-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathraw-bronze.py
265 lines (222 loc) · 9.79 KB
/
raw-bronze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
import sys
import json
from datetime import datetime
from sqlite3 import sqlite_version
from urllib.parse import urlparse
import boto3
from io import StringIO
from pyspark.sql import SparkSession
from pyspark.sql.functions import input_file_name, current_timestamp
from pyspark.sql import functions as F
print("Modules are loaded")
class IncrementalFileProcessor:
def __init__(self, path, checkpoint_path, minio_config=None):
self.path = path
self.checkpoint_path = checkpoint_path
self.parsed_url = urlparse(self.path)
self.checkpoint_parsed_url = urlparse(self.checkpoint_path)
self.client = self._get_client(minio_config)
self.last_checkpoint_time = self._load_checkpoint()
def _get_client(self, minio_config):
if self.parsed_url.scheme in ['s3', 's3a'] or self.checkpoint_parsed_url.scheme in ['s3', 's3a']:
if minio_config:
return boto3.client('s3',
endpoint_url=minio_config['endpoint_url'],
aws_access_key_id=minio_config['access_key'],
aws_secret_access_key=minio_config['secret_key'])
else:
return boto3.client('s3')
return None
def _load_checkpoint(self):
if self.checkpoint_parsed_url.scheme in ['s3', 's3a']:
try:
bucket, key = self._parse_s3_path(self.checkpoint_path)
response = self.client.get_object(Bucket=bucket, Key=key)
return json.load(response['Body']).get('last_processed_time', 0)
except self.client.exceptions.NoSuchKey:
print(f"Checkpoint file not found: {self.checkpoint_path}")
return 0
except Exception as e:
print(f"Error loading checkpoint: {str(e)}")
return 0
else:
if os.path.exists(self.checkpoint_path):
with open(self.checkpoint_path, 'r') as f:
return json.load(f).get('last_processed_time', 0)
print(f"Checkpoint file not found: {self.checkpoint_path}")
return 0
def _parse_s3_path(self, s3_path):
parsed = urlparse(s3_path)
return parsed.netloc, parsed.path.lstrip('/')
def _list_s3_files(self):
bucket, prefix = self._parse_s3_path(self.path)
files = []
paginator = self.client.get_paginator('list_objects_v2')
for page in paginator.paginate(Bucket=bucket, Prefix=prefix):
for obj in page.get('Contents', []):
if obj['LastModified'].timestamp() > self.last_checkpoint_time:
files.append(f"s3://{bucket}/{obj['Key']}")
return files
def _list_local_files(self):
files = []
directory = self.parsed_url.path
for root, _, filenames in os.walk(directory):
for filename in filenames:
file_path = os.path.join(root, filename)
if os.path.getmtime(file_path) > self.last_checkpoint_time:
files.append(file_path)
return files
def get_new_files(self):
if self.parsed_url.scheme in ['s3', 's3a']:
return self._list_s3_files()
elif self.parsed_url.scheme == 'file' or not self.parsed_url.scheme:
return self._list_local_files()
else:
raise ValueError(f"Unsupported scheme: {self.parsed_url.scheme}")
def commit_checkpoint(self):
current_time = datetime.now().timestamp()
checkpoint_data = json.dumps({'last_processed_time': current_time})
if self.checkpoint_parsed_url.scheme in ['s3', 's3a']:
bucket, key = self._parse_s3_path(self.checkpoint_path)
self.client.put_object(Bucket=bucket, Key=key, Body=checkpoint_data)
else:
os.makedirs(os.path.dirname(self.checkpoint_path), exist_ok=True)
with open(self.checkpoint_path, 'w') as f:
f.write(checkpoint_data)
print(f"Checkpoint updated to: {datetime.fromtimestamp(current_time)}")
def create_spark_session(bucket_name):
spark = SparkSession.builder \
.config("spark.sql.catalog.dev", "org.apache.iceberg.spark.SparkCatalog") \
.config("spark.sql.catalog.dev.warehouse", f"s3://{bucket_name}/warehouse/") \
.config("spark.sql.catalog.dev.catalog-impl", "org.apache.iceberg.aws.glue.GlueCatalog") \
.config("spark.sql.catalog.dev.io-impl", "org.apache.iceberg.aws.s3.S3FileIO") \
.config("hive.metastore.client.factory.class",
"com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory") \
.config("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem") \
.config("spark.hadoop.fs.s3a.aws.credentials.provider", "com.amazonaws.auth.DefaultAWSCredentialsProviderChain") \
.enableHiveSupport() \
.getOrCreate()
return spark
def process_files_with_spark(spark, files):
if not files:
print("No files to process")
return None
try:
# Read new files into a Spark DataFrame
df = spark.read.csv(files, sep='\t', header=True, inferSchema=True)
return df
except Exception as e:
print(f"Error processing files with Spark: {str(e)}")
return None
def load_data_to_iceberg(spark,
df,
catalog_name,
database_name,
table_name,
partition_cols=None,
table_type='COW',
sql_query=None,
compression='snappy'): # Add compression parameter
full_table_name = f"{catalog_name}.{database_name}.{table_name}"
try:
if sql_query is not None:
print("IN sql_query")
# Create a temporary view
df.createOrReplaceTempView("temp_view")
print("Created temp view ")
transformed_df = spark.sql(sql_query)
print("******transformed_df SCHEMA*********")
transformed_df.printSchema()
else:
transformed_df = df
writer = transformed_df.write.format("iceberg")
# Set table properties based on table type
if table_type.upper() == 'COW':
writer = writer.option("write.format.default", "parquet")
writer = writer.option("write.delete.mode", "copy-on-write")
writer = writer.option("write.update.mode", "copy-on-write")
writer = writer.option("write.merge.mode", "copy-on-write")
elif table_type.upper() == 'MOR':
writer = writer.option("write.format.default", "parquet")
writer = writer.option("write.delete.mode", "merge-on-read")
writer = writer.option("write.update.mode", "merge-on-read")
writer = writer.option("write.merge.mode", "merge-on-read")
else:
raise ValueError("Invalid table_type. Must be 'COW' or 'MOR'.")
# Set compression codec
writer = writer.option("write.parquet.compression-codec", compression)
if partition_cols:
writer = writer.partitionBy(partition_cols)
if spark.catalog.tableExists(full_table_name):
print(f"Appending data to existing table {full_table_name}")
writer.mode("append").saveAsTable(full_table_name)
else:
print(f"Creating new table {full_table_name}")
writer.mode("overwrite").saveAsTable(full_table_name)
print(f"Data successfully written to {full_table_name}")
if sql_query:
spark.catalog.dropTempView("temp_view")
return True
except Exception as e:
print(f"Error loading data to Iceberg: {str(e)}")
return False # Return False on failure
if __name__ == "__main__":
# -----------------------------------
catalog_name = "dev"
database_name = "icebergdb"
table_name = "bronze_orders"
bucket_name = "XXX"
table_type = 'COW'
partition_cols = "processed_date"
compression = "snappy"
sql_query = """
SELECT
*,
input_file_name() as input_file,
current_timestamp as processed_time,
DATE_FORMAT(current_timestamp, 'yyyy-MM-dd') as processed_date
FROM
temp_view
WHERE
price > 0 AND quantity > 0
"""
input_path = f"s3://{bucket_name}/raw/"
checkpoint_path = f"s3://{bucket_name}/checkpoints/raw_checkpoint.json"
# -----------------------------------
spark = create_spark_session(bucket_name=bucket_name)
print(f"Input path: {input_path}")
print(f"Checkpoint path: {checkpoint_path}")
try:
processor = IncrementalFileProcessor(input_path, checkpoint_path)
# Get incremental files
new_files = processor.get_new_files()
print(f"New files found: {new_files}")
if new_files:
df = process_files_with_spark(spark, new_files)
if df is not None:
success = load_data_to_iceberg(
spark,
df,
catalog_name,
database_name,
table_name,
partition_cols=partition_cols,
table_type=table_type,
sql_query=sql_query,
compression=compression
)
# Commit the checkpoint only if loading to Iceberg was successful
if success:
processor.commit_checkpoint()
else:
print("Data loading to Iceberg failed; checkpoint not committed.")
else:
print("No data to process after reading files.")
else:
print("No new files to process.")
except Exception as e:
print(f"An error occurred: {str(e)}")
finally:
# Stop the Spark session
spark.stop()