forked from shuaiOKshuai/Tail-GNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
252 lines (186 loc) · 7.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import scipy as sp
import datetime, time
import collections, re
import os, argparse
from utils import *
from layers import Discriminator
from models import TailGNN
#Get parse argument
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default='actor', help='dataset')
parser.add_argument("--hidden", type=int, default=32, help='hidden layer dimension')
parser.add_argument("--eta", type=float, default=0.1, help='adversarial constraint')
parser.add_argument("--mu", type=float, default=0.001, help='missing info constraint')
parser.add_argument("--lamda", type=float, default=0.0001, help='l2 parameter')
parser.add_argument("--dropout", type=float, default=0.5, help='dropout')
parser.add_argument("--k", type=int, default=5, help='num of node neighbor')
parser.add_argument("--lr", type=float, default=0.01, help='learning rate')
parser.add_argument("--arch", type=int, default=1, help='1: gcn, 2: gat, 3: graphsage')
parser.add_argument("--seed", type=int, default=0, help='Random seed')
parser.add_argument("--epochs", type=int, default=1000, help='Epochs')
parser.add_argument("--patience", type=int, default=300, help='Patience')
parser.add_argument("--id", type=int, default=0, help='gpu ids')
parser.add_argument("--g_sigma", type=float, default=1, help='G deviation')
parser.add_argument("--ablation", type=int, default=0, help='ablation mode')
args = parser.parse_args()
cuda = torch.cuda.is_available()
criterion = nn.BCELoss()
torch.manual_seed(args.seed)
if cuda:
torch.cuda.manual_seed(args.seed)
torch.cuda.set_device(args.id)
device = 'cuda' if cuda else 'cpu'
dataset = args.dataset
save_path = 'saved_model/' + dataset
if not os.path.exists(save_path):
os.mkdir(save_path)
cur_time = datetime.datetime.now()
cur_time = cur_time.strftime("%d-%m-%Y_%H:%M:%S")
save_path = os.path.join(save_path, cur_time)
if not os.path.exists(save_path):
os.mkdir(save_path)
print(str(args))
def normalize_output(out_feat, idx):
sum_m = 0
for m in out_feat:
sum_m += torch.mean(torch.norm(m[idx], dim=1))
return sum_m
def train_disc(epoch, batch):
disc.train()
optimizer_D.zero_grad()
embed_h, _, _ = embed_model(features, adj, True)
embed_t, _, _ = embed_model(features, tail_adj, False)
prob_h = disc(embed_h)
prob_t = disc(embed_t)
# loss
errorD = criterion(prob_h[batch], h_labels)
errorG = criterion(prob_t[batch], t_labels)
L_d = (errorD + errorG)/2
L_d.backward()
optimizer_D.step()
return L_d
def train_embed(epoch, batch):
embed_model.train()
optimizer.zero_grad()
embed_h, output_h, support_h = embed_model(features, adj, True)
embed_t, output_t, support_t = embed_model(features, tail_adj, False)
# loss
L_cls_h = F.nll_loss(output_h[batch], labels[batch])
L_cls_t = F.nll_loss(output_t[batch], labels[batch])
L_cls = (L_cls_h + L_cls_t)/2
#weight regularizer
m_h = normalize_output(support_h, batch)
m_t = normalize_output(support_t, batch)
prob_h = disc(embed_h)
prob_t = disc(embed_t)
errorG = criterion(prob_t[batch], t_labels)
L_d = errorG
L_all = L_cls - (args.eta * L_d) + args.mu * m_h
L_all.backward()
optimizer.step()
acc_train = metrics.accuracy(embed_h[batch], labels[batch])
# validate:
embed_model.eval()
_, embed_val, _ = embed_model(features, adj, False)
loss_val = F.nll_loss(embed_val[idx_val], labels[idx_val])
acc_val = metrics.accuracy(embed_val[idx_val], labels[idx_val])
return (L_all, L_cls, L_d), acc_train, loss_val, acc_val
def test():
embed_model.eval()
_, embed_test, _ = embed_model(features, adj, False)
loss_test = F.nll_loss(embed_test[idx_test], labels[idx_test])
acc_test = metrics.accuracy(embed_test[idx_test], labels[idx_test])
f1_test = metrics.micro_f1(embed_test.cpu(), labels.cpu(), idx_test)
log = "Test set results: " + \
"loss={:.4f} ".format(loss_test.item()) + \
"accuracy={:.4f} ".format(acc_test.item()) + \
"f1={:.4f}".format(f1_test.item())
print(log)
return
features, adj, labels, idx = data_process.load_dataset(dataset, k=args.k)
features = torch.FloatTensor(features)
labels = np.argmax(labels,1)
labels = torch.LongTensor(labels)
tail_adj = data_process.link_dropout(adj, idx[0])
adj = torch.FloatTensor(adj.todense())
tail_adj = torch.FloatTensor(tail_adj.todense())
idx_train = torch.LongTensor(idx[0])
idx_val = torch.LongTensor(idx[1])
idx_test = torch.LongTensor(idx[2])
if args.dataset == 'email':
idx_train = np.genfromtxt('dataset/' + args.dataset + '/train.csv')
idx_test = np.genfromtxt('dataset/' + args.dataset + '/test.csv')
idx_train = torch.LongTensor(idx_train-1)
idx_test = torch.LongTensor(idx_test-1)
print("Data Processing done!")
r_ver = 1
nclass = labels.max().item() + 1
# Model and optimizer
embed_model = TailGNN(nfeat=features.shape[1],
nclass=nclass,
params=args,
device=device,
ver=r_ver)
optimizer = optim.Adam(embed_model.parameters(),
lr=args.lr, weight_decay=args.lamda)
feat_disc = nclass
disc = Discriminator(feat_disc)
optimizer_D = optim.Adam(disc.parameters(),
lr=args.lr, weight_decay=args.lamda)
if cuda:
embed_model = embed_model.cuda()
disc = disc.cuda()
features = features.cuda()
labels = labels.cuda()
adj = adj.cuda()
tail_adj = tail_adj.cuda()
h_labels = torch.full((len(idx_train), 1), 1.0, device=device)
t_labels = torch.full((len(idx_train), 1), 0.0, device=device)
best_acc = 0.0
best_loss = 10000.0
acc_early_stop = 0.0
loss_early_stop = 0.0
epoch_early_stop = 0
cur_step = 0
# Train model
t_total = time.time()
for epoch in range(args.epochs):
t = time.time()
L_d = train_disc(epoch, idx_train)
L_d = train_disc(epoch, idx_train)
Loss, acc_train, loss_val, acc_val = train_embed(epoch, idx_train)
log = 'Epoch: {:d} '.format(epoch+1) + \
'loss_train: {:.4f} '.format(Loss[0].item()) + \
'loss_val: {:.4f} '.format(loss_val) + \
'acc_train: {:.4f} '.format(acc_train) + \
'acc_val: {:.4f} '.format(acc_val)
print(log)
#save best model
if acc_val >= best_acc:
acc_early_stop = acc_val
loss_early_stop = loss_val
epoch_early_stop = epoch
torch.save(embed_model,os.path.join(save_path,'model.pt'))
best_loss = np.min((loss_val, best_loss))
print('Model saved!')
best_acc = np.max((acc_val, best_acc))
cur_step = 0
else:
cur_step += 1
if cur_step == args.patience:
early_stop= 'Early Stopping at epoch {:d} '.format(epoch) + \
'loss {:.4f} '.format(loss_early_stop) + \
'acc {:.4f}'.format(acc_early_stop)
print(early_stop)
break
print("Training Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))
# Testing
print('Test ...')
embed_model = torch.load(os.path.join(save_path,'model.pt'))
test()