-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKelvinHelmholtzInstability_mpiv6.f90
614 lines (514 loc) · 21.1 KB
/
KelvinHelmholtzInstability_mpiv6.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
! iompressible Fluid Dynamics - Finite volume
! Sophia Macarewich, EECS 587, Fall 2018
! Kelvin Helmholtz Instability (KHI)
! compile with gnu (one line):
! gfortran -o KelvinHelmholtzInstability_mat KelvinHelmholtzInstability_mat.f90
! mesh.o utils.o types.o
! compile with: gcc/5.4.0
! This is a column major version (decompose into cols)
program main
use mpi
use types, only: dp
use utils, only: savetxt
use mesh, only: linspace, meshgrid
implicit none
! Parameters
integer, parameter :: Nx = 128, Ny = 128
real (dp), parameter :: boxSizeX = 1., boxSizeY = 1.
! dx = boxSizeX / Nx ; dy = boxSizeY / Ny ; vol = dx*dy
real (dp) :: dx, dy, vol
real (dp), dimension (0:Nx+1,0:Ny+1) :: Y, X
real (dp), parameter :: pi = 3.1415927
real (dp) :: t, tEnd, tOut, dt, dt_loc
logical :: plotThisTurn
real (dp), parameter :: w0 = 0.1, sigma = 0.05/SQRT(2.), gamma = 5/3.
real (dp), allocatable, dimension (:,:) :: rho, vx, vy, P
real (dp), allocatable, dimension (:,:) :: Mass, Momx, Momy, Energy
integer :: outputCount
real (dp), allocatable, dimension (:,:) :: rho_gradx, rho_grady, vx_gradx, vx_grady
real (dp), allocatable, dimension (:,:) :: vy_gradx, vy_grady, P_gradx, P_grady
real (dp), allocatable, dimension (:,:) :: rho_prime, rho_XL, rho_XR, rho_YL, rho_YR
real (dp), allocatable, dimension (:,:) :: vx_prime, vx_XL, vx_XR, vx_YL, vx_YR
real (dp), allocatable, dimension (:,:) :: vy_prime, vy_XL, vy_XR, vy_YL, vy_YR
real (dp), allocatable, dimension (:,:) :: P_prime, P_XL, P_XR, P_YL, P_YR
real (dp), allocatable, dimension (:,:) :: rho_Xstar, rho_Ystar, momx_Xstar, momx_Ystar
real (dp), allocatable, dimension (:,:) :: momy_Xstar, momy_Ystar, en_Xstar, en_Ystar
real (dp), allocatable, dimension (:,:) :: P_Xstar, P_Ystar
real (dp), allocatable, dimension (:,:) :: flux_rho_X, flux_rho_Y, flux_momx_X,flux_momx_Y
real (dp), allocatable, dimension (:,:) :: flux_momy_X, flux_momy_Y, flux_en_X, flux_en_Y,C
real (dp) :: rho_plot(100,1:Nx,1:Ny)
integer :: i,j,k
character(len=70) :: fn
! MPI Parameters
integer, parameter :: NP = 8 ! need to change this for # proc
integer, parameter :: MASTER = 0, FROM_MASTER = 1, FROM_WORKER = 2
integer :: rank, tag, ierr, source, dest, row, numtasks
real (dp) :: sizeStrip, finish, start
integer :: status(MPI_STATUS_SIZE), request
! Cart Parameters
integer, parameter :: R = -1, L = 1 ! directions for CSHIFT
integer, parameter :: ndim = 1
integer :: grid_comm, dims(ndim), coord, s, e
logical :: periodic(ndim), reorder
integer :: grid_rank, below, above, grid_id
call MPI_INIT(ierr)
call MPI_COMM_RANK( MPI_COMM_WORLD, rank, ierr )
call MPI_COMM_SIZE( MPI_COMM_WORLD, numtasks, ierr )
! print *, 'total num tasks= ',numtasks
print *, 'proc ID= ',rank
call MPI_Barrier( MPI_COMM_WORLD, ierr )
start = MPI_Wtime()
! *********************** EVERY PROC ***************************
! Redefine processors in a Cartesian topology
dims(1) = numtasks
periodic(1) = .TRUE.
reorder = .TRUE.
call MPI_Cart_create ( MPI_COMM_WORLD, ndim, dims, periodic, reorder,&
grid_comm, ierr )
call MPI_Comm_rank(grid_comm, grid_id, ierr)
call MPI_Cart_shift(grid_comm, 0, L, below, above, ierr) ! shift row up
!
! Compute the rows "S" through "E" of data that are to be assigned to
! this
! process.
!
call decomp_band ( Ny, numtasks, grid_id, s, e )
write (*,*) 'task',grid_id,'has rows',s,'to',e
!
! Once we have the sizes S and E, we can allocate all variables
!
allocate ( rho(0:Ny+1,s-1:e+1) )
allocate ( vx(0:Ny+1,s-1:e+1) )
allocate ( vy(0:Ny+1,s-1:e+1) )
allocate ( P(0:Ny+1,s-1:e+1) )
allocate ( Mass(0:Ny+1,s-1:e+1) )
allocate ( Momx(0:Ny+1,s-1:e+1) )
allocate ( Momy(0:Ny+1,s-1:e+1) )
allocate ( Energy(0:Ny+1,s-1:e+1) )
allocate ( rho_gradx(0:Ny+1,s-1:e+1) )
allocate ( rho_grady(0:Ny+1,s-1:e+1) )
allocate ( vx_gradx(0:Ny+1,s-1:e+1) )
allocate ( vx_grady(0:Ny+1,s-1:e+1) )
allocate ( vy_gradx(0:Ny+1,s-1:e+1) )
allocate ( vy_grady(0:Ny+1,s-1:e+1) )
allocate ( P_gradx(0:Ny+1,s-1:e+1) )
allocate ( P_grady(0:Ny+1,s-1:e+1) )
allocate ( rho_prime(0:Ny+1,s-1:e+1) )
allocate ( rho_XL(0:Ny+1,s-1:e+1) )
allocate ( rho_XR(0:Ny+1,s-1:e+1) )
allocate ( rho_YL(0:Ny+1,s-1:e+1) )
allocate ( rho_YR(0:Ny+1,s-1:e+1) )
allocate ( vx_prime(0:Ny+1,s-1:e+1) )
allocate ( vx_XL(0:Ny+1,s-1:e+1) )
allocate ( vx_XR(0:Ny+1,s-1:e+1) )
allocate ( vx_YL(0:Ny+1,s-1:e+1) )
allocate ( vx_YR(0:Ny+1,s-1:e+1) )
allocate ( vy_prime(0:Ny+1,s-1:e+1) )
allocate ( vy_XL(0:Ny+1,s-1:e+1) )
allocate ( vy_XR(0:Ny+1,s-1:e+1) )
allocate ( vy_YL(0:Ny+1,s-1:e+1) )
allocate ( vy_YR(0:Ny+1,s-1:e+1) )
allocate ( P_prime(0:Ny+1,s-1:e+1) )
allocate ( P_XL(0:Ny+1,s-1:e+1) )
allocate ( P_XR(0:Ny+1,s-1:e+1) )
allocate ( P_YL(0:Ny+1,s-1:e+1) )
allocate ( P_YR(0:Ny+1,s-1:e+1) )
allocate ( rho_Xstar(0:Ny+1,s-1:e+1) )
allocate ( rho_Ystar(0:Ny+1,s-1:e+1) )
allocate ( momx_Xstar(0:Ny+1,s-1:e+1) )
allocate ( momx_Ystar(0:Ny+1,s-1:e+1) )
allocate ( momy_Xstar(0:Ny+1,s-1:e+1) )
allocate ( momy_Ystar(0:Ny+1,s-1:e+1) )
allocate ( en_Xstar(0:Ny+1,s-1:e+1) )
allocate ( en_Ystar(0:Ny+1,s-1:e+1) )
allocate ( P_Xstar(0:Ny+1,s-1:e+1) )
allocate ( P_Ystar(0:Ny+1,s-1:e+1) )
allocate ( flux_rho_X(0:Ny+1,s-1:e+1) )
allocate ( flux_rho_Y(0:Ny+1,s-1:e+1) )
allocate ( flux_momx_X(0:Ny+1,s-1:e+1) )
allocate ( flux_momx_Y(0:Ny+1,s-1:e+1) )
allocate ( flux_momy_X(0:Ny+1,s-1:e+1) )
allocate ( flux_momy_Y(0:Ny+1,s-1:e+1) )
allocate ( flux_en_X(0:Ny+1,s-1:e+1) )
allocate ( flux_en_Y(0:Ny+1,s-1:e+1) )
allocate ( C(0:Ny+1,s-1:e+1) )
t = 0.0D0
tEnd = 2.0D0
tOut = 0.01D0
outputCount = 1
if (rank .eq. 0) write(*,*) 'tOut=',tOut
! Calc global grid and then select local Y points for task
dx = 1.0E+00 / real ( Nx + 1 )
dy = 1.0E+00 / real ( Ny + 1 )
call meshgrid( linspace(-1.5*dy,boxSizeY-0.5*dy, Ny+2),linspace(0.5*dx,boxSizeX-0.5*dx, Nx+2), Y, X)
! Initalize values in each strip
call init_band ( Nx, Ny, X, Y, s, e, grid_id, numtasks, &
dx, dy, rho, vx, vy, P, Mass, Momx, Momy, Energy)
!! if (rank .eq. 1) write(*,*) 'Rank 1 rho val is',rho
call MPI_Barrier( grid_comm, ierr )
! Main loop
do while ( t < tEnd )
! Get primitive variables
call primitiveVar( s, e, Ny, dx, dy, Mass, Momx, Momy, Energy, rho, vx, vy, P)
if (rank .eq. 1) write(*,*) 'Rank 1 mass min val =',MINVAL(Mass(1:Ny,s:e))
! Get time step of each worker
if (rank .eq. 1) write(*,*) 'Rank 1 rho min val =',MINVAL(rho(1:Ny,s:e))
call calc_CFL(s, e, Ny, dx, dy, rho, vx, vy, P, dt_loc)
write(*,*) 'local dt of rank',grid_id,'is',dt_loc
! MASTER reduces all local dt into global min dt
call MPI_Allreduce( dt_loc, dt, 1, MPI_DOUBLE_PRECISION, MPI_MIN, &
grid_comm,ierr )
!! if (rank .eq. 0) write(*,*) 'MASTER calc dt=',dt,'for t=',t
plotThisTurn = .FALSE.
! every proc decides whether or not to plot
if ( t + dt > outputCount*tOut ) then
dt = outputCount*tOut - t
plotThisTurn = .TRUE.
end if
if (rank .eq. 0) write(*,*) 'outputCount=',outputCount
if (rank .eq. 0) write(*,*) 'tOut=',tOut
if (rank .eq. 0) write(*,*) 'MASTER calc dt=',dt,'for t=',t
! Calculate gradients
call calcGradients( dx, dy, rho, vx, vy, P, below, above, &
s, e, Ny, grid_comm, rho_gradx, rho_grady, vx_gradx, vx_grady, &
vy_gradx, vy_grady, P_gradx, P_grady )
! Extrapolate to cell faces (in time & space)
call extrapSpaceTime( dx, dy, rho, vx, vy, P, &
below, above, dt, s, e, Ny, grid_comm, &
rho_gradx, rho_grady, vx_gradx, vx_grady, &
vy_gradx, vy_grady, P_gradx, P_grady, &
rho_XR, rho_XL, rho_YR, rho_YL, &
vx_XR, vx_XL, vx_XR, vx_XL, &
vy_XR, rho_XL, rho_XR, rho_XL, &
rho_XR, rho_XL, rho_XR, rho_XL )
! Compute star (averaged) states
rho_Xstar = 0.5*(rho_XL + rho_XR)
rho_Ystar = 0.5*(rho_YL + rho_YR)
momx_Xstar = 0.5*(rho_XL * vx_XL + rho_XR * vx_XR)
momx_Ystar = 0.5*(rho_YL * vx_YL + rho_YR * vx_YR)
momy_Xstar = 0.5*(rho_XL * vy_XL + rho_XR * vy_XR)
momy_Ystar = 0.5*(rho_YL * vy_YL + rho_YR * vy_YR)
en_Xstar = 0.5*( P_XL/(gamma-1)+0.5*rho_XL * (vx_XL**2+vy_XL**2) + P_XR/(gamma-1)+0.5*rho_XR * (vx_XR**2+vy_XR**2))
en_Ystar = 0.5*( P_YL/(gamma-1)+0.5*rho_YL * (vx_YL**2+vy_YL**2) + P_YR/(gamma-1)+0.5*rho_YR * (vx_YR**2+vy_YR**2))
P_Xstar = (gamma-1)*(en_Xstar-0.5*(momx_Xstar**2+momy_Xstar**2)/rho_Xstar)
P_Ystar = (gamma-1)*(en_Ystar-0.5*(momx_Ystar**2+momy_Ystar**2)/rho_Ystar)
! Compute fluxes (local Lax-Friedrichs/Rusanov)
flux_rho_X = momx_Xstar
flux_rho_Y = momy_Ystar
flux_momx_X = momx_Xstar**2/rho_Xstar + P_Xstar
flux_momx_Y = momy_Ystar * momx_Ystar/rho_Ystar
flux_momy_X = momx_Xstar * momy_Xstar/rho_Xstar
flux_momy_Y = momy_Ystar**2/rho_Ystar + P_Ystar
flux_en_X = (en_Xstar+P_Xstar) * momx_Xstar/rho_Xstar
flux_en_Y = (en_Ystar+P_Ystar) * momy_Ystar/rho_Ystar
C = SQRT(gamma*P_XL/rho_XL) + ABS(vx_XL)
C = MAX( C, SQRT(gamma*P_XR/rho_XR) + ABS(vx_XR))
C = MAX( C, SQRT(gamma*P_YL/rho_YL) + ABS(vy_YL))
C = MAX( C, SQRT(gamma*P_YR/rho_YR) + ABS(vy_YR))
flux_rho_X = flux_rho_X - C * 0.5 * (rho_XL - rho_XR)
flux_rho_Y = flux_rho_Y - C * 0.5 * (rho_YL - rho_YR)
flux_momx_X = flux_momx_X - C * 0.5 * (rho_XL * vx_XL - rho_XR * vx_XR)
flux_momx_Y = flux_momx_Y - C * 0.5 * (rho_YL * vx_YL - rho_YR * vx_YR)
flux_momy_X = flux_momy_X - C * 0.5 * (rho_XL * vy_XL - rho_XR * vy_XR)
flux_momy_Y = flux_momy_Y - C * 0.5 * (rho_YL * vy_YL - rho_YR * vy_YR)
flux_en_X = flux_en_X - C * 0.5 * ( P_XL/(gamma-1)+0.5*rho_XL * (vx_XL**2+vy_XL**2) - &
(P_XR/(gamma-1)+0.5*rho_XR * (vx_XR**2+vy_XR**2)))
flux_en_Y = flux_en_Y - C * 0.5 * ( P_YL/(gamma-1)+0.5*rho_YL * (vx_YL**2+vy_YL**2) - &
(P_YR/(gamma-1)+0.5*rho_YR * (vx_YR**2+vy_YR**2)))
! Update solution
call update_soln( Ny, dx, dy, dt, s, e, below, above, grid_comm, &
flux_rho_X, flux_rho_Y, &
flux_momx_X, flux_momx_Y, &
flux_momy_X, flux_momy_Y, &
flux_en_X, flux_en_Y, &
Mass, Momx, Momy, Energy )
if ( plotThisTurn ) then
!! DO NOT DO UNTIL ERROR FIXED***
!! if ( rank .eq. 0 ) write(*,*) 'gathering all rho rows'
!! call MPI_Gather( rho(s:e,1:Nx),Nx*(e-s),MPI_DOUBLE_PRECISION,rho_plot,&
!! Nx*(e-s),MPI_DOUBLE_PRECISION,MASTER,grid_comm,ierr )
outputCount = outputCount + 1
if ( rank .eq. 0 ) write(*,*) 't=',t,'complete'
end if
! Advance time
t = t + dt
call MPI_Barrier( grid_comm, ierr )
end do
call MPI_Barrier( grid_comm, ierr )
if ( rank .eq. 0 ) print *, 'done'
!! DO NOT DO UNTIL ERROR FIXED***
!! if (rank .eq. 0) then
!! print *, "MASTER saving rho..."
!! j = 1
!! do i=1,100
!! write(fn,fmt='(i0,a)') j, '.dat'
!! open (unit=44,file=fn,form='formatted')
!! write(44, *) rho_plot(i,1:Nx,1:Ny)
!! close(44)
!! j = j + 1
!! end do
!! end if
! PUT TIMING HERE
finish = MPI_Wtime()
if ( rank .eq. 0 ) print *, 'time elapsed=',finish-start
call MPI_Finalize(ierr)
end program main
subroutine decomp_band ( m, n, r, s, e )
implicit none
integer :: e, m, n, part, r, s, whole
whole = m / n
part = m - whole * n
if ( r + 1 <= part ) then
s = r * ( whole + 1 ) + 1
e = ( r + 1 ) * ( whole + 1 )
else
s = r * whole + 1 + part
e = ( r + 1 ) * whole + part
end if
return
end subroutine decomp_band
subroutine init_band ( Nx, Ny, X1, Y1, s, e, grid_id, numtasks, &
dx, dy, rho, vx, vy, P, Mass, Momx, Momy, Energy)
use mpi
use types, only: dp
real (dp), parameter :: pi = 3.1415927
real (dp), parameter :: w0 = 0.1, sigma = 0.05/SQRT(2.), gamma = 5/3.
integer :: Nx, Ny, s, e
real (dp), dimension (0:Ny+1,s-1:e+1) :: x, y
real (dp), dimension (0:Nx+1,0:Ny+1) :: X1, Y1
integer :: grid_id, ierr, numtasks
integer, parameter :: MASTER = 0
real (dp) :: dx, dy, vol
integer :: i, j
real (dp), parameter :: boxSizeX = 1., boxSizeY = 1.
real (dp), dimension (0:Ny+1,s-1:e+1) :: rho, vx, vy, P
real (dp), dimension (0:Ny+1,s-1:e+1) :: Mass, Momx, Momy, Energy
vol = dx*dy
x = X1(0:Ny+1,s-1:e+1)
y = Y1(0:Ny+1,s-1:e+1)
if ( grid_id == MASTER ) then
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'INIT_BAND - Master Cartesian process:'
write ( *, '(a,g14.6)' ) ' The X grid spacing is ', dx
write ( *, '(a,g14.6)' ) ' The Y grid spacing is ', dy
end if
! Set initial conditions for KHI
where ( ABS(y-0.5) < 0.25 )
rho = 1. + ABS(y-0.5)
vx = -0.5 + ABS(y-0.5)
elsewhere
rho = 1.
vx = -0.5
end where
vy = w0*SIN(4*pi*x) * ( EXP(-(y-0.25)**2/(2 * sigma**2)) + EXP(-(y-0.75)**2/(2*sigma**2)) )
P = 0*x + 2.5
! Get conserved variables
Mass = rho * vol
Momx = rho * vx * vol
Momy = rho * vy * vol
Energy = (P/(gamma-1) + 0.5*rho*(vx**2+vy**2))*vol
return
end subroutine init_band
subroutine primitiveVar( s, e, Ny, dx, dy, Mass, Momx, Momy, Energy, rho, vx, vy, P)
use types, only: dp
real (dp) :: dx, dy, vol
integer :: s, e, Ny
real (dp), parameter :: gamma = 5/3.
real (dp), dimension (0:Ny+1,s-1:e+1) :: Mass, Momx, Momy, Energy
real (dp), dimension (0:Ny+1,s-1:e+1) :: rho, vx, vy, P
vol = dx*dy
! Get primitive variables
rho = Mass / vol
vx = Momx / rho / vol
vy = Momy / rho / vol
P = (Energy/vol - 0.5*rho * (vx**2+vy**2)) * (gamma-1)
return
end subroutine primitiveVar
subroutine calc_CFL(s, e, Ny, dx, dy, rho, vx, vy, P, dt_loc) ! get time step (CFL)
use types, only: dp
implicit none
real (dp) :: dx, dy
integer :: s, e, Ny
real (dp), parameter :: courant_fac = 0.4
real (dp), parameter :: gamma = 5/3.
real (dp), dimension (0:Ny+1,s-1:e+1) :: rho, vx, vy, P
real (dp) :: dt_loc
dt_loc = courant_fac * MINVAL( MIN(dx,dy) / &
SQRT( gamma*P(1:Ny,s:e)/rho(1:Ny,s:e) ) + SQRT(vx(1:Ny,s:e)**2+vy(1:Ny,s:e)**2) )
!! ! take care of -Inf issue on proc 1, might lead to issues later ********
!! if ( dt_loc < 0.01D-2 ) dt_loc = 0.01D-2
return
end subroutine calc_CFL
subroutine calcGradients( dx, dy, rho, vx, vy, P, &
below, above, s, e, Ny, grid_comm, &
rho_gradx, rho_grady, &
vx_gradx, vx_grady, &
vy_gradx, vy_grady, &
P_gradx, P_grady )
use types, only: dp
implicit none
real (dp) :: dx, dy
integer, parameter :: R = -1, L = 1 ! directions for CSHIFT
integer :: s, e, Ny
real (dp), dimension (0:Ny+1,s-1:e+1) :: rho, rho_gradx, rho_grady, rhoUp, rhoDown
real (dp), dimension (0:Ny+1,s-1:e+1) :: vx , vx_gradx, vx_grady, vxUp, vxDown
real (dp), dimension (0:Ny+1,s-1:e+1) :: vy, vy_gradx, vy_grady, vyUp, vyDown
real (dp), dimension (0:Ny+1,s-1:e+1) :: P, P_gradx, P_grady, PUp, PDown
integer :: below, above, ierr, grid_comm
! shift band up (up_down = 0) or down (up_down = 1)
rhoUp = rho
call shift_band ( Ny, s, e, 0, below, above, grid_comm, rhoUp )
rhoDown = rho
call shift_band ( Ny, s, e, 1, below, above, grid_comm, rhoDown )
vxUp = vx
call shift_band ( Ny, s, e, 0, below, above, grid_comm, vxUp )
vxDown = vx
call shift_band ( Ny, s, e, 1, below, above, grid_comm, vxDown )
vyUp = vy
call shift_band ( Ny, s, e, 0, below, above, grid_comm, vyUp )
vyDown = vy
call shift_band ( Ny, s, e, 1, below, above, grid_comm, vyDown )
PUp = P
call shift_band ( Ny, s, e, 0, below, above, grid_comm, PUp )
PDown = P
call shift_band ( Ny, s, e, 1, below, above, grid_comm, PDown )
! split up into rows, so CSHIFT works for dim = 2 (left/right)
! calculate gradients
! all CSHIFT are along dim = 2 or cols
rho_gradx = ( rhoDown - rhoUp ) / (2.*dx)
rho_grady = ( CSHIFT(rho,R) - CSHIFT(rho,L) ) / (2.*dy)
vx_gradx = ( vxDown - vxUp ) / (2.*dx)
vx_grady = ( CSHIFT(vx,R) - CSHIFT(vx,L) ) / (2.*dy)
vy_gradx = ( vyDown - vyUp ) / (2.*dx)
vy_grady = ( CSHIFT(vy,R) - CSHIFT(vy,L) ) / (2.*dy)
P_gradx = ( PDown - PUp ) / (2.*dx)
P_grady = ( CSHIFT(P,R) - CSHIFT(P,L) ) / (2.*dy)
return
end subroutine calcGradients
subroutine extrapSpaceTime( dx, dy, rho, vx, vy, P, &
below, above, dt, s, e, Ny, grid_comm, &
rho_gradx, rho_grady, vx_gradx, vx_grady, &
vy_gradx, vy_grady, P_gradx, P_grady, &
rho_XR, rho_XL, rho_YR, rho_YL, &
vx_XR, vx_XL, vx_YR, vx_YL, &
vy_XR, vy_XL, vy_YR, vy_YL, &
P_XR, P_XL, P_YR, P_YL )
use mpi
use types, only: dp
implicit none
integer, parameter :: R = -1, L = 1 ! directions for CSHIFT
real (dp), parameter :: gamma = 5/3.
real (dp) :: dt, dx, dy
integer :: s, e, Ny
real (dp), dimension (0:Ny+1,s-1:e+1) :: rho, rho_gradx, rho_grady, rho_prime
real (dp), dimension (0:Ny+1,s-1:e+1) :: vx, vx_gradx, vx_grady, vx_prime
real (dp), dimension (0:Ny+1,s-1:e+1) :: vy, vy_gradx, vy_grady, vy_prime
real (dp), dimension (0:Ny+1,s-1:e+1) :: P, P_gradx, P_grady, P_prime
real (dp), dimension (0:Ny+1,s-1:e+1) :: rho_XL, rho_XR, rho_YL, rho_YR
real (dp), dimension (0:Ny+1,s-1:e+1) :: vx_XL, vx_XR, vx_YL, vx_YR
real (dp), dimension (0:Ny+1,s-1:e+1) :: vy_XL, vy_XR, vy_YL, vy_YR
real (dp), dimension (0:Ny+1,s-1:e+1) :: P_XL, P_XR, P_YL, P_YR
integer :: below, above, ierr, grid_comm
! extrapolate to cell faces (in time & space)
rho_prime = rho - 0.5*dt *( vx * rho_gradx + rho * vx_gradx + vy * rho_grady + rho * vy_grady)
rho_XL = rho_prime - rho_gradx * dx/2.
! shift down row
call shift_band ( Ny, s, e, 1, below, above, grid_comm, rho_XL )
rho_XR = rho_prime + rho_gradx * dx/2.
rho_YL = rho_prime - rho_grady * dy/2.
rho_YL = CSHIFT(rho_YL,R)
rho_YR = rho_prime + rho_grady * dy/2.
vx_prime = vx - 0.5*dt * ( vx * vx_gradx + vy * vx_grady + (1/rho) * P_gradx)
vx_XL = vx_prime - vx_gradx * dx/2.
! shift down row
call shift_band ( Ny, s, e, 1, below, above, grid_comm, vx_XL )
vx_XR = vx_prime + vx_gradx * dx/2.
vx_YL = vx_prime - vx_grady * dy/2.
vx_YL = CSHIFT(vx_YL,R)
vx_YR = vx_prime + vx_grady * dy/2.
vy_prime = vy - 0.5*dt * ( vx * vy_gradx + vy * vy_grady + (1/rho) * P_grady)
vy_XL = vy_prime - vy_gradx * dx/2.
! shift down row
call shift_band ( Ny, s, e, 1, below, above, grid_comm, vy_XL )
vy_XR = vy_prime + vy_gradx * dx/2.
vy_YL = vy_prime - vy_grady * dy/2.
vy_YL = CSHIFT(vy_YL,R)
vy_YR = vy_prime + vy_grady * dy/2.
P_prime = P - 0.5*dt * ( gamma*P * (vx_gradx + vy_grady) + vx * P_gradx + vy * P_grady )
P_XL = P_prime - P_gradx * dx/2.
! shift down row
call shift_band ( Ny, s, e, 1, below, above, grid_comm, P_XL )
P_XR = P_prime + P_gradx * dx/2.
P_YL = P_prime - P_grady * dy/2.
P_YL = CSHIFT(P_YL,R)
P_YR = P_prime + P_grady * dy/2.
return
end subroutine
subroutine update_soln( Ny, dx, dy, dt, s, e, below, above, grid_comm, &
flux_rho_X, flux_rho_Y, &
flux_momx_X, flux_momx_Y, &
flux_momy_X, flux_momy_Y, &
flux_en_X, flux_en_Y, &
Mass, Momx, Momy, Energy )
use mpi
use types, only: dp
implicit none
real (dp) :: dx, dy, dt
integer :: s, e, Ny
integer, parameter :: R = -1, L = 1 ! directions for CSHIFT
real (dp), dimension (0:Ny+1,s-1:e+1) :: Mass, Momx, Momy, Energy
real (dp), dimension (0:Ny+1,s-1:e+1) :: flux_rho_X, flux_rho_Y
real (dp), dimension (0:Ny+1,s-1:e+1) :: flux_momx_X, flux_momx_Y
real (dp), dimension (0:Ny+1,s-1:e+1) :: flux_momy_X, flux_momy_Y
real (dp), dimension (0:Ny+1,s-1:e+1) :: flux_en_X, flux_en_Y
integer :: below, above, ierr, grid_comm
Mass = Mass - dt * dy * flux_rho_X
! shift up row
call shift_band ( Ny, s, e, 0, below, above, grid_comm, flux_rho_X )
Mass = Mass + dt * dy * flux_rho_X
Mass = Mass - dt * dx * flux_rho_Y
Mass = Mass + dt * dx * CSHIFT(flux_rho_Y,L)
Momx = Momx - dt * dy * flux_momx_X
! shift up row
call shift_band ( Ny, s, e, 0, below, above, grid_comm, flux_momx_X )
Momx = Momx + dt * dy * flux_momx_X
Momx = Momx - dt * dx * flux_momx_Y
Momx = Momx + dt * dx * CSHIFT(flux_momx_Y,L)
Momy = Momy - dt * dy * flux_momy_X
! shift up row
call shift_band ( Ny, s, e, 0, below, above, grid_comm, flux_momy_X )
Momy = Momy + dt * dy * flux_momy_X
Momy = Momy - dt * dx * flux_momy_Y
Momy = Momy + dt * dx * CSHIFT(flux_momy_Y,L)
Energy = Energy - dt * dy * flux_en_X
! shift up row
call shift_band ( Ny, s, e, 0, below, above, grid_comm, flux_en_X )
Energy = Energy + dt * dy * flux_en_X
Energy = Energy - dt * dx * flux_en_Y
Energy = Energy + dt * dx * CSHIFT(flux_en_Y,L)
return
end subroutine update_soln
subroutine shift_band ( Ny, s, e, up_down, below, above, grid_comm, a)
use mpi
use types, only: dp
integer :: Ny, e, s
real (dp) :: a(0:Ny+1,s-1:e+1)
integer below, above, tag, ierr, up_down, grid_comm
integer status(MPI_STATUS_SIZE)
tag = 0
call MPI_Send ( a(1,e), Ny, MPI_DOUBLE_PRECISION, above, tag, grid_comm, ierr )
call MPI_Recv ( a(1,s-1), Ny, MPI_DOUBLE_PRECISION, below, tag, grid_comm,status, &
ierr )
tag = 1
call MPI_Send ( a(1,s), Ny, MPI_DOUBLE_PRECISION, below, tag, grid_comm, ierr )
call MPI_Recv ( a(1,e+1), Ny, MPI_DOUBLE_PRECISION, above, tag, grid_comm,status, &
ierr )
if ( up_down == 0) then
a = CSHIFT(a,1)
else if ( up_down == 1) then
a = CSHIFT(a,-1)
else
write(*,*) 'no shift in a, check error'
end if
return
end subroutine shift_band