forked from rusty1s/graph-based-image-classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimages.py
88 lines (62 loc) · 2.49 KB
/
images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import sys
import tensorflow as tf
from skimage.io import imsave
from data import datasets, iterator
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('dataset', 'pascal_voc',
"""The dataset. See dataset/__init__.py for a list
of all available datasets.""")
tf.app.flags.DEFINE_string('data_dir', None,
"""Path to the data directory.""")
def save_images(dataset, eval_data):
"""Saves images for either training or evaluation to an images directory
into the datasets data directory.
Args:
dataset: The dataset.
eval_data: Boolean indicating if one should use the train or eval data
set.
"""
dirname = 'eval' if eval_data else 'train'
images_dir = os.path.join(dataset.data_dir, 'images', dirname)
# Abort if directory already exists.
if tf.gfile.Exists(images_dir):
return
# Create a subdirectory for every label.
for label in dataset.labels:
tf.gfile.MakeDirs(os.path.join(images_dir, label))
image_names = {label: 0 for label in dataset.labels}
iterate = iterator(dataset, eval_data)
def _before(image, label):
# Cast image to uint8, so we can save it easily.
return [tf.cast(image, tf.uint8), label]
def _each(output, index, last_index):
# Get the image and the label name from the output of the session.
image = output[0]
label_name = dataset.label_name(output[1])
# Save the image in the label named subdirectory and name it
# incrementally.
image_names[label_name] += 1
image_name = '{}.png'.format(image_names[label_name])
image_path = os.path.join(images_dir, label_name, image_name)
imsave(image_path, image)
sys.stdout.write(
'\r>> Saving images to {} {:.1f}%'
.format(images_dir, 100.0 * index / last_index))
sys.stdout.flush()
def _done(index, last_index):
print('')
print('Successfully saved {} images to {}.'.format(index, images_dir))
# Run through each single batch.
iterate(_each, _before, _done)
def main(argv=None):
"""Runs the script."""
if FLAGS.data_dir is None:
dataset = datasets[FLAGS.dataset]()
else:
dataset = datasets[FLAGS.dataset](FLAGS.data_dir)
# Save images for training and evaluation.
save_images(dataset, eval_data=False)
save_images(dataset, eval_data=True)
if __name__ == '__main__':
tf.app.run()