-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathMergeDetector.py
108 lines (69 loc) · 2.54 KB
/
MergeDetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import numpy as np
import math
import scipy.ndimage
from scipy.ndimage.filters import gaussian_filter
import socket
#from PIL import Image
import sys,os
import io
from io import StringIO
def getGPSHistogram(lat2, lon2, lat1, lon1, lat0, lon0, radius, img_size, region, host="localhost", port=8002, center_lat = None, center_lon = None, filename = "tmp.png"):
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((host, port))
if center_lat is None:
center_lat = lat0
center_lon = lon0
minlat = region[0]
maxlat = region[2]
minlon = region[1]
maxlon = region[3]
data_string = "G,"+str(lat2)+","+str(lon2)+","+str(lat1)+","+str(lon1)+","+str(lat0)+","+str(lon0)+","+str(radius)+","+str(minlat)+","+str(minlon)+","+str(maxlat)+","+str(maxlon)+","+str(img_size)+", "
#print(data_string)
data_string = bytes(data_string, encoding='utf-8')
s.send(data_string)
num_str = str(s.recv(16384))
num = int(num_str.split(' ')[1])
#print(num_str)
data_string = bytes("ok", encoding='utf-8')
s.send(data_string)
result = bytes("", encoding='utf-8')
for i in range(num):
result += s.recv(16384)
#imgfile = StringIO.StringIO(result)
#imgfile = io.StringIO(result)
imgfile = io.BytesIO(result)
#imgfile = socket.makefile(mode='rb', buffering=result)
# #print(len(result))
# f = open("tmp.png", 'wb')
# f.write(result)
# f.close()
img = scipy.misc.imread(imgfile)
#img = scipy.misc.imread("tmp.png")
img = img.astype(np.float)
#GPSHistogramCache[(lat2, lon2, lat1, lon1, lat0, lon0, radius, img_size)] = gps_img/255.0
return img
def mergeDetector(path1, path2, port=8002):
lat = path1[0][0]
lon = path1[0][1]
size = 0.00400 # 200 meters
sub_region = [lat-size, lon-size/math.cos(math.radians(lat)), lat+size, lon+size/math.cos(math.radians(lat))]
img1 = getGPSHistogram(path1[5][0], path1[5][1], path1[3][0], path1[3][1],path1[0][0], path1[0][1], 0.00005, 512, sub_region, filename = "path1.png", port=port)
img2 = getGPSHistogram(path2[5][0], path2[5][1], path2[3][0], path2[3][1],path2[0][0], path2[0][1], 0.00005, 512, sub_region, filename = "path2.png", port=port)
img1[192:320,192:320] = 0
img2[192:320,192:320] = 0
blurred1 = gaussian_filter(img1, sigma=4)
blurred2 = gaussian_filter(img2, sigma=4)
m1 = np.amax(blurred1)
m2 = np.amax(blurred2)
if m1 != 0:
blurred1 /= m1
if m2 != 0:
blurred2 /= m2
diff = blurred2 - blurred1
diff[np.where(diff<0)] = 0
sum_diff = np.sum(diff)
sum_2 = np.sum(blurred2)
if sum_2 == 0:
return 0.0
#print(sum_diff, sum_2, 1.0 - sum_diff/sum_2)
return 1.0 - sum_diff/sum_2