-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdqn_utils.py
executable file
·350 lines (308 loc) · 13.7 KB
/
dqn_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
"""This file includes a collection of utility functions that are useful for
implementing DQN."""
import gym
import tensorflow as tf
import numpy as np
import random
def huber_loss(x, delta=1.0):
# https://en.wikipedia.org/wiki/Huber_loss
return tf.select(
tf.abs(x) < delta,
tf.square(x) * 0.5,
delta * (tf.abs(x) - 0.5 * delta)
)
def sample_n_unique(sampling_f, n):
"""Helper function. Given a function `sampling_f` that returns
comparable objects, sample n such unique objects.
"""
res = []
while len(res) < n:
candidate = sampling_f()
if candidate not in res:
res.append(candidate)
return res
class Schedule(object):
def value(self, t):
"""Value of the schedule at time t"""
raise NotImplementedError()
class ConstantSchedule(object):
def __init__(self, value):
"""Value remains constant over time.
Parameters
----------
value: float
Constant value of the schedule
"""
self._v = value
def value(self, t):
"""See Schedule.value"""
return self._v
def linear_interpolation(l, r, alpha):
return l + alpha * (r - l)
class PiecewiseSchedule(object):
def __init__(self, endpoints, interpolation=linear_interpolation, outside_value=None):
"""Piecewise schedule.
endpoints: [(int, int)]
list of pairs `(time, value)` meanining that schedule should output
`value` when `t==time`. All the values for time must be sorted in
an increasing order. When t is between two times, e.g. `(time_a, value_a)`
and `(time_b, value_b)`, such that `time_a <= t < time_b` then value outputs
`interpolation(value_a, value_b, alpha)` where alpha is a fraction of
time passed between `time_a` and `time_b` for time `t`.
interpolation: lambda float, float, float: float
a function that takes value to the left and to the right of t according
to the `endpoints`. Alpha is the fraction of distance from left endpoint to
right endpoint that t has covered. See linear_interpolation for example.
outside_value: float
if the value is requested outside of all the intervals sepecified in
`endpoints` this value is returned. If None then AssertionError is
raised when outside value is requested.
"""
idxes = [e[0] for e in endpoints]
assert idxes == sorted(idxes)
self._interpolation = interpolation
self._outside_value = outside_value
self._endpoints = endpoints
def value(self, t):
"""See Schedule.value"""
for (l_t, l), (r_t, r) in zip(self._endpoints[:-1], self._endpoints[1:]):
if l_t <= t and t < r_t:
alpha = float(t - l_t) / (r_t - l_t)
return self._interpolation(l, r, alpha)
# t does not belong to any of the pieces, so doom.
assert self._outside_value is not None
return self._outside_value
class LinearSchedule(object):
def __init__(self, schedule_timesteps, final_p, initial_p=1.0):
"""Linear interpolation between initial_p and final_p over
schedule_timesteps. After this many timesteps pass final_p is
returned.
Parameters
----------
schedule_timesteps: int
Number of timesteps for which to linearly anneal initial_p
to final_p
initial_p: float
initial output value
final_p: float
final output value
"""
self.schedule_timesteps = schedule_timesteps
self.final_p = final_p
self.initial_p = initial_p
def value(self, t):
"""See Schedule.value"""
fraction = min(float(t) / self.schedule_timesteps, 1.0)
return self.initial_p + fraction * (self.final_p - self.initial_p)
def compute_exponential_averages(variables, decay):
"""Given a list of tensorflow scalar variables
create ops corresponding to their exponential
averages
Parameters
----------
variables: [tf.Tensor]
List of scalar tensors.
Returns
-------
averages: [tf.Tensor]
List of scalar tensors corresponding to averages
of al the `variables` (in order)
apply_op: tf.runnable
Op to be run to update the averages with current value
of variables.
"""
averager = tf.train.ExponentialMovingAverage(decay=decay)
apply_op = averager.apply(variables)
return [averager.average(v) for v in variables], apply_op
def minimize_and_clip(optimizer, objective, var_list, clip_val=10):
"""Minimized `objective` using `optimizer` w.r.t. variables in
`var_list` while ensure the norm of the gradients for each
variable is clipped to `clip_val`
"""
gradients = optimizer.compute_gradients(objective, var_list=var_list)
for i, (grad, var) in enumerate(gradients):
if grad is not None:
gradients[i] = (tf.clip_by_norm(grad, clip_val), var)
return optimizer.apply_gradients(gradients)
def initialize_interdependent_variables(session, vars_list, feed_dict):
"""Initialize a list of variables one at a time, which is useful if
initialization of some variables depends on initialization of the others.
"""
vars_left = vars_list
while len(vars_left) > 0:
new_vars_left = []
for v in vars_left:
try:
# If using an older version of TensorFlow, uncomment the line
# below and comment out the line after it.
#session.run(tf.initialize_variables([v]), feed_dict)
session.run(tf.variables_initializer([v]), feed_dict)
except tf.errors.FailedPreconditionError:
new_vars_left.append(v)
if len(new_vars_left) >= len(vars_left):
# This can happend if the variables all depend on each other, or more likely if there's
# another variable outside of the list, that still needs to be initialized. This could be
# detected here, but life's finite.
raise Exception("Cycle in variable dependencies, or extenrnal precondition unsatisfied.")
else:
vars_left = new_vars_left
def get_wrapper_by_name(env, classname):
currentenv = env
while True:
if classname in currentenv.__class__.__name__:
return currentenv
elif isinstance(env, gym.Wrapper):
currentenv = currentenv.env
else:
raise ValueError("Couldn't find wrapper named %s"%classname)
class ReplayBuffer(object):
def __init__(self, size, frame_history_len):
"""This is a memory efficient implementation of the replay buffer.
The sepecific memory optimizations use here are:
- only store each frame once rather than k times
even if every observation normally consists of k last frames
- store frames as np.uint8 (actually it is most time-performance
to cast them back to float32 on GPU to minimize memory transfer
time)
- store frame_t and frame_(t+1) in the same buffer.
For the tipical use case in Atari Deep RL buffer with 1M frames the total
memory footprint of this buffer is 10^6 * 84 * 84 bytes ~= 7 gigabytes
Warning! Assumes that returning frame of zeros at the beginning
of the episode, when there is less frames than `frame_history_len`,
is acceptable.
Parameters
----------
size: int
Max number of transitions to store in the buffer. When the buffer
overflows the old memories are dropped.
frame_history_len: int
Number of memories to be retried for each observation.
"""
self.size = size
self.frame_history_len = frame_history_len
self.next_idx = 0
self.num_in_buffer = 0
self.obs = None
self.action = None
self.reward = None
self.done = None
def can_sample(self, batch_size):
"""Returns true if `batch_size` different transitions can be sampled from the buffer."""
return batch_size + 1 <= self.num_in_buffer
def _encode_sample(self, idxes):
obs_batch = np.concatenate([self._encode_observation(idx)[None] for idx in idxes], 0)
act_batch = self.action[idxes]
rew_batch = self.reward[idxes]
next_obs_batch = np.concatenate([self._encode_observation(idx + 1)[None] for idx in idxes], 0)
done_mask = np.array([1.0 if self.done[idx] else 0.0 for idx in idxes], dtype=np.float32)
return obs_batch, act_batch, rew_batch, next_obs_batch, done_mask
def sample(self, batch_size):
"""Sample `batch_size` different transitions.
i-th sample transition is the following:
when observing `obs_batch[i]`, action `act_batch[i]` was taken,
after which reward `rew_batch[i]` was received and subsequent
observation next_obs_batch[i] was observed, unless the epsiode
was done which is represented by `done_mask[i]` which is equal
to 1 if episode has ended as a result of that action.
Parameters
----------
batch_size: int
How many transitions to sample.
Returns
-------
obs_batch: np.array
Array of shape
(batch_size, img_h, img_w, img_c * frame_history_len)
and dtype np.uint8
act_batch: np.array
Array of shape (batch_size,) and dtype np.int32
rew_batch: np.array
Array of shape (batch_size,) and dtype np.float32
next_obs_batch: np.array
Array of shape
(batch_size, img_h, img_w, img_c * frame_history_len)
and dtype np.uint8
done_mask: np.array
Array of shape (batch_size,) and dtype np.float32
"""
assert self.can_sample(batch_size)
idxes = sample_n_unique(lambda: random.randint(0, self.num_in_buffer - 2), batch_size)
return self._encode_sample(idxes)
def encode_recent_observation(self):
"""Return the most recent `frame_history_len` frames.
Returns
-------
observation: np.array
Array of shape (img_h, img_w, img_c * frame_history_len)
and dtype np.uint8, where observation[:, :, i*img_c:(i+1)*img_c]
encodes frame at time `t - frame_history_len + i`
"""
assert self.num_in_buffer > 0
return self._encode_observation((self.next_idx - 1) % self.size)
def _encode_observation(self, idx):
end_idx = idx + 1 # make noninclusive
start_idx = end_idx - self.frame_history_len
# this checks if we are using low-dimensional observations, such as RAM
# state, in which case we just directly return the latest RAM.
if len(self.obs.shape) == 2:
return self.obs[end_idx-1]
# if there weren't enough frames ever in the buffer for context
if start_idx < 0 and self.num_in_buffer != self.size:
start_idx = 0
for idx in range(start_idx, end_idx - 1):
if self.done[idx % self.size]:
start_idx = idx + 1
missing_context = self.frame_history_len - (end_idx - start_idx)
# if zero padding is needed for missing context
# or we are on the boundry of the buffer
if start_idx < 0 or missing_context > 0:
frames = [np.zeros_like(self.obs[0]) for _ in range(missing_context)]
for idx in range(start_idx, end_idx):
frames.append(self.obs[idx % self.size])
return np.concatenate(frames, 2)
else:
# this optimization has potential to saves about 30% compute time \o/
img_h, img_w = self.obs.shape[1], self.obs.shape[2]
return self.obs[start_idx:end_idx].transpose(1, 2, 0, 3).reshape(img_h, img_w, -1)
def store_frame(self, frame):
"""Store a single frame in the buffer at the next available index, overwriting
old frames if necessary.
Parameters
----------
frame: np.array
Array of shape (img_h, img_w, img_c) and dtype np.uint8
the frame to be stored
Returns
-------
idx: int
Index at which the frame is stored. To be used for `store_effect` later.
"""
if self.obs is None:
self.obs = np.empty([self.size] + list(frame.shape), dtype=np.uint8)
self.action = np.empty([self.size], dtype=np.int32)
self.reward = np.empty([self.size], dtype=np.float32)
self.done = np.empty([self.size], dtype=np.bool)
self.obs[self.next_idx] = frame
ret = self.next_idx
self.next_idx = (self.next_idx + 1) % self.size
self.num_in_buffer = min(self.size, self.num_in_buffer + 1)
return ret
def store_effect(self, idx, action, reward, done):
"""Store effects of action taken after obeserving frame stored
at index idx. The reason `store_frame` and `store_effect` is broken
up into two functions is so that once can call `encode_recent_observation`
in between.
Paramters
---------
idx: int
Index in buffer of recently observed frame (returned by `store_frame`).
action: int
Action that was performed upon observing this frame.
reward: float
Reward that was received when the actions was performed.
done: bool
True if episode was finished after performing that action.
"""
self.action[idx] = action
self.reward[idx] = reward
self.done[idx] = done