forked from WenZhihao666/G2P2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
289 lines (223 loc) · 10.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from collections import OrderedDict
from typing import Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from typing import Any, Union, List
from pkg_resources import packaging
from simple_tokenizer import SimpleTokenizer as _Tokenizer
from torch_geometric.nn.conv import MessagePassing
from torch_scatter import scatter_add
from torch_geometric.utils import add_remaining_self_loops
from torch.nn import Parameter
from torch import nn, optim
_tokenizer = _Tokenizer()
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
def forward(self, x: torch.Tensor):
return self.resblocks(x)
class GNN(MessagePassing):
def __init__(self, args, **kwargs):
super(GNN, self).__init__(aggr='add', **kwargs)
self.vars = nn.ParameterList()
w = nn.Parameter(torch.ones([args.gnn_hid, args.gnn_input]))
torch.nn.init.xavier_uniform_(w)
self.vars.append(w)
self.vars.append(nn.Parameter(torch.zeros(args.gnn_hid)))
w = nn.Parameter(torch.ones([args.gnn_output, args.gnn_hid]))
torch.nn.init.xavier_uniform_(w)
self.vars.append(w)
self.vars.append(nn.Parameter(torch.zeros(args.gnn_output)))
@staticmethod
def norm(edge_index, num_nodes, improved=False, dtype=None):
edge_weight = torch.ones((edge_index.size(1),), dtype=dtype,
device=edge_index.device)
fill_value = 1.0 if not improved else 2.0
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self, x, edge_index, vars=None):
if vars is None:
vars = self.vars
improved = False
w, b = vars[0], vars[1]
edge_index, norm = self.norm(edge_index, x.size(self.node_dim), improved, x.dtype)
x = self.propagate(edge_index, x=x, norm=norm)
x = F.linear(x, w, b)
x = F.leaky_relu(x)
w, b = vars[2], vars[3]
edge_index, norm = self.norm(edge_index, x.size(self.node_dim), improved, x.dtype)
x = self.propagate(edge_index, x=x, norm=norm)
x = F.linear(x, w, b)
return x
def parameters(self):
return self.vars
class CLIP(nn.Module):
def __init__(self,
args
):
super().__init__()
self.context_length = args.context_length
self.args = args
self.edge_coef = args.edge_coef
self.gnn = GNN(args)
self.transformer = Transformer(
width=args.transformer_width,
layers=args.transformer_layers,
heads=args.transformer_heads,
attn_mask=self.build_attention_mask()
)
self.vocab_size = args.vocab_size
self.token_embedding = nn.Embedding(args.vocab_size,
args.transformer_width) # the embedding for all possible tokens
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, args.transformer_width))
self.ln_final = LayerNorm(args.transformer_width)
self.text_projection = nn.Parameter(torch.empty(args.transformer_width, args.embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.dtype = self.gnn.vars[0].dtype
self.optim = optim.Adam([{'params': self.token_embedding.weight},
{'params': self.positional_embedding},
{'params': self.transformer.parameters()},
{'params': self.text_projection},
{'params': self.gnn.parameters()}
], lr=args.lr)
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def encode_image(self, idx_train, x, adj):
embs = self.gnn(x, adj)
train_embs = embs[idx_train]
return train_embs
def encode_text(self, text):
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0,
2) # NLD -> LND, batch_size * context_length *emb_dim -> context_length * batch_size *emb_dim
x = self.transformer(x)
x = x.permute(1, 0,
2) # LND -> NLD, context_length * batch_size *emb_dim -> batch_size * context_length *emb_dim
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot (end of token) embedding (eot_token is the highest number in each sequence)
# so there is node need to shorten the context length
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] #
x = x @ self.text_projection
return x
def forward(self, x, adj, s_n, t_n, s_n_text, t_n_text, device, training=True):
s_image_features = self.encode_image(s_n, x, adj)
s_text_features = self.encode_text(s_n_text)
t_text_features = self.encode_text(t_n_text)
t_text_features = t_text_features.reshape(s_image_features.shape[0], self.args.neigh_num, self.args.gnn_output)
t_text_features = torch.mean(t_text_features, dim=1, keepdim=False)
# normalized features
s_image_features = s_image_features / s_image_features.norm(dim=-1, keepdim=True)
s_text_features = s_text_features / s_text_features.norm(dim=-1, keepdim=True)
t_text_features = t_text_features / t_text_features.norm(dim=-1, keepdim=True)
# cosine similarity as logits
labels = torch.arange(s_image_features.shape[0]).to(device)
logit_scale = self.logit_scale.exp() # the temporature hyperparameter
logits = logit_scale * s_image_features @ s_text_features.t()
loss_i = F.cross_entropy(logits, labels)
loss_t = F.cross_entropy(logits.T, labels)
node_loss = (loss_i + loss_t) / 2
logits = logit_scale * s_image_features @ t_text_features.t()
loss_i = F.cross_entropy(logits, labels)
loss_t = F.cross_entropy(logits.T, labels)
gt_loss = (loss_i + loss_t)/2
logits = logit_scale * s_text_features @ t_text_features.t()
loss_i = F.cross_entropy(logits, labels)
loss_t = F.cross_entropy(logits.T, labels)
tt_loss = (loss_i + loss_t)/2
all_loss = node_loss + self.edge_coef * gt_loss + self.edge_coef * tt_loss
if training == True:
self.optim.zero_grad()
torch.cuda.empty_cache()
all_loss.backward()
self.optim.step()
# shape = [global_batch_size, global_batch_size]
return round((all_loss.detach().clone()).cpu().item(), 4)
def tokenize(texts: Union[str, List[str]], context_length: int = 128, truncate: bool = True) -> torch.LongTensor:
"""
Returns the tokenized representation of given input string(s)
Parameters
----------
texts : Union[str, List[str]]
An input string or a list of input strings to tokenize
context_length : int
The context length to use; all CLIP models use 77 as the context length
truncate: bool
Whether to truncate the text in case its encoding is longer than the context length
Returns
-------
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
"""
if isinstance(texts, str):
texts = [texts]
sot_token = _tokenizer.encoder["<|startoftext|>"]
eot_token = _tokenizer.encoder["<|endoftext|>"]
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
if truncate:
tokens = tokens[:context_length]
tokens[-1] = eot_token
else:
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
result[i, :len(tokens)] = torch.tensor(tokens)
return result