-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluation.py
146 lines (124 loc) · 4.78 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import sys
import numpy as np
def get_curve_online(known, novel, stypes = ['Bas']):
tp, fp = dict(), dict()
tnr_at_tpr95 = dict()
for stype in stypes:
known.sort()
novel.sort()
end = np.max([np.max(known), np.max(novel)])
start = np.min([np.min(known),np.min(novel)])
num_k = known.shape[0]
num_n = novel.shape[0]
tp[stype] = -np.ones([num_k+num_n+1], dtype=int)
fp[stype] = -np.ones([num_k+num_n+1], dtype=int)
tp[stype][0], fp[stype][0] = num_k, num_n
k, n = 0, 0
for l in range(num_k+num_n):
if k == num_k:
tp[stype][l+1:] = tp[stype][l]
fp[stype][l+1:] = np.arange(fp[stype][l]-1, -1, -1)
break
elif n == num_n:
tp[stype][l+1:] = np.arange(tp[stype][l]-1, -1, -1)
fp[stype][l+1:] = fp[stype][l]
break
else:
if novel[n] < known[k]:
n += 1
tp[stype][l+1] = tp[stype][l]
fp[stype][l+1] = fp[stype][l] - 1
else:
k += 1
tp[stype][l+1] = tp[stype][l] - 1
fp[stype][l+1] = fp[stype][l]
tpr95_pos = np.abs(tp[stype] / num_k - .95).argmin()
tnr_at_tpr95[stype] = 1. - fp[stype][tpr95_pos] / num_n
return tp, fp, tnr_at_tpr95
def metric_ood(x1, x2, stypes = ['Bas'], verbose=True):
tp, fp, tnr_at_tpr95 = get_curve_online(x1, x2, stypes)
results = dict()
mtypes = ['TNR', 'AUROC', 'DTACC', 'AUIN', 'AUOUT']
if verbose:
print(' ', end='')
for mtype in mtypes:
print(' {mtype:6s}'.format(mtype=mtype), end='')
print('')
for stype in stypes:
if verbose:
print('{stype:5s} '.format(stype=stype), end='')
results[stype] = dict()
# TNR
mtype = 'TNR'
results[stype][mtype] = 100.*tnr_at_tpr95[stype]
if verbose:
print(' {val:6.3f}'.format(val=results[stype][mtype]), end='')
# AUROC
mtype = 'AUROC'
tpr = np.concatenate([[1.], tp[stype]/tp[stype][0], [0.]])
fpr = np.concatenate([[1.], fp[stype]/fp[stype][0], [0.]])
results[stype][mtype] = 100.*(-np.trapz(1.-fpr, tpr))
if verbose:
print(' {val:6.3f}'.format(val=results[stype][mtype]), end='')
# DTACC
mtype = 'DTACC'
results[stype][mtype] = 100.*(.5 * (tp[stype]/tp[stype][0] + 1.-fp[stype]/fp[stype][0]).max())
if verbose:
print(' {val:6.3f}'.format(val=results[stype][mtype]), end='')
# AUIN
mtype = 'AUIN'
denom = tp[stype]+fp[stype]
denom[denom == 0.] = -1.
pin_ind = np.concatenate([[True], denom > 0., [True]])
pin = np.concatenate([[.5], tp[stype]/denom, [0.]])
results[stype][mtype] = 100.*(-np.trapz(pin[pin_ind], tpr[pin_ind]))
if verbose:
print(' {val:6.3f}'.format(val=results[stype][mtype]), end='')
# AUOUT
mtype = 'AUOUT'
denom = tp[stype][0]-tp[stype]+fp[stype][0]-fp[stype]
denom[denom == 0.] = -1.
pout_ind = np.concatenate([[True], denom > 0., [True]])
pout = np.concatenate([[0.], (fp[stype][0]-fp[stype])/denom, [.5]])
results[stype][mtype] = 100.*(np.trapz(pout[pout_ind], 1.-fpr[pout_ind]))
if verbose:
print(' {val:6.3f}'.format(val=results[stype][mtype]), end='')
print('')
return results
def compute_oscr(pred_k, pred_u, labels):
x1, x2 = np.max(pred_k, axis=1), np.max(pred_u, axis=1)
pred = np.argmax(pred_k, axis=1)
correct = (pred == labels)
m_x1 = np.zeros(len(x1))
m_x1[pred == labels] = 1
k_target = np.concatenate((m_x1, np.zeros(len(x2))), axis=0)
u_target = np.concatenate((np.zeros(len(x1)), np.ones(len(x2))), axis=0)
predict = np.concatenate((x1, x2), axis=0)
n = len(predict)
# Cutoffs are of prediction values
CCR = [0 for x in range(n+2)]
FPR = [0 for x in range(n+2)]
idx = predict.argsort()
s_k_target = k_target[idx]
s_u_target = u_target[idx]
for k in range(n-1):
CC = s_k_target[k+1:].sum()
FP = s_u_target[k:].sum()
# True Positive Rate
CCR[k] = float(CC) / float(len(x1))
# False Positive Rate
FPR[k] = float(FP) / float(len(x2))
CCR[n] = 0.0
FPR[n] = 0.0
CCR[n+1] = 1.0
FPR[n+1] = 1.0
# Positions of ROC curve (FPR, TPR)
ROC = sorted(zip(FPR, CCR), reverse=True)
OSCR = 0
# Compute AUROC Using Trapezoidal Rule
for j in range(n+1):
h = ROC[j][0] - ROC[j+1][0]
w = (ROC[j][1] + ROC[j+1][1]) / 2.0
OSCR = OSCR + h*w
return OSCR