edataset_base\u003c/code\u003e in \u003ccode\u003edata/config.py\u003c/code\u003e (see the comments in \u003ccode\u003edataset_base\u003c/code\u003e for an explanation of each field):\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s1\"\u003emy_custom_dataset\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003edataset_base\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003ecopy\u003c/span\u003e({\n \u003cspan class=\"pl-s\"\u003e\u0027name\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027My Dataset\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027train_images\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_training_images\u0027\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027train_info\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_training_annotation\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027valid_images\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_validation_images\u0027\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027valid_info\u0027\u003c/span\u003e: \u003cspan class=\"pl-s\"\u003e\u0027path_to_validation_annotation\u0027\u003c/span\u003e,\n\n \u003cspan class=\"pl-s\"\u003e\u0027has_gt\u0027\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\u0027class_names\u0027\u003c/span\u003e: (\u003cspan class=\"pl-s\"\u003e\u0027my_class_id_1\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027my_class_id_2\u0027\u003c/span\u003e, \u003cspan class=\"pl-s\"\u003e\u0027my_class_id_3\u0027\u003c/span\u003e, ...)\n})\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eA couple things to note:\n\u003cul\u003e\n\u003cli\u003eClass IDs in the annotation file should start at 1 and increase sequentially on the order of \u003ccode\u003eclass_names\u003c/code\u003e. If this isn\u0027t the case for your annotation file (like in COCO), see the field \u003ccode\u003elabel_map\u003c/code\u003e in \u003ccode\u003edataset_base\u003c/code\u003e.\u003c/li\u003e\n\u003cli\u003eIf you do not want to create a validation split, use the same image path and annotations file for validation. By default (see \u003ccode\u003epython train.py --help\u003c/code\u003e), \u003ccode\u003etrain.py\u003c/code\u003e will output validation mAP for the first 5000 images in the dataset every 2 epochs.\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eFinally, in \u003ccode\u003eyolact_base_config\u003c/code\u003e in the same file, change the value for \u003ccode\u003e\u0027dataset\u0027\u003c/code\u003e to \u003ccode\u003e\u0027my_custom_dataset\u0027\u003c/code\u003e or whatever you named the config object above. Then you can use any of the training commands in the previous section.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003e\u003ca id=\"user-content-creating-a-custom-dataset-from-scratch\" class=\"anchor\" aria-hidden=\"true\" href=\"#creating-a-custom-dataset-from-scratch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreating a Custom Dataset from Scratch\u003c/h4\u003e\n\u003cp\u003eSee \u003ca href=\"https://github.com/dbolya/yolact/issues/70#issuecomment-504283008\"\u003ethis nice post by @Amit12690\u003c/a\u003e for tips on how to annotate a custom dataset and prepare it for use with YOLACT.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h1\u003e\n\u003cp\u003eIf you use YOLACT or this code base in your work, please cite\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@inproceedings{yolact-iccv2019,\n author = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},\n title = {YOLACT: {Real-time} Instance Segmentation},\n booktitle = {ICCV},\n year = {2019},\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor YOLACT++, please cite\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@misc{yolact-plus-arxiv2019,\n title = {YOLACT++: Better Real-time Instance Segmentation},\n author = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},\n year = {2019},\n eprint = {1912.06218},\n archivePrefix = {arXiv},\n primaryClass = {cs.CV}\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-contact\" class=\"anchor\" aria-hidden=\"true\" href=\"#contact\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContact\u003c/h1\u003e\n\u003cp\u003eFor questions about our paper or code, please contact \u003ca href=\"mailto:dbolya@ucdavis.edu\"\u003eDaniel Bolya\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1653076832.0
+ "updated_at": 1652667265.0
},
{
"data_format": 2,
- "description": "Modified copy of GEMMA version 0.93 (Zhou and Stephens) for use with bugs",
+ "description": "EPACTS container",
"filenames": [
"Singularity"
],
- "full_name": "danny-wilson/gemma0.93b",
- "latest_release": "v0.1",
+ "full_name": "CHPC-UofU/Singularity-ubuntu-epacts",
+ "latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1653040520.0
+ "updated_at": 1504217055.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.def"
],
- "full_name": "jt2gtwci/HessianScreeningRule",
- "latest_release": "v0.2.0",
- "readme": "\n\u003ch1\u003e\u003ca id=\"user-content-code-for-the-hessian-screening-rule\" class=\"anchor\" aria-hidden=\"true\" href=\"#code-for-the-hessian-screening-rule\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCode for the Hessian Screening Rule\u003c/h1\u003e\n\n\n\u003ch2\u003e\u003ca id=\"user-content-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResults\u003c/h2\u003e\n\u003cp\u003eThe results from the simulations are stored in the \u003ca href=\"results/\"\u003eresults\nfolder\u003c/a\u003e. The figures and tables in the paper, generated from\nthese results, are stored in \u003ca href=\"figures/\"\u003e\u003ccode\u003efigures/\u003c/code\u003e\u003c/a\u003e and\n\u003ca href=\"tables/\"\u003e\u003ccode\u003etables/\u003c/code\u003e\u003c/a\u003e respectively.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-reproducing-the-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#reproducing-the-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReproducing the Results\u003c/h2\u003e\n\u003cp\u003eTo reproduce the results, we recommend you use the singularity\ncontainer. See the release section on GitHub and download the container\nfrom there. To run an experiment from the singularity container, call\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run --no-home --bind results:/project/results container.sif \u0026lt;script\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewhere \u003ccode\u003e\u0026lt;script\u0026gt;\u003c/code\u003e should be a name of a script to run from the\n\u003ca href=\"experiments/\"\u003eexperiments folder\u003c/a\u003e folder, such as\n\u003ccode\u003eexperiments/simulateddata.R\u003c/code\u003e. The results will then be output to the\n\u003ccode\u003eresults\u003c/code\u003e folder.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-re-building-the-singularity-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#re-building-the-singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRe-building the Singularity Container\u003c/h3\u003e\n\u003cp\u003eIf you want to re-build the singularity container (or simply want to\nclone the repo to your local drive), you can do so via the following\nsteps.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\n\u003cp\u003eClone the repository to your local hard drive. On linux, using SSH\nauthentication, run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone git@github.com:jt2gtwci/HessianScreeningRule.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eNavigate to the root of the repo and build the singularity container\nby calling\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecd HessianScreeningRule\nsudo singularity build container.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eThen proceed as in \u003ca href=\"#reproducing-the-results\"\u003eReproducing the Results\u003c/a\u003e\nto run the experiments.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-experiments-without-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-experiments-without-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Experiments without Singularity\u003c/h3\u003e\n\u003cp\u003eAlternatively, you may also reproduce the results by cloning this\nrepository, then either opening the \u003ccode\u003eHessianScreening.Rproj\u003c/code\u003e file in R\nStudio or starting R in the root directory of this folder (which will\nactivate the renv repository) and then run\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003erenv::restore()\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eto restore the project library. Then build the R package (see below) and\nrun the simulations directly by running the scripts in the experiments\nfolder. This is not recommended, however, since it, unlike the\nSingularity container approach, does not exactly reproduce the software\nenvironment used when these simulations where originally run and may\nresult in discrepancies due to differences in for instance operating\nsystems, compilers, and BLAS/LAPACK implementations.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-r-package\" class=\"anchor\" aria-hidden=\"true\" href=\"#r-package\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eR Package\u003c/h2\u003e\n\u003cp\u003eIf you want to build and experiment with the package, you can do so by\ncalling\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e R CMD INSTALL .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData\u003c/h2\u003e\n\u003cp\u003eThe data sets used for the project are not stored on this repository and\nhave to be downloaded by running the script found in\n\u003ca href=\"data-raw/\"\u003e\u003ccode\u003edata-raw/\u003c/code\u003e\u003c/a\u003e. This does not apply when you use the\nsingularity container, however, since the data sets are stored inside it\n(and could technically be retrieved from it too).\u003c/p\u003e\n",
+ "full_name": "mshow34jt/analysis_container",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-analysis_container\" class=\"anchor\" aria-hidden=\"true\" href=\"#analysis_container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eanalysis_container\u003c/h1\u003e\n\u003cp\u003egit clone \u003ca href=\"http://github.com/mshow34jt/analysis_container\"\u003ehttp://github.com/mshow34jt/analysis_container\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003ecd analysis_container\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-with-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-with-docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eto build with Docker\u003c/h3\u003e\n\u003cp\u003edocker build -t analysis:v1 .\u003c/p\u003e\n\u003cp\u003eexecute with:\u003cbr\u003e\ndocker run --rm -d --network host --name analysis -v $PWD/log:/data/log -v $PWD/ldms:/data/ldms -v $PWD/slurm:/data/slurm -v /etc/localtime:/etc/localtime analysis:v1\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-proceed-with-singularity-as-an-alternative\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-proceed-with-singularity-as-an-alternative\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo proceed with Singularity as an alternative:\u003c/h3\u003e\n\u003cp\u003edocker save analysis:v1 \u0026gt;analysisv1.tar\u003c/p\u003e\n\u003cp\u003esingularity build analysis.sif docker-archive://analysisv1.tar\u003c/p\u003e\n\u003cp\u003ealternatively build without docker requires root or fakeroot setup\nsteps to build image (sif file) and start instance (example):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eIn the wscont/ folder, as the container owner user, run ./dock2sing.sh (generates Singularity.def)\u003c/li\u003e\n\u003cli\u003eBe sure to setup \"fakeroot\" requirements first if not there already.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://sylabs.io/guides/3.5/user-guide/cli/singularity_config_fakeroot.html\" rel=\"nofollow\"\u003ehttps://sylabs.io/guides/3.5/user-guide/cli/singularity_config_fakeroot.html\u003c/a\u003e\nsingularity build --fakeroot analysis.sif Singularity.def\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-move-the-file-to-the-desired-host-and-there-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#move-the-file-to-the-desired-host-and-there-run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMove the file to the desired host, and there run\u2026\u003c/h3\u003e\n\u003cp\u003esingularity instance start --bind /storage/nvme0n1/ncsa/eclipse/store_function_csv/spool/:/data/ldms --bind /storage/slurm/eclipse/spool-bitzer/job_detail:/data/slurm --bind /etc/localtime:/etc/localtime --bind /storage/nvme0n1/ncsa/log:/data/log analysis.sif analysis\u003c/p\u003e\n\u003cp\u003eThe first time the container is started, you will need to prime the database with test data and metadata for the metrics\u003cbr\u003e\nI do it interactively with singularity shell instance://analysis\u003cbr\u003e\ncat tests.csv |./inserttests.pl\u003cbr\u003e\ncat eclipse_md.csv |./insertmd.pl\nexit\u003c/p\u003e\n\u003cp\u003esingularity run instance://analysis /jobmon/bin/init.sh \u0026amp;\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1652962267.0
+ "updated_at": 1636506455.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "diamond-with-ncbidb/Singularity"
+ "Singularity",
+ "Singularity.test2"
],
- "full_name": "AsagaKosho/containers",
+ "full_name": "rsm5139/singularity",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1652842419.0
+ "updated_at": 1551716847.0
},
{
"data_format": 2,
- "description": "a Singularity recipe with openmpi 2.1.1 on base centos 7 to run on the Cineca clusters x86_64 based",
+ "description": null,
"filenames": [
"Singularity"
],
- "full_name": "simarocchi/openmpi_centos7_x86_64",
+ "full_name": "Freakey17/CP4TP",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-openmpi_centos7_x86_64\" class=\"anchor\" aria-hidden=\"true\" href=\"#openmpi_centos7_x86_64\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eopenmpi_centos7_x86_64\u003c/h1\u003e\n\u003cp\u003ea Singularity recipe with openmpi 2.1.1 on base centos 7 to run on the Cineca clusters x86_64 based\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1605098444.0
+ "updated_at": 1557407944.0
},
{
"data_format": 2,
- "description": "WaveUnet for Saraga Dataset (Indian Carnatic Music)",
+ "description": "Singularity recipes for ALCF-Theta",
"filenames": [
- "Singularity"
+ "singularity_recipes/Singularity.py36",
+ "singularity_recipes/Singularity.hello_world",
+ "singularity_recipes/Singularity.mpich33"
],
- "full_name": "its-rajesh/WaveUnet",
+ "full_name": "Romit-Maulik/Theta_Containers",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-waveunet-implementation-for-saraga-dataset-indian-carnatic-music\" class=\"anchor\" aria-hidden=\"true\" href=\"#waveunet-implementation-for-saraga-dataset-indian-carnatic-music\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWaveUnet Implementation for Saraga Dataset (Indian Carnatic Music)\u003c/h1\u003e\n\u003cp\u003eActual Network: \u003ca href=\"https://github.com/f90/Wave-U-Net-Pytorch\"\u003ehttps://github.com/f90/Wave-U-Net-Pytorch\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSaraga Carnatic Dataset:\u003c/p\u003e\n\u003cp\u003eIt has five stems: Mixed, Vocal, Violin, Mrindangam Right and Mrindangam Left.\nConverting Mrindangam left and right into single audio file (mrindangam)\nExpecting Four stem output namely: Vocal, violin, mrindangam and others\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eWith Bleeding (Actual Dataset)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSDR:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eWithout Bleeding (Bleeding Removed Dataset)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eSDR:\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-containers-on-theta\" class=\"anchor\" aria-hidden=\"true\" href=\"#containers-on-theta\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainers on Theta\u003c/h1\u003e\n\u003cp\u003eSingularity recipes for ALCF-Theta\u003c/p\u003e\n\u003cp\u003eSingularity hub is discontinued. One must build on dockerhub and pull on ALCF.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1665079190.0
+ "updated_at": 1619207429.0
},
{
"data_format": 2,
- "description": "openjdk:8 based release of CANU, a PacBio assembler",
+ "description": "Magic-BLAST is a tool for mapping large next-generation RNA or DNA sequencing runs against a whole genome or transcriptome.",
"filenames": [
- "Singularity"
+ "2.10.8/Singularity",
+ "2.10.9/Singularity",
+ "2.11.0/Singularity"
],
- "full_name": "sghignone/canu",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-canu\" class=\"anchor\" aria-hidden=\"true\" href=\"#canu\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecanu\u003c/h1\u003e\n",
+ "full_name": "pscedu/singularity-sra-toolkit",
+ "latest_release": "v2.11.0",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-sra-toolkit/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-sra-toolkit/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-sra-toolkit/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-sra-toolkit/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/31e3cb09d81e6fb61f9191e5ce617c6808d24498265a7a0c0f5b82303b18306d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/31e3cb09d81e6fb61f9191e5ce617c6808d24498265a7a0c0f5b82303b18306d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-sra-toolkit\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/829e9dae945b99db01be6a45bd00195069d38a971309a3673faa34fcc622e860/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/829e9dae945b99db01be6a45bd00195069d38a971309a3673faa34fcc622e860/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-sra-toolkit\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/ab0f5d5286d9642bb3b041fca0d27ceef55d8806e1f752c89fb699f6f7794e03/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ab0f5d5286d9642bb3b041fca0d27ceef55d8806e1f752c89fb699f6f7794e03/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-sra-toolkit\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/753805fc4e3f4b095bd00c1a208047377e71c91f500b66d8730044e6298c3a8d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/753805fc4e3f4b095bd00c1a208047377e71c91f500b66d8730044e6298c3a8d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d7372612d746f6f6c6b6974\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-sra-toolkit\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-sra-toolkit\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-sra-toolkit\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-sra-toolkit\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/ncbi/sra-tools\"\u003esra-toolkit\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003esra-toolkit\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/sra-toolkit/2.11.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/sra-toolkit\u003c/code\u003e as \u003ccode\u003e 2.11.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [
- "container",
- "docker-container",
- "dockerfile",
- "dna-assembly",
- "pacbio"
+ "singularity",
+ "bioinformatics"
],
- "updated_at": 1662449005.0
+ "updated_at": 1629226848.0
},
{
"data_format": 2,
- "description": "HTCondor execution point setup and configuration for using HTCondor file transfer to synchronize a directory between two hosts",
+ "description": "Master Thesis for Robotics Master",
"filenames": [
- "Singularity.def"
+ "vision/src/vision/pythonClasses/deeplab/SingularityResNest",
+ "vision/src/vision/pythonClasses/darknet/Singularity"
],
- "full_name": "brianaydemir/htcondor_file_transfer_ep",
+ "full_name": "GuiMateus/thesis",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-3d-volumetric-and-semantic-environment-reconstruction\" class=\"anchor\" aria-hidden=\"true\" href=\"#3d-volumetric-and-semantic-environment-reconstruction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3D Volumetric and Semantic Environment Reconstruction\u003c/h1\u003e\n\u003cp\u003eThis repo contains the materials used in the Master\u0027s Thesis from Guilherme Mateus at Aalborg University. The pipeline contained in it creates 3D semantical and volumetric reconstructions of environments using Deep Learning. This implementation is done using ROS melodic as a framework of communication.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\".images/gitImage.png\"\u003e\u003cimg src=\".images/gitImage.png\" alt=\"alt text\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA small description of each package is given below:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eontologies\u003c/strong\u003e: Handles object ontonlogies.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eservice\u003c/strong\u003e: Consists of services files for system communication.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003erealsense-ros\u003c/strong\u003e: Gathers data using realsense camera.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003euserInterface\u003c/strong\u003e: Provides a GUI for users to control the system.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003evision\u003c/strong\u003e: Handles screw detection using YOLOv4 and DeepLabV3+.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-hidden=\"true\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting Started\u003c/h2\u003e\n\u003cp\u003eThe system contains YOLOv4 and DeepLabV3+. However, YOLOv4 still has to be manually built under \u003ccode\u003ecatkin_ws/src/release/vision/src/vision/pythonClasses/darknet.py\u003c/code\u003e, for that follow the instructions on the \u003ca href=\"https://github.com/AlexeyAB/darknet\"\u003erepo\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eOBS: To build darknet you need to get a CMake version bigger than 3.12, which is not compatible with ROS. Do not uninstall the current version installed in the system, instead use a local CMake version.\u003c/p\u003e\n\u003cp\u003eIn case of problems with DeepLabV3+, follow the \u003ca href=\"https://github.com/jfzhang95/pytorch-deeplab-xception\"\u003erepo\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003ePre-trained models and configs can be found by using \u003ccode\u003e./setup.sh\u003c/code\u003e. The weights are stored under \u003ccode\u003e/opt/vision/\u003c/code\u003e, therefore to use the weights models the script needs root permissions. Alternatively the weights paths must be manually changed in \u003ccode\u003ecatkin_ws/src/release/vision/src/vision/pythonClasses/detectObjects.py\u003c/code\u003e and \u003ccode\u003ecatkin_ws/src/release/vision/src/vision/pythonClasses/segmentationInit.py\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eIf it still doesn\u0027t work, I don\u0027t know mate, ask my parrot, he might know it better than me or something like that.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h3\u003e\n\u003cp\u003eThis requires a system setup with ROS. It is recommended to use \u003ccode\u003eUbuntu 18.04\u003c/code\u003e with \u003ccode\u003eROS Melodic\u003c/code\u003e.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-creating-workspace-and-cloning-the-repository\" class=\"anchor\" aria-hidden=\"true\" href=\"#creating-workspace-and-cloning-the-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreating workspace and cloning the repository\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e create a catkin workspace\u003c/span\u003e\nmkdir -p catkin_ws/src \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e catkin_ws/src\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Clone the repository from bitbucket.\u003c/span\u003e\ngit clone --recursive https://guimateus@bitbucket.org/guimateus/thesis.git\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e install dependencies\u003c/span\u003e\nsudo apt update -qq \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e ..\nrosdep update\nrosdep install --from-paths \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e --ignore-src --rosdistro melodic -y\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003einstall python catkin tools. Needed for catkin build command\u003c/span\u003e\nsudo apt-get install python-catkin-tools\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e build the workspace\u003c/span\u003e\ncatkin build\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-installing-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling dependencies\u003c/h3\u003e\n\u003cp\u003eGo to Intel Realsense website and \u003ca href=\"https://www.intelrealsense.com/developers/\" rel=\"nofollow\"\u003einstall the SDK for Linux\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-launching-the-system\" class=\"anchor\" aria-hidden=\"true\" href=\"#launching-the-system\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLaunching The System\u003c/h3\u003e\n\u003cp\u003eTo launch system type the following to a terminal window.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003eroslaunch launch_nodes main.launch\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-reconstructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-reconstructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning reconstructions\u003c/h2\u003e\n\u003cp\u003eThis is the user interface of the system\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\".images/GUI3D.png\"\u003e\u003cimg src=\".images/GUI3D.png\" alt=\"alt text\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFirst use offline reconstruction to detect static objects in the environment. Then, to perform an online reconstruction create ontological relations using the tab of the interface shown below, and select an object of interest under the \"Object Selection\" tab.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\".images/ontologiesTabNew.png\"\u003e\u003cimg src=\".images/ontologiesTabNew.png\" alt=\"alt text\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe results can be visualized in \"Object Detection\", \"Object Segmentation\", and \"3D Reconstruction\".\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-future-works\" class=\"anchor\" aria-hidden=\"true\" href=\"#future-works\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFuture works\u003c/h2\u003e\n\u003cp\u003eSome possible future works to increase quality of the repo:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eSegmentation change\u003c/strong\u003e: The qualitative results of the segmentation network are not satisfying, therefore it must be changed.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eSimplifying setup\u003c/strong\u003e: Setup can be a bit convoluted, so maybe I can make it a bit easier.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eImprove ontologies framework\u003c/strong\u003e: Could be cool to have some extra functionalities in ontologies and maybe use a stochastic method.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eImprove addition of new objects\u003c/strong\u003e: Kind of hard to add custom objects to system right now, have to make the training framework easier.\u003c/li\u003e\n\u003cli\u003e\n\u003cstrong\u003eParrots\u003c/strong\u003e: This git repo critically lacks parrots.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\".images/sam.jpg\"\u003e\u003cimg src=\".images/sam.jpg\" alt=\"alt text\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-authors\" class=\"anchor\" aria-hidden=\"true\" href=\"#authors\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003e[Guilherme Mateus Martins]\u003c/strong\u003e - \u003ca href=\"mailto:gmateu16@student.aau.dk\"\u003eemail\u003c/a\u003e - \u003ca href=\"https://bitbucket.org/%7Bba72de4e-9cb6-4e73-89db-24d4d8f12fe7%7D/\" rel=\"nofollow\"\u003eGit Profile\u003c/a\u003e - \u003ca href=\"https://www.linkedin.com/in/guilherme-mateus-346b58b5/\" rel=\"nofollow\"\u003eLinkedIn\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-acknowledgements\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgements\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eAalborg university\u003c/li\u003e\n\u003cli\u003eDimitris Chrysostomou\u003c/li\u003e\n\u003cli\u003eSome other cool people\u003c/li\u003e\n\u003cli\u003eMy computer for being a real trooper and not dying after this repo made it crash several times\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1658411822.0
+ "updated_at": 1641547757.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Diffusion NLP project",
"filenames": [
- "Testes_ate_21_10_2022/facies_classification_benchmark/my_benchmark-box/.singularity.d/Singularity",
- "Testes_ate_21_10_2022/thurbridi/my_thurbridi/.singularity.d/Singularity"
+ "Singularity",
+ "Diffusion-LM/Singularity"
],
- "full_name": "elis-essantos/sdumontHome",
+ "full_name": "mathematiguy/diffusion-nlp",
"latest_release": null,
- "readme": "",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-diffusion-nlp\" class=\"anchor\" aria-hidden=\"true\" href=\"#diffusion-nlp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ediffusion-nlp\u003c/h1\u003e\n\u003cp\u003eThis project attempts to reproduce the paper \"Diffusion-LM Improves Controllable Text Generation\" by Li, X. L., Thickstun, J., Gulrajani, I., Liang, P., \u0026amp; Hashimoto, T. B. (2022), available here: \u003ca href=\"https://arxiv.org/pdf/2205.14217.pdf\" rel=\"nofollow\"\u003ehttps://arxiv.org/pdf/2205.14217.pdf\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-directory-structure\" class=\"anchor\" aria-hidden=\"true\" href=\"#directory-structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDirectory structure\u003c/h2\u003e\n\u003cp\u003eThere are 3 significant subfolders of this repository:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ediffusion_lm\u003c/code\u003e - contains code towards a from scratch reproduction of the authors\u0027 work. It includes a \u003ccode\u003emodel.py\u003c/code\u003e model definition file in PyTorch, which implements the forward pass of the model as closely as I could figure out from the paper and also by looking through their source code. It is supported by \u003ccode\u003enotebooks\u003c/code\u003e, which contains my investigations of the model design, and also \u003ccode\u003etests\u003c/code\u003e where I implemented some tests for testing the model code.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eDiffusion-LM\u003c/code\u003e - contains a fork of the original source code for the paper at \u003ca href=\"https://github.com/XiangLi1999/Diffusion-LM\"\u003ehttps://github.com/XiangLi1999/Diffusion-LM\u003c/a\u003e. There I have containerized the project so it can be run reliably on other computers. The full details of the fork are documented there.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003eMLRC-2022-Report\u003c/code\u003e - is a latex project containing a report written by myself for the completion of a Class Project for Comp-599 Natural Language Understanding at McGill University, fall 2022 semester.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch1\u003e\u003ca id=\"user-content-how-to-get-started\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-get-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to get started\u003c/h1\u003e\n\u003cp\u003eThe only software dependencies for this repository is GNU Make and Singularity. On Ubuntu systems, make can be installed simply via \u003ccode\u003esudo apt install make\u003c/code\u003e. Instructions for how to install Singularity are available here: \u003ca href=\"https://docs.sylabs.io/guides/3.5/user-guide/quick_start.html\" rel=\"nofollow\"\u003ehttps://docs.sylabs.io/guides/3.5/user-guide/quick_start.html\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eIf you are interested in running \u003ccode\u003ediffusion_lm\u003c/code\u003e, then you will need to build the singularity container in this directory.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Build the singularity container for this project\nmake container\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen once you have done that, you can start a local Jupyterlab server via:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Start local jupyterlab server\nmake jupyter\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe server will be listening at \u003ccode\u003elocalhost:8888\u003c/code\u003e and has a default password of \"jupyter\".\u003c/p\u003e\n\u003cp\u003eYou can also run other \u003ccode\u003emake\u003c/code\u003e commands, such as:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e# Build the latex report at MLRC-2022-Report/article.pdf\nmake report\n\n# Run pytest unit tests\nmake test\n\n# Attempt to train the diffusion_lm model (not working)\nmake train\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis is everything you would need to know to get around this repository. Building the singularity container does take time, so if you insist on not using it you can still install the python requirements for the project with \u003ccode\u003epip install -r requirements.txt\u003c/code\u003e, although it is recommended to do this inside of a python environment of some sort.\u003c/p\u003e\n\u003cp\u003eYou can still run the make commands outside of the singularity container with \u003ccode\u003emake \u0026lt;command\u0026gt; RUN=\u003c/code\u003e - this suppresses the \u003ccode\u003esingularity exec\u003c/code\u003e command, but this will only work if you have the dependencies installed on your machine.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1671998603.0
+ "updated_at": 1671466565.0
},
{
"data_format": 2,
- "description": "Mostly command-line utilities for automating cumbersome processes",
+ "description": "Containers for game AI",
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "mfromano/utils",
+ "full_name": "sbutcher/game-container",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-utils\" class=\"anchor\" aria-hidden=\"true\" href=\"#utils\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eutils\u003c/h1\u003e\n\u003cp\u003eMostly command-line utilities for automating cumbersome processes\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-game-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#game-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003egame-container\u003c/h1\u003e\n\u003cp\u003eContainers for game AI\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1671898445.0
+ "updated_at": 1547647598.0
},
{
"data_format": 2,
- "description": "Collection of numerical and analytical tools for the solution of nonlinear matter-wave equation in Bose Einstein Condensates (BEC)",
+ "description": "Singularity recipe files for busco (https://gitlab.com/ezlab/busco)",
"filenames": [
- "Singularity"
+ "Singularity.4.1.4",
+ "Singularity",
+ "Singularity.4.0.2",
+ "Singularity.4.1.0",
+ "Singularity.4.0.0",
+ "Singularity.4.0.6",
+ "Singularity.4.0.4",
+ "Singularity.5.1.2",
+ "Singularity.4.0.1",
+ "Singularity.4.0.5",
+ "Singularity.4.1.1",
+ "Singularity.5.2.2",
+ "Singularity.4.1.2"
],
- "full_name": "lorenzifrancesco/soliton-BEC",
+ "full_name": "powerPlant/busco-srf",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-soliton-bec\" class=\"anchor\" aria-hidden=\"true\" href=\"#soliton-bec\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esoliton-BEC\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/AshtonSBradley/FourierGPE.jl/actions\"\u003e\u003cimg src=\"https://github.com/AshtonSBradley/FourierGPE.jl/workflows/CI/badge.svg\" alt=\"Build Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://codecov.io/gh/AshtonSBradley/FourierGPE.jl\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/7fe44b2d2126e2133bbad1e9b91a108b030bc57ca00f6e0e1c3b636a0811ab8e/68747470733a2f2f636f6465636f762e696f2f67682f417368746f6e53427261646c65792f466f75726965724750452e6a6c2f6272616e63682f6d61737465722f67726170682f62616467652e737667\" alt=\"Coverage\" data-canonical-src=\"https://codecov.io/gh/AshtonSBradley/FourierGPE.jl/branch/master/graph/badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eCollection of numerical and analytical tools for the solution of nonlinear matter-wave equation in Bose Einstein Condensates (BEC)\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eSingularity recipe files for the BUSCO tool for Benchmarking Universal Single-Copy Ortholog assessment\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1648714594.0
+ "updated_at": 1629171754.0
},
{
"data_format": 2,
@@ -17692,428 +17324,439 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "thanhtlx/linevd2",
+ "full_name": "snystrom/bioconductor_docker_meme",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-linevd\" class=\"anchor\" aria-hidden=\"true\" href=\"#linevd\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLineVD\u003c/h1\u003e\n\u003cp\u003eThis repository provides the code for \u003ca href=\"https://arxiv.org/pdf/2203.05181.pdf\" rel=\"nofollow\"\u003eLineVD: Statement-level Vulnerability Detection using Graph Neural Networks\u003c/a\u003e. The environment can be built using \u003ca href=\"https://sylabs.io/singularity/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e, or by following / following the commands in the Singularity file. To start, clone the repository and navigate to the root directory.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-directory-structure\" class=\"anchor\" aria-hidden=\"true\" href=\"#directory-structure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDirectory Structure\u003c/h2\u003e\n\u003cpre lang=\"dir\"\u003e\u003ccode\u003e(main module) \u251c\u2500\u2500 sastvd\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 codebert\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 helpers\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 ivdetect\n \u2502\u00a0\u00a0 \u251c\u2500\u2500 linevd\n \u2502\u00a0\u00a0 \u2514\u2500\u2500 scripts\n \u251c\u2500\u2500 storage\n(memoization) \u2502\u00a0\u00a0 \u251c\u2500\u2500 cache\n(raw data) \u2502\u00a0\u00a0 \u251c\u2500\u2500 external\n(csvs) \u2502\u00a0\u00a0 \u251c\u2500\u2500 outputs\n(models) \u2502\u00a0\u00a0 \u2514\u2500\u2500 processed\n(tests) \u2514\u2500\u2500 tests\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-training-linevd-from-scratch\" class=\"anchor\" aria-hidden=\"true\" href=\"#training-linevd-from-scratch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTraining LineVD from scratch\u003c/h2\u003e\n\u003cp\u003eBuild and initialise environment and download dataset\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build main.sif Singularity\nsingularity run main.sif -p initialise\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eFeature extraction (Increase NUM_JOBS if running on HPC for speed up)\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e main.sif python sastvd/scripts/prepare.py\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e main.sif python sastvd/scripts/getgraphs.py\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eTrain model (Training takes around 1-2 hours using GTX 3060)\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e --nv main.sif python sastvd/scripts/train_best.py\nsingularity \u003cspan class=\"pl-c1\"\u003eexec\u003c/span\u003e -H /mnt/hdd/thuonglc/linevd/ --nv --env TUNE_DISABLE_STRICT_METRIC_CHECKING=1 main.sif python sastvd/scripts/train_best.py 16\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-bioconductor-docker-with-meme-suite\" class=\"anchor\" aria-hidden=\"true\" href=\"#bioconductor-docker-with-meme-suite\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBioconductor Docker with MEME Suite\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4716\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eBuilds the bioconductor docker container with the \u003ca href=\"meme-suite.org\"\u003ememe-suite\u003c/a\u003e v5.1.1, using python3.7.1\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eNOTE:\u003c/strong\u003e Currently only builds from the \u003ccode\u003ebioconductor_docker:devel\u003c/code\u003e container. In the future, I will support stable releases.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003cp\u003eBuild the Docker image from Dockerfile:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker build -t snystrom/bioconductor_docker_meme\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ePull from Dockerhub:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull snystrom/bioconductor_docker_meme:devel\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo run the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -e PASSWORD=\u0026lt;password\u0026gt; -p 8787:8787 -v \u0026lt;drive/to/mount\u0026gt;:/mnt/\u0026lt;location\u0026gt; snystrom/bioconductor_docker_meme\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWhile running, go to \u003ca href=\"https://localhost:8787/\" rel=\"nofollow\"\u003ehttps://localhost:8787/\u003c/a\u003e and login with \u003ccode\u003erstudio:\u0026lt;password\u0026gt;\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTo enter the container at the commandline while running:\n\u003cstrong\u003eNOTE:\u003c/strong\u003e this will enter as \u003ccode\u003eroot\u003c/code\u003e not the \u003ccode\u003erstudio\u003c/code\u003e user\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -it snystrom/bioconductor_docker_meme /bin/bash\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1663593135.0
+ "updated_at": 1618423035.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "install/Singularity"
+ "2.0.3/Singularity"
],
- "full_name": "BrennanGambling/mindboogle",
+ "full_name": "yh549848/singularity-blastxmlparser",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1662174191.0
+ "updated_at": 1645547232.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "src/pddlstream/downward/misc/releases/20.06/Singularity.20.06",
- "src/pddlstream/downward/misc/releases/19.12/Singularity.19.12",
- "src/pddlstream/downward/misc/releases/19.06/Singularity.19.06",
- "src/pddlstream/downward/misc/releases/latest/Singularity"
+ "Singularity.ExplainAI2",
+ "Singularity.ubuntu_tf",
+ "Singularity.physio",
+ "Singularity.centos_torch3",
+ "Singularity.centos_tf2",
+ "Singularity.ubuntu_pre",
+ "Singularity.centos_tf",
+ "Singularity.centos_torch2",
+ "Singularity.ExplainAI",
+ "Singularity.Spektral",
+ "Singularity.ubuntu_torch",
+ "Singularity.torch_mmf",
+ "Singularity.centos_torch",
+ "Singularity.jax",
+ "Singularity.mac_local",
+ "Singularity.pytorch",
+ "Singularity.torch"
],
- "full_name": "Gaoyuan-Liu/Non-prehensile-Augmented-TAMP",
+ "full_name": "cyang31/containers",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-non-prehensile-augmented-tamp\" class=\"anchor\" aria-hidden=\"true\" href=\"#non-prehensile-augmented-tamp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNon-Prehensile Augmented TAMP\u003c/h1\u003e\n\u003cp\u003eRobotic manipulation in cluttered environments requires synergistic planning among prehensile and non-prehensile actions. Previous work on sampling-based Task and Motion Planning (TAMP) algorithms, e.g. PDDLStream, provide a fast and generalizable solution for multi-modal manipulation. However, they are likely to fail in cluttered scenarios where no collision-free grasping approaches can be sampled without preliminary manipulations.\nTo extend the ability of sampling-based algorithms, we integrate a vision-based Reinforcement Learning (RL) non-prehensile procedure, namely pusher, the pushing actions generated by pusher can eliminate interlocked situations and make the problem solvable. Also, the sampling-based algorithm evaluates the pushing actions by providing rewards in the training process, thus the pusher can learn to avoid situations containing irreversible failures.\nThe proposed hybrid planning method is validated on a cluttered bin picking problem and implemented in both simulation and real world. Results show that the pusher can effectively improve the success ratio of the previous sampling-based algorithm, while the sampling-based algorithm can help the pusher to learn pushing skills.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/Gaoyuan-Liu/Non-prehensile-Augmented-TAMP/blob/main/pics/intro.png\"\u003e\u003cimg src=\"https://github.com/Gaoyuan-Liu/Non-prehensile-Augmented-TAMP/raw/main/pics/intro.png\" width=\"400\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-video\" class=\"anchor\" aria-hidden=\"true\" href=\"#video\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVideo\u003c/h2\u003e\n\u003cp\u003eThe method introduction and experiments:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://youtu.be/brXAh9BH_Qw\" rel=\"nofollow\"\u003e\u003cimg src=\"https://github.com/Gaoyuan-Liu/Non-prehensile-Augmented-TAMP/raw/main/pics/youtube.png\" alt=\"Watch the video\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install\" class=\"anchor\" aria-hidden=\"true\" href=\"#install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eClone this repo:\n\u003cpre\u003e\u003ccode\u003egit clone git@github.com:Gaoyuan-Liu/panda_tamp.git\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003eComplie DownwardFast:\n\u003cpre\u003e\u003ccode\u003ecd panda_tamp/src/pddlstream\n\n./downward/build.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003eCompile IKFast:\n\u003cpre\u003e\u003ccode\u003ecd panda_tamp/src/pddlstream/examples/pybullet/utils/\n\npybullet-planning$ (cd pybullet_tools/ikfast/franka_panda; python setup.py)\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003eNvigate terminal to \u003ccode\u003esrc/panda_pddlstream\u003c/code\u003e\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda activate pddlstream\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun panda_pddl in pybullet:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython -m examples.pybullet.panda.run_pybullet -n 3 -v\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eRun panda_pddl with Franka:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eroslaunch panda_control franka_following.launch \n\npython -m examples.pybullet.panda.run -n 3 -v\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-trainning\" class=\"anchor\" aria-hidden=\"true\" href=\"#trainning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTrainning\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eRun moveit motion planner, go to to \u003ccode\u003ews_moveit\u003c/code\u003e workspace\n\u003cpre\u003e\u003ccode\u003esource devel/setup.bash\n\nroslaunch panda_moveit_config demo.launch\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/li\u003e\n\u003cli\u003eRun trainning scripts, go to \u003ccode\u003esrc/pddlstream/examples/pybullet/panda\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-ros-interpretation\" class=\"anchor\" aria-hidden=\"true\" href=\"#ros-interpretation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eROS Interpretation\u003c/h2\u003e\n\u003cp\u003eAfter PDDLStream solve the problem, the \u003ccode\u003esolution\u003c/code\u003e after post process returns a list \u003ccode\u003ecommands\u003c/code\u003e, the elements in the list are classes defined in \u003ccode\u003epanda_primitives\u003c/code\u003e. Therefore, the main pourpose of ROS interpretation is to interpret the \u003ccode\u003epanda_primitives\u003c/code\u003e to ROS commands.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-debug\" class=\"anchor\" aria-hidden=\"true\" href=\"#debug\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDebug\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-general\" class=\"anchor\" aria-hidden=\"true\" href=\"#general\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGeneral\u003c/h3\u003e\n\u003col\u003e\n\u003cli\u003eThe defaut top grasping pose is in \u003ccode\u003epanda_utils.py\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch3\u003e\u003ca id=\"user-content-moveit-cartesian-path\" class=\"anchor\" aria-hidden=\"true\" href=\"#moveit-cartesian-path\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMoveit cartesian path\u003c/h3\u003e\n\u003cp\u003eThe \u003ca href=\"https://thomasweng.com/moveit_cartesian_jump_threshold/\" rel=\"nofollow\"\u003epost\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-pybullet-camera\" class=\"anchor\" aria-hidden=\"true\" href=\"#pybullet-camera\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePybullet camera\u003c/h3\u003e\n\u003cp\u003eThe \u003ca href=\"https://towardsdatascience.com/simulate-images-for-ml-in-pybullet-the-quick-easy-way-859035b2c9dd\" rel=\"nofollow\"\u003epost\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-test\" class=\"anchor\" aria-hidden=\"true\" href=\"#test\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest\u003c/h3\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1662124624.0
+ "updated_at": 1632080282.0
},
{
"data_format": 2,
- "description": "Singularity file for Cornell-MOE based off git clone https://github.com/wujian16/Cornell-MOE.git",
+ "description": "Singularity container with Spack",
"filenames": [
- "Singularity"
+ "Singularity.spack-root",
+ "Singularity.spack-lmod",
+ "Singularity.spack-bowtie",
+ "Singularity.spack-rhel",
+ "Singularity.spackbase",
+ "Singularity.spack-fastqvalidator",
+ "Singularity.spack"
],
- "full_name": "belledon/moe-sing",
+ "full_name": "baberlevi/spack-singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-moe-sing\" class=\"anchor\" aria-hidden=\"true\" href=\"#moe-sing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emoe-sing\u003c/h1\u003e\n\u003cp\u003eSingularity file for Cornell-MOE based off git clone \u003ca href=\"https://github.com/wujian16/Cornell-MOE.git\"\u003ehttps://github.com/wujian16/Cornell-MOE.git\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eTested on Singularity 2.4\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-work-in-progress\" class=\"anchor\" aria-hidden=\"true\" href=\"#work-in-progress\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ework in progress\u003c/h1\u003e\n\u003cp\u003eattempt to build a base singularity image with spack that can be used as the bootstrap for\nother singularity images that would perform the spack install of a particular package\u003c/p\u003e\n\u003cp\u003ecurrently having an issue with stage directory for spack attempting to write to\nthe immutable squashfs\u003c/p\u003e\n\u003cp\u003eas expected, the child container will happily install during %post since it can write\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1516305918.0
+ "updated_at": 1521583740.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.ubuntu",
+ "Singularity.cell2location",
+ "Singularity.irods.4.2.8"
],
- "full_name": "rses-singularity/caffe-cpu",
+ "full_name": "prete/singularity-recipes",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-caffe-cpu\" class=\"anchor\" aria-hidden=\"true\" href=\"#caffe-cpu\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaffe (CPU)\u003c/h1\u003e\n\u003cul\u003e\n\u003cli\u003eSee \u003ca href=\"build.sh\"\u003ebuild.sh\u003c/a\u003e for info on how to build and run the image\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"Singularity\"\u003eSingularity\u003c/a\u003e file for the definition of the image, including\n\u003cul\u003e\n\u003cli\u003eThe (Docker) image it is based on\u003c/li\u003e\n\u003cli\u003eWhat OS packages are installed\u003c/li\u003e\n\u003cli\u003eWhat environment variables are set\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eSee the \u003ca href=\"http://singularity.lbl.gov/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e project website for more info on Singularity in general and detailed documentaiton.\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1542376576.0
+ "updated_at": 1606249308.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Diamond aligner Docker image",
"filenames": [
"Singularity"
],
- "full_name": "smfsamir/transformer-gnn",
+ "full_name": "biocorecrg/diamond_docker",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-gnn-fast\" class=\"anchor\" aria-hidden=\"true\" href=\"#gnn-fast\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGNN-Fast\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-getting-started\" class=\"anchor\" aria-hidden=\"true\" href=\"#getting-started\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting started\u003c/h2\u003e\n\u003cp\u003eTo make it easy for you to get started with GitLab, here\u0027s a list of recommended next steps.\u003c/p\u003e\n\u003cp\u003eAlready a pro? Just edit this README.md and make it your own. Want to make it easy? \u003ca href=\"#editing-this-readme\"\u003eUse the template at the bottom\u003c/a\u003e!\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-add-your-files\" class=\"anchor\" aria-hidden=\"true\" href=\"#add-your-files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAdd your files\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-file\" rel=\"nofollow\"\u003eCreate\u003c/a\u003e or \u003ca href=\"https://docs.gitlab.com/ee/user/project/repository/web_editor.html#upload-a-file\" rel=\"nofollow\"\u003eupload\u003c/a\u003e files\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/gitlab-basics/add-file.html#add-a-file-using-the-command-line\" rel=\"nofollow\"\u003eAdd files using the command line\u003c/a\u003e or push an existing Git repository with the following command:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003ecd existing_repo\ngit remote add origin https://gitlab.com/smfsamir/gnn-fast.git\ngit branch -M main\ngit push -uf origin main\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-integrate-with-your-tools\" class=\"anchor\" aria-hidden=\"true\" href=\"#integrate-with-your-tools\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntegrate with your tools\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://gitlab.com/smfsamir/gnn-fast/-/settings/integrations\" rel=\"nofollow\"\u003eSet up project integrations\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-collaborate-with-your-team\" class=\"anchor\" aria-hidden=\"true\" href=\"#collaborate-with-your-team\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCollaborate with your team\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/project/members/\" rel=\"nofollow\"\u003eInvite team members and collaborators\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html\" rel=\"nofollow\"\u003eCreate a new merge request\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically\" rel=\"nofollow\"\u003eAutomatically close issues from merge requests\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/project/merge_requests/approvals/\" rel=\"nofollow\"\u003eEnable merge request approvals\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/project/merge_requests/merge_when_pipeline_succeeds.html\" rel=\"nofollow\"\u003eAutomatically merge when pipeline succeeds\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-test-and-deploy\" class=\"anchor\" aria-hidden=\"true\" href=\"#test-and-deploy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest and Deploy\u003c/h2\u003e\n\u003cp\u003eUse the built-in continuous integration in GitLab.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/ci/quick_start/index.html\" rel=\"nofollow\"\u003eGet started with GitLab CI/CD\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/application_security/sast/\" rel=\"nofollow\"\u003eAnalyze your code for known vulnerabilities with Static Application Security Testing(SAST)\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/topics/autodevops/requirements.html\" rel=\"nofollow\"\u003eDeploy to Kubernetes, Amazon EC2, or Amazon ECS using Auto Deploy\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/user/clusters/agent/\" rel=\"nofollow\"\u003eUse pull-based deployments for improved Kubernetes management\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003e[ ] \u003ca href=\"https://docs.gitlab.com/ee/ci/environments/protected_environments.html\" rel=\"nofollow\"\u003eSet up protected environments\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003chr\u003e\n\u003ch1\u003e\u003ca id=\"user-content-editing-this-readme\" class=\"anchor\" aria-hidden=\"true\" href=\"#editing-this-readme\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEditing this README\u003c/h1\u003e\n\u003cp\u003eWhen you\u0027re ready to make this README your own, just edit this file and use the handy template below (or feel free to structure it however you want - this is just a starting point!). Thank you to \u003ca href=\"https://www.makeareadme.com/\" rel=\"nofollow\"\u003emakeareadme.com\u003c/a\u003e for this template.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-suggestions-for-a-good-readme\" class=\"anchor\" aria-hidden=\"true\" href=\"#suggestions-for-a-good-readme\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSuggestions for a good README\u003c/h2\u003e\n\u003cp\u003eEvery project is different, so consider which of these sections apply to yours. The sections used in the template are suggestions for most open source projects. Also keep in mind that while a README can be too long and detailed, too long is better than too short. If you think your README is too long, consider utilizing another form of documentation rather than cutting out information.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-name\" class=\"anchor\" aria-hidden=\"true\" href=\"#name\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eName\u003c/h2\u003e\n\u003cp\u003eChoose a self-explaining name for your project.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-description\" class=\"anchor\" aria-hidden=\"true\" href=\"#description\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDescription\u003c/h2\u003e\n\u003cp\u003eLet people know what your project can do specifically. Provide context and add a link to any reference visitors might be unfamiliar with. A list of Features or a Background subsection can also be added here. If there are alternatives to your project, this is a good place to list differentiating factors.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-badges\" class=\"anchor\" aria-hidden=\"true\" href=\"#badges\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBadges\u003c/h2\u003e\n\u003cp\u003eOn some READMEs, you may see small images that convey metadata, such as whether or not all the tests are passing for the project. You can use Shields to add some to your README. Many services also have instructions for adding a badge.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-visuals\" class=\"anchor\" aria-hidden=\"true\" href=\"#visuals\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eVisuals\u003c/h2\u003e\n\u003cp\u003eDepending on what you are making, it can be a good idea to include screenshots or even a video (you\u0027ll frequently see GIFs rather than actual videos). Tools like ttygif can help, but check out Asciinema for a more sophisticated method.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eWithin a particular ecosystem, there may be a common way of installing things, such as using Yarn, NuGet, or Homebrew. However, consider the possibility that whoever is reading your README is a novice and would like more guidance. Listing specific steps helps remove ambiguity and gets people to using your project as quickly as possible. If it only runs in a specific context like a particular programming language version or operating system or has dependencies that have to be installed manually, also add a Requirements subsection.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003eUse examples liberally, and show the expected output if you can. It\u0027s helpful to have inline the smallest example of usage that you can demonstrate, while providing links to more sophisticated examples if they are too long to reasonably include in the README.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-support\" class=\"anchor\" aria-hidden=\"true\" href=\"#support\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSupport\u003c/h2\u003e\n\u003cp\u003eTell people where they can go to for help. It can be any combination of an issue tracker, a chat room, an email address, etc.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-roadmap\" class=\"anchor\" aria-hidden=\"true\" href=\"#roadmap\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRoadmap\u003c/h2\u003e\n\u003cp\u003eIf you have ideas for releases in the future, it is a good idea to list them in the README.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003cp\u003eState if you are open to contributions and what your requirements are for accepting them.\u003c/p\u003e\n\u003cp\u003eFor people who want to make changes to your project, it\u0027s helpful to have some documentation on how to get started. Perhaps there is a script that they should run or some environment variables that they need to set. Make these steps explicit. These instructions could also be useful to your future self.\u003c/p\u003e\n\u003cp\u003eYou can also document commands to lint the code or run tests. These steps help to ensure high code quality and reduce the likelihood that the changes inadvertently break something. Having instructions for running tests is especially helpful if it requires external setup, such as starting a Selenium server for testing in a browser.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-authors-and-acknowledgment\" class=\"anchor\" aria-hidden=\"true\" href=\"#authors-and-acknowledgment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthors and acknowledgment\u003c/h2\u003e\n\u003cp\u003eShow your appreciation to those who have contributed to the project.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-license\" class=\"anchor\" aria-hidden=\"true\" href=\"#license\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLicense\u003c/h2\u003e\n\u003cp\u003eFor open source projects, say how it is licensed.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-project-status\" class=\"anchor\" aria-hidden=\"true\" href=\"#project-status\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eProject status\u003c/h2\u003e\n\u003cp\u003eIf you have run out of energy or time for your project, put a note at the top of the README saying that development has slowed down or stopped completely. Someone may choose to fork your project or volunteer to step in as a maintainer or owner, allowing your project to keep going. You can also make an explicit request for maintainers.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-diamond-docker-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#diamond-docker-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDiamond Docker images\u003c/h1\u003e\n\u003cp\u003eDiamond aligner Docker image\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://hub.docker.com/r/biocorecrg/diamond/builds/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/50336b251df61eac194e273e6751254dd983989ce3ad82bd5782d5367ad795c7/68747470733a2f2f646f636b65726275696c646261646765732e7175656c6c746578742e65752f7374617475732e7376673f6f7267616e697a6174696f6e3d62696f636f7265637267267265706f7369746f72793d6469616d6f6e64\" alt=\"Docker Build Status\" data-canonical-src=\"https://dockerbuildbadges.quelltext.eu/status.svg?organization=biocorecrg\u0026amp;repository=diamond\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 4,
"topics": [],
- "updated_at": 1663265237.0
+ "updated_at": 1567699875.0
},
{
"data_format": 2,
- "description": null,
+ "description": "code_aster containers",
"filenames": [
- "haz/docker/fd/Singularity"
+ "Singularity.common.default",
+ "Singularity.salome_meca.cwa",
+ "Singularity.seq.default",
+ "Singularity.mpi.asterxx",
+ "Singularity.mpi.default"
],
- "full_name": "FlorianPommerening/core-challenge-2022-solvers",
+ "full_name": "codeaster/container",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-containers-for-code_aster\" class=\"anchor\" aria-hidden=\"true\" href=\"#containers-for-code_aster\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContainers for code_aster\u003c/h1\u003e\n\u003cp\u003eThis repository provides some recipes to build containers for\n\u003ca href=\"https://www.code-aster.org/\" rel=\"nofollow\"\u003ecode_aster\u003c/a\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003efor \u003ca href=\"https://docs.docker.com/\" rel=\"nofollow\"\u003edocker\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003efor \u003ca href=\"https://www.sylabs.io/docs/\" rel=\"nofollow\"\u003esingularity\u003c/a\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cblockquote\u003e\n\u003cp\u003e\u003cstrong\u003eIt should be considered as a work in progress.\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eFor example, additional work is needed to execute a containerized version of\ncode_aster from an existing\n\u003ca href=\"https://www.code-aster.org/spip.php?article302\" rel=\"nofollow\"\u003esalome_meca\u003c/a\u003e\ninstallation.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eThe repository contains recipes to build a sequential and a parallel\nversion for the development branch (\u003ccode\u003edefault\u003c/code\u003e) which refers to the \u003ccode\u003elatest\u003c/code\u003e\ntag on docker images.\nThe code_aster version is named \u003ccode\u003eunstable\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-list-of-code_aster-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#list-of-code_aster-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eList of code_aster images\u003c/h2\u003e\n\u003cp\u003eExecutable images:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ecodeastersolver/codeaster-seq\u003c/code\u003e: Sequential version of code_aster.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003ecodeastersolver/codeaster-mpi\u003c/code\u003e: Parallel version of code_aster.\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eIntermediate layer with prerequisites:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003ecodeastersolver/codeaster-common\u003c/code\u003e: Prerequisites for the sequential and\nparallel versions.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis image can also be used to build your own development version.\u003c/p\u003e\n\u003cp\u003eSingularity recipes are simple \u003cem\u003econversions\u003c/em\u003e that use the Docker images as\nbootstrap.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tags\" class=\"anchor\" aria-hidden=\"true\" href=\"#tags\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTags\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003elatest\u003c/code\u003e: It refers to the last head of the \u003ccode\u003edefault\u003c/code\u003e branch.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cem\u003eNo more for the moment...\u003c/em\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-images\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-images\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild images\u003c/h2\u003e\n\u003cp\u003eSee available targets:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emake\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThen choose your target between \u003ccode\u003eseq\u003c/code\u003e and \u003ccode\u003empi\u003c/code\u003e, or \u003ccode\u003ebuild\u003c/code\u003e to build all:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emake build\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eEnvironment files added in the \u003ccode\u003eenv.d\u003c/code\u003e directory are sourced before calling\n\u003ccode\u003edocker\u003c/code\u003e/\u003ccode\u003esingularity\u003c/code\u003e builder. It may be useful for example to configure the\nenvironment to pass a proxy.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-testing\" class=\"anchor\" aria-hidden=\"true\" href=\"#testing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-a-shell-using-the-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-a-shell-using-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning a shell using the image:\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run --rm -it codeastersolver/codeaster-seq:latest\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-a-testcase-using-testcase-files-embedded-in-the-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-a-testcase-using-testcase-files-embedded-in-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning a testcase using testcase files embedded in the image:\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run --rm codeastersolver/codeaster-seq:latest as_run --nodebug_stderr --test zzzz100f\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-a-testcase-using-files-out-of-the-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-a-testcase-using-files-out-of-the-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning a testcase using files out of the image:\u003c/h3\u003e\n\u003cp\u003eIn this example the data files are extracted from the \u003cem\u003eimage\u003c/em\u003e.\nIn the real life, these files are for example created from salome_meca.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e create a temporary container to access the testcase files\u003c/span\u003e\ndocker run --name astercp codeastersolver/codeaster-seq:latest\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e copy files\u003c/span\u003e\nmkdir workdir\ndocker cp astercp:/scif/apps/aster/share/aster/tests/sslv155a.comm workdir/\ndocker cp astercp:/scif/apps/aster/share/aster/tests/sslv155a.mmed workdir/\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e clean the temporary container\u003c/span\u003e\ndocker rm astercp\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e create the export file\u003c/span\u003e\ndocker run --rm codeastersolver/codeaster-seq:latest as_run --get_export sslv155a --nodebug_stderr \u003cspan class=\"pl-k\"\u003e|\u003c/span\u003e \\\n sed -e \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003es#/scif/apps/aster/share/aster/tests#.#g\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e \\\n \u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e workdir/export\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIf the \u003ccode\u003eexport\u003c/code\u003e file is manually created, the version can be addressed just\nby name (\u003ccode\u003eP version unstable\u003c/code\u003e).\u003c/p\u003e\n\u003cp\u003eNow, run a code_aster container using local files:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run --rm --volume \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003epwd\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e/workdir:/aster codeastersolver/codeaster-seq:latest \\\n as_run --nodebug_stderr /aster/export\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-validation\" class=\"anchor\" aria-hidden=\"true\" href=\"#validation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eValidation\u003c/h3\u003e\n\u003cp\u003eTo limit the size of the binary images only few testcases are available in the\ninstallation directory.\nThe 3800+ testcases can be extracted from the source tree from the\n\u003ca href=\"https://bitbucket.org/code_aster/codeaster-src\" rel=\"nofollow\"\u003eBitbucket repository\u003c/a\u003e\n(see below).\nChecking all the 3800 testcases takes about 15-20h cpu.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003eSome prerequisites are not yet available within the container\n(miss3d, ecrevisse, etc.). So, all the tests that are using these tools\nare currently in failure.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003eTo execute the existing testcases, use:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003edocker run -t codeastersolver/codeaster-seq:latest run_testcases unstable\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e to copy the result files\u003c/span\u003e\ndocker cp -a \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eCONTAINER\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e:/home/aster/resutest \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eDESTINATION\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eUse the following commands to download all the 3800+ testcases from the\n\u003ca href=\"https://bitbucket.org/code_aster/codeaster-src\" rel=\"nofollow\"\u003eBitbucket repository\u003c/a\u003e and\nexecute them.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e download the testcases out of the container\u003c/span\u003e\nwget https://bitbucket.org/code_aster/codeaster-src/get/default.tar.gz\ntar xzf default.tar.gz\nmv code_aster-codeaster-src-\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e/astest \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026amp;\u0026amp;\u003c/span\u003e rm -rf code_aster-codeaster-src-\u003cspan class=\"pl-k\"\u003e*\u003c/span\u003e\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e mount \u0027astest\u0027 and run testcases in the container\u003c/span\u003e\ndocker run -t --volume \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e$(\u003c/span\u003epwd\u003cspan class=\"pl-pds\"\u003e)\u003c/span\u003e\u003c/span\u003e/astest:/home/aster/tests codeastersolver/codeaster-seq:latest \\\n run_testcases --tests=/home/aster/tests unstable\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1663181341.0
+ "updated_at": 1575303352.0
},
{
"data_format": 2,
- "description": null,
+ "description": "IMPICA is notoriously difficult to build, so I made this so it would build if you have docker and mount for my research use.",
"filenames": [
- "IMAGES/methylator/Singularity",
- "WGBS/DMT_analysis/Singularity_Methylator.def"
+ "singularity/Singularity"
],
- "full_name": "kirsho/DASH",
+ "full_name": "utcs-scea/Impica-Builder",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-dash-dazl-scarlet-hygromycin\" class=\"anchor\" aria-hidden=\"true\" href=\"#dash-dazl-scarlet-hygromycin\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDASH (DAzl-Scarlet-Hygromycin)\u003c/h1\u003e\n\u003cp\u003eDescription of WGBS analysis for the \u003ca href=\"https://www.biorxiv.org/content/10.1101/2021.05.03.442415v1\" rel=\"nofollow\"\u003epreprint\u003c/a\u003e \u003cstrong\u003e\"A genome-wide knock-out screen for actors of epigenetic silencing reveals new regulators of germline genes and 2-cell like cell state\"\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003eDefossez \u003ca href=\"http://parisepigenetics.com/dmdeg/\" rel=\"nofollow\"\u003elab\u003c/a\u003e, Epigenetics \u0026amp; cell fate \u003ca href=\"http://parisepigenetics.com/fr/\" rel=\"nofollow\"\u003eUnit\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1658847725.0
+ "updated_at": 1636746170.0
},
{
"data_format": 2,
- "description": "Batch Connect - Example Shiny App that runs on OSC OnDemand",
+ "description": "w2l",
"filenames": [
- "ext/Singularity"
+ "Singularity",
+ "Singularity.gpu"
],
- "full_name": "OSC/bc_osc_example_shiny",
+ "full_name": "klm122/w2l",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-wip-batch-connect---osc-example-shiny-app\" class=\"anchor\" aria-hidden=\"true\" href=\"#wip-batch-connect---osc-example-shiny-app\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e[WIP] Batch Connect - OSC Example Shiny App\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a8152a2780451d58acdca1e79b03f771d6e84ae12087e6e7a824b6759b715dc1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6f73635f6578616d706c655f7368696e792e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a8152a2780451d58acdca1e79b03f771d6e84ae12087e6e7a824b6759b715dc1/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f72656c656173652f6f73632f62635f6f73635f6578616d706c655f7368696e792e737667\" alt=\"GitHub Release\" data-canonical-src=\"https://img.shields.io/github/release/osc/bc_osc_example_shiny.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/45b4ffbd594af47fe09a3432f9f8e122c6518aa6352b4ce453a1a2563da2905c/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6c6963656e73652d4d49542d677265656e2e737667\" alt=\"GitHub License\" data-canonical-src=\"https://img.shields.io/badge/license-MIT-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eA Batch Connect app designed for OSC OnDemand that launches a Shiny App within\nan Owens batch job.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eThis Batch Connect app requires the following software be installed on the\n\u003cstrong\u003ecompute nodes\u003c/strong\u003e that the batch job is intended to run on (\u003cstrong\u003eNOT\u003c/strong\u003e the\nOnDemand node):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://shiny.rstudio.com/\" rel=\"nofollow\"\u003eShiny\u003c/a\u003e x.y.z+\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://www.tacc.utexas.edu/research-development/tacc-projects/lmod\" rel=\"nofollow\"\u003eLmod\u003c/a\u003e 6.0.1+ or any other \u003ccode\u003emodule purge\u003c/code\u003e and \u003ccode\u003emodule load \u0026lt;modules\u0026gt;\u003c/code\u003e based\nCLI used to load appropriate environments within the batch job\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-install\" class=\"anchor\" aria-hidden=\"true\" href=\"#install\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstall\u003c/h2\u003e\n\u003cp\u003eUse git to clone this app and checkout the desired branch/version you want to\nuse:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003escl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git clone \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003erepo\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git checkout \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etag/branch\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eYou will not need to do anything beyond this as all necessary assets are\ninstalled. You will also not need to restart this app as it isn\u0027t a Passenger\napp.\u003c/p\u003e\n\u003cp\u003eTo update the app you would:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git fetch\nscl \u003cspan class=\"pl-c1\"\u003eenable\u003c/span\u003e git19 -- git checkout \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003etag/branch\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAgain, you do not need to restart the app as it isn\u0027t a Passenger app.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-contributing\" class=\"anchor\" aria-hidden=\"true\" href=\"#contributing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eContributing\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eFork it ( \u003ca href=\"https://github.com/OSC/bc_osc_example_shiny/fork\"\u003ehttps://github.com/OSC/bc_osc_example_shiny/fork\u003c/a\u003e )\u003c/li\u003e\n\u003cli\u003eCreate your feature branch (\u003ccode\u003egit checkout -b my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCommit your changes (\u003ccode\u003egit commit -am \u0027Add some feature\u0027\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003ePush to the branch (\u003ccode\u003egit push origin my-new-feature\u003c/code\u003e)\u003c/li\u003e\n\u003cli\u003eCreate a new Pull Request\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-w2l\" class=\"anchor\" aria-hidden=\"true\" href=\"#w2l\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ew2l\u003c/h1\u003e\n\u003cp\u003ew2l\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 11,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1527005209.0
+ "updated_at": 1645905985.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Set of Singularity HPC containers",
"filenames": [
- "Singularity"
+ "fenics/Singularity"
],
- "full_name": "ResearchIT/SimNIBS",
+ "full_name": "kma/HPC-Container",
"latest_release": null,
- "readme": "\u003ch3\u003e\u003ca id=\"user-content-simnibs-singularity-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#simnibs-singularity-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSimNIBS singularity recipe\u003c/h3\u003e\n\u003cp\u003eBefore building, place the SimNIBS source tarball in the /tmp directory. (recipe version 2.1.1)\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-hpc-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#hpc-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHPC-Container\u003c/h1\u003e\n\u003cp\u003eSet of Singularity containers\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 7,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1546981375.0
+ "updated_at": 1530297750.0
},
{
"data_format": 2,
- "description": "test of nf-core create",
+ "description": "GNU Midnight Commander is a visual file manager, licensed under GNU General Public License and therefore qualifies as Free Software.",
"filenames": [
- "Singularity"
+ "4.8.28/Singularity",
+ "4.8.25/Singularity",
+ "4.8.26/Singularity",
+ "4.8.29/Singularity"
],
- "full_name": "czbiohub/nf-core-test",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-nf-coretest\" class=\"anchor\" aria-hidden=\"true\" href=\"#nf-coretest\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enf-core/test\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003etest of nf-core\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nf-core/test\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5656ec3ca80ae8775904761dfc7b47e3357d325de15a8d013edd4a0093630611/68747470733a2f2f7472617669732d63692e6f72672f6e662d636f72652f746573742e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nf-core/test.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/67e0b26cefcc362513a5e2e7613f4638251b0ab5f029eba762be3d49a716c325/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33322e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.32.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/test\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8a74c7ad053a343b2d1b30e0ef0f86afe191999cfc823635773862aefd840fd2/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f746573742e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/test.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eThe nf-core/test pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/local.md\"\u003eLocal installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eAdding your own system\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "full_name": "pscedu/singularity-mc",
+ "latest_release": "v4.8.29",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-mc/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-mc/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-mc/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-mc/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/20f9b62353e523d3ab71a141bef01e7c6c9b266b5d21ca495fec6bcf5149a691/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6d63\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/20f9b62353e523d3ab71a141bef01e7c6c9b266b5d21ca495fec6bcf5149a691/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6d63\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-mc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/197b32bc5699c413928a8dc98e7fc7ba78e4232c6d05026a53625842fe00f633/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6d63\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/197b32bc5699c413928a8dc98e7fc7ba78e4232c6d05026a53625842fe00f633/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6d63\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-mc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/d972290aeff699a37c55f27a4af658b413ceba5d7bc7697189e546d9cc80fa22/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6d63\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d972290aeff699a37c55f27a4af658b413ceba5d7bc7697189e546d9cc80fa22/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6d63\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-mc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/3210b070126fcd60c3222ffb78e07d55b8223b3eb1c9f4e7e8cb2b33fb54931c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6d63\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/3210b070126fcd60c3222ffb78e07d55b8223b3eb1c9f4e7e8cb2b33fb54931c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6d63\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-mc\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-mc\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-mc\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-mc\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/07885183f92acdf4c924ec41b91e32bf00dd0b1f3f820c477551a32ec8dfad98/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f392f39622f4d69646e696768745f436f6d6d616e6465725f342e372e302e395f6f6e5f5562756e74755f31312e30342e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/07885183f92acdf4c924ec41b91e32bf00dd0b1f3f820c477551a32ec8dfad98/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f392f39622f4d69646e696768745f436f6d6d616e6465725f342e372e302e395f6f6e5f5562756e74755f31312e30342e706e67\" alt=\"Image\" data-canonical-src=\"https://upload.wikimedia.org/wikipedia/commons/9/9b/Midnight_Commander_4.7.0.9_on_Ubuntu_11.04.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://github.com/sandialabs/mc\"\u003emc\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003emc\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/mc/4.8.29\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/mc\u003c/code\u003e as \u003ccode\u003e4.8.29.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2023 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [],
- "updated_at": 1554245021.0
+ "topics": [
+ "singularity",
+ "utilities"
+ ],
+ "updated_at": 1676698058.0
},
{
"data_format": 2,
- "description": "Nextflow workflow for assembling large, diploid, eukaryotic genomes (2 gigabases haploid size or bigger)",
+ "description": null,
"filenames": [
- "Singularity"
+ "Singularity/Singularity.v1.0"
],
- "full_name": "czbiohub/nf-large-assembly",
+ "full_name": "Monia234/IARC-RNA-seq",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-czbiohubnf-large-assembly\" class=\"anchor\" aria-hidden=\"true\" href=\"#czbiohubnf-large-assembly\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eczbiohub/nf-large-assembly\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eAssemble large diploid eukaryotic genomes (2 gigabases haploid size or bigger)\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/czbiohub/nf-large-assembly\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/8d428dc306e8c519b4952b8239ab3eace188860f1c5dfabe1a4059c42c067a1e/68747470733a2f2f7472617669732d63692e6f72672f637a62696f6875622f6e662d6c617267652d617373656d626c792e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/czbiohub/nf-large-assembly.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/67e0b26cefcc362513a5e2e7613f4638251b0ab5f029eba762be3d49a716c325/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33322e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.32.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/nf-large-assembly\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/767f13dee3d8a1039b493b285b876f4ef216154825cb6401031b09e8d959b916/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f6e662d6c617267652d617373656d626c792e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/nf-large-assembly.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eThe czbiohub/nf-large-assembly pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/local.md\"\u003eLocal installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eAdding your own system\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-nf-rna-fusions\" class=\"anchor\" aria-hidden=\"true\" href=\"#nf-rna-fusions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enf-rna-fusions\u003c/h1\u003e\n\u003cp\u003eA nextflow pipeline to call somatic rna fusions\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1556036860.0
+ "updated_at": 1644245608.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.v2.2.0"
+ "Singularity.v1.0.1",
+ "Singularity.v1.0.0"
],
- "full_name": "baxpr/connprep",
- "latest_release": "v2.2.0",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-connprep\" class=\"anchor\" aria-hidden=\"true\" href=\"#connprep\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econnprep\u003c/h1\u003e\n\u003cp\u003eProduce preprocessed fMRI images ready for connectivity analysis.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePipeline\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eDrop initial or final volumes as specified. Default: Analyze all volumes.\u003c/li\u003e\n\u003cli\u003eGet the TR (volume acquisition time) from pixdim[4] field of the Nifti header.\u003c/li\u003e\n\u003cli\u003eSlice timing correction. Default: none.\u003c/li\u003e\n\u003cli\u003eHead motion realignment (SPM12 two-stage) and production of mean fMRI.\u003c/li\u003e\n\u003cli\u003eRigid body coregistration of mean fMRI to T1 structural.\u003c/li\u003e\n\u003cli\u003eCompute volume quality metrics FD, DVARS.\u003c/li\u003e\n\u003cli\u003eReslice realigned fMRI to native space, and also warp to MNI space using CAT12 transform.\u003c/li\u003e\n\u003cli\u003eRemove confounds from the native and MNI space fMRIs by simultaneous regression. Defaults:\n\u003cul\u003e\n\u003cli\u003e0.01 - 0.10 Hz bandpass filter\u003c/li\u003e\n\u003cli\u003e6 estimated motion parameters and their first differences\u003c/li\u003e\n\u003cli\u003e6 principal components from the white matter + CSF compartment\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003eRepeat the confound removal, additionally removing the mean signal of the gray matter compartment.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-inputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#inputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInputs\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003enum_initial_vols_to_drop 0 Number of initial volumes to drop\nnum_vols_to_analyze all Total number of volumes to analyze\nbandpasslo_hz 0.01 Low edge of bandpass filter in Hz\nbandpasshi_hz 0.10 High edge of bandpass filter\nmot_PCs 6 Number of PCs of motion params to remove\nmotderiv_PCs 6 Same for motion derivatives\nwmcsf_PCs 6 Same for white matter/CSF compartment\nslorder none Slice timing correction, SPM12 nomenclature \nfmri_niigz fMRI images, 4D Nifti\nmt1_niigz T1 structural\ndeffwd_niigz Forward deformation of T1 to MNI\ngray_niigz Gray matter volume fraction\nwhite_niigz White matter volume fraction\ncsf_niigz CSF volume fraction\nproject XNAT project label\nsubject XNAT subject label\nsession XNAT session label\nscan XNAT scan label\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003econnprep.pdf Processing report\nrp_adfmri.txt Realignment parameters\nFD.txt Framewise displacement\nDVARS.txt Framewise noise\nfiltered_keepgm_noscrub_nadfmri.nii.gz Filtered data, native space, gray matter signal retained\nfiltered_keepgm_noscrub_wadfmri.nii.gz Filtered data, MNI space, gray matter signal retained\nfiltered_removegm_noscrub_nadfmri.nii.gz Filtered data, native space, gray matter signal removed\nfiltered_removegm_noscrub_wadfmri.nii.gz Filtered data, MNI space, gray matter signal removed\nmeanadfmri.nii.gz Mean fMRI, native space\nwmeanadfmri.nii.gz Mean fMRI, MNI space\nstats_keepgm_noscrub.txt Processing info when gray matter signal retained\nstats_removegm_noscrub.txt Processing info when gray matter signal removed\ngm_mask.nii.gz Native space gray matter mask\nwmcsf_mask.nii.gz Native space white matter/CSF mask\nconfounds_keepgm_noscrub.txt Confounds matrix when gray matter signal retained\nconfounds_removegm_noscrub.txt Confounds matrix when gray matter signal removed\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "full_name": "bud42/RWML",
+ "latest_release": "v1.0.1",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-rwml\" class=\"anchor\" aria-hidden=\"true\" href=\"#rwml\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRWML\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1595372367.0
+ "updated_at": 1612386680.0
},
{
"data_format": 2,
- "description": "Affinity Representing Instance Descriptors",
+ "description": null,
"filenames": [
- "singularity/Singularity"
+ "Singularity.UbuntuMOE-xenial",
+ "Singularity.YelpMOE"
],
- "full_name": "funkelab/arid",
+ "full_name": "aminnayebi/ContainerMOE",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1562764827.0
+ "updated_at": 1554405415.0
},
{
"data_format": 2,
- "description": "RNA-seq analysis pipeline based on Snakemake",
+ "description": null,
"filenames": [
- "Singularity"
+ "Selector/hclib/modules/bale_actor/singularity/Singularity.def"
],
- "full_name": "tgac-vumc/RNA-seq",
- "latest_release": "v1.0.0",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-rna-seq-analysis-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#rna-seq-analysis-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRNA-seq analysis pipeline\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://snakemake.bitbucket.io\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/9e0a726dc69516d51067fd9fc2074a9f2dc9d44eb069ae05434a36f580af32f7/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f736e616b656d616b653d3d352e32352e302d627269676874677265656e2e7376673f7374796c653d666c61742d737175617265\" alt=\"Snakemake\" data-canonical-src=\"https://img.shields.io/badge/snakemake==5.25.0-brightgreen.svg?style=flat-square\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://singularity-hub.org/collections/3066\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/c9d2afb620129b7ba0f4d918b77bfdb2b91c595cd6c6d013e950ee6e3c2bbc55/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d73696e67756c61726974792d2d6875622d7265642e737667\" alt=\"singularity-hub\" data-canonical-src=\"https://img.shields.io/badge/install%20with-singularity--hub-red.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e \u003ca href=\"https://docs.conda.io/en/latest/miniconda.html\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/e225eb3891735f81d51e8e6aa377429328cfd43656973ff807bffe9234bc28c7/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d636f6e64612d677265656e2e737667\" alt=\"miniconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-conda-green.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThis is a \u003ca href=\"https://snakemake.readthedocs.io/en/stable/\" rel=\"nofollow\"\u003eSnakemake\u003c/a\u003e based pipeline for RNA-seq used in the \u003ca href=\"http://www.tgac.nl/\" rel=\"nofollow\"\u003eTumor Genome Core Analysis\u003c/a\u003e housed in the \u003ca href=\"https://www.vumc.com/departments/cancer-center-amsterdam.htm\" rel=\"nofollow\"\u003eCancer Center Amsterdam\u003c/a\u003e, at \u003ca href=\"https://www.vumc.nl/\" rel=\"nofollow\"\u003eAmsterdam UMC location VUmc\u003c/a\u003e and part of the Department of Pathology.\u003c/p\u003e\n\u003cp\u003eThe pipeline processes raw data from FastQ inputs (\u003ca href=\"https://www.bioinformatics.babraham.ac.uk/projects/fastqc/\" rel=\"nofollow\"\u003eFastQC\u003c/a\u003e, \u003ca href=\"http://www.usadellab.org/cms/?page=trimmomatic\" rel=\"nofollow\"\u003eTrimmomatic\u003c/a\u003e), aligns the reads (\u003ca href=\"https://github.com/alexdobin/STAR\"\u003eSTAR\u003c/a\u003e), generates gene counts (\u003ca href=\"http://bioinf.wehi.edu.au/featureCounts/\" rel=\"nofollow\"\u003efeatureCounts\u003c/a\u003e) and performs quality-control on the results (\u003ca href=\"https://multiqc.info/\" rel=\"nofollow\"\u003eMultiQC\u003c/a\u003e). Paired-end (PE) and single read (SR) are supported.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/tgac-vumc/RNA-seq/blob/master/DAG_RNAseq.png\"\u003e\u003cimg width=\"850\" height=\"483\" src=\"https://github.com/tgac-vumc/RNA-seq/raw/master/DAG_RNAseq.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cp\u003eThe pipeline is preliminary used in linux environment with conda/singularity available.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-using-conda\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing Conda\u003c/h3\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-1-installing-miniconda-3\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-1-installing-miniconda-3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 1: Installing Miniconda 3\u003c/h3\u003e\n\u003cp\u003eFirst, please open a terminal or make sure you are logged into your Linux VM. Assuming that you have a 64-bit system, on Linux, download and install Miniconda 3 with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ewget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh\nbash Miniconda3-latest-Linux-x86_64.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOn MacOS X, download and install with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecurl https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -o Miniconda3-latest-MacOSX-x86_64.sh\nbash Miniconda3-latest-MacOSX-x86_64.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-step-2-downloading-repository--creating-environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#step-2-downloading-repository--creating-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eStep 2: Downloading repository \u0026amp; creating environment\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003emkdir snakemake_RNAseq\ncd snakemake_RNAseq\ngit clone https://github.com/tgac-vumc/RNA-seq\nconda env create --name RNAseq --file env.yaml\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-using-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing Singularity\u003c/h3\u003e\n\u003cp\u003eThe singularity container holds a virtual environment of CentOS 7 and it\u0027s available with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://tgac-vumc/RNA-seq\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-path-configuration--running-the-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#path-configuration--running-the-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePath Configuration \u0026amp; Running the pipeline\u003c/h2\u003e\n\u003cp\u003eBefore attempting to run the pipeline, please open \u003cem\u003econfig.yaml\u003c/em\u003e. Inside, you will encounter \u003cstrong\u003ePath Configuration\u003c/strong\u003e and \u003cstrong\u003eSoftware Options\u003c/strong\u003e.\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eOn \u003cstrong\u003ePath configuration\u003c/strong\u003e, first, you have to choose whether your data is PE or SR and after change the fastq path to the path where your fastq files are actually stored.\u003c/li\u003e\n\u003cli\u003eOn \u003cstrong\u003eSoftware Options\u003c/strong\u003e, you will find several options that can be modified by the user. Please, have a look at it before running the pipeline.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eAll the software used in the pipeline is installed by conda or executed in a wrapper. We recommend to run the pipeline from a different location than the pipeline path, like the example below:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esnakemake -s PATH_TO_PIPELINE/Snakefile --use-conda --cores=24\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWith --use-conda option, the pipeline will create environments to run rules based on \u003cem\u003eenv.yaml\u003c/em\u003e.\n\u003cstrong\u003eNote\u003c/strong\u003e the pipeline assumes that \u003cem\u003econfig.yaml\u003c/em\u003e is available at the location where the pipeline is executed.\u003c/p\u003e\n",
+ "full_name": "youssefelmougy/tempSC",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-an-asynchronous-distributed-actor-based-approach-to-jaccard-similarity-for-genome-comparisons\" class=\"anchor\" aria-hidden=\"true\" href=\"#an-asynchronous-distributed-actor-based-approach-to-jaccard-similarity-for-genome-comparisons\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAn Asynchronous Distributed Actor-based Approach to Jaccard Similarity for Genome Comparisons\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-abstract\" class=\"anchor\" aria-hidden=\"true\" href=\"#abstract\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAbstract\u003c/h2\u003e\n\u003cp\u003eThe computation of genome similarity is important in computational biology applications, and is assessed by calculating Jaccard similarity of DNA sequencing sets. However, it\u2019s challenging to find solutions that can compute Jaccard similarity with the efficiency and scalability needed to fully utilize capabilities of modern HPC hardware. We introduce a novel algorithm for computing Jaccard similarity for genome comparisons, founded on an actor-based programming model. Our algorithm takes advantage of fine-grained asynchronous computations, distributed/shared memory model, and the Fine-grained Asynchronous Bulk-Synchronous Parallelism execution model. Our performance results on the NERSC Perlmutter supercomputer demonstrate that this approach scales to 16,384 cores, showing an average of 3.6\u00d7 and 5.5\u00d7 improvement in execution time and hardware counters compared to a state-of-the-art baseline. Moreover, we propose a novel compiler approach enabling programmers to optionally develop distributed code using the familiar BSP-based Partitioned Global Address Space model while automatically generating Actor-based code for improved performance.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation Instructions\u003c/h2\u003e\n\u003cp\u003eThe following installation instructions are for the Perlmutter supercomputer at the National Energy Research Scientific Computing Center (NERSC).\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-load-the-appropriate-modules-to-prepare-for-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#load-the-appropriate-modules-to-prepare-for-setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLoad the appropriate modules to prepare for setup\u003c/h3\u003e\n\u003cp\u003eThis loads the modules for both Selector and GenomeAtScale to prepare for setup.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esource scripts/modules.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-first-time-setup-and-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#first-time-setup-and-installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFirst time setup and installation\u003c/h3\u003e\n\u003cp\u003eThis sets up and installs both the Selector and GenomeAtScale applications and their backend runtimes.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esource scripts/setup.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Instructions\u003c/h2\u003e\n\u003cp\u003eThe following running instructions are for the Perlmutter supercomputer at the National Energy Research Scientific Computing Center (NERSC).\u003c/p\u003e\n\u003cp\u003eThe run script (\u003ccode\u003e/scripts/run.sh\u003c/code\u003e) has 4 options:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e source /scripts/run.sh [selector | ctf | both] [1...inf] [1...inf] [0...5]\n \n [selector | ctf | both] Selects which application (or both) to run\n [1...inf] Selects the number of cores for the run\n [1...inf] Selects the number of nodes for the run\n [0...5] Selects the set of HWPC to collect (0:none, 1:L1DA/L1DM/L1IA/L1IM, 2:L2DR/L2DM/L2IR/L2IM, 3:TLBDM/TLBIM, 4:BRINS/BRMSP, 5:INS/CYC)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote: when selecting the number of nodes for the run, please remember that GenomeAtScale uses 32 cores/node and Selector uses either 32 or 64 cores/node.\u003c/p\u003e\n\u003cp\u003eFor example, \u003ccode\u003esource /scripts/run.sh selector 1024 16 2\u003c/code\u003e will run an experiment for the Selector application using 1024 cores on 16 nodes, collecting L2 cache statistics.\u003c/p\u003e\n\u003cp\u003eThis will submit an sbatch file to the run queue at Perlmutter. At job completion, a \u003ccode\u003ejaccard_selector.out\u003c/code\u003e or \u003ccode\u003ejaccard_ctf.out\u003c/code\u003e or both will be created, showing the CMD output of the run. Moreover, if HWPC were collected, a directory with the structure \u003ccode\u003ejaccard*+pat+*\u003c/code\u003e will be created in \u003ccode\u003e/Selector/hclib/modules/bale_actor/jaccard-selector/\u003c/code\u003e or \u003ccode\u003e/GenomeAtScale/jaccard-ctf/\u003c/code\u003e or both. Please see the Output Interpretation section for instructions on how to understand these results.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-output-interpretation\" class=\"anchor\" aria-hidden=\"true\" href=\"#output-interpretation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutput Interpretation\u003c/h2\u003e\n\u003cp\u003eThe following instructions are for understanding the results and relating them to the results found in the paper.\u003c/p\u003e\n\u003cp\u003eAt the completion of each run, there are two outputs that are created:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ejaccard_selector.out OR jaccard_ctf.out OR both Output file from submitted job\njaccard_selector+pat+* OR jaccard+pat+* OR both Output folder (in respective directory) from a CrayPat run if HWPC were collected\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003e*.out\u003c/code\u003e files contain the execution times of the run for the specific version. This result directly relates to Figure 2 (q) in the paper. An example output is shown below, where \u003ccode\u003e0.06150 seconds\u003c/code\u003e would be reported as the resulting value for the run.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e...\nRunning jaccard on 128 threads\nK-mer Matrix is 15000x5000 and has 15248 nonzeros.\n\nJaccard Similarity Matrix is 5000x5000 and has 12497374 values.\n\nRunning Jaccard Similarity K-mers (selector): \n 0.06150 seconds\n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003ejaccard*+pat+*\u003c/code\u003e folders contain information dumped by the CrayPat profiler (for more information see \u003ca href=\"https://docs.nersc.gov/tools/performance/craypat/\" rel=\"nofollow\"\u003ehttps://docs.nersc.gov/tools/performance/craypat/\u003c/a\u003e). To generate human-readable content, we run \u003ccode\u003epat_report\u003c/code\u003e on the respective directory. This will display information of interest for the specified HWPC in the run, and will directly relate to Figures 2 (a-p). An example output is shown below, where we can see the L1 cache statistics which would be reported as the resulting values for the run.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003euser@perlmutter: ~\u0026gt; pat_report $PWD/Selector/hclib/modules/bale_actor/jaccard-selector/jaccard_kmer_selector+pat+190420-8718377t\n CrayPat/X: Version 23.02.0 Revision a53634a72 01/11/23 17:17:09\n\n Number of PEs (MPI ranks): 128\n\n Numbers of PEs per Node: 64 PEs on each of 2 Nodes\n\n Numbers of Threads per PE: 2\n\n Number of Cores per Socket: 64\n\n Execution start time: Sun Mar 19 10:25:36 2023\n\n System name and speed: nid004836 2.552 GHz (nominal)\n\n AMD Milan CPU Family: 25 Model: 1 Stepping: 1\n\n Core Performance Boost: 256 PEs have CPB capability\n\n\n Current path to data file:\n /Selector/hclib/modules/bale_actor/jaccard-selector/jaccard_kmer_selector+pat+190420-8718377t (RTS, 2 data files)\n\n ...\n ...\n\n Processing step 7 of 10\n Notes for table 5:\n ...\n ...\n ==============================================================================\n USER / #1.selector_jaccard\n ------------------------------------------------------------------------------\n Time% 2.8% \n Time 0.060836 secs\n Imb. Time 0.000013 secs\n Imb. Time% 0.0% \n Calls 16.438 /sec 1.0 calls\n PAPI_L1_DCM 0.057G/sec 2,369,390.898 misses\n PAPI_L1_DCA 2.252G/sec 110,478,052.633 refs\n Average Time per Call 0.060836 secs\n CrayPat Overhead : Time 0.0% \n perf::PERF_COUNT_HW_CACHE_L1I:ACCESS 1,214,778 \n perf::PERF_COUNT_HW_CACHE_L1I:MISS 5,868\n ==============================================================================\n\n ...\n ...\n\n Hardware performance counter events:\n PAPI_L1_DCM Level 1 data cache misses\n PAPI_L1_DCA Level 1 data cache accesses\n perf::PERF_COUNT_HW_CACHE_L1I:ACCESS Undocumented counter\n perf::PERF_COUNT_HW_CACHE_L1I:MISS Undocumented counter\n\n Estimated minimum instrumentation overhead per call of a traced function,\n which was subtracted from the data shown in this report\n (for raw data, use the option: -s overhead=include):\n Time 0.114 microsecs\n\n Number of traced functions that were called: 7\n\n (To see the list, specify: -s traced_functions=show)\nuser@perlmutter: ~\u0026gt; \n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-top-level-directory-organization\" class=\"anchor\" aria-hidden=\"true\" href=\"#top-level-directory-organization\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTop-Level Directory Organization\u003c/h2\u003e\n\u003cp\u003eThe folder structure of this repository is as follows:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e.\n\u251c\u2500\u2500 Selector # Contains files for the Actor-based runtime and the Jaccard k-mer Selector application\n\u2502 \u251c\u2500\u2500 hclib # Contains the HClib library and the Actor-based runtime\n\u2502 \u2502 \u251c\u2500\u2500 ... \n\u2502 \u2514\u2500\u2500 \u2500\u2500\u2500 modules \n\u2502 \u2502 \u2502 \u251c\u2500\u2500 ... \n\u2502 \u2514\u2500\u2500 \u2500\u2500\u2500 \u2500\u2500\u2500 bale_actor \n\u2502 \u2502 \u2502 \u2502 \u251c\u2500\u2500 ... \n\u2502 \u2514\u2500\u2500 \u2500\u2500\u2500 \u2500\u2500\u2500 \u2500\u2500\u2500 jaccard-selector # Contains the Jaccard k-mer Selector application files\n\u2502 \u2502 \u2502 \u2502 \u251c\u2500\u2500 jaccard_kmer_selector.cpp # Application code for Selector version of Jaccard similarity for genome comparisons\n\u2502 \u2502 \u2502 \u2502 \u251c\u2500\u2500 jaccard_kmer_locality_selector.cpp # Application code for locality-aware Selector version of Jaccard similarity for genome comparisons\n\u2502 \u2502 \u2502 \u2502 \u251c\u2500\u2500 kmer_matrix.mtx # K-mer matrix file for evaluation\n\u2502 \u2514\u2500\u2500 \u2500\u2500\u2500 \u2500\u2500\u2500 \u2500\u2500\u2500 ... \n\u251c\u2500\u2500 GenomeAtScale # Contains files for the CTF library and the GenomeAtScale application\n\u2502 \u251c\u2500\u2500 ctf # Contains the CTF library\n\u2502 \u2502 \u251c\u2500\u2500 ... \n\u2502 \u251c\u2500\u2500 jaccard-ctf # Contains the GenomeAtScale (jaccard-ctf) files\n\u2502 \u2502 \u251c\u2500\u2500 jaccard.cxx # Application code for GenomeAtScale\n\u2502 \u2502 \u251c\u2500\u2500 kmer_matrix.zip # K-mer matrix files for evaluation\n\u2502 \u2514\u2500\u2500 \u2500\u2500\u2500 ... \n\u251c\u2500\u2500 ActorCode_from_PGASOpenMP # Contains PGAS-OpenMP code and translated Actor-based code (Section 6)\n\u251c\u2500\u2500 scripts # Contains installation, running, and modules scripts and sample Perlmutter sbatch files\n\u2502 \u251c\u2500\u2500 setup.sh # Installation and build script for the system backends and application code for both the Selector application and the GenomeAtScale application\n\u2502 \u251c\u2500\u2500 run.sh # Run script for both the selector application and GenomeAtScale application\n\u2502 \u251c\u2500\u2500 modules.sh # Modules script to prepare for running experiments (only used following first time setup using setup.sh, has to be re-run everytime you login to a cluster/supercomputer)\n\u2502 \u2514\u2500\u2500 ... \n\u2514\u2500\u2500 README.md\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\u003cp\u003eIf you use our application in your work, please cite \u003ca href=\"\"\u003eour paper\u003c/a\u003e.\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003eYoussef Elmougy, Akhiro Hayashi, Jun Shirako, and Vivek Sarkar. 2023. An Asynchronous Distributed Actor-based Approach to Jaccard Similarity for Genome Comparisons.\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eCorresponding author: Youssef Elmougy (\u003ca href=\"mailto:yelmougy3@gatech.edu\"\u003eyelmougy3@gatech.edu\u003c/a\u003e)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-acknowledgement\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgement\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgement\u003c/h2\u003e\n\u003cp\u003eThis research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Advanced Graphical Intelligence Logical Computing Environment (AGILE) research program, under Army Research Office (ARO) contract number W911NF22C0083. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1625231941.0
+ "updated_at": 1681587929.0
},
{
"data_format": 2,
- "description": "Nextflow workflow for finding conserved motifs intersecting with splice junctions",
+ "description": "TRACULA Pipeline",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.v2.0.0",
+ "Singularity.v2.1.1"
],
- "full_name": "czbiohub/splicemotifs",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-nf-corebedtools-intersect\" class=\"anchor\" aria-hidden=\"true\" href=\"#nf-corebedtools-intersect\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003enf-core/bedtools-intersect\u003c/h1\u003e\n\u003cp\u003e\u003cstrong\u003eIntersect lots of bed files with lots of other bed files\u003c/strong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://travis-ci.org/nf-core/bedtools-intersect\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/811368779316af4f70b4dd35fc2c24cebcc4dc194cd63234e130384ec38ac89f/68747470733a2f2f7472617669732d63692e6f72672f6e662d636f72652f626564746f6f6c732d696e746572736563742e7376673f6272616e63683d6d6173746572\" alt=\"Build Status\" data-canonical-src=\"https://travis-ci.org/nf-core/bedtools-intersect.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/67e0b26cefcc362513a5e2e7613f4638251b0ab5f029eba762be3d49a716c325/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f6e657874666c6f772d254532253839254135302e33322e302d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/nextflow-%E2%89%A50.32.0-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"http://bioconda.github.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/aabd08395c6e4571b75e7bf1bbd8ac169431a98dd75f3611f89e992dd0fcb477/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f696e7374616c6c253230776974682d62696f636f6e64612d627269676874677265656e2e737667\" alt=\"install with bioconda\" data-canonical-src=\"https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://hub.docker.com/r/nfcore/bedtools-intersect\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/ca7e06b0d2929a9cba14da1892e90c6d4673a695806cb07ea82e89a1cbecef92/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f6175746f6d617465642f6e66636f72652f626564746f6f6c732d696e746572736563742e737667\" alt=\"Docker\" data-canonical-src=\"https://img.shields.io/docker/automated/nfcore/bedtools-intersect.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a3255d37d1c67555563853bd8243caf50984d85343da02fb7b297b21a1076c45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f73696e67756c61726974792d617661696c61626c652d3745344337342e737667\" alt=\"Singularity Container available\" data-canonical-src=\"https://img.shields.io/badge/singularity-available-7E4C74.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThe pipeline is built using \u003ca href=\"https://www.nextflow.io\" rel=\"nofollow\"\u003eNextflow\u003c/a\u003e, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker / singularity containers making installation trivial and results highly reproducible.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-documentation\" class=\"anchor\" aria-hidden=\"true\" href=\"#documentation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocumentation\u003c/h3\u003e\n\u003cp\u003eThe nf-core/bedtools-intersect pipeline comes with documentation about the pipeline, found in the \u003ccode\u003edocs/\u003c/code\u003e directory:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003e\u003ca href=\"docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003ePipeline configuration\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/local.md\"\u003eLocal installation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/configuration/adding_your_own.md\"\u003eAdding your own system\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/usage.md\"\u003eRunning the pipeline\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/output.md\"\u003eOutput and how to interpret the results\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"docs/troubleshooting.md\"\u003eTroubleshooting\u003c/a\u003e\u003c/li\u003e\n\u003c/ol\u003e\n",
+ "full_name": "ccmvumc/TRACULA",
+ "latest_release": "v2.1.1",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-tracula\" class=\"anchor\" aria-hidden=\"true\" href=\"#tracula\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTRACULA\u003c/h1\u003e\n\u003cp\u003eTRACULA Pipeline\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1564673719.0
+ "updated_at": 1621015992.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "singularity/Singularity.BlendIt.def"
+ "Singularity"
],
- "full_name": "housw/BlendIt",
+ "full_name": "shots47s/cbrain-plugins-mriqc",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1623019661.0
+ "updated_at": 1560259505.0
},
{
"data_format": 2,
- "description": "Python wrapper for submitting jobs via bsub with the option to do so in a container environment.",
+ "description": "Repository for \u0027Biased Exploration for Satisificing Heuristic Search\u0027 at ICAPS22",
"filenames": [
- "singularity/Singularity"
+ "downward/misc/releases/latest/Singularity",
+ "downward/misc/releases/19.12/Singularity.19.12",
+ "downward/misc/releases/20.06/Singularity.20.06",
+ "downward/misc/releases/19.06/Singularity.19.06"
],
- "full_name": "funkelab/funlib.run",
+ "full_name": "Kurorororo/biased-exploration",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-funlibrun\" class=\"anchor\" aria-hidden=\"true\" href=\"#funlibrun\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003efunlib.run\u003c/h1\u003e\n\u003cp\u003ePython wrapper for submitting jobs via bsub with the option to do so in a container environment.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003emake install-full\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis creates a funlib.run config file ~/.funlib.run\nthat contains default parameters that\ncan be overwritten for each specific run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003enum_gpus = 1\nmemory = 25600\nworking_directory = .\nsingularity = \"\"\nhost = \"\"\nqueue = \"normal\"\nenvironment = \"\"\nbatch = False\nmount_dirs = \"\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cp\u003eThere are three useful ways to use funlib.run:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eDirect usage via command line arguments (overwrites config file defaults):\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython run.py -p \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003epython train.py\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e -c 5 -g 1 -q normal -s path-to-singularity-image\n\npython run_singularity.py -p \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003epython mknet.py\u003cspan class=\"pl-pds\"\u003e\"\u003c/span\u003e\u003c/span\u003e -s path-to-singularity-image\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eIndirect call via another script:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003efunlib\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003erun\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003erun\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003erun_singularity\u003c/span\u003e\n\n\u003cspan class=\"pl-en\"\u003erun\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ecommand\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"python train.py\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003enum_cpus\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e5\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003enum_gpus\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003equeue\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"normal\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eexecute\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e)\n\n\u003cspan class=\"pl-en\"\u003erun_singularity\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ecommand\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"python mknet.py\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003esingularity_image\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"path_to_image\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eexecute\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eCommand creation and subsequent call:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003efunlib\u003c/span\u003e.\u003cspan class=\"pl-s1\"\u003erun\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003erun\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003erun_singularity\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003efrom\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003esubprocess\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eimport\u003c/span\u003e \u003cspan class=\"pl-s1\"\u003echeck_call\u003c/span\u003e\n\n\u003cspan class=\"pl-s1\"\u003erun_command\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-en\"\u003erun\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ecommand\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"python train.py\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003enum_cpus\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e5\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003enum_gpus\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003equeue\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"normal\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eexecute\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eFalse\u003c/span\u003e)\n\n\u003cspan class=\"pl-en\"\u003echeck_call\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003erun_command\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eshell\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e)\n\n\u003cspan class=\"pl-s1\"\u003erun_singularity_command\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-en\"\u003erun_singularity\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ecommand\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"python mknet.py\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003esingularity_image\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s\"\u003e\"path_to_image\"\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eexecute\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eFalse\u003c/span\u003e)\n\n\u003cspan class=\"pl-en\"\u003echeck_call\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003erun_singularity_command\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eshell\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage-with-daisy\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage-with-daisy\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage with Daisy\u003c/h2\u003e\n\u003cp\u003eWhen used with daisy.call do not expand the cmd to a string via setting expand=False:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e\u003cspan class=\"pl-s1\"\u003ecmd\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e \u003cspan class=\"pl-en\"\u003erun\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ecommand\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003ebase_command\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003equeue\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003equeue\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003enum_gpus\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e1\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003enum_cpus\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003enum_cpus\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003esingularity_image\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003esingularity_container\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003emount_dirs\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003emount_dirs\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eexecute\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eFalse\u003c/span\u003e,\n \u003cspan class=\"pl-s1\"\u003eexpand\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003eFalse\u003c/span\u003e)\n\n\u003cspan class=\"pl-s1\"\u003edaisy\u003c/span\u003e.\u003cspan class=\"pl-en\"\u003ecall\u003c/span\u003e(\u003cspan class=\"pl-s1\"\u003ecmd\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003elog_out\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003elog_out\u003c/span\u003e, \u003cspan class=\"pl-s1\"\u003elog_err\u003c/span\u003e\u003cspan class=\"pl-c1\"\u003e=\u003c/span\u003e\u003cspan class=\"pl-s1\"\u003elog_err\u003c/span\u003e)\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-biased-exploration-for-satisficing-heuristic-search\" class=\"anchor\" aria-hidden=\"true\" href=\"#biased-exploration-for-satisficing-heuristic-search\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBiased Exploration for Satisficing Heuristic Search\u003c/h1\u003e\n\u003cp\u003eThis repository is for our ICAPS 2022 paper, \u003ca href=\"https://tidel.mie.utoronto.ca/pubs/biased-exploration-icaps22.pdf\" rel=\"nofollow\"\u003eBiased Exploration for Satisficing Heuristic Search\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-classical-planning\" class=\"anchor\" aria-hidden=\"true\" href=\"#classical-planning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eClassical Planning\u003c/h2\u003e\n\u003cp\u003eOur implementation is on top of \u003ca href=\"https://www.fast-downward.org/\" rel=\"nofollow\"\u003eFast Downward\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-build\" class=\"anchor\" aria-hidden=\"true\" href=\"#build\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild\u003c/h3\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e downward\npython3 build.py\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-run\" class=\"anchor\" aria-hidden=\"true\" href=\"#run\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eType-LAMA with Softmin-Type(h) using two type-based buckets\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 fast-downward.py domain.pddl problem.pddl --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true),transform=adapt_costs(one),pref=false)\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehff=ff(transform=adapt_costs(one))\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --search \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003elazy(alt([single(hff),single(hff,pref_only=true),softmin_type_based([hff,g]),single(hlm),single(hlm,pref_only=true),softmin_type_based([hlm,g])],boost=1000),preferred=[hff,hlm],cost_type=one,reopen_closed=false)\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eType-LAMA with Softmin-Type(h)\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 fast-downward.py domain.pddl problem.pddl --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehlm=lmcount(lm_factory=lm_rhw(reasonable_orders=true),transform=adapt_costs(one),pref=false)\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehff=ff(transform=adapt_costs(one))\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --search \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003elazy(alt([single(hff),single(hff,pref_only=true),single(hlm),single(hlm,pref_only=true),softmin_type_based([hff,g])],boost=1000),preferred=[hff,hlm],cost_type=one,reopen_closed=false)\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eSoftmin-Type(h) with FF\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 fast-downward.py domain.pddl problem.pddl --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehff=ff(transform=adapt_costs(one))\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --search \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eeager(alt([single(hff), softmin_type_based([hff, g()], ignore_size=true)]), cost_type=one)\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eLin-Type(h) with FF\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 fast-downward.py domain.pddl problem.pddl --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehff=ff(transform=adapt_costs(one))\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --search \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eeager(alt([single(hff), linear_weighted_type_based([hff, g()])]), cost_type=one)\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003e3-Type(h) with FF\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 fast-downward.py domain.pddl problem.pddl --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehff=ff(transform=adapt_costs(one))\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --search \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eeager(alt([single(hff), nth_type_based([hff, g()], n=3)]), cost_type=one)\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cul\u003e\n\u003cli\u003eType(h) with FF\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 fast-downward.py domain.pddl problem.pddl --evaluator \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003ehff=ff(transform=adapt_costs(one))\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e --search \u003cspan class=\"pl-s\"\u003e\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003eeager(alt([single(hff), softmin_type_based([hff, g()], ignore_size=true, ignore_weights=true)]))\u003cspan class=\"pl-pds\"\u003e\u0027\u003c/span\u003e\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-synthetic-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#synthetic-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSynthetic Data\u003c/h2\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 random_digraph.py -o result.json\u003c/pre\u003e\u003c/div\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 4,
+ "subscribers_count": 1,
"topics": [],
- "updated_at": 1635345979.0
+ "updated_at": 1655238687.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.macroecodesktop"
+ "ploi/planning/FD/misc/releases/latest/Singularity",
+ "ploi/planning/FD/misc/releases/19.12/Singularity.19.12",
+ "ploi/planning/FD/misc/releases/20.06/Singularity.20.06",
+ "ploi/planning/FD/misc/releases/19.06/Singularity.19.06"
],
- "full_name": "ternaustralia/coesra-singularity-macroecodesktop",
+ "full_name": "alestarbucks/ofappdl",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-object-filtering-in-automatic-planning-problems-using-deep-learning\" class=\"anchor\" aria-hidden=\"true\" href=\"#object-filtering-in-automatic-planning-problems-using-deep-learning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eObject Filtering in Automatic Planning Problems using Deep Learning\u003c/h1\u003e\n\u003cp\u003eThis README file is explicitly dedicated to serve as the guide of use of the source code associated to Alejandro \u00c1lvarez Conejo\u0027s Final Bachelor Thesis in order to run the project in any local computer. Note that these instructions are described to be applicable to Linux-based systems.\u003c/p\u003e\n\u003cp\u003eThis repository contains three main folders, which are referred to in this annex as \u003ccode\u003emodules\u003c/code\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eThe \u003ccode\u003eploi\u003c/code\u003e folder contains all the code related to the execution of the main algorithm for PLOI. It includes the code related to the guiders, the planners (including Fast-Downward) and the GNN implementation, as well as the main scripts that allow the whole project to work as discussed in the main body of the thesis. Note that inside the \u003ccode\u003emodel\u003c/code\u003e folder the model and data set files for the conducted tests can be found.\u003c/li\u003e\n\u003cli\u003eThe \u003ccode\u003egenerators\u003c/code\u003e folder contains the scripts that were used to generate the training and test problems. Inside, there is a folder dedicated to each of the domains of study and all of their versions, including the scripts that were used for the first approach described in chapter 5.3 in the \u003ccode\u003eunconnectednoise\u003c/code\u003e subfolder.\u003c/li\u003e\n\u003cli\u003eThe \u003ccode\u003epddlgym\u003c/code\u003e folder, which contains all the code related to the PDDLGym module. It has to be modified in order to include the domains of study inside its existing library of domains and example problems. Note that the original code for this module was also modified in order to make it more flexible to several valid syntaxes in PDDL. These modifications are not related to the core algorithm and thus have not been thoroughly detailed but the code inside the \u003ccode\u003eparser\u003c/code\u003e file of this module can be compared to the original parser in PDDLGym\u2019s original repository in order to examine the specifics of these changes.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-projects-source-code-and-dependencies\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-projects-source-code-and-dependencies\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the project\u2019s source code and dependencies\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eInstall basic dependencies: cmake, g++, make, git, Python 3.6 or higher and pip, if these are not already installed.\u003c/li\u003e\n\u003cli\u003eClone the thesis\u2019 repository using the following command:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/alestarbucks/ofappdl\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003eNavigate to the \u003ccode\u003eploi\u003c/code\u003e folder and install the requirements for that module:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip install -r requirements.txt\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eRepeat the same operation for the PDDLGym module.\n4.\tAdditionally, install wandb to avoid missing dependencies:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip install wandb\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"5\"\u003e\n\u003cli\u003eCreate a symbolic link called \u003ccode\u003evalidate\u003c/code\u003e on the machine\u2019s path, pointing to the VAL validator\u2019s binary:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo ln -s \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003epath_to_ofappdl\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e/ofappdl/val/bin/Validate /usr/local/bin/validate\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eIn order to check that the symbolic link is working as intended, try to enter the command \u003ccode\u003evalidate\u003c/code\u003e in the command line and expect an output showing the usage of the command.\n6.\tBuild the Fast-Downward planner by navigating to ploi/planning/fd and running the following command (it may take a few minutes):\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e./build.py\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"7\"\u003e\n\u003cli\u003eBefore the first run and every time that a new domain is added to the PDDLGym module, re-install it using the version that exists in the repository. From the root folder of the repository, run:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epip install -e ./pddlgym\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThis command is automatically included in the provided shell script that runs the project, so it is not explicitly needed to execute this step if such script is used.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-including-a-new-domain\" class=\"anchor\" aria-hidden=\"true\" href=\"#including-a-new-domain\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIncluding a new domain\u003c/h2\u003e\n\u003cp\u003eIn order to use PLOI for the purpose of applying it to other domains, a few changes must be made inside both the \u003ccode\u003epddlgym\u003c/code\u003e module and the \u003ccode\u003eploi\u003c/code\u003e module:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eFirst, add the domain. Navigate to \u003ccode\u003epddlgym/pddlgym/pddl\u003c/code\u003e and copy the domain file inside that folder.\u003c/li\u003e\n\u003cli\u003eLikewise, add the training and test problems in two separate folders called \u003ccode\u003e\u0026lt;domain name\u0026gt;\u003c/code\u003e and \u003ccode\u003e\u0026lt;domain name\u0026gt;_test\u003c/code\u003e, respectively, inside the aforementioned folder.\u003c/li\u003e\n\u003cli\u003eOpen the \u003ccode\u003e__init__.py\u003c/code\u003e file inside pddlgym/pddlgym. Locate the list of environments after line 34 (\u003ccode\u003efor env_name, kwargs in [\u003c/code\u003e) and add the following lines, completing with the same name as the domain that was added in 1:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cdiv class=\"highlight highlight-source-python\"\u003e\u003cpre\u003e(\u003cspan class=\"pl-s\"\u003e\"\u0026lt;domain name\u0026gt;\"\u003c/span\u003e,\n {\u003cspan class=\"pl-s\"\u003e\"operators_as_actions\"\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e,\n \u003cspan class=\"pl-s\"\u003e\"dynamic_action_space\"\u003c/span\u003e: \u003cspan class=\"pl-c1\"\u003eTrue\u003c/span\u003e}\n)\u003c/pre\u003e\u003c/div\u003e\n\u003col start=\"4\"\u003e\n\u003cli\u003eThe domain has now been added to the PDDLGym module and now it must be included in the PLOI module. For this, open the \u003ccode\u003emain.py\u003c/code\u003e file inside the ploi module and locate the \u003ccode\u003epddlgym_env_names\u003c/code\u003e dictionary. Add an entry in which the key is the name to which the domain will be referred in the invoking command inside the PLOI module, and the value is the name of the domain inside the PDDLGym module that was used for steps 1 to 3. For clarity, using the same name for both is recommended.\u003c/li\u003e\n\u003cli\u003eIn case of using the provided shell script to run the project, set the \u003ccode\u003eDOMAIN_NAME\u003c/code\u003e variable to match the key of the previously added entry in the dictionary mentioned in step 4.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-the-project\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-the-project\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the project\u003c/h2\u003e\n\u003cp\u003eThe main command that triggers the start of the project\u2019s execution takes the following parameters:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--domain_name\u003c/code\u003e (required): The name of the domain of study to which the selected method is intended to be applied. It must be consistent and match the name chosen in the process detailed in the previous section.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--train_planner_name\u003c/code\u003e: The name of the planner used for training. In the experiments detailed in this report, this planner was fd-opt-lmcut (the optimal variant of FD).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--test_planner_name\u003c/code\u003e (required): The name of the planner used for testing. In the experiments detailed in this report, this planner was fd-lama-first (the satisficing variant of FD).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--guider_name\u003c/code\u003e (required): The name of the guider to be used, between gnn-bce-10 (GNN guider) or no-guidance (for standard planning or random score).\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--num_seeds\u003c/code\u003e (required): The number of seeds which will be used to randomly initialize the model\u2019s weights before training. The learning phase will be repeated as many times as seeds are specified, and only the best model will be selected. Only one seed was used for the experiments in this thesis.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--num_train_problems\u003c/code\u003e (default to 0): The number of training problems to be considered.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--num_test_problems\u003c/code\u003e (required): The number of testing problems to be considered.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--do_incremental_planning\u003c/code\u003e (required): 1 or 0. Whether or not to use incremental planning, i.e., for PLOI or random scoring, whether it implements random score guidance or GNN-based guidance. For standard planning this flag must be set to 0.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--greedy_search\u003c/code\u003e (default to 0): 1 or 0. Indicates whether the greedy search algorithm is implemented in the phase of training data collection.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--timeout\u003c/code\u003e (required): Time in seconds that each test problem is dedicated before time running out and the problem being skipped. For this thesis, this time span was of 120 seconds.\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--num_epochs\u003c/code\u003e (default 1001): Number of epochs that will constitute the learning phase.\nThe command is then executed as:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003epython3 main.py [flags]\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThe provided shell script called \u003ccode\u003emyrun.sh\u003c/code\u003e inside the PLOI module serves as an easy way to control the experimental process. The selected domain and method must be uncommented from the file and the script will run the appropriate command to execute the required experimental run.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [
- "coesra"
- ],
- "updated_at": 1610426323.0
+ "topics": [],
+ "updated_at": 1624570598.0
},
{
"data_format": 2,
- "description": "Knime",
+ "description": null,
"filenames": [
- "Singularity.knime"
+ "Singularity"
],
- "full_name": "ternaustralia/coesra-singularity-knime",
+ "full_name": "hkong1/fhirql",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-coesra-singularity-knime\" class=\"anchor\" aria-hidden=\"true\" href=\"#coesra-singularity-knime\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-knime\u003c/h1\u003e\n\u003cp\u003eAuthor: Hoang Nguyen\nCreated: 22 July 2019\nThis will create a image with Singularity 2.5.1\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-a-fhir-has-been-lit-on-this-server\" class=\"anchor\" aria-hidden=\"true\" href=\"#a-fhir-has-been-lit-on-this-server\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eA FHIR has been lit on this server\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-what-is-fhirql\" class=\"anchor\" aria-hidden=\"true\" href=\"#what-is-fhirql\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat is fhirql\u003c/h2\u003e\n\u003cp\u003eFhirql is a spring boot adaptation of hapi fhir server. This can be used as a template for extending generic FHIR server for specific use cases. See the example projects below. I have updated it to FHIR-R4 and spring-boot 2.2.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-fhir-r4-hl7-fast-healthcare-interoperability-resources-release-4\" class=\"anchor\" aria-hidden=\"true\" href=\"#fhir-r4-hl7-fast-healthcare-interoperability-resources-release-4\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eFHIR\u00ae R4 (HL7 Fast Healthcare Interoperability Resources, Release 4)\u003c/h2\u003e\n\u003ch2\u003e\u003ca id=\"user-content-other-projects-that-using-this-as-backend\" class=\"anchor\" aria-hidden=\"true\" href=\"#other-projects-that-using-this-as-backend\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOther projects that using this as backend\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/E-Health/fhirform\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"fire\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f525.png\"\u003e\ud83d\udd25\u003c/g-emoji\u003e The FHIRForm framework for managing healthcare eForms\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/E-Health/drishti\"\u003e\u003cg-emoji class=\"g-emoji\" alias=\"eyes\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f440.png\"\u003e\ud83d\udc40\u003c/g-emoji\u003e Drishti | An mHealth sense-plan-act framework!\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requirements\" class=\"anchor\" aria-hidden=\"true\" href=\"#requirements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequirements\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003ejava 8\u003c/li\u003e\n\u003cli\u003emaven 3\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-use\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-use\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to Use:\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/dermatologist/fhirql.git\nmvn spring-boot:run\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eAccess UI at \u003ca href=\"http://localhost:8080/fhir\" rel=\"nofollow\"\u003ehttp://localhost:8080/fhir\u003c/a\u003e and FHIR BASE at \u003ca href=\"http://localhost:8080/fhir/fhir\" rel=\"nofollow\"\u003ehttp://localhost:8080/fhir/fhir\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-to-extend\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-to-extend\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow to extend\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eThis uses spring boot Web.\u003c/li\u003e\n\u003cli\u003eOverride the default UI by adding files with the same name to WEB-INF/templates (Thymeleaf).\u003c/li\u003e\n\u003cli\u003eFor example this application overrides tmpl-head.html and tmpl-home-welcome.html\u003c/li\u003e\n\u003cli\u003eThe list of original templates are \u003ca href=\"https://github.com/jamesagnew/hapi-fhir/tree/master/hapi-fhir-testpage-overlay/src/main/webapp/WEB-INF/templates\"\u003ehere\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003cp\u003ePre-build docker container of overlay branch is available for testing and can be deployed using the following command. Access it at \u003ca href=\"http://localhost:8080/fhirql\" rel=\"nofollow\"\u003ehttp://localhost:8080/fhirql\u003c/a\u003e\n(Docker container is for testing only.)\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -d --name fhirserver -p 8080:8080 beapen/fhir\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-author\" class=\"anchor\" aria-hidden=\"true\" href=\"#author\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAuthor\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://nuchange.ca\" rel=\"nofollow\"\u003eBell Eapen\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [
- "coesra"
- ],
- "updated_at": 1670882548.0
+ "subscribers_count": 1,
+ "topics": [],
+ "updated_at": 1603378426.0
},
{
"data_format": 2,
- "description": "Owncloud",
+ "description": "Applied nuclear physics relevant software, containerized. Including Geant4 and Root.",
"filenames": [
- "Singularity.owncloud"
+ "Singularity"
],
- "full_name": "ternaustralia/coesra-singularity-owncloud",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-coesra-singularity-owncloud\" class=\"anchor\" aria-hidden=\"true\" href=\"#coesra-singularity-owncloud\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ecoesra-singularity-owncloud\u003c/h1\u003e\n\u003cp\u003eAuthor: Hoang Nguyen\nCreated: 22 July 2019\nThis will create a image with Singularity 2.5.1\u003c/p\u003e\n",
+ "full_name": "peter-jansson/appnuc",
+ "latest_release": "0.6.3",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-appnuc-applied-nuclear-physics-relevant-software-containerized\" class=\"anchor\" aria-hidden=\"true\" href=\"#appnuc-applied-nuclear-physics-relevant-software-containerized\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eappnuc: Applied nuclear physics relevant software, containerized.\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://doi.org/10.5281/zenodo.6841830\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/fe0491dd1b21254f68c00e841d95cb67f03343dd15eaf13e20280daa72ec13a7/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e363834313833302e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.6841830.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003cbr\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/peter-jansson/appnuc/actions/workflows/docker-image.yml/badge.svg?branch=master\"\u003e\u003cimg src=\"https://github.com/peter-jansson/appnuc/actions/workflows/docker-image.yml/badge.svg?branch=master\" alt=\"Docker build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003cbr\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/peter-jansson/appnuc/actions/workflows/apptainer-image.yml/badge.svg?branch=master\"\u003e\u003cimg src=\"https://github.com/peter-jansson/appnuc/actions/workflows/apptainer-image.yml/badge.svg?branch=master\" alt=\"Apptainer build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eAn Ubuntu Linux 22.04 based image/container with a bunch of standard programs that are useful for scientific work in the field of applied nuclear physics. In addition to relevant software listed \u003ca href=\"scripts/install-apt-packages.sh\"\u003ehere\u003c/a\u003e and \u003ca href=\"scripts/install-pip-packages.sh\"\u003ehere\u003c/a\u003e, the following list of software packages are installed.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://geant4.web.cern.ch/\" rel=\"nofollow\"\u003eGeant4\u003c/a\u003e monte carlo framework, version 11.1.1.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://root.cern.ch/\" rel=\"nofollow\"\u003eRoot\u003c/a\u003e data analysis framework, version 6.26/10.\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://dx.doi.org/10.18434/T48G6X\" rel=\"nofollow\"\u003eXCOM\u003c/a\u003e program from NIST, version 3.1.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThis containerized solution can be referenced as:\u003c/p\u003e\n\u003cblockquote\u003e\n\u003cp\u003ePeter Jansson; \"appnuc: Applied nuclear physics relevant software, containerized\"; GitHub software repository: \u003ca href=\"https://github.com/peter-jansson/appnuc\"\u003epeter-jansson/appnuc\u003c/a\u003e; Version: 0.6.3; DOI: \u003ca href=\"https://doi.org/10.5281/zenodo.6841830\" rel=\"nofollow\"\u003e10.5281/zenodo.6841830\u003c/a\u003e; 2023-03-31\u003c/p\u003e\n\u003c/blockquote\u003e\n\u003cp\u003eThis work is licensed under the \u003ca href=\"LICENSE\"\u003eGNU Lesser General Public License v3.0 (LGPL-3)\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f400597fcdcb66eeb5702e037732d66d7eecdf94f4f363a2dde0da21c4ba9ec4/68747470733a2f2f7777772e676e752e6f72672f67726170686963732f6c67706c76332d776974682d746578742d3135347836382e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f400597fcdcb66eeb5702e037732d66d7eecdf94f4f363a2dde0da21c4ba9ec4/68747470733a2f2f7777772e676e752e6f72672f67726170686963732f6c67706c76332d776974682d746578742d3135347836382e706e67\" alt=\"LGPL-3\" data-canonical-src=\"https://www.gnu.org/graphics/lgplv3-with-text-154x68.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003cp\u003eA \u003ca href=\"https://docker.com/\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e image named \u003ccode\u003eappnuc\u003c/code\u003e can built using the Dockerfile, by the command\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003edocker build -t appnuc:latest -t appnuc:0.6.3 .\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe image can be started in a container by, e.g., the command\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003edocker run --rm -i -t appnuc bash -l\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eSignificantly more information on how to mount a local file system to the container as well as other command line options is available in the \u003ca href=\"https://docs.docker.com/engine/reference/commandline/cli/\" rel=\"nofollow\"\u003eDocker documentation\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-apptainer-former-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#apptainer-former-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eApptainer (former Singularity)\u003c/h2\u003e\n\u003cp\u003eAn \u003ca href=\"http://apptainer.org/\" rel=\"nofollow\"\u003eApptainer\u003c/a\u003e file containing the same containerized software can be built using the definition file, named \u003ccode\u003eSingularity\u003c/code\u003e. E.g. using the command\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003eapptainer build appnuc-0.6.3.sif Singularity\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eto build \u003ccode\u003eappnuc-0.6.3.sif\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eSee the \u003ca href=\"http://apptainer.org/docs\" rel=\"nofollow\"\u003eApptainer documentation\u003c/a\u003e for more information.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 0,
"topics": [
- "coesra"
+ "applied-nuclear-physics",
+ "singularity",
+ "apptainer",
+ "docker",
+ "geant4",
+ "geant4-simulation",
+ "root",
+ "root-cern",
+ "xcom"
],
- "updated_at": 1610426521.0
+ "updated_at": 1671696032.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity_jlabsolidbase_devel",
+ "Singularity.1.0.2"
],
- "full_name": "arezaii/pf_singularity_demo",
+ "full_name": "jlabsolid/container",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-parflow-singularity-container-demonstration\" class=\"anchor\" aria-hidden=\"true\" href=\"#parflow-singularity-container-demonstration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eParFlow Singularity Container Demonstration\u003c/h1\u003e\n\u003cp\u003eThe Singularity container is built with ParFlow installed as a SCIF-app, providing access to both sequential and parallel\nbuilds of ParFlow. See additional information about \u003ca href=\"https://sylabs.io/guides/3.3/user-guide/definition_files.html?highlight=apps#apps\" rel=\"nofollow\"\u003eApps in Singularity\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eHost OS must have Singularity installed (See \u003ca href=\"https://sylabs.io/guides/3.3/user-guide/installation.html\" rel=\"nofollow\"\u003eInstalling Singularity\u003c/a\u003e)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-linux-hosts\" class=\"anchor\" aria-hidden=\"true\" href=\"#linux-hosts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLinux Hosts\u003c/h2\u003e\n\u003cp\u003eVerify Singularity is installed with the command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity --version\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThen, see the Quickstart directions below\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-windowsmac-hosts\" class=\"anchor\" aria-hidden=\"true\" href=\"#windowsmac-hosts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWindows/Mac Hosts\u003c/h2\u003e\n\u003cp\u003eFollow the instructions to \u003ca href=\"https://sylabs.io/guides/3.3/user-guide/installation.html#install-on-windows-or-mac\" rel=\"nofollow\"\u003einstall Singularity\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eMake sure you are ssh\u0027d into the Vagrant box before beginning the Quickstart steps below\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003evagrant ssh\nvagrant@vagrant:~$ singularity --version\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-quickstart\" class=\"anchor\" aria-hidden=\"true\" href=\"#quickstart\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuickstart\u003c/h2\u003e\n\u003cp\u003eSteps:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eClone this repository\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/arezaii/pf_singularity_demo\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003ecd to the repository directory\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003ecd pf_singularity_demo\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003erun the shell script to execute tests for Little Washita domain on 1 processor, for 1 timestep\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003e./run_test.sh LW 1 1 1 1\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-performance-test-cases\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-performance-test-cases\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning Performance Test Cases\u003c/h2\u003e\n\u003cp\u003eThe shell script run_test.sh facilitates running tests on different domains.\u003c/p\u003e\n\u003cp\u003eUsage:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ ./run_test.sh \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edomain\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eP\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eQ\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eR\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eTimeSteps\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003ewhere\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003edomain is a test domain defined below\u003c/li\u003e\n\u003cli\u003eP, Q, R are integers defining processor topology in X, Y, Z directions\u003c/li\u003e\n\u003cli\u003eTimesteps is number of timesteps to execute\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-test-domains\" class=\"anchor\" aria-hidden=\"true\" href=\"#test-domains\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTest Domains\u003c/h2\u003e\n\u003cp\u003eThere are several test domains for performance analysis contained in the perf_tests folder.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eLW - Little Washita\u003c/li\u003e\n\u003cli\u003eclayl - ClayL\u003c/li\u003e\n\u003cli\u003econus_ru - CONUS Clip - Run off\u003c/li\u003e\n\u003cli\u003econus_tfg - CONUS Clip - Terrain Following Grid\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-little-washita\" class=\"anchor\" aria-hidden=\"true\" href=\"#little-washita\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLittle Washita\u003c/h3\u003e\n\u003cp\u003eNatural model of the Little Washita watershed in Oklahoma.\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eDomain Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNumber of Cells: 84,050, 41x41x50 (X,Y,Z)\u003c/li\u003e\n\u003cli\u003eHorizontal Resolution: 1km\u003c/li\u003e\n\u003cli\u003eVertical Resolution: 2m\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eTechnical Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eCLM enabled with NLDAS Forcings\u003c/li\u003e\n\u003cli\u003eTimestep: 1hr\u003c/li\u003e\n\u003cli\u003eSuburface: Heterogeneous\u003c/li\u003e\n\u003cli\u003eInitial Condition: Pressure file from spin-up\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-clayl\" class=\"anchor\" aria-hidden=\"true\" href=\"#clayl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eClayL\u003c/h3\u003e\n\u003cp\u003eSynthetic model with completely flat surface and many thin, vertical layers\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eDomain Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNumber of Cells: 2.4M for 1 core. Scales with processor count, 100Px100Qx240 (X,Y,Z)\u003c/li\u003e\n\u003cli\u003eHorizontal Resolution: 1m\u003c/li\u003e\n\u003cli\u003eVertical Resolution: 0.025m\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eTechnical Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNo CLM, constant simulated rain on top surface @ .0008 mm/hr\u003c/li\u003e\n\u003cli\u003eTimestep 1hr\u003c/li\u003e\n\u003cli\u003eSubsurface: Homogeneous\u003c/li\u003e\n\u003cli\u003eInitial Condition: Dry\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-conus-run-off\" class=\"anchor\" aria-hidden=\"true\" href=\"#conus-run-off\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCONUS Run-off\u003c/h3\u003e\n\u003cp\u003eNatural topography with an impervious surface (parking lot simulation)\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eDomain Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNumber of Cells: 1,562,500 1250x1250x1 (X,Y,Z)\u003c/li\u003e\n\u003cli\u003eHorizontal Resolution: 1km\u003c/li\u003e\n\u003cli\u003eVertical Resolution: 0.10m\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eTechnical Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNo CLM, period of 1 hour simulated rain on top surface @ .005 mm/hr, then recession for 1000 hours\u003c/li\u003e\n\u003cli\u003eTimestep: 6 minutes\u003c/li\u003e\n\u003cli\u003eSubsurface: Homogeneous\u003c/li\u003e\n\u003cli\u003eInitial Condition: Dry\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-conus-terrain-following-grid\" class=\"anchor\" aria-hidden=\"true\" href=\"#conus-terrain-following-grid\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCONUS Terrain Following Grid\u003c/h3\u003e\n\u003cp\u003eNatural topography with the terrain following grid (TFG) feature enabled\u003c/p\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eDomain Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNumber of Cells: 1,125,000 750x750x2 (X,Y,Z)\u003c/li\u003e\n\u003cli\u003eHorizontal Resolution: 1km\u003c/li\u003e\n\u003cli\u003eVertical Resolution: toplayer=1m, bottomlayer=100m\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cem\u003e\u003cstrong\u003eTechnical Details\u003c/strong\u003e\u003c/em\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNo CLM, seepage face boundary condition type on top layer, @ 0.00001\u003c/li\u003e\n\u003cli\u003eTimestep: 100000\u003c/li\u003e\n\u003cli\u003eSubsurface: Homogeneous\u003c/li\u003e\n\u003cli\u003eInitial Condition: Water Table at 45m above lower boundary\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-about-apps\" class=\"anchor\" aria-hidden=\"true\" href=\"#about-apps\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAbout Apps\u003c/h2\u003e\n\u003cp\u003eThe demo container has two apps installed:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003epar = distributed build of ParFlow, -DPARFLOW_AMPS_SEQUENTIAL_IO=False\u003c/li\u003e\n\u003cli\u003eseq = sequential build of ParFlow, -DPARFLOW_AMPS_SEQUENTIAL_IO=True\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto run:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity run --app \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eapp_name\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003e/path/to/singularity_container.sif\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003e.tcl input file\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eSee additional information about \u003ca href=\"https://sylabs.io/guides/3.3/user-guide/definition_files.html?highlight=apps#apps\" rel=\"nofollow\"\u003eApps in Singularity\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-build-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo Build Container\u003c/h2\u003e\n\u003cp\u003eThe quickest way to build is to use a remote build service such as \u003ca href=\"https://cloud.sylabs.io/builder\" rel=\"nofollow\"\u003ecloud.sylabs.io\u003c/a\u003e\nIf a user has root access, they can build from the definition file, conventionally named Singularity.\u003c/p\u003e\n\u003cp\u003eGeneral build command is of the form:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo singularity build \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edestination/path/to/singularity_container.sif\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eSingularity definition file\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eas a specific example:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ sudo singularity build \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/pf_singularity_demo.sif Singularity\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-use-parflow-in-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-use-parflow-in-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo Use ParFlow in Container\u003c/h2\u003e\n\u003cp\u003eExample of running the LW test case in \u003ccode\u003eparflow/test/washita/tcl_scripts\u003c/code\u003e directory\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity run --app par \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/pf_singularity_demo.sif LW_Test.tcl\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pull-from-sylabs-cloud\" class=\"anchor\" aria-hidden=\"true\" href=\"#pull-from-sylabs-cloud\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePull from Sylabs Cloud\u003c/h2\u003e\n\u003cp\u003eTo pull the pre-built image from Sylabs Cloud:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity pull [destination image name] library://arezaii/default/parflow_demo:master\u003c/pre\u003e\u003c/div\u003e\n\u003ch2\u003e\u003ca id=\"user-content-testing\" class=\"anchor\" aria-hidden=\"true\" href=\"#testing\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTesting\u003c/h2\u003e\n\u003cp\u003eBecause singularity containers are write protected and ParFlow tests write to disk, you must expand the image to a writable sandbox.\nThis requires super user access, similar to building a container from the definition file.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-make-container-writable\" class=\"anchor\" aria-hidden=\"true\" href=\"#make-container-writable\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMake Container Writable\u003c/h3\u003e\n\u003cp\u003eFirst, create a writable sandbox from the immutable container using Singularity\u0027s build command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build --sandbox \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edirectory_to_create_for_sandbox/\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003esingularity_container\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eas an example, if you had pulled the parflow_ompi image from shub:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity build --sandbox parflow_demo_master_sandbox/ parflow_demo_master.sif\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eThere will now be a new directory parflow_demo_master_sandbox/ that is the root of the container.\nEditing any of the folder contents will require super user permissions.\u003c/p\u003e\n\u003cp\u003eYou can enter a console into the container now by using the Singularity shell command:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003esudo singularity shell --writable \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003edirectory_to_create_for_sandbox/\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Tests\u003c/h3\u003e\n\u003cp\u003eAfter making the container writable and accessing it through a shell, both documented above, running the ParFlow\ntests can be done by changing directories and exporting the PARFLOW_DIR environment variable for either distributed\nor sequential builds of ParFlow.\u003c/p\u003e\n\u003cp\u003eTake note of the ParFlow build and install directories in the container:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eSequential Build\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ebuild directory: /home/parflow/build_seq\u003c/li\u003e\n\u003cli\u003einstall directory: /home/parflow/pfdir_seq\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eDistributed Build\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003ebuild directory: /home/parflow/build_par\u003c/li\u003e\n\u003cli\u003einstall directory: /home/parflow/pfdir_par\u003c/li\u003e\n\u003c/ul\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e /home/parflow/\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003ebuild_dir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e\n\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \u003cspan class=\"pl-k\"\u003eexport\u003c/span\u003e PARFLOW_DIR=/home/parflow/\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003einstall_dir\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e \n\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e make \u003cspan class=\"pl-c1\"\u003etest\u003c/span\u003e\u003c/pre\u003e\u003c/div\u003e\n",
+ "readme": "\u003cp\u003eContainer\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1583512107.0
- },
- {
- "data_format": 2,
- "description": "Singularity recipe files for pinfish (https://github.com/nanoporetech/pinfish)",
- "filenames": [
- "Singularity",
- "Singularity.0.1.0"
- ],
- "full_name": "powerPlant/pinfish-srf",
- "latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for the pinfish collection of tools helping to make sense of long transcriptomics data (long cDNA reads, direct RNA reads)\u003c/p\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1583274123.0
+ "updated_at": 1521236311.0
},
{
"data_format": 2,
- "description": "Singularity recipe files for GroIMP (http://www.grogra.de/software/groimp)",
+ "description": null,
"filenames": [
- "Singularity",
- "Singularity.1.6-jre8-cuda+sundials-2.7.0",
- "Singularity.1.6-cuda",
- "Singularity.1.6-jre8-cuda"
+ "Singularity"
],
- "full_name": "powerPlant/groimp-srf",
+ "full_name": "mwanakijiji/rrlyrae_metallicity",
"latest_release": null,
- "readme": "\u003cp\u003eSingularity recipe files for GroIMP, a 3D-modelling platform\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-rrlyrae_metallicity\" class=\"anchor\" aria-hidden=\"true\" href=\"#rrlyrae_metallicity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003errlyrae_metallicity\u003c/h1\u003e\n\u003cp\u003eThis is a package for determining metallicities from med-res RRab spectroscopy. See --- for documentation.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://coveralls.io/github/mwanakijiji/rrlyrae_metallicity?branch=master\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/2bb0fd2bc008af8b9f3e3838890e25c208723b50f910daa5e509bba2111d27c8/68747470733a2f2f636f766572616c6c732e696f2f7265706f732f6769746875622f6d77616e616b696a696a692f72726c797261655f6d6574616c6c69636974792f62616467652e7376673f6272616e63683d6d6173746572\" alt=\"Coverage Status\" data-canonical-src=\"https://coveralls.io/repos/github/mwanakijiji/rrlyrae_metallicity/badge.svg?branch=master\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1651533257.0
+ "updated_at": 1641769814.0
},
{
"data_format": 2,
- "description": "The definition files for creating singularity containers that can run in the WashU HPC",
+ "description": null,
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "humanconnectome/hcp-pipelines-singularity",
+ "full_name": "truatpasteurdotfr/singularity-docker-centos7-ci",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-definitions-for-hcp-pipelines\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-definitions-for-hcp-pipelines\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Definitions for HCP Pipelines\u003c/h1\u003e\n\u003cp\u003eThe definition files for creating singularity containers for the XNAT pipelines\nwrapper code so that it can run in the WashU HPC.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-cloning-with-submodules\" class=\"anchor\" aria-hidden=\"true\" href=\"#cloning-with-submodules\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCloning with Submodules\u003c/h2\u003e\n\u003cp\u003eDon\u0027t forget to pull down the submodules as well, with the \u003ccode\u003e--recursive\u003c/code\u003e flag.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone https://github.com/humanconnectome/hcp-pipelines-singularity --recursive\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-development\" class=\"anchor\" aria-hidden=\"true\" href=\"#development\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDevelopment\u003c/h2\u003e\n\u003ctable\u003e\n\u003cthead\u003e\n\u003ctr\u003e\n\u003cth\u003eCommand\u003c/th\u003e\n\u003cth\u003eTask\u003c/th\u003e\n\u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emake clean\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eRemove previous container image.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emake update\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eUpdate all the git submodule repos.\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emake build\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eGenerate a container image from .def file\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e\u003ccode\u003emake upload\u003c/code\u003e\u003c/td\u003e\n\u003ctd\u003eUpload the container to correct location in the HPC.\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-building-a-centos7-singularity-and-docker-image-for-ci\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-a-centos7-singularity-and-docker-image-for-ci\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebuilding a centos7 singularity and docker image for CI\u003c/h1\u003e\n\u003cp\u003eTru \u003ca href=\"mailto:tru@pasteur.fr\"\u003etru@pasteur.fr\u003c/a\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-why-\" class=\"anchor\" aria-hidden=\"true\" href=\"#why-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhy ?\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003einitial docker image project \u003ca href=\"https://github.com/truatpasteurdotfr/docker-c7-ci\"\u003ehttps://github.com/truatpasteurdotfr/docker-c7-ci\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eadding support for singularity format to be used directly\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-caveat\" class=\"anchor\" aria-hidden=\"true\" href=\"#caveat\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCaveat\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eplayground, use at your own risk!\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:main\u003c/code\u003e tagged docker image\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e:latest\u003c/code\u003e tagged singularity image\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eDocker \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-centos7-ci/actions/workflows/docker-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-centos7-ci/actions/workflows/docker-publish.yml/badge.svg\" alt=\"Docker build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-centos7-ci:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eSingularity \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-centos7-ci/actions/workflows/singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-centos7-ci/actions/workflows/singularity-publish.yml/badge.svg\" alt=\"Singularity build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003esingularity run oras://ghcr.io/truatpasteurdotfr/singularity-docker-centos7-ci:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1610395015.0
+ "updated_at": 1635152901.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "singularity/Singularity"
],
- "full_name": "marcjwilliams1/rstudiosrvrV4",
+ "full_name": "mohammadreza-sheykhmousa/FFS",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4911\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSingularity image for R studio server with Rv4.0.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-polygonal-building-segmentation-by-frame-field-learning\" class=\"anchor\" aria-hidden=\"true\" href=\"#polygonal-building-segmentation-by-frame-field-learning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePolygonal Building Segmentation by Frame Field Learning\u003c/h1\u003e\n\u003cp\u003eWe add a frame field output to an image segmentation neural network to improve segmentation quality\nand provide structural information for the subsequent polygonization step.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/frame_field_sample.png\"\u003e\u003cimg src=\"images/frame_field_sample.png\" width=\"512\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n \u003cbr\u003e\n Figure 1: Close-up of our additional frame field output on a test image.\n \u003cbr\u003e\n \u003cbr\u003e\n \u003cbr\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/model_training.png\"\u003e\u003cimg src=\"images/model_training.png\" width=\"768\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n \u003cbr\u003e\n Figure 2: Given an overhead image, the model outputs an edge mask, an interior mask,\n and a frame field for buildings. The total loss includes terms that align the masks and\n frame field to ground truth data as well as regularizers to enforce smoothness of the\n frame field and consistency between the outputs.\n \u003cbr\u003e\n \u003cbr\u003e\n \u003cbr\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/schematic_polygonization.png\"\u003e\u003cimg src=\"images/schematic_polygonization.png\" width=\"768\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n \u003cbr\u003e\n Figure 3: Given classification maps and a frame field as input, we optimize skeleton polylines to\n align to the frame field using an Active Skeleton Model (ASM) and detect corners using\n the frame field, simplifying non-corner vertices.\n\u003c/p\u003e\n\u003cp\u003eThis repository contains the official code for the paper:\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003ePolygonal Building Segmentation by Frame Field Learning\u003c/strong\u003e\u003cbr\u003e\n\u003ca href=\"https://www-sop.inria.fr/members/Nicolas.Girard/\" rel=\"nofollow\"\u003eNicolas Girard\u003c/a\u003e,\n\u003ca href=\"https://people.csail.mit.edu/smirnov/\" rel=\"nofollow\"\u003eDmitriy Smirnov\u003c/a\u003e,\n\u003ca href=\"https://people.csail.mit.edu/jsolomon/\" rel=\"nofollow\"\u003eJustin Solomon\u003c/a\u003e,\n\u003ca href=\"https://www-sop.inria.fr/members/Yuliya.Tarabalka/\" rel=\"nofollow\"\u003eYuliya Tarabalka\u003c/a\u003e\u003cbr\u003e\nCVPR 2021\u003cbr\u003e\n\u003cstrong\u003e[\u003ca href=\"https://arxiv.org/abs/2004.14875\" rel=\"nofollow\"\u003epaper\u003c/a\u003e, \u003ca href=\"https://www.youtube.com/watch?v=226pPTBsNJ8\u0026amp;t=8s\" rel=\"nofollow\"\u003evideo\u003c/a\u003e]\u003c/strong\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-git-submodules\" class=\"anchor\" aria-hidden=\"true\" href=\"#git-submodules\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGit submodules\u003c/h2\u003e\n\u003cp\u003eThis project uses various git submodules that should be cloned too.\u003c/p\u003e\n\u003cp\u003eTo clone a repository including its submodules execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit clone --recursive --jobs 8 \u0026lt;URL to Git repo\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf you already have cloned the repository and now want to load it\u2019s submodules execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit submodule update --init --recursive --jobs 8\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eor:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003egit submodule update --recursive\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eFor more about explanations about using submodules and git, see \u003ca href=\"SUBMODULES.md\"\u003eSUBMODULES.md\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003cp\u003eThe easiest way to setup environment is to use the Docker image provided in the \u003ca href=\"docker\"\u003edocker\u003c/a\u003e (see README inside the folder).\u003c/p\u003e\n\u003cp\u003eOnce the docker container is built and launched, execute the \u003ca href=\"setup.sh\"\u003esetup.sh\u003c/a\u003e script inside to install required packages.\u003c/p\u003e\n\u003cp\u003eThe environment in the container is now ready for use.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-conda-environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#conda-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConda environment\u003c/h2\u003e\n\u003cp\u003eAlternatively you can install all dependencies in a conda environment.\nI provide my environment specifications in the \u003ca href=\"environment.yml\"\u003eenvironment.yml\u003c/a\u003e which you can use to create your environment own with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eData\u003c/h1\u003e\n\u003cp\u003eSeveral datasets are used in this work.\nWe typically put all datasets in a \"data\" folder which we link to the \"/data\" folder in the container (with the \u003ccode\u003e-v\u003c/code\u003e argument when running the container).\nEach dataset has it\u0027s own sub-folder, usually named with a short version of that dataset\u0027s name.\nEach dataset sub-folder should have a \"raw\" folder inside containing all the original folders and files fo the datset.\nWhen pre-processing data, \"processed\" folders will be created alongside the \"raw\" folder.\u003c/p\u003e\n\u003cp\u003eFor example, here is an example working file structure inside the container:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e/data \n|-- AerialImageDataset\n |-- raw\n |-- train\n | |-- aligned_gt_polygons_2\n | |-- gt\n | |-- gt_polygonized\n | |-- images\n `-- test\n |-- aligned_gt_polygons_2\n |-- images\n`-- mapping_challenge_dataset\n |-- raw\n |-- train\n | |-- images\n | |-- annotation.json\n | `-- annotation-small.json\n `-- val\n `-- ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf however you would like to use a different folder for the datasets (for example while not using Docker),\nyou can change the path to datasets in config files.\nYou can modify the \"data_dir_candidates\" list in the config to only include your path.\nThe training script checks this list of paths one at a time and picks the first one that exists.\nIt then appends the \"data_root_partial_dirpath\" directory to get to the dataset.\u003c/p\u003e\n\u003cp\u003eYou can find some of the data we used in this shared \"data\" folder: \u003ca href=\"https://drive.google.com/drive/folders/19yqseUsggPEwLFTBl04CmGmzCZAIOYhy?usp=sharing\" rel=\"nofollow\"\u003ehttps://drive.google.com/drive/folders/19yqseUsggPEwLFTBl04CmGmzCZAIOYhy?usp=sharing\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-inria-aerial-image-labeling-dataset\" class=\"anchor\" aria-hidden=\"true\" href=\"#inria-aerial-image-labeling-dataset\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInria Aerial Image Labeling Dataset\u003c/h2\u003e\n\u003cp\u003eLink to the dataset: \u003ca href=\"https://project.inria.fr/aerialimagelabeling/\" rel=\"nofollow\"\u003ehttps://project.inria.fr/aerialimagelabeling/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eFor the Inria dataset, the original ground truth is just a collection of raster masks.\nAs our method requires annotations to be polygons in order to compute the ground truth angle for the frame field, we made 2 versions of the dataset:\u003c/p\u003e\n\u003cp\u003eThe \u003cem\u003eInria OSM dataset\u003c/em\u003e has aligned annotations pulled from OpenStreetMap.\u003c/p\u003e\n\u003cp\u003eThe \u003cem\u003eInria Polygonized dataset\u003c/em\u003e has polygon annotations obtained from using our frame field polygonization algorithm on the original raster masks.\nThis was done by running the \u003ccode\u003epolygonize_mask.py\u003c/code\u003e script like so:\n\u003ccode\u003epython polygonize_mask.py --run_name inria_dataset_osm_mask_only.unet16 --filepath ~/data/AerialImageDataset/raw/train/gt/*.tif\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eYou can find this new ground truth for both cases in the shared \"data\" folder (\u003ca href=\"https://drive.google.com/drive/folders/19yqseUsggPEwLFTBl04CmGmzCZAIOYhy?usp=sharing\" rel=\"nofollow\"\u003ehttps://drive.google.com/drive/folders/19yqseUsggPEwLFTBl04CmGmzCZAIOYhy?usp=sharing\u003c/a\u003e.).\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-running-the-mainpy-script\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-the-mainpy-script\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning the main.py script\u003c/h1\u003e\n\u003cp\u003eExecute \u003ca href=\"main.py\"\u003emain.py\u003c/a\u003e script to train a model, test a model or use a model on your own image.\nSee the help of the main script with:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003epython main.py --help\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe script can be launched on multiple GPUs for multi-GPU training and evaluation.\nSimply set the \u003ccode\u003e--gpus\u003c/code\u003e argument to the number of gpus you want to use.\nHowever, for the first launch of the script on a particular dataset (when it will pre-process the data),\nit is best to leave it at 1 as I did not implement multi-GPU synchronization when pre-processing datasets.\u003c/p\u003e\n\u003cp\u003eAn example use is for training a model with a certain config file, like so:\n\u003ccode\u003epython main.py --config configs/config.mapping_dataset.unet_resnet101_pretrained\u003c/code\u003e\nwhich will train the Unet-Resnet101 on the CrowdAI Mapping Challenge dataset.\nThe batch size can be adjusted like so:\n\u003ccode\u003epython main.py --config configs/config.mapping_dataset.unet_resnet101_pretrained -b \u0026lt;new batch size\u0026gt;\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eWhen training is done, the script can be launched in eval mode, to evaluate the trained model:\n\u003ccode\u003epython main.py --config configs/config.mapping_dataset.unet_resnet101_pretrained --mode eval\u003c/code\u003e.\nDepending on the eval parameters of the config file, running this will output results on the test dataset.\u003c/p\u003e\n\u003cp\u003eFinally, if you wish to compute AP and AR metrics with the COCO API, you can run:\n\u003ccode\u003epython main.py --config configs/config.mapping_dataset.unet_resnet101_pretrained --mode eval_coco\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-launch-inference-on-one-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#launch-inference-on-one-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eLaunch inference on one image\u003c/h2\u003e\n\u003cp\u003eMake sure the run folder has the correct structure:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ePolygonization-by-Frame-Field-Learning\n|-- frame_field_learning\n| |-- runs\n| | |-- \u0026lt;run_name\u0026gt; | \u0026lt;yyyy-mm-dd hh:mm:ss\u0026gt;\n| | `-- ...\n| |-- inference.py\n| `-- ...\n|-- main.py\n|-- README.md (this file)\n`-- ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eExecute the [main.py] script like so (filling values for arguments run_name and in_filepath):\n\u003ccode\u003epython main.py --run_name \u0026lt;run_name\u0026gt; --in_filepath \u0026lt;your_image_filepath\u0026gt;\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe outputs will be saved next to the input image\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-download-trained-models\" class=\"anchor\" aria-hidden=\"true\" href=\"#download-trained-models\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownload trained models\u003c/h2\u003e\n\u003cp\u003eWe provide already-trained models so you can run inference right away.\nDownload here: \u003ca href=\"https://drive.google.com/drive/folders/1poTQbpCz12ra22CsucF_hd_8dSQ1T3eT?usp=sharing\" rel=\"nofollow\"\u003ehttps://drive.google.com/drive/folders/1poTQbpCz12ra22CsucF_hd_8dSQ1T3eT?usp=sharing\u003c/a\u003e.\nEach model was trained in a \"run\", whose folder (named with the format \u003ccode\u003e\u0026lt;run_name\u0026gt; | \u0026lt;yyyy-mm-dd hh:mm:ss\u0026gt;\u003c/code\u003e) you can download at the provided link.\nYou should then place those runs in a folder named \"runs\" inside the \"frame_field_learning\" folder like so:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ePolygonization-by-Frame-Field-Learning\n|-- frame_field_learning\n| |-- runs\n| | |-- inria_dataset_polygonized.unet_resnet101_pretrained.leaderboard | 2020-06-02 07:57:31\n| | |-- mapping_dataset.unet_resnet101_pretrained.field_off.train_val | 2020-09-07 11:54:48\n| | |-- mapping_dataset.unet_resnet101_pretrained.train_val | 2020-09-07 11:28:51\n| | `-- ...\n| |-- inference.py\n| `-- ...\n|-- main.py\n|-- README.md (this file)\n`-- ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eBecause Google Drive reformats folder names, you have to rename the run folders as above.\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-cite\" class=\"anchor\" aria-hidden=\"true\" href=\"#cite\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCite:\u003c/h1\u003e\n\u003cp\u003eIf you use this code for your own research, please cite\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e@InProceedings{Girard_2021_CVPR,\n author = {Girard, Nicolas and Smirnov, Dmitriy and Solomon, Justin and Tarabalka, Yuliya},\n title = {Polygonal Building Extraction by Frame Field Learning},\n booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},\n month = {June},\n year = {2021},\n pages = {5891-5900}\n}\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1605122458.0
- },
- {
- "data_format": 2,
- "description": "Code used to generate summaries, models and figures for article \"A field-wide assessment of differential high throughput sequencing reveals widespread bias\".",
- "filenames": [
- "Singularity"
- ],
- "full_name": "tpall/geo-htseq-paper",
- "latest_release": null,
- "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/tpall/geo-htseq-paper/workflows/CI/badge.svg\"\u003e\u003cimg src=\"https://github.com/tpall/geo-htseq-paper/workflows/CI/badge.svg\" alt=\"CI\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-geo-htseq-paper\" class=\"anchor\" aria-hidden=\"true\" href=\"#geo-htseq-paper\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGeo-htseq-paper\u003c/h1\u003e\n\u003cp\u003eWe analyzed the field of expression profiling by high throughput sequencing, or RNA-seq, in terms of replicability and reproducibility, using data from the GEO (Gene Expression Omnibus) repository. Our work puts an upper bound of 56% to field-wide reproducibility, based on the types of files submitted to GEO.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-getting-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#getting-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGetting data\u003c/h2\u003e\n\u003cp\u003eGot to \u003ca href=\"https://zenodo.org/record/6795313\" rel=\"nofollow\"\u003ehttps://zenodo.org/record/6795313\u003c/a\u003e and download data archive, let\u0027s say, to your Downloads folder.\u003c/p\u003e\n\u003cp\u003eThen create new folder, e.g. \"geo-htseq\" and enter this folder\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003emkdir geo-htseq\n\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e geo-htseq\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eCopy downloaded dataset to your working directory and uncompress:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003ecp \u003cspan class=\"pl-k\"\u003e~\u003c/span\u003e/Downloads/geo-htseq.tar.gz \u003cspan class=\"pl-c1\"\u003e.\u003c/span\u003e\ntar -xzvf geo-htseq.tar.gz\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eRemove tar.gz archive from working directory:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003erm geo-htseq.tar.gz\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNow you should have dataset in \"output\" subdirectory ready for analysis.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-workflow-graph\" class=\"anchor\" aria-hidden=\"true\" href=\"#workflow-graph\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWorkflow graph\u003c/h2\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"resources/images/rulegraph.pdf\"\u003e\u003cimg src=\"resources/images/rulegraph.pdf\" alt=\"rulegraph\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
- "stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1656954496.0
+ "updated_at": 1636198482.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.v1.0.0"
+ "singularity/Singularity"
],
- "full_name": "baxpr/segwarp",
+ "full_name": "ddesvillechabrol/lora",
"latest_release": null,
- "readme": "\u003cp\u003eWarp SEG output of a multi-atlas assessor to MNI space using the supplied SPM warp field.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1605062943.0
+ "updated_at": 1678461554.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.snowflake"
],
- "full_name": "nicspalla/openmpi_centos_x86_64",
+ "full_name": "longgangfan/ubuntu2004uwgeo-sig",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-openmpi_centos_x86_64\" class=\"anchor\" aria-hidden=\"true\" href=\"#openmpi_centos_x86_64\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eopenmpi_centos_x86_64\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-ubuntu2004uwgeo-sig\" class=\"anchor\" aria-hidden=\"true\" href=\"#ubuntu2004uwgeo-sig\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eubuntu2004uwgeo-sig\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1605260984.0
+ "updated_at": 1621586669.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "0.39/Singularity.0.39"
],
- "full_name": "kristinebilgrav/Vep_retro_containers",
+ "full_name": "yh549848/singularity-trimmomatic",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-jitterbug\" class=\"anchor\" aria-hidden=\"true\" href=\"#jitterbug\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eJitterbug\u003c/h1\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1617190998.0
+ "updated_at": 1602826148.0
},
{
"data_format": 2,
@@ -18121,786 +17764,864 @@ var data =
"filenames": [
"Singularity"
],
- "full_name": "kristinebilgrav/Retro_files",
+ "full_name": "ctpelok77/ipc2018-delfi",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-retro_files\" class=\"anchor\" aria-hidden=\"true\" href=\"#retro_files\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRetro_files\u003c/h1\u003e\n\u003cp\u003eContains files used to run retroseq and analyse outcome\u003c/p\u003e\n",
+ "readme": "\u003cp\u003eFast Downward is a domain-independent planning system.\u003c/p\u003e\n\u003cp\u003eFor documentation and contact information see \u003ca href=\"http://www.fast-downward.org/\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org/\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe following directories are not part of Fast Downward as covered by this\nlicense:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eFast Downward is free software: you can redistribute it and/or modify it under\nthe terms of the GNU General Public License as published by the Free Software\nFoundation, either version 3 of the License, or (at your option) any later\nversion.\n\nFast Downward is distributed in the hope that it will be useful, but WITHOUT ANY\nWARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A\nPARTICULAR PURPOSE. See the GNU General Public License for more details.\n\nYou should have received a copy of the GNU General Public License along with\nthis program. If not, see \u0026lt;http://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1621431178.0
+ "updated_at": 1660771542.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Pipeline for preprocessing fMRI data ",
"filenames": [
- "Singularity"
+ "TheBrainPipeline/preprocessing/Singularity_Containers/Singularity",
+ "TheBrainPipeline/preprocessing/Singularity_Containers/.ipynb_checkpoints/Singularity-checkpoint"
],
- "full_name": "juanca09/default",
+ "full_name": "niblunc/NIBL",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-default\" class=\"anchor\" aria-hidden=\"true\" href=\"#default\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edefault\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-neuropsychology-of-ingestive-behavior-lab\" class=\"anchor\" aria-hidden=\"true\" href=\"#neuropsychology-of-ingestive-behavior-lab\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNeuropsychology of Ingestive Behavior Lab\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/niblunc/TheBrainPipeline/tree/master/TheBrainPipeline\"\u003eTheBrainPipeline\u003c/a\u003e : analysis scripts and files, such as decoding\u003cbr\u003e\n\u003ca href=\"https://github.com/niblunc/TheBrainPipeline/tree/master/OsirixFiles\"\u003eOsirix_Files\u003c/a\u003e : scripts used to prep data from OsiriX \u003cbr\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 5,
"topics": [],
- "updated_at": 1612274393.0
+ "updated_at": 1583185636.0
},
{
"data_format": 2,
- "description": "Computational Analysis of gene Family Evolution (CAFE)",
+ "description": "The GATK is the industry standard for identifying SNPs and indels in germline DNA and RNAseq data. ",
"filenames": [
- "Singularity"
+ "4.2.0.0/Singularity",
+ "4.1.9.0/Singularity"
],
- "full_name": "sghignone/CAFE",
- "latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-cafe\" class=\"anchor\" aria-hidden=\"true\" href=\"#cafe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCAFE\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-computational-analysis-of-gene-family-evolution-cafe\" class=\"anchor\" aria-hidden=\"true\" href=\"#computational-analysis-of-gene-family-evolution-cafe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eComputational Analysis of gene Family Evolution (CAFE)\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/5151\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe current build is based on the bioconda distribution of the Hahn Lab CAFE v.4.2.1.\u003c/p\u003e\n\u003cp\u003eThe purpose of CAFE is to analyze changes in gene family size in a way that accounts for phylogenetic history and provides a statistical foundation for evolutionary inferences. The program uses a birth and death process to model gene gain and loss across a user-specified phylogenetic tree. The distribution of family sizes generated under this model can provide a basis for assessing the significance of the observed family size differences among taxa.\u003c/p\u003e\n\u003cp\u003eCAFE v4.2.1 is the latest in a regular series of releases to the CAFE application. The manual and various tutorials may be viewed on the website (\u003ca href=\"https://hahnlab.github.io/CAFE/\" rel=\"nofollow\"\u003ehttps://hahnlab.github.io/CAFE/\u003c/a\u003e) . This document describes how to download and use CAFE v4.2.1. (credits: \u003ca href=\"https://github.com/hahnlab/CAFE\"\u003ehttps://github.com/hahnlab/CAFE\u003c/a\u003e)\u003c/p\u003e\n",
+ "full_name": "pscedu/singularity-gatk",
+ "latest_release": "v4.2.0.0",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-gatk/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-gatk/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/93c4f349e621f15ffd8933b4c7d4ea8eea7b6f9156528a6b483b1b47d8064a91/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6761746b\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/93c4f349e621f15ffd8933b4c7d4ea8eea7b6f9156528a6b483b1b47d8064a91/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6761746b\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-gatk\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/744613aa898037bbfe237a7943e118e4fe72355964b8726f785c33e44de131e0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6761746b\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/744613aa898037bbfe237a7943e118e4fe72355964b8726f785c33e44de131e0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6761746b\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-gatk\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5d9f7edad1535dfc343a82ee05a1cee751f4185de5e88e9959f1e306baf3af56/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6761746b\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5d9f7edad1535dfc343a82ee05a1cee751f4185de5e88e9959f1e306baf3af56/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6761746b\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-gatk\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/936434bf1d55721ba57e95e4bb99cfb8b78d330106b7ffebafb8911c75556071/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6761746b\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/936434bf1d55721ba57e95e4bb99cfb8b78d330106b7ffebafb8911c75556071/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6761746b\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-gatk\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-gatk\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-gatk\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-gatk\u003c/h1\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/f0a6e98fde6f4e7dd338612de8a154b1169c4572acc8ca3ffed117a81e28d4be/68747470733a2f2f7468656d652e7a646173736574732e636f6d2f7468656d655f6173736574732f323337383336302f646630383566313534333231666161633931353964646135376635303130336238376134663734332e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/f0a6e98fde6f4e7dd338612de8a154b1169c4572acc8ca3ffed117a81e28d4be/68747470733a2f2f7468656d652e7a646173736574732e636f6d2f7468656d655f6173736574732f323337383336302f646630383566313534333231666161633931353964646135376635303130336238376134663734332e706e67\" alt=\"Logo\" data-canonical-src=\"https://theme.zdassets.com/theme_assets/2378360/df085f154321faac9159dda57f50103b87a4f743.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\nSingularity recipe for \u003ca href=\"https://gatk.broadinstitute.org/hc/en-us\" rel=\"nofollow\"\u003eGATK\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003egatk\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/gatk/4.1.9.0\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/gatk\u003c/code\u003e as \u003ccode\u003e4.1.9.0.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [
"singularity",
- "singularity-hub",
- "singularity-recipe",
- "miniconda3"
+ "bioinformatics"
],
- "updated_at": 1612624956.0
+ "updated_at": 1628991719.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity images for everyday research work.",
"filenames": [
- "Singularity"
+ "Singularity.deepo-cpu",
+ "Singularity.pymc3",
+ "Singularity.datasci",
+ "Singularity.deepo-cpu-nlp"
],
- "full_name": "thomas-robinson/single-point-land",
+ "full_name": "hans/research-labs",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1613156529.0
+ "updated_at": 1648667607.0
},
{
"data_format": 2,
- "description": "TransDecoder identifies candidate coding regions within transcript sequences.",
+ "description": "Singularity dependency container, neuroglia-core + DWI software (camino, mrtrix, unring)",
"filenames": [
- "Singularity"
+ "Singularity",
+ "Singularity.v1.4.1"
],
- "full_name": "sghignone/TransDecoder",
- "latest_release": null,
- "readme": "\u003ch2\u003e\u003ca id=\"user-content-transdecoder-v550\" class=\"anchor\" aria-hidden=\"true\" href=\"#transdecoder-v550\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTransDecoder v.5.5.0\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/5159\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eThe current build is based on the bioconda distribution of Brian Haas\u0027 transdecoder 5.5.0.\u003c/p\u003e\n\u003cp\u003eTransDecoder identifies candidate coding regions within transcript sequences, such as those generated by de novo RNA-Seq transcript assembly using Trinity, or constructed based on RNA-Seq alignments to the genome using Tophat and Cufflinks.\u003c/p\u003e\n\u003cp\u003eVisit the project \u003ca href=\"https://github.com/TransDecoder/TransDecoder/wiki\"\u003ewiki\u003c/a\u003e for all TransDecoder documentation.\u003c/p\u003e\n",
+ "full_name": "khanlab/neuroglia-dwi",
+ "latest_release": "v1.5",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-neuroglia-dwi\" class=\"anchor\" aria-hidden=\"true\" href=\"#neuroglia-dwi\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eneuroglia-dwi\u003c/h1\u003e\n\u003cp\u003eSingularity image for neuroimaging dependencies. Supplements \u003ca href=\"http://www.github.com/khanlab/neuroglia-core\"\u003ehttp://www.github.com/khanlab/neuroglia-core\u003c/a\u003e with additional DWI software. Includes:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003emrtrix3\u003c/li\u003e\n\u003cli\u003ecamino\u003c/li\u003e\n\u003cli\u003eunring\u003c/li\u003e\n\u003cli\u003eDKE\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eCommits and pull-requests to this repository rebuild the \u003ccode\u003elatest\u003c/code\u003e version on Docker Hub, which is updated nightly to Singularity Hub. Releases on Docker Hub and Singularity Hub are built whenever a tag named \u003ccode\u003ev.*\u003c/code\u003e is committed. To avoid re-building on minor commits (e.g. changes to documentation), use \u003ccode\u003e[skip ci]\u003c/code\u003e in the commit message.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://circleci.com/gh/khanlab/neuroglia-core\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6231f7b29a2b680358e7d9c865672c500cdd9b75198b457634e3cc4c3a78cb70/68747470733a2f2f636972636c6563692e636f6d2f67682f6b68616e6c61622f6e6575726f676c69612d6477692e7376673f7374796c653d737667\" alt=\"CircleCI\" data-canonical-src=\"https://circleci.com/gh/khanlab/neuroglia-dwi.svg?style=svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://singularity-hub.org/collections/451\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eDocker:\n\u003ccode\u003edocker pull khanlab/neuroglia-dwi\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eSingularity:\n\u003ccode\u003esingularity pull khanlab/neuroglia-dwi\u003c/code\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
- "topics": [
- "miniconda3",
- "singularity",
- "singularity-hub",
- "singularity-recipe"
- ],
- "updated_at": 1612624905.0
+ "topics": [],
+ "updated_at": 1591844442.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity Ubuntu container with the Paraview stack",
"filenames": [
- "Singularity.4.0.14",
- "Singularity.4.4.2"
+ "Singularity"
],
- "full_name": "sschmeier/container-fishtank-gpu",
+ "full_name": "CHPC-UofU/Singularity-ubuntu-paraview",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1624344477.0
+ "updated_at": 1492111584.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Singularity.mg5_ma5_madspin"
],
- "full_name": "saviodot/singularity_MACS2",
+ "full_name": "HenryDayHall/madspin_singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_macs2\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity_macs2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_MACS2\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1616690622.0
+ "updated_at": 1602173663.0
},
{
"data_format": 2,
- "description": null,
+ "description": "An adaptive planner for IPC ",
"filenames": [
- "Singularity.bwa",
- "Singularity.gatk"
+ "Singularity"
],
- "full_name": "mkgoita/containers",
+ "full_name": "zyf505/CPC0",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainers\u003c/h1\u003e\n",
+ "readme": "\u003cp\u003eFast Downward is a domain-independent planning system.\u003c/p\u003e\n\u003cp\u003eFor documentation and contact information see \u003ca href=\"http://www.fast-downward.org/\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org/\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe following directories are not part of Fast Downward as covered by this\nlicense:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eCopyright (C) 2003-2016 Malte Helmert\nCopyright (C) 2008-2016 Gabriele Roeger\nCopyright (C) 2010-2016 Jendrik Seipp\nCopyright (C) 2010, 2011, 2013-2016 Silvan Sievers\nCopyright (C) 2012-2016 Florian Pommerening\nCopyright (C) 2016 Martin Wehrle\nCopyright (C) 2013, 2015 Salome Simon\nCopyright (C) 2014, 2015 Patrick von Reth\nCopyright (C) 2015 Manuel Heusner, Thomas Keller\nCopyright (C) 2009-2014 Erez Karpas\nCopyright (C) 2014 Robert P. Goldman\nCopyright (C) 2010-2012 Andrew Coles\nCopyright (C) 2010, 2012 Patrik Haslum\nCopyright (C) 2003-2011 Silvia Richter\nCopyright (C) 2009-2011 Emil Keyder\nCopyright (C) 2010, 2011 Moritz Gronbach, Manuela Ortlieb\nCopyright (C) 2011 Vidal Alc\u00e1zar Saiz, Michael Katz, Raz Nissim\nCopyright (C) 2010 Moritz Goebelbecker\nCopyright (C) 2007-2009 Matthias Westphal\nCopyright (C) 2009 Christian Muise\n\nFast Downward is free software: you can redistribute it and/or modify it under\nthe terms of the GNU General Public License as published by the Free Software\nFoundation, either version 3 of the License, or (at your option) any later\nversion.\n\nFast Downward is distributed in the hope that it will be useful, but WITHOUT ANY\nWARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A\nPARTICULAR PURPOSE. See the GNU General Public License for more details.\n\nYou should have received a copy of the GNU General Public License along with\nthis program. If not, see \u0026lt;http://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1671889682.0
+ "updated_at": 1613781111.0
},
{
"data_format": 2,
- "description": "Project for I519",
+ "description": "Contains the material presented at CCD lab meeting on 11/13/2019",
"filenames": [
- "SingularityPRJ.def"
+ "examples/Singularity.pytorch-docker",
+ "examples/Singularity.julia",
+ "examples/Singularity.conda",
+ "examples/Singularity.fasttext"
],
- "full_name": "ginnymortensen/gamortenPRJ",
+ "full_name": "CNCLgithub/singularity_workshop_2019",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1670041069.0
+ "updated_at": 1573678647.0
},
{
"data_format": 2,
- "description": null,
+ "description": "cutadapt removes adapter sequences from sequencing reads.",
"filenames": [
- "SingularityRecipe"
+ "2.10/Singularity"
],
- "full_name": "CRC-901-On-the-Fly-Computing/executor-bootup",
+ "full_name": "pscedu/singularity-cutadapt",
"latest_release": null,
- "readme": "\u003cp\u003eThis repository contains shell scripts that are supposed to be executed within a Docker container when basic services are deployed in the Testbed.\nThe shell script downloads the source code, runs the verification, runs the compilation and finally launches the SEDE executor.\nThe Docker container that is created for basic services has the following file system structure:\u003c/p\u003e\n\u003cp\u003e.\u003c/p\u003e\n\u003cp\u003e\u251c\u2500 cpachecker\n\u251c\u2500 hooks\u003cbr\u003e\n\u251c\u2500 sede\u003cbr\u003e\n\u251c\u2500 src\u003c/p\u003e\n\u003cp\u003e-\u0026gt; Folder src contains the C, Java or Python code of basic services. This container must contain a compile.sh for the compilation. The compile script may call another build tool like gradle or make.\u003c/p\u003e\n\u003cp\u003e-\u0026gt; Source code is downloaded from a ServiceCodeProvider repository.\u003c/p\u003e\n\u003cp\u003e-\u0026gt; Cerificates (*.proof) for C implementations must be in the same directory as the .*c file and must have a specific file name pattern: _.proof. For example, the name of the proof for the analysis sign for the C implementation service_grey_cpu.c must be service_grey_cpu_sign.proof.\u003c/p\u003e\n\u003cp\u003e-\u0026gt; The configuration files that are necessary for the SEDE executor must be in the folder src/main/resources/config.\u003c/p\u003e\n\u003cp\u003e-\u0026gt; Folder hooks contains shell scripts for downloading the source code, running the verification, and running the compilation.\u003c/p\u003e\n\u003cp\u003e-\u0026gt; Folder sede contains the SEDE executor logic.\u003c/p\u003e\n\u003cp\u003e-\u0026gt; The script run.sh executes all scripts in the hooks folder in alphanumerical order and starts the SEDE server in the end.\u003c/p\u003e\n\u003cp\u003eInstallation\nThe following software needs to be installed inside the Docker container:\u003c/p\u003e\n\u003cp\u003ecurl |\ngit |\njavac / gcc |\ngradle / make\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-cutadapt/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-cutadapt/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/1a971ebb81368ce57d4702d1ac0fa0534e1de4e11c2f3a1fc98cb5c5203ae017/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6375746164617074\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/1a971ebb81368ce57d4702d1ac0fa0534e1de4e11c2f3a1fc98cb5c5203ae017/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d6375746164617074\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-cutadapt\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/460062e41af5fcb53936a892aaf05699f5552d0c369d8c9d05308a15ecb18032/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6375746164617074\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/460062e41af5fcb53936a892aaf05699f5552d0c369d8c9d05308a15ecb18032/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d6375746164617074\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-cutadapt\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/5403066544c7ca2002d9c3183ace39dbb1aabbed23f96489c23f815b84b3a31f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6375746164617074\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/5403066544c7ca2002d9c3183ace39dbb1aabbed23f96489c23f815b84b3a31f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d6375746164617074\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-cutadapt\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/d60627004d3b1d480327260e840077df4c84113f1dcd462a39d25dfc08daae2a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6375746164617074\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/d60627004d3b1d480327260e840077df4c84113f1dcd462a39d25dfc08daae2a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d6375746164617074\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-cutadapt\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-cutadapt\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-cutadapt\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-cutadapt\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for \u003ca href=\"https://cutadapt.readthedocs.io/en/stable\" rel=\"nofollow\"\u003ecutadapt\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ecutadapt\u003c/code\u003e script\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/cutadapt/2.10\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/cutadapt\u003c/code\u003e as \u003ccode\u003e2.10.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing\nCenter\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/mcs/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1669321582.0
+ "subscribers_count": 3,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1629217124.0
},
{
"data_format": 2,
- "description": null,
+ "description": "OpenFOAM atmospheric test cases",
"filenames": [
- "Singularity.PhaGCN"
+ "Singularity"
],
- "full_name": "cschu/phagcn_singularity",
- "latest_release": null,
+ "full_name": "hertzsprung/AtmosTests",
+ "latest_release": "jshaw-thesis",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1669215943.0
+ "updated_at": 1517845038.0
},
{
"data_format": 2,
- "description": "Material for the GPU course ML-variant",
+ "description": null,
"filenames": [
- "singularity/Singularity.tensorflow_gpu-py3",
- "singularity/Singularity.pytorch_gpu-py3",
- "singularity/Singularity.tensorflow_cpu-py3"
+ "Singularity",
+ "Singularity.hpc"
],
- "full_name": "mmoelle1/GPU_Cource_ML",
+ "full_name": "hqhv/oneapi",
"latest_release": null,
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1667300805.0
+ "updated_at": 1611066291.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "envs/containers/Singularity"
+ "Singularity"
],
- "full_name": "Microbial-Ecology-Group/MHplusplus",
+ "full_name": "GeertvanGeest/test_shub",
"latest_release": null,
- "readme": "\u003ch2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-hidden=\"true\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOverview\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/78f47a09877ba9d28da1887a93e5c3bc2efb309c1e910eb21135becd2998238a/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d4d49542d79656c6c6f772e737667\" alt=\"License: MIT\" data-canonical-src=\"https://img.shields.io/badge/License-MIT-yellow.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6b7af09ab5d3e54feb3acda4c7b70aef9718f2928a49a50c92ea6ce95e96b2f7/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4e657874666c6f772d254532253839254135302e32352e312d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/Nextflow-%E2%89%A50.25.1-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-----in-development----\" class=\"anchor\" aria-hidden=\"true\" href=\"#----in-development----\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e--- In development ---\u003c/h1\u003e\n\u003ch1\u003e\u003ca id=\"user-content-mh-bioinformatic-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#mh-bioinformatic-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMH++ bioinformatic pipeline\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-more-information\" class=\"anchor\" aria-hidden=\"true\" href=\"#more-information\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMore Information\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/usage.md\"\u003eUsage\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/configuration.md\"\u003eConfiguration\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/output.md\"\u003eOutput\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/dependencies.md\"\u003eDependencies\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/requirements.md\"\u003eSoftware Requirements\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/FAQs.md\"\u003eFAQs\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/update_details.md\"\u003eDetails on AMR++ updates\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/contact.md\"\u003eContact\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-amr-demonstration\" class=\"anchor\" aria-hidden=\"true\" href=\"#amr-demonstration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAMR++ demonstration\u003c/h2\u003e\n\u003cp\u003eCreate the anaconda environment for AMR++. This will work for both the nextflow version and snakemake version.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda create -c conda-forge -n mamba_base mamba\nconda activate mamba_base\nmamba create -c conda-forge -c bioconda -n AMR++ snakemake nextflow git make cxx-compiler singularity\nmamba activate AMR++\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eClone the AMR++ repository.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/EnriqueDoster/AMRplusplus.git\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBrief tutorial for nextflow pipeline test run\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e AMRplusplus\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Run command to perform the demonstration pipeline using the singularity profile\u003c/span\u003e\nnextflow run main_AMR++.nf -profile singularity --pipeline demo\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\u003ca id=\"user-content-using-amr-to-analyze-your-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-amr-to-analyze-your-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing AMR++ to analyze your data\u003c/h1\u003e\n\u003cp\u003eAMR++ is customizable to suit your computing needs and analyze your data. Primarily, the \u003ccode\u003e-profile\u003c/code\u003e paramater allows you to choose between running AMR++ using a singularity container, docker container, anaconda packages, or a local installation of your software.\nAll parameters used to control how AMR++ analyzes your data can also be changed as needed in a variety of ways. For full information, review this \u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/configuration.md\"\u003econfiguration document.\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eBelow is a brief example, the default parameters were run using this command:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003enextflow run main_AMR++.nf -profile singularity --pipeline demo\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTo change the reads that were analyzed, you should specify the ```--reads`` parameters. Here, we can use regular expressions to point to your samples in a different directory.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003enextflow run main_AMR++.nf -profile singularity --pipeline demo --reads \"path/to/your/reads/*_R{1,2}.fastq.gz\" \u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-choosing-a-modified-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#choosing-a-modified-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eChoosing a modified pipeline\u003c/h2\u003e\n\u003cp\u003eAMR++ analyzes data by combining workflows that takes a set of sequencing reads through various bioinformatic software. We recommend our standard AMR++ pipeline as a comprehensive way to start from raw sequencing reads, QC assessment, host DNA removal, and resistome analysis with MEGARes. However, users might only want to replicate portions of the pipeline and have more control over their computing needs. Using the \u003ccode\u003e--pipeline\u003c/code\u003e parameter, users can change how AMR++ runs.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline demo\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSimple demonstration\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline standard_AMR\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming \u0026gt; Host DNA removal \u0026gt; Resistome alignment \u0026gt; Resistome results\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline fast_AMR\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming \u0026gt; Resistome alignment \u0026gt; Resistome results\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline standard_AMR_wKraken\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming \u0026gt; Host DNA removal \u0026gt; Resistome alignment \u0026gt; Resistome results\nNon-host reads \u0026gt; Microbiome analysis\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003epipeline fragments\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline multiqc\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eEvaluate sample QC\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline trim\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming using trimmomatic\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline rmhost\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eAlign reads to host DNA using bwa and remove contaminants\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline resistome\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eAlign reads to MEGARes using bwa, perform rarefaction and resistome analysis\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline kraken\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eClassify reads taxanomically using kraken\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-test_shub\" class=\"anchor\" aria-hidden=\"true\" href=\"#test_shub\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etest_shub\u003c/h1\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1667397676.0
+ "updated_at": 1618210665.0
},
{
"data_format": 2,
- "description": "Testing SingularityHub integration",
+ "description": null,
"filenames": [
- "Singularity.fun"
+ "Singularity"
],
- "full_name": "mmarinriera/Singularity_training",
+ "full_name": "Samip1211/MongoImage",
"latest_release": null,
"stargazers_count": 0,
- "subscribers_count": 0,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1551276494.0
+ "updated_at": 1565456485.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "envs/containers/Singularity"
+ "Singularity"
],
- "full_name": "EnriqueDoster/AMRplusplus",
+ "full_name": "truatpasteurdotfr/singularity-docker-pytorch-a40",
"latest_release": null,
- "readme": "\u003ch2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-hidden=\"true\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOverview\u003c/h2\u003e\n\u003cp\u003e\u003ca href=\"https://opensource.org/licenses/MIT\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/78f47a09877ba9d28da1887a93e5c3bc2efb309c1e910eb21135becd2998238a/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c6963656e73652d4d49542d79656c6c6f772e737667\" alt=\"License: MIT\" data-canonical-src=\"https://img.shields.io/badge/License-MIT-yellow.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca href=\"https://www.nextflow.io/\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/6b7af09ab5d3e54feb3acda4c7b70aef9718f2928a49a50c92ea6ce95e96b2f7/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4e657874666c6f772d254532253839254135302e32352e312d627269676874677265656e2e737667\" alt=\"Nextflow\" data-canonical-src=\"https://img.shields.io/badge/Nextflow-%E2%89%A50.25.1-brightgreen.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-amr-bioinformatic-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#amr-bioinformatic-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAMR++ bioinformatic pipeline\u003c/h1\u003e\n\u003cp\u003e(\u003ca href=\"https://megares.meglab.org/\" rel=\"nofollow\"\u003ehttps://megares.meglab.org/\u003c/a\u003e)\u003c/p\u003e\n\u003cp\u003eAMR++ is a bioinformatic pipeline meant to aid in the analysis of raw sequencing reads to characterize the profile of antimicrobial resistance genes, or resistome. AMR++ was developed to work in conjuction with the the MEGARes database which contains sequence data for approximately 9,000 hand-curated antimicrobial resistance genes accompanied by an annotation structure that is optimized for use with high throughput sequencing and metagenomic analysis. The acyclical annotation graph of MEGARes allows for accurate, count-based, hierarchical statistical analysis of resistance at the population level, much like microbiome analysis, and is also designed to be used as a training database for the creation of statistical classifiers.\u003c/p\u003e\n\u003cp\u003eThe goal of many metagenomics studies is to characterize the content and relative abundance of sequences of interest from the DNA of a given sample or set of samples. You may want to know what is contained within your sample or how abundant a given sequence is relative to another.\u003c/p\u003e\n\u003cp\u003eOften, metagenomics is performed when the answer to these questions must be obtained for a large number of targets where techniques like multiplex PCR and other targeted methods would be too cumbersome to perform. AMR++ can process the raw data from the sequencer, identify the fragments of DNA, and count them. It also provides a count of the polymorphisms that occur in each DNA fragment with respect to the reference database.\u003c/p\u003e\n\u003cp\u003eAdditionally, you may want to know if the depth of your sequencing (how many reads you obtain that are on target) is high enough to identify rare organisms (organisms with low abundance relative to others) in your population. This is referred to as rarefaction and is calculated by randomly subsampling your sequence data at intervals between 0% and 100% in order to determine how many targets are found at each depth.\u003c/p\u003e\n\u003cp\u003eWith AMR++, you will obtain alignment count files for each sample that are combined into a count matrix that can be analyzed using any statistical and mathematical techniques that can operate on a matrix of observations.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-more-information\" class=\"anchor\" aria-hidden=\"true\" href=\"#more-information\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMore Information\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/installation.md\"\u003eInstallation\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/usage.md\"\u003eUsage\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/configuration.md\"\u003eConfiguration\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/output.md\"\u003eOutput\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/dependencies.md\"\u003eDependencies\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/requirements.md\"\u003eSoftware Requirements\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/FAQs.md\"\u003eFAQs\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/update_details.md\"\u003eDetails on AMR++ updates\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/contact.md\"\u003eContact\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-amr-demonstration\" class=\"anchor\" aria-hidden=\"true\" href=\"#amr-demonstration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAMR++ demonstration\u003c/h2\u003e\n\u003cp\u003eCreate the anaconda environment for AMR++. This will work for both the nextflow version and snakemake version.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003econda create -c conda-forge -n mamba_base mamba\nconda activate mamba_base\nmamba create -c conda-forge -c bioconda -n AMR++ snakemake nextflow git make cxx-compiler singularity\nmamba activate AMR++\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eClone the AMR++ repository.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003egit clone https://github.com/EnriqueDoster/AMRplusplus.git\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eBrief tutorial for nextflow pipeline test run\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e\u003cspan class=\"pl-c1\"\u003ecd\u003c/span\u003e AMRplusplus\n\n\u003cspan class=\"pl-c\"\u003e\u003cspan class=\"pl-c\"\u003e#\u003c/span\u003e Run command to perform the demonstration pipeline using the singularity profile\u003c/span\u003e\nnextflow run main_AMR++.nf -profile singularity --pipeline demo\u003c/pre\u003e\u003c/div\u003e\n\u003ch1\u003e\u003ca id=\"user-content-using-amr-to-analyze-your-data\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-amr-to-analyze-your-data\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing AMR++ to analyze your data\u003c/h1\u003e\n\u003cp\u003eAMR++ is customizable to suit your computing needs and analyze your data. Primarily, the \u003ccode\u003e-profile\u003c/code\u003e paramater allows you to choose between running AMR++ using a singularity container, docker container, anaconda packages, or a local installation of your software.\nAll parameters used to control how AMR++ analyzes your data can also be changed as needed in a variety of ways. For full information, review this \u003ca href=\"https://github.com/Microbial-Ecology-Group/AMRplusplus/blob/master/docs/configuration.md\"\u003econfiguration document.\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eBelow is a brief example, the default parameters were run using this command:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003enextflow run main_AMR++.nf -profile singularity --pipeline demo\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eTo change the reads that were analyzed, you should specify the ```--reads`` parameters. Here, we can use regular expressions to point to your samples in a different directory.\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003enextflow run main_AMR++.nf -profile singularity --pipeline demo --reads \"path/to/your/reads/*_R{1,2}.fastq.gz\" \u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-choosing-a-modified-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#choosing-a-modified-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eChoosing a modified pipeline\u003c/h2\u003e\n\u003cp\u003eAMR++ analyzes data by combining workflows that takes a set of sequencing reads through various bioinformatic software. We recommend our standard AMR++ pipeline as a comprehensive way to start from raw sequencing reads, QC assessment, host DNA removal, and resistome analysis with MEGARes. However, users might only want to replicate portions of the pipeline and have more control over their computing needs. Using the \u003ccode\u003e--pipeline\u003c/code\u003e parameter, users can change how AMR++ runs.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline demo\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eSimple demonstration\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline standard_AMR\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming \u0026gt; Host DNA removal \u0026gt; Resistome alignment \u0026gt; Resistome results\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline fast_AMR\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming \u0026gt; Resistome alignment \u0026gt; Resistome results\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003e\u003ccode\u003e--pipeline standard_AMR_wKraken\u003c/code\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming \u0026gt; Host DNA removal \u0026gt; Resistome alignment \u0026gt; Resistome results\nNon-host reads \u0026gt; Microbiome analysis\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003epipeline fragments\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline multiqc\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eEvaluate sample QC\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline trim\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eQC trimming using trimmomatic\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline rmhost\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eAlign reads to host DNA using bwa and remove contaminants\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline resistome\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eAlign reads to MEGARes using bwa, perform rarefaction and resistome analysis\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ccode\u003e--pipeline kraken\u003c/code\u003e\n\u003cul\u003e\n\u003cli\u003eClassify reads taxanomically using kraken\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-testing-image-for-a40-gpupytorch-\" class=\"anchor\" aria-hidden=\"true\" href=\"#testing-image-for-a40-gpupytorch-\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etesting image for a40 gpu/pytorch \u003ca href=\"https://github.com/truatpasteurdotfr/singularity-docker-pytorch-a40/actions/workflows/docker-singularity-publish.yml\"\u003e\u003cimg src=\"https://github.com/truatpasteurdotfr/singularity-docker-pytorch-a40/actions/workflows/docker-singularity-publish.yml/badge.svg\" alt=\"Docker and Singularity build\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003edocker:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003edocker pull ghcr.io/truatpasteurdotfr/singularity-docker-pytorch-a40:main\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003esingularity:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell oras://ghcr.io/truatpasteurdotfr/singularity-docker-pytorch-a40:latest\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1665339720.0
+ "updated_at": 1636479915.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe files for APSIM Classic (https://github.com/APSIMInitiative/APSIMClassic)",
"filenames": [
- "v4.7.1/Singularity",
- "v4.9.1/Singularity"
+ "Singularity",
+ "Singularity.7.10-r49ace54f9c8a670190aef9d8d0fb9d5477bb1534",
+ "Singularity.7.9-r4047"
],
- "full_name": "yh549848/singularity-code-server-stacks",
+ "full_name": "powerPlant/apsim-srf",
"latest_release": null,
+ "readme": "\u003cp\u003eSingularity recipe files for the APSIM Classic version of the Agricultural Production Systems sIMulator\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-maintainer-notes\" class=\"anchor\" aria-hidden=\"true\" href=\"#maintainer-notes\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMaintainer Notes\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eRecipes for APSIM 7.9 use the upstream SVN repository (no longer available)\u003c/li\u003e\n\u003cli\u003ePlease see comments inside the recipes for the reasons why some upstream files are overwritten during the build process\u003c/li\u003e\n\u003cli\u003eThe Cotton Model requires a password, which needs to be obtained by the model owner and placed under \u003ccode\u003efiles/CottonPassword.txt\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1676597534.0
+ "updated_at": 1586904956.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity"
+ "Recipes/Singularity_pytorch",
+ "Recipes/Singularity_pytorch_full",
+ "Recipes/Singularity_spark_full",
+ "Recipes/Singularity_mpich",
+ "Recipes/Singularity_example",
+ "Recipes/Singularity_ompi",
+ "Recipes/Singularity_tensorflow",
+ "Recipes/Singularity_spark"
],
- "full_name": "asfistonlavie/TEFLoN2",
+ "full_name": "Yasmim-Fernandes/Ufscar-hpc-template-ci",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-teflon2\" class=\"anchor\" aria-hidden=\"true\" href=\"#teflon2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTEFLoN2\u003c/h1\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-pr\u00e9-requisitos\" class=\"anchor\" aria-hidden=\"true\" href=\"#pr\u00e9-requisitos\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePr\u00e9-requisitos\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-sele\u00e7\u00e3o-do-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#sele\u00e7\u00e3o-do-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSele\u00e7\u00e3o do Recipe\u003c/h2\u003e\n\u003cp\u003eAdicione o caminho do \u003cem\u003esingularity recipe\u003c/em\u003e desejado na vari\u00e1vel RECIPE no github (projeto \u0026gt;\u0026gt; Settings \u0026gt;\u0026gt; Secrets \u0026gt;\u0026gt; New Secret).\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-template-integra\u00e7\u00e3o-cont\u00ednua-github\" class=\"anchor\" aria-hidden=\"true\" href=\"#template-integra\u00e7\u00e3o-cont\u00ednua-github\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTemplate Integra\u00e7\u00e3o Cont\u00ednua Github\u003c/h1\u003e\n\u003cp\u003eEsse projeto o template para uso do cluster da UFSCar, contendo integra\u00e7\u00e3o cont\u00ednua com o Google Drive e Amazon S3.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requisitos-para-google-drive\" class=\"anchor\" aria-hidden=\"true\" href=\"#requisitos-para-google-drive\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequisitos para Google Drive\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eEntre no \u003ca href=\"https://console.developers.google.com/apis/credentials\" rel=\"nofollow\"\u003econsole de credenciais de API do Google\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eSe ainda n\u00e3o houver um projeto, crie um com permiss\u00e3o para a \"Google Drive API\".\u003c/li\u003e\n\u003cli\u003eClique em \"Criar credenciais\".\u003c/li\u003e\n\u003cli\u003eSelecione \"ID do cliente do OAuth\".\u003c/li\u003e\n\u003cli\u003eEm \"Tipo de aplicativo\", selecione \"App para computador\".\u003c/li\u003e\n\u003cli\u003eD\u00ea um nome de identifica\u00e7\u00e3o para as credenciais e clique em \"criar\". V\u00e3o aparecer dois dados (\"Seu ID de cliente\" e \"Sua chave secreta de cliente\"), precisaremos dos dois no passo seguinte.\u003c/li\u003e\n\u003cli\u003eAcesse o \u003cem\u003ecluster\u003c/em\u003e, execute o comando \u003ccode\u003erclone config\u003c/code\u003e e forne\u00e7a as seguintes informa\u00e7\u00f5es quando solicitado:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003en/s/q\u0026gt; n\nname\u0026gt; cloud\nStorage\u0026gt; 13\nclient_id\u0026gt; conte\u00fado de \"Seu ID de cliente\"\nclient_secret\u0026gt; conte\u00fado de \"Sua chave secreta de cliente\"\nscope\u0026gt; 1\nroot_folder_id\u0026gt; deixe em branco\nservice_account_file\u0026gt; deixe em branco\ny/n\u0026gt; deixe em branco\ny/n\u0026gt; n\n\nCopie o url e cole no navegador no computador local. Autorize e:\n\nEnter verification code\u0026gt; c\u00f3digo fornecido pelo navegador ap\u00f3s autoriza\u00e7\u00e3o\ny/n\u0026gt; deixe em branco\ny/e/d\u0026gt; deixe em branco\ne/n/d/r/c/s/q\u0026gt; q\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA configura\u00e7\u00e3o at\u00e9 agora servir\u00e1 para transfer\u00eancia de dados do \u003cem\u003ecluster\u003c/em\u003e para a nuvem e vice-e-versa. A partir de agora vamos configurar a integra\u00e7\u00e3o cont\u00ednua no github.\u003c/p\u003e\n\u003col start=\"8\"\u003e\n\u003cli\u003eExecute o comando:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eecho $(cat ~/.config/rclone/rclone.conf | base64 --wrap=0)\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"9\"\u003e\n\u003cli\u003eCopie a sa\u00edda e adicione \u00e0 vari\u00e1vel RCLONE_CONF no github.\u003c/li\u003e\n\u003cli\u003eAdicione no github \u00e0 vari\u00e1vel COLLECTION_CONTAINER \u003ccode\u003e/path/to/project\u003c/code\u003e, esse ser\u00e1 o caminho cujo container vai ser disponibilizado no seu Google Drive no formato \u003ccode\u003erecipe_name_DateTime.simg\u003c/code\u003e.\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-requisitos-para-amazon-s3\" class=\"anchor\" aria-hidden=\"true\" href=\"#requisitos-para-amazon-s3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequisitos para Amazon S3\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eEntre na \u003ca href=\"console.aws.amazon.com\"\u003eAWS\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eClique na seta ao lado de seu nome de usu\u00e1rio e em \"My Security Credentials\".\u003c/li\u003e\n\u003cli\u003eNa se\u00e7\u00e3o \"Access Keys\", clique em \"Create New Access Key\".\u003c/li\u003e\n\u003cli\u003eNa janela que aparece, clique em \"Show Access Key\".\u003c/li\u003e\n\u003cli\u003eAcesse o \u003cem\u003ecluster\u003c/em\u003e, execute o comando \u003ccode\u003erclone config\u003c/code\u003e e forne\u00e7a as seguintes informa\u00e7\u00f5es quando solicitado:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003en/s/q\u0026gt; n\nname\u0026gt; cloud\nStorage\u0026gt; 4\nprovider\u0026gt; 1\nenv_auth\u0026gt; 1\naccess_key_id\u0026gt; conte\u00fado de \"Access Key ID\"\nsecret_access_key\u0026gt; conte\u00fado de \"Secret Access Key\"\nregion\u0026gt; 16\nendpoint\u0026gt; deixe em branco\nlocation_constraint\u0026gt; 16\nacl\u0026gt; deixe em branco\nserver_side_encryption\u0026gt; deixe em branco\nsse_kms_key_id\u0026gt; deixe em branco\nstorage_class\u0026gt; deixe em branco\ny/n\u0026gt; deixe em branco\ny/e/d\u0026gt; deixe em branco\ne/n/d/r/c/s/q\u0026gt; q\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eA configura\u00e7\u00e3o at\u00e9 agora servir\u00e1 para transfer\u00eancia de dados do \u003cem\u003ecluster\u003c/em\u003e para a nuvem e vice-e-versa. A partir de agora vamos configurar a integra\u00e7\u00e3o cont\u00ednua no github.\u003c/p\u003e\n\u003col start=\"6\"\u003e\n\u003cli\u003eExecute o comando:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eecho $(cat ~/.config/rclone/rclone.conf | base64 --wrap=0)\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"7\"\u003e\n\u003cli\u003eCopie a sa\u00edda e adicione \u00e0 vari\u00e1vel RCLONE_CONF no github.\u003c/li\u003e\n\u003cli\u003eAdicione no github \u00e0 vari\u00e1vel COLLECTION_CONTAINER \u003ccode\u003e/path/to/project\u003c/code\u003e, esse ser\u00e1 o caminho cujo container vai ser disponibilizado no seu Google Drive no formato \u003ccode\u003erecipe_name_DateTime.simg\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1658824620.0
+ "updated_at": 1607370441.0
},
{
"data_format": 2,
- "description": null,
+ "description": "informations and configurations for OpenFLUID containerization",
"filenames": [
- "singularity/Singularity"
+ "v2.1.3/Singularity",
+ "v2.1.9/Singularity",
+ "v1.7.2/Singularity",
+ "v2.1.5/Singularity",
+ "v2.1.4/Singularity",
+ "v2.1.2/Singularity",
+ "v2.1.8/Singularity",
+ "v2.1.6/Singularity",
+ "v2.1.7/Singularity",
+ "v2.0.2/Singularity",
+ "v2.1.10/Singularity",
+ "v2.1.11/Singularity"
],
- "full_name": "oxfordmmm/Bugflow_DSL2",
+ "full_name": "OpenFLUID/openfluid-containers",
"latest_release": null,
+ "readme": "\u003cp\u003eThis repository contains configuration files for Docker and Singularity containerization of OpenFLUID.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 3,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1676460377.0
+ "updated_at": 1616516042.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "manasi-sharma/language-OG-diffuser",
+ "full_name": "ipelupessy/test-singularity",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-planning-with-diffusion--\" class=\"anchor\" aria-hidden=\"true\" href=\"#planning-with-diffusion--\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePlanning with Diffusion \u00a0\u00a0 \u003ca href=\"https://colab.research.google.com/drive/1YajKhu-CUIGBJeQPehjVPJcK_b38a8Nc?usp=sharing\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667\" alt=\"Open In Colab\" data-canonical-src=\"https://colab.research.google.com/assets/colab-badge.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/h1\u003e\n\u003cp\u003eTraining and visualizing of diffusion models from \u003ca href=\"https://diffusion-planning.github.io/\" rel=\"nofollow\"\u003ePlanning with Diffusion for Flexible Behavior Synthesis\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://github.com/jannerm/diffuser/tree/main\"\u003emain branch\u003c/a\u003e contains code for training diffusion models and planning via value-function guided sampling on the D4RL locomotion environments.\nThe \u003ca href=\"https://github.com/jannerm/diffuser/tree/kuka\"\u003ekuka branch\u003c/a\u003e contains block-stacking experiments.\nThe \u003ca href=\"https://github.com/jannerm/diffuser/tree/maze2d\"\u003emaze2d branch\u003c/a\u003e contains goal-reaching via inpainting in the Maze2D environments.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/184a6bb0418c60d778dcfa9f81dfddfdea0c0a3238b1d0cc4aa8666dd32ad3ca/68747470733a2f2f646966667573696f6e2d706c616e6e696e672e6769746875622e696f2f696d616765732f64696666757365722d636172642e706e67\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/184a6bb0418c60d778dcfa9f81dfddfdea0c0a3238b1d0cc4aa8666dd32ad3ca/68747470733a2f2f646966667573696f6e2d706c616e6e696e672e6769746875622e696f2f696d616765732f64696666757365722d636172642e706e67\" width=\"60%\" title=\"Diffuser model\" data-canonical-src=\"https://diffusion-planning.github.io/images/diffuser-card.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eUpdates\u003c/strong\u003e\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e12/09/2022: Diffuser (the RL model) has been integrated into \u003cg-emoji class=\"g-emoji\" alias=\"hugs\" fallback-src=\"https://github.githubassets.com/images/icons/emoji/unicode/1f917.png\"\u003e\ud83e\udd17\u003c/g-emoji\u003e Diffusers (the Hugging Face diffusion model library)! See \u003ca href=\"https://huggingface.co/docs/diffusers/using-diffusers/rl\" rel=\"nofollow\"\u003ethese docs\u003c/a\u003e for how to run Diffuser using their pipeline.\u003c/li\u003e\n\u003cli\u003e10/17/2022: A bug in the value function scaling has been fixed in \u003ca href=\"https://github.com/jannerm/diffuser/commit/3d7361c2d028473b601cc04f5eecd019e14eb4eb\"\u003ethis commit\u003c/a\u003e. Thanks to \u003ca href=\"https://scholar.google.com/citations?user=Q6UMpRYAAAAJ\u0026amp;hl=en\" rel=\"nofollow\"\u003ePhilemon Brakel\u003c/a\u003e for catching it!\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-quickstart\" class=\"anchor\" aria-hidden=\"true\" href=\"#quickstart\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuickstart\u003c/h2\u003e\n\u003cp\u003eLoad a pretrained diffusion model and sample from it in your browser with \u003ca href=\"https://colab.research.google.com/drive/1YajKhu-CUIGBJeQPehjVPJcK_b38a8Nc?usp=sharing\" rel=\"nofollow\"\u003escripts/diffuser-sample.ipynb\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installation\" class=\"anchor\" aria-hidden=\"true\" href=\"#installation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstallation\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml\nconda activate diffuser\npip install -e .\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-using-pretrained-models\" class=\"anchor\" aria-hidden=\"true\" href=\"#using-pretrained-models\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsing pretrained models\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-downloading-weights\" class=\"anchor\" aria-hidden=\"true\" href=\"#downloading-weights\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDownloading weights\u003c/h3\u003e\n\u003cp\u003eDownload pretrained diffusion models and value functions with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./scripts/download_pretrained.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis command downloads and extracts a \u003ca href=\"https://drive.google.com/file/d/1wc1m4HLj7btaYDN8ogDIAV9QzgWEckGy/view?usp=share_link\" rel=\"nofollow\"\u003etarfile\u003c/a\u003e containing \u003ca href=\"https://drive.google.com/drive/folders/1ie6z3toz9OjcarJuwjQwXXzDwh1XnS02?usp=sharing\" rel=\"nofollow\"\u003ethis directory\u003c/a\u003e to \u003ccode\u003elogs/pretrained\u003c/code\u003e. The models are organized according to the following structure:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e\u2514\u2500\u2500 logs/pretrained\n \u251c\u2500\u2500 ${environment_1}\n \u2502 \u251c\u2500\u2500 diffusion\n \u2502 \u2502 \u2514\u2500\u2500 ${experiment_name}\n \u2502 \u2502 \u251c\u2500\u2500 state_${epoch}.pt\n \u2502 \u2502 \u251c\u2500\u2500 sample-${epoch}-*.png\n \u2502 \u2502 \u2514\u2500\u2500 {dataset, diffusion, model, render, trainer}_config.pkl\n \u2502 \u251c\u2500\u2500 values\n \u2502 \u2502 \u2514\u2500\u2500 ${experiment_name}\n \u2502 \u2502 \u251c\u2500\u2500 state_${epoch}.pt\n \u2502 \u2502 \u2514\u2500\u2500 {dataset, diffusion, model, render, trainer}_config.pkl\n \u2502 \u2514\u2500\u2500 plans\n \u2502 \u2514\u2500\u2500 defaults\n \u2502 \u251c\u2500\u2500 0\n \u2502 \u251c\u2500\u2500 1\n \u2502 \u251c\u2500\u2500 ...\n \u2502 \u2514\u2500\u2500 149\n \u2502\n \u251c\u2500\u2500 ${environment_2}\n \u2502 \u2514\u2500\u2500 ...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003estate_${epoch}.pt\u003c/code\u003e files contain the network weights and the \u003ccode\u003econfig.pkl\u003c/code\u003e files contain the instantation arguments for the relevant classes.\nThe png files contain samples from different points during training of the diffusion model.\nWithin the \u003ccode\u003eplans\u003c/code\u003e subfolders, there are the results of 150 evaluation trials for each environment using the default hyperparameters.\u003c/p\u003e\n\u003cdetails\u003e\n\u003csummary\u003eTo aggregate the results of the evaluations in the \u003ccode\u003elogs\u003c/code\u003e folder, run \u003ccode\u003epython scripts/read_results.py\u003c/code\u003e. (Expand to view the output of this command on the plans downloaded from Google Drive.)\n\u003c/summary\u003e\n\u003cpre\u003e\u003ccode\u003ehopper-medium-replay-v2 | defaults | logs/pretrained/hopper-medium-replay-v2/plans | 150 scores\n 93.6 +/- 0.37\nhopper-medium-v2 | defaults | logs/pretrained/hopper-medium-v2/plans | 150 scores\n 74.3 +/- 1.36\nhopper-medium-expert-v2 | defaults | logs/pretrained/hopper-medium-expert-v2/plans | 150 scores\n 103.3 +/- 1.30\nwalker2d-medium-replay-v2 | defaults | logs/pretrained/walker2d-medium-replay-v2/plans | 150 scores\n 70.6 +/- 1.60\nwalker2d-medium-v2 | defaults | logs/pretrained/walker2d-medium-v2/plans | 150 scores\n 79.6 +/- 0.55\nwalker2d-medium-expert-v2 | defaults | logs/pretrained/walker2d-medium-expert-v2/plans | 150 scores\n 106.9 +/- 0.24\nhalfcheetah-medium-replay-v2 | defaults | logs/pretrained/halfcheetah-medium-replay-v2/plans | 150 scores\n 37.7 +/- 0.45\nhalfcheetah-medium-v2 | defaults | logs/pretrained/halfcheetah-medium-v2/plans | 150 scores\n 42.8 +/- 0.32\nhalfcheetah-medium-expert-v2 | defaults | logs/pretrained/halfcheetah-medium-expert-v2/plans | 150 scores\n 88.9 +/- 0.25\n\u003c/code\u003e\u003c/pre\u003e\n\u003c/details\u003e\n\u003cdetails\u003e\n\u003csummary\u003eTo create the table of offline RL results from the paper, run \u003ccode\u003epython plotting/table.py\u003c/code\u003e. This will print a table that can be copied into a Latex document. (Expand to view table source.)\u003c/summary\u003e\n\u003cpre\u003e\u003ccode\u003e\\definecolor{tblue}{HTML}{1F77B4}\n\\definecolor{tred}{HTML}{FF6961}\n\\definecolor{tgreen}{HTML}{429E9D}\n\\definecolor{thighlight}{HTML}{000000}\n\\newcolumntype{P}{\u0026gt;{\\raggedleft\\arraybackslash}X}\n\\begin{table*}[hb!]\n\\centering\n\\small\n\\begin{tabularx}{\\textwidth}{llPPPPPPPPr}\n\\toprule\n\\multicolumn{1}{r}{\\bf \\color{black} Dataset} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} Environment} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} BC} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} CQL} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} IQL} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} DT} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} TT} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} MOPO} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} MOReL} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} MBOP} \u0026amp; \\multicolumn{1}{r}{\\bf \\color{black} Diffuser} \\\\ \n\\midrule\nMedium-Expert \u0026amp; HalfCheetah \u0026amp; $55.2$ \u0026amp; $91.6$ \u0026amp; $86.7$ \u0026amp; $86.8$ \u0026amp; $95.0$ \u0026amp; $63.3$ \u0026amp; $53.3$ \u0026amp; $\\textbf{\\color{thighlight}105.9}$ \u0026amp; $88.9$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.3$}} \\\\ \nMedium-Expert \u0026amp; Hopper \u0026amp; $52.5$ \u0026amp; $\\textbf{\\color{thighlight}105.4}$ \u0026amp; $91.5$ \u0026amp; $\\textbf{\\color{thighlight}107.6}$ \u0026amp; $\\textbf{\\color{thighlight}110.0}$ \u0026amp; $23.7$ \u0026amp; $\\textbf{\\color{thighlight}108.7}$ \u0026amp; $55.1$ \u0026amp; $103.3$ \\scriptsize{\\raisebox{1pt}{$\\pm 1.3$}} \\\\ \nMedium-Expert \u0026amp; Walker2d \u0026amp; $\\textbf{\\color{thighlight}107.5}$ \u0026amp; $\\textbf{\\color{thighlight}108.8}$ \u0026amp; $\\textbf{\\color{thighlight}109.6}$ \u0026amp; $\\textbf{\\color{thighlight}108.1}$ \u0026amp; $101.9$ \u0026amp; $44.6$ \u0026amp; $95.6$ \u0026amp; $70.2$ \u0026amp; $\\textbf{\\color{thighlight}106.9}$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.2$}} \\\\ \n\\midrule\nMedium \u0026amp; HalfCheetah \u0026amp; $42.6$ \u0026amp; $44.0$ \u0026amp; $\\textbf{\\color{thighlight}47.4}$ \u0026amp; $42.6$ \u0026amp; $\\textbf{\\color{thighlight}46.9}$ \u0026amp; $42.3$ \u0026amp; $42.1$ \u0026amp; $44.6$ \u0026amp; $42.8$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.3$}} \\\\ \nMedium \u0026amp; Hopper \u0026amp; $52.9$ \u0026amp; $58.5$ \u0026amp; $66.3$ \u0026amp; $67.6$ \u0026amp; $61.1$ \u0026amp; $28.0$ \u0026amp; $\\textbf{\\color{thighlight}95.4}$ \u0026amp; $48.8$ \u0026amp; $74.3$ \\scriptsize{\\raisebox{1pt}{$\\pm 1.4$}} \\\\ \nMedium \u0026amp; Walker2d \u0026amp; $75.3$ \u0026amp; $72.5$ \u0026amp; $\\textbf{\\color{thighlight}78.3}$ \u0026amp; $74.0$ \u0026amp; $\\textbf{\\color{thighlight}79.0}$ \u0026amp; $17.8$ \u0026amp; $\\textbf{\\color{thighlight}77.8}$ \u0026amp; $41.0$ \u0026amp; $\\textbf{\\color{thighlight}79.6}$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.55$}} \\\\ \n\\midrule\nMedium-Replay \u0026amp; HalfCheetah \u0026amp; $36.6$ \u0026amp; $45.5$ \u0026amp; $44.2$ \u0026amp; $36.6$ \u0026amp; $41.9$ \u0026amp; $\\textbf{\\color{thighlight}53.1}$ \u0026amp; $40.2$ \u0026amp; $42.3$ \u0026amp; $37.7$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.5$}} \\\\ \nMedium-Replay \u0026amp; Hopper \u0026amp; $18.1$ \u0026amp; $\\textbf{\\color{thighlight}95.0}$ \u0026amp; $\\textbf{\\color{thighlight}94.7}$ \u0026amp; $82.7$ \u0026amp; $\\textbf{\\color{thighlight}91.5}$ \u0026amp; $67.5$ \u0026amp; $\\textbf{\\color{thighlight}93.6}$ \u0026amp; $12.4$ \u0026amp; $\\textbf{\\color{thighlight}93.6}$ \\scriptsize{\\raisebox{1pt}{$\\pm 0.4$}} \\\\ \nMedium-Replay \u0026amp; Walker2d \u0026amp; $26.0$ \u0026amp; $77.2$ \u0026amp; $73.9$ \u0026amp; $66.6$ \u0026amp; $\\textbf{\\color{thighlight}82.6}$ \u0026amp; $39.0$ \u0026amp; $49.8$ \u0026amp; $9.7$ \u0026amp; $70.6$ \\scriptsize{\\raisebox{1pt}{$\\pm 1.6$}} \\\\ \n\\midrule\n\\multicolumn{2}{c}{\\bf Average} \u0026amp; 51.9 \u0026amp; \\textbf{\\color{thighlight}77.6} \u0026amp; \\textbf{\\color{thighlight}77.0} \u0026amp; 74.7 \u0026amp; \\textbf{\\color{thighlight}78.9} \u0026amp; 42.1 \u0026amp; 72.9 \u0026amp; 47.8 \u0026amp; \\textbf{\\color{thighlight}77.5} \\hspace{.6cm} \\\\ \n\\bottomrule\n\\end{tabularx}\n\\vspace{-.0cm}\n\\caption{\n}\n\\label{table:locomotion}\n\\end{table*}\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/diffusion-planning/diffusion-planning.github.io/blob/master/images/table.png\"\u003e\u003cimg src=\"https://github.com/diffusion-planning/diffusion-planning.github.io/raw/master/images/table.png\" alt=\"\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003c/details\u003e\n\u003ch3\u003e\u003ca id=\"user-content-planning\" class=\"anchor\" aria-hidden=\"true\" href=\"#planning\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePlanning\u003c/h3\u003e\n\u003cp\u003eTo plan with guided sampling, run:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/plan_guided.py --dataset halfcheetah-medium-expert-v2 --logbase logs/pretrained\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe \u003ccode\u003e--logbase\u003c/code\u003e flag points the \u003ca href=\"scripts/plan_guided.py#L22-L30\"\u003eexperiment loaders\u003c/a\u003e to the folder containing the pretrained models.\nYou can override planning hyperparameters with flags, such as \u003ccode\u003e--batch_size 8\u003c/code\u003e, but the default\nhyperparameters are a good starting point.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-training-from-scratch\" class=\"anchor\" aria-hidden=\"true\" href=\"#training-from-scratch\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTraining from scratch\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eTrain a diffusion model with:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/train.py --dataset halfcheetah-medium-expert-v2\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe default hyperparameters are listed in \u003ca href=\"config/locomotion.py#L22-L65\"\u003elocomotion:diffusion\u003c/a\u003e.\nYou can override any of them with flags, eg, \u003ccode\u003e--n_diffusion_steps 100\u003c/code\u003e.\u003c/p\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eTrain a value function with:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/train_values.py --dataset halfcheetah-medium-expert-v2\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee \u003ca href=\"config/locomotion.py#L67-L108\"\u003elocomotion:values\u003c/a\u003e for the corresponding default hyperparameters.\u003c/p\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003ePlan using your newly-trained models with the same command as in the pretrained planning section, simply replacing the logbase to point to your new models:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003epython scripts/plan_guided.py --dataset halfcheetah-medium-expert-v2 --logbase logs\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eSee \u003ca href=\"config/locomotion.py#L110-L149\"\u003elocomotion:plans\u003c/a\u003e for the corresponding default hyperparameters.\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eDeferred f-strings.\u003c/strong\u003e Note that some planning script arguments, such as \u003ccode\u003e--n_diffusion_steps\u003c/code\u003e or \u003ccode\u003e--discount\u003c/code\u003e,\ndo not actually change any logic during planning, but simply load a different model using a deferred f-string.\nFor example, the following flags:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e---horizon 32 --n_diffusion_steps 20 --discount 0.997\n--value_loadpath \u0027f:values/defaults_H{horizon}_T{n_diffusion_steps}_d{discount}\u0027\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ewill resolve to a value checkpoint path of \u003ccode\u003evalues/defaults_H32_T20_d0.997\u003c/code\u003e. It is possible to\nchange the horizon of the diffusion model after training (see \u003ca href=\"https://colab.research.google.com/drive/1YajKhu-CUIGBJeQPehjVPJcK_b38a8Nc?usp=sharing\" rel=\"nofollow\"\u003ehere\u003c/a\u003e for an example),\nbut not for the value function.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-docker\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eBuild the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003edocker build -f Dockerfile . -t diffuser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eTest the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003edocker run -it --rm --gpus all \\\n --mount type=bind,source=$PWD,target=/home/code \\\n --mount type=bind,source=$HOME/.d4rl,target=/root/.d4rl \\\n diffuser \\\n bash -c \\\n \"export PYTHONPATH=$PYTHONPATH:/home/code \u0026amp;\u0026amp; \\\n python /home/code/scripts/train.py --dataset halfcheetah-medium-expert-v2 --logbase logs\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h2\u003e\n\u003col\u003e\n\u003cli\u003eBuild the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build --fakeroot diffuser.sif Singularity.def\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"2\"\u003e\n\u003cli\u003eTest the image:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv --writable-tmpfs diffuser.sif \\\n bash -c \\\n \"pip install -e . \u0026amp;\u0026amp; \\\n python scripts/train.py --dataset halfcheetah-medium-expert-v2 --logbase logs\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-on-azure\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-on-azure\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning on Azure\u003c/h2\u003e\n\u003ch4\u003e\u003ca id=\"user-content-setup\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup\u003c/h4\u003e\n\u003col\u003e\n\u003cli\u003eTag the Docker image (built in the \u003ca href=\"#Docker\"\u003eDocker section\u003c/a\u003e) and push it to Docker Hub:\u003c/li\u003e\n\u003c/ol\u003e\n\u003cpre\u003e\u003ccode\u003eexport DOCKER_USERNAME=$(docker info | sed \u0027/Username:/!d;s/.* //\u0027)\ndocker tag diffuser ${DOCKER_USERNAME}/diffuser:latest\ndocker image push ${DOCKER_USERNAME}/diffuser\n\u003c/code\u003e\u003c/pre\u003e\n\u003col start=\"3\"\u003e\n\u003cli\u003e\n\u003cp\u003eUpdate \u003ca href=\"azure/config.py\"\u003e\u003ccode\u003eazure/config.py\u003c/code\u003e\u003c/a\u003e, either by modifying the file directly or setting the relevant \u003ca href=\"azure/config.py#L47-L52\"\u003eenvironment variables\u003c/a\u003e. To set the \u003ccode\u003eAZURE_STORAGE_CONNECTION\u003c/code\u003e variable, navigate to the \u003ccode\u003eAccess keys\u003c/code\u003e section of your storage account. Click \u003ccode\u003eShow keys\u003c/code\u003e and copy the \u003ccode\u003eConnection string\u003c/code\u003e.\u003c/p\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003cp\u003eDownload \u003ca href=\"https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10\" rel=\"nofollow\"\u003e\u003ccode\u003eazcopy\u003c/code\u003e\u003c/a\u003e: \u003ccode\u003e./azure/download.sh\u003c/code\u003e\u003c/p\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch4\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h4\u003e\n\u003cp\u003eLaunch training jobs with \u003ccode\u003epython azure/launch.py\u003c/code\u003e. The launch script takes no command-line arguments; instead, it launches a job for every combination of hyperparameters in \u003ca href=\"azure/launch_train.py#L36-L38\"\u003e\u003ccode\u003eparams_to_sweep\u003c/code\u003e\u003c/a\u003e.\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-viewing-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#viewing-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eViewing results\u003c/h4\u003e\n\u003cp\u003eTo rsync the results from the Azure storage container, run \u003ccode\u003e./azure/sync.sh\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eTo mount the storage container:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eCreate a blobfuse config with \u003ccode\u003e./azure/make_fuse_config.sh\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eRun \u003ccode\u003e./azure/mount.sh\u003c/code\u003e to mount the storage container to \u003ccode\u003e~/azure_mount\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eTo unmount the container, run \u003ccode\u003esudo umount -f ~/azure_mount; rm -r ~/azure_mount\u003c/code\u003e\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-reference\" class=\"anchor\" aria-hidden=\"true\" href=\"#reference\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReference\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003e@inproceedings{janner2022diffuser,\n title = {Planning with Diffusion for Flexible Behavior Synthesis},\n author = {Michael Janner and Yilun Du and Joshua B. Tenenbaum and Sergey Levine},\n booktitle = {International Conference on Machine Learning},\n year = {2022},\n}\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-acknowledgements\" class=\"anchor\" aria-hidden=\"true\" href=\"#acknowledgements\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eAcknowledgements\u003c/h2\u003e\n\u003cp\u003eThe diffusion model implementation is based on Phil Wang\u0027s \u003ca href=\"https://github.com/lucidrains/denoising-diffusion-pytorch\"\u003edenoising-diffusion-pytorch\u003c/a\u003e repo.\nThe organization of this repo and remote launcher is based on the \u003ca href=\"https://github.com/jannerm/trajectory-transformer\"\u003etrajectory-transformer\u003c/a\u003e repo.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 2,
"topics": [],
- "updated_at": 1675500146.0
+ "updated_at": 1522955804.0
},
{
"data_format": 2,
- "description": "This material contains content on how to profile and optimize simple Pytorch mnist code using NVIDIA Nsight Systems and Pytorch Profiler ",
+ "description": null,
"filenames": [
- "Singularity"
+ "material/scientific/Singularity",
+ "material/tensorflow/Singularity",
+ "material/hello/Singularity",
+ "material/centos/Singularity",
+ "material/mpi/Singularity",
+ "material/ubuntu/Singularity"
],
- "full_name": "openhackathons-org/AI-Profiler",
+ "full_name": "DataSystemsGroupUT/singularity-tutorial",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-optimizing-a-deep-neural-network-dnn-training-program\" class=\"anchor\" aria-hidden=\"true\" href=\"#optimizing-a-deep-neural-network-dnn-training-program\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOptimizing a Deep Neural Network (DNN) training program\u003c/h1\u003e\n\u003cp\u003eThis folder contains contents for AI training program profiling.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eNVIDIA Nsight Systems\u003c/li\u003e\n\u003cli\u003ePyTorch Profiler with TensorBoard Plugin\u003c/li\u003e\n\u003cli\u003eTensorBoard Visualization\u003c/li\u003e\n\u003cli\u003eOptimization Techniques\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-prerequisites\" class=\"anchor\" aria-hidden=\"true\" href=\"#prerequisites\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePrerequisites\u003c/h2\u003e\n\u003cp\u003eTo run this tutorial you will need a machine with NVIDIA GPU.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eInstall the latest \u003ca href=\"https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker\" rel=\"nofollow\"\u003eDocker\u003c/a\u003e or \u003ca href=\"https://sylabs.io/docs/\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eTo be able to see the profiler output, please download NVIDIA Nsight Systems\u0027 latest version from \u003ca href=\"https://developer.nvidia.com/nsight-systems\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/li\u003e\n\u003cli\u003eLinux ubuntu OS\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-on-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-on-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning on containers\u003c/h2\u003e\n\u003cp\u003eTo start with, you will have to build a Docker or Singularity container.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-docker-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eDocker Container\u003c/h3\u003e\n\u003cp\u003eTo build a docker container, run:\n\u003ccode\u003esudo docker build --network=host -t \u0026lt;imagename\u0026gt;:\u0026lt;tagnumber\u0026gt; .\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eFor instance:\n\u003ccode\u003esudo docker build -t pytorch:1.0 .\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe code labs have been written using Jupyter notebooks and a Dockerfile has been built to simplify deployment. In order to serve the docker instance for a student, it is necessary to expose port 8888 from the container, for instance, the following command would expose port 8888 inside the container as port 8888 on the lab machine:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esudo docker run --gpus all --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 -it --rm --network=host -v ~/ai_profiler/workspace:/workspace pytorch:1.0 jupyter-lab --no-browser --allow-root --ip=0.0.0.0 --port=8888 --NotebookApp.token=\"\" --notebook-dir=/workspace\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003e--gpus\u003c/code\u003e flag is used to enable \u003ccode\u003eall\u003c/code\u003e NVIDIA GPUs during container runtime. The \u003ccode\u003e--rm\u003c/code\u003e flag is used to clean an temporary images created during the running of the container. The \u003ccode\u003e-it\u003c/code\u003e flag enables killing the jupyter server with ctrl-c.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003e--ipc=host --ulimit memlock=-1 --ulimit stack=67108864\u003c/code\u003e enable sufficient memory allocation to run pytorch within the docker environment.\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003ejupyter-lab --no-browser --allow-root --ip=0.0.0.0 --port=8888 --NotebookApp.token=\"\" --notebook-dir=/workspace\u003c/code\u003e command launch the jupyter notebook inside the container. The flag \u003ccode\u003e-v\u003c/code\u003e allows the mapping of working directory on your local machine \u003ccode\u003e~/ai_profiler/profiler/workspace:/workspace\u003c/code\u003e to \u003ccode\u003eworspace\u003c/code\u003e directory inside the container.\u003c/p\u003e\n\u003cp\u003eThen, open the jupyter notebook in browser: \u003ca href=\"http://localhost:8888\" rel=\"nofollow\"\u003ehttp://localhost:8888\u003c/a\u003e\nStart working on the lab by clicking on the \u003ccode\u003estart_here.ipynb\u003c/code\u003e notebook.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity Container\u003c/h3\u003e\n\u003cp\u003eTo build the singularity container, run:\n\u003ccode\u003esudo singularity build --fakeroot \u0026lt;image_name\u0026gt;.simg Singularity\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eFore example:\n\u003ccode\u003esingularity build --fakeroot pytorch.simg Singularity\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThen, run the container:\n\u003ccode\u003esingularity run --nv --bind ~/ai_profiler/workspace:/workspace pytorch.simg jupyter-lab --no-browser --allow-root --ip=0.0.0.0 --port=8888 --NotebookApp.token=\"\" --notebook-dir=/workspace\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eThe \u003ccode\u003e--nv\u003c/code\u003e flag is used to enable \u003ccode\u003eall\u003c/code\u003e NVIDIA GPUs during container runtime. The \u003ccode\u003e--bind\u003c/code\u003e allows the mapping of working directory on your local machine \u003ccode\u003e~/ai_profiler/profiler/workspace:/workspace\u003c/code\u003e to \u003ccode\u003eworspace\u003c/code\u003e directory inside the container.\u003c/p\u003e\n\u003cp\u003eThen, open the jupyter notebook in browser: \u003ca href=\"http://localhost:8888\" rel=\"nofollow\"\u003ehttp://localhost:8888\u003c/a\u003e\nStart working on the lab by clicking on the \u003ccode\u003eStart_Here.ipynb\u003c/code\u003e notebook.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-on-local-machine\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-on-local-machine\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning on Local Machine\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eInstall PyTorch \u003ca href=\"https://pytorch.org/get-started/locally/\" rel=\"nofollow\"\u003ehere\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eInstall essentials:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e pip3 install jupyterlab\n pip3 install ipywidgets\n pip3 install torch_tb_profiler\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eInstall NVIDIA Nsight Systems version 2022.1.1 from \u003ca href=\"https://developer.nvidia.com/nsight-systems\" rel=\"nofollow\"\u003ehere\u003c/a\u003e and set path. Please run \u003ccode\u003ensys --version\u003c/code\u003e from the terminal to ensure you are using the version 2022.1.1 or above\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e#Tutorial Duration\nThe total bootcamp material would take 2 hours.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-a-practical-guide-to-singularity---ut-data-engineering-fall-2021\" class=\"anchor\" aria-hidden=\"true\" href=\"#a-practical-guide-to-singularity---ut-data-engineering-fall-2021\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eA Practical Guide to Singularity - UT Data Engineering (Fall 2021)\u003c/h1\u003e\n\u003cp\u003eThis guide will introduce you to Singularity, a containerization system for scientific computing environments that is available on many scientific computing clusters. Containers allow you to package the environment that your code depends on inside of a portable unit. This is extremely useful for ensuring that your code can be run portably on other machines. It is also useful for installing software, packages, libraries, etc. in environments where you do not have root privileges, like an HPC account.\nThe repository contains the guide and files for the practical session of Singularity containers for the course Data Engineering at the University of Tartu.\nIt is divided in four parts and it goes from the installation process, knowing basic commands and finally a more advanced exercise.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-part-i-installing-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#part-i-installing-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePart I. Installing Singularity\u003c/h2\u003e\n\u003cp\u003eYou have two options to get Singularity installed on your machine.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-option-1-the-docker-way-recommended-for-the-practice-session\" class=\"anchor\" aria-hidden=\"true\" href=\"#option-1-the-docker-way-recommended-for-the-practice-session\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOption 1: The Docker way (recommended for the practice session)\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003edocker\u003c/code\u003e and \u003ccode\u003egit\u003c/code\u003e should be installed on your machine. Then we need to create a container that has the dependencies and binary of singularity in it. The container to run uses the \u003ccode\u003ejcrm/singularity\u003c/code\u003e image that was built with a custom \u003ca href=\"./Dockerfile\"\u003eDockerfile\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eDownload the contents of the repo:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone https://github.com/DataSystemsGroupUT/singularity-tutorial.git\n$ cd singularity-tutorial\n$ docker run --name singularity -v $(pwd)/material:/material -it --privileged jcrm/singularity:latest\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTest that the installation works.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity --version\nsingularity version 3.8.0\u003c/pre\u003e\u003c/div\u003e\n\u003ch3\u003e\u003ca id=\"user-content-option-2-the-traditional-way\" class=\"anchor\" aria-hidden=\"true\" href=\"#option-2-the-traditional-way\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOption 2: The traditional way\u003c/h3\u003e\n\u003cp\u003eDepending on your machine, install the dependencies and the singularity program.\nThe \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/quick_start.html#quick-installation-steps\" rel=\"nofollow\"\u003eofficial website\u003c/a\u003e provides a comprehensive manual to get it done.\u003c/p\u003e\n\u003cp\u003eTest that installation works.\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ singularity --version\nsingularity version 3.8.0\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eNow clone the repository locally. If you have \u003ccode\u003egit\u003c/code\u003e, then just execute:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone https://github.com/DataSystemsGroupUT/singularity-tutorial.git\n$ cd singularity-tutorial\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eNB!\u003c/strong\u003e In the following sections we will assume that commands and examples will run under the \"Docker way\" configuration.\u003c/p\u003e\n\u003cp\u003eNow you\u0027re ready to go :)\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-part-ii-first-steps-with-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#part-ii-first-steps-with-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePart II. First steps with Singularity\u003c/h2\u003e\n\u003cp\u003eSingularity instantiates containers from images that define their environment. Singularity images are stored in \u003ccode\u003e.sif\u003c/code\u003e files.\nYou build a .sif file by defining your environment in a text file and providing that definition to the command singularity build.\nBuilding an image file does require root privileges, so it is most convenient to build the image on your local machine or workstation and then copy it to your HPC cluster.\nOnce you\u0027ve uploaded your image to your HPC cluster, you can submit a batch job that runs singularity exec with the image file you created and the command you want to run.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-running-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning containers\u003c/h3\u003e\n\u003cp\u003e\u003cstrong\u003eExample 1\u003c/strong\u003e: Latest Ubuntu image from the Docker Hub:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run docker://ubuntu:latest\n$ docker run ubuntu:latest # Docker equivalent\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eExample 2\u003c/strong\u003e: Any image from the Docker Hub:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run docker://godlovedc/lolcow\n$ docker run godlovedc/lolcow # Docker equivalent\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eExample 3\u003c/strong\u003e: Pre-built \u003ccode\u003e.sif\u003c/code\u003e file:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run hello/hello.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWe can run containers from different sources.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e*.sif Singularity Image Format (SIF)\n*.sqsh SquashFS format. Native to Singularity 2.4+\n*.img ext3 format. Native to Singularity versions \u0026lt; 2.4\ndirectory/ sandbox format. Directory containing a valid root file\ninstance://* A local running instance of a container\nlibrary://* A SIF container hosted on a Library\ndocker://* A Docker/OCI container hosted on Docker Hub\nshub://* A container hosted on Singularity Hub\noras://* A SIF container hosted on an OCI registry\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-building-our-own-container-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-our-own-container-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding our own container image\u003c/h3\u003e\n\u003cp\u003eTo build a singularity container, we use the \u003ccode\u003ebuild\u003c/code\u003e command. The \u003ccode\u003ebuild\u003c/code\u003e command installs an OS, sets up a container\u0027s environment and installs the apps we will need.\nThe \u003ccode\u003ebuild\u003c/code\u003e command accepts a target as input and produces a container as output.\nTo use the \u003ccode\u003ebuild\u003c/code\u003e command, we need a \u003cstrong\u003erecipe file\u003c/strong\u003e (a.k.a definition file).\u003c/p\u003e\n\u003cp\u003eA Singularity recipe file is a set of instructions telling Singularity what software to install in the container.\nA Singularity Definition file is divided in two parts:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eHeader :\u003c/strong\u003e Describes configuration of the base operating system within the container. The most important keyword here is \u003ccode\u003eBootstrap\u003c/code\u003e and you can find the supported options in the \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/appendix.html?highlight=bootstrap\" rel=\"nofollow\"\u003edocumentation\u003c/a\u003e.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003eBootStrap: debootstrap\nOSVersion: trusty\nMirrorURL: http://us.archive.ubuntu.com/ubuntu/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cstrong\u003eSections :\u003c/strong\u003e Group definitions of the container. Each section is defined by the \u003ccode\u003e%\u003c/code\u003e character and a reserved keyword:\u003c/li\u003e\n\u003c/ul\u003e\n\u003cpre\u003e\u003ccode\u003e%runscript\n echo \"This is what happens when you run the container...\"\n\n%post\n echo \"Hello from inside the container\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHere we can see an overview of the valid sections. The complete reference can be found \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/definition_files.html\" rel=\"nofollow\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e%setup groups commands to be executed first on the host system\n%files copies files into the container\n%app* redundant to build different containers for each app\n%post installs new software and libraries, write configuration files, create new directories\n%test runs at the very end of the build process to validate the container using a method of your choice\n%environment defines environment variables used at runtime\n%startscript groups files executed when the instance start command is issued\n%runscript groups commands to be executed when the container image is run\n%labels used to add metadata to the file\n%help adds information to the metadata file in the container during the build\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe Singularity source code contains several example definition files in the \u003ccode\u003e/examples\u003c/code\u003e subdirectory.\nLet\u0027s take its \u003ccode\u003eubuntu\u003c/code\u003e example definition that has been copied to the \u003ccode\u003ematerial/ubuntu\u003c/code\u003e directory.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cat /material/ubuntu/Singularity\nBootStrap: debootstrap\nOSVersion: trusty\nMirrorURL: http://us.archive.ubuntu.com/ubuntu/\n\n\n%runscript\n echo \"This is what happens when you run the container...\"\n\n\n%post\n echo \"Hello from inside the container\"\n sed -i \u0027s/$/ universe/\u0027 /etc/apt/sources.list\n apt-get update\n apt-get -y install vim\n apt-get clean\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNow let\u0027s use this definition file as a starting point to build our \u003ccode\u003eubuntu.sif\u003c/code\u003e container. Note that the build command requires \u003ccode\u003esudo\u003c/code\u003e privileges when executing in non-docker mode.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cd /material/ubuntu\n$ singularity build ubuntu.sif Singularity\n$ singularity run ubuntu.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eWe can also spawn a shell within the container and interact with it. For this we execute the \u003ccode\u003eshell\u003c/code\u003e command.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity shell ubuntu.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eDepending on the environment on your host system you may see your prompt change. Let\u0027s see the information of the OS running in the container.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eSingularity\u0026gt; cat /etc/os-release\nNAME=\"Ubuntu\"\nVERSION=\"14.04, Trusty Tahr\"\nID=ubuntu\nID_LIKE=debian\nPRETTY_NAME=\"Ubuntu 14.04 LTS\"\nVERSION_ID=\"14.04\"\nHOME_URL=\"http://www.ubuntu.com/\"\nSUPPORT_URL=\"http://help.ubuntu.com/\"\nBUG_REPORT_URL=\"http://bugs.launchpad.net/ubuntu/\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eAs an additional experiment, let\u0027s build the lolcow program in two different ways. These two ways will only differ in the bootstrap agent and they will contain the same definitions for the sections. This is described below:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e%runscript\n fortune | cowsay | lolcat\n\n%files\n install-dependencies.sh install-dependencies.sh\n\n%post\n echo \"Hello from inside the container\"\n sh -x install-dependencies.sh\n\n%environment\n export PATH=/usr/games:$PATH\n export LC_ALL=C\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe first way uses the \u003ccode\u003eubuntu.sif\u003c/code\u003e image that we previously built.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootStrap: localimage\nFrom: /material/ubuntu/ubuntu.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLet\u0027s build the image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cd /material/lolcow\n$ singularity build lolcow-localimage.sif lolcow-localimage.def\n$ singularity run lolcow-localimage.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe second way uses the base library, which is commonly used for Singularity containerized environments.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootStrap: library\nFrom: ubuntu:18.04\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eLet\u0027s build and run the second image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cd /material/lolcow\n$ singularity build lolcow-library.sif lolcow-library.def\n$ singularity run lolcow-library.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRemember that Singularity can build containers in several different file formats. The default is to build a \u003ca href=\"https://en.wikipedia.org/wiki/SquashFS\" rel=\"nofollow\"\u003esquashfs\u003c/a\u003e image. The \u003ccode\u003esquashfs\u003c/code\u003e format is compressed and immutable making it a good choice for reproducible, production-grade containers. However, if you want to shell into a container and have more freedom with it, you should build a sandbox (which is just a directory). This is great when you are still developing your container and don\u0027t yet know what should be included in the recipe file.\nThe command would look like this:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity --sandbox build lolcow-library.sif lolcow-library.def\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-part-iii-data-intensive-application\" class=\"anchor\" aria-hidden=\"true\" href=\"#part-iii-data-intensive-application\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePart III. Data intensive application\u003c/h2\u003e\n\u003cp\u003eFor this part we will execute a Tensorflow program (borrowed from \u003ca href=\"https://github.com/easy-tensorflow/easy-tensorflow/tree/master/3_Neural_Network\"\u003ehere\u003c/a\u003e) that trains a neural network to classify MNIST data of handwriting images. It also logs the progress of the training and saves the result into a file.\nSince we want to avoid installing all the dependencies of tensorflow in a blank Singularity image, we better use the \u003ccode\u003etensorflow/tensorflow:1.15.5\u003c/code\u003e image from the Docker Hub. Additionally we install the \u003ccode\u003ematplotlib\u003c/code\u003e dependency in the \u003ccode\u003e%post\u003c/code\u003e stage.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eBootstrap: docker\nFrom: tensorflow/tensorflow:1.15.5\n\n%post\n pip install matplotlib\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThe definition of the image can be found in \u003ca href=\"material/tensorflow/Singularity\"\u003ematerial/tensorflow/Singularity\u003c/a\u003e.\nNow we can build this definition into a \u003ccode\u003e.sif\u003c/code\u003e image file using the following command:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cd /material/tensorflow\n$ singularity build tensorflow.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis ran the commands we defined in the \u003ccode\u003e%post\u003c/code\u003e section inside a container and\nafterwards saved the state of the container in the image \u003ccode\u003etensorflow.sif\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eLet\u0027s run our Tensorflow program in a container based on the image we just built.\nBefore executing the command we have to copy the python source code files into the new container.\nWe achieve this by adding the \u003ccode\u003e--bind\u003c/code\u003e flag and specifying the source and destintation paths to mount.\nFinally we run the program using the\u003ccode\u003esh\u003c/code\u003e command.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity exec --bind /material/tensorflow/:/material tensor.sif sh -c \"cd /material \u0026amp;\u0026amp; python main.py\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis program does not take long to run. Once it finishes, it creates the file \u003ccode\u003eout.png\u003c/code\u003e with the correct and misclassified examples.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"images/plot.png\"\u003e\u003cimg src=\"images/plot.png\" alt=\"Plot\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eWorth to mention that, for convenience, Singularity\n\u003ca href=\"https://www.sylabs.io/guides/3.2/user-guide/bind_paths_and_mounts.html\" rel=\"nofollow\"\u003ebinds a few important directories by default\u003c/a\u003e:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eYour home directory\u003c/li\u003e\n\u003cli\u003eThe current working directory\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003e/sys\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003e\u003ccode\u003e/proc\u003c/code\u003e\u003c/li\u003e\n\u003cli\u003eothers (depending on the version of Singularity)\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-part-iv-advanced-usage-of-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#part-iv-advanced-usage-of-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePart IV. Advanced Usage of Singularity\u003c/h2\u003e\n\u003cp\u003eFor this part it is necessary to get access to an HPC cluster or set it up locally.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-mpi\" class=\"anchor\" aria-hidden=\"true\" href=\"#mpi\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eMPI\u003c/h3\u003e\n\u003cp\u003eYou can run Singularity containers via MPI. You\u0027ll need to have MPI installed within the container.\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eIf you are working on a single node, you can run MPI within a container.\u003c/li\u003e\n\u003cli\u003eHowever, more commonly you would use the MPI executable on your HPC cluster to execute Singularity containers.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThe key thing in order to use the system MPI to run Singularity containers is to make sure the MPI installed inside the container is compatible with the MPI installed on the HPC.\nThe easiest way to ensure this is to have the version inside the container be the same version as the MPI module you plan to use on any HPC cluster. You can see these modules with:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ module load gcc # load the gcc version of interest\n$ module avail openmpi # see the MPI versions available for that gcc\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHere is an example of running a Singularity container via MPI. Fist we build the image:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ cd /material/mpi\n$ singularity build openmpi.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eThis will prepare the \u003ccode\u003empitest.c\u003c/code\u003e to execute MPI natively on the HPC cluster.\nThe program is simple. It ranks the completion order of MPI executors.\nFor that we launch 2 processes per node on all allocated nodes.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ module load gcc openmpi\n$ mpirun -n 2 singularity run openmpi.sif /opt/mpitest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-slurm\" class=\"anchor\" aria-hidden=\"true\" href=\"#slurm\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSLURM\u003c/h3\u003e\n\u003cp\u003eIf your target system is setup with a batch system such as SLURM, a standard way to execute MPI applications is through a batch script. The following example illustrates the context of a batch script for Slurm that aims at starting a Singularity container on each node allocated to the execution of the job. It can easily be adapted for all major batch systems available.\nHere\u0027s an example of running a Singularity container with SLURM:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e#!/bin/bash\n#SBATCH --job-name singularity-mpi\n#SBATCH -N $NNODES # total number of nodes\n#SBATCH --time=00:05:00 # Max execution time\n\nmpirun -n $NP singularity exec openmpi.sif /opt/mpitest\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-gpucuda\" class=\"anchor\" aria-hidden=\"true\" href=\"#gpucuda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eGPU/CUDA\u003c/h3\u003e\n\u003cp\u003eYou can easily use a Singularity container that does computation on a GPU. Singularity supports NVIDIA\u2019s CUDA GPU compute framework.\nBy using the \u003ccode\u003e--nv\u003c/code\u003e flag when running Singularity, the NVIDIA drivers in the HPC cluster are dynamically mounted into the container at run time. The container should provide the CUDA toolkit, using a version of the toolkit that is compatible with the NVIDIA driver version in the HPC.\u003c/p\u003e\n\u003cp\u003eHere\u0027s an example of running a Singularity container based on a Docker container that provides GPU-using software.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity run --nv docker://pytorch/pytorch:1.6.0-cuda10.1-cudnn7-runtime\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-conclusion\" class=\"anchor\" aria-hidden=\"true\" href=\"#conclusion\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConclusion\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eWe have learned the necessary commands of Singularity to start producing containers that can run in HPC environments.\u003c/li\u003e\n\u003cli\u003eSingularity enables isolation, reproducibility and security in HPC environments.\u003c/li\u003e\n\u003cli\u003eIts use is mostly targeted to scientific applications with intensive performance requirements.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-references\" class=\"anchor\" aria-hidden=\"true\" href=\"#references\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eReferences\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/sylabs/singularity-userdocs/blob/master/mpi.rst\"\u003ehttps://github.com/sylabs/singularity-userdocs/blob/master/mpi.rst\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/maheshbabuadapa/Singularity-Tutorial\"\u003ehttps://github.com/maheshbabuadapa/Singularity-Tutorial\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://docs-research-it.berkeley.edu/services/high-performance-computing/user-guide/software/using-software/using-singularity-savio\" rel=\"nofollow\"\u003ehttps://docs-research-it.berkeley.edu/services/high-performance-computing/user-guide/software/using-software/using-singularity-savio\u003c/a\u003e\u003c/li\u003e\n\u003cli\u003e\u003ca href=\"https://github.com/bdusell/singularity-tutorial\"\u003ehttps://github.com/bdusell/singularity-tutorial\u003c/a\u003e\u003c/li\u003e\n\u003c/ul\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1675267909.0
+ "updated_at": 1637825788.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity image with a selection of neuro processing packages and tools",
"filenames": [
- "devops_pipeline/Singularity",
- "devops_base/Singularity"
+ "Singularity"
],
- "full_name": "ninamiolane/connect",
+ "full_name": "chidiugonna/nklab-neuro-tools",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-image-containing-neuroimaging-software\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-image-containing-neuroimaging-software\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity image containing Neuroimaging software\u003c/h1\u003e\n\u003cp\u003eThis Singularity image will be about 20GB when built using Singularity 2.4.2. It comes with FSL 5.10 including eddy_cuda8.0, Mrtrix 3RC2, Freesurfer 6.0.0, Afni 18.0.21, ANTS 2.2.0, MRIQC v0.1, Julia v0.6.1 and The Duke Resting State fMRI pipeline. It also has CUDA 8.0 toolkit libraries installed.\u003c/p\u003e\n\u003cp\u003eThe image can be built using Singularity build in singularity2.4.2\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild Singularity Image\u003c/h2\u003e\n\u003cul\u003e\n\u003cli\u003eYou will need to have singularity 2.4 installed. Simply clone this repository to a convenient directory.\u003c/li\u003e\n\u003cli\u003eNavigate into the \u003ccode\u003enklab-neuro-tools\u003c/code\u003edirectory and check that you have a Singularity definiton file \u003ccode\u003eSingularity\u003c/code\u003e and the directory \u003ccode\u003esrc\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eConfirm that \u003ccode\u003esrc\u003c/code\u003e folder and all the files in \u003ccode\u003esrc\u003c/code\u003e have full read and write privileges. if not then \u003ccode\u003esudo chmod -R 777 src\u003c/code\u003e should accomplish this.\u003c/li\u003e\n\u003cli\u003eNow simply build the image as \u003ccode\u003esudo singularity build nklab-neuro-tools.simg Singularity\u003c/code\u003e - note that the image name is assumed to be \u003ccode\u003enklab-neuro-tools.simg\u003c/code\u003e but this can be changed to a more convenient label.\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Singularity Image\u003c/h2\u003e\n\u003cp\u003eYou can now run commands by simply appending them to the end of \u003ccode\u003esingularity run nklab-neuro-tools.simg\u003c/code\u003e So for example to run an FSL command like flirt directly the following would be entered: \u003ccode\u003esingularity run nklab-neuro-tools.simg flirt ....\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-cuda-compatibility\" class=\"anchor\" aria-hidden=\"true\" href=\"#cuda-compatibility\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCuda Compatibility\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eYou can run Cuda-8.0 compatible executables by using the \u003ccode\u003e--nv\u003c/code\u003e parameter. The example provided next shows how to accomplish this with \u003ccode\u003eeddy-cuda8.0\u003c/code\u003e:\n\u003ccode\u003esingularity run --nv rsfmri.img /opt/fsl/bin/eddy_cuda8.0 --imain=G1_1_OFF_28271_cgm --mask=G1_1_OFF_28271_cgm0_brain_mask --acqp=acqparams.txt --index=index.txt --bvecs=bvecs --bvals=bvals --out=G1_1_OFF_28271_cgm_eddy\u003c/code\u003e\n\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-shell-into-singularity-image\" class=\"anchor\" aria-hidden=\"true\" href=\"#shell-into-singularity-image\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eShell into Singularity Image\u003c/h3\u003e\n\u003cul\u003e\n\u003cli\u003eYou can also shell into the singularity image using: \u003ccode\u003esingularity shell nklab-neuro-tools.simg\u003c/code\u003e and then run commands at the command line within the container.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eProvided below are notes on specific aspects of the container that may be useful.\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003e\u003ca id=\"user-content-resting-state-fmri-pipeline-nan-kuei-chenduke-university\" class=\"anchor\" aria-hidden=\"true\" href=\"#resting-state-fmri-pipeline-nan-kuei-chenduke-university\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eResting State FMRI pipeline (Nan-kuei Chen/Duke University)\u003c/h2\u003e\n\u003cp\u003ePlease refer to \u003ca href=\"https://wiki.biac.duke.edu/biac:analysis:resting_pipeline\" rel=\"nofollow\"\u003ehttps://wiki.biac.duke.edu/biac:analysis:resting_pipeline\u003c/a\u003e for details of use.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-introduction\" class=\"anchor\" aria-hidden=\"true\" href=\"#introduction\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eIntroduction\u003c/h3\u003e\n\u003cp\u003eThe original python source \u003ccode\u003eresting_pipeline.py\u003c/code\u003e available at at [\u003ca href=\"https://wiki.biac.duke.edu/biac:analysis:resting_pipeline\" rel=\"nofollow\"\u003ehttps://wiki.biac.duke.edu/biac:analysis:resting_pipeline\u003c/a\u003e] has been slightly amended and is included in this repository in the folder \u003ccode\u003esrc\u003c/code\u003e. These changes are:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003edata1\u003c/code\u003e has been selectively converted to dtype \u003ccode\u003enumpy.float64\u003c/code\u003e\n\u003c/li\u003e\n\u003cli\u003eslice indices have been cast as longs in certain instances.\u003c/li\u003e\n\u003cli\u003eBXH functionality is ignored. To explicitly use BXH info pass the flag --ignorebxh=N\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch3\u003e\u003ca id=\"user-content-sliding-window-functionality\" class=\"anchor\" aria-hidden=\"true\" href=\"#sliding-window-functionality\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSliding window functionality\u003c/h3\u003e\n\u003cp\u003eA new step has been added \u003ccode\u003e-7sw\u003c/code\u003e to enable sliding window functionality. In order to use this step you will need to use the \u003ccode\u003e--slidewin\u003c/code\u003e parameter which takes 2 numbers seperated by a comma. The 1st number is the window size in seconds and the second number is the shift in seconds between sequential windows. So for example \u003ccode\u003e--slidewin=60,3\u003c/code\u003e will use a window size of \u003ccode\u003e60\u003c/code\u003e seconds shifted by \u003ccode\u003e3\u003c/code\u003e seconds for each subsequent window. Keep in mind that the \u003ccode\u003e--tr\u003c/code\u003e (in milliseconds) parameter is required to calculate the number of volumes to use for each sliding window correlation. If you do not specify the --slidwin parameter and run step \u003ccode\u003e7sw\u003c/code\u003e then default values of \u003ccode\u003e30,3\u003c/code\u003e will be used. Sliding window files are exported to a new directory \u003ccode\u003eSlidingWindow_W_S\u003c/code\u003e and image files are consolidated into 4D volumes for viewing in FSL as a movie\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-extensions-to-slice-correction-functionality\" class=\"anchor\" aria-hidden=\"true\" href=\"#extensions-to-slice-correction-functionality\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExtensions to Slice Correction functionality\u003c/h3\u003e\n\u003cp\u003eThe pipeline has been extended to accept custom slice correction timing files. A python script make_fsl_stc.py has been bundled in this container which can take .json files created by dcm2niix. This python program will create a slice correction file with timing values and one with slices in order of acquisition. It can be called as follows:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003e/opt/rsfmri_python/bin/make_fsl_stc.py fmri.json\u003c/code\u003e where fmri.json is the json output from dcm2niix. custom names for the slice order and slice time files can be provided as parameters as follows:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003emake_fsl_stc.py fmri.json --slicenum=/path/num.txt --slicetime=/path/time.txt\u003c/code\u003e otherwise these files default to \u003ccode\u003esliceorder.txt\u003c/code\u003e and \u003ccode\u003eslicetimes.txt\u003c/code\u003e in the current directory.\u003c/p\u003e\n\u003cp\u003eOnce these custom files have been created then they can be provided to the resting state pipeline using the full path as input to the \u003ccode\u003e--sliceorder\u003c/code\u003e parameter\n\u003ccode\u003e--sliceorder=/path/num.txt\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eplease note that the default custom slice file expected uses slice order. If you pass a text file with slice times then you will need to use another parameter \u003ccode\u003e--slicetimings=time\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-example-commands\" class=\"anchor\" aria-hidden=\"true\" href=\"#example-commands\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eExample Commands\u003c/h3\u003e\n\u003ch4\u003e\u003ca id=\"user-content-create-slice-timing-files-from-json\" class=\"anchor\" aria-hidden=\"true\" href=\"#create-slice-timing-files-from-json\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCreate Slice Timing files from json\u003c/h4\u003e\n\u003cp\u003e\u003ccode\u003esingularity run -B $PWD:/opt/data nklab-neuro-tools.simg /opt/rsfmri_python/bin/make_fsl_stc.py /opt/data/fmri.json\u003c/code\u003e\u003c/p\u003e\n\u003ch4\u003e\u003ca id=\"user-content-run-pipeline-also-runs-sliding-window-with-window-30s-shift3s-using-custom-slice-timing-file\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-pipeline-also-runs-sliding-window-with-window-30s-shift3s-using-custom-slice-timing-file\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun pipeline (also runs sliding window with window-30s, shift=3s) using custom slice timing file\u003c/h4\u003e\n\u003cp\u003e\u003ccode\u003esingularity run --rm -B $PWD:/opt/data nklab-neuro-tools.simg /opt/rsfmri_python/bin/resting_pipeline.py --func /opt/data/fmri-std-pre.nii.gz -o restoutput --steps=1,2,3,4,5,6,7,8 --slidewin=30,3 --sliceorder=/opt/data/slicetimes.txt --slicetiming=time --tr=3000\u003c/code\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 0,
"topics": [],
- "updated_at": 1582874207.0
+ "updated_at": 1533338985.0
},
{
"data_format": 2,
- "description": "pipeline for imputing snps on 1000g hg38 reference. repurposed from sceQTL-Gen for specific lab use",
+ "description": "A Docker/Singularity container for packaging pulsar searching software",
"filenames": [
- "Singularity.Imputation"
+ "Singularity"
],
- "full_name": "powellgenomicslab/SNP_imputation_1000g_hg38",
- "latest_release": "v0.0.2",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-powell-lab-imputation-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#powell-lab-imputation-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePowell Lab Imputation Pipeline\u003c/h1\u003e\n\u003cp\u003eRepurposed pipeline from Urmo for the sceQTL-Gen Consortium. Update requirements so more suitable for more general use\u003c/p\u003e\n\u003cp\u003ePlease see the \u003ca href=\"https://github.com/powellgenomicslab/SNP_imputation_1000g_hg38/wiki/SNP-Genotype-Imputation-Using-1000G-hg38-Reference\"\u003eWiki\u003c/a\u003e for information on running the SNP imputation pipeline.\u003c/p\u003e\n\u003cp\u003eThese documents were put together by Drew Neavin on 16 November, 2021.\u003c/p\u003e\n",
+ "full_name": "federatedcloud/pulsar-pipeline-container",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-docker-pulsar-pipeline\" class=\"anchor\" aria-hidden=\"true\" href=\"#docker-pulsar-pipeline\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003edocker-pulsar-pipeline\u003c/h1\u003e\n\u003cp\u003eA Docker/Singularity container for packaging pulsar searching software\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4541\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1648702994.0
+ "updated_at": 1622819898.0
},
{
"data_format": 2,
- "description": "Singularity container for Python and Keras",
+ "description": "seqtk singulairty container",
"filenames": [
"Singularity"
],
- "full_name": "JasonKChow/singPyKeras",
+ "full_name": "phgenomics-singularity/seqtk",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singpykeras\" class=\"anchor\" aria-hidden=\"true\" href=\"#singpykeras\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingPyKeras\u003c/h1\u003e\n\u003cp\u003eSingularity container for Python and Keras. Check releases for built images.\u003c/p\u003e\n\u003cp\u003eTo build:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esudo singularity build pyTF.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo use/test:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv pyTF.sif python kerasTest.py\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo get into environment\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv pyTF.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo get just an interactive python\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity exec --nv pyTF.sif python\n\u003c/code\u003e\u003c/pre\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1676527668.0
+ "updated_at": 1576530783.0
},
{
"data_format": 2,
- "description": "Symbolic Bidirectional A* with Error",
+ "description": "R container with baySeq and riboseq libraries",
"filenames": [
"Singularity"
],
- "full_name": "valcazar/SymBAE",
+ "full_name": "callaghanmt-containers/riboseqbayseq",
"latest_release": null,
- "readme": "\u003cp\u003eFast Downward is a domain-independent planning system.\u003c/p\u003e\n\u003cp\u003eFor documentation and contact information see \u003ca href=\"http://www.fast-downward.org/\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org/\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe following directories are not part of Fast Downward as covered by this\nlicense:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eCopyright (C) 2003-2016 Malte Helmert\nCopyright (C) 2008-2016 Gabriele Roeger\nCopyright (C) 2010-2016 Jendrik Seipp\nCopyright (C) 2010, 2011, 2013-2016 Silvan Sievers\nCopyright (C) 2012-2016 Florian Pommerening\nCopyright (C) 2016 Martin Wehrle\nCopyright (C) 2013, 2015 Salome Simon\nCopyright (C) 2014, 2015 Patrick von Reth\nCopyright (C) 2015 Manuel Heusner, Thomas Keller\nCopyright (C) 2009-2014 Erez Karpas\nCopyright (C) 2014 Robert P. Goldman\nCopyright (C) 2010-2012 Andrew Coles\nCopyright (C) 2010, 2012 Patrik Haslum\nCopyright (C) 2003-2011 Silvia Richter\nCopyright (C) 2009-2011 Emil Keyder\nCopyright (C) 2010, 2011 Moritz Gronbach, Manuela Ortlieb\nCopyright (C) 2011 Vidal Alc\u00e1zar Saiz, Michael Katz, Raz Nissim\nCopyright (C) 2010 Moritz Goebelbecker\nCopyright (C) 2007-2009 Matthias Westphal\nCopyright (C) 2009 Christian Muise\n\nFast Downward is free software: you can redistribute it and/or modify it under\nthe terms of the GNU General Public License as published by the Free Software\nFoundation, either version 3 of the License, or (at your option) any later\nversion.\n\nFast Downward is distributed in the hope that it will be useful, but WITHOUT ANY\nWARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A\nPARTICULAR PURPOSE. See the GNU General Public License for more details.\n\nYou should have received a copy of the GNU General Public License along with\nthis program. If not, see \u0026lt;http://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch2\u003e\u003ca id=\"user-content-singularity-container-build-script-for-riboseqr-and-bayseq\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-container-build-script-for-riboseqr-and-bayseq\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity container build script for riboSeqR and baySeq\u003c/h2\u003e\n\u003cp\u003eBoth packages are obtained from Bioconductor and require RCurl as a prerequisite.\u003c/p\u003e\n\u003cp\u003eRCurl needs the Ubuntu \u003ccode\u003elibcurl-dev\u003c/code\u003e package which is also installed\u003c/p\u003e\n\u003cp\u003eTo build:\u003c/p\u003e\n\u003cp\u003e\u003ccode\u003esudo singularity build riboseqbayseq.simg Singularity\u003c/code\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1675605071.0
+ "updated_at": 1536747304.0
},
{
"data_format": 2,
- "description": null,
+ "description": "official build specifications for busybox",
"filenames": [
"Singularity"
],
- "full_name": "CshlSiepelLab/SimPol",
+ "full_name": "singularityhub/busybox",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-simpol--simulating-the-dynamics-of-rna-polymerase-rnap-on-dna-template\" class=\"anchor\" aria-hidden=\"true\" href=\"#simpol--simulating-the-dynamics-of-rna-polymerase-rnap-on-dna-template\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSimPol \u2014 Simulating the dynamics of RNA Polymerase (RNAP) on DNA template\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-overview\" class=\"anchor\" aria-hidden=\"true\" href=\"#overview\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOverview\u003c/h2\u003e\n\u003cp\u003eSimPol tracks the independent movement of RNAPs along the DNA templates of a large\nnumber of cells. It accepts several key\nuser-specified parameters, including the initiation rate, pause-escape rate,\na constant or variable elongation rate, the mean and variance of pause sites across cells,\nas well as the center-to-center spacing constraint between RNAPs,\nthe number of cells being simulated, the gene length, and the total time of transcription.\nThe simulator simply allows each RNAP to move forward or not,\nin time slices of $10^{-4}$ minutes, according to the specified position-specific\nrate parameters. It assumes that at most one movement of each RNAP can occur per\ntime slice. The simulator monitors for collisions between adjacent RNAPs, prohibiting\none RNAP to advance if it is at the boundary of the allowable distance from the next.\nAfter running for the specified time, SimPol outputs either a file in HDF5 format or files in CSV format that records all RNAP position for the last specified number of steps. See more options and details about parameters and outputs below.\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n \u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"figures/simulator.png\"\u003e\u003cimg src=\"figures/simulator.png\" alt=\"simulator\" width=\"600\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003c/p\u003e\n\u003cp align=\"center\"\u003e\n\tFig.1 Design of SimPol (\u201cSimulator of Polymerases\u201d)\n\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-setup-environment\" class=\"anchor\" aria-hidden=\"true\" href=\"#setup-environment\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSetup Environment\u003c/h2\u003e\n\u003cp\u003eWe provide two different approaches to set up the environment for SimPol, one with\n\u003ca href=\"https://docs.conda.io/projects/conda/en/stable/user-guide/getting-started.html\" rel=\"nofollow\"\u003eConda\u003c/a\u003e\nand the other with \u003ca href=\"https://docs.sylabs.io/guides/latest/user-guide/quick_start.html#\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e.\nPre-built debug and release executables can be found in the bin folder\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-conda\" class=\"anchor\" aria-hidden=\"true\" href=\"#conda\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eConda\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003econda env create -f environment.yml\n\nconda activate simpol\n\nbin/simPol_Release --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSingularity\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build --fakeroot simPol.sif Singularity\n\nsingularity shell simPol.sif\n\nbin/simPol_Release --help\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-from-source\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-from-source\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild from source\u003c/h2\u003e\n\u003cp\u003eThere is the option to build in either debug mode with debug symbols or release mode with compiler optimizations (e.g. -O2).\u003c/p\u003e\n\u003cp\u003eTo create a build directory in release mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecmake -S . -B Release/ -D CMAKE_BUILD_TYPE=Release\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo clean the release mode build directory\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecmake --build Release/ --target clean\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eTo build in release mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ecmake --build Release/\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eNote: Replace all instances of \u0027Release\u0027 with \u0027Debug\u0027 to build in Debug mode\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun Locally\u003c/h2\u003e\n\u003cp\u003eSet Number of Threads [By default uses all available threads]\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eexport OMP_NUM_THREADS=\u0026lt;number of threads to use\u0026gt;\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun in Release Mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./Release/simPol [options]\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun in Debug Mode\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e./Debug/simPol [options]\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eRun program with file containing command line arguments\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e ./Release/simPol $(\u0026lt;simPol_arguments.dat)\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-run-with-uge-workload-manager-within-cshl\" class=\"anchor\" aria-hidden=\"true\" href=\"#run-with-uge-workload-manager-within-cshl\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRun with UGE Workload Manager (within CSHL)\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eqsub -pe OpenMP 5 -cwd -b y ./Release/simPol -n 100 --csv 10\n\u003c/code\u003e\u003c/pre\u003e\n\u003cul\u003e\n\u003cli\u003eNote: This allocates 5 threads for the program in the OpenMP parallel environment\u003c/li\u003e\n\u003cli\u003eCheck available parallel environments: qconf -spl\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-usage\" class=\"anchor\" aria-hidden=\"true\" href=\"#usage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eUsage\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003eOptions:\n\t-h, --help\n\t\tShow this help message and exit\n\n\t-k INTEGER, --tssLen=INTEGER\n\t\tdefine the mean of pause sites across cells [default 50bp]\n\n\t--kSd=DOUBLE\n\t\tdefine the standard deviation of pause sites across cells [default 0]\n\n\t--kMin=INTEGER\n\t\tupper bound of pause site allowed [default 17bp]\n\n\t--kMax=INTEGER\n\t\tlower bound of pause site allowed [default 200bp]\n\n\t--geneLen=INTEGER\n\t\tdefine the length of the whole gene [default 2000bp]\n\n\t-a DOUBLE, --alpha=DOUBLE\n\t\tinitiation rate [default 1 event per min]\n\n\t-b DOUBLE, --beta=DOUBLE\n\t\tpause release rate [default 1 event per min]\n\n\t-z DOUBLE, --zeta=DOUBLE\n\t\tthe mean of elongation rates across sites [default 2000bp per min]\n\n\t--zetaSd=DOUBLE\n\t\tthe standard deviation of elongation rates across sites [default 1000]\n\n\t--zetaMax=DOUBLE\n\t\tthe maximum of elongation rates allowed [default 2500bp per min]\n\n\t--zetaMin=DOUBLE\n\t\tthe minimum of elongation rates allowed [default 1500bp per min]\n\n\t--zetaVec=CHARACTER\n\t\ta file contains vector to scale elongation rates. All cells share the same set of parameters [default \"\"]\n\n\t-n INTEGER, --cellNum=INTEGER\n\t\tNumber of cells being simulated [default 10]\n\n\t-s INTEGER, --polSize=INTEGER\n\t\tPolymerase II size [default 33bp]\n\n\t--addSpace=INTEGER\n\t\tAdditional space in addition to RNAP size [default 17bp]\n\n\t-t DOUBLE, --time=DOUBLE\n\t\tTotal time of simulating data in a cell [default 0.1 min]\n\n\t--hdf5=INTEGER\n\t\tRecord position matrix to HDF5 file for remaining number of steps specified [default: 0 steps]\n\n\t--csv=INTEGER\n\t\tRecord position matrix to csv file for remaining number of steps specified [default: 1 step]\n\n\t-d CHARACTER, --outputDir=CHARACTER\n\t\tDirectory for saving results [default: \u0027results\u0027]\n\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-outputs\" class=\"anchor\" aria-hidden=\"true\" href=\"#outputs\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOutputs\u003c/h2\u003e\n\u003cp\u003eAfter simulation, SimPol produces multiple output files:\u003c/p\u003e\n\u003col\u003e\n\u003cli\u003eprobability_vector.csv\u003c/li\u003e\n\u003cli\u003epause_sites.csv\u003c/li\u003e\n\u003cli\u003ecombined_cell_data.csv: Stores the total # of polymerase at each site across all cells\u003c/li\u003e\n\u003cli\u003eposition_matrices.h5: An HDF5 file containing a group of position matrices for the last number of specified steps. The file can be viewed by importing it into the HDFView app. Download Here: \u003ca href=\"https://www.hdfgroup.org/downloads/hdfview/#download\" rel=\"nofollow\"\u003ehttps://www.hdfgroup.org/downloads/hdfview/#download\u003c/a\u003e\n\u003cul\u003e\n\u003cli\u003eUsing HighFive interface to generate HDF5 file \u003ca href=\"https://github.com/BlueBrain/HighFive\"\u003ehttps://github.com/BlueBrain/HighFive\u003c/a\u003e\n\u003c/li\u003e\n\u003cli\u003eUses chunking and ZLIB (deflate) compression at level 9\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003epositions/position_matrix_#.csv: CSV files containing the position matrix at a specified step\u003c/li\u003e\n\u003c/ol\u003e\n\u003ch2\u003e\u003ca id=\"user-content-sampling-nascent-rna-sequencing-read-counts\" class=\"anchor\" aria-hidden=\"true\" href=\"#sampling-nascent-rna-sequencing-read-counts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSampling nascent RNA sequencing read counts\u003c/h2\u003e\n\u003cp\u003eIf you prefer to simulate nascent RNA sequencing read counts in addition to the RNAP positions,\nyou can also follow the tutorial in \u003ccode\u003escripts/sample_read_counts.Rmd\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-citation\" class=\"anchor\" aria-hidden=\"true\" href=\"#citation\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eCitation\u003c/h2\u003e\n\u003cp\u003eZhao, Y., Liu, L. \u0026amp; Siepel, A. Model-based characterization of the equilibrium dynamics of transcription initiation and promoter-proximal pausing in human cells. 2022.10.19.512929 Preprint at \u003ca href=\"https://doi.org/10.1101/2022.10.19.512929\" rel=\"nofollow\"\u003ebioRxiv\u003c/a\u003e (2022).\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-busybox\" class=\"anchor\" aria-hidden=\"true\" href=\"#busybox\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBusyBox\u003c/h1\u003e\n\u003cp\u003eThis is a library of busybox builds for Singularity images \u003ca href=\"https://singularityhub.github.io/registry-org/singularityhub/busybox/\" rel=\"nofollow\"\u003ehosted on Singularity Static Registry\u003c/a\u003e. The following standard applies:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eeach \u003ccode\u003eSingularity\u003c/code\u003e file corresponds to a build\u003c/li\u003e\n\u003cli\u003etags are supported based on the extension of the Singularity file, with an extensionless file corresponding to \"latest\"\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-what-can-i-find-here\" class=\"anchor\" aria-hidden=\"true\" href=\"#what-can-i-find-here\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWhat can I find here?\u003c/h2\u003e\n\u003cp\u003eThe repository here serves the container under the namespace \u003ccode\u003esingularityhub/busybox\u003c/code\u003e. Specifically,\nit provides an example of using CircleCI to build and push a container to Google Storage,\nand then update manifests at \u003ca href=\"https://www.github.com/singularityhub/registry-org\"\u003esingularityhub/registry-org\u003c/a\u003e.\nIf you are interested in other container build templates, see \u003ca href=\"https://github.com/singularityhub/registry/wiki/build-templates\"\u003ethis page\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-how-does-this-work\" class=\"anchor\" aria-hidden=\"true\" href=\"#how-does-this-work\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eHow does this work?\u003c/h2\u003e\n\u003cp\u003eWe will submit this container to the (organizational) registry at\n\u003ca href=\"https://www.github.com/singularityhub/registry-org\"\u003esingularityhub/registry-org\u003c/a\u003e\nfor a final container uri corresponding to \u003ccode\u003ehttps://singularityhub.github.io/registry-org/singularityhub/busybox\u003c/code\u003e. Specifically:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularityhub/registry-org --) the organization registry\nsingularityhub/busybox --) a container collection\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003ethen on GitHub pages:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularityhub.github.io/registry-org --) the registry interface\nsingularityhub.github.io/registry-org/singularityhub/busybox --) the added container\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch1\u003e\u003ca id=\"user-content-instructions\" class=\"anchor\" aria-hidden=\"true\" href=\"#instructions\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstructions\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-0-fork-the-repository\" class=\"anchor\" aria-hidden=\"true\" href=\"#0-fork-the-repository\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e0. Fork the Repository\u003c/h2\u003e\n\u003cp\u003eFor the repository here to your account, and make sure to add write permissions\nfor a machine user for the repository, and the machine user\u0027s key to CircleCI.\nThis means:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eadding the machine user as a collaborator to the repository (and accepting the invitation)\u003c/li\u003e\n\u003cli\u003econnecting the repository to CircleCI\u003c/li\u003e\n\u003cli\u003enavigating to the CircleCI project page logged in as the machine user to follow the project (button in upper right)\u003c/li\u003e\n\u003cli\u003egoing to the settings -\u0026gt; Checkout SSH keys to add the machine user key.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFull instructions are provided \u003ca href=\"https://github.com/singularityhub/registry/wiki/deploy-container-storage#2-creating-a-connected-repository\"\u003ehere\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-1-setup-your-organizational-registry\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-setup-your-organizational-registry\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Setup your Organizational Registry\u003c/h2\u003e\n\u003cp\u003eIf you haven\u0027t done so, follow the instructions \u003ca href=\"https://github.com/singularityhub/registry/wiki/deploy-container-storage#organizational\"\u003ehere\u003c/a\u003e to create the organizational registry. You will need to\nupdate the environment variables in the top of the \u003ca href=\".circleci/config.yml\"\u003e.circleci/config.yml\u003c/a\u003e\nto reflect your repository:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e environment:\n\n # The GitHub username / reponame that the container will be submit to\n - REGISTRY_BASE: singularityhub/registry-org\n...\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eYou should only need to do this once. The example provided here uses\n\u003ca href=\"https://www.github.com/singularityhub/registry-org\"\u003esingularityhub/registry-org\u003c/a\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-2-google-storage\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-google-storage\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Google Storage\u003c/h2\u003e\n\u003cp\u003eWe will be interacting with Google Storage via the \u003ca href=\"https://www.github.com/singularityhub/sregistry\"\u003esregistry\u003c/a\u003e\ncommand line client.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-required-environment-variables\" class=\"anchor\" aria-hidden=\"true\" href=\"#required-environment-variables\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRequired environment variables\u003c/h2\u003e\n\u003cp\u003eCreate a Google Project and \u003ca href=\"https://cloud.google.com/sdk/docs/authorizing#authorizing_with_a_service_account\" rel=\"nofollow\"\u003ea service account\u003c/a\u003e.\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-download-the-service-account-key\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-download-the-service-account-key\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Download the Service Account Key\u003c/h3\u003e\n\u003cp\u003eYou should first download a service account key from the \u003ca href=\"https://console.cloud.google.com/iam-admin/serviceaccounts?_ga=2.213389911.-231410963.1512057989\" rel=\"nofollow\"\u003eservice accounts page\u003c/a\u003e. For the roles, add an admin for Google\nStorage (to store your container). If you want to use the Google Cloud Builder (a similar\nconfiguration, example at \u003ca href=\"https://www.github.com/singularityhub/nginx\"\u003enginx\u003c/a\u003e) then you can also add Google Build.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/service-account.png\"\u003e\u003cimg src=\"img/service-account.png\" alt=\"img/service-account.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eOnce you add the roles, you \u003cem\u003edo not need to add users\u003c/em\u003e to the account. You can next download\nthe service account key to your local machine, and move it to the repository folder.\u003c/p\u003e\n\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"img/create-key.png\"\u003e\u003cimg src=\"img/create-key.png\" alt=\"img/create-key.png\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eNote that the .gitignore includes *.json so it won\u0027t be added to your project!\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-2-circle-ci-secrets\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-circle-ci-secrets\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Circle CI Secrets\u003c/h3\u003e\n\u003cp\u003eOnce you have the \u003ccode\u003e\u0026lt;project-id\u0026gt;-\u0026lt;number\u0026gt;.json\u003c/code\u003e in the present working directory,\nyou can add the entire thing to your project as an encrypted environment variable.\nHere is how to copy paste the string from your terminal:\u003c/p\u003e\n\u003cdiv class=\"highlight highlight-source-shell\"\u003e\u003cpre\u003e$ cat \u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003eproject-id\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e-\u003cspan class=\"pl-k\"\u003e\u0026lt;\u003c/span\u003enumber\u003cspan class=\"pl-k\"\u003e\u0026gt;\u003c/span\u003e.json\u003c/pre\u003e\u003c/div\u003e\n\u003cp\u003eAdd the text output from the above to an environment variable\ncalled \u003ccode\u003eGOOGLE_APPLICATION_CREDENTIALS\u003c/code\u003e along with the following (all project secrets):\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eGOOGLE_COMPUTE_ZONE: the zone you want your compute builder to run in.\u003c/li\u003e\n\u003cli\u003eSREGISTRY_GOOGLE_PROJECT: the id of your project, easiest to find in the Google Project console url.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eOptionally, export a name for your bucket, \u003ccode\u003eSREGISTRY_GOOGLE_STORAGE_BUCKET\u003c/code\u003e\n(it will be created if it doesn\u0027t exist). It will default to your project id with sregistry- as a prefix.\nDon\u0027t forget to add the machine user to the repository, and then add its credential.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
- "topics": [],
- "updated_at": 1675094116.0
+ "subscribers_count": 2,
+ "topics": [
+ "singularityhub",
+ "singularity",
+ "sregistry-org",
+ "static-registry",
+ "registry",
+ "registry-template"
+ ],
+ "updated_at": 1549553036.0
},
{
"data_format": 2,
"description": null,
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "mysteryresearcher/dasha-partial-participation",
+ "full_name": "stephansmit/inkscape_containers",
"latest_release": null,
- "readme": "\u003ch2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-hidden=\"true\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-install-singularity-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-install-singularity-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Install \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/introduction.html\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e (optional)\u003c/h3\u003e\n\u003cp\u003eIf you don\u0027t want to install Singularity, make sure that you have all dependecies from Singularity.def (python3, numpy, pytorch, etc.)\u003c/p\u003e\n\u003cp\u003ea. Pull an image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull library://k3nfalt/default/python_ml:sha256.efcd1fc038228cb7eb0f6f1942dfbaa439cd95d6463015b83ceb2dbaad9e1e98\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eb. Open a shell console of the image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv ~/python_ml_sha256.efcd1fc038228cb7eb0f6f1942dfbaa439cd95d6463015b83ceb2dbaad9e1e98.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-2-prepare-scripts-for-experiments\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-prepare-scripts-for-experiments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Prepare scripts for experiments\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003ePYTHONPATH=./code python3 ./code/distributed_optimization_library/experiments/dasha_partial_participation/config_libsvm_dasha_partial_particiaption.py \n--dumps_path SOME_PATH --dataset_path PATH_TO_FOLDER_WITH_DATASET --dataset real-sim \n--experiments_name EXPERIMENT_NAME \n--num_nodes_list 100 --step_size_range -10 0 --number_of_seeds 1 --number_of_iterations 5000000 \n--algorithm_names zero_marina_sync_stochastic zero_marina_partial_participation_stochastic --cpus_per_task 11 \n--number_of_processes 10 --time 10 --parallel --compressors rand_k --number_of_coordinates 200 --quality_check_rate 1000 \n--oracle stochastic --mega_batch 10000 --batch_size 1 --function stochastic_logistic_regression --logistic_regression_nonconvex 0.001 \n--partial_participation_probabilities 1.0 0.5 0.1 0.01\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-3-execute-scripts\" class=\"anchor\" aria-hidden=\"true\" href=\"#3-execute-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. Execute scripts\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esh SOME_PATH/EXPERIMENT_NAME/singularity_*.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-4-plot-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#4-plot-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. Plot results\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003ePYTHONPATH=./code python3 ./code/distributed_optimization_library/experiments/plots/dasha_partial_participation/plot_vr-marina_real-sim_stochastic.py \n--dumps_paths SOME_PATH/EXPERIMENT_NAME \n--output_path SOME_PATH_FOR_PLOTS \n--ignore_methods \"VR-MARINA (online)\" \"DASHA-MVR\"\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOne can find all other scripts \u003ca href=\"https://github.com/mysteryresearcher/dasha-partial-participation/blob/submission_neurips2022/code/distributed_optimization_library/experiments/plots/dasha_partial_participation/script.txt\"\u003ehere\u003c/a\u003e that generate experiments from the paper.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-inkscape-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#inkscape-containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInkscape containers\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-build-the-container-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#build-the-container-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuild the container locally\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity build inkscape_containers_latest.sif Singularity\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-pull-the-container\" class=\"anchor\" aria-hidden=\"true\" href=\"#pull-the-container\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ePull the container\u003c/h2\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull shub://stephansmit/inkscape_containers:latest \n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eHosted on Singularity Hub:\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/3588\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1650602862.0
+ "updated_at": 1569690911.0
},
{
"data_format": 2,
- "description": null,
+ "description": "Singularity recipe for vg and toil-vg",
"filenames": [
- "Singularity.def"
+ "Singularity"
],
- "full_name": "mysteryresearcher/sampling-in-optimal-sgd",
+ "full_name": "ISU-HPC/vg-toil-vg",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-sharper-rates-and-flexible-framework-for-nonconvex-sgd-with-client-and-data-sampling\" class=\"anchor\" aria-hidden=\"true\" href=\"#sharper-rates-and-flexible-framework-for-nonconvex-sgd-with-client-and-data-sampling\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSharper Rates and Flexible Framework for Nonconvex SGD with Client and Data Sampling\u003c/h1\u003e\n\u003ch2\u003e\u003ca id=\"user-content-quick-start\" class=\"anchor\" aria-hidden=\"true\" href=\"#quick-start\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eQuick Start\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-1-install-singularity-optional\" class=\"anchor\" aria-hidden=\"true\" href=\"#1-install-singularity-optional\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e1. Install \u003ca href=\"https://sylabs.io/guides/3.5/user-guide/introduction.html\" rel=\"nofollow\"\u003eSingularity\u003c/a\u003e (optional)\u003c/h3\u003e\n\u003cp\u003eIf you don\u0027t want to install Singularity, make sure that you have all dependecies from Singularity.def (python3, numpy, pytorch, etc.)\u003c/p\u003e\n\u003cp\u003ea. Pull an image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity pull library://k3nfalt/default/python_ml:sha256.efcd1fc038228cb7eb0f6f1942dfbaa439cd95d6463015b83ceb2dbaad9e1e98\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eb. Open a shell console of the image\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003esingularity shell --nv ~/python_ml_sha256.efcd1fc038228cb7eb0f6f1942dfbaa439cd95d6463015b83ceb2dbaad9e1e98.sif\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-2-prepare-scripts-for-experiments\" class=\"anchor\" aria-hidden=\"true\" href=\"#2-prepare-scripts-for-experiments\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e2. Prepare scripts for experiments\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003ePYTHONPATH=./code python3 ./code/distributed_optimization_library/experiments/page_ab/config_quadratic.py \n--experiments_name EXPERIMENT_NAME --num_nodes_list 1000 \n--theretical_step_size --step_size_range -8 10 --number_of_iterations 10000 --cpus_per_task 1 \n--noise_lambdas 0.0 0.1 0.5 1.0 10.0 --dim 10 --samplings \u0027original_page\u0027 \u0027uniform_with_replacement\u0027 \u0027importance\u0027 \n--strongly_convex_constant 0.001 --generate_type worst_case --batch_size 1 10 25 50 100 500 1000 \n--dumps_path SOME_PATH --dataset_path PATH_TO_FOLDER_WITH_DATASET\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-3-execute-scripts\" class=\"anchor\" aria-hidden=\"true\" href=\"#3-execute-scripts\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e3. Execute scripts\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003esh SOME_PATH/EXPERIMENT_NAME/singularity_*.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-4-plot-results\" class=\"anchor\" aria-hidden=\"true\" href=\"#4-plot-results\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e4. Plot results\u003c/h3\u003e\n\u003cpre\u003e\u003ccode\u003epython3 code/distributed_optimization_library/experiments/plots/page_ab/quad_prog_plot.py \n--dumps_paths SOME_PATH/EXPERIMENT_NAME\n--output_path SOME_OUTPUT_PATH --filter_sampling importance original_page --filter_noise_lambda 0.1 --batch_experiment\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eOne can find all other scripts \u003ca href=\"code/distributed_optimization_library/experiments/plots/page_ab/scripts.txt\"\u003ehere\u003c/a\u003e that generate experiments from the paper.\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-vg-toil-vg\" class=\"anchor\" aria-hidden=\"true\" href=\"#vg-toil-vg\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003evg-toil-vg\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for vg and toil-vg\u003c/p\u003e\n",
"stargazers_count": 0,
"subscribers_count": 2,
"topics": [],
- "updated_at": 1652883626.0
+ "updated_at": 1567801955.0
},
{
"data_format": 2,
- "description": null,
+ "description": "NextFlow pipeline: fastq -\u003e SNV CNV -\u003e loqusdb",
"filenames": [
- "Singularity"
+ "resources/Singularity"
],
- "full_name": "ionut94/IPC-23-CPC",
+ "full_name": "Clinical-Genomics-Lund/ffpe-nextflow",
"latest_release": null,
- "readme": "\u003cp\u003eFast Downward is a domain-independent planning system.\u003c/p\u003e\n\u003cp\u003eFor documentation and contact information see \u003ca href=\"http://www.fast-downward.org/\" rel=\"nofollow\"\u003ehttp://www.fast-downward.org/\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eThe following directories are not part of Fast Downward as covered by this\nlicense:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e./src/search/ext\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eFor the rest, the following license applies:\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003eCopyright (C) 2003-2016 Malte Helmert\nCopyright (C) 2008-2016 Gabriele Roeger\nCopyright (C) 2010-2016 Jendrik Seipp\nCopyright (C) 2010, 2011, 2013-2016 Silvan Sievers\nCopyright (C) 2012-2016 Florian Pommerening\nCopyright (C) 2016 Martin Wehrle\nCopyright (C) 2013, 2015 Salome Simon\nCopyright (C) 2014, 2015 Patrick von Reth\nCopyright (C) 2015 Manuel Heusner, Thomas Keller\nCopyright (C) 2009-2014 Erez Karpas\nCopyright (C) 2014 Robert P. Goldman\nCopyright (C) 2010-2012 Andrew Coles\nCopyright (C) 2010, 2012 Patrik Haslum\nCopyright (C) 2003-2011 Silvia Richter\nCopyright (C) 2009-2011 Emil Keyder\nCopyright (C) 2010, 2011 Moritz Gronbach, Manuela Ortlieb\nCopyright (C) 2011 Vidal Alc\u00e1zar Saiz, Michael Katz, Raz Nissim\nCopyright (C) 2010 Moritz Goebelbecker\nCopyright (C) 2007-2009 Matthias Westphal\nCopyright (C) 2009 Christian Muise\n\nFast Downward is free software: you can redistribute it and/or modify it under\nthe terms of the GNU General Public License as published by the Free Software\nFoundation, either version 3 of the License, or (at your option) any later\nversion.\n\nFast Downward is distributed in the hope that it will be useful, but WITHOUT ANY\nWARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A\nPARTICULAR PURPOSE. See the GNU General Public License for more details.\n\nYou should have received a copy of the GNU General Public License along with\nthis program. If not, see \u0026lt;http://www.gnu.org/licenses/\u0026gt;.\n\u003c/code\u003e\u003c/pre\u003e\n",
+ "readme": "\u003ch3\u003e\u003ca id=\"user-content-nextflow\" class=\"anchor\" aria-hidden=\"true\" href=\"#nextflow\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eNextFlow\u003c/h3\u003e\n",
"stargazers_count": 0,
"subscribers_count": 1,
"topics": [],
- "updated_at": 1674825486.0
+ "updated_at": 1559647892.0
},
{
"data_format": 2,
- "description": "stable-diffusion-webui(AUTOMATIC1111\u7248) \u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305fsingularity image\u3092\u4f5c\u6210\u30fb\u5b9f\u884c\u3059\u308b\u305f\u3081\u306esingularity\u5b9a\u7fa9\u30d5\u30a1\u30a4\u30eb\u3068\u30b7\u30a7\u30eb\u30b9\u30af\u30ea\u30d7\u30c8",
+ "description": "Novel genomes can be analyzed by GeneMark-ES, an algorithm utilizing models parameterized by unsupervised training. Notably, GeneMark-ES has a special option for fungal genomes to account for fungal-specific intron organization. ",
"filenames": [
- "Singularity.sdwebui",
- "Singularity.repositories",
- "Singularity.base"
+ "4.65/Singularity"
],
- "full_name": "oct1971/singularity_stable_diffusion_webui",
+ "full_name": "pscedu/singularity-genemark-es",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity_stable_diffusion_webui\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity_stable_diffusion_webui\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity_stable_diffusion_webui\u003c/h1\u003e\n\u003cp\u003e\u003ca href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui\"\u003estable-diffusion-webui(AUTOMATIC1111\u7248)\u003c/a\u003e \u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305fsingularity image\u3092\u4f5c\u6210\u30fb\u5b9f\u884c\u3059\u308b\u305f\u3081\u306esingularity\u5b9a\u7fa9\u30d5\u30a1\u30a4\u30eb\u3068\u30b7\u30a7\u30eb\u30b9\u30af\u30ea\u30d7\u30c8\u3067\u3059\u3002\u003c/p\u003e\n\u003cp\u003e\u203binstall.py\u3092\u542b\u3080extension\u306fWebUI\u304b\u3089\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3067\u304d\u307e\u305b\u3093\u3002\u305d\u306e\u3088\u3046\u306aextension\u306b\u3064\u3044\u3066\u306f\u3001Singularity.sdwebui\u30d5\u30a1\u30a4\u30eb\u306binstall.py\u4e2d\u3067\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u3066\u3044\u308b\u30e9\u30a4\u30d6\u30e9\u30ea\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u30b3\u30de\u30f3\u30c9\u3092\u8ffd\u52a0\u3057\u3066\u30a4\u30e1\u30fc\u30b8\u3092\u518d\u751f\u6210\u3057\u3001extensions\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306bextension\u306e\u30ea\u30dd\u30b8\u30c8\u30ea\u3092git clone\u3059\u308b\u3053\u3068\u3067\u4f7f\u7528\u306f\u53ef\u80fd\u3067\u3059\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-wsl2-ubuntu2004-singularity-39\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\" class=\"anchor\" aria-hidden=\"true\" href=\"#wsl2-ubuntu2004-singularity-39\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWSL2, ubuntu20.04, singularity 3.9\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u003c/h2\u003e\n\u003cp\u003e\u4ee5\u4e0b\u306e\u30da\u30fc\u30b8\u306e\u624b\u9806\u306b\u5f93\u3063\u3066Windows10/11\u306bWSL2, ubuntu20.04, NVIDIA driver, libnvidia-container-tools, singularity3.9\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003eLinux\u3067\u4f7f\u7528\u3059\u308b\u5834\u5408\u306fNVIDIA driver, singularity3.9\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3092\u884c\u3063\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://sylabs.io/2022/03/wsl2-gpu/\" rel=\"nofollow\"\u003ehttps://sylabs.io/2022/03/wsl2-gpu/\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003e\u307e\u305f\u3001\u30b3\u30de\u30f3\u30c9\u30e9\u30a4\u30f3\u306e\u5b9f\u884c\u7528\u306bMicrosoft Store\u304b\u3089Windows Termnal\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u3066\u304a\u304f\u3053\u3068\u3092\u304a\u52e7\u3081\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003e\u4ee5\u4e0b\u306e\u30b3\u30de\u30f3\u30c9\u306fWSL2\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u6642\u306b\u540c\u6642\u306b\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3055\u308c\u305fUbuntu on Windows\u3084Windows Terminal\u3067\u958b\u3044\u305fubuntu\u306e\u30b7\u30a7\u30eb\u3067\u5b9f\u884c\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u672c\u30ea\u30dd\u30b8\u30c8\u30ea\u306eclone\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u672c\u30ea\u30dd\u30b8\u30c8\u30ea\u306eclone\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u672c\u30ea\u30dd\u30b8\u30c8\u30ea\u306eclone\u003c/h2\u003e\n\u003cp\u003eclone\u3059\u308b\u5834\u6240\u306f\u3069\u3053\u3067\u3082\u69cb\u3044\u307e\u305b\u3093\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ git clone https://github.com/oct1971/singularity_stable_diffusion_webui\n$ cd singularity_stable_diffusion_webui\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-singularity-image\u306ebuild\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-image\u306ebuild\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity image\u306ebuild\u003c/h2\u003e\n\u003cp\u003esingularity image\u306ebuild\u306f\u7ba1\u7406\u8005\u6a29\u9650\u304c\u5fc5\u8981\u306a\u305f\u3081\u3001sudo\u3092\u4ed8\u3051\u3066\u5b9f\u884c\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cp\u003e\u203bcudnn\u5c0e\u5165\u306e\u305f\u3081\u3001\u30d9\u30fc\u30b9\u30a4\u30e1\u30fc\u30b8\u3092 nvidia/cuda:11.3.0-cudnn8-devel-ubuntu20.04 \u306b\u5909\u66f4\u3057\u307e\u3057\u305f\u3002\u6539\u3081\u3066 base image\u306ebuild \u304b\u3089\u5b9f\u884c\u3057\u3066\u304f\u3060\u3055\u3044\uff082022-10-12\uff09\u3002\u003c/p\u003e\n\u003ch3\u003e\u003ca id=\"user-content-base-image\u306ebuild\" class=\"anchor\" aria-hidden=\"true\" href=\"#base-image\u306ebuild\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003ebase image\u306ebuild\u003c/h3\u003e\n\u003cp\u003eubuntu 20.04\u306bpython3.10, cuda11.3, cudnn8 \u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u3092\u4f5c\u6210\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo bash build_base_image.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-repositories-image\u306ebuild\" class=\"anchor\" aria-hidden=\"true\" href=\"#repositories-image\u306ebuild\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003erepositories image\u306ebuild\u003c/h3\u003e\n\u003cp\u003ebase image\u306bstable-diffusion-webui\u3067\u4f7f\u7528\u3059\u308b\u30ea\u30dd\u30b8\u30c8\u30ea\u7b49\u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u3092\u4f5c\u6210\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo bash build_repositories_image.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-sdwebui-image\u306ebuild\" class=\"anchor\" aria-hidden=\"true\" href=\"#sdwebui-image\u306ebuild\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esdwebui image\u306ebuild\u003c/h3\u003e\n\u003cp\u003estable-diffusion-webui(AUTOMATIC1111\u7248) \u3092\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3057\u305f\u30a4\u30e1\u30fc\u30b8\u3092\u4f5c\u6210\u3057\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ sudo bash build_sdwebui_image.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u66f4\u65b0\u983b\u5ea6\u306e\u9ad8\u3044stable-diffusion-webui\u306e\u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\u3092\u5206\u96e2\u3057\u3066\u3044\u307e\u3059\u306e\u3067\u3001\u66f4\u65b0\u304c\u3042\u3063\u305f\u5834\u5408\u306f\u901a\u5e38sdwebui image\u306ebuild\u306e\u307f\u518d\u5b9f\u884c\u3057\u307e\u3059\u3002\nstable-diffusion-webui\u304c\u5185\u90e8\u3067\u4f7f\u7528\u3057\u3066\u3044\u308b\u30ea\u30dd\u30b8\u30c8\u30ea\u306e\u8ffd\u52a0\u7b49\u304c\u3042\u3063\u305f\u5834\u5408\u306f\u003ca href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs#manual-installation\"\u003eManual Installation\u003c/a\u003e\u306e\u5185\u5bb9\u3092\u53c2\u8003\u306bSingularity.repositories\u3092\u4fee\u6b63\u3057\u3001repositories.sif\u3092\u518dbuild\u3059\u308b\u5fc5\u8981\u304c\u3042\u308a\u307e\u3059\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u521d\u671f\u8a2d\u5b9a\u306e\u5b9f\u884c\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u521d\u671f\u8a2d\u5b9a\u306e\u5b9f\u884c\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u521d\u671f\u8a2d\u5b9a\u306e\u5b9f\u884c\u003c/h2\u003e\n\u003cp\u003esingularity\u3067\u5b9f\u884c\u3055\u308c\u308b\u30b3\u30f3\u30c6\u30ca\u5185\u306f\u4e00\u90e8\u3092\u9664\u3044\u3066\u66f8\u304d\u8fbc\u307f\u7981\u6b62\u3067\u3042\u308b\u305f\u3081\u3001stable-diffusion-webui\u306e\u5b9f\u884c\u5f8c\u306b\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3055\u308c\u308b\u30d5\u30a1\u30a4\u30eb\u306e\u4fdd\u5b58\u5834\u6240\u306f\u30b3\u30f3\u30c6\u30ca\u5b9f\u884c\u6642\u306b\u30b3\u30f3\u30c6\u30ca\u5185\u306b\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u3092\u30d0\u30a4\u30f3\u30c9\u3057\u307e\u3059\u3002\u307e\u305f\u3001\u30d5\u30a1\u30a4\u30eb\u30b5\u30a4\u30ba\u306e\u5927\u304d\u3044model\u30d5\u30a1\u30a4\u30eb\u3082\u30a4\u30e1\u30fc\u30b8\u5185\u306b\u5165\u308c\u306a\u3044\u3088\u3046\u306b\u3057\u3066\u3044\u307e\u3059\u3002\u305d\u308c\u3089\u306e\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u30fb\u30d5\u30a1\u30a4\u30eb\u306e\u6e96\u5099\u3092\u884c\u3044\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003e\u203bdata_dir\u4ee5\u5916\u306b ~/.cache \u4ee5\u4e0b\u306b\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3055\u308c\u308b\u30d5\u30a1\u30a4\u30eb\u3082\u3042\u308a\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003e\u203blattent-diffusion\u304c\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3059\u308b\u30d5\u30a1\u30a4\u30eb\u306f\u3001\u30b3\u30f3\u30c6\u30ca\u3092\u8d77\u52d5\u3057\u305f\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306brepositories\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u304c\u4f5c\u6210\u3055\u308c\u3001\u305d\u306e\u4e2d\u306b\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u3055\u308c\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003estable-diffusion-webui(AUTOMATIC1111\u7248) \u306b\u3066\u753b\u50cf\u51fa\u529b\u5148\u306bmodel\u306ehash\u5024\u306e\u30b5\u30d6\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u3092\u4f7f\u3048\u308b\u3088\u3046\u306b\u306a\u3063\u305f\u305f\u3081\u3001model\u3054\u3068\u306e\u51fa\u529b\u5148\u306e\u4f5c\u6210\u304c\u4e0d\u8981\u306b\u306a\u308a\u307e\u3057\u305f\u3002init_model_integration.sh \u306fmodel\u5225\u306e\u51fa\u529b\u5148\u3092\u751f\u6210\u3057\u307e\u305b\u3093\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash init_model_integration.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-model\u306e\u914d\u7f6e\" class=\"anchor\" aria-hidden=\"true\" href=\"#model\u306e\u914d\u7f6e\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003emodel\u306e\u914d\u7f6e\u003c/h2\u003e\n\u003cp\u003emodel\u30d5\u30a1\u30a4\u30eb\u306f\u5225\u9014\u7528\u610f\u3057\u3001data_dir/models/Stable-diffusion/ \u306b\u30ea\u30cd\u30fc\u30e0\u305b\u305a\u306b\u914d\u7f6e\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ca href=\"https://huggingface.co/CompVis/stable-diffusion-v-1-4-original\" rel=\"nofollow\"\u003e\u672c\u5bb6model\u003c/a\u003e: sd-v1-4.ckpt\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://huggingface.co/hakurei/waifu-diffusion\" rel=\"nofollow\"\u003ewaifu-diffuion model\u003c/a\u003e: wd-v1-2-full-ema.ckpt\n\u003cul\u003e\n\u003cli\u003eOriginal PyTorch Model Download Link \u3088\u308a\u30c0\u30a6\u30f3\u30ed\u30fc\u30c9\u003c/li\u003e\n\u003c/ul\u003e\n\u003c/li\u003e\n\u003cli\u003e\n\u003ca href=\"https://huggingface.co/naclbit/trinart_stable_diffusion_v2\" rel=\"nofollow\"\u003etrinart2 model\u003c/a\u003e: trinart2_step60000.ckpt, trinart2_step95000.ckpt, trinart2_step115000.ckpt\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-esrgan\u306emodel\u306e\u914d\u7f6e\u30aa\u30d7\u30b7\u30e7\u30f3\" class=\"anchor\" aria-hidden=\"true\" href=\"#esrgan\u306emodel\u306e\u914d\u7f6e\u30aa\u30d7\u30b7\u30e7\u30f3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eESRGAN\u306emodel\u306e\u914d\u7f6e\uff08\u30aa\u30d7\u30b7\u30e7\u30f3\uff09\u003c/h2\u003e\n\u003cp\u003eESRGAN\u306emodel\u306f data_dir/models/ESRGAN/ \u306b\u914d\u7f6e\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-swinir\u306emodel\u306e\u914d\u7f6e\u30aa\u30d7\u30b7\u30e7\u30f3\" class=\"anchor\" aria-hidden=\"true\" href=\"#swinir\u306emodel\u306e\u914d\u7f6e\u30aa\u30d7\u30b7\u30e7\u30f3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eSwinIR\u306emodel\u306e\u914d\u7f6e\uff08\u30aa\u30d7\u30b7\u30e7\u30f3\uff09\u003c/h2\u003e\n\u003cp\u003eSwinIR\u306emodel\u306f data_dir/models/SwinIR/ \u306b\u914d\u7f6e\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-\u30c8\u30ec\u30fc\u30cb\u30f3\u30b0\u6e08\u307fembedding\u306e\u914d\u7f6e\u30aa\u30d7\u30b7\u30e7\u30f3\" class=\"anchor\" aria-hidden=\"true\" href=\"#\u30c8\u30ec\u30fc\u30cb\u30f3\u30b0\u6e08\u307fembedding\u306e\u914d\u7f6e\u30aa\u30d7\u30b7\u30e7\u30f3\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003e\u30c8\u30ec\u30fc\u30cb\u30f3\u30b0\u6e08\u307fembedding\u306e\u914d\u7f6e\uff08\u30aa\u30d7\u30b7\u30e7\u30f3\uff09\u003c/h2\u003e\n\u003cp\u003etextual inversion\u306e\u30c8\u30ec\u30fc\u30cb\u30f3\u30b0\u6e08\u307fembedding\u306f data_dir/embeddings/ \u306b\u914d\u7f6e\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-stable-diffusion-webui\u306e\u8d77\u52d5\" class=\"anchor\" aria-hidden=\"true\" href=\"#stable-diffusion-webui\u306e\u8d77\u52d5\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003estable-diffusion-webui\u306e\u8d77\u52d5\u003c/h2\u003e\n\u003cp\u003e\u751f\u6210\u3055\u308c\u305f\u753b\u50cf\u306foutputs\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b\u3001\u30bb\u30fc\u30d6\u3057\u305f\u753b\u50cf\u306flog\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b\u4fdd\u5b58\u3055\u308c\u307e\u3059\u3002\u003c/p\u003e\n\u003cp\u003e\u203b\u3053\u306e\u5f8c\u306estable-diffusion-webui\u306e\u521d\u671f\u8a2d\u5b9a\u3067 \u0027Save images to a subdirectory\u0027, \u0027Save grids to subdirectory\u0027 \u306b\u30c1\u30a7\u30c3\u30af\u3092\u5165\u308c\u3001 \u0027Directory name pattern\u0027 \u3092 \u0027[model_hash]\u0027 \u3068\u3059\u308b\u3068\u4f7f\u7528\u3057\u3066\u3044\u308bmodel\u3054\u3068\u306b\u30b5\u30d6\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u304c\u4f5c\u6210\u3055\u308c\u307e\u3059\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ bash start_instance.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-stable-diffusion-webui\u306e\u521d\u671f\u8a2d\u5b9a\" class=\"anchor\" aria-hidden=\"true\" href=\"#stable-diffusion-webui\u306e\u521d\u671f\u8a2d\u5b9a\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003estable-diffusion-webui\u306e\u521d\u671f\u8a2d\u5b9a\u003c/h2\u003e\n\u003cp\u003eSettings\u30bf\u30d6\u3067\u4ee5\u4e0b\u306e\u8a2d\u5b9a\u3092\u884c\u3044\u3001Apply settings\u3092\u30af\u30ea\u30c3\u30af\u3057\u3066\u8a2d\u5b9a\u3092\u4fdd\u5b58\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOutput directory for txt2img images: /outputs/txt2img-images\u003c/li\u003e\n\u003cli\u003eOutput directory for img2img images: /outputs/img2img-images\u003c/li\u003e\n\u003cli\u003eOutput directory for images from extras tab: /outputs/extras-images\u003c/li\u003e\n\u003cli\u003eOutput directory for txt2img grids: /outputs/txt2img-grids\u003c/li\u003e\n\u003cli\u003eOutput directory for img2img grids: /outputs/img2img-grids\u003c/li\u003e\n\u003cli\u003eDirectory for saving images using the Save button: /log/images\u003c/li\u003e\n\u003cli\u003eFont for image grids that have text: /usr/share/fonts/truetype/dejavu/DejaVuSans.ttf\u003c/li\u003e\n\u003cli\u003eSave images to a subdirectory: \u30c1\u30a7\u30c3\u30af\u003c/li\u003e\n\u003cli\u003eSave grids to subdirectory: \u30c1\u30a7\u30c3\u30af\u003c/li\u003e\n\u003cli\u003eDirectory name pattern: [model_hash]\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u8a2d\u5b9a\u5185\u5bb9\u306f data_dir/ui-config.json, data_dir/config.json \u306b\u66f8\u304d\u8fbc\u307e\u308c\u307e\u3059\u306e\u3067\u3001Batch count\u306e\u4e0a\u9650\u5909\u66f4\u7b49\u306f\u3053\u3061\u3089\u306e\u30d5\u30a1\u30a4\u30eb\u3092\u4fee\u6b63\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cp\u003e\u203b\u5f53\u74b0\u5883\u3067\u306f\u3001\"Apply color correction to img2img results to match original colors.\" \u306b\u30c1\u30a7\u30c3\u30af\u304c\u5165\u3063\u3066\u3044\u308b\u3068SD upscale\u3067\u306e\u51fa\u529b\u6642\u306b\u9ed2\u305a\u3093\u3060\u8272\u306b\u306a\u3063\u3066\u3057\u307e\u3044\u307e\u3057\u305f\u3002\u305d\u306e\u5834\u5408\u306f\u3053\u3061\u3089\u306e\u30c1\u30a7\u30c3\u30af\u3092\u5916\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-textual-inversion\u3067\u4f7f\u7528\u3059\u308b\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b\u3064\u3044\u3066\" class=\"anchor\" aria-hidden=\"true\" href=\"#textual-inversion\u3067\u4f7f\u7528\u3059\u308b\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b\u3064\u3044\u3066\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003etextual inversion\u3067\u4f7f\u7528\u3059\u308b\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u306b\u3064\u3044\u3066\u003c/h2\u003e\n\u003cp\u003einit_model_integration.sh \u306e\u5b9f\u884c\u3067\u3001inputs \u3068 preprocessed_inputs \u30c7\u30a3\u30ec\u30af\u30c8\u30ea\u3092\u4f5c\u6210\u3057\u3066\u3042\u308a\u307e\u3059\u3002textual inversion \u306e\u753b\u9762\u3067\u3001Source directory \u306b inputs/, Destination directory \u306b preprocessed_inputs/, Dataset directory \u306b preprocessed_inputs/ \u3092\u5165\u529b\u3057\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-stable-diffusion-webui\u306e\u505c\u6b62\" class=\"anchor\" aria-hidden=\"true\" href=\"#stable-diffusion-webui\u306e\u505c\u6b62\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003estable-diffusion-webui\u306e\u505c\u6b62\u003c/h2\u003e\n\u003cp\u003e\u4ee5\u4e0b\u306e\u30b3\u30de\u30f3\u30c9\u3067\u505c\u6b62\u3055\u305b\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003e$ singularity instance stop sdwebui\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-windows\u306e\u30a8\u30af\u30b9\u30d7\u30ed\u30fc\u30e9\u304b\u3089stable-diffusion-webui\u3067\u751f\u6210\u3057\u305f\u753b\u50cf\u3078\u306e\u30a2\u30af\u30bb\u30b9\" class=\"anchor\" aria-hidden=\"true\" href=\"#windows\u306e\u30a8\u30af\u30b9\u30d7\u30ed\u30fc\u30e9\u304b\u3089stable-diffusion-webui\u3067\u751f\u6210\u3057\u305f\u753b\u50cf\u3078\u306e\u30a2\u30af\u30bb\u30b9\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eWindows\u306e\u30a8\u30af\u30b9\u30d7\u30ed\u30fc\u30e9\u304b\u3089stable-diffusion-webui\u3067\u751f\u6210\u3057\u305f\u753b\u50cf\u3078\u306e\u30a2\u30af\u30bb\u30b9\u003c/h2\u003e\n\u003cp\u003e\u30a8\u30af\u30b9\u30d7\u30ed\u30fc\u30e9\u306e\u30a2\u30c9\u30ec\u30b9\u30d0\u30fc\u306b \u003ccode\u003e\\\\wsl\\Ubuntu\\home\\\u0026lt;\u3042\u306a\u305f\u306e\u30a2\u30ab\u30a6\u30f3\u30c8\u540d\u0026gt;\\\u0026lt;\u672c\u30ea\u30dd\u30b8\u30c8\u30ea\u3092clone\u3057\u305f\u5834\u6240\u0026gt;\u003c/code\u003e\u3092\u5165\u529b\u3057\u3066\u958b\u3044\u3066\u304f\u3060\u3055\u3044\u3002\u003c/p\u003e\n",
+ "readme": "\u003cp\u003e\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-genemark-es/actions/workflows/main.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-genemark-es/actions/workflows/main.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer\" href=\"https://github.com/pscedu/singularity-genemark-es/actions/workflows/pretty.yml/badge.svg\"\u003e\u003cimg src=\"https://github.com/pscedu/singularity-genemark-es/actions/workflows/pretty.yml/badge.svg\" alt=\"Status\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/268bf28da5aff3f043cd0714535301fca5138222750e4a5728a5c25e2e832847/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/268bf28da5aff3f043cd0714535301fca5138222750e4a5728a5c25e2e832847/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6973737565732f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\" alt=\"Issue\" data-canonical-src=\"https://img.shields.io/github/issues/pscedu/singularity-genemark-es\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/23ee7cd28d76bd5cef900d9662da76f2c280c918c273ee7fc6998621242d6e5b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/23ee7cd28d76bd5cef900d9662da76f2c280c918c273ee7fc6998621242d6e5b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f666f726b732f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\" alt=\"forks\" data-canonical-src=\"https://img.shields.io/github/forks/pscedu/singularity-genemark-es\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/a38b44e2f6b70d1fd02cecabb5e1e98970228f7141ff2c262872ebd57619e047/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a38b44e2f6b70d1fd02cecabb5e1e98970228f7141ff2c262872ebd57619e047/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\" alt=\"Stars\" data-canonical-src=\"https://img.shields.io/github/stars/pscedu/singularity-genemark-es\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\n\u003ca target=\"_blank\" rel=\"noopener noreferrer nofollow\" href=\"https://camo.githubusercontent.com/74af0a874b012a1b673b1febc99b28067b350741dc8da571c81f4e6231b52442/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/74af0a874b012a1b673b1febc99b28067b350741dc8da571c81f4e6231b52442/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f7073636564752f73696e67756c61726974792d67656e656d61726b2d6573\" alt=\"License\" data-canonical-src=\"https://img.shields.io/github/license/pscedu/singularity-genemark-es\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n\u003ch1\u003e\u003ca id=\"user-content-singularity-genemark-es\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-genemark-es\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-genemark-es\u003c/h1\u003e\n\u003cp\u003eSingularity recipe for GeneMark-ES.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-installing-the-container-on-bridges-2\" class=\"anchor\" aria-hidden=\"true\" href=\"#installing-the-container-on-bridges-2\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eInstalling the container on Bridges 2\u003c/h2\u003e\n\u003cp\u003eCopy the\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003ccode\u003eSIF\u003c/code\u003e file\u003c/li\u003e\n\u003cli\u003eand the \u003ccode\u003ecountFullySupportedTranscripts.py\u003c/code\u003e, \u003ccode\u003eflag_anchored_elements.py\u003c/code\u003e, \u003ccode\u003egenerateReport.py\u003c/code\u003e, \u003ccode\u003epredictionAnalysis.py\u003c/code\u003e, \u003ccode\u003eselectSupportedSubsets.py\u003c/code\u003e, \u003ccode\u003ebed_to_gff.pl\u003c/code\u003e, \u003ccode\u003ebp_seq_select.pl\u003c/code\u003e, \u003ccode\u003ebuild_mod.pl\u003c/code\u003e, \u003ccode\u003ecalc_introns_from_gtf.pl\u003c/code\u003e, \u003ccode\u003echange_path_in_perl_scripts.pl\u003c/code\u003e, \u003ccode\u003ecompare_intervals_exact.pl\u003c/code\u003e, \u003ccode\u003egc_distr.pl\u003c/code\u003e, \u003ccode\u003eget_below_gc.pl\u003c/code\u003e, \u003ccode\u003eget_sequence_from_GTF.pl\u003c/code\u003e, \u003ccode\u003egmes_petap.pl\u003c/code\u003e, \u003ccode\u003ehc_exons2hints.pl\u003c/code\u003e, \u003ccode\u003ehistogram.pl\u003c/code\u003e, \u003ccode\u003emake_nt_freq_mat.pl\u003c/code\u003e, \u003ccode\u003eparse_ET.pl\u003c/code\u003e, \u003ccode\u003eparse_by_introns.pl\u003c/code\u003e, \u003ccode\u003eparse_gibbs.pl\u003c/code\u003e, \u003ccode\u003eparse_set.pl\u003c/code\u003e, \u003ccode\u003epredict_genes.pl\u003c/code\u003e, \u003ccode\u003ereformat_gff.pl\u003c/code\u003e, \u003ccode\u003erescale_gff.pl\u003c/code\u003e, \u003ccode\u003ernaseq_introns_to_gff.pl\u003c/code\u003e, \u003ccode\u003erun_es.pl\u003c/code\u003e, \u003ccode\u003erun_hmm_pbs.pl\u003c/code\u003e, \u003ccode\u003escan_for_bp.pl\u003c/code\u003e, \u003ccode\u003estar_to_gff.pl\u003c/code\u003e and \u003ccode\u003everify_evidence_gmhmm.pl\u003c/code\u003e scripts\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eto \u003ccode\u003e/opt/packages/GeneMark-ES/4.8.25\u003c/code\u003e.\u003c/p\u003e\n\u003cp\u003eCopy the file \u003ccode\u003emodulefile.lua\u003c/code\u003e to \u003ccode\u003e/opt/modulefiles/Genemark-ES\u003c/code\u003e as \u003ccode\u003e4.8.25.lua\u003c/code\u003e.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-building-the-image-using-the-recipe\" class=\"anchor\" aria-hidden=\"true\" href=\"#building-the-image-using-the-recipe\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eBuilding the image using the recipe\u003c/h2\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-locally\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-locally\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image locally\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003ebuild.sh\u003c/code\u003e to build image locally.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./build.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch3\u003e\u003ca id=\"user-content-to-build-the-image-remotely\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-build-the-image-remotely\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo build the image remotely\u003c/h3\u003e\n\u003cp\u003eRun the script \u003ccode\u003erbuild.sh\u003c/code\u003e to build image remotely.\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./rbuild.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003ch2\u003e\u003ca id=\"user-content-to-run-tests\" class=\"anchor\" aria-hidden=\"true\" href=\"#to-run-tests\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTo run tests\u003c/h2\u003e\n\u003cp\u003eTo run the available tests, run the command\u003c/p\u003e\n\u003cpre\u003e\u003ccode\u003ebash ./test.sh\n\u003c/code\u003e\u003c/pre\u003e\n\u003chr\u003e\n\u003cp\u003eCopyright \u00a9 2020-2021 Pittsburgh Supercomputing Center. All Rights Reserved.\u003c/p\u003e\n\u003cp\u003eThe \u003ca href=\"https://www.psc.edu/biomedical-applications/\" rel=\"nofollow\"\u003eBiomedical Applications Group\u003c/a\u003e at the \u003ca href=\"http://www.psc.edu\" rel=\"nofollow\"\u003ePittsburgh Supercomputing Center\u003c/a\u003e in the \u003ca href=\"https://www.cmu.edu/genemark-ess/\" rel=\"nofollow\"\u003eMellon College of Science\u003c/a\u003e at \u003ca href=\"http://www.cmu.edu\" rel=\"nofollow\"\u003eCarnegie Mellon University\u003c/a\u003e.\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
- "topics": [],
- "updated_at": 1674777883.0
+ "subscribers_count": 3,
+ "topics": [
+ "singularity",
+ "bioinformatics"
+ ],
+ "updated_at": 1631406552.0
},
{
"data_format": 2,
- "description": "Bin for holding recipe files",
+ "description": "A base Singularity container for PRESTO, including dependencies and environment, converted from docker-PRESTO",
"filenames": [
- "bullseye_minio/Singularity",
- "apache_gunicorn_flask/Singularity",
- "nginx_gunicorn_flask/Singularity"
+ "Singularity"
],
- "full_name": "hamrhein/containers",
+ "full_name": "federatedcloud/singularity-PRESTO",
"latest_release": null,
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-containers\" class=\"anchor\" aria-hidden=\"true\" href=\"#containers\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003econtainers\u003c/h1\u003e\n\u003cp\u003eBin for holding recipe files\u003c/p\u003e\n",
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity-presto\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity-presto\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity-PRESTO\u003c/h1\u003e\n\u003cp\u003eA base Singularity container for PRESTO, including dependencies and environment, converted from docker-PRESTO\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://singularity-hub.org/collections/4510\" rel=\"nofollow\"\u003e\u003cimg src=\"https://camo.githubusercontent.com/a07b23d4880320ac89cdc93bbbb603fa84c215d135e05dd227ba8633a9ff34be/68747470733a2f2f7777772e73696e67756c61726974792d6875622e6f72672f7374617469632f696d672f686f737465642d73696e67756c61726974792d2d6875622d2532336533323932392e737667\" alt=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" data-canonical-src=\"https://www.singularity-hub.org/static/img/hosted-singularity--hub-%23e32929.svg\" style=\"max-width: 100%;\"\u003e\u003c/a\u003e\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 1,
+ "subscribers_count": 6,
"topics": [],
- "updated_at": 1674604619.0
+ "updated_at": 1622819998.0
},
{
"data_format": 2,
- "description": "Container recipes for OpenVINO",
+ "description": null,
"filenames": [
- "ubuntu18/2019/singularity/Singularity.2019_R3_c_omp-py36-gcc75-ubuntu18",
- "ubuntu18/2019/singularity/Singularity.2019_R3.1_cg_omp-py36-gcc75-ubuntu18",
- "ubuntu18/2019/singularity/Singularity.2019_pre-release-1_c_omp-py36-gcc75-ubuntu18",
- "ubuntu18/2019/singularity/Singularity.2019_R3.1_c_omp-py36-gcc75-ubuntu18",
- "ubuntu18/2019/singularity/Singularity.2019_R3.1_c_tbb-py36-gcc75-ubuntu18",
- "ubuntu18/2019/singularity/Singularity.2019_R3.1_cg_tbb-py36-gcc75-ubuntu18"
+ "Singularity"
],
- "full_name": "fenz-org/OpenVino",
- "latest_release": "0.0.4",
- "readme": "\u003ch1\u003e\u003ca id=\"user-content-openvino\" class=\"anchor\" aria-hidden=\"true\" href=\"#openvino\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eOpenVino\u003c/h1\u003e\n\u003cp\u003eContainer recipes for OpenVINO\u003c/p\u003e\n",
+ "full_name": "UMMS-Biocore/trinitiySing",
+ "latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003esingularity\u003c/h1\u003e\n\u003cp\u003eExecutables\u003c/p\u003e\n",
"stargazers_count": 0,
- "subscribers_count": 2,
+ "subscribers_count": 3,
"topics": [],
- "updated_at": 1675191249.0
+ "updated_at": 1519685222.0
},
{
"data_format": 2,
- "description": "HTCondor execution point setup and configuration for using HTCondor file transfer to synchronize a directory between two hosts",
+ "description": "This repository is an AI Bootcamp material that consist of a workflow for NLP",
"filenames": [
- "Singularity.def"
+ "Singularity_riva_speech",
+ "Singularity_tao"
],
- "full_name": "htcondor/htcondor-file-transfer",
+ "full_name": "openhackathons-org/End-to-End-NLP",
"latest_release": null,
+ "readme": "\u003ch1\u003e\u003ca id=\"user-content-end-to-end-nlp-bootcamp\" class=\"anchor\" aria-hidden=\"true\" href=\"#end-to-end-nlp-bootcamp\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eEnd-to-End NLP Bootcamp\u003c/h1\u003e\n\u003cp\u003eThis repository contains the material for the \u003cstrong\u003eEnd-To-End NLP\u003c/strong\u003e bootcamp, the goal of which is to build a complete end-to-end NLP pipeline for Question Answering application. This bootcamp will introduce participants to multiple NVIDIA\u00ae SDKs, most notably NVIDIA TAO Toolkit, NVIDIA TensorRT\u2122, and NVIDIA RIVA. Participants will also have hands-on experience in data preprocessing, model training, optimization, and deployment at scale.\u003c/p\u003e\n\u003cp\u003eThe content is structured in 3 modules, plus an introductory notebook and two challenge notebooks:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eOverview of \u003cstrong\u003eEnd-To-End NLP\u003c/strong\u003e bootcamp\u003c/li\u003e\n\u003cli\u003eLab 1: Data preprocessing\u003c/li\u003e\n\u003cli\u003eLab 2: Transfer learning with NVIDIA TAO (QA training)\u003c/li\u003e\n\u003cli\u003eLab 3: Custom model deployment on RIVA\u003c/li\u003e\n\u003cli\u003eChallenge 1: building SQuAD dataset\u003c/li\u003e\n\u003cli\u003eChallenge 2: deploying custom dataset on RIVA\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch2\u003e\u003ca id=\"user-content-tutorial-duration\" class=\"anchor\" aria-hidden=\"true\" href=\"#tutorial-duration\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eTutorial duration\u003c/h2\u003e\n\u003cp\u003eThe total bootcamp material would take approximately 8 hours. It is recommended to divide the teaching of the material into two days, covering Lab 1 in one session and Lab 2 \u0026amp; 3 in the next session.\u003c/p\u003e\n\u003ch2\u003e\u003ca id=\"user-content-running-using-singularity\" class=\"anchor\" aria-hidden=\"true\" href=\"#running-using-singularity\"\u003e\u003cspan aria-hidden=\"true\" class=\"octicon octicon-link\"\u003e\u003c/span\u003e\u003c/a\u003eRunning using Singulari