-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnn_classifier.py
83 lines (67 loc) · 2.63 KB
/
nn_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env python
'''Wrapper for nearest-neighbor classifier
This script defines the NNClassifier class, which is used from train_myo_ros and
classify_myo_ros for training of gestures and their classification. It stores the
training data in the files vals0.dat, vals1.dat, ..., vals9.dat.
When the library sklearn is available a KNeighborsClassifier will be used for
classification, otherwise the class of the nearest neighbor is returned.
This script is based on the myo.py file of the myo-raw project.
(see https://github.com/dzhu/myo-raw/ which is available under the MIT LICENSE)
Following changes where made:
- Removed code for the myo device, keeping the NNClassifier class.
'''
from __future__ import print_function
import struct
import numpy as np
try:
from sklearn import neighbors, svm
HAVE_SK = True
except ImportError:
HAVE_SK = False
def pack(fmt, *args):
return struct.pack('<' + fmt, *args)
SUBSAMPLE = 3
K = 15
class NNClassifier(object):
'''A wrapper for sklearn's nearest-neighbor classifier that stores
training data in vals0, ..., vals9.dat.'''
def __init__(self):
for i in range(10):
with open('vals%d.dat' % i, 'ab') as f: pass
self.read_data()
def store_data(self, cls, vals):
with open('vals%d.dat' % cls, 'ab') as f:
f.write(pack('8H', *vals))
# for i in range(8):
# f.write("%d " % vals[i])
# f.write("\n")
self.train(np.vstack([self.X, vals]), np.hstack([self.Y, [cls]]))
def read_data(self):
X = []
Y = []
for i in range(10):
X.append(np.fromfile('vals%d.dat' % i, dtype=np.uint16).reshape((-1, 8)))
# X.append(np.fromfile('vals%d.dat' % i, dtype=np.uint16, sep=" ").reshape((-1, 8)))
Y.append(i + np.zeros(X[-1].shape[0]))
self.train(np.vstack(X), np.hstack(Y))
def train(self, X, Y):
self.X = X
self.Y = Y
if HAVE_SK and self.X.shape[0] >= K * SUBSAMPLE:
self.nn = neighbors.KNeighborsClassifier(n_neighbors=K, algorithm='kd_tree')
self.nn.fit(self.X[::SUBSAMPLE], self.Y[::SUBSAMPLE])
else:
self.nn = None
def nearest(self, d):
dists = ((self.X - d)**2).sum(1)
ind = dists.argmin()
return self.Y[ind]
def classify(self, d):
if self.X.shape[0] < K * SUBSAMPLE: return 0
if not HAVE_SK: return self.nearest(d)
return int(self.nn.predict(d)[0])
def clearGestureFiles(self):
for i in range(10):
with open('vals%d.dat' % i, 'w') as f:
f.truncate()
self.read_data()